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Abstract : We consider a 2-dimensional Kac equation without cutoff, which we relate to a stochastic differential

equation. We prove the existence of a solution for this S.D.E., and we use the Malliavin calculus (or stochastic

calculus of variations) to prove that the law of this solution admits a smooth density with respect to the Lebesgue

measure on IR. This density satisfies the Kac equation.

1 Introduction.

The Boltzmann equation describes the density f(t, r, v) of particles which have the position r and the
velocity v at the instant t > 0, in a sufficiently dilute gas. The 2-dimensional Kac equation deals with
a simplified model. Indeed, the particles take place in the plane, and the density f is supposed to be
spatially homogeneous : the interaction is meanfield. In this paper, we will take in account the difficulty
generated by the possible explosion of the mass of the collision kernel.
The Kac equation can be written as follows :

(B)
∂f

∂t
(t, v) = Kβ(f, f)(t, v)

The collision kernel Kβ is given by :

Kβ(f, f)(t, v) =

∫

v∗∈IR2

∫ π

−π
[f(t, c(v, v∗, θ))f(t, c∗(v, v∗, θ)) − f(t, v)f(t, v∗)] β(θ, |v − v∗|)dθdv∗

where, if Rθ is the θ-rotation centered at 0,

c(v, v∗, θ) =
v + v∗

2
+Rθ

(

v − v∗

2

)

and c∗(v, v∗, θ) =
v + v∗

2
−Rθ

(

v − v∗

2

)

We will need the following computation of c(v, v∗, θ) :

c(v, v∗, θ) =

(

cx(v, v∗, θ)
cy(v, v

∗, θ)

)

=
1

2

(

(vx + v∗x) + (vx − v∗x) cos θ − (vy − v∗y) sin θ

(vy + v∗y) + (vy − v∗y) cos θ + (vx − v∗x) sin θ

)

In fact, c(v, v∗, θ) and c∗(v, v∗, θ) represent the velocities of two particles after their collision, if these
particles had the velocities v and v∗ before the collision, and if the angle due to the collision is θ.
We will assume that we are in a case of Maxwellian particles, i.e. that the cross section β depends only
on θ, and is even : β(θ, |v − v∗|) = β(|θ|). We will also suppose the physically reasonnable condition :

∫ π

0
θ2β(θ)dθ <∞ (1.1)
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The Kac equation ”with cutoff”, namely when
∫ π
0 β(θ)dθ <∞, has been much investigated by the analysts.

It is really more difficult to assume only (1.1), and the only analytical existence and regularity result under
(1.1) is due to Desvillettes in [3].
A probabilistic approach using the underlying evolution Markov process allows to work under (1.1) thanks
to the L2-calculus. We obtain a slightly better existence result than Desvillettes, and our regularity result
is much better. Desvilletes builds a solution g(t, v) of (B), and he proves that for each t > 0, f(t, .) is in
H1−ǫ(IR2) for all ǫ > 0. The solution f(t, v) we build is continuous on ]0, T ] × IR2, and for each t > 0,
f(t, .) is in C∞(IR2).
Another advantage of a probabilistic approach is that we can assume that the initial data is a probability,
and not necessarily a density of probability. Finally, we give a (probabilistic) notion of uniqueness

In order to define the weak solutions, we consider the following kernel, which depends on the test function
φ ∈ C2

b (IR2) (the set of C2 functions on IR2 of which the derivatives of order 0 to 2 are bounded) :

Kφ
β (v, v∗) =

∫ π

−π

[

φ(c(v, v∗, θ)) − φ(v) − φ′x(v) (cx(v, v∗, θ) − vx) − φ′y(v) (cy(v, v
∗, θ) − vy)

]

β(θ)dθ

− b

2

[

φ′x(v)(vx − v∗x) + φ′y(v)(vy − v∗y)
]

(1.2)

where b =

∫ π

−π
(1 − cos θ)β(θ)dθ. This expression is well defined for every test function thanks to the

assumption (1.1). Now we can define the weak solutions of (B).

Definition 1.1 Let β be a cross section (even and positive on [−π, π]\{0}) satisfying (1.1). Let P0 be a
probability on IR2 that admits a moment of order 2. A positive function f on IR+ × IR2 is a weak solution
of (B) with initial data P0 if for every test function φ ∈ C2

b (IR2),

∫

v∈IR2

f(t, v)φ(v)dv =

∫

v∈IR2

φ(v)P0(dv) +

∫ t

0

∫

v∈IR2

∫

v∗∈IR2

Kφ
β (v, v∗)f(s, v)f(s, v∗)dvdv∗ds (1.3)

Let us explain this definition : a priori, we should look for weak solutions satisfying, for every test function,

∫

v∈IR2

f(t, v)φ(v)dv =

∫

v∈IR2

φ(v)P0(dv) +

∫ t

0

∫

v∈IR2

Kβ(f, f)(s, v)φ(v)dvds

Let us subsitute v′ = c(v, v∗, θ), v′∗ = c∗(v, v∗, θ), and θ′ = −θ in the first part of Kβ(f, f). The Jacobian
of this substitution is equal to 1, and an easy drawing shows that v = c(v′, v′∗, θ′), v∗ = c∗(v′, v′∗, θ′) and
θ = −θ′. We obtain :

∫

IR2

∫

IR2

∫ π

−π
f(t, c(v, v∗, θ))f(t, c∗(v, v∗, θ))φ(v)β(θ)dθdvdv∗

=

∫

IR2

∫

IR2

∫ π

−π
f(t, v)f(t, v∗)φ(c(v, v∗, θ))β(θ)dθdvdv∗

and hence

∫

v∈IR2

f(t, v)φ(v)dv =

∫

v∈IR2

φ(v)P0(dv) +

∫ t

0

∫

v∈IR2

∫

v∗∈IR2

kφ
β(v, v∗)f(s, v)f(s, v∗)dvdv∗ds

where

kφ
β(v, v∗) =

∫ π

−π

[

φ(c(v, v∗, θ)) − φ(v)
]

β(θ)dθ

But this kernel does not make sense for every test function φ ∈ C2
b (IR2), except if we suppose that

∫ π
0 θβ(θ)dθ <∞. Consequently, we replace kφ

β by Kφ
β , in which there is a compensated term. Notice that
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if
∫ π
0 θβ(θ)dθ <∞, then

∫ π
−π sin θβ(θ)dθ = 0, and the two kernels are identical.

The method is partially adapted from the papers of L. Desvillettes, C. Graham and S. Méléard in [4] and
[5], who solved a simpler problem in dimension 1. We first show that there exists a stochastic differential
equation associated with the equation (B). This means that if Vt is a solution of this S.D.E., then its law
is a measure solution and if Vt admits a density for of (B). If furthermore for each t > 0, the law of Vt

admits a density f(t, .) with respect to the Lebesgue measure on IR2, then f will be a solution of (B) in
the sense of Definition 1.1.
The first section is devoted to the statement of the S.D.E., to the existence and the uniqueness in law of
a solution of this S.D.E., and to the study of some moment conservations for this solution, which can be
related to physical conservations. The aim of the second section is to use the Malliavin Calculus in order
to show the existence of a weak solution of (B), and to study the smoothness of this solution. We will
use Bismut’s approach of the Malliavin Calculus, by following the methods of Bichteler, Gravereaux, and
Jacod in [1] and [2]. However, we can not apply trheir results, because our model does not satisfy their
assumptions, for several reasons.
The most difficult and original part of this paper is the proof of the regularity (see Lemmas 3.22, 3.23,
and Theorem 3.24), for which we need to use the particular form of our S.D.E.

In the sequel, β is a fixed cross section satisfying (1.1).

The uniqueness for the equation (B) is an open problem. But it is possible to prove that if all the moments
of P0 are finite, if f and g are two weak solutions of (B) on [0, T ], and if for every p ≥ 0,

sup
[0,T ]

∫

IR2

‖ v ‖p f(t, v)dv + sup
[0,T ]

∫

IR2

‖ v ‖p g(t, v)dv <∞

then f and g have the same moments : for every p, q ≥ 0, for all t ∈ [0, T ],

∫

IR2

vp
xv

q
yf(t, v)dv =

∫

IR2

vp
xv

q
yg(t, v)dv

This can be shown recursively (on p + q) by using Newton’s formula. (We will compute explicitely the
moments of order 1 in Proposition 2.10).

2 The probabilistic approach.

The whole section is an easy adaptation of the paper of Desvillettes, Graham and Méléard, [4], although
there is a quite important difference between the S.D.E. in dimension 1 and 2.
Since we are looking for a solution f(t, v) which is a density of particles at each instant t, it is quite natural
to relate f(t, v) to the flow of marginals of a stochastic process. We restrict our study to the time interval
[0, T ], where T > 0 is fixed.

