Existence and regularity study for a 2-dimensional Kac equation without
cutoff by a probabilistic approach.

Nicolas FOURNIER

30, September, 1998

Abstract : We consider a 2-dimensional Kac equation without cutoff, which we relate to a stochastic differential
equation. We prove the existence of a solution for this S.D.E., and we use the Malliavin calculus (or stochastic
calculus of variations) to prove that the law of this solution admits a smooth density with respect to the Lebesgue
measure on R. This density satisfies the Kac equation.

1 Introduction.

The Boltzmann equation describes the density f(¢,r,v) of particles which have the position r and the
velocity v at the instant ¢ > 0, in a sufficiently dilute gas. The 2-dimensional Kac equation deals with
a simplified model. Indeed, the particles take place in the plane, and the density f is supposed to be
spatially homogeneous : the interaction is meanfield. In this paper, we will take in account the difficulty
generated by the possible explosion of the mass of the collision kernel.

The Kac equation can be written as follows :

B)  Wt.0) = Ko(r. Dt

The collision kernel Kj is given by :

Kol D)) = [ [ (F(tclo,ot 050 (0.07,0)) = £ 0) 1 (0,0°)] B0, fo =" dbde”

where, if Ry is the f-rotation centered at 0,
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c(v,v*,0) = 5 5

We will need the following computation of ¢(v,v*,0) :
(v, 0", 0) = ce(v,v*,0) L[ (vz+v)) + (ve —v})cos O — (vy —vy)sin
T (vy +vy) + (v, —vy) cos O + (v, — v})sin6

In fact, c(v,v*,0) and c*(v,v*,0) represent the velocities of two particles after their collision, if these
particles had the velocities v and v* before the collision, and if the angle due to the collision is 6.

We will assume that we are in a case of Maxwellian particles, i.e. that the cross section § depends only
on #, and is even : 3(0, |v —v*|) = ((]0]). We will also suppose the physically reasonnable condition :

/” 6%5(0)d0 < oo (1.1)
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The Kac equation ”with cutoff”, namely when [ 3(6)df < oo, has been much investigated by the analysts.
It is really more difficult to assume only (1.1), and the only analytical existence and regularity result under
(1.1) is due to Desvillettes in [3].

A probabilistic approach using the underlying evolution Markov process allows to work under (1.1) thanks
to the L2-calculus. We obtain a slightly better existence result than Desvillettes, and our regularity result
is much better. Desvilletes builds a solution ¢(¢,v) of (B), and he proves that for each t > 0, f(¢,.) is in
H'~¢(R?) for all € > 0. The solution f(t,v) we build is continuous on ]0,7] x R?, and for each t > 0,
f(t,.) is in C®(IR?).

Another advantage of a probabilistic approach is that we can assume that the initial data is a probability,
and not necessarily a density of probability. Finally, we give a (probabilistic) notion of uniqueness

In order to define the weak solutions, we consider the following kernel, which depends on the test function
¢ € C2(IR?) (the set of C? functions on IR? of which the derivatives of order 0 to 2 are bounded) :

K. = [ [ole(o,07,0) = 60) = 610 (e(0,07,0) = 02) = 64(0) (6 (0,7, 6) — v,)] B0} B

b

= 5[ — ) + 9 () (v, — vy)] (1.2)

where b = / (1 — cos®)3(0)df. This expression is well defined for every test function thanks to the

assumption (1.1). Now we can define the weak solutions of (B).
Definition 1.1 Let 3 be a cross section (even and positive on [—m,w|\{0}) satisfying (1.1). Let Py be a

probability on R? that admits a moment of order 2. A positive function f on RY x R? is a weak solution
of (B) with initial data Py if for every test function ¢ € CZ(IR?),

/UER2 ft,v)p(v)dv = /UER2 d(v)Py(dv) + /Ot /UER2 /U*ER2 Kg(v,v*)f(s,v)f(s,v*)dvdv*ds (1.3)

Let us explain this definition : a priori, we should look for weak solutions satisfying, for every test function,

/UEH2 [t v)p(v)dv = /UeR2 ¢(v) Py(dv) + /Ot /UER2 Ka(f, £)(s,v)¢(v)dvds

Let us subsitute v’ = c(v,v*,0), v'* = ¢*(v,v*,0), and ' = —0 in the first part of Kg( , f). The Jacobian
of this substitution is equal to 1, and an easy drawing shows that v = c(v’,v"*,0"), v* = ¢*(v/,v'*,0") and
6 = —6'. We obtain :

/R2 /R / c(v,v",0)) f(t, c* (v,v",0))p(v) B(0)dbdvdv*
/R /RZ /_ﬂ f(t,v)f(t,v")p(c(v,v",0))5(0)d0dvdv*

and hence

t
/v€R2 f(t,v)p(v)dv = /v€R2 d(v) Po(dv) +/0 /v€R2 /v*€R2 kg(v,v*)f(s,v)f(s,v*)dvdv*ds

k‘g(v,v*) = /7T

—T

where

[#(c(v,v7,6)) — 6(v) ] 3(6)d6

But this kernel does not make sense for every test function ¢ € C’g(]R2), except if we suppose that
Jo 05(0)dd < co. Consequently, we replace kg by Kg, in which there is a compensated term. Notice that



if [ 03(8)df < oo, then [T sin#F(0)dd = 0, and the two kernels are identical.

The method is partially adapted from the papers of L. Desvillettes, C. Graham and S. Méléard in [4] and
[5], who solved a simpler problem in dimension 1. We first show that there exists a stochastic differential
equation associated with the equation (B). This means that if V; is a solution of this S.D.E., then its law
is a measure solution and if V; admits a density for of (B). If furthermore for each ¢ > 0, the law of V;
admits a density f(t,.) with respect to the Lebesgue measure on IR?, then f will be a solution of (B) in
the sense of Definition 1.1.

The first section is devoted to the statement of the S.D.E., to the existence and the uniqueness in law of
a solution of this S.D.E., and to the study of some moment conservations for this solution, which can be
related to physical conservations. The aim of the second section is to use the Malliavin Calculus in order
to show the existence of a weak solution of (B), and to study the smoothness of this solution. We will
use Bismut’s approach of the Malliavin Calculus, by following the methods of Bichteler, Gravereaux, and
Jacod in [1] and [2]. However, we can not apply trheir results, because our model does not satisfy their
assumptions, for several reasons.

The most difficult and original part of this paper is the proof of the regularity (see Lemmas 3.22, 3.23,
and Theorem 3.24), for which we need to use the particular form of our S.D.E.

In the sequel, (3 is a fixed cross section satisfying (1.1).

The uniqueness for the equation (B) is an open problem. But it is possible to prove that if all the moments
of Py are finite, if f and g are two weak solutions of (B) on [0, 7], and if for every p > 0,

sup [0 P f(to)do+sup [0 P glt0)dv < o0
[o.T] / R? [o.T] / R?

then f and g have the same moments : for every p,q > 0, for all ¢ € [0, T,

/R? vhvd f(t, v)dv = /R2 vhodg(t, v)dv

This can be shown recursively (on p + ¢q) by using Newton’s formula. (We will compute explicitely the
moments of order 1 in Proposition 2.10).

2 The probabilistic approach.

The whole section is an easy adaptation of the paper of Desvillettes, Graham and Méléard, [4], although
there is a quite important difference between the S.D.E. in dimension 1 and 2.

Since we are looking for a solution f(¢,v) which is a density of particles at each instant ¢, it is quite natural
to relate f(t,v) to the flow of marginals of a stochastic process. We restrict our study to the time interval
[0, T], where T' > 0 is fixed.

