
Support theorem for the solution of a white noise drivenparaboli
 S.P.D.E. with temporal Poissonian jumps.Ni
olas FOURNIER101, July, 1999Abstra
tWe study the weak solution X of a paraboli
 sto
hasti
 partial di�erential equationdriven by two independent pro
esses : a gaussian white noise, and a �nite Poisson mea-sure. We 
hara
terize the support of the law of X as the 
losure in ID ([0; T ℄;C([0; 1℄)),endowed with its Skorokhod topology, of a set of weak solutions of ordinary partialdi�erential equations.Key words : Paraboli
 sto
hasti
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tion.Consider on [0; T ℄ � [0; 1℄ a spa
e-time white noise W (dx; dt) based on dxdt (see Walsh,[13℄, p 269). Denote by (E; d) a Polish spa
e, endowed with a positive �nite measure q, andby N(dt; dz) a Poisson measure on [0; T ℄�E, with intensity measure dtq(dz), independentof W . Our purpose is to study the following sto
hasti
 partial di�erential equation on[0; T ℄� [0; 1℄�X�t (t; x) = �2X�x2 (t; x) + b(X(t; x)) + �(X(t; x)) _Wx;t + ZE g(X(t�; x); z) _Nt(dz) (1.1)with Neumann boundary 
onditions�X�x (t; 0) = �X�x (t; 1) = 0 ; 8 t > 0 (1.2)1Laboratoire de Probabilit�es, UMR 7599, Universit�e Paris VI, 4, Pla
e Jussieu, Tour 56, 3o �etage, F-75252Paris C�edex 05, fournier�proba.jussieu.fr. 1



and deterministi
 initial 
ondition X0(x) 2 C([0; 1℄). The symbol _Nt(dz) (resp. _Wt;x)stands for the heuristi
al Radon-Nikodym density of N(dt; dz) (resp. W (dx; dt)) with re-spe
t to the Lebesgue measure dt (resp. dtdx). We 
ould also write, with abusive notations,_Nt(dz)dtdx = dxN(dt; dz) and _Wx;tdtdx =W (dx; dt).We denote by ID ([0; T ℄;C([0; 1℄)) the set of 
�adl�ag fun
tions from [0; T ℄ into C([0; 1℄),endowed with the 
orresponding Skorokhod topology. In this paper, we 
hara
terize thesupport of the law of a weak solution X of equation (1.1) as the 
losure of a set of weaksolutions of ordinary partial di�erential equations in ID ([0; T ℄;C([0; 1℄)).Paraboli
 S.P.D.E.s driven by a white noise, i.e. equation (1.1) with g � 0, have beenintrodu
ed by Walsh, [12℄ and [13℄. In [13℄, he de�nes his weak solutions, then he proves atheorem of existen
e, uniqueness and regularity. Sin
e, various properties of Walsh's equa-tion have been investigated : Malliavin 
al
ulus, large deviations, support theorem (seeBally, Millet, Sanz-Sol�e, [2℄) ...But Walsh builds his equation in order to model a dis
ontinuous neurophysiologi
al phe-nomenon. In [12℄, he explains that the white noiseW approximates a Poisson point pro
ess.This approximation is realisti
 be
ause there are many jumps, and the jumps are very small,but in any 
ase, the observed phenomenon is dis
ontinuous. However, S.P.D.E.s with jumpsare mu
h less known. In the 
ase of temporal and spatial jumps, Saint Loubert Bi�e havestudied in [9℄ the existen
e, uniqueness, regularity, and variational 
al
ulus. See also [5℄ forother results on the same subje
t. Nevertheless, no result about the \joint" regularity ofthe weak solutions has been proved in this 
ase : we do not really know in whi
h spa
e theweak solution \lives", thus no support theorem may hold for the moment.In the 
ase of equation (1.1) with � � 0, but with q(E) = 1, and with a 
ompensatedPoisson measure, Albeverio et al. have 
he
ked in [1℄ the existen
e and uniqueness of a\modi�ed 
�adl�ag" weak solution u(t; x) : a.s., u is 
ontinuous in x ; and u is right 
ontinu-ous and has left limits in L2(
) in the variable t. One more time, we do not know in whi
hspa
e lies a.s. the weak solution.Sin
e Stroo
k and Varadhan established in [11℄ their famous support theorem for di�usionpro
esses, their has been many investigations on the subje
t. In parti
ular, Millet and Sanzhave 
onsiderably simpli�ed in [8℄ the proof of Stroo
k and Varadhan. But the only sup-port theorem for jump pro
esses seems to be that of Simon in [10℄, who studies a sto
hasti
di�erential equation driven by a (
ompensated or not) in�nite Poisson measure. At last,let us mention that as far as we know, no support theorem seems to be known in the 
aseof equations driven by two independent (but di�erent) random elements.This work is organized as follows. In the se
ond se
tion, we de�ne the weak solutions of(1.1), by following the Walsh ideas, [13℄. Using Ikeda and Watanabe's method, see [6℄, andapplying Walsh's results, we sket
h the proof of an existen
e and uniqueness result. Wede�ne the \skeleton" asso
iated with equation (1.1), by using the Cameron-Martin spa
easso
iated with W and the set of �nite 
ounting measures asso
iated with N . Finally, westate our support theorem.The third se
tion is devoted to a simpli�
ation of the problem. First, we use a lo
alization2



argument, in order to obtain weaker assumptions. Then we prove that it suÆ
es to 
he
ktwo simpler support theorems. The �rst one is proved in the fourth se
tion, and is relatedto an equation similar to (1.1), but without white noise : _Wt;x is repa
ed by _h(t; x), whereh is an element of the Cameron-Martin spa
e asso
iated with W . The se
ond one is provedin the �fth se
tion, and deals with an equation without Poisson measure, but with anadditional "jump drift". This 
on
ludes the proof of our main result.The sixth se
tion is devoted to an extension of our result to the 
ase where the Poissonmeasure is a.s. in�nite (q(E) =1), but where the di�usion 
oeÆ
ient is 
onstant (�(x) =�).Finally, one 
an �nd te
hni
al results in the Appendix lying at the end of the paper.2 Framework.Let us �rst de�ne the weak solutions of (1.1). To this aim, we need some assumptions :Assumption (H) : the fun
tions � and b : IR 7! IR, satisfy a global Lips
hitz
ondition. The fun
tion g : IR�E 7! IR is measurable on IR�E, and for ea
hz 2 E, the map g(:; z) is 
ontinuous on IR.We de�ne the weak solutions of (1.1) by following the Walsh ideas, [13℄, p 311-322. Considerthe Green kernel Gt(x; y) asso
iated with the deterministi
 system :�u�t = �2u�x2 ; �u�x (t; 0) = �u�x (t; 1) = 0 (2.1)This kernel 
an be expli
itely 
omputed :Gt(x; y) = 1p4�t Xn2Z "exp �(y � x� 2nL)24t !+ exp �(y + x� 2nL)24t !# (2.2)If � belongs to C([0; 1℄), we setGt(�; x) = 8>><>>: �(x) if t = 0Z 10 Gt(x; y)�(y)dy if t > 0 (2.3)The Appendix of this work 
ontains te
hni
al results about this kernel. We endow ourprobability spa
e (
;F ; P ) with the 
anoni
al �ltration asso
iated with the independentrandom elements W and N :Ft = � fW (A) ; A 2 B([0; 1℄ � [0; t℄)g _ � fN(B) ; B 2 B([0; t℄�E)g (2.4)A pro
ess X(t; x) on [0; T ℄� [0; 1℄ is said to be adapted if for all t � 0, all x 2 [0; 1℄, X(t; x)is Ft-measurable.As Walsh, see also Saint Loubert Bi�e, [9℄, or Fournier, [5℄, we de�ne the weak solutions of(1.1) in the following sense. 3



