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Abstract

We study the weak solution X of a parabolic stochastic partial differential equation
driven by two independent processes : a gaussian white noise, and a finite Poisson mea-
sure. We characterize the support of the law of X as the closure in ID ([0, T'], C([0, 1])),
endowed with its Skorokhod topology, of a set of weak solutions of ordinary partial
differential equations.
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1 Introduction.

Consider on [0,7] x [0,1] a space-time white noise W (dz, dt) based on dzdt (see Walsh,
[13], p 269). Denote by (E,d) a Polish space, endowed with a positive finite measure ¢, and
by N (dt,dz) a Poisson measure on [0,7] x E, with intensity measure dtq(dz), independent
of W. Our purpose is to study the following stochastic partial differential equation on
[0,T] x [0,1]
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(t1)=0 , V>0 (1.2)




and deterministic initial condition Xy(z) € C([0,1]). The symbol Ny(dz) (resp. W;z)
stands for the heuristical Radon-Nikodym density of N(dt,dz) (resp. W (dz,dt)) with re-

spect to the Lebesgue measure d¢ (resp. dtdx). We could also write, with abusive notations,
Ni(dz)dtdz = dzN(dt,dz) and W, dtde = W (dz, dt).

We denote by ID ([0,T],C([0,1])) the set of cadlag functions from [0,T] into C(]0,1]),
endowed with the corresponding Skorokhod topology. In this paper, we characterize the
support of the law of a weak solution X of equation (1.1) as the closure of a set of weak
solutions of ordinary partial differential equations in ID ([0, T], C([0, 1])).

Parabolic S.P.D.E.s driven by a white noise, i.e. equation (1.1) with ¢ = 0, have been
introduced by Walsh, [12] and [13]. In [13], he defines his weak solutions, then he proves a
theorem of existence, uniqueness and regularity. Since, various properties of Walsh’s equa-
tion have been investigated : Malliavin calculus, large deviations, support theorem (see
Bally, Millet, Sanz-Solé, [2]) ...

But Walsh builds his equation in order to model a discontinuous neurophysiological phe-
nomenon. In [12], he explains that the white noise W approximates a Poisson point process.
This approximation is realistic because there are many jumps, and the jumps are very small,
but in any case, the observed phenomenon is discontinuous. However, S.P.D.E.s with jumps
are much less known. In the case of temporal and spatial jumps, Saint Loubert Bié have
studied in [9] the existence, uniqueness, regularity, and variational calculus. See also [5] for
other results on the same subject. Nevertheless, no result about the “joint” regularity of
the weak solutions has been proved in this case : we do not really know in which space the
weak solution “lives”, thus no support theorem may hold for the moment.

In the case of equation (1.1) with ¢ = 0, but with ¢(F) = oo, and with a compensated
Poisson measure, Albeverio et al. have checked in [1] the existence and uniqueness of a
“modified cadlag” weak solution u(t,x) : a.s., u is continuous in z ; and w is right continu-
ous and has left limits in L2(£2) in the variable . One more time, we do not know in which
space lies a.s. the weak solution.

Since Stroock and Varadhan established in [11] their famous support theorem for diffusion
processes, their has been many investigations on the subject. In particular, Millet and Sanz
have considerably simplified in [8] the proof of Stroock and Varadhan. But the only sup-
port theorem for jump processes seems to be that of Simon in [10], who studies a stochastic
differential equation driven by a (compensated or not) infinite Poisson measure. At last,
let us mention that as far as we know, no support theorem seems to be known in the case
of equations driven by two independent (but different) random elements.

This work is organized as follows. In the second section, we define the weak solutions of
(1.1), by following the Walsh ideas, [13]. Using Ikeda and Watanabe’s method, see [6], and
applying Walsh’s results, we sketch the proof of an existence and uniqueness result. We
define the “skeleton” associated with equation (1.1), by using the Cameron-Martin space
associated with W and the set of finite counting measures associated with N. Finally, we
state our support theorem.

The third section is devoted to a simplification of the problem. First, we use a localization



argument, in order to obtain weaker assumptions. Then we prove that it suffices to check
two simpler support theorems. The first one is proved in the fourth section, and is related
to an equation similar to (1.1), but without white noise : W, , is repaced by h(t,z), where
h is an element of the Cameron-Martin space associated with W. The second one is proved
in the fifth section, and deals with an equation without Poisson measure, but with an
additional ”jump drift”. This concludes the proof of our main result.

The sixth section is devoted to an extension of our result to the case where the Poisson
measure is a.s. infinite (¢(F) = oo), but where the diffusion coefficient is constant (o(z) =
o).

Finally, one can find technical results in the Appendix lying at the end of the paper.

2 Framework.
Let us first define the weak solutions of (1.1). To this aim, we need some assumptions :

Assumption (H) : the functions o and b : IR — IR, satisfy a global Lipschitz
condition. The function g : IR X E — IR is measurable on IR X E, and for each
z € E, the map ¢(., z) is continuous on IR.

We define the weak solutions of (1.1) by following the Walsh ideas, [13], p 311-322. Consider
the Green kernel G(z,y) associated with the deterministic system :
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This kernel can be explicitely computed :

—(y —x —2nL)? — x —2nL)?
Gi(z,y) \/_nEZ lexp( p” 2nl) )-I—exp( v+ y 2nL) )] (2.2)

If ¢ belongs to C([0, 1]), we set

o(z) if t=0
Gi(¢,z) = (2.3)
/ Gi(z,y)p(y)dy if t>0

The Appendix of this work contains technical results about this kernel. We endow our
probability space (€2, F, P) with the canonical filtration associated with the independent
random elements W and N :

Fo=o{W(A); AeB(0,1] x [0,]))} Vo {N(B); BeB(0,1 x E)} (2.4)

A process X (¢, ) on [0,T] x [0, 1] is said to be adapted if for all £ > 0, all z € [0, 1], X (¢, z)
is Fi-measurable.

As Walsh, see also Saint Loubert Bié, [9], or Fournier, [5], we define the weak solutions of
(1.1) in the following sense.