Definition 2.1 We will say that a flow {P;},cj0,m) of probability measures on IR? such that Py admits a
moment of order 2 is a weak solution of (B) with initial data Py if for every test function ¢ € CZ(IR?),

t
(6, B = (o, Po) +/0 (K§(v,0"), Py(dv)Py(dv") ) ds (2.1)
Remark 2.2 If a flow {P;},cj0/m) of probability measures on IR? is a weak solution of (B), and if for every

t €]0,T], P; admits a density f(t,.) with respect to the Lebesque measure on IR?, then f is a solution of
(B) with initial data Py in the sense of Definition 1.1.



In order to state a S.D.E. associated with our problem, we introduce some notations. Following Tanaka,
[9], we will consider two probability spaces : the first one is an abstract space (2, F, P), and the second
one is ([0,1],B([0,1]),d«). In order to avoid any confusion, the processes on ([0, 1], B([0,1]), da)) will be
some a-processes, the expectation under da will be denoted E,,, and the laws L.

On (9, F, P), we consider a Poisson measure N (dfdadt) on [—m, 7| x [0, 1] x [0, T] with intensity measure
v(dfdodt) = B()dfdadt and with compensated measure N (dfdodt).

If @ is a probability on Dr, and if p > 1, we will say that Q € Pp(D7) if [,cp_ supj ) | z(t) [P Q(dz) <
oo. A cadlag adapted process Y, on [0, 7] will be a ILf.-process if its law is in Py,(Dr).

Definition 2.3 Let Vo(w) € L%*(Q2), let Ys(w) be a L3-process, and let Zs(a) be a L-a-process, every of
these elements with values in IR?. Then we denote by V = ®(Y, Z,Vy, N) the process defined (and well
defined) by

Vi(w) = Volw) + /0 t /0 1 /_ 7; (Yo (@), Zo—(a),0) — Ys_ ()] N(d6dads) — g /0 t /0 ' (Valw) — Zu(a)) dads

(2.2)
This can also be written, by using the matrix A(f) = 1 cosf =1 —sinf .
s can also be written, by using the ma =3 Gnl  cosf 1)
t prl pm ~ b rt ri
V= Vo + / / A() (Y-~ Zy— (o) N (dbdads) — - / / (Vs — Zy(a)) dads  (2.3)
0 JoO —T 0 JoO

Definition 2.4 Let {Vi};c0.1) be a L2-process and let {Witiepo,r) be a IL2-a-process, with values in IR%.
We will say that (V,W) is a solution of (SB) with initial data Vy if

LV)=La(W)  and V=&V, WV, N)

We notice here that this S.D.E. is symmetric in V and W, which is not the case in dimension 1. This
yields that the solution of this S.D.E. does not behaves in the same way when the dimension is 1 or 2. In
particular the conservation of the momentum (i.e. E(V;) = E(Vp) for ¢ > 0) will hold. The next remark
follows from the It6 formula.

Remark 2.5 If (V,W) is a solution of (SB) with initial data Vo, then the probability flow {L(V}) }iejo,r) =
{La(Wi)}eepor) s @ weak solution of (B) with initial data L(Vp).

In order to prove the existence and the uniqueness in law for the non classical S.D.E. (SB), we first solve
the associated classical S.D.E.

Proposition 2.6 Let V € L*(Q2), and let Z be a L%-a—pmcess. Then the classical S.D.E.
V = ®(V,Z,Vy,N) admits a unique solution, that belongs to ]L?p. Furthermore, the law of the solution
depends only on L(Vo) and on the flow {La(Zt)}repo 1)

Proof : the existence and the uniqueness for this kind of S.D.E. is standard. In order to study the
law of the solution, let us write the Poisson measure as N = > o7 Ip(5)d(,,a,,s), and let us set

N* =3 scion In(8)d(p,,2.(as),s)- Then N* is a Poisson measure on [0,7] x [—m, 7] X IR? with intensity
B(0)dOL,(Zs)(dz)ds. (Recall that Z; is "w-deterministic”). Then

t o ~ t t
m=%+// / (c(vs_,z,e)—vs_)zv*(dedzds)—9/ Vsds+9/ B,(Z.)ds
0 J—nJR? 2 Jo 2 Jo

and the law of V; is entirely determined by L£(Vp), by the intensity of N*, and by {E4(Zs)}s<r. The result
follows.

We now define recursively the Picard iterations that will converge to a solution of (SB).



Definition 2.7 Let Vi € L?. Let V be the process identically equal to Vy. Assuming that we have defined
the L%—processes VO, Vk and the ]L?p—a—processes Z9,...,Z%1 we choose a L%—a—pmcess ZF satisfying

Lo(ZF 2%, 2% = c(vEvE=L L v

then we set
Vk+1 — q)(vkak:7‘/07N)

Notice here that we build the pathwises of the V¥, and only the laws of the Z*. The following theorem
shows the existence of a solution for S.D.E. (SB).

Theorem 2.8 The sequences VF and Z* converge a.s. and in ]L%p to some processes V. and W. The
process V is in IL2, and W is a ]L%—a—pmcess. Furthermore,

LV)=LW)=P° and V =¢(V,W,V,N)

Hence (V,W) is a solution of (SB) with initial data Vy. The law P? does not depend on the possible
choices for Q, for N, for Vy, and for the Picard approximations, but only on L(Vp).
If furthermore E(|Vy|P) < oo for all p < oo, then V' is a ILY.-process for all p < oc.

Proof : we show that these sequences are Cauchy by using a simple computation and the fact that for
every k, Lo(ZF —ZF 1) = L(VF —VE~1). Letting k go to infinity in the equality V¥ = &(Vk, Z¥ V4, N),
we see that V' = ®(V, W, Vp, N). Finally, £L(V) = L(W) because the sequences {V*} and {Z*} have the
same law, and because the processes V* and Z* converge uniformly in L2,

As in Proposition 2.6, we can check that the law of the sequence {V¥} does not depend on the choices for
Q, N, Vp, and {Z*}, but only on the laws of these elements.

We now prove the uniqueness in law for (SB). : it suffices to consider a fixed "space” (2, Vp, N), and to
check that any solution of (SB) on this space have the law PP.

Theorem 2.9 Let Q, Vo € L2(Q), and N be fized. We consider the solution (V,W) (with P® = L(V) =
Lo(W)) of (SB) that we have built in Theorem 2.8. We also assume that there exists another solution
(U,Y), and we set Q = L(U) = Lo(Y). Then Q = PP.

This theorem can be shown by following the methods of Desvillettes et al. in [4] Theorem 3.7 p 12.

We now assume that €, N, and Vp € L?(Q) are fixed. We consider a solution (V, W) of (SB) with initial
data Vj.

Proposition 2.10 The conservations of the momentum and of the kinetic energy hold : for every t €
[0, 77,
E(WVi)=E(Vy) and  E(|Vi[?)=E(IWIP)

Notice that the conservation of the momentum does not hold in dimension 1.

Proof : in order to prove these equalities, it suffices to use the fact that the flow P, = £(V}) is a weak
solution of (B) in the sense of Definition 2.1. Let us first consider the test function ¢(v) = v, : it is easy
to check that K(g(v,v*) =0 — %(v, —v}). Hence for every s > 0, <Kg(v,v*), Ps(dv)Ps(dv*)> =0, and we
obtain [pe v, P(dv) = [p2 v, Po(dv). In the same way, [pe vyPi(dv) = [p2 vyPo(dv), and the conservation
of the momentum is proved.

b

Then we set ¢(v) = v2 + vy : since KE(M*) =2 (U*2

$2 2 4 U;2 — vg), it is clear that for every s > 0,

<K§(v, v*), Ps (dv)Ps(dv*)> = 0, and we can conclude as above that the conservation of the kinetic energy
holds.