De�nition 2.1 Let X0 : [0; 1℄ 7! IR be a 
ontinuous deterministi
 fun
tion. Consider anadapted pro
ess X(t; x) on [0; T ℄� [0; 1℄, lying a.s. in ID ([0; T ℄;C([0; 1℄)). Then X is saidto be a weak solution of (1.1) if and only if it satis�es the following evolution equationX(t; x) = Gt(X0; x) + Z t0 Z 10 Gt�s(x; y) [b(X(s; y))dyds + �(X(s; y))W (dy; ds)℄+ Z t0 ZE Z 10 Gt�s(x; y)g(X(s�; y); z)dy N(ds; dz) (2.5)where Gt(X0; x) is de�ned by (2.3), and with the 
onventionZ 10 G0(x; y)g(X(s�; y); z)dy = g(X(s�; x); z) (2.6)We now establish a result of existen
e and uniqueness of su
h a solution. Sin
e q(E) is�nite, N([0; T ℄�E) is a.s. �nite, and thus N 
an a.s. be written asN(dt; dz) = �Xi=1 Æ(Ti;Zi)(dt; dz) (2.7)with � 2 IN , 0 < T1 < ::: < T� < T , and Z1; :::; Z� 2 E. Hen
e, equation (2.5) 
an bewritten asX(t; x) = Gt(X0; x) + Z t0 Z 10 Gt�s(x; y) [b(X(s; y))dyds + �(X(s; y))W (dy; ds)℄+ �Xi=1 1Ift�Tig Z 10 Gt�Ti(x; y)g(X(Ti�; y); Zi)dy (2.8)Working re
ursively on the time intervals [0; T1[, [T1; T2[,..., [T�; T ℄, as Ikeda and Watanabe(proof of Theorem 9-1 p 231-232 in [6℄), using Walsh's Theorems of existen
e, uniqueness,and regularity for equation (1.1) with g � 0 (see [13℄, Theorem 3-2 p 313 and Corollary 3-4p 317), and using the well-known estimates of the Green kernel stated in the Appendix,one 
an prove the following proposition :Proposition 2.2 Assume (H). Equation (1.1) admits a unique adapted solution X(t; x)on [0; T ℄� [0; 1℄, lying a.s. in ID ([0; T ℄;C([0; 1℄)). The uniqueness holds in the sense whereif Y is another adapted solution lying in ID ([0; T ℄;C([0; 1℄)), then a.s.,sup[0;T ℄�[0;1℄ jX(t; x) � Y (t; x)j = 0 (2.9)We are now interested in the support of the law of X. Let us �rst re
all the de�nition of theSkorokhod distan
e on ID ([0; T ℄;C([0; 1℄)). We 
onsider the set of the "
hanges of time" :� = f� 2 C([0; T ℄) / �(0) = 0; �(T ) = T; � is stri
tly in
reasingg (2.10)For � 2 �, we set jjj�jjj = sup0�s<t�T ����ln��(t)� �(s)t� s ����� (2.11)4



The Skorokhod distan
e between two elements � and  of ID ([0; T ℄;C([0; 1℄)) is given byÆ(�;  ) = inf�2�( sup[0;T ℄�[0;1℄ j�(�(t); x) �  (t; x)j+ jjj�jjj) (2.12)ID ([0; T ℄;C([0; 1℄)), endowed with Æ, is a Polish spa
e (see e.g. Ja
od, Shiryaev, [7℄, p 289).We now introdu
e some notations, des
ribing the \supports" of W and N : we denote byH = �h(t; x) = Z t0 Z x0 _h(s; y)dyds� _h 2 L2([0; T ℄� [0; 1℄)� (2.13)the Cameron-Martin spa
e asso
iated withW . We also 
onsider the set of the �nite 
ount-ing measures on [0; T ℄�E, the support of whi
h is 
ontained in [0; T ℄� supp q :M = 8><>:m(dt; dz) = nXi=1 Æ(ti ;zi)(dt; dz) , n 2 IN; 0 < t1 < ::: < tn < T;z1; :::; zn 2 supp q 9>=>; (2.14)with the 
onvention P0i=1 = 0. Noti
e that for all ! 2 
, N(!) belongs to M. But ingeneral, (with abusive notation) _W (!) =2 H, sin
e _W (!) is not even well-de�ned.The following proposition, des
ribes the \skeleton" asso
iated with our evolution equation.Proposition 2.3 Assume (H). Let h 2 H and m 2 M be �xed. The following ordi-nary evolution equation admits a unique solution, whi
h we denote by S(h;m), lying inID ([0; T ℄;C([0; 1℄)) :S(h;m)(t; x) = Gt(X0; x) + Z t0 Z 10 Gt�s(x; y)hb(S(h;m)(s; y))dyds+�(S(h;m)(s; y)) _h(s; y)dydsi+ Z t0 ZE Z 10 Gt�s(x; y)g(S(h;m)(s�; y); z)dy m(ds; dz) (2.15)This proposition 
an be proved as Proposition 2.2. Equation (2.15) is the same as (2.5),but we have repla
ed W (dy; ds) and N(ds; dz) by _h(s; y)dyds and m(ds; dz).Finally, we re
all the following standard remark :Remark 2.4 Let Z be a random variable with values in a Polish spa
e A endowed with adistan
e �. Re
all that the support supp� P ÆZ�1 of the law of Z related to the distan
e �is the smaller 
losed subset F of (A;�) satisfying P (Z 2 F ) = 1.Let B be a subset of A, and let B� be its 
losure in (A;�).1. If a.s., Z 2 B�, then supp� P Æ Z�1 � B� (2.16)5