Definition 2.1 Let Xp : [0,1] — IR be a continuous deterministic function. Consider an
adapted process X (t,z) on [0,T] x [0, 1], lying a.s. in ID ([0,T], C([0,1])). Then X is said
to be a weak solution of (1.1) if and only if it satisfies the following evolution equation

t rl
X(t,z) = Gt(?(o,:v)+/0/0Gt—s(:v,y)[b(X(S,y))dde+0(X(8,y))W(dy,dS)]

t 1
+/0 /E /0 ths(fﬁay)g(X(S—ay),Z)dy N(ds,dz) (2‘5)

where Gi(Xy, x) is defined by (2.3), and with the convention

[ Golw (X (s=9), )y = g(X(5-,),2) (2.6

We now establish a result of existence and uniqueness of such a solution. Since ¢(FE) is
finite, N([0,T] x E) is a.s. finite, and thus N can a.s. be written as

I
N(dt,dz) = 01, 7, (dt, dz) (2.7)
i=1
with p € IN, 0 < Ty < ... < T, < T, and Zi,...,Z, € E. Hence, equation (2.5) can be
written as

t 1
X(tz) = Gy(Xo,z)+ /0 /0 Gy s, y) [B(X (5,9))dyds + o (X (5,)) W (dy, ds)]

© 1
+3 T /0 Gir (. 9)g(X (Ti—y), Z;)dy (2.8)
=1

Working recursively on the time intervals [0, T1[, [T1, T3[,..., [T, T}, as Ikeda and Watanabe
(proof of Theorem 9-1 p 231-232 in [6]), using Walsh’s Theorems of existence, uniqueness,
and regularity for equation (1.1) with g = 0 (see [13], Theorem 3-2 p 313 and Corollary 3-4
p 317), and using the well-known estimates of the Green kernel stated in the Appendix,
one can prove the following proposition :

Proposition 2.2 Assume (H). Equation (1.1) admits a unique adapted solution X (t,x)
on [0,T] % [0,1], lying a.s. in ID ([0,T],C([0,1])). The uniqueness holds in the sense where
if Y is another adapted solution lying in ID ([0,T], C([0,1])), then a.s.,

sup | X(t,z) =Y (t,z)|=0 (2.9)
[0,77x[0,1]

We are now interested in the support of the law of X. Let us first recall the definition of the
Skorokhod distance on ID ([0,T], C([0,1])). We consider the set of the ”changes of time” :

A={\e C([0,T]) / A(0) =0, \(T) =T, Xis strictly increasing } (2.10)
For \ € A, we set
Alt) — A(s
Al = sup 111{7(3j ( )H (2.11)
0<s<t<T - S




The Skorokhod distance between two elements ¢ and 1 of ID ([0, T], C([0,1])) is given by

(¢, ¢) = inf {[ sup  |p(A(t), 2) — p(t, )| + |||>\|||} (2.12)

AEA | [0,T]x[0,1]

ID ([0, T],C([0,1])), endowed with 4, is a Polish space (see e.g. Jacod, Shiryaev, [7], p 289).
We now introduce some notations, describing the “supports” of W and N : we denote by

H = {h(t,x) - /Ot /Oxh(s,y)dyds/ i e L2([0,T] x [0, 1])} (2.13)

the Cameron-Martin space associated with W. We also consider the set of the finite count-
ing measures on [0,7] x E, the support of which is contained in [0, T] X supp ¢ :

M = ¢m(dt,dz) = 8, .,)(dt, dz)

=1

n neEIN,0<t <..<t,<T,
/ (2.14)

Z1y ..y Zp € SUPD q

with the convention Y0_, = 0. Notice that for all w € 2, N(w) belongs to M. But in
general, (with abusive notation) W (w) ¢ H, since W (w) is not even well-defined.

The following proposition, describes the “skeleton” associated with our evolution equation.

Proposition 2.3 Assume (H). Let h € H and m € M be fized. The following ordi-
nary evolution equation admits a unique solution, which we denote by S(h,m), lying in

D ([O,T],C([O, 1])) :
Sthm)(t) = Gl@o)+ [ [ Gyl [ m) 5, dds

+o(S(h,m)(s, y))h(s, y)dyds]

+// / Gi-s(z,y)g(S(h,m)(s—,y), z)dy m(ds,dz)  (2.15)

This proposition can be proved as Proposition 2.2. Equation (2.15) is the same as (2.5),
but we have replaced W (dy, ds) and N(ds, dz) by h(s,y)dyds and m(ds,dz).

Finally, we recall the following standard remark :

Remark 2.4 Let Z be a random wvariable with values in a Polish space A endowed with a
distance a. Recall that the support supp, Po Z ' of the law of Z related to the distance o
is the smaller closed subset F' of (A, «) satisfying P(Z € F) = 1.

Let B be a subset of A, and let B® be its closure in (A, ).

1. If a.s., Z € B*, then
supp, Po Z~' ¢ B® (2.16)



2. If for allb € B, all e > 0,
P(a(b,Z) <€) >0 (2.17)

then
B® C supp, PoZ ! (2.18)

In order to establish a support Theorem, we need the following assumptions.

Assumption (S1) : the function o is C3 on IR.

Assumption (S2) : for each zy € E, each n € IN,

sup |g(x,z) - g(q;a Z0)| —>d(z,zo)%0 0 (219)
lz|<n
For each zy € E, each n € IN, there exists a constant £"(z) > 0, and a function
Y7 (u) - IR" — IR", decreasing to 0 when u decreases to 0, such that for all
|z] < n, [yl <m,

sup  |g(w,2) —g(y,2)| <Py (|2 —yl) (2.20)
d(z,20)<€"(20)

Assumption (S1) is nearly the same as that of Bally, Millet, Sanz, [2], who prove a support
theorem in the case where g = 0, and comes from a Taylor developpement of order 3. In
fact they assume that o is Cg’, but a localisation procedure can be done (see the proof of
Proposition 3.1 in the next section).

Assumption (S2) says that g is locally uniformly continuous. In the particular case where
E is locally compact, (S2) is satisfied as soon as g is continuous on [0,7] x E.

Now we can state our main result :

Theorem 2.5 Under (H), (S1), and (S2), if X denotes the unique weak solution of equa-
tion (1.1),

supps Po X' = {S(h,m) /hEH, me./'\/l}ur (2.21)

3 Simplification of the problem.

First, we "delocalize” (S1) and (S2), by using a standard argument. Consider the following
assumptions, stronger than (S1) and (52).

Assumption (S'1) : the function o is C? on IR, bounded with its derivatives.

Assumption (S’2) : For all 2y € E,

sup |g(z,20)| < oo 5 suplg(z,z) — 9(2,20)] —d(z,:0)20 0  (3.1)
z€IR z€R

For all zy € E, there exists £(z) > 0, and a function 1,,(u) : IRT — IR,

decreasing to 0 when u decreases to 0, such that for all z,y € IR,

sup  |g(x, 2) = g(y, 2)| < (|2 = yl) (3:2)
d(2,20)<&(20)



Proposition 3.1 If Theorem 2.5 holds under (H), (S'1) and (S'2), then it also holds under
(H), (S1) and (S2).