We now deduce a useful corollary :



Corollary 2.11 If L(V}) is not a Dirac mass, then for every t € [0,T], L(V;) is not a Dirac mass either.

Proof : let us assume that there exists t > 0 and X € IR? such that £(V;) = §x. Then from Proposition
210, E(|| Vo — X ||?) = E(|| Vi — X ||?) = 0, which implies that Vj = X a.s.

3 Existence and smoothness of a weak solution by using the stochastic
calculus of variations.

We now want to study the existence and the smoothness of a density with respect to the Lebesgue measure
on IR? for the law of a solution of (SB). Indeed, if this density exists, it will satisfy (B) in the sense of
Definition 1.1. We thus will use the stochastic calculus of variations (namely the Malliavin calculus).
Bismut’s methods are here easier than Malliavin’s original approach. The papers of Bichteler, Jacod [2]
and of Bichteler, Gravereaux, Jacod [1] explain the Malliavin calculus for diffusion processes with jumps
when the intensity of the Poisson measure is the Lebesgue measure ; and although we cannot apply directly
their results, we will follow their methods. In [2], Bichteler and Jacod study the existence of a density
for these processes in dimension 1, and Bichteler, Gravereaux and Jacod extend in [1] the methods to the
existence and the smoothness of this density in any finite dimension. This second paper is very complete,
but the assumptions that yield the existence of a density are too much stringent, so that we have to use
a mixed method to show the existence of a weak solution of (B).

First, let us state our assumptions.

Assumption (H) :

1. The initial data Py admits a moment of order 2, and is not a Dirac mass.

2. B = [y + (1, where 31 is even and positive on [—7, 7]\{0}, and there exists ky > 0, 0y €]0, [, and
r €]1,3[ such that Gy(0) = ‘Z%I[[_go,@o] (). We still assume [ §28(6)d6 < cc.

Assumption (5) :

1. All the moments of Py are finite.
sin 6

T cosd | Hioletr/2x) € Mozt LP(B(6)d0)

2. The cross section 3 satisfies : ‘
Then we state our main theorems.

Theorem 3.1 Under the assumption (H), the equation (B) admits a solution with initial data Py in the
sense of Definition 1.1.

Theorem 3.2 We assume (H) and (S), and we consider the solution f(t,v) of the equation (B) with
initial data Py built in Theorem 3.1. Then for each t €]0,T) fized, f(t,.) is of class C* on IR

Theorem 3.3 Assume (H) and (S). Let f(t,v) be the solution of (B) on [0,T] with initial data Py built
in Theorem 3.1. The map (t,v) — f(t,v) is continuous on |0, T] x IR2.

Let us notice that Assumption (H)-1 is natural. Indeed, if Py is a Dirac mass at vg € IR?, then all the
particles have the initial velocity vg, and there cannot be any collision. Hence P; = P, for all ¢ is a solution
of (B) in the sense of Definition 2.1, and it is clear that in this case, P; does not admit any density.

It seems also natural to suppose (S5)-2, which means that 3 is small near § = 7. If the angle of a collision
between two particles is 7, then these particles exchange their velocities, and this has no effect on the
density f(t,.). Thus if Py does not admit any density, and if 3(6) is large near 7, there cannot be any



regularization property.

In [3], the analyst Desvillettes states a comparable theorem under the following assumption (here the
initial data is a density of probability) :
Assumption (h) : There exists Gy > 0, 51 > 0, and « €]1, 3[ such that :

Bol0I™” < B(0) < 5110]7

and the initial data fo : R? — RT satisfies :
/ fo(v) (1 + [v]? +|1n fo(fu)\) dv < 0o
R2
Theorem : Under (h), the Kac equation (B) admits a weak solution f satisfying, for everyty >0, € >0

f € Lige (Ito, ool H'“(R2)) 1 L5 ([to, ool H = —“(IR2))

Comparing this theorem and Theorems 3.2 and 3.3, we see how the probabilistic approach is efficient. Let
us come back to our method.

Notations : In the whole section, 2 and N are fized as in Section 2, and we assume at least (H). We
also consider on £ a random variable Vi such that L(Vy) = Py, and a solution (V,W') of the S.D.E. (SB)
with initial data Vy in the sense of Definition 2.4.

3.1 The techniques.

The Malliavin Calculus is based on the integration by parts settings (IBPS). Of course, the IBPS needed
for the existence of a density (which we will name weak IBPS) are less stringent than the ones used for
the smoothness of the density.

In the next definition, we follow [1] p 27, and we introduce the weak IBPSs. Recall that C7 (R?) is the set

of C? functions on R of which all derivatives of order 0 to 2 have at most a polynomial growth.

Definition 3.4 Let ¢ be a random variable with values in IR*. We will say that (0,7,D,d) is an IBPS
(resp. a weak IBPS) for ¢ if

1. o is a random variable with values in Ma(IR) (the set of the 2 x 2-matrices on IR).
2. 7 is a random variable with values in IR?* such that v € Np<ooLP (resp. v € L?).

3. D is a linear space of random variables contained in Np<ooLP (resp. L?), and is stable under Cg
(resp. CF).

4. 0 = (01,02), where &; is a linear map on D such that if n > 1, if F € C’g(]R") (resp. CE(IR™)), and
if b = (1, s tn) € D", then

Fo¢ Zax]

5. For every g € Cg(ﬂ#) (resp. CZ(IR?)), for every v € D, for j = 1,2 the following equality holds :

2
E (w > digw)aiﬂ‘) = B (9@’ +6;(4) (3.1)
=1



We will use the following criteria :

Theorem 3.5 Let ¢ be a random variable with values in R?. Assume that (0,7,D,0) is a weak IBPS
for ¢. If for each i,j € {1,2}, 0¥ is in D, and if deto # 0 a.s., then the law of ¢ admits a density with
respect to the Lebesgue measure on IR%.

Theorem 3.6 Let ¢ be a random variable with values in R?. We assume that (0,7, D, ) is an IBPS for
¢, and we consider the following sets :

Co={o", 4" [i,j€{1,2}} and Copr=CuU{5(¥) ] € {1,2}, ¥ € Cn}

Then ¢ admits a density of class C™ with respect to the Lebesque measure on IR? provided for all n > 0,
Cn C D, and (det o)™ € NpeooLP.

Theorem 3.6 is proved in Bichteler, Gravereaux, Jacod, [1] p 33, and Theorem 3.5 is also proved in [1] p 28
in the case where (0,7, D,0) is an IBPS for ¢. But it is easy to see that they use only the fact (o,~,D, )
is a weak IBPS.

3.2 An I.B.P.S. for V..

The existence of the density for the law of a jump process is based on an accumulation of small jumps.
Recalling that 8 = By + (1 and that Gy explodes near 0, we will in fact be interested only in Gy. Hence, we
suppose that the Poisson measure N splits into Ny + N1, where Ny and Ny are independent Poisson mea-
sures on [0, T x [0, 1] x [, 7| with intensities vy (dfdads) = By(0)dfdads and v1(dfdads) = (1 (0)dOdads.

We will denote by Ng and N7 the associated compensated measures. We also assume that our probability
space is the canonical one associated with the independent random elements Vg, Ny, and N7 :

(Q,F AR}, P) = (O, F {F}, P @ (Q°, F° AR}, PO) @ (O, F {F}, P (3-2)

An element w € Q can be written w = (w',w", w!), where ' is a real number, and w® and w! are integer
valued measures on [0,7] x [0, 1] x [—m, 7).