2. If for all b 2 B, all � > 0, P (�(b; Z) < �) > 0 (2.17)then B� � supp� P Æ Z�1 (2.18)In order to establish a support Theorem, we need the following assumptions.Assumption (S1) : the fun
tion � is C3 on IR.Assumption (S2) : for ea
h z0 2 E, ea
h n 2 IN ,supjxj�n jg(x; z) � g(x; z0)j �!d(z;z0)!0 0 (2.19)For ea
h z0 2 E, ea
h n 2 IN , there exists a 
onstant �n(z0) > 0, and a fun
tion nz0(u) : IR+ 7! IR+, de
reasing to 0 when u de
reases to 0, su
h that for alljxj � n, jyj � n, supd(z;z0)��n(z0) jg(x; z) � g(y; z)j �  nz0(jx� yj) (2.20)Assumption (S1) is nearly the same as that of Bally, Millet, Sanz, [2℄, who prove a supporttheorem in the 
ase where g � 0, and 
omes from a Taylor developpement of order 3. Infa
t they assume that � is C3b , but a lo
alisation pro
edure 
an be done (see the proof ofProposition 3.1 in the next se
tion).Assumption (S2) says that g is lo
ally uniformly 
ontinuous. In the parti
ular 
ase whereE is lo
ally 
ompa
t, (S2) is satis�ed as soon as g is 
ontinuous on [0; T ℄ �E.Now we 
an state our main result :Theorem 2.5 Under (H), (S1), and (S2), if X denotes the unique weak solution of equa-tion (1.1), suppÆ P ÆX�1 = fS(h;m) / h 2 H ; m 2MgÆ (2.21)3 Simpli�
ation of the problem.First, we "delo
alize" (S1) and (S2), by using a standard argument. Consider the followingassumptions, stronger than (S1) and (S2).Assumption (S01) : the fun
tion � is C3 on IR, bounded with its derivatives.Assumption (S02) : For all z0 2 E,supx2IR jg(x; z0)j <1 ; supx2IR jg(x; z) � g(x; z0)j �!d(z;z0)!0 0 (3.1)For all z0 2 E, there exists �(z0) > 0, and a fun
tion  z0(u) : IR+ 7! IR+,de
reasing to 0 when u de
reases to 0, su
h that for all x; y 2 IR,supd(z;z0)��(z0) jg(x; z) � g(y; z)j �  z0(jx� yj) (3.2)6



Proposition 3.1 If Theorem 2.5 holds under (H), (S01) and (S02), then it also holds under(H), (S1) and (S2).We will prove this proposition at the end of the se
tion.We now would like to 
he
k that Theorem 2.5 holds as soon as two easier support theoremsare valid. The �rst one deals with equation 2.5 with a "deterministi
" white noise, and these
ond one with a "deterministi
" Poisson measure.We �rst introdu
e some notations. If h 2 H (resp. m 2 M), we denote by Xh (resp.Xm) the solution of equation (2.5) where we have repla
ed W (dy; ds) by _h(s; y)dyds (resp.N(dt; dz) by m(dt; dz)). In other words,Xh(t; x) = Gt(X0; x) + Z t0 Z 10 Gt�s(x; y) hb(Xh(s; y))dyds + �(Xh(s; y)) _h(s; y)dydsi+ Z t0 ZE Z 10 Gt�s(x; y)g(Xh(s�; y); z)dy N(ds; dz) (3.3)Xm(t; x) = Gt(X0; x) + Z t0 Z 10 Gt�s(x; y) [b(Xm(s; y))dyds + �(Xm(s; y))W (dy; ds)℄+ Z t0 ZE Z 10 Gt�s(x; y)g(Xm(s�; y); z)dy m(ds; dz) (3.4)We 
ould also write, with abusive notations, Xh = S(h;N), and Xm = S( _W;m). The nextse
tions are devoted to the proof of the following propositions.Proposition 3.2 Assume (H) and (S02). Let h 2 H, m 2M, and � > 0 be �xed. ThenP (Æ(S(h;m);Xh) � �) > 0 (3.5)We now denote by k u k1= sup[0;T ℄�[0;1℄ ju(t; x)j the supremum norm on [0; T ℄� [0; 1℄.Proposition 3.3 Assume (H), (S01) and (S02). Let m 2M be �xed. Thensuppk k1 P ÆX�1m = fS(h;m) / h 2 Hgk k1 (3.6)Let us remark that this se
ond result implies the weaker one :suppÆ P ÆX�1m = fS(h;m) / h 2 HgÆ (3.7)Assuming for a moment that these propositions hold, we prove our main result.Proof of Theorem 2.5 : using Remark 2.4, we break the proof in two parts.7



1) We �rst 
he
k that a.s., X belongs to fS(h;m) / h 2 H; m 2MgÆ. Consider the mapfrom M to [0; 1℄, de�ned by�(�) = P �X� 2 fS(h;m) / h 2 H; m 2MgÆ� (3.8)Let us �rst prove that a.s.,P �X 2 fS(h;m) / h 2 H; m 2MgÆ ��� �(N)� = �(N) (3.9)where �(N) = � fN(A) ; A 2 B([0; T ℄�E)g (3.10)In order to understand (3.9), let us work with the 
anoni
al produ
t spa
e(
;F ; P ) = (
W ;FW ; PW )
 (
N ;FN ; PN ) (3.11)asso
iated with W and N . Every element ! of 
 
an be written as (!W ; !N ), where!W 2 C([0; T ℄� [0; 1℄) and !N 2M. Thus,P �X 2 fS(h;m) / h 2 H; m 2MgÆ ��� �(N)� (!)= Z 1InX(!W ;!N )2fS(h;m) / h2H; m2MgÆodPW (!W ) (3.12)But obviously, X(!) = X(!W ; !N ) = X!N (!W ), where X� was de�ned by (3.4) for ea
h� 2M. Thus, P �X 2 fS(h;m) / h 2 H; m 2MgÆ ��� �(N)� (!)= PW �X!N 2 fS(h;m) / h 2 H; m 2MgÆ� (3.13)Now, we noti
e, sin
e for ea
h � 2M, X� is independent of N , that�(�) = PW �X� 2 fS(h;m) / h 2 H; m 2MgÆ� (3.14)Comparing (3.13) and (3.14), we dedu
e (3.9). Hen
e, we obtainP �X 2 fS(h;m) / h 2 H; m 2MgÆ� = E(�(N)) (3.15)Finally, it is 
lear from the de�nition of � and from Proposition 3.3 that � � 1. The
on
lusion follows easily.2) We now �x h 2 H, m 2M, and � > 0. We have to 
he
k thatP0 = P (Æ(X;S(h;m)) � �) > 0 (3.16)First, P0 � P (Æ(X;Xh) � �=2 ; Æ(Xh; S(h;m)) � �=2) (3.17)8