We will prove this proposition at the end of the section.
We now would like to check that Theorem 2.5 holds as soon as two easier support theorems

are valid. The first one deals with equation 2.5 with a ”deterministic” white noise, and the
second one with a ”deterministic” Poisson measure.

We first introduce some notations. If h € H (resp. m € M), we denote by X} (resp.

X,») the solution of equation (2.5) where we have replaced W (dy, ds) by h(s,y)dyds (resp.
N (dt,dz) by m(dt,dz)). In other words,

t prl .
Xltis) = GilFso) + [ [ Gealoy) b0 ) dyds + (X (.5, y)dyds]

+ /Ot /E /01 Gi_s(z,y)g(Xn(s—,y), z)dy N(ds,dz) (3.3)

Xnt2) = Galo,2)+ [ [ Gumafo,) DX 5, )y + 0 (X (5,))W (dys )

—I—/Ot/E /01 Gi—s(z,y)9(Xm (s—,y), 2)dy m(ds,dz) (3.4)

We could also write, with abusive notations, X, = S(h, N), and X,,, = S(W, m). The next
sections are devoted to the proof of the following propositions.

Proposition 3.2 Assume (H) and (S'2). Let h € H, m € M, and € > 0 be fized. Then
P(6(S(h,m),Xp) <€) >0 (3.5)

We now denote by || u [|[.o=sup |u(t,z)| the supremum norm on [0,7] x [0, 1].
[0,T]x[0,1]

Proposition 3.3 Assume (H), (S'1) and (S'2). Let m € M be fized. Then

supp| | Po Xt = [S(hm) JheH} ™ (3.6)

Let us remark that this second result implies the weaker one :

supps Po X,,' = {S(h,m) /heH} (3.7)
Assuming for a moment that these propositions hold, we prove our main result.

Proof of Theorem 2.5 : using Remark 2.4, we break the proof in two parts.




1) We first check that a.s., X belongs to {S(h,m) /h € H, m € M}Ur. Consider the map
from M to [0, 1], defined by

d(u) = P (X, € (S(hom) [heH, me M} ) (3.8)

Let us first prove that a.s.,

P(X eTSthm) [heH, me M} | o(V)) = 6() (3.9)

where

o(N) = o {N(A); A€ B(0,T] x E)} (3.10)

In order to understand (3.9), let us work with the canonical product space

(@, 7, P)= (@7, F",P") g (Y, F¥, PY) (3.11)
associated with W and N. Every element w of Q can be written as (w",w"), where
wW € C([0,T] x [0,1]) and w" € M. Thus,

P(x e{8(hm) [heH, me M} | o(N)) (@)
:/]1 51 AP (W) (3.12)
{X(wW,wN)G{S(h,m) / heH, meM} }

But obviously, X (w) = X (w",w?) = X~ (w"), where X, was defined by (3.4) for each
€ M. Thus,

P (X € {Sthym) [he#H, me M}

7(N)) (@)

=PV (X,x € (S,m) [he H, me MJ' ) (3.13)

Now, we notice, since for each € M, X, is independent of N, that

() = PV (X, € (SUm) [he H, me M]' ) (3.14)

Comparing (3.13) and (3.14), we deduce (3.9). Hence, we obtain

P (X € {(8(h.m) [heH, me M}') = E($(N)) (3.15)

Finally, it is clear from the definition of ¢ and from Proposition 3.3 that ¢ = 1. The
conclusion follows easily.

2) We now fix h € H, m € M, and € > 0. We have to check that
Py=P(6(X,S(h,m)) <e) >0 (3.16)

First,
Py > P (5(X, Xp) < /25 6(Xp, S(hym)) < ¢/2) (3.17)



Noticing that X}, is o(N)-measurable, we see that

Py>E [11{5(Xh,5(h,m)) < /oy P (3(X, Xp) < ¢/2 a(N))] (3.18)

But we know from Proposition 3.3 that for all m € M,
$(m) = P (6(Xm, S(hym)) < ¢/2) > 0 (3.19)
Working on the canonical product space as in 1), and noticing that for all w = (w",w") €
Q, X(w) = X ~(w") and Xp,(w) = S(h,w") (all of this without abusive notation), we

deduce that a.s.,
P(8(X, X4) < /2| a(N)) = $(N) > 0 (3.20)

Thus, (3.16) holds as soon as
P (6(Xp,S(h,m)) <€/2) >0 (3.21)
which never fails, thanks to Proposition 3.2.

Provided we check Propositions 3.1, 3.2 and 3.3, Theorem 2.5 is be proved.

In order to prove Proposition 3.1, we begin with a Lemma.

Lemma 3.4 Consider some functions o, b, g (resp. &, b and g) satisfying (H), and denote
by X (resp. X ) the corresponding unique weak solution of (1.1). Assume that for some
AcIR",

Vig| <A, Vz€eE, o(x)=a(x) , blz)=0bz) and g(z,2)=g(z,z) (3.22)
Then there exists Q C Q such that P(Q) =1 and

e/ XW) o<} C{we /| Xw) - Xw) =0} (323

Proof of Lemma 3.4 : we consider the stopping time 7 = inf {t > 0, sup, [X(¢,z)| > A}.
Then the processes X7 (t,2) = X(t A 7,z) and X7 (t,2) = X (¢ A 7,z) satisfy the same
evolution equation :

X7 (t,z) = Gy(Xo, )+ /OMT /01 Gi—s(z,y) [b(X7(s,y))dyds + 5(X 7 (s,y))W (dy,ds)]

-I-/OtAT /E /01 Gi—s(z,y)g(X" (s—,y),2)dy N(ds,dz) (3.24)

A uniqueness argument yields that a.s., say for all w € Q, with P(Q) = 1, X7 ::727 on
[0,T] x [0,1]. This yields that for all w € Q, all ¢t < 7, and all z € [0,1], X (¢,2) = X (¢, ).
This implies that

{wefz /1 X (@) J|oo< A} c{we(z /T(w)>T} C{wefl /1 X () — X (w) ||oo:0}
(3.25)



Proof of Proposition 3.1 : we assume that theorem 2.5 holds under (H), (S'1) and (5'2),
and we consider functions b, o and g satisfying only (H), (S1) and (52). We need a sequence
of Cy° functions ¢, : IR — [0, 1], satisfying :

1 if |z|<n
¢n(T) = (3.26)
0 if |z[>n+1

Then the functions oy, (x) = o(z)pn(x) and g, (x, 2) = g(x, z)Pn(x) clearly satisfy (S'1) and
(5"2). Denote by X, the solution of equation (2.5) with o, and g, instead of o and g.
Lemma 3.4 yields that there exists Q@ C Q such that P(Q2) =1 and for all n € IN,