Notations : Although Ny has its support in [0,T] x [0, 1] x [=00, 0], we will still integrate against No and
Ny on [0, T]x[0,1]x[—7, 7], even if the functions in the integrals are defined only on [0, T]x [0, 1] x [—00, O]

Let us briefly present the method we will use to build an I.B.P.S. for V;. We will first build a perturbation, in
order to obtain a new family of integer valued random measures N§ (for A € A, where A is a neighbourhood
of 0 in IR?). Of course, NJ must equal Ny. Then we will build a family of probability measures P = G.P
on , such that £(Vp, Ng, N1|P*) = L(Vy, No, N1|P). By this way, we will obtain a perturbed process V;*
satisfying £(V;)|P)) = L(V;|P), and thus E(¢(VA)G?) = E(4(V;)) for any borel bounded function ¢ on
IR?. Then we will differentiate this equality at A = 0 (if ¢ is regular enough), by using a L2-derivative of
V2 and G. We will obtain something like

E (¢/(Vi).DVi) = —E(6(V) DGy)
which looks like (3.1).

We now build the perturbation. Let p be a positive Cy([—6p, 6p]) function satisfying :

/

pl6) < (ce—“’""') AgAM; p(0) Lee 1" (o= 0y = {~60,0,60) (33)

where r’ = %(r —1) > 0, and where ¢ and M are positive constants that we will choose soon. In particular,

this yields that p € Ny>1LP(5(0)d0).



Vg

We also need a predictable function v = ( )from Q x [0,T] x [~00, 0] x [0,1] to IR?, such that for every

Uy
w,t,a, the map 6 — v(w,t,0,a) is of class C*!, and
| o(w,,6,0) |V | V/(w,,0,0) 1< p(6) (3.4)

where v/ € R? is the derivative of v with respect to #. This function will be chosen at the end of the
section.
We consider a neighbourhood A € B(0,1) of 0 in IR?. For A € A, we define the following perturbation :

’y)‘(w,t, 0,a) =0+ (\v(w,t,0,0)) =0+ Avg(w,t,0,0) + A\jvy(w,t,6,a) (3.5)

If A is small enough (which we assume), we can check that for every A\ € A, for every w, t, , the map
6 — v*w,t,0,a) is an increasing bijection from [—6y, fp] into itself (by using (3.3) and (3.4)). For A € A,
we set Ng = y*(Np) : if A C [0,7] x [0,1] x [, 7] is a Borel set,

T rl pm
No’\(w,A):/O /0/ Ta(s,7(w, 5,0, ), )Ny (w, dddads)

We consider the shift S* defined (and entirely defined) by
Voo SMw) =Vo(w), NpoSMw)=Ng(w), and NjoSw)= Ni(w) (3.6)
)_

We now look for a family of probability measures P* on Q satisfying P* o (S*)™! = P. To this end, we
consider the following predictable real valued function on Q x [0,7] x [—6p, 0] x [0,1] :

Bo(YMw, 1,0, a))

YA = (14 M0 (w, ¢ ! .
(@,,0,0) = (14 At (w,1,60,0) + Ay} (w, 1,6, 0)) x 0 (3.7)
If 5(6) = p(6) + 7’2"“% + 7‘2“%(9)%, then
YA(t,60,0) =11 <[ A ]| 5(6) (3.8)
Let us notice that € Ny>1LP(Bo(0)dd). We choose ¢ and M such that j < 3.
Then we consider the following square integrable Doléans-Dade martingale :
t rl 7 ~
G =1+ / / / G (Y(s,6, ) — 1)No(d8dads) (3.9)
0 JO J—m

Proposition 3.7 G} is strictly positive for every t € [0,T]. If P is the probability measure defined by
P» = G}.P, then P* o (SN)™! = P.

The proof of this proposition follows from the Girsanov theorem for random measures (see Jacod, Shiryaev
[7]), as Lemme 3.8 in [2] (except that the initial data Vj is not deterministic). This proof is based on the
choice of Y : one can check that v*(Y*.vg) = 1.

We now introduce the following derivatives :

Definition 3.8 Recall that A is a neighbourhood of 0 in IR?. Let p > 2.

1. Let {X*}xen be a family of real valued LP random variables. We will say that X* is LP-differentiable

xr
at A =0 if there exists a derivative DX = <gy§> € LP such that, when A goes to 0,

B (jx* = x* —(Dx)[") =0l AI)



2. Let {X*}xen be a family of R? valued LP random variables. We will say that X is LP-differentiable
. , . D*X* DYX*
at A =0 if there exists a derivative DX = <Dny DyXy) € LP such that, when A goes to 0,

E( X* =X~ DXX|F) =o(] A7)

3. We denote by D (resp. D) the set of the real valued random variables X such that X* = X o S* is
L2-differentiable (resp. Li-differentiable for every q < oo) at 0, and by Dy (resp. D§°) its restriction
to the set of the Fi-measurable random variables.

4. Let now {Y brea be a family of real valued ILY.-processes. We will say that Y* is LP-differentiable

Y) such that :

at A = 0 if there exists a ILf.-process DY; = (DyY;

E (sup Vit =Y — (A, DYy) \”) =o(l A7)
[0,7]

Let us describe the process V;)‘ =V, 0 S*. The a-process W behaves here as a parameter.

Proposition 3.9 The perturbed process V> satisfies the following equation under P :

VA = V-2 / / ))dads + / / / AB) (VA —W,_(a))Ny (d6dads)

EX) * / / / (s,6, ) )(V?_ — W (a))No(dfdads)
N /0 /0 /_W (Y2(s5,0,0) = Ay (5,0, ) (VX — Wi ())o(0)dfdads

Proof : we work here under P. The direct expression of V* is given by

V= V-2 / / ))dads + / / / — W,_()) Ny (dfdads)

* // _,TA - Ws- (a))(No—Vo)(deads)

But the last term is equal to

/ / / (s,0,0) )(VsA— - Ws—(a))No(deads)

t rl pm
- / [ [ 4@02 = W@ — 7)) (d8dads)
0JO J—m
Since vy — Y 1) = YY) — N wo) = YN((Y — 1)) (see Proposition 3.7), the proof is finished.

As we will study V* as a solution of FE()), (we have no other information), we may need the following
proposition of which the proof is standard :

Proposition 3.10 For every A € A, the equation (E()\)) admits one and only one solution V> € IL2.. If
furthermore Py = L(Vy) admits moments of all orders, then V* € LY. for every p < oo.

Let us differentiate G* (see Definition 3.8).
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Proposition 3.11 The family {G*} is LP differentiable for every p < oo, and has the following derivative

DG /// o ¥(s,0, )| _ No(dbdads)
DyGt>_ / / / o sea)‘)\zoﬁo(deads) (310

We omit this proof and the following one, because they are very simple in their principle, but the com-
putations are fastidious. The method can be found in [2] Lemma 3.7 p 138 and Lemma 3.11 p 140, or [1]
Subsection 5-b.

o=

Notations : We will denote in the sequel (il) (y1 y2)= (331111 331y2>'
2

T2Y1  X2Y2

Theorem 3.12 The family {V*} is L?-differentiable at A\ = 0, and its derivative DV € Ms(IR) satisfies
the equation :

t t prl pm ~
py, = -2 / DVids + / / A(6)DV,_ N (dfdads)
(ED) + / / A0) (Ve — W, ()07 (5,6, a) No(dbdads)
—r / .,
~ [ A - W@ (005,00 ) dddads
If furthermore Py has moments of all orders, then V is LP-differentiable for every p < oo.

We can now state an IBPS for V;.