Noti
ing that Xh is �(N)-measurable, we see thatP0 � E h1IfÆ(Xh; S(h;m)) � �=2gP (Æ(X;Xh) � �=2 j �(N))i (3.18)But we know from Proposition 3.3 that for all m 2M, (m) = P (Æ(Xm; S(h;m)) � �=2) > 0 (3.19)Working on the 
anoni
al produ
t spa
e as in 1), and noti
ing that for all ! = (!W ; !N ) 2
, X(!) = X!N (!W ) and Xh(!) = S(h; !N ) (all of this without abusive notation), wededu
e that a.s., P (Æ(X;Xh) � �=2 j �(N)) =  (N) > 0 (3.20)Thus, (3.16) holds as soon as P (Æ(Xh; S(h;m)) � �=2) > 0 (3.21)whi
h never fails, thanks to Proposition 3.2.Provided we 
he
k Propositions 3.1, 3.2 and 3.3, Theorem 2.5 is be proved.In order to prove Proposition 3.1, we begin with a Lemma.Lemma 3.4 Consider some fun
tions �, b, g (resp. ��, �b and �g) satisfying (H), and denoteby X (resp. �X) the 
orresponding unique weak solution of (1.1). Assume that for someA 2 IR+,8 jxj � A; 8 z 2 E; �(x) = ��(x) ; b(x) = �b(x) and g(x; z) = �g(x; z) (3.22)Then there exists ~
 � 
 su
h that P (~
) = 1 andf~! 2 
 / k X(!) k1� Ag � n! 2 ~
 Æ k X(!) � �X(!) k1= 0o (3.23)Proof of Lemma 3.4 : we 
onsider the stopping time � = inf ft � 0 ; supx jX(t; x)j � Ag.Then the pro
esses X� (t; x) = X(t ^ �; x) and �X� (t; x) = �X(t ^ �; x) satisfy the sameevolution equation :X� (t; x) = Gt(X0; x) + Z t^�0 Z 10 Gt�s(x; y) ��b(X� (s; y))dyds + ��(X� (s; y))W (dy; ds)�+ Z t^�0 ZE Z 10 Gt�s(x; y)�g(X� (s�; y); z)dy N(ds; dz) (3.24)A uniqueness argument yields that a.s., say for all ! 2 ~
, with P (~
) = 1, X� = �X� on[0; T ℄ � [0; 1℄. This yields that for all ! 2 ~
, all t � � , and all x 2 [0; 1℄, X(t; x) = �X(t; x).This implies thatn! 2 ~
 / k X(!) k1� Ao � n! 2 ~
 / �(!) > T o � n! 2 ~
 Æ k X(!)� �X(!) k1= 0o(3.25)9



Proof of Proposition 3.1 : we assume that theorem 2.5 holds under (H), (S01) and (S02),and we 
onsider fun
tions b, � and g satisfying only (H), (S1) and (S2). We need a sequen
eof C1b fun
tions �n : IR 7! [0; 1℄, satisfying :�n(x) = 8><>: 1 if jxj � n0 if jxj � n+ 1 (3.26)Then the fun
tions �n(x) = �(x)�n(x) and gn(x; z) = g(x; z)�n(x) 
learly satisfy (S01) and(S02). Denote by Xn the solution of equation (2.5) with �n and gn instead of � and g.Lemma 3.4 yields that there exists ~
 � 
 su
h that P (~
) = 1 and for all n 2 IN ,n! 2 ~
 / k X(!) k1� no � n! 2 ~
 / k X(!) �Xn(!) k1= 0o (3.27)In the same way, we de�ne Sn(h;m), for h 2 H and m 2 M, as the solution of equation(2.15) with �n and gn instead of � and g. We obtain, for all n 2 IN ,if k S(h;m) k1� n or k Sn(h;m) k1� n; then S(h;m) = Sn(h;m) (3.28)Sin
e Theorem 2.5 holds under (H), (S01), and (S02), we know that for ea
h n 2 IN ,suppÆ P ÆX�1n = fSn(h;m) / h 2 H ; m 2MgÆ (3.29)Using Remark 2.4, Proposition 3.1 will hold if we 
he
k that on one hand,P �X 2 fS(h;m) / h 2 H ; m 2MgÆ� = 1 (3.30)and on the other hand that for all h 2 H, all m 2M, all � > 0,P (Æ(X;S(h;m)) � �) > 0 (3.31)Let us �rst prove (3.30). Let ! 2 ~
 be �xed. Sin
e X(!) belongs to ID ([0; T ℄;C([0; 1℄)), itis bounded, and there exists n 2 IN (depending on !) su
h thatn �k X(!) k1 +1 (3.32)whi
h yields X(!) = Xn(!). But for all � > 0, we know from (3.29) that for almost all! 2 ~
, there exists h 2 H and m 2M (depending on !) su
h thatÆ(Xn(!); Sn(h;m)) � � (3.33)This and (3.32) yield (if � � 1), that k Sn(h;m) k1� n, and thus that Sn(h;m) = S(h;m).Hen
e, Æ(X(!); S(h;m)) � � (3.34)whi
h 
on
ludes the proof of (3.30), sin
e P (~
) = 1.In order to prove (3.31), we �x h 2 H, m 2M, and � > 0. We 
onsider n 2 IN su
h thatn �k S(h;m) k1 +1 (3.35)10



This way, if � < 1,P (Æ(X;S(h;m)) � �) = P (Æ(X;Sn(h;m)) � �)= P (k X k1� n; Æ(X;Sn(h;m)) � �)= P (Æ(Xn; Sn(h;m)) � �) (3.36)thanks to (3.27). From (3.29), this probability is stri
tly positive, whi
h yields (3.31).Proposition 3.1 is proved.4 The 
ase where "W is deterministi
".This se
tion is devoted to the proof of Proposition 3.2. We follow here partially the methodof Simon [10℄, who studies the support of Poisson driven S.D.E.s (without Wiener term).The extension of his method to S.P.D.E.s drives to te
hni
al problems, essentially be
ausewe have to 
ontrol the explosion of the Green kernel Gt(x; y). Another new diÆ
ulty ap-pears, be
ause we have to add a se
ond drift, in whi
h the term _h(s; y) belongs only toL2([0; T ℄ � [0; 1℄).In the whole se
tion,h(t; x) = Z t0 Z x0 _h(s; y)dyds 2 H and m(dt; dz) = nXi=1 Æ(ti;zi)(dt; dz) 2M (4.1)are �xed. We set t0 = 0, tn+1 = T , and�0 = infi=0;:::;n jti+1 � tij > 0 (4.2)For simpli
ity, we set S = S(h;m). We denote by 0 < T1(!) < ::: < T�(!)(!) the su

essivetimes of jump of N(!), and by Z1(!), ..., Z�(!)(!) the size of its jumps. In other words,N(!; dt; dz) = �(!)Xi=1 Æ(Ti(!);Zi(!))(dt; dz) (4.3)We re
all that for all � 2℄0; �0[, and all � > 0, the set
(�; �) = f! 2 
 / �(!) = n; ti � � < Ti(!) < ti; d(zi; Zi(!)) � � g (4.4)has a stri
tly positive probability. We will 
he
k that for all � > 0, there exists � > 0, and� > 0 su
h that for all ! 2 
(�; �), Æ(Xh(!); S) � � (4.5)whi
h will imply Proposition 3.2. 11