{we@ /I XW) lesn}cl{wed /| X - X =0}  (327)

In the same way, we define S,,(h,m), for h € H and m € M, as the solution of equation
(2.15) with o, and g, instead of o and g. We obtain, for all n € IN,

if || S(h,m) [|co<m or | Sp(h,m)||cc<n, then S(h,m) =S, (h,m) (3.28)

Since Theorem 2.5 holds under (H), (S'1), and (S'2), we know that for each n € IN,

supps Po X' = [Sp(hom) JheH, me M} (3.29)

Using Remark 2.4, Proposition 3.1 will hold if we check that on one hand,

P(X e{Sthm) [heH, me M} ) =1 (3.30)
and on the other hand that for all h € H, all m € M, all € > 0,
P(§(X,S(h,m)) <€) >0 (3.31)

Let us first prove (3.30). Let w € Q be fixed. Since X (w) belongs to ID ([0, T], C([0, 1])), it
is bounded, and there exists n € IN (depending on w) such that

n > X() oo +1 (3.32)

which yields X (w) = X, (w). But for all € > 0, we know from (3.29) that for almost all
w € Q, there exists h € H and m € M (depending on w) such that

5(Xn (), S (hym)) < e (3.33)

This and (3.32) yield (if € < 1), that || Sp(h, m) ||cc< n, and thus that S, (h,m) = S(h,m).
Hence,
5(X (@), S(h,m)) < e (3.34)

which concludes the proof of (3.30), since P(Q2) = 1.

In order to prove (3.31), we fix h € H, m € M, and € > 0. We consider n € IN such that

n 2| S(h,m) [ +1 (3.35)

10



This way, if € < 1,

P(3(X,S(h,m)) <€) = P(3(X,Su(h,m)) <e)
= Pl X llo< n,6(X, Sa(hym)) < ¢)

= P(6(Xn,Sn(h,m)) <) (3.36)

thanks to (3.27). From (3.29), this probability is strictly positive, which yields (3.31).
Proposition 3.1 is proved.

4 The case where ”W is deterministic”.

This section is devoted to the proof of Proposition 3.2. We follow here partially the method
of Simon [10], who studies the support of Poisson driven S.D.E.s (without Wiener term).
The extension of his method to S.P.D.E.s drives to technical problems, essentially because
we have to control the explosion of the Green kernel Gy(z,y). Another new difficulty ap-
pears, because we have to add a second drift, in which the term h(s,y) belongs only to
L2([0,T] x [0,1]).

In the whole section,

t rx . n
h(t,z) = /0 /0 h(s,y)dyds € H and m(dt,dz) = Zd(ti,zi)(dt,dz) eM (4.1)
i=1

are fixed. We set tg =0, t,41 =T, and

Co= _inf [tiy1 —ti] >0 (4.2)
1=0,...,n

=U,...,

For simplicity, we set S = S(h,m). We denote by 0 < T1(w) < ... < Ty, (w) the successive
times of jump of N(w), and by Z1(w), ..., Z,,(w) the size of its jumps. In other words,

ww)
N(w, dt, dz) = Z 6(Ti(w),Zi(w))(dta dz) (4.3)
i=1
We recall that for all « €]0,(p[, and all £ > 0, the set
Q&) ={w € Q [ p(w) =n, t; —a < Ti(w) < t;, d(z;, Zi(w)) <&} (4.4)

has a strictly positive probability. We will check that for all € > 0, there exists o > 0, and
¢ > 0 such that for all w € Q(«, &),

6(Xn(w),5) <e (4.5)

which will imply Proposition 3.2.

11



In the whole section, the constant C' depends only on h, m, and on the parameters (o, b, g,
Xp, and T') of equation (1.1).

From now on, we consider w € Q(a, §).

First, we choose 0 < a < (p/16, and 0 < £ < &(z1) A ... A&(zn), where £(z;) was defined
in assumption (S’2). For some v €]2a, (y/8[, which will be chosen later, we define the
polygonal change of time A € A by A(0) =0, A(T) =T, and for all i € {1, ...,n},

MG = =Ti—y ;5 XT;)=t ; MTi+vy)=ti+~y MT; +2v) =T;+ 2y (4.6)

Notice that all the properties below hold :

for all ¢t € [T;,T; + 7], At) —t;=t—T; (4.7)
T
/0 ]I{)\(s)#s}ds < 3n*y (4.8)
for all t€[0,T], A() >t and Tovy>6y = Ty (4.9)
[A=TI o< a (4.10)

Furthermore, it is easy to check that
Al < (1 = a/)] V[In(1 +a/y)| < 2a/y (4.11)

where the last inequality holds because /7y < 1/2. We have to prove that if & > 0 and
& > 0 are small enough then for some -y well chosen,

I SA(®), 2) = Xn(t,2) lloo +I[IAI] <€ (4.12)
We now set Sy(t,z) = S(A(t),z). Then, using (4.9), we see that for any w € Q(«, &),

Sx(t, ) — Xn(t, x) = Gy (X, z) — Gi(Xo, T)

+/0t/01 (G)\(t)—S(xvy) — ths(a:,y)) [b(S(s,y)) + g(g(s,y))h(s,y)] dyds
At 1 .

* /t t /0 Gty (@) [B(S(5,9) + o(S(s,9))h(s,)| dyds

+/0t /01 Gt s(z,y) {{b(S(s,y)) —b(Sx(s,9))}

+H{o(S(5,9)) = 7(Sx(5,9)) V(s y) | dyds

+/0t /01 Gt s(z,y) {{b(SA(s,y)) —b(Xn(s,9))}
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+{o(Sx(5,9)) = o (Xn(s,9) s, )| dyds
+> Mpory /01 (G/\(t)fti (z,y) — Ger, (:E,y)) 9(S(ti—,y), zi)dy
=1
3 Wy [ G ) (St ), %) — o(S (i 0), 7] dy
i=1

+ i ]I{tZTi} /01 thTi (fE, y) [g(S(t’i_a y)a Zl) - g(Xh(T!i_a y)a Zz)] dy
i=1

= A(t,z) + ... + H(t, 1) (4.13)

We compute these terms one by one, still assuming that w € Q(a, £).

Since A(t) =t for all t < T — vy, and hence for all ¢ < 13(,/16

1
|A(t, )| < [A(t, )| Ti>13¢0/16) < X0 [loo ]I{t213C0/16}/0 |Gy (z,y) — Gy, y)|dy  (4.14)

Using the Appendix, (7.4), then (4.10), we see that
A(t) —t
A= G A= T o< Ca (4.15)

(13¢o/16)2

Using Cauchy-Schwarz’s inequality, then the Appendix (7.5), and finally (4.10), we obtain

A(t,2)| < C

Bl < ([ [ [P0+ (86,0t ] dyds )

i </Ot /01 [Gm)_s)(gﬁ’ y) = Gis(a, y)] : dyd8>%

< C ( At) — t> < Cat (4.16)
Exactly in the same way, |C(¢,z)| < Cat.