Definition 2.1 We will say that a flow {Pt}t∈[0,T ] of probability measures on IR2 such that P0 admits a

moment of order 2 is a weak solution of (B) with initial data P0 if for every test function φ ∈ C2
b (IR2),

〈φ, Pt〉 = 〈φ, P0〉 +

∫ t

0

〈

Kφ
β (v, v∗), Ps(dv)Ps(dv

∗)
〉

ds (2.1)

Remark 2.2 If a flow {Pt}t∈[0,T ] of probability measures on IR2 is a weak solution of (B), and if for every

t ∈]0, T ], Pt admits a density f(t, .) with respect to the Lebesgue measure on IR2, then f is a solution of
(B) with initial data P0 in the sense of Definition 1.1.
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In order to state a S.D.E. associated with our problem, we introduce some notations. Following Tanaka,
[9], we will consider two probability spaces : the first one is an abstract space (Ω,F , P ), and the second
one is ([0, 1],B([0, 1]), dα). In order to avoid any confusion, the processes on ([0, 1],B([0, 1]), dα) will be
some α-processes, the expectation under dα will be denoted Eα, and the laws Lα.
On (Ω,F , P ), we consider a Poisson measure N(dθdαdt) on [−π, π]× [0, 1]× [0, T ] with intensity measure
ν(dθdαdt) = β(θ)dθdαdt and with compensated measure Ñ(dθdαdt).
If Q is a probability on IDT , and if p ≥ 1, we will say that Q ∈ Pp(IDT ) if

∫

x∈IDT
sup[0,T ] ‖ x(t) ‖p Q(dx) <

∞. A càdlàg adapted process Ys on [0, T ] will be a ILp
T -process if its law is in Pp(IDT ).

Definition 2.3 Let V0(ω) ∈ L2(Ω), let Ys(ω) be a IL2
T -process, and let Zs(α) be a IL2

T -α-process, every of
these elements with values in IR2. Then we denote by V = Φ(Y,Z, V0, N) the process defined (and well
defined) by

Vt(ω) = V0(ω) +

∫ t

0

∫ 1

0

∫ π

−π
[c(Ys−(ω), Zs−(α), θ) − Ys−(ω)] Ñ(dθdαds) − b

2

∫ t

0

∫ 1

0
(Ys(ω) − Zs(α)) dαds

(2.2)

This can also be written, by using the matrix A(θ) = 1
2

(

cos θ − 1 − sin θ
sin θ cos θ − 1

)

:

Vt = V0 +

∫ t

0

∫ 1

0

∫ π

−π
A(θ) (Ys− − Zs−(α)) Ñ(dθdαds) − b

2

∫ t

0

∫ 1

0
(Ys − Zs(α)) dαds (2.3)

Definition 2.4 Let {Vt}t∈[0,T ] be a IL2
T -process and let {Wt}t∈[0,T ] be a IL2

T -α-process, with values in IR2.
We will say that (V,W ) is a solution of (SB) with initial data V0 if

L(V ) = Lα(W ) and V = Φ(V,W, V0, N)

We notice here that this S.D.E. is symmetric in V and W , which is not the case in dimension 1. This
yields that the solution of this S.D.E. does not behaves in the same way when the dimension is 1 or 2. In
particular the conservation of the momentum (i.e. E(Vt) = E(V0) for t > 0) will hold. The next remark
follows from the Itô formula.

Remark 2.5 If (V,W ) is a solution of (SB) with initial data V0, then the probability flow {L(Vt)}t∈[0,T ] =
{Lα(Wt)}t∈[0,T ] is a weak solution of (B) with initial data L(V0).

In order to prove the existence and the uniqueness in law for the non classical S.D.E. (SB), we first solve
the associated classical S.D.E.

Proposition 2.6 Let V0 ∈ L2(Ω), and let Z be a IL2
T -α-process. Then the classical S.D.E.

V = Φ(V,Z, V0, N) admits a unique solution, that belongs to IL2
T . Furthermore, the law of the solution

depends only on L(V0) and on the flow {Lα(Zt)}t∈[0,T ].

Proof : the existence and the uniqueness for this kind of S.D.E. is standard. In order to study the
law of the solution, let us write the Poisson measure as N =

∑

s∈[0,T ] 1ID(s)δ(θs,αs,s), and let us set

N∗ =
∑

s∈[0,T ] 1ID(s)δ(θs,Zs(αs),s). Then N∗ is a Poisson measure on [0, T ] × [−π, π] × IR2 with intensity
β(θ)dθLα(Zs)(dz)ds. (Recall that Zt is ”ω-deterministic”). Then

Vt = V0 +

∫ t

0

∫ π

−π

∫

IR2

(c(Vs−, z, θ) − Vs−) Ñ∗(dθdzds) − b

2

∫ t

0
Vsds +

b

2

∫ t

0
Eα(Zs)ds

and the law of Vt is entirely determined by L(V0), by the intensity of N∗, and by {Eα(Zs)}s≤T . The result
follows.

We now define recursively the Picard iterations that will converge to a solution of (SB).
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Definition 2.7 Let V0 ∈ L2. Let V 0 be the process identically equal to V0. Assuming that we have defined
the IL2

T -processes V 0,...,V k, and the IL2
T -α-processes Z0,...,Zk−1, we choose a IL2

T -α-process Zk satisfying

Lα(Zk|Zk−1, ..., Z0) = L(V k|V k−1, ..., V 0)

then we set
V k+1 = Φ(V k, Zk, V0, N)

Notice here that we build the pathwises of the V k, and only the laws of the Zk. The following theorem
shows the existence of a solution for S.D.E. (SB).

Theorem 2.8 The sequences V k and Zk converge a.s. and in IL2
T to some processes V and W . The

process V is in IL2
T , and W is a IL2

T -α-process. Furthermore,

L(V ) = Lα(W ) = P β and V = φ(V,W, V0, N)

Hence (V,W ) is a solution of (SB) with initial data V0. The law P β does not depend on the possible
choices for Ω, for N , for V0, and for the Picard approximations, but only on L(V0).
If furthermore E(|V0|p) <∞ for all p <∞, then V is a ILp

T -process for all p <∞.

Proof : we show that these sequences are Cauchy by using a simple computation and the fact that for
every k, Lα(Zk −Zk−1) = L(V k−V k−1). Letting k go to infinity in the equality V k+1 = Φ(V k, Zk, V0, N),
we see that V = Φ(V,W, V0, N). Finally, L(V ) = Lα(W ) because the sequences {V k} and {Zk} have the
same law, and because the processes V k and Zk converge uniformly in L2.
As in Proposition 2.6, we can check that the law of the sequence {V k} does not depend on the choices for
Ω, N , V0, and {Zk}, but only on the laws of these elements.

We now prove the uniqueness in law for (SB). : it suffices to consider a fixed ”space” (Ω, V0, N), and to
check that any solution of (SB) on this space have the law P β.

Theorem 2.9 Let Ω, V0 ∈ L2(Ω), and N be fixed. We consider the solution (V,W ) (with P β = L(V ) =
Lα(W )) of (SB) that we have built in Theorem 2.8. We also assume that there exists another solution
(U, Y ), and we set Q = L(U) = Lα(Y ). Then Q = P β.

This theorem can be shown by following the methods of Desvillettes et al. in [4] Theorem 3.7 p 12.

We now assume that Ω, N , and V0 ∈ L2(Ω) are fixed. We consider a solution (V,W ) of (SB) with initial
data V0.

Proposition 2.10 The conservations of the momentum and of the kinetic energy hold : for every t ∈
[0, T ],

E(Vt) = E(V0) and E
(

‖ Vt ‖2
)

= E
(

‖ V0 ‖2
)

Notice that the conservation of the momentum does not hold in dimension 1.

Proof : in order to prove these equalities, it suffices to use the fact that the flow Pt = L(Vt) is a weak
solution of (B) in the sense of Definition 2.1. Let us first consider the test function φ(v) = vx : it is easy

to check that Kφ
β (v, v∗) = 0 − b

2(vx − v∗x). Hence for every s > 0,
〈

Kφ
β (v, v∗), Ps(dv)Ps(dv

∗)
〉

= 0, and we

obtain
∫

IR2 vxPt(dv) =
∫

IR2 vxP0(dv). In the same way,
∫

IR2 vyPt(dv) =
∫

IR2 vyP0(dv), and the conservation
of the momentum is proved.

Then we set φ(v) = v2
x + v2

y : since Kφ
β (v, v∗) = b

2

(

v∗x
2 − v2

x + v∗y
2 − v2

y

)

, it is clear that for every s > 0,
〈

Kφ
β (v, v∗), Ps(dv)Ps(dv

∗)
〉

= 0, and we can conclude as above that the conservation of the kinetic energy

holds.

We now deduce a useful corollary :
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Corollary 2.11 If L(V0) is not a Dirac mass, then for every t ∈ [0, T ], L(Vt) is not a Dirac mass either.

Proof : let us assume that there exists t > 0 and X ∈ IR2 such that L(Vt) = δX . Then from Proposition
2.10, E

(

‖ V0 −X ‖2
)

= E
(

‖ Vt −X ‖2
)

= 0, which implies that V0 = X a.s.

3 Existence and smoothness of a weak solution by using the stochastic

calculus of variations.

We now want to study the existence and the smoothness of a density with respect to the Lebesgue measure
on IR2 for the law of a solution of (SB). Indeed, if this density exists, it will satisfy (B) in the sense of
Definition 1.1. We thus will use the stochastic calculus of variations (namely the Malliavin calculus).
Bismut’s methods are here easier than Malliavin’s original approach. The papers of Bichteler, Jacod [2]
and of Bichteler, Gravereaux, Jacod [1] explain the Malliavin calculus for diffusion processes with jumps
when the intensity of the Poisson measure is the Lebesgue measure ; and although we cannot apply directly
their results, we will follow their methods. In [2], Bichteler and Jacod study the existence of a density
for these processes in dimension 1, and Bichteler, Gravereaux and Jacod extend in [1] the methods to the
existence and the smoothness of this density in any finite dimension. This second paper is very complete,
but the assumptions that yield the existence of a density are too much stringent, so that we have to use
a mixed method to show the existence of a weak solution of (B).
First, let us state our assumptions.
Assumption (H) :

1. The initial data P0 admits a moment of order 2, and is not a Dirac mass.

2. β = β0 + β1, where β1 is even and positive on [−π, π]\{0}, and there exists k0 > 0, θ0 ∈]0, π[, and

r ∈]1, 3[ such that β0(θ) =
k0

|θ|r 1I[−θ0,θ0](θ). We still assume
∫ π
0 θ

2β(θ)dθ <∞.