In the whole se
tion, the 
onstant C depends only on h, m, and on the parameters (�; b; g,X0, and T ) of equation (1.1).From now on, we 
onsider ! 2 
(�; �).First, we 
hoose 0 < � < �0=16, and 0 < � < �(z1) ^ ::: ^ �(zn), where �(zi) was de�nedin assumption (S02). For some 
 2℄2�; �0=8[, whi
h will be 
hosen later, we de�ne thepolygonal 
hange of time � 2 � by �(0) = 0, �(T ) = T , and for all i 2 f1; :::; ng,�(Ti � 
) = Ti � 
 ; �(Ti) = ti ; �(Ti + 
) = ti + 
 �(Ti + 2
) = Ti + 2
 (4.6)Noti
e that all the properties below hold :for all t 2 [Ti; Ti + 
℄; �(t)� ti = t� Ti (4.7)Z T0 1If�(s)6=sgds � 3n
 (4.8)for all t 2 [0; T ℄; �(t) � t and 1If�(t)�tig = 1Ift�Tig (4.9)k �� I k1� � (4.10)Furthermore, it is easy to 
he
k thatjjj�jjj � jln(1� �=
)j _ jln(1 + �=
)j � 2�=
 (4.11)where the last inequality holds be
ause �=
 � 1=2. We have to prove that if � > 0 and� > 0 are small enough then for some 
 well 
hosen,k S(�(t); x) �Xh(t; x) k1 +jjj�jjj � � (4.12)We now set S�(t; x) = S(�(t); x). Then, using (4.9), we see that for any ! 2 
(�; �),S�(t; x)�Xh(t; x) = G�(t)(X0; x)�Gt(X0; x)+ Z t0 Z 10 �G�(t)�s(x; y)�Gt�s(x; y)� hb(S(s; y)) + �(S(s; y)) _h(s; y)i dyds+ Z �(t)t Z 10 G�(t)�s(x; y) hb(S(s; y)) + �(S(s; y)) _h(s; y)i dyds+ Z t0 Z 10 Gt�s(x; y)hfb(S(s; y)) � b(S�(s; y))g+f�(S(s; y)) � �(S�(s; y))g _h(s; y)idyds+ Z t0 Z 10 Gt�s(x; y)hfb(S�(s; y))� b(Xh(s; y))g12



+f�(S�(s; y))� �(Xh(s; y))g _h(s; y)idyds+ nXi=1 1Ift�Tig Z 10 �G�(t)�ti(x; y)�Gt�Ti(x; y)� g(S(ti�; y); zi)dy+ nXi=1 1Ift�Tig Z 10 Gt�Ti(x; y) [g(S(ti�; y); zi)� g(S(ti�; y); Zi)℄ dy+ nXi=1 1Ift�Tig Z 10 Gt�Ti(x; y) [g(S(ti�; y); Zi)� g(Xh(Ti�; y); Zi)℄ dy= A(t; x) + :::+H(t; x) (4.13)We 
ompute these terms one by one, still assuming that ! 2 
(�; �).Sin
e �(t) = t for all t � T1 � 
, and hen
e for all t � 13�0=16jA(t; x)j � jA(t; x)j1Ift�13�0=16g �k X0 k1 1Ift�13�0=16g Z 10 jG�(t)(x; y)�Gt(x; y)jdy (4.14)Using the Appendix, (7.4), then (4.10), we see thatjA(t; x)j � C �(t)� t(13�0=16) 32 � C k �� I k1� C� (4.15)Using Cau
hy-S
hwarz's inequality, then the Appendix (7.5), and �nally (4.10), we obtainjB(t; x)j � �Z t0 Z 10 hb(S(s; y)) + �(S(s; y)) _h(s; y)i2 dyds� 12��Z t0 Z 10 hG�(t)�s)(x; y)�Gt�s(x; y)i2 dyds� 12� C �q�(t)� t� 12 � C� 14 (4.16)Exa
tly in the same way, jC(t; x)j � C� 14 .Using (H), we see thatjD(t; x)j � C Z t0 Z 10 Gt�s(x; y) jS(s; y)� S�(s; y)j �1 + j _h(s; y)j� dyds (4.17)Thanks to Cau
hy-S
hwarz's inequality, and the Appendix (7.2),jD(t; x)j � C  Z t0 supy2[0;1℄ jS(s; y)� S�(s; y)j2 ds Z 10 G2t�s(x; y)dy! 12� C �Z t0 1If�(s)6=sg dspt� s� 12 (4.18)13



Using the H�older inequality with p = 3 and q = 3=2, we dedu
e thatjD(t; x)j � C �Z t0 1f�(s)6=sgds�1=6 �Z t0 ds(t� s)3=4�1=3� C �Z t0 1f�(s)6=sgds�1=6 � C(3n
)1=6 � C
1=6 (4.19)thanks to (4.8).The same 
omputation drives us tojE(t; x)j � C  Z t0 supy2[0;1℄ jS�(s; y)�Xh(s; y)j2 dspt� s! 12 (4.20)Using (4.7), and (3.1) in (S02), we see thatjF (t; x)j � C nXi=1 1Ift�Ti+
g supx;y2[0;1℄ ���G�(t)�ti(x; y)�Gt�Ti(x; y)��� (4.21)Thus, thanks to the Appendix (7.4),jF (t; x)j � C nXi=1 1Ift�Ti+
g j(�(t)� ti)� (t� Ti)j[(�(t)� ti) ^ (t� Ti)℄ 32 (4.22)But t � Ti + 
 implies that �(t) � ti � �(Ti + 
) � ti = 
. Hen
e, thanks to (4.10) andsin
e ! 2 
(�; �), jF (t; x)j � C k �� I k1 +supi jti � Tij
 32 � C�=
 32 (4.23)Using (7.3) of the appendix, we dedu
e thatjG(t; x)j � nXi=1 supy jg(S(ti�; y); zi)� g(S(ti�; y); Zi)j (4.24)Thanks to (3.1) in (S02), re
alling that for all i, d(zi; Zi) � �, we see that there exists afun
tion '(�) from IR+ into itself, de
reasing to 0 when � de
reases to 0, depending onlyon h, m, and on the parameters of equation (1.1), su
h thatjG(t; x)j � '(�) (4.25)In the same way, but using (3.2) and the fa
t that � � �(z1) ^ ::: ^ �(zn), we easily provethe existen
e of a fun
tion �(u) : IR+ 7! IR+, de
reasing to 0 when u de
reases to 0, su
hthat jH(t; x)j � nXi=1 1Ift�Tig � �  supy2[0;1℄ jS(ti�; y)�Xh(Ti�; y)j!� nXi=1 1Ift�Tig � �  supy2[0;1℄ jS�(Ti�; y)�Xh(Ti�; y)j! (4.26)14