Using (H), we see that

1 .
DRI <O [ [ G186, — S5 (14 b)) dyds (@17

Thanks to Cauchy-Schwarz’s inequality, and the Appendix (7.2),

1
2

|D(t,z)| < C(/Ot sup IS(s,y)—Sx(s,:t/)IQdS/O1 G?_s(ﬂf,y)dy>

y€[0,1]

IN

o1 ds_\* 418
</0 {A(s)gés}ﬁ) (4.18)
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Using the Holder inequality with p = 3 and ¢ = 3/2, we deduce that

t 1/6 t dS 1/3
1 d .
0(/0 {M(s)#s) S) </0 (t_s)3/4>

t 1/6
O ([ 1pends) < COm)o < 0q1f (419)
0

|D(t, )|

IN

IN

thanks to (4.8).

The same computation drives us to

1
t ds 2
E(t,z)| <C / sup [Sx(s,y) — Xn(s,y)? 4.20
|E(t, z)| (Oye[ol?l]l A(s:y) — Xn(s, )] m) (4.20)

Using (4.7), and (3.1) in (S'2), we see that

|F(t,z)] < CZ]I{t>T+7} SU[P ‘GA 1 (T, y) — thTi(l",y)‘ (4.21)
=1 aye

Thus, thanks to the Appendix (7.4),

O0) = 1) = (t=T)] w2
() = 1) A (¢ = T0)]2
) —ti = 7. Hence, thanks to (4.10) and

|F(t,2)] <O Mysry4qy
i=1 [(A

But ¢t > T; + v implies that A(t) — t; > XNT; + 7y
since w € Q(a, §),

_7J At — T
P(t,2) < olA= Lo b oubilti Z Tl 8 (4.23)
75
Using (7.3) of the appendix, we deduce that
n

i=1 Y

Thanks to (3.1) in (S'2), recalling that for all 4, d(z;, Z;) < £, we see that there exists a
function ¢(¢) from IR" into itself, decreasing to 0 when ¢ decreases to 0, depending only
on h, m, and on the parameters of equation (1.1), such that

|G(t,z)| < p(§) (4.25)

In the same way, but using (3.2) and the fact that & < &(z1) A ... A&(2y), we easily prove
the existence of a function B(u) : IRT — IR", decreasing to 0 when u decreases to 0, such
that

|H(t,z)] < > Tysy x P ( sup |S(ti—,y) _Xh(Ti_ay)|>
=

y€[0,1]
< Y sty x B ( sup [S\(Ti—,y) — Xh(Ti_ay)|> (4.26)
i=1 y€[0,1]
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since \(T;) = t;.

Finally, setting

I(t) = sup [S\(t,y) — Xn(t,y)] (4.27)
y€[0,1]
and
K(a,7,€) = all*Jy*2 441 4 (¢ (4.28)
we obtain :
1
t ds \?2 -
I(t) < CK(a,, +C</12 ) +CS Lysr BUI(T— 4.29
(05 K@ +0 ([ PO 7==) + O bemMI@-)  (129)
Hence
I’ (t) < CK?*(a, 7, ) + C/t I?(s) ds_ | Czn:ﬁ G2 (I(T;—)) (4.30)
_ s )y 0 \/m — {t>T;} % .
[terating one time this formula, we get
) < CK*a,7,6) +C) LyoryB(I(Ti-)) (4.31)
i=1
+ c/t CK(a §)+O/SI2(U) W O3 Lo PAUT-)) | -2
. Y 0 Js—u P {s>Ti} g I— s
Using Fubini’s Theorem, and noticing that / t A < 4, we deduce that
g ; g Y
t n
() < CK*a,7.8) + C [ Pludu+ CY Loy PUT-)  (432)
0 =1
We now apply Gronwall’s Lemma on [0, 7}[. This gives :
sup I°(t) < COK*(a,7,£)e’" < CK*(a,7,£) (4.33)
[O’Tl[
Thus, on [0, T/,
¢
P2(t) < CK*(a,7,€) + BH(CK*(0,7,) +C [ P(s)ds (4.34)
0
Thanks to Gronwall’s Lemma,
sup 12(t) < (CK*(a,7,€) + B (K*(,7,6))) T (4.35)

[O’TZ[

Tterating this argument, we deduce the existence of a function n(u) : IRT ~ IR, decreasing
to 0 when u decreases to 0, such that

sup I(t) < n (K(a,7,)) (4.36)
(0,77
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Hence, there exists § > 0 such that if K (a7, &) <, then supy 47 I(t) < €/2. It now suffices
to choose «, v, £ small enough, such that

K(a,7,§) <0 5 2a/y<e/2 (4.37)
which will imply, for all w € Q(«, §),
§(Xp(w), 8) <[ I(w) [loo +[|MW)][| <€ (4.38)

First, we choose & €]0,&(z1) A ... A &(2y)] small enough, in order to get ¢(¢) < 6/3. Then
we choose v in ]0, (¢o/8) A (6/3)°[. Finally, we choose

3 \4
0<a<vy/2A (575/3) Aeyl4 (4.39)

Proposition 3.2 is proved.

5 The case where N is ”deterministic”.

It remains to prove Proposition 3.3. In the whole section,

m(dt,dz) = Z 5(ti,zi)(dtv dZ) eM (51)

=1

is fixed. We set tg =0, tp11 =T.

We have to establish a support theorem for the solution of equation (3.4). Let us observe
that this equation is not much different from that of Walsh [13]. Indeed, it does only
contain one additional term, a ”jump drift”. Nevertheless, it is far from possible to use a
method similar to that of Bally, Millet, Sanz-Solé in [2], who proved a support theorem for
Walsh’s equation, in particular because the solution of (3.4) does not lie in C([0,77] x [0, 1]).

But the times of jump of the solution X, of equation (3.4) are deterministic, and the as-
sociated skeleton S(h,m) (m is fixed) has the same times of jump. Thus we do not need
the Skorokhod topology : we will work with the stronger supremum norm on [0,77] x [0, 1].

The method below consists in applying the result of Bally, Millet, and Sanz-Solé on each
time interval [¢;,t;1[. To this end, we will define some processes X', which equal X, only
on [t;, t;11[%[0, 1], but also give information about the behaviour of X, after ¢;;. We will
also associate with X! some deterministic skeletons S? (h). But we will apply the result
of [2] to the conditional law of X with respect to F;, (for each 7). Thus, we will have to
define a non-deterministic ”conditional skeleton” T (h). Then we will develop a technical
way to ”paste the pieces”.