Proposition 3.13 Lett > 0. If X € Dy (or if X € Dg°, cf Definition 3.8), we set 6;(X) = —DX. Under
(H), (DVy,—DGY, Dy, d:) is a weak IBPS for V. Under (H) and (S), (DV;, —DGy,D;°, 0;) is an IBPS for
Vi.

Proof : let us for example assume (H) and (S) and prove the second claim. DV} is of course a My (IR)
valued random variable. By Proposition 3.11, —DG, is a IR? valued random variable which is in NpLP.
Dg® is a linear space, and it is classical to show that if Xi,..., X, are in Dg°, and if F' € C’g(]R"), then
F(X1,...,X,) € D, and has the following derivative :

DF(Xy,..,X Z

X DX,
al’z 1y--ey ) )

It remains to prove that if f € C2 (R?), and if X € D{°, then E(D;) = 0, where
Dy = DXJ(Vi) + X (fiVi)  £,(V)) DVi + XF(V,)DG
By using the facts that V; € NLP and f € Cg (IR?), it is standard and natural to show that
B (|x*r(v)Gh = X5 (V) = (Do) = o(|| A1)

Hence,
B (X NG = B(XF(V2) — (A ED)| = ol A

But, since X*f(V;)) = X f(V};) 0 §* and since P* o (§*)~! = P, we deduce that
B (XM (VNGY) = B (X f(V))
Hence [(\, E(Dy))| = o(]| A ||), and E(D;) = 0, which was our aim.
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3.3 The choice of v.

In order to apply Theorems 3.5 and 3.6, we have to study the inversibility of DV;. We will use the
Doléans-Dade martingales, in order to obtain a suitable expression of DV;. Then we will choose v, which
is really more difficult in dimension 2 than in dimension 1. Only a good choice of v will allow DV; to
admit moments of all orders (see Theorem 3.24) : v must be "large” (this way, DV; will be invertible) but
also ”small” (in particular, we need || v ||< p).

We denote by I the unit matrix on IR2.

t
Lemma 3.14 One can rewrite the S.D.E. (ED) in the following way : DV; = / dK,DV,_ + L,
0

where K; = // / A0 dﬁdads)—gtl

and Lt:/ / / A'(0) (Vo — We_ ()0 (5,0, ) No(dfdads).
0JO J—7

Proof : it suffices to prove that

t 1 T -
‘/ / _ﬂA<9><Vs——W8-<a>>([v(s,.,amoy(e)) dfdads

_ / / / A O) (Vi — We_ ()07 (5,6, ) Bo(0)dfdads

This can be shown by using a (standard) integration by parts formula in the variable #, and by noticing
that
Yw, s, « v(w, s, —0y, a) = v(w, s,0,a) = v(w, s, by, a) =0

Proposition 3.15 Let M (with values in Ms(IR)) be the following Doléans-Dade martingale :
t
M, :/ dK,. M, + 1 (3.11)
0

For all t, (I + AKY) is a.s. invertible. We thus know (see Jacod, [6]) that for all s, My and Ms_ are also
a.s. invertible, and DV; = M;H; where

H; = /Ot MIN(I+AK, )~ dL, = /Ot /01 /_ M7 I+ A(0) T A(0) (Vie — We_(a))v” (s, 0, ) Ny (dfdads)
(3.12)

The only claim we need to show here is that for every ¢, (I + AK) is a.s. invertible. To this end, let us
write N = 3" cro7) Tp(8)0(s,6,,05)- Then, when N jumps at s, I + AKg = I + A(0s) is invertible except if
0s € {—m, 7}, which never happens a.s.

We now choose v. First we need a positive Cp° function § on [—6g, 6y] such that (C' > 0 is a constant) :

—2r’
SO +10O)|<p6) 5 {6=0}={-b0.0.60} ; (6)2ce ! (3.13)
We will also use a function on R? x (Ma(IR)) x [—00, o] with values in R?* :

glx,y,0) = (A'(O)2)" (1 +A0))™H" (™"

We consider the C*° function h(x) = T from IR? to ]0,1]. Finally, we will use a function k from

My (R) to [0, 1], such that k(y) = 0 if and only if dety = 0, and such that the map

(y)7k(y) if dety#0
y— { 0 if dety=0

12



is Cp° from My (IR) to itself.
Then, the function on R? x My(IR) x [0, 0] with values in R? defined by

9(z,y,0) = g(x,y,0)h (A'(0)x) k (I + A(0)) k(y)

is of class Cp°.
We now set A(z,y,0) = g(x,y,6)5(0). This function is of class Cp°.

Definition 3.16 We set v(s,0,a) = A (Vso — Ws_ (), Ms—,0). (This function satisfies the assumptions
of the subsection 3.2).

The last preliminary consists in talking about the higher derivatives of V; and G; : in order to apply
Theorems 3.5 and 3.6, we have either to differentiate DV (under (H)) or to differentiate infinitely DV and
DG (under (H) and (S)). To this end, we first notice that M, satisfies a quite similar (but easier) equation
than V;. Hence, since the initial condition My = I is deterministic, M* = M o S* is LP-differentiable at
0 for every p < co. Let us compute v*(w, 5,6, a) = v(S*(w), 5,0, @) : with the notations of the Definition
3.16,

M (s,0,a) = AV — W (o), M2, 0)

By using the expression of DV in Lemma 3.14, we can write DV* = DV o S* as
pvp — b / DVXds + / / ﬂA (6)DVA N, (dfdads)
+ / / / A (5,6, ) DV No(dfdads)
_ /0 /0 / (YX(5,68,0) — DA (s, 0, 0)) DV o(6)dfdads
+ t / 1 | A0 60,007 = Wer (@) (X575, 6,0). ) No(dbdads)

One can show that under (H), the family DV?* is L?-differentiable at 0, by using the properties of v.

Assume now (H) and (S), and set X; = (DV;, My, DGy, V;). Then X, satisfies a S.D.E. with initial
condition Xy = (0,1,0,V}). Using the properties of v, one can show that X* = X o S* is L? differentiable
at 0 for every p < oo, with DX; = (D*X;, DYX;). Hence, DV; o S*, M; o S* and DGy o S* are LP
differentiable at 0 for every p < co.

Finally, we can iterate this method for Y; = (DXy, X;), and so on. We may state the following theorem :

Theorem 3.17 Under (H), the derivative DV; is in Dy for every t € [0,T]. Under (H) and (S), V and
G are infinitely LP differentiable for every p < co.

The first conditions of Theorems 3.5 and 3.6 are thus satisfied, and we still have to study the inversibility
of DV.
3.4 Existence of a weak solution.

The following remark shows the way to prove that DV; = My H; is invertible.

Remark 3.18 We set I'(z,0) = (I + A(0))"*(A"(0)z)(A'(0)x)T ((I +A(9))_1)T, which is a symmetric
nonnegative matriz. Then we set

Ry = /t /1 /” I(Vse = We—(),0) x h (A'(0)(Vse — We—())) x k(I + A(0)) x k(Ms_) x §(8) No(dfdads).
0JO J—m

This matriz is also symmetric, nonnegative, and is increasing for the strong order (on the set of symmet-
ric nonnegative matrices : for every s < t, Ry — Ry is a.s. symmetric and nonnegative). We can write
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t T
H, = /0 M;1dR, (Ms__l) . Hence, in order to show that Hy (and hence DV;) is a.s. invertible, it suffices

to prove that a.s., Ry — Ry is invertible for every 0 < s <t <T. Finally, since the real valued expression
in Ry is always in 10, 1], it suffices in fact to show that a.s., Ry— Ry is invertible for all0 < s <t < T, where

R = /0 t /0 1 /_ ZF(V;_ —W,_(a), )8(0)No(dOdads)

Theorem 3.19 Let t €]0,T]. Under (H), DV; is a.s. invertible.