sin
e �(Ti) = ti.Finally, setting I(t) = supy2[0;1℄ jS�(t; y)�Xh(t; y)j (4.27)and K(�; 
; �) = �1=4=
3=2 + 
1=4 + '(�) (4.28)we obtain :I(t) � CK(�; 
; �) + C �Z t0 I2(s) dspt� s� 12 + C nXi=1 1Ift�Tig�(I(Ti�)) (4.29)Hen
e I2(t) � CK2(�; 
; �) + C Z t0 I2(s) dspt� s + C nXi=1 1Ift�Tig�2(I(Ti�)) (4.30)Iterating one time this formula, we getI2(t) � CK2(�; 
; �) + C nXi=1 1Ift�Tig�2(I(Ti�)) (4.31)+ C Z t0 "CK2(�; 
; �) + C Z s0 I2(u) dups� u +C nXi=1 1Ifs�Tig�2(I(Ti�))# dspt� sUsing Fubini's Theorem, and noti
ing that Z tu dspt� sps� u � 4, we dedu
e thatI2(t) � CK2(�; 
; �) + C Z t0 I2(u)du+ C nXi=1 1Ift�Tig�2(I(Ti�)) (4.32)We now apply Gronwall's Lemma on [0; T1[. This gives :sup[0;T1[ I2(t) � CK2(�; 
; �)eCT � CK2(�; 
; �) (4.33)Thus, on [0; T2[, I2(t) � CK2(�; 
; �) + �2(CK2(�; 
; �)) + C Z t0 I2(s)ds (4.34)Thanks to Gronwall's Lemma,sup[0;T2[ I2(t) � �CK2(�; 
; �) + �2(K2(�; 
; �))� eCT (4.35)Iterating this argument, we dedu
e the existen
e of a fun
tion �(u) : IR+ 7! IR+, de
reasingto 0 when u de
reases to 0, su
h thatsup[0;T ℄ I(t) � � (K(�; 
; �)) (4.36)15



Hen
e, there exists Æ > 0 su
h that ifK(�; 
; �) � Æ, then sup[0;T ℄ I(t) � �=2. It now suÆ
esto 
hoose �, 
, � small enough, su
h thatK(�; 
; �) � Æ ; 2�=
 � �=2 (4.37)whi
h will imply, for all ! 2 
(�; �),Æ(Xh(!); S) �k I(!) k1 +jjj�(!)jjj � � (4.38)First, we 
hoose � 2℄0; �(z1) ^ ::: ^ �(zn)[ small enough, in order to get '(�) � Æ=3. Thenwe 
hoose 
 in ℄0; (�0=8) ^ (Æ=3)6[. Finally, we 
hoose0 < � < 
=2 ^ �Æ
 32 =3�4 ^ �
=4 (4.39)Proposition 3.2 is proved.5 The 
ase where N is "deterministi
".It remains to prove Proposition 3.3. In the whole se
tion,m(dt; dz) = nXi=1 Æ(ti ;zi)(dt; dz) 2M (5.1)is �xed. We set t0 = 0, tn+1 = T .We have to establish a support theorem for the solution of equation (3.4). Let us observethat this equation is not mu
h di�erent from that of Walsh [13℄. Indeed, it does only
ontain one additional term, a "jump drift". Nevertheless, it is far from possible to use amethod similar to that of Bally, Millet, Sanz-Sol�e in [2℄, who proved a support theorem forWalsh's equation, in parti
ular be
ause the solution of (3.4) does not lie in C([0; T ℄� [0; 1℄).But the times of jump of the solution Xm of equation (3.4) are deterministi
, and the as-so
iated skeleton S(h;m) (m is �xed) has the same times of jump. Thus we do not needthe Skorokhod topology : we will work with the stronger supremum norm on [0; T ℄� [0; 1℄.The method below 
onsists in applying the result of Bally, Millet, and Sanz-Sol�e on ea
htime interval [ti; ti+1[. To this end, we will de�ne some pro
esses Xim, whi
h equal Xm onlyon [ti; ti+1[�[0; 1℄, but also give information about the behaviour of Xm after ti+1. We willalso asso
iate with Xim some deterministi
 skeletons Sim(h). But we will apply the resultof [2℄ to the 
onditional law of Xim with respe
t to Fti (for ea
h i). Thus, we will have tode�ne a non-deterministi
 "
onditional skeleton" T im(h). Then we will develop a te
hni
alway to "paste the pie
es".Re
all that thanks to Remark 2.4, we have to prove on one hand that for all h 2 H, all� > 0, P (k Xm � S(h;m) k1� �) > 0 (5.2)16



and on the other hand thatP �Xm 2 fS(h;m) ; h 2 Hgk k1� = 1 (5.3)To this aim, we introdu
e some notations. First, if S(t; x) belongs to ID ([0; T ℄;C([0; 1℄)),and if 0 � u < v � T , k S k[u;v℄= supt2[u;v℄; x2[0;1℄ jS(t; x)j (5.4)We now de�ne re
ursively, for i in f0; :::; ng, the pro
esses Xim(t; x) on [ti; T ℄� [0; 1℄ :X0m(t; x) = Gt(X0; x) + Z t1^t0 Z 10 Gt�s(x; y)hb(X0m(s; y))dyds +�(X0m(s; y))W (dy; ds)i (5.5)and, for i 2 f1; :::; ng,Xim(t; x) = Xi�1m (t; x) + 1Ift�tig Z 10 Gt�ti(x; y)g(Xi�1m (ti�; y); zi)dy (5.6)+ Z ti+1^tti Z 10 Gt�s(x; y) hb(Xim(s; y))dyds+ �(Xim(s; y))W (dy; ds)iNoti
e that for all i,for all t 2 [ti; ti+1[; all x 2 [0; 1℄; Xim(t; x) = Xm(t; x) (5.7)Indeed, it suÆ
es to use a standard uniqueness argument. In the same way, we de�ne, forh 2 H, the fun
tions Sim(h) on [ti; T ℄� [0; 1℄, byS0m(h)(t; x) = Gt(X0; x) + Z t1^t0 Z 10 Gt�s(x; y)hb(S0m(h)(s; y))dyds (5.8)+�(S0m(h)(s; y)) _h(s; y)dydsiand, for i 2 f1; :::; ng,Sim(h)(t; x) = Si�1m (h)(t; x) + 1Ift�tig Z 10 Gt�ti(x; y)g(Si�1m (h)(ti�; y); zi)dy (5.9)+ Z ti+1^tti Z 10 Gt�s(x; y) hb(Sim(h)(s; y))dyds + �(Sim(h)(s; y)) _h(s; y)dydsiThen, for all i,for all t 2 [ti; ti+1[; all x 2 [0; 1℄; Sim(h)(t; x) = S(h;m)(t; x) (5.10)Finally, we de�ne the "
onditional skeleton" asso
iated with the 
onditional law of Ximwith respe
t to Fti :T im(h)(t; x) = Xi�1m (t; x) + 1Ift�tig Z 10 Gt�ti(x; y)g(Xi�1m (ti�; y); zi)dy (5.11)+ Z ti+1^tti Z 10 Gt�s(x; y) hb(T im(h)(s; y))dyds + �(T im(h)(s; y)) _h(s; y)dydsi17