Recall that thanks to Remark 2.4, we have to prove on one hand that for all h € H, all

e> 0,
P(|| X — S(h,m) [|<€) >0 (5.2)
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and on the other hand that

P (Xm c Sthom): her) ”°°> _1 (5.3)

To this aim, we introduce some notations. First, if S(¢,z) belongs to ID ([0,T], C([0, 1])),
andif 0 <u<ov<T,

IS lum= sup  [|S(t,2)] (5.4)
teu,v], €[0,1]

We now define recursively, for 4 in {0, ...,n}, the processes X! (t,x) on [t;,T] x [0,1] :
tiAt
Xo(ha) = GuXon)+ [ [ Gl [pOX s )dyds +
(X0, (5,9))W (dy,ds)|  (5.5)
and, for i € {1,...,n},

, ) 1 )
X(ta) = Xi'(to) + Ty [ Gronloy)g(X ! (tims0). 2)dy (5.6

tir1 At X .
[T [ Gy [0 5 dyds + (X s )W (dy. )]
Notice that for all 4,
for all ¢ € [ti,tipq[, all z€[0,1], X! (t,z) = Xp(t, z) (5.7)

Indeed, it suffices to use a standard uniqueness argument. In the same way, we define, for
h € H, the functions S’ (h) on [t;, T] x [0,1], by

SO (W) (ha) = GolXo,w) +/Mt/ G o, ) [(SS (h) (s, ) dyds (5.8)
+0 (S5, (1) (5, 9)) (s, y)dyds]
and, for i € {1,...,n},

. . 1 .
Sm(h)(t,2) = Sf{l(h)(taﬂf)-ﬂl{tzti}/o Gt (2,9)g(Si (B (ti—, y), zi)dy (5.9)

+ /t _tmm /0 Gy s(m,y) [B(SE (h) (5, ) dyds + 7(Sky (h) (5,9))h (s, y)dyds]
Then, for all 7,
for all ¢ € [t;,t;i11], all z €[0,1], Sk, (h)(t,x) = S(h,m)(t,z) (5.10)

Finally, we define the ”conditional skeleton” associated with the conditional law of X
with respect to F;; :

T (a) = Xi (o) +Tes [ ' Gooty (g (X (b= ), )y (5.11)
o[ | Goestay) (BT ) (5, 9))dyds + 0 (T () (5,9)) 5, y) s
t; 0
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The function T% (k) is defined on [t;, T] x [0,1]. For all t € [t;,T], all 2 € [0,1], T, (h)(t,z)
is Fi;-measurable.

Then one can “nearly” use the Theorem of Bally, Millet, Sanz-Solé, [2] (see also Cardon-
Weber, Millet, [3] for a more general setting), which yields the following result.

Proposition 5.1 Assume (H) and (S'1). Then, with the above notations, for all i €
{0,...,n}, the following conditional support theorem on [t;,T] x [0,1] holds :

; ~ 0,
supp| |, oy £ (Xin | o) = {Tin(h) [l Hy e (5.12)
In fact, the main theorem in [2] only yields the result for i = 0, with f(f instead of (f/\tl.
But conditioning is not a problem, and the initial values we obtain, for example
) 1 )
X5 (ta) + [ Gronlao(Xs (b= ), 2)dy
= X5 (b 2) + oy, (90X (hi=, ), 20), ) (5.13)

behave on [t;,T] exactly as G¢(Xp,z) on [0,T], since they are F; -measurable, since
g(X=1(t;—,.), %) is continuous on [0, 1], and since X/~1(¢,z) is continuous on [0, T] x [0, 1].
Finally, it is clear that considering the integrals from #; to ¢ A ¢;11 instead of 0 to ¢ will not
change much...

We now establish a Lemma, which will allow to paste the pieces. If || X}, (w) — Sp, (B) ||z, 77
is small, then the initial conditions associated with SiF!(h) and T:F!(h)(w) are near, and
thus the distance between Si+1(h) and T/ (h)(w) is small. We need this Lemma, because
Proposition 5.1 gives an idea of the distance between X! (w) and T¢,(h)(w), but what we
need to control is the distance between S’ (k) and X} (w).

Lemma 5.2 Assume (H), (S'2). There exists a function y(z,u) : IRT x IRT — IR™, such
that for each x, y(x,u) decreases to 0 when u decreases to 0, and such that for all € > 0,
all i € {0,...,n — 1},

foe /I Xhw - Su® lins e}

cl{we [ ®) =T W) NS Yl gyt 26 ) (5:14)

. t 1:
where “ h’|[ti+1,ti+2] “%2: ti++12 fO hQ(Say)dde'

Proof : Let w belong to {|| X%, —S¢,(h) lt;,m< €}. Then, for all ¢ in [t;11, 7], all z in [0, 1],
using (H),

S (h)(t, ) — T () (t, )| < [SE(B)(t 2) — X, (t, )]

4 [ Gt o (X190, 2) g (S i1 -,0), ) dy

tipat 1
w0 [ [ Gty
tiy1 0

Sﬁjl(h)(s,y) _ T7€1+1(h)(3,y)‘ (1 + |h(3,y)|) dyds (5.15)
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We now set

F(t) = sup
z€[0,1]

Sit (b (@) = Tt (h)(t, )| (5.16)

Using the assumption about w, assumption (5’2), the Appendix (7.3) and (7.2), and
Cauchy-Schwarz’s inequality, we get :

. t d 2
F(t) < e+ 1u,(6) + C (14 || Blityo i ||Lz)( F2(s)—— ) (5.17)

tir1 t—s

where 1),. was defined in assumption (5’2). Hence,

. 2 [t ds
F2(t) < Ce? + Cd’i(e) +C (1+ H h|[ti+1,ti+2} ||L2) F2(S) (518)

tit1 Vit—s

Iterating once this formula (see the previous section, inequalities (4.30), (4.31), and (4.32)
for more precisions), we obtain the existence of a function +, satisfying the assumptions of
the statement, such that

F20) < (I bl i Do €) + C (1 1 b 122)” [ F(s)ds  (5.19)
Gronwall’s Lemma allows to conclude.
In order to simplify the notations, we assume in the sequel that n = 2, i.e. that
m(dt, dz) = 04, 2) + Ots,20) (5.20)
1) We fix h € H, and € > 0, and we check that
Py=P(]]| Xy — S(hym) ||o< €) >0 (5.21)
First, using (5.7) and (5.10), we see that