Assumption (S) :

1. All the moments of P0 are finite.

2. The cross section β satisfies :

∣

∣

∣

∣

sin θ

1 + cos θ

∣

∣

∣

∣

1I|θ|∈[π/2,π] ∈ ∩p≥1L
p(β(θ)dθ)

Then we state our main theorems.

Theorem 3.1 Under the assumption (H), the equation (B) admits a solution with initial data P0 in the
sense of Definition 1.1.

Theorem 3.2 We assume (H) and (S), and we consider the solution f(t, v) of the equation (B) with
initial data P0 built in Theorem 3.1. Then for each t ∈]0, T ] fixed, f(t, .) is of class C∞ on IR2.

Theorem 3.3 Assume (H) and (S). Let f(t, v) be the solution of (B) on [0, T ] with initial data P0 built
in Theorem 3.1. The map (t, v) −→ f(t, v) is continuous on ]0, T ] × IR2.

Let us notice that Assumption (H)-1 is natural. Indeed, if P0 is a Dirac mass at v0 ∈ IR2, then all the
particles have the initial velocity v0, and there cannot be any collision. Hence Pt = P0 for all t is a solution
of (B) in the sense of Definition 2.1, and it is clear that in this case, Pt does not admit any density.
It seems also natural to suppose (S)-2, which means that β is small near θ = π. If the angle of a collision
between two particles is π, then these particles exchange their velocities, and this has no effect on the
density f(t, .). Thus if P0 does not admit any density, and if β(θ) is large near π, there cannot be any
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regularization property.

In [3], the analyst Desvillettes states a comparable theorem under the following assumption (here the
initial data is a density of probability) :
Assumption (h) : There exists β0 > 0, β1 > 0, and γ ∈]1, 3[ such that :

β0|θ|−γ ≤ β(θ) ≤ β1|θ|−γ

and the initial data f0 : IR2 → IR+ satisfies :

∫

IR2

f0(v)
(

1 + |v|2 + | ln f0(v)|
)

dv <∞

Theorem : Under (h), the Kac equation (B) admits a weak solution f satisfying, for every t0 > 0, ǫ > 0
:

f ∈ L1
loc

(

[t0,∞[,H1−ǫ(IR2
v)
)

∩ L∞
loc

(

[t0,∞[,H
3−γ

2
−ǫ(IR2

v)
)

Comparing this theorem and Theorems 3.2 and 3.3, we see how the probabilistic approach is efficient. Let
us come back to our method.

Notations : In the whole section, Ω and N are fixed as in Section 2, and we assume at least (H). We
also consider on Ω a random variable V0 such that L(V0) = P0, and a solution (V,W ) of the S.D.E. (SB)
with initial data V0 in the sense of Definition 2.4.

3.1 The techniques.

The Malliavin Calculus is based on the integration by parts settings (IBPS). Of course, the IBPS needed
for the existence of a density (which we will name weak IBPS) are less stringent than the ones used for
the smoothness of the density.
In the next definition, we follow [1] p 27, and we introduce the weak IBPSs. Recall that C2

p(IRd) is the set

of C2 functions on IRd of which all derivatives of order 0 to 2 have at most a polynomial growth.

Definition 3.4 Let φ be a random variable with values in IR2. We will say that (σ, γ,D, δ) is an IBPS
(resp. a weak IBPS) for φ if

1. σ is a random variable with values in M2(IR) (the set of the 2 × 2-matrices on IR).

2. γ is a random variable with values in IR2 such that γ ∈ ∩p<∞L
p (resp. γ ∈ L2).

3. D is a linear space of random variables contained in ∩p<∞L
p (resp. L2), and is stable under C2

p

(resp. C2
b ).

4. δ = (δ1, δ2), where δi is a linear map on D such that if n ≥ 1, if F ∈ C2
p(IRn) (resp. C2

b (IRn)), and
if ψ = (ψ1, ..., ψn) ∈ Dn, then

δi(F ◦ ψ) =
n
∑

j=1

∂F

∂xj
(ψ)δi(ψj)

5. For every g ∈ C2
p(IR2) (resp. C2

b (IR2)), for every ψ ∈ D, for j = 1, 2 the following equality holds :

E

(

ψ
2
∑

i=1

dig(φ)σij

)

= E
(

g(φ)[ψγj + δj(ψ)]
)

(3.1)
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We will use the following criteria :

Theorem 3.5 Let φ be a random variable with values in IR2. Assume that (σ, γ,D, δ) is a weak IBPS
for φ. If for each i, j ∈ {1, 2}, σij is in D, and if detσ 6= 0 a.s., then the law of φ admits a density with
respect to the Lebesgue measure on IR2.

Theorem 3.6 Let φ be a random variable with values in IR2. We assume that (σ, γ,D, δ) is an IBPS for
φ, and we consider the following sets :

C0 =
{

σij, γi | i, j ∈ {1, 2}
}

and Cn+1 = Cn ∪ {δj(ψ) | j ∈ {1, 2}, ψ ∈ Cn}

Then φ admits a density of class C∞ with respect to the Lebesgue measure on IR2 provided for all n ≥ 0,
Cn ⊂ D, and (det σ)−1 ∈ ∩p<∞L

p.

Theorem 3.6 is proved in Bichteler, Gravereaux, Jacod, [1] p 33, and Theorem 3.5 is also proved in [1] p 28
in the case where (σ, γ,D, δ) is an IBPS for φ. But it is easy to see that they use only the fact (σ, γ,D, δ)
is a weak IBPS.

3.2 An I.B.P.S. for Vt.

The existence of the density for the law of a jump process is based on an accumulation of small jumps.
Recalling that β = β0 +β1 and that β0 explodes near 0, we will in fact be interested only in β0. Hence, we
suppose that the Poisson measure N splits into N0 +N1, where N0 and N1 are independent Poisson mea-
sures on [0, T ]× [0, 1]× [−π, π] with intensities ν0(dθdαds) = β0(θ)dθdαds and ν1(dθdαds) = β1(θ)dθdαds.
We will denote by Ñ0 and Ñ1 the associated compensated measures. We also assume that our probability
space is the canonical one associated with the independent random elements V0, N0, and N1 :

(Ω,F , {Ft}, P ) = (Ω′,F ′, {F ′}, P ′) ⊗ (Ω0,F0, {F0
t }, P 0) ⊗ (Ω1,F1, {F1

t }, P 1) (3.2)

An element ω ∈ Ω can be written ω = (ω′, ω0, ω1), where ω′ is a real number, and ω0 and ω1 are integer
valued measures on [0, T ] × [0, 1] × [−π, π].

Notations : Although N0 has its support in [0, T ]× [0, 1]× [−θ0 , θ0], we will still integrate against N0 and
Ñ0 on [0, T ]×[0, 1]×[−π, π], even if the functions in the integrals are defined only on [0, T ]×[0, 1]×[−θ0, θ0].

Let us briefly present the method we will use to build an I.B.P.S. for Vt. We will first build a perturbation, in
order to obtain a new family of integer valued random measures Nλ

0 (for λ ∈ Λ, where Λ is a neighbourhood
of 0 in IR2). Of course, N0

0 must equal N0. Then we will build a family of probability measures P λ = Gλ
t .P

on Ω, such that L(V0, N
λ
0 , N1|P λ) = L(V0, N0, N1|P ). By this way, we will obtain a perturbed process V λ

t

satisfying L(V λ
t |P λ) = L(Vt|P ), and thus E(φ(V λ

t )Gλ
t ) = E(φ(Vt)) for any borel bounded function φ on

IR2. Then we will differentiate this equality at λ = 0 (if φ is regular enough), by using a L2-derivative of
V λ

t and Gλ
t . We will obtain something like

E
(

φ′(Vt).DVt
)

= −E(φ(Vt)DGt)

which looks like (3.1).