The fun
tion T im(h) is de�ned on [ti; T ℄� [0; 1℄. For all t 2 [ti; T ℄, all x 2 [0; 1℄, T im(h)(t; x)is Fti-measurable.Then one 
an \nearly" use the Theorem of Bally, Millet, Sanz-Sol�e, [2℄ (see also Cardon-Weber, Millet, [3℄ for a more general setting), whi
h yields the following result.Proposition 5.1 Assume (H) and (S01). Then, with the above notations, for all i 2f0; :::; ng, the following 
onditional support theorem on [ti; T ℄� [0; 1℄ holds :suppk k[ti;T ℄ L �Xim j Fti � = fT im(h) / h 2 Hgk k[ti;T ℄ (5.12)In fa
t, the main theorem in [2℄ only yields the result for i = 0, with R t0 instead of R t^t10 .But 
onditioning is not a problem, and the initial values we obtain, for exampleXi�1m (t; x) + Z 10 Gt�ti(x; y)g(Xi�1m (ti�; y); zi)dy= Xi�1m (t; x) +Gt�ti �g(Xi�1m (ti�; :); zi); x� (5.13)behave on [ti; T ℄ exa
tly as Gt(X0; x) on [0; T ℄, sin
e they are Fti-measurable, sin
eg(Xi�1m (ti�; :); zi) is 
ontinuous on [0; 1℄, and sin
e Xi�1m (t; x) is 
ontinuous on [0; T ℄� [0; 1℄.Finally, it is 
lear that 
onsidering the integrals from ti to t^ ti+1 instead of 0 to t will not
hange mu
h...We now establish a Lemma, whi
h will allow to paste the pie
es. If k Xim(!)�Sim(h) k[ti;T ℄is small, then the initial 
onditions asso
iated with Si+1m (h) and T i+1m (h)(!) are near, andthus the distan
e between Si+1m (h) and T i+1m (h)(!) is small. We need this Lemma, be
auseProposition 5.1 gives an idea of the distan
e between Xim(!) and T im(h)(!), but what weneed to 
ontrol is the distan
e between Sim(h) and Xim(!).Lemma 5.2 Assume (H), (S02). There exists a fun
tion 
(x; u) : IR+� IR+ 7! IR+, su
hthat for ea
h x, 
(x; u) de
reases to 0 when u de
reases to 0, and su
h that for all � > 0,all i 2 f0; :::; n � 1g,n! 2 
 .k Xim(!)� Sim(h) k[ti;T ℄� �o� n! 2 
 .k Si+1m (h) � T i+1m (h)(!) k[ti+1;T ℄� 
(k _hj[ti+1;ti+2℄ kL2 ; �)o (5.14)where k _hj[ti+1;ti+2℄ k2L2= R ti+2ti+1 R 10 _h2(s; y)dyds.Proof : Let ! belong to fk Xim�Sim(h) k[ti;T ℄� �g. Then, for all t in [ti+1; T ℄, all x in [0; 1℄,using (H), ��Si+1m (h)(t; x) � T i+1m (h)(t; x)�� � ��Sim(h)(t; x) �Xim(t; x)��+ Z 10 Gt�ti+1(x; y) ���g �Xim(ti+1�; y); zi�� g �Sim(h)(ti+1�; y); zi���� dy+C Z ti+2^tti+1 Z 10 Gt�s(x; y) ���Si+1m (h)(s; y) � T i+1m (h)(s; y)��� �1 + j _h(s; y)j� dyds (5.15)18



We now set F (t) = supx2[0;1℄ ���Si+1m (h)(t; x) � T i+1m (h)(t; x)��� (5.16)Using the assumption about !, assumption (S02), the Appendix (7.3) and (7.2), andCau
hy-S
hwarz's inequality, we get :F (t) � �+  zi(�) + C �1+ k _hj[ti+1;ti+2℄ kL2� Z tti+1 F 2(s) dspt� s! 12 (5.17)where  zi was de�ned in assumption (S02). Hen
e,F 2(t) � C�2 + C 2zi(�) + C �1+ k _hj[ti+1;ti+2℄ kL2�2 Z tti+1 F 2(s) dspt� s (5.18)Iterating on
e this formula (see the previous se
tion, inequalities (4.30), (4.31), and (4.32)for more pre
isions), we obtain the existen
e of a fun
tion 
, satisfying the assumptions ofthe statement, su
h thatF 2(t) � 
 �k _hj[ti+1;ti+2℄ kL2 ; ��+ C �1+ k _hj[ti+1;ti+2℄ kL2�2 Z tti+1 F 2(s)ds (5.19)Gronwall's Lemma allows to 
on
lude.In order to simplify the notations, we assume in the sequel that n = 2, i.e. thatm(dt; dz) = Æ(t1;z1) + Æ(t2;z2) (5.20)1) We �x h 2 H, and � > 0, and we 
he
k thatP0 = P (k Xm � S(h;m) k1� �) > 0 (5.21)First, using (5.7) and (5.10), we see thatP0 � P� k X0m � S0m(h) k[0;T ℄� �=3; k X1m � S1m(h) k[t1;T ℄� �=3;k X2m � S2m(h) k[t2;T ℄� �=3� (5.22)Noti
ing that for ea
h i, Xim is Fti+1 -measurable and Sim(h) is deterministi
, we obtain, by
onditionning our probability with respe
t to Ft2 ,P0 � Eh1Ifk X0m � S0m(h) k[0;T ℄� �=3g1Ifk X1m � S1m(h) k[t1;T ℄� �=3g�P �k X2m � S2m(h) k[t2;T ℄� �=3 ��� Ft2� i (5.23)On the other hand,
19