Py > P( || X5 = S50 lom< e/3, 1| Xp, = Siu(B) [l 1< €/3,

| X7, = Spa(B) llta 1< €/3) (5.22)

Noticing that for each 4, X! is Fy, +1-measurable and S? (h) is deterministic, we obtain, by
conditionning our probability with respect to F;,,

Py> FEl1 1
02 BT 50— 60 () o< e/31 11 X0 — SL(R) o1 ¢/3}

<P (| X3 = () lom< /3| Fu) | (523)

On the other hand,
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P (I X3 = (k) o< /3 | Fir)
> P (| X7 = T (R) lpoim < /6, || Tia(h) = Si(h) N, m1< /6] i)

2 2
> T4 72 ) — S2.0) sy e/6) T (L X = Tnlh) s 1 /6] Fi) - (524

since S2,(h) is deterministic and T2 (h) is Fj,-measurable. Using Proposition 5.1, we also
know that a.s.,
P (| X2 = T2(h) 1< /6] F1,) >0 (5.25)

Hence, it suffices that P; > 0, where

Py=P( || X5 = S50 lom< e/3, 1| X, = Sia(B) lle,.r1< €/3

| T2 (h) = S2,(h) i1 < €/6) (5.26)
Thanks to Lemma 5.2, we know that for oz > 0 small enough,
I X} = Sh () i< o = | T2 (h) = SZ,(h) llpa < €/6 (5.27)
Thus,
P> P( X0 = S50 lom< e/3, || Xy = Sha(h) llpn < @ Ae/3) (5.28)

[terating this argument, we see that Py is strictly positive as soon as P» > 0, where
Py =P( || X5 = S%(h) lom< B) (5.29)

for some 3 > 0 small enough. But it is clear that SY (h) identically equals T2 (h). Thus,
Proposition 5.1 implies that P, is strictly positive, and hence that (5.21) holds, which was
our aim.

2) We still have to check that

P (Xm e [Sthm), he H}! ”°°> —1 (5.30)

We know from Proposition 5.1 that for almost all w, say for all w € Q, with P(Q) =1,

X9 (w) € {TO.(h), h € 7-[}” oo o X} (w) e {TL(h)(w), h e 7-[}” lloo

X2 (w) € (T2 () (@), he HY ™ (5.31)

We now fix w € Q. There exists h) € #, hl, € H, h2 € H, (depending on w) such that, for
i €{0,1,2}, when n goes to infinity,

I X5 (@) = T, () (@) gy rp— 0 (5.32)
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We now set
o o () = T (£, 2) W0 1,1 (8) + B (£, 2) Ly 1) (1) + B (4, 2) Dty 7 (2) (5.33)
We fix € > 0, and we prove that for n, k, ¢ large enough,
| X (@) = S(hnpg,m) [lom< € (5.34)
which will suffice. One can easily check, using (5.7) and (5.10), that
| Xin (@) = S (R geigs 1) lljo,71< AR (w) + Ag () + AJ(w) + Bp(w) + Bi(w) + Bg(w) (5.35)
where (if i =0,1,2 and | € IN)

Ajw) =l X5, (@) = T (h) (@) Il 7y (5.36)
and . o o
Bj(w) =l Ty (hi)(w) = Sy (ki) Ny (5.37)
First notice that BY vanishes identically. Thanks to Lemma 5.2, we know that
Bi(@) < (I ikl 25 A5 (@) (5.38)
B2(w) < (I h2]itoyr llz2, Ab(w) + Bi(w)) (5:39)
i) First, we choose ¢ large enough, in order that
AZ(w) < €/6 (5.40)

Now that ¢ is fixed, we consider @ > 0 such that
Y (Il 52ty N1z ) < €/6 (5.41)
ii) Then we choose k in such a way that
Ab(w) < €/6 A2 (5.42)
and we consider 8 > 0 such that
Y (Il 1kl e oy 120 B) < €/6 A /2 (5.43)

iii) Finally, we choose n such that

Ad(w)<e/6AB (5.44)
We deduce from (5.44), (5.38), and (5.43) that
B} (w) < €/6 A2 (5.45)
Thanks to (5.45), (5.42), (5.41), and (5.39), we also see that
B (w) < €/6 (5.46)

Finally, using (5.35), (5.44), (5.42), (5.40), (5.45), (5.46), we deduce (5.34). We thus have

checked that for each w € Q, all € > 0, there exists h € H such that
| Xm(w) = S(h,m) [o< € (5.47)
Since P(Q) = 1, (5.30) holds, and Proposition 3.3 is proved.
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6 Extension to the case of an a.s. infinite number of jumps
when the diffusion coefficient is constant.

We now consider equation (1.1) in the following new setting : the diffusion coefficient is

constant, o(z) = o ; but the positive measure ¢ on E is only assumed to be o-finite (a

priori, ¢(F) = o0). N is still a Poisson measure on [0,7] x E, with intensity measure
dtq(dz). The evolution equation associated to equation (1.1) is still given by (2.5).

We also consider an increasing sequence of subsets E, of I satisfying
q(Bp) <oo ; UpewEp=FE (6.1)
In order to obtain a result of existence and uniqueness, we state the following hypothesis :

Assumption (A) : the function o is constant. The function b satisfy a global
Lipschitz condition. There exists n € L'(E,q) such that for all z,y € IR, all
z € F,

19(0,2)] <n(z) 5 lg(z,2) —g(y,2)] < |z —yln(z) (6.2)

Proposition 2.2 yields that equation (1.1) with E, instead of E admits a unique weak
solution X? lying in ID ([0,T],C([0,1])). Under (A), using strongly the fact that o is
constant, it is easy to check that there exists an adapted process X such that, when p goes
to infinity,

E| sup |X(t,z)—XP(t,z)]| — O (6.3)

[0,77x[0,1]

This way, we obtain the existence of an adapted weak solution X of equation (1.1) with
our new setting. See Remark 6.6 for the case where o is not a constant.
The uniqueness is straightforward under (A), and we can state the following proposition.

Proposition 6.1 Assume (A). Equation (1.1) admits a unique weak solution X (t,x), lying
a.s. in ID ([0,T],C([0,1])), and bounded in L.

We now consider

My = m(dt,dz) = 6y, ) (dt,dz)

=1

n nelN, 0<t; <..<t,<T,
/ 6.4

21y 2n € SUpp ¢ N E)p

and we set M = U, M,,. The Cameron-Martin space H associated with W is still defined by
(2.13). For each m € M and h € H, we denote by S(h,m) the unique solution of equation
(2.15) (there is no difference with Proposition 2.3, since there exists p such that m € M,,).
Since g is already Lipschitz, we assume (7T') below instead of (S52),

Assumption (T) : for each zy € E, each n € IN,

sup |g(:v,z) - g(x, Z0)| —>d(z,zo)%0 0 (65)

z[<n
For each 2y in E, there exists £(zg) > 0 such that
sup  7(z) < oo (6.6)

d(z,20)<&(%0)
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A function g(z,z) = a(z)n(z) clearly satisfies (A) and (T) if o is lipschitz, and n € L' (E, q)
is continuous. The aim of this section is to prove the following result.