We now build the perturbation. Let ρ be a positive Cb([−θ0, θ0]) function satisfying :

ρ(θ) ≤
(

ce−|θ|−r′
)

∧ |θ|
2

∧M ; ρ(θ) ∼0 ce−|θ|−r′

; {ρ = 0} = {−θ0, 0, θ0} (3.3)

where r′ = 1
8(r−1) > 0, and where c and M are positive constants that we will choose soon. In particular,

this yields that ρ ∈ ∩p≥1L
p(β0(θ)dθ).
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We also need a predictable function v =

(

vx

vy

)

from Ω× [0, T ]× [−θ0, θ0]× [0, 1] to IR2, such that for every

ω, t, α, the map θ −→ v(ω, t, θ, α) is of class C1, and

‖ v(ω, t, θ, α) ‖ ∨ ‖ v′(ω, t, θ, α) ‖≤ ρ(θ) (3.4)

where v′ ∈ IR2 is the derivative of v with respect to θ. This function will be chosen at the end of the
section.
We consider a neighbourhood Λ ⊂ B(0, 1) of 0 in IR2. For λ ∈ Λ, we define the following perturbation :

γλ(ω, t, θ, α) = θ + 〈λ, v(ω, t, θ, α)〉 = θ + λxvx(ω, t, θ, α) + λyvy(ω, t, θ, α) (3.5)

If Λ is small enough (which we assume), we can check that for every λ ∈ Λ, for every ω, t, α, the map
θ −→ γλ(ω, t, θ, α) is an increasing bijection from [−θ0, θ0] into itself (by using (3.3) and (3.4)). For λ ∈ Λ,
we set Nλ

0 = γλ(N0) : if A ⊂ [0, T ] × [0, 1] × [−π, π] is a Borel set,

Nλ
0 (ω,A) =

∫ T

0

∫ 1

0

∫ π

−π
1IA(s, γλ(ω, s, θ, α), α)N0(ω, dθdαds)

We consider the shift Sλ defined (and entirely defined) by

V0 ◦ Sλ(ω) = V0(ω) , N0 ◦ Sλ(ω) = Nλ
0 (ω) , and N1 ◦ Sλ(ω) = N1(ω) (3.6)

We now look for a family of probability measures P λ on Ω satisfying P λ ◦ (Sλ)−1 = P . To this end, we
consider the following predictable real valued function on Ω × [0, T ] × [−θ0, θ0] × [0, 1] :

Y λ(ω, t, θ, α) =
(

1 + λxv
′
x(ω, t, θ, α) + λyv

′
y(ω, t, θ, α)

)

× β0(γ
λ(ω, t, θ, α))

β0(θ)
(3.7)

If ρ̃(θ) = ρ(θ) + r2r+1ρ(θ)

|θ| + r2r+1ρ(θ)
ρ(θ)

|θ| , then

|Y λ(t, θ, α) − 1| ≤‖ λ ‖ ρ̃(θ) (3.8)

Let us notice that ρ̃ ∈ ∩p≥1L
p(β0(θ)dθ). We choose c and M such that ρ̃ ≤ 1

2 .
Then we consider the following square integrable Doléans-Dade martingale :

Gλ
t = 1 +

∫ t

0

∫ 1

0

∫ π

−π
Gλ

s−(Y λ(s, θ, α) − 1)Ñ0(dθdαds) (3.9)

Proposition 3.7 Gλ
t is strictly positive for every t ∈ [0, T ]. If P λ is the probability measure defined by

P λ = Gλ
T .P , then P λ ◦ (Sλ)−1 = P .

The proof of this proposition follows from the Girsanov theorem for random measures (see Jacod, Shiryaev
[7]), as Lemme 3.8 in [2] (except that the initial data V0 is not deterministic). This proof is based on the
choice of Y λ : one can check that γλ(Y λ.ν0) = ν0.

We now introduce the following derivatives :

Definition 3.8 Recall that Λ is a neighbourhood of 0 in IR2. Let p ≥ 2.

1. Let {Xλ}λ∈Λ be a family of real valued Lp random variables. We will say that Xλ is Lp-differentiable

at λ = 0 if there exists a derivative DX =

(

DxX
DyX

)

∈ Lp such that, when λ goes to 0,

E
(∣

∣

∣Xλ −X0 − 〈λ,DX〉
∣

∣

∣

p)

= o (‖ λ ‖p)
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2. Let {Xλ}λ∈Λ be a family of IR2 valued Lp random variables. We will say that Xλ is Lp-differentiable

at λ = 0 if there exists a derivative DX =

(

DxXx DyXx

DxXy DyXy

)

∈ Lp such that, when λ goes to 0,

E
(

‖ Xλ −X0 −DX.λ ‖p
)

= o (‖ λ ‖p)

3. We denote by D (resp. D∞) the set of the real valued random variables X such that Xλ = X ◦Sλ is
L2-differentiable (resp. Lq-differentiable for every q <∞) at 0, and by Dt (resp. D∞

t ) its restriction
to the set of the Ft-measurable random variables.

4. Let now {Y λ
t }λ∈Λ be a family of real valued ILp

T -processes. We will say that Y λ is Lp-differentiable

at λ = 0 if there exists a ILp
T -process DYt =

(

DxYt

DyYt

)

such that :

E

(

sup
[0,T ]

|Y λ
t − Y 0

t − 〈λ,DYt〉 |p
)

= o (‖ λ ‖p)

Let us describe the process V λ
t = Vt ◦ Sλ. The α-process W behaves here as a parameter.

Proposition 3.9 The perturbed process V λ satisfies the following equation under P :

E(λ)































V λ
t = V0 −

b

2

∫ t

0

∫ 1

0
(V λ

s −Ws(α))dαds +

∫ t

0

∫ 1

0

∫ π

−π
A(θ)(V λ

s− −Ws−(α))Ñ1(dθdαds)

+

∫ t

0

∫ 1

0

∫ π

−π
A(γλ(s, θ, α))(V λ

s− −Ws−(α))Ñ0(dθdαds)

−
∫ t

0

∫ 1

0

∫ π

−π
(Y λ(s, θ, α) − 1)A(γλ(s, θ, α))(V λ

s− −Ws−(α))β0(θ)dθdαds

Proof : we work here under P . The direct expression of V λ is given by

V λ
t = V0 − b

2

∫ t

0

∫ 1

0
(V λ

s −Ws(α))dαds +

∫ t

0

∫ 1

0

∫ π

−π
A(θ)(V λ

s− −Ws−(α))Ñ1(dθdαds)

+

∫ t

0

∫ 1

0

∫ π

−π
A(θ)(V λ

s− −Ws−(α))(Nλ
0 − ν0)(dθdαds)

But the last term is equal to

∫ t

0

∫ 1

0

∫ π

−π
A(γλ(s, θ, α))(V λ

s− −Ws−(α))Ñ0(dθdαds)

−
∫ t

0

∫ 1

0

∫ π

−π
A(θ)(V λ

s− −Ws−(α))(ν0 − γλ(ν0))(dθdαds)

Since ν0 − γλ(ν0) = γλ(Y.ν0) − γλ(ν0) = γλ((Y − 1).ν0) (see Proposition 3.7), the proof is finished.

As we will study V λ as a solution of E(λ), (we have no other information), we may need the following
proposition of which the proof is standard :

Proposition 3.10 For every λ ∈ Λ, the equation (E(λ)) admits one and only one solution V λ ∈ IL2
T . If

furthermore P0 = L(V0) admits moments of all orders, then V λ ∈ ILp
T for every p <∞.

Let us differentiate Gλ (see Definition 3.8).
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Proposition 3.11 The family {Gλ} is Lp differentiable for every p <∞, and has the following derivative

DGt =

(

DxGt

DyGt

)

=









∫ t

0

∫ 1

0

∫ π

−π

∂

∂λx
Y λ(s, θ, α)

∣

∣

∣

λ=0
Ñ0(dθdαds)

∫ t

0

∫ 1

0

∫ π

−π

∂

∂λy
Y λ(s, θ, α)

∣

∣

∣

λ=0
Ñ0(dθdαds)









(3.10)

We omit this proof and the following one, because they are very simple in their principle, but the com-
putations are fastidious. The method can be found in [2] Lemma 3.7 p 138 and Lemma 3.11 p 140, or [1]
Subsection 5-b.

Notations : We will denote in the sequel

(

x1

x2

)

( y1 y2 ) =

(

x1y1 x1y2

x2y1 x2y2

)

.

Theorem 3.12 The family {V λ} is L2-differentiable at λ = 0, and its derivative DV ∈ M2(IR) satisfies
the equation :

(ED)































DVt = − b
2

∫ t

0
DVsds+

∫ t

0

∫ 1

0

∫ π

−π
A(θ)DVs−Ñ(dθdαds)

+

∫ t

0

∫ 1

0

∫ π

−π
A′(θ)(Vs− −Ws−(α))vT (s, θ, α)Ñ0(dθdαds)

−
∫ t

0

∫ 1

0

∫ π

−π
A(θ)(Vs− −Ws−(α))

(

(v(s, ., θ)β0(.))
′ (θ)

)T
dθdαds

If furthermore P0 has moments of all orders, then V is Lp-differentiable for every p <∞.

We can now state an IBPS for Vt.

Proposition 3.13 Let t ≥ 0. If X ∈ Dt (or if X ∈ D∞
t , cf Definition 3.8), we set δt(X) = −DX. Under

(H), (DVt,−DGt,Dt, δt) is a weak IBPS for Vt. Under (H) and (S), (DVt,−DGt,D∞
t , δt) is an IBPS for

Vt.

Proof : let us for example assume (H) and (S) and prove the second claim. DVt is of course a M2(IR)
valued random variable. By Proposition 3.11, −DGt is a IR2 valued random variable which is in ∩pL

p.
D∞

t is a linear space, and it is classical to show that if X1, ...,Xn are in D∞
t , and if F ∈ C2

p(IRn), then
F (X1, ...,Xn) ∈ D∞

t , and has the following derivative :

DF (X1, ...,Xn) =
n
∑

i=1

∂F

∂xi
(X1, ...,Xn)DXi

It remains to prove that if f ∈ C2
p(IR2), and if X ∈ D∞

t , then E(Dt) = 0, where

Dt = DXf(Vt) +X
(

f ′x(Vt) f ′y(Vt)
)

DVt +Xf(Vt)DGt

By using the facts that Vt ∈ ∩Lp and f ∈ C2
p(IR2), it is standard and natural to show that

E
(∣

∣

∣Xλf(V λ
t )Gλ

t −Xf(Vt) − 〈λ,Dt〉
∣

∣

∣

)

= o(‖ λ ‖)

Hence,
∣

∣

∣E
(

Xλf(V λ
t )Gλ

t

)

− E (Xf(Vt)) − 〈λ,E(Dt)〉
∣

∣

∣ = o(‖ λ ‖)

But, since Xλf(V λ
t ) = Xf(Vt) ◦ Sλ and since P λ ◦ (Sλ)−1 = P , we deduce that

E
(

Xλf(V λ
t )Gλ

t

)

= E (Xf(Vt))

Hence |〈λ,E(Dt)〉| = o(‖ λ ‖), and E(Dt) = 0, which was our aim.
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3.3 The choice of v.