Proof : we break the proof in several steps.
Step 1 : If Y is a (random) vector of IR? not equal to 0 an easy computation shows that for 6 €] —m, 7,
sin 6

T — = _
YIT(V,_ — Ws_(a),0)Y (1+cos0

Ya(VE = W () + Yy (VL = WeL(@))]
2
+ [~V (VE = WE () + Y (VL = WL ()] (3.14)
Let us fix w, s, and «. It is easy to see that if Vi_(w) # Ws_(«), then
d0 {0 €)= m,x[ / YT (@)D (Vi (@) = We(a),0)Y (w) = 0} =0
Step 2 : Let s > 0 be fixed, and let Y be a (random) unit vector in IR? that is Fs-measurable. The aim of

this step is to show that a.s. V¢t > s, YT (R; — Rs)Y > 0. To this end, we consider the following stopping
time :

7(Y) = inf {t > S/YT(Rt — R,)Y > 0} = inf{t > 8//0t /01 /_7; Tgyy(r, 0, a)No(dddads) > 0}

where B(Y) = {(r, 0,a) /7‘ >s and YII'(V,_ —W,_(a),0)Y > 0} (recall that R, is "increasing”). It
thus suffices to check that 7(Y) = s a.s. By assumption, £(1}) is not a Dirac mass. By Lemma 2.11, for
every t > 0, L(V;) = Lo(W;) is not a Dirac mass either. This implies that for every r > 0, for every w,

1
/0 Liw, (@#v-@pde = Pa(Wr— # Vi_(w)) > 0
Since / Bo(0)df = oo, and thanks to the first step, for all w, for all r > s,

1 pm 1
/O/_ I[B(y(w))(rﬁaa)ﬂow)d@da2/0 /_ Liw, (a)2V, ()} 1By (w) (1,0, @) Bo(0)dfda = oo

Consequently, except if 7(Y(w)) = s,
7Y (w) 1 pm
/ / / I[B(Y(w)) (7’, 9, a)ﬂo (H)dedadr =00
0 0 J—m

T(Y) r1 ,m
But a.s., / / Ty (r, 0,a)No(dfdadr) < 1, which yields
0 0 J—m

TY) pl pm 7(Y) 1 pm
E </ / / Ty (T,H,a)ﬂo(e)dedadr> =F (/ / Tpy) (r,@,a)No(deadr)> <1
0 0 J—m 0 0 J—m
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Y) p1 pmw
and thus / / Ty y(r, 0,a)B80(0)dfdads < oo a.s. Hence 7(Y') = s a.s., which was our aim.
0 0 J—m

Step 3 : We now show that if s > 0 is fixed, then a.s., V ¢t > s, Ry — R, is invertible. We set Ker; =
Ker(R; — R,). For each random unit vector Y in IR?, that is Fs-measurable, we know that a.s., Vt > s,
Y ¢ Ker;. Hence, as Ker is increasing when ¢ decreases, a.s., Y ¢ Kers, = U~ Ker;. Since Kerg, is
Fs-measurable, and since this is true for every unit vector Fs-measurable, we deduce that Kergsy = {0},
and the step 3 is finished.

Step 4 : We just have to change the "a.s.”. First,

as., Vs<t with ste€l[0,T]N@Q, R;— Rs is invertible
Since R; is increasing, it is easy to drop the "N @”, and the theorem follows.

Proof of Theorem 3.1 : it is immediate, thanks to Theorems 3.19 and 3.17, Proposition 3.13, Theorem 3.5,
and Remarks 2.5, and 2.2.

3.5 Smoothness of the weak solution.

We now have to study the inverse moments of det DV;. We use the notations of the previous subsection.
Recall that DV, = M H;, where M, is the Doléans-Dade martingale given in Proposition 3.15, and where

H, = / t / o MIT(Vse = W (@), 0)(M;)T¢(Vse — Wy (a), My, 0)6(8) No(dfdads)
0 JO J—m7

where, for € IR? and y € My(RR),
D(x,0) = (I+A0) x (A(0)x) x (A0)x)T x (I + A@)™HT

and
C(2,y,0) = h(A'(0)x) x k(I + A(9)) x k(y)

where h and k are defined in Subsection 3.3.
We first study the inverse moments of ;.
Theorem 3.20 Assume (H) and (S). For everyt >0, (det My)™' admits moments of all orders.

Proof : we notice that under (.5)-2

t t rl pm _
Ml o= I43 / M ds — / / / M-I + A(6))" A()N (d8dads)
0 0 Jo -

T2 (3.15)
+ /0 /0 /_ MZLAG) + D)) A0)3(6)dodads

In order to check this equality, it suffices to apply the 1t6 formula to the product Mt.Mt_l, (where Mt_1 is
defined by 3.15) : one obtains that M;. M, ! is a solution of a classical S.D.E. of which I is also a solution.
Then a simple computation shows that :

(I+ A(Q))_lA(H) - cozigi 1 ((1) _01>

and

A+ A0) "A@)= L 00 (—sine 1—cos€>

cos@+1\cosf—1 —sinb
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Thanks to Assumption (5)-2, and since [j §%3(0)df < oo, one can check that

sin? @ 4 | sin §(1 — cos 6)|
1+ cosd

| sin 0|
1+ cos@

S ﬂngLP(ﬁ(Q)dQ) ; € ﬁpzle(ﬂ(G)dH)

Hence it is clear that M, ' (and thus its determinant) is well defined and admits moments of all orders
(this S.D.E. is classical, and the initial data I is deterministic).

It is more difficult to prove that H; admits moments of all orders. In fact, we will only study the
case where E(1j) = 0 by using the Malliavin Calculus. The generalization (see the final proof of this
section) will then follow from the uniqueness in law for (SB). We begin with three lemmas.

Lemma 3.21 The map (t,Y) — L((V;,Y)) is weakly continuous on [0,T) x {Y € R?| || Y ||=1}.

Proof : it suffices to show that for every ¢ € CZ(IR), the map (¢,Y) — E(¢((V;,Y))) is continuous, which
can be checked by using the fact that the flow £(V;) is a solution of (B) in the sense of Definition 2.1.

Lemma 3.22 Assume (H), (S), and E(Vy) = 0. Let tg > 0 be fived. There existsn >0, ¢ >0, and §{ > 0
(depending on to) such that for every t € [to, T], for every X € IR?, for every unit vector Y € IR?,

Po((We= XY >0, | Wi |P<€) > q (3.16)

Proof : since supjy 7y || Wi [ is in M, LP, it suffices to show that there exists n > 0, ¢ > 0 such that for
every t € [tg, T], for every X € IR?, for every Y € IR? such that || Y ||= 1,

P, ((Wt X, V) > n) > 2g

In order to check this claim, notice (by using Bienaymé Tchebichev’s inequality) that there exists £ > 0
such that for every t, Py (|| W [|2< &) > 1 — q. We now break the proof in several steps :

Step 1 : Let t > tp and || Y ||= 1 be fixed. Thanks to the previous section, the law of W; admits a
density on IR?, and hence the law of (W}, Y) admits a density with respect to the Lebesgue measure on
IR. By Proposition 2.10 and since E(Vp) = 0, we also know that E,(W;) = E,(Wy) = 0, and hence
E.((W:,Y)) =0. It is then easy to show that there exists n(t,Y) > 0 and ¢(¢,Y) > 0 such that

P, ((Wt,Y> > \/n(t,Y)) >2q(t,Y) and P, ((Wt,Y> < —\/n(t,Y)> > 2q(t,Y)