Theorem 6.2 Under (A) and (T), if X denotes the unique weak solution of equation (1.1),

supp; Po X~ = [S(h,m) Jhe H, me M} (6.7)

Since the method of Simon [10], combined with the previous sections, applies easily, we will
only sketch the Proof.

First, for the same reasons as in the previous sections, see Proposition 3.1, we can assume,
additionally to (A) and (T'), that for all z € IR, all z € E, |g(z, 2)| < n(z) and for each
zy € B,

sup |g9(z, 2) — g(,20)| —d(z,20)—0 0 (6.8)
z€IR

Then, we notice that the direct inclusion (C) of Theorem 6.2 is immediate, thanks to The-
orem 2.5 (for X?) and thanks to the convergence (6.3).

We now fix p€ IN, he H,m= >, d(t;,2:) € Mp, and € > 0. We have to prove that
P(§(X,S(h,m)) <€) >0 (6.9)

To prove this, we will use three lemmas. The first one is a very particular case of the result
of Bally, Millet, Sanz, [2].

Lemma 6.3 Let o > 0 be fized, and let

Qp(a) = {w €N /sup
t,x

Then P(p()) > 0.

t rl .
/ / Gis(w,y) {W (dy, ds) — h(s,y)dyds |
0 JO

< a} (6.10)

We now write the restriction N? = Nl 1« p, (recall that p is fixed) as

m
NP(ds,dz) = Zé(Tiyzi)(ds,dz) (6.11)
=1

The second lemma can be proved by using the same method as that of Proposition 3.2 (see
Section 4). The only difference comes from the fact that XP(w) depends on W, but since
o is constant, Lemma 6.3 allows to deal easily with this problem.

Lemma 6.4 Let 3 > 0 be fized. There exists a set
01(8) € 0 {N(A) ; A€ B(0,T] x F)) (6.12)
such that P(Q(8)) > 0, such that for each w € Q1(8),
plw)=mn Vi,  d(zi, Ziw)) < &(z) (6.13)
and such that for some a > 0 small enough, every w € Qo(a) N Q1 (B) satisfies
5(XP(w), S(h,m)) < (6.14)
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We will finally use the following result :
Lemma 6.5 Let v > 0 be fized, and let

Qa(7) :{wEQ// /E/Ep N(ds dz)<7} (6.15)

Then P(Q2(7)) > 0.

Proof of Lemma 6.5 : we set

0, — / /E TN (s, d2) (6.16)

and, for ¢ > p,

/ /Eq/Ep N(ds,dz) (6.17)

We see that 0, = 07 + 0,, that for all ¢, P(6] = 0) > 0, and that when ¢ goes to infinity, 6,
goes to 0 in probability. Since for each ¢, 6] is independent of 6, we can write

PO, <v) > P(9,‘§ =0)P(0, <) (6.18)
and the lemma follows easily.

We finally sketch the proof of Theorem 6.2. An easy independance argument yields that
for every a > 0, 8> 0, v > 0, the set

Q3(a, B,7) = Qo) N Q1(B) N Qa(y) (6.19)

has a strictly positive probability. We now have to to choose «, 3,7 in such a way that for
all w € 93(047/677)7
S(X (@), S(hym)) < € (6.20)

Let w € Q3(a, 8,7) be fixed. If « is small enough, we know from Lemma 6.4 that
0(X(w),S(h,m)) < || X(w) = XP(w) |loo +6(XP(w), S(h,m))

< [ X(w) = XP(w) [lo +8 (6.21)
We now set
VP(t) = sup |X(t,z) — XP(t,z)| (6.22)
z€[0,1]

Using the Appendix, (A), (T), since |g(z, z)| < n(z), and since w belongs to Q3(«, 5,7), we
see that

Vi < o /Otvp(sms+0i1{t2mvpm_>n(zi>

+/ / N(ds,dz)
E\Ep

t n
< c/ VP(s)ds + CS Lysry VP (Tim) + (6.23)
0 =1
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For the second term, we have used (6.6) in Assumtion (7), and the fact that for all 7, Z;
belongs to {z € E, d(z,z) < &(z)}.
Applying successively Gronwall’s Lemma on the time intervals [0, 71, ..., [T, T'], we deduce
that for all w € Q3(«, 8,7),
sup VP (w,t) < Cy (6.24)
0,71

The conclusion follows easily.

Remark 6.6 Of course, we are also interested in the case where q(E) = oo and o is a
function. In this case, it is possible to prove (under assumptions) that the sequence X, of
weak solutions of (1.1) where we have replaced E by E,, converges to an adapted process
X(t,z) in the following sense :

StupE(|X(t,fE) — XP(t,z)]) — 0 (6.25)

L

Once X s built, it might be possible to check that it admits a modification lying in
ID ([0,T],C([0,1])), by using the fact that X satisfies the evolution equation, but this is not
immediate. If so, it seems natural to think that our support theorem extends to this case.
However, everything will become much more technical. In particular, the direct inclusion is
not obvious any more, since (6.3) does not seem to hold any more.

7 Appendix

We collect here well-known estimates about the Green kernel Gy(z,y) associated with the
deterministic system (2.1), and which has the expression (2.2). In all the inequalities below,
the constant C' depends only on the terminal time value T'. The three first estimates can
be found in [13], and the next ones are either easy consequences or classical estimates.

First, for all z,y € [0,1] and all ¢ € [0,T],

—(y — )2 —(y — )2
\/L%eXp{%} < Gi(z,y) < %GXP{%} (7.1)

For all 0 <t < T, all z € [0,1],

[ ey < < (7.2)

and )
/0 Gi(z,y)dy =1 (7.3)
Forall 0 < s <t<T,all z,y € [0,1], (see Lemma A3 in [4])
Gul9) — Gula )] < 27 (1.4

S2

and (see Lemma Bl in [2])
s rl t rl
/ / (Gy r(z,y) — Gy r(z,y))? dydr -I-/ / G? . (z,y)dydr < C\Vt—s (7.5)
0 JO s J0O
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Finally, for all ¢ € C([0, 1]), the map

(t,z) = G, 1) (7.6)

is continuous on [0, 7] x [0, 1] (see Lemma A2 in [2] for a similar result).
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