In order to apply Theorems 3.5 and 3.6, we have to study the inversibility of DVt. We will use the
Doléans-Dade martingales, in order to obtain a suitable expression of DVt. Then we will choose v, which
is really more difficult in dimension 2 than in dimension 1. Only a good choice of v will allow DVt to
admit moments of all orders (see Theorem 3.24) : v must be ”large” (this way, DVt will be invertible) but
also ”small” (in particular, we need ‖ v ‖≤ ρ).
We denote by I the unit matrix on IR2.

Lemma 3.14 One can rewrite the S.D.E. (ED) in the following way : DVt =

∫ t

0
dKs.DVs− + Lt

where Kt =

∫ t

0

∫ 1

0

∫ π

−π
A(θ)Ñ(dθdαds) − b

2
tI

and Lt =

∫ t

0

∫ 1

0

∫ π

−π
A′(θ)(Vs− −Ws−(α))vT (s, θ, α)N0(dθdαds).

Proof : it suffices to prove that

−
∫ t

0

∫ 1

0

∫ π

−π
A(θ)(Vs− −Ws−(α))

(

[v(s, ., α)β0]
′ (θ)

)T
dθdαds

=

∫ t

0

∫ 1

0

∫ π

−π
A′(θ)(Vs− −Ws−(α))vT (s, θ, α)β0(θ)dθdαds

This can be shown by using a (standard) integration by parts formula in the variable θ, and by noticing
that

∀ω, s, α v(ω, s,−θ0, α) = v(ω, s, 0, α) = v(ω, s, θ0, α) = 0

Proposition 3.15 Let M (with values in M2(IR)) be the following Doléans-Dade martingale :

Mt =

∫ t

0
dKs.Ms− + I (3.11)

For all t, (I + ∆Kt) is a.s. invertible. We thus know (see Jacod, [6]) that for all s, Ms and Ms− are also
a.s. invertible, and DVt = MtHt where

Ht =

∫ t

0
M−1

s− (I+∆Ks−)−1dLs =

∫ t

0

∫ 1

0

∫ π

−π
M−1

s− (I +A(θ))−1A′(θ)(Vs−−Ws−(α))vT (s, θ, α)N0(dθdαds)

(3.12)

The only claim we need to show here is that for every t, (I + ∆Kt) is a.s. invertible. To this end, let us
write N =

∑

s∈[0,T ] 1ID(s)δ(s,θs,αs). Then, when N jumps at s, I + ∆Ks = I +A(θs) is invertible except if
θs ∈ {−π, π}, which never happens a.s.

We now choose v. First we need a positive C∞
b function δ on [−θ0, θ0] such that (C > 0 is a constant) :

|δ(θ)| + |δ′(θ)| ≤ ρ(θ) ; {δ = 0} = {−θ0, 0, θ0} ; δ(θ) ∼0 Ce−|θ|−2r′

(3.13)

We will also use a function on IR2 × (M2(IR)) × [−θ0, θ0] with values in IR2 :

ḡ(x, y, θ) = (A′(θ)x)T ((I +A(θ))−1)T (y−1)T

We consider the C∞ function h(x) =
1

1+ ‖ x ‖2
from IR2 to ]0, 1]. Finally, we will use a function k from

M2(IR) to [0, 1], such that k(y) = 0 if and only if det y = 0, and such that the map

y −→
{

(y−1)Tk(y) if det y 6= 0
0 if det y = 0
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is C∞
b from M2(IR) to itself.

Then, the function on IR2 ×M2(IR) × [−θ0, θ0] with values in IR2 defined by

g(x, y, θ) = ḡ(x, y, θ)h
(

A′(θ)x
)

k (I +A(θ)) k(y)

is of class C∞
b .

We now set ∆(x, y, θ) = g(x, y, θ)δ(θ). This function is of class C∞
b .

Definition 3.16 We set v(s, θ, α) = ∆ (Vs− −Ws−(α),Ms−, θ). (This function satisfies the assumptions
of the subsection 3.2).

The last preliminary consists in talking about the higher derivatives of Vt and Gt : in order to apply
Theorems 3.5 and 3.6, we have either to differentiate DV (under (H)) or to differentiate infinitely DV and
DG (under (H) and (S)). To this end, we first notice that Mt satisfies a quite similar (but easier) equation
than Vt. Hence, since the initial condition M0 = I is deterministic, Mλ = M ◦ Sλ is Lp-differentiable at
0 for every p < ∞. Let us compute vλ(ω, s, θ, α) = v(Sλ(ω), s, θ, α) : with the notations of the Definition
3.16,

vλ(s, θ, α) = ∆(V λ
s− −Ws−(α),Mλ

s−, θ)

By using the expression of DV in Lemma 3.14, we can write DV λ = DV ◦ Sλ as

DV λ
t = − b

2

∫ t

0
DV λ

s ds+

∫ t

0

∫ 1

0

∫ π

−π
A(θ)DV λ

s−Ñ1(dθdαds)

+

∫ t

0

∫ 1

0

∫ π

−π
A(γλ(s, θ, α))DV λ

s−Ñ0(dθdαds)

−
∫ t

0

∫ 1

0

∫ π

−π
(Y λ(s, θ, α) − 1)A(γλ(s, θ, α))DV λ

s−β0(θ)dθdαds

+

∫ t

0

∫ 1

0

∫ π

−π
A′(γλ(s, θ, α))(V λ

s− −Ws−(α))
(

vλ(s, γλ(s, θ, α), α)
)T

N0(dθdαds)

One can show that under (H), the family DV λ is L2-differentiable at 0, by using the properties of v.

Assume now (H) and (S), and set Xt = (DVt,Mt,DGt, Vt). Then Xt satisfies a S.D.E. with initial
condition X0 = (0, I, 0, V0). Using the properties of v, one can show that Xλ = X ◦Sλ is Lp differentiable
at 0 for every p < ∞, with DXt = (DxXt,D

yXt). Hence, DVt ◦ Sλ, Mt ◦ Sλ and DGt ◦ Sλ are Lp

differentiable at 0 for every p <∞.
Finally, we can iterate this method for Yt = (DXt,Xt), and so on. We may state the following theorem :

Theorem 3.17 Under (H), the derivative DVt is in Dt for every t ∈ [0, T ]. Under (H) and (S), V and
G are infinitely Lp differentiable for every p <∞.

The first conditions of Theorems 3.5 and 3.6 are thus satisfied, and we still have to study the inversibility
of DVt.

3.4 Existence of a weak solution.

The following remark shows the way to prove that DVt = MtHt is invertible.

Remark 3.18 We set Γ(x, θ) = (I + A(θ))−1(A′(θ)x)(A′(θ)x)T
(

(I +A(θ))−1
)T

, which is a symmetric
nonnegative matrix. Then we set

Rt =

∫ t

0

∫ 1

0

∫ π

−π
Γ(Vs−−Ws−(α), θ)×h

(

A′(θ)(Vs− −Ws−(α))
)

×k(I+A(θ))×k(Ms−)× δ(θ)N0(dθdαds).

This matrix is also symmetric, nonnegative, and is increasing for the strong order (on the set of symmet-
ric nonnegative matrices : for every s ≤ t, Rt − Rs is a.s. symmetric and nonnegative). We can write
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Ht =

∫ t

0
M−1

s− dRs

(

M−1
s−

)T
. Hence, in order to show that Ht (and hence DVt) is a.s. invertible, it suffices

to prove that a.s., Rt − Rs is invertible for every 0 ≤ s < t ≤ T . Finally, since the real valued expression
in Rt is always in ]0, 1], it suffices in fact to show that a.s., R̄t−R̄s is invertible for all 0 ≤ s < t ≤ T , where

R̄t =

∫ t

0

∫ 1

0

∫ π

−π
Γ(Vs− −Ws−(α), θ)δ(θ)N0(dθdαds)

Theorem 3.19 Let t ∈]0, T ]. Under (H), DVt is a.s. invertible.