Step 2 : Using Lemma 3.21, Portemanteau’s Theorem, and the step 1, it is classical to show that for
every t in [tg,T], for every || Y ||= 1, there exists a neighbourhood V(¢,Y") of (¢,Y) such that for every

(", Y") e V(t,Y),
P, ((Wy,Y') > \/n(t,Y)> > 2q(t,Y)

Let us consider a finite covering UN., V(t;,Y;) of the compact set [to, T] x {Y € IR? / | Y ||=1}. Then, if
n = inf;<n n(t;,Y;) and if ¢ = inf;< v ¢(¢;,Y;), then for all t > ¢y and | Y ||=1,
Po(Wy,Y) > /) > 2q

In the same way, we get Po((W;,Y) < —/n) >2q for allt >ty and || Y [|= 1.
Step 3 : Finally, let X be in R? ¢t > to, and || Y ||= 1 be fixed. If (X,Y) <0,

P,((W; — X,Y>2 >n) > Po(We — X,Y) > /n) > Po (W1, Y) > /n+(X,Y)) > P,((W.,Y) > /1) > 2q

If (X,Y) >0, the same kind of argument does work, and the proof is finished.
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Lemma 3.23 Assume (H), (S), and E(Vy) = 0. Let to > 0 be fized, and let n, q, and & be the strictly
positive numbers associated with to introduced in the previous lemma. If X € R?, || Y ||= 1, and s > t,
we consider the set :

Ho(X,Y) = {(0,0) € [0, 00 x [0,1] /| Wila) [P< € and YTT(X —Wy(a),0)Y >n}  (317)

Then for every even positive function z on [—6y, 6],

// 2(0)80(0)dbda > q / " L (0)50(0)d6 (3.18)
Hs(X,Y) 0

Proof : let X € R? let | Y ||= 1, and let s > t; be fixed. Recall (see equation (3.14) in the proof of
Theorem 3.19) that :
YIT(X — Wi(),0)Y = (f(8)Y + PY, X — W(a))®
sin 0
cosf + 1

where P = <(1) _01) and f(0) =

We denote

is an increasing bijection from |—, 7[ to IR satisfying f(0) =

he(X, PY) = {a €[0,1] /(W) = X, PY)’ > 1, || Wi(a) |P< ¢}

Thanks to Lemma 3.22, we know that P, (hs(X,PY)) > q. We will show that if o € hs(X, PY), then
YIT(X — Wy(a),0)Y > n either for all § €]0,7[ or for all § €] — m,0[ (and the lemma will be proved). Let
a € hy(X, PY). If (Y, X — Wy(a)) =0, then

YTD(X = Wy(),0)Y = (PY, X — Wy(a))? >

for every 6. Else, YTT'(X — Wy(a),0)Y > n for every 0 such that f(0) € R\[zy, 2], where z; < x9 are
the solutions of

25 (Y, X — Wy(a))? 4 22 x (Y, X — W,()) (PY, X — Wy(a)) + (PY, X — W(a))® =1 =0
Hence, it suffices to show that the signs of x; and xz2 are equal. But

—(PY, X — Wi(a)) £ 1
(Y, X — Wy(a))

Ty, T2 =

Since (PY, X — Wy())? > n, the lemma follows.

Theorem 3.24 Assume (H), (S), and E(Vo) = 0. For every t > 0, (det H;)~! admits moments of all
orders (and thus so does (det DV;)™1).

Proof : we fix tg > 0, and we prove the theorem for every t > tg, which of course suffices. Since 0y < T,
there exists dy > 0 such that, for every 0] < 6o, |det(I + A(0))| = £(1 + cosf) > dy. We choose k such
that k(y) = 1 as soon as |dety| > dp.

For every X in IR?, one has || A'(6)X ||?>=1 || X ||%. Hence, if « is in any set Hy(X,Y), then

1 -1
WAV, - Wala))) = (14 501 Ve P +6))

Hence, for every || Y ||> 0, a simple computation (using the Lemma 3.23) shows that for every ¢ > t,
YTH,Y is greater or equal than

/to // ( w1y > | MY |2 % x (1+ (I Ve |12 +§)> 1>< k(M,_) x 5(8)No(dodads)

iy
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Let us notice that the function on Q x [0, 7] x [—7, 7] x [0, 1] defined by

w,s,0,a0 — 1 1Ty (0, a) = M*l 1T
Hs(Vs = ) {9|<907 [We(a)2<g, YT D(Vs— (w)=Ws—(a),0) —F Y>?7}

’ 17T 1T
Ity Iy Ity
s— s—

is predictable, because Vi_ and M s__l are predictable, and because W is a measurable a-process.
Let us define the following random variable :

F=sup { (14 10V P 40)) x (Ot | 227 13,)

[0,7]

where || Ms__lT llop is the operator norm of Ms__lT. Thus, for every || Y ||=1, t > to,

FxYTHY > n/ // (V Ty )5(9)N0(d9dads)

iy

In order to use the Appendix (4.1), we have to compute F (e‘CFXYTHtY) for ¢ > 0, t > ty3. To this end,
we set p
0
q / (1 e=9®) po(0)do

//H( LT ) (1= =@ 3y (6)dbda

HM Yy

Choosing § even, and using Lemma 3.23, we see that n¢(s) €]0,1[ a.s. for every s > g, ¢ > 0. Furthermore
for every ¢ > 0, the following function on Q X [to,T] X [—m, 7] X [0, 1] is predictable and takes its values in
[0,1] :

s—

gc(s,0,a) = —g%w) In {1 —n¢(s) (1 - 6_45(9))} I[HS <VS Ty )(6,04)

p—
I 1 vy
o

Hence, for every || Y ||=1,t > to, ¢ > 0,

t 1 T
FxYTHY > / / / 9¢(5, 8, 0)3(8) No(dBdads) = 1Z(C)
to JO —T
Using It6’s formula,

e—CZi(Q) — 1_ C/ —(Zs— dZ (C) Z {e—CZs(C) _ e—C257(C) + Ce—CZ37(C)AZS(C)}

s<t

- / / / ~CZe- e~C0c(6030)) Ny(dfdords)
to -

Taking the expectations, and using the expression of g., we obtain for every t > tg, ¢ > 0,

t pl pm
B(e$%@Q) = 1-F ( / / / e 2 (O (1 — e Cocle b)) 50(9)d9d0d8>
to /O J—m
0 t
= 1o [ (1= O0) @)t x [ B s
0 to

Thanks to the Appendix (4.2),
0o
E(e_CZt(o) = exp (—q(t — to)/ (1 — e_c‘s(g)) 50(9)d0>
0
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and for every ¢ > 0,t>to, | Y ||=1,

B (o (- Y1) < B (e 409) < o (gt 10 [ (1= 590) o))

k oy
Recall that Gy(0) = ﬁﬂwggo. We choose 6(60) > %e"e‘ *" for small 6 (with & even and satisfying (3.13)).
Thanks to the Appendix (4.3), there exists C' > 0 and (p > 0 such that for every ¢ > (o,

0o
|1 = e Oy 6)a0 = Cn ¢y
0
Thus for every ¢ > (p, t > tg, and || Y ||=1,

E (exp (~CFYTHY)) < exp (~Ca(t — to)(In )?)