Proof : we break the proof in several steps.
Step 1 : If Y is a (random) vector of IR2 not equal to 0 an easy computation shows that for θ ∈] − π, π[,

Y T Γ(Vs− −Ws−(α), θ)Y =
( sin θ

1 + cos θ

[

Yx(V x
s− −W x

s−(α)) + Yy(V
y
s− −W y

s−(α))
]

+
[

−Yy(V
x
s− −W x

s−(α)) + Yx(V y
s− −W y

s−(α))
]

)2
(3.14)

Let us fix ω, s, and α. It is easy to see that if Vs−(ω) 6= Ws−(α), then

dθ
{

θ ∈] − π, π[ / Y T (ω)Γ(Vs−(ω) −Ws−(α), θ)Y (ω) = 0
}

= 0

Step 2 : Let s > 0 be fixed, and let Y be a (random) unit vector in IR2 that is Fs-measurable. The aim of
this step is to show that a.s. ∀t > s, Y T (R̄t − R̄s)Y > 0. To this end, we consider the following stopping
time :

τ(Y ) = inf
{

t > s
/

Y T (R̄t − R̄s)Y > 0
}

= inf

{

t > s

/∫ t

0

∫ 1

0

∫ π

−π
1IB(Y )(r, θ, α)N0(dθdαds) > 0

}

where B(Y ) =
{

(r, θ, α)
/

r > s and Y T Γ(Vr− −Wr−(α), θ)Y > 0
}

(recall that R̄u is ”increasing”). It

thus suffices to check that τ(Y ) = s a.s. By assumption, L(V0) is not a Dirac mass. By Lemma 2.11, for
every t > 0, L(Vt) = Lα(Wt) is not a Dirac mass either. This implies that for every r ≥ 0, for every ω,

∫ 1

0
1I{Wr−(α)6=Vr−(ω)}dα = Pα(Wr− 6= Vr−(ω)) > 0

Since

∫ π

−π
β0(θ)dθ = ∞, and thanks to the first step, for all ω, for all r > s,

∫ 1

0

∫ π

−π
1IB(Y (ω))(r, θ, α)β0(θ)dθdα ≥

∫ 1

0

∫ π

−π
1I{Wr−(α)6=Vr−(ω)}1IB(Y (ω))(r, θ, α)β0(θ)dθdα = ∞

Consequently, except if τ(Y (ω)) = s,

∫ τ(Y (ω))

0

∫ 1

0

∫ π

−π
1IB(Y (ω))(r, θ, α)β0(θ)dθdαdr = ∞

But a.s.,

∫ τ(Y )

0

∫ 1

0

∫ π

−π
1IB(Y )(r, θ, α)N0(dθdαdr) ≤ 1, which yields

E

(

∫ τ(Y )

0

∫ 1

0

∫ π

−π
1IB(Y )(r, θ, α)β0(θ)dθdαdr

)

= E

(

∫ τ(Y )

0

∫ 1

0

∫ π

−π
1IB(Y )(r, θ, α)N0(dθdαdr)

)

≤ 1
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and thus

∫ τ(Y )

0

∫ 1

0

∫ π

−π
1IB(Y )(r, θ, α)β0(θ)dθdαds <∞ a.s. Hence τ(Y ) = s a.s., which was our aim.

Step 3 : We now show that if s > 0 is fixed, then a.s., ∀ t > s, R̄t − R̄s is invertible. We set Kert =

Ker(R̄t − R̄s). For each random unit vector Y in IR2, that is Fs-measurable, we know that a.s., ∀t > s,
Y /∈ Kert. Hence, as Kert is increasing when t decreases, a.s., Y /∈ Kers+ = ∪t>sKert. Since Kers+ is
Fs-measurable, and since this is true for every unit vector Fs-measurable, we deduce that Kers+ = {0},
and the step 3 is finished.
Step 4 : We just have to change the ”a.s.”. First,

a.s. , ∀ s < t with s, t ∈ [0, T ] ∩ IQ , R̄t − R̄s is invertible

Since R̄t is increasing, it is easy to drop the ”∩ IQ”, and the theorem follows.

Proof of Theorem 3.1 : it is immediate, thanks to Theorems 3.19 and 3.17, Proposition 3.13, Theorem 3.5,
and Remarks 2.5, and 2.2.

3.5 Smoothness of the weak solution.

We now have to study the inverse moments of detDVt. We use the notations of the previous subsection.
Recall that DVt = MtHt, where Mt is the Doléans-Dade martingale given in Proposition 3.15, and where

Ht =

∫ t

0

∫ 1

0

∫ π

−π
M−1

s− Γ(Vs− −Ws−(α), θ)(M−1
s− )T ζ(Vs− −Ws−(α),Ms−, θ)δ(θ)N0(dθdαds)

where, for x ∈ IR2 and y ∈ M2(IR),

Γ(x, θ) = (I +A(θ))−1 × (A′(θ)x) × (A′(θ)x)T × ((I +A(θ))−1)T

and
ζ(x, y, θ) = h(A′(θ)x) × k(I +A(θ)) × k(y)

where h and k are defined in Subsection 3.3.

We first study the inverse moments of Mt.

Theorem 3.20 Assume (H) and (S). For every t ≥ 0, (detMt)
−1 admits moments of all orders.

Proof : we notice that under (S)-2,

M−1
t = I + b

2

∫ t

0
M−1

s ds−
∫ t

0

∫ 1

0

∫ π

−π
M−1

s− (I +A(θ))−1A(θ)Ñ(dθdαds)

+

∫ t

0

∫ 1

0

∫ π

−π
M−1

s−A(θ)(I +A(θ))−1A(θ)β(θ)dθdαds
(3.15)

In order to check this equality, it suffices to apply the Itô formula to the product Mt.M
−1
t , (where M−1

t is
defined by 3.15) : one obtains that Mt.M

−1
t is a solution of a classical S.D.E. of which I is also a solution.

Then a simple computation shows that :

(I +A(θ))−1A(θ) =
sin θ

cos θ + 1

(

0 −1
1 0

)

and

A(θ)(I +A(θ))−1A(θ) =
1

2

sin θ

cos θ + 1

( − sin θ 1 − cos θ
cos θ − 1 − sin θ

)
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Thanks to Assumption (S)-2, and since
∫ π
0 θ

2β(θ)dθ <∞, one can check that

| sin θ|
1 + cos θ

∈ ∩p≥2L
p(β(θ)dθ) ;

sin2 θ + | sin θ(1 − cos θ)|
1 + cos θ

∈ ∩p≥1L
p(β(θ)dθ)

Hence it is clear that M−1
t (and thus its determinant) is well defined and admits moments of all orders

(this S.D.E. is classical, and the initial data I is deterministic).

It is more difficult to prove that Ht admits moments of all orders. In fact, we will only study the
case where E(V0) = 0 by using the Malliavin Calculus. The generalization (see the final proof of this
section) will then follow from the uniqueness in law for (SB). We begin with three lemmas.

Lemma 3.21 The map (t, Y ) −→ L(〈Vt, Y 〉) is weakly continuous on [0, T ] × {Y ∈ IR2 | ‖ Y ‖= 1}.

Proof : it suffices to show that for every φ ∈ C2
b (IR), the map (t, Y ) −→ E(φ(〈Vt, Y 〉)) is continuous, which

can be checked by using the fact that the flow L(Vt) is a solution of (B) in the sense of Definition 2.1.

Lemma 3.22 Assume (H), (S), and E(V0) = 0. Let t0 > 0 be fixed. There exists η > 0, q > 0, and ξ > 0
(depending on t0) such that for every t ∈ [t0, T ], for every X ∈ IR2, for every unit vector Y ∈ IR2,

Pα

(

〈Wt −X,Y 〉2 > η , ‖Wt ‖2< ξ
)

> q (3.16)

Proof : since sup[0,T ] ‖ Wt ‖ is in ∩pL
p, it suffices to show that there exists η > 0, q > 0 such that for

every t ∈ [t0, T ], for every X ∈ IR2, for every Y ∈ IR2 such that ‖ Y ‖= 1,

Pα

(

〈Wt −X,Y 〉2 > η
)

> 2q

In order to check this claim, notice (by using Bienaymé Tchebichev’s inequality) that there exists ξ > 0
such that for every t, Pα(‖Wt ‖2≤ ξ) > 1 − q. We now break the proof in several steps :
Step 1 : Let t ≥ t0 and ‖ Y ‖= 1 be fixed. Thanks to the previous section, the law of Wt admits a

density on IR2, and hence the law of 〈Wt, Y 〉 admits a density with respect to the Lebesgue measure on
IR. By Proposition 2.10 and since E(V0) = 0, we also know that Eα(Wt) = Eα(W0) = 0, and hence
Eα(〈Wt, Y 〉) = 0. It is then easy to show that there exists η(t, Y ) > 0 and q(t, Y ) > 0 such that

Pα

(

〈Wt, Y 〉 >
√

η(t, Y )

)

> 2q(t, Y ) and Pα

(

〈Wt, Y 〉 < −
√

η(t, Y )

)

> 2q(t, Y )

Step 2 : Using Lemma 3.21, Portemanteau’s Theorem, and the step 1, it is classical to show that for
every t in [t0, T ], for every ‖ Y ‖= 1, there exists a neighbourhood V(t, Y ) of (t, Y ) such that for every
(t′, Y ′) ∈ V(t, Y ),

Pα

(

〈

Wt′ , Y
′〉 >

√

η(t, Y )

)

> 2q(t, Y )

Let us consider a finite covering ∪N
i=1V(ti, Yi) of the compact set [t0, T ]×{Y ∈ IR2

/

‖ Y ‖= 1}. Then, if

η = infi≤N η(ti, Yi) and if q = infi≤N q(ti, Yi), then for all t ≥ t0 and ‖ Y ‖= 1,

Pα(〈Wt, Y 〉 > √
η) > 2q

In the same way, we get Pα(〈Wt, Y 〉 < −√
η) > 2q for all t ≥ t0 and ‖ Y ‖= 1.