Hence, for every p > 0, for all t > g,

oo

E ( / | X |7 exp (~XTFHX) dX) = / / pPE (e PYTHY) dydp
XeR? p=0J|Y|=1

o

< K/p;/oc_oppdp + K/p:\/c_oppexp (—C’q(t — to)(lan)g) dp < o0

Thanks to the Appendix (4.1), this yields that for every ¢t > to, (det FH;)™' = (F?det Hy)~! is in every
LP. But it is possible to choose k such that F' has moments of all orders : F < I} X Fy, where

1 T -1
Fy = sup (1 + = Vs ? +§) and Fy = sup (k(Ms) | M Hip)
[0,T] 4 4 [0,T]

We have already seen that F; has moments of all orders. In order to study Fb, let us first recall some
norm inequalities for a symmetric positive matrix O :

[det OP <[[ O I'< 1+ [ OF  [det O[x [| 07" [lop=| O [lop=] O~ ||7*
We can choose k such that for every v,

]dety[2
k(y) > ————
) I+ [y |®

(We still assume that k(y) = 1 if dety > dy). Hence,

Fy < sup (14 | My [[¥) x sup || M7 |
[0,7) (0,77

Since M, and M are solutions of stochastic differential equations (with initial datum I), it is classical
to show that they have moments of all orders, and we can say that £’ has moments of all orders. Thus :

B (|det Hl ) = B (|FP < |det P P) < 1 (111%) B (et FEI7)* < oo

We have proved that for t > tg, det H; admits some inverse moments of all orders, and the theorem follows.

Proof of Theorem 3.2 : using Theorem 3.24, Proposition 3.20, Theorem 3.17, Proposition 3.13, Theorem
3.6, the theorem is immediate when E(Vp) = 0.

We suppose now that Vj is not centered. We denote by (V,W) (resp. (V/,W’)) a solution of the S.D.E.
SB) with initial data Vp (resp. Vg = Vo — E(V})). Since Vj satisfies (H) and (S), so does V. We thus
know that for every ¢ > 0, the law of V;/ admits a C* density f’(t,.) on IR?, and that V; admits a density
f(t,.) on IR%. On the other hand, one can check that (V — E(Vy), W — E(Vp)) is a solution of (SB) with
initial data V. Hence, by Theorem 2.9, L(V; — E(Vp)) = L(V}/). This yields that f(¢t,v) = f'(t,v — E(W)),
and the theorem follows.

19



3.6 Joint regularity.

We are now interested in the joint regularity of the weak solution f of (B) built in Theorem 3.1. By
Theorems 3.1 and 3.2, and since (H) and (S) hold, we know that for every ¢ > 0, the law of V; admits a
C* density f(t,.) with respect to the Lebesgue measure on R?,

In the case of a classical diffusion process X;, Bichteler, Gravereaux and Jacod give in [1] a method to
study the joint smoothness of f(¢,x), where f(¢,z) is the density of the law of X;. Their method is based
on the Malliavin Calculus, and on the smoothness of the maps t — E(3(X;)) for any ¢ sufficiently
regular. In our case, these maps are only differentiable, because our S.D.E. is not time-homogeneous, and
we thus cannot apply their method.

The method we use here is based on the weak continuity of ¢ — £(V;) and on Theorem 3.2. As in the proof
of Theorem 3.2, we assume that E (1)) = 0, the generalization beeing immediate by the uniqueness in
law for the S.D.E. (SB) (see Theorem 2.9). We also fix ty > 0, and we prove Theorem 3.3 on [to, T] x IR?,
which of course suffices. We begin with a lemma.

Lemma 3.25 Assume (H), (S), and E(Vy) = 0. For every multi-indezx o, there exists a constant Cy 4,
such that for every g € Cg°(IR?), for every t € [to, T,

E(9ag(V1)) < Cato || 9 ll (3.19)

Proof : we just have to study the proof of Theorem 3.6 (which can be found in [1]). Let ¢ be a random vari-
able with values in R? satisfying the assumptions of Theorem 3.6, with the same notations. Then Bichteler
et al. prove that for every multi-index o, there exists a constant K, such that for every g € C;° (IR?),
E (0,9(¢)) < Ko || g ||co- Following closely their proof, one can check that the constants K, depends only
on the moments of the elements of C), (n € IN), and on the inverse moments of det o.

Let us come back to our problem : here we have a family ¢; = V; of random variables satisfying the
conditions of Theorem 3.6, with o, = DV;. The sets C! are composed with the derivatives of all orders
of V and G. Then one can check that for any n, for every X; € C%, for all p > 1, supp 71 £ (| X¢P) <
o0o. Furthermore, following closely the proof of Theorems 3.24 and 3.20, one can see that for every p,
supyy, 71 £ (| det DV;|7P) < oo, and the lemma follows.

We now prove that our weak solution f is equicontinuous :

Proposition 3.26 For every v in R?,

sup |f(s,v+k) — f(5,0)] —|p|=0 0 (3.20)
s€[to,T)

Proof : following Nualart [8] Lemma 2.1.5 p 88-89, and using Lemma 3.25, one can show that if £(V}) = P,

~ C 2 2

Bv)| < —53°
vZv2

apply Lemma 3.25 with o = (2,2) and with g(y) = ¢/"%)). Furthermore, f is the following inverse Fourier

transform :

and if P, is the Fourier transform of P, then for every ¢ € [to, T,

A1 (it suffices to

1\?2 . .
st = (52) [, 0 Bty (3.21)
2 R2
Using Lebesgue’s theorem and the uniform upperbound of Pt, the proposition is immediate.

The proof of Theorem 3.3 is a simple application of Proposition 3.26 and of the weak continuity of the
map t — f(t,v)dv.
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4 Appendix.

We begin this annex with a lemma that can be found in [1], p 92 :

Lemma 4.1 For every p > 0, there exists a constant C, such that for every 2 x 2 symmetric positive
matriz A,

(det A) < C, / | X |2 e X AX gx
The following lemma is well-known, and can be shown as Gronwall’s Lemma.

Lemma 4.2 Let 0 < € < T < oo. Let g be a bounded function on [¢,T], and let a be a real number.
Assume that for every t € [e,T],

¢
o) =1-a [ gls)ds
Then g(t) = e~ =) on [e, T].
The next lemma is a simple computation :

Lemma 4.3 Letr €]1,3], let " = L(r — 1), and let e > 0. We set 5(0) = e=®"". There exists a constant
C >0, a real number (o > 0, such that for every ¢ > (p,

/06 (1 e—¢o(0 )) ZG C(In ()3

Proof : we first notice that for every z € [0,1], one has 1 —e™* > g Furthermore, for every 6 < 1,
§7H0) = (In6~1) 7. Hence, if ( is large enough (we need Co < 1 and 5_1(C0_1) <€), then for all ¢ > (o,
. N8) ¢ e .
1 co(0 § —2do > = —=3(0) x 07 1T dg
/0 07“ =5 o =2 )y g 0(0) x
"
Since 7 — " — 1 = 3(r — 1) > 0, and since §'(¢) = #5(9), we obtain :

10) 2 5 x (572 h) Y x e = ey

- 2r oot

which was our aim.

The following lemma is adapted from a lemma in the Appendix of [2]. We state it for N and [, but it can
be obviously adapted to Ny and Gy or N7 and ;.

Lemma 4.4 Let Y(s,«,0) be a predictable process such that |Y (s, o, 0)| < |X(s,)|z(0). Then

o if z is in Np>oLP(B(6)d0), for every p =29,
t 1
) <Cyle) [ [ B(X(s,000") dads

<Sup/ // Y (u, o, 0) N (dOdovdus)
><C’ //E|X8a|p)dads

o if 2z is in LY(B(0)dh), then for every p < oo,
><C‘ // (| X (s,a)|") dads

(Sup / / / Y (u, o, 0)dOdadu
[0,¢]

o if z is in Np>1LP(B(6)d0), for every p =29,

<sup/ / / Y (u, a, )N (dfdadu)
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