Step 3 : Finally, let X be in IR2, t ≥ t0, and ‖ Y ‖= 1 be fixed. If 〈X,Y 〉 ≤ 0,

Pα(〈Wt −X,Y 〉2 > η) ≥ Pα(〈Wt −X,Y 〉 > √
η) ≥ Pα(〈Wt, Y 〉 > √

η + 〈X,Y 〉) ≥ Pα(〈Wt, Y 〉 > √
η) > 2q

If 〈X,Y 〉 ≥ 0, the same kind of argument does work, and the proof is finished.
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Lemma 3.23 Assume (H), (S), and E(V0) = 0. Let t0 > 0 be fixed, and let η, q, and ξ be the strictly
positive numbers associated with t0 introduced in the previous lemma. If X ∈ IR2, ‖ Y ‖= 1, and s ≥ t0,
we consider the set :

Hs(X,Y ) =
{

(θ, α) ∈ [−θ0, θ0] × [0, 1]
/

‖Ws(α) ‖2≤ ξ and Y T Γ(X −Ws(α), θ)Y ≥ η
}

(3.17)

Then for every even positive function z on [−θ0, θ0],
∫∫

Hs(X,Y )
z(θ)β0(θ)dθdα ≥ q

∫ θ0

0
z(θ)β0(θ)dθ (3.18)

Proof : let X ∈ IR2, let ‖ Y ‖= 1, and let s ≥ t0 be fixed. Recall (see equation (3.14) in the proof of
Theorem 3.19) that :

Y T Γ(X −Ws(α), θ)Y = 〈f(θ)Y + PY,X −Ws(α)〉2

where P =

(

0 −1
1 0

)

and f(θ) =
sin θ

cos θ + 1
is an increasing bijection from ]−π, π[ to IR satisfying f(0) = 0.

We denote
hs(X,PY ) =

{

α ∈ [0, 1]
/

〈Ws(α) −X,PY 〉2 > η , ‖Ws(α) ‖2< ξ
}

Thanks to Lemma 3.22, we know that Pα(hs(X,PY )) > q. We will show that if α ∈ hs(X,PY ), then
Y T Γ(X −Ws(α), θ)Y ≥ η either for all θ ∈]0, π[ or for all θ ∈]−π, 0[ (and the lemma will be proved). Let
α ∈ hs(X,PY ). If 〈Y,X −Ws(α)〉 = 0, then

Y T Γ(X −Ws(α), θ)Y = 〈PY,X −Ws(α)〉2 > η

for every θ. Else, Y T Γ(X −Ws(α), θ)Y ≥ η for every θ such that f(θ) ∈ IR\[x1, x2], where x1 ≤ x2 are
the solutions of

x2 × 〈Y,X −Ws(α)〉2 + 2x× 〈Y,X −Ws(α)〉 〈PY,X −Ws(α)〉 + 〈PY,X −Ws(α)〉2 − η = 0

Hence, it suffices to show that the signs of x1 and x2 are equal. But

x1, x2 =
−〈PY,X −Ws(α)〉 ± √

η

〈Y,X −Ws(α)〉

Since 〈PY,X −Ws(α)〉2 ≥ η, the lemma follows.

Theorem 3.24 Assume (H), (S), and E(V0) = 0. For every t > 0, (detHt)
−1 admits moments of all

orders (and thus so does (detDVt)
−1).

Proof : we fix t0 > 0, and we prove the theorem for every t > t0, which of course suffices. Since θ0 < π,
there exists d0 > 0 such that, for every |θ| ≤ θ0, |det(I + A(θ))| = 1

2(1 + cos θ) ≥ d0. We choose k such
that k(y) = 1 as soon as |det y| ≥ d0.
For every X in IR2, one has ‖ A′(θ)X ‖2= 1

4 ‖ X ‖2. Hence, if α is in any set Hs(X,Y ), then

h(A′(θ)(Vs −Ws(α))) ≥
(

1 +
1

4
(‖ Vs ‖2 +ξ)

)−1

Hence, for every ‖ Y ‖> 0, a simple computation (using the Lemma 3.23) shows that for every t ≥ t0,
Y THtY is greater or equal than

∫ t

t0

∫∫

Hs

(

Vs−,
M

−1

s−

T
Y

‖M
−1

s−

T
Y ‖

) ‖M−1
s−

T
Y ‖2 ×η ×

(

1 +
1

4
(‖ Vs− ‖2 +ξ)

)−1

× k(Ms−) × δ(θ)N0(dθdαds)
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Let us notice that the function on Ω × [0, T ] × [−π, π] × [0, 1] defined by

ω, s, θ, α −→ 1I
Hs

(

Vs−,
M

−1

s−

T
Y

‖M
−1

s−

T
Y ‖

)(θ, α) = 1I{
|θ|≤θ0, ‖Ws−(α)‖2≤ξ, Y T

M
−1

s−

‖M
−1

s−

T
Y ‖

Γ(Vs−(ω)−Ws−(α),θ)
M

−1

s−

T

‖M
−1

s−

T
Y ‖

Y ≥η

}

is predictable, because Vs− and M−1
s− are predictable, and because W is a measurable α-process.

Let us define the following random variable :

F = sup
[0,T ]

{(

1 +
1

4
(‖ Vs ‖2 +ξ)

)

×
(

k(Ms−) ‖M−1
s−

T ‖2
op

)−1
}

where ‖M−1
s−

T ‖op is the operator norm of M−1
s−

T
. Thus, for every ‖ Y ‖= 1, t ≥ t0,

F × Y THtY ≥ η

∫ t

t0

∫∫

Hs

(

Vs−,
M

−1

s−

T
Y

‖M
−1

s−

T
Y ‖

) δ(θ)N0(dθdαds)

In order to use the Appendix (4.1), we have to compute E
(

e−ζF×Y T HtY
)

for ζ > 0, t ≥ t0. To this end,
we set

nζ(s) =
q

∫ θ0

0

(

1 − e−ζδ(θ)
)

β0(θ)dθ
∫∫

Hs

(

Vs−,
M

−1

s−

T
Y

‖M
−1

s−

T
Y ‖

)

(

1 − e−ζδ(θ)
)

β0(θ)dθdα

Choosing δ even, and using Lemma 3.23, we see that nζ(s) ∈]0, 1[ a.s. for every s ≥ t0, ζ > 0. Furthermore
for every ζ > 0, the following function on Ω× [t0, T ]× [−π, π]× [0, 1] is predictable and takes its values in
[0, 1] :

gζ(s, θ, α) = − 1

ζδ(θ)
ln
[

1 − nζ(s)
(

1 − e−ζδ(θ)
)]

1I
Hs

(

Vs−,
M

−1

s−

T
Y

‖M
−1

s−

T
Y ‖

)(θ, α)

Hence, for every ‖ Y ‖= 1, t ≥ t0, ζ > 0,

F × Y THtY ≥ η

∫ t

t0

∫ 1

0

∫ π

−π
gζ(s, θ, α)δ(θ)N0(dθdαds) = ηZt(ζ)

Using Itô’s formula,

e−ζZt(ζ) = 1 − ζ

∫ t

0
e−ζZs−(ζ)dZs(ζ) +

∑

s≤t

[

e−ζZs(ζ) − e−ζZs−(ζ) + ζe−ζZs−(ζ)∆Zs(ζ)
]

= 1 −
∫ t

t0

∫ 1

0

∫ π

−π
e−ζZs−(ζ)

(

1 − e−ζgζ(s,θ,α)δ(θ)
)

N0(dθdαds)

Taking the expectations, and using the expression of gζ , we obtain for every t ≥ t0, ζ > 0,

E(e−ζZt(ζ)) = 1 − E

(∫ t

t0

∫ 1

0

∫ π

−π
e−ζZs−(ζ)

(

1 − e−ζgζ(s,θ,α)δ(θ)
)

β0(θ)dθdαds

)

= 1 − q

∫ θ0

0

(

1 − e−ζδ(θ)
)

β0(θ)dθ ×
∫ t

t0
E(e−ζZs(ζ))ds

Thanks to the Appendix (4.2),

E(e−ζZt(ζ)) = exp

(

−q(t− t0)

∫ θ0

0

(

1 − e−ζδ(θ)
)

β0(θ)dθ

)
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and for every ζ > 0, t ≥ t0, ‖ Y ‖= 1,

E
(

exp
(

−ζF × Y THtY
))

≤ E
(

e−ηζZt(ηζ)
)

≤ exp

(

−q(t− t0)

∫ θ0

0

(

1 − e−ηζδ(θ)
)

β0(θ)dθ

)

Recall that β0(θ) =
k0

|θ|r 1I|θ|≤θ0
. We choose δ(θ) ≥ 1

ηe
−|θ|−2r′

for small θ (with δ even and satisfying (3.13)).

Thanks to the Appendix (4.3), there exists C > 0 and ζ0 ≥ 0 such that for every ζ ≥ ζ0,
∫ θ0

0
(1 − e−ηζδ(θ))β0(θ)dθ ≥ C(ln ζ)3

Thus for every ζ ≥ ζ0, t ≥ t0, and ‖ Y ‖= 1,

E
(

exp
(

−ζFY THtY
))

≤ exp
(

−Cq(t− t0)(ln ζ)
3
)

Hence, for every p ≥ 0, for all t > t0,

E

(∫

X∈IR2

‖ X ‖p exp
(

−XTFHtX
)

dX

)

=

∫ ∞

ρ=0

∫

‖Y ‖=1
ρpE

(

e−ρ2FY T HtY
)

dY dρ

≤ K

∫

√
ζ0

ρ=0
ρpdρ+K

∫ ∞

ρ=
√

ζ0
ρp exp

(

−Cq(t− t0)(ln ρ
2)3
)

dρ <∞

Thanks to the Appendix (4.1), this yields that for every t > t0, (detFHt)
−1 = (F 2 detHt)

−1 is in every
Lp. But it is possible to choose k such that F has moments of all orders : F ≤ F1 × F2, where

F1 = sup
[0,T ]

(

1 +
1

4
‖ Vs ‖2 +

ξ

4

)

and F2 = sup
[0,T ]

(

k(Ms) ‖M−1
s

T ‖2
op

)−1

We have already seen that F1 has moments of all orders. In order to study F2, let us first recall some
norm inequalities for a symmetric positive matrix O :

|detO|2 ≤‖ O ‖4≤ 1+ ‖ O ‖8 |detO|× ‖ O−1 ‖op=‖ O ‖op≥‖ O−1 ‖−1

We can choose k such that for every y,

k(y) ≥ |det y|2
1+ ‖ y ‖8

(We still assume that k(y) = 1 if det y ≥ d0). Hence,

F2 ≤ sup
[0,T ]

(

1+ ‖Ms ‖8
)

× sup
[0,T ]

‖M−1
s ‖2

Since Ms and M−1
s are solutions of stochastic differential equations (with initial datum I), it is classical

to show that they have moments of all orders, and we can say that F has moments of all orders. Thus :

E
(

|detHt|−p) = E
(

|F |2p × |detFHt|−p
)

≤ E
(

|F |4p
) 1

2 E
(

|detFHt|−2p
) 1

2 <∞

We have proved that for t > t0, detHt admits some inverse moments of all orders, and the theorem follows.

Proof of Theorem 3.2 : using Theorem 3.24, Proposition 3.20, Theorem 3.17, Proposition 3.13, Theorem
3.6, the theorem is immediate when E(V0) = 0.
We suppose now that V0 is not centered. We denote by (V,W ) (resp. (V ′,W ′)) a solution of the S.D.E.
SB) with initial data V0 (resp. V ′

0 = V0 − E(V0)). Since V0 satisfies (H) and (S), so does V ′
0 . We thus

know that for every t > 0, the law of V ′
t admits a C∞ density f ′(t, .) on IR2, and that Vt admits a density

f(t, .) on IR2. On the other hand, one can check that (V − E(V0),W − E(V0)) is a solution of (SB) with
initial data V ′

0 . Hence, by Theorem 2.9, L(Vt−E(V0)) = L(V ′
t ). This yields that f(t, v) = f ′(t, v−E(V0)),

and the theorem follows.
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3.6 Joint regularity.

We are now interested in the joint regularity of the weak solution f of (B) built in Theorem 3.1. By
Theorems 3.1 and 3.2, and since (H) and (S) hold, we know that for every t > 0, the law of Vt admits a
C∞ density f(t, .) with respect to the Lebesgue measure on IR2.

In the case of a classical diffusion process Xt, Bichteler, Gravereaux and Jacod give in [1] a method to
study the joint smoothness of f(t, x), where f(t, x) is the density of the law of Xt. Their method is based
on the Malliavin Calculus, and on the smoothness of the maps t −→ E(ψ(Xt)) for any ψ sufficiently
regular. In our case, these maps are only differentiable, because our S.D.E. is not time-homogeneous, and
we thus cannot apply their method.

The method we use here is based on the weak continuity of t→ L(Vt) and on Theorem 3.2. As in the proof
of Theorem 3.2, we assume that E(V0) = 0, the generalization beeing immediate by the uniqueness in
law for the S.D.E. (SB) (see Theorem 2.9). We also fix t0 > 0, and we prove Theorem 3.3 on [t0, T ]× IR2,
which of course suffices. We begin with a lemma.

Lemma 3.25 Assume (H), (S), and E(V0) = 0. For every multi-index α, there exists a constant Cα,t0

such that for every g ∈ C∞
b (IR2), for every t ∈ [t0, T ],

E (∂αg(Vt)) ≤ Cα,t0 ‖ g ‖∞ (3.19)

Proof : we just have to study the proof of Theorem 3.6 (which can be found in [1]). Let φ be a random vari-
able with values in IR2 satisfying the assumptions of Theorem 3.6, with the same notations. Then Bichteler
et al. prove that for every multi-index α, there exists a constant Kα such that for every g ∈ C∞

b (IR2),
E (∂αg(φ)) ≤ Kα ‖ g ‖∞. Following closely their proof, one can check that the constants Kα depends only
on the moments of the elements of Cn (n ∈ IN), and on the inverse moments of detσ.
Let us come back to our problem : here we have a family φt = Vt of random variables satisfying the
conditions of Theorem 3.6, with σt = DVt. The sets Ct

n are composed with the derivatives of all orders
of V and G. Then one can check that for any n, for every Xt ∈ Ct

n, for all p ≥ 1, sup[0,T ]E (|Xt|p) <
∞. Furthermore, following closely the proof of Theorems 3.24 and 3.20, one can see that for every p,
sup[t0,T ]E (|detDVt|−p) <∞, and the lemma follows.

We now prove that our weak solution f is equicontinuous :

Proposition 3.26 For every v in IR2,

sup
s∈[t0,T ]

|f(s, v + k) − f(s, v)| −→‖k‖→0 0 (3.20)

Proof : following Nualart [8] Lemma 2.1.5 p 88-89, and using Lemma 3.25, one can show that if L(Vt) = Pt,

and if P̂t is the Fourier transform of Pt, then for every t ∈ [t0, T ],
∣

∣

∣P̂t(v)
∣

∣

∣ ≤
C(2,2),t0

v2
xv

2
y

∧ 1 (it suffices to

apply Lemma 3.25 with α = (2, 2) and with g(y) = ei〈v,y〉). Furthermore, f is the following inverse Fourier
transform :

f(t, v) =

(

1

2π

)2 ∫

IR2

e−i〈y,v〉P̂t(y)dy (3.21)

Using Lebesgue’s theorem and the uniform upperbound of P̂t, the proposition is immediate.

The proof of Theorem 3.3 is a simple application of Proposition 3.26 and of the weak continuity of the
map t −→ f(t, v)dv.
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4 Appendix.

We begin this annex with a lemma that can be found in [1], p 92 :

Lemma 4.1 For every p > 0, there exists a constant Cp such that for every 2 × 2 symmetric positive
matrix A,

(det A)−p ≤ Cp

∫

X∈IR2

‖ X ‖4p−2 e−XT AXdX

The following lemma is well-known, and can be shown as Gronwall’s Lemma.

Lemma 4.2 Let 0 ≤ ǫ < T < ∞. Let g be a bounded function on [ǫ, T ], and let a be a real number.
Assume that for every t ∈ [ǫ, T ],

g(t) = 1 − a

∫ t

ǫ
g(s)ds

Then g(t) = e−a(t−ǫ) on [ǫ, T ].

The next lemma is a simple computation :

Lemma 4.3 Let r ∈]1, 3[, let r′′ = 1
4(r− 1), and let ǫ > 0. We set δ(θ) = e−θ−r′′

. There exists a constant
C > 0, a real number ζ0 ≥ 0, such that for every ζ ≥ ζ0,

∫ ǫ

0

(

1 − e−ζδ(θ)
) dθ

θr
≥ C(ln ζ)3

Proof : we first notice that for every x ∈ [0, 1], one has 1 − e−x ≥ x

2
. Furthermore, for every θ < 1,

δ−1(θ) =
(

ln θ−1
)− 1

r′′ . Hence, if ζ0 is large enough (we need ζ−1
0 < 1 and δ−1(ζ−1

0 ) < ǫ), then for all ζ ≥ ζ0,

I(ζ) =

∫ ǫ

0

(

1 − e−ζδ(θ)
) dθ

θr
≥ ζ

2

∫ δ−1(ζ−1)

0

δ(θ)

θr
dθ ≥ ζ

2r′′

∫ δ−1(ζ−1)

0

r′′

θr′′+1
δ(θ) × θr′′+1−rdθ

Since r − r′′ − 1 = 3
4(r − 1) > 0, and since δ′(θ) =

r′′

θr′′+1
δ(θ), we obtain :

I(ζ) ≥ ζ

2r′′
×
(

δ−1(ζ−1)
)− 3

4
(r−1)

× [δ(θ)]
δ−1(ζ−1)
0 =

1

2r′′
(ln ζ)3

which was our aim.

The following lemma is adapted from a lemma in the Appendix of [2]. We state it for N and β, but it can
be obviously adapted to N0 and β0 or N1 and β1.

Lemma 4.4 Let Y (s, α, θ) be a predictable process such that |Y (s, α, θ)| ≤ |X(s, α)|z(θ). Then

• if z is in ∩p≥2L
p(β(θ)dθ), for every p = 2q,

E

(

sup
[0,t]

∣

∣

∣

∣

∫ s

0

∫ 1

0

∫ π

−π
Y (u, α, θ)Ñ (dθdαdu)

∣

∣

∣

∣

p
)

≤ Cp(z)

∫ t

0

∫ 1

0
E (|X(s, α)|p) dαds

• if z is in L1(β(θ)dθ), then for every p <∞,

E

(

sup
[0,t]

∣

∣

∣

∣

∫ s

0

∫ 1

0

∫ π

−π
Y (u, α, θ)dθdαdu

∣

∣

∣

∣

p
)

≤ Cp(z)

∫ t

0

∫ 1

0
E (|X(s, α)|p) dαds

• if z is in ∩p≥1L
p(β(θ)dθ), for every p = 2q,

E

(

sup
[0,t]

∣

∣

∣

∣

∫ s

0

∫ 1

0

∫ π

−π
Y (u, α, θ)N(dθdαdu)

∣

∣

∣

∣

p
)

≤ Cp(z)

∫ t

0

∫ 1

0
E (|X(s, α)|p) dαds
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a Kac equation without cutoff, Prépublication no 434 du Laboratoire de Probabilités de l’Université
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