P �k X2m � S2m(h) k[t2;T ℄� �=3 ��� Ft2�� P �k X2m � T 2m(h) k[t2;T ℄� �=6; k T 2m(h)� S2m(h) k[t2;T ℄� �=6��� Ft2�� 1Ifk T 2m(h) � S2m(h) k[t2;T ℄� �=6gP �k X2m � T 2m(h) k[t2;T ℄� �=6��� Ft2� (5.24)sin
e S2m(h) is deterministi
 and T 2m(h) is Ft2 -measurable. Using Proposition 5.1, we alsoknow that a.s., P �k X2m � T 2m(h) k[t2;T ℄� �=6��� Ft2� > 0 (5.25)Hen
e, it suÆ
es that P1 > 0, whereP1 = P� k X0m � S0m(h) k[0;T ℄� �=3; k X1m � S1m(h) k[t1;T ℄� �=3k T 2m(h)� S2m(h) k[t2;T ℄� �=6� (5.26)Thanks to Lemma 5.2, we know that for � > 0 small enough,k X1m � S1m(h) k[t1;T ℄< � =)k T 2m(h)� S2m(h) k[t2;T ℄� �=6 (5.27)Thus, P1 � P� k X0m � S0m(h) k[0;T ℄� �=3; k X1m � S1m(h) k[t1;T ℄� � ^ �=3� (5.28)Iterating this argument, we see that P0 is stri
tly positive as soon as P2 > 0, whereP2 = P� k X0m � S0m(h) k[0;T ℄� �� (5.29)for some � > 0 small enough. But it is 
lear that S0m(h) identi
ally equals T 0m(h). Thus,Proposition 5.1 implies that P2 is stri
tly positive, and hen
e that (5.21) holds, whi
h wasour aim.2) We still have to 
he
k thatP �Xm 2 fS(h;m) ; h 2 Hgk k1� = 1 (5.30)We know from Proposition 5.1 that for almost all !, say for all ! 2 �
, with P (�
) = 1,X0m(!) 2 fT 0m(h); h 2 Hgk k1 ; X1m(!) 2 fT 1m(h)(!); h 2 Hgk k1X2m(!) 2 fT 2m(h)(!); h 2 Hgk k1 (5.31)We now �x ! 2 �
. There exists h0n 2 H, h1n 2 H, h2n 2 H, (depending on !) su
h that, fori 2 f0; 1; 2g, when n goes to in�nity,k Xim(!)� T im(hin)(!) k[ti;T ℄�! 0 (5.32)20



We now set hn;k;q(t; x) = h0n(t; x)1I[0;t1℄(t) + h1k(t; x)1I[t1;t2℄(t) + h2q(t; x)1I[t2;T ℄(t) (5.33)We �x � > 0, and we prove that for n, k, q large enough,k Xm(!)� S(hn;k;q;m) k[0;T ℄� � (5.34)whi
h will suÆ
e. One 
an easily 
he
k, using (5.7) and (5.10), thatk Xm(!)� S(hn;k;q;m) k[0;T ℄� A0n(!) +A1k(!) +A2q(!) +B0n(!) +B1k(!) +B2q (!) (5.35)where (if i = 0; 1; 2 and l 2 IN )Ail(!) =k Xim(!)� T im(hil)(!) k[ti;T ℄ (5.36)and Bil (!) =k T im(hil)(!)� Sim(hil) k[ti;T ℄ (5.37)First noti
e that B0n vanishes identi
ally. Thanks to Lemma 5.2, we know thatB1k(!) � 
 �k _h1kj[t1;t2℄ kL2 ; A0n(!)� (5.38)B2q (!) � 
 �k _h2q j[t2;T ℄ kL2 ; A1k(!) +B1k(!)� (5.39)i) First, we 
hoose q large enough, in order thatA2q(!) � �=6 (5.40)Now that q is �xed, we 
onsider � > 0 su
h that
 �k _h2q j[t2;T ℄ kL2 ; �� � �=6 (5.41)ii) Then we 
hoose k in su
h a way thatA1k(!) � �=6 ^ �=2 (5.42)and we 
onsider � > 0 su
h that
 �k _h1kj[t1;t2℄ kL2 ; �� � �=6 ^ �=2 (5.43)iii) Finally, we 
hoose n su
h that A0n(!) � �=6 ^ � (5.44)We dedu
e from (5.44), (5.38), and (5.43) thatB1k(!) � �=6 ^ �=2 (5.45)Thanks to (5.45), (5.42), (5.41), and (5.39), we also see thatB2q (!) � �=6 (5.46)Finally, using (5.35), (5.44), (5.42), (5.40), (5.45), (5.46), we dedu
e (5.34). We thus have
he
ked that for ea
h ! 2 �
, all � > 0, there exists h 2 H su
h thatk Xm(!)� S(h;m) k1� � (5.47)Sin
e P (�
) = 1, (5.30) holds, and Proposition 3.3 is proved.21



6 Extension to the 
ase of an a.s. in�nite number of jumpswhen the di�usion 
oeÆ
ient is 
onstant.We now 
onsider equation (1.1) in the following new setting : the di�usion 
oeÆ
ient is
onstant, �(x) � � ; but the positive measure q on E is only assumed to be �-�nite (apriori, q(E) = 1). N is still a Poisson measure on [0; T ℄ � E, with intensity measuredtq(dz). The evolution equation asso
iated to equation (1.1) is still given by (2.5).We also 
onsider an in
reasing sequen
e of subsets Ep of E satisfyingq(Ep) <1 ; [p2INEp = E (6.1)In order to obtain a result of existen
e and uniqueness, we state the following hypothesis :Assumption (A) : the fun
tion � is 
onstant. The fun
tion b satisfy a globalLips
hitz 
ondition. There exists � 2 L1(E; q) su
h that for all x; y 2 IR, allz 2 E, jg(0; z)j � �(z) ; jg(x; z) � g(y; z)j � jx� yj�(z) (6.2)Proposition 2.2 yields that equation (1.1) with Ep instead of E admits a unique weaksolution Xp lying in ID ([0; T ℄;C([0; 1℄)). Under (A), using strongly the fa
t that � is
onstant, it is easy to 
he
k that there exists an adapted pro
ess X su
h that, when p goesto in�nity, E  sup[0;T ℄�[0;1℄ jX(t; x) �Xp(t; x)j! �! 0 (6.3)This way, we obtain the existen
e of an adapted weak solution X of equation (1.1) withour new setting. See Remark 6.6 for the 
ase where � is not a 
onstant.The uniqueness is straightforward under (A), and we 
an state the following proposition.Proposition 6.1 Assume (A). Equation (1.1) admits a unique weak solution X(t; x), lyinga.s. in ID ([0; T ℄;C([0; 1℄)), and bounded in L1.We now 
onsiderMp = 8><>:m(dt; dz) = nXi=1 Æ(ti;zi)(dt; dz) , n 2 IN; 0 < t1 < ::: < tn < T;z1; :::; zn 2 supp q \Ep 9>=>; (6.4)and we setM = [pMp. The Cameron-Martin spa
e H asso
iated withW is still de�ned by(2.13). For ea
h m 2M and h 2 H, we denote by S(h;m) the unique solution of equation(2.15) (there is no di�eren
e with Proposition 2.3, sin
e there exists p su
h that m 2Mp).Sin
e g is already Lips
hitz, we assume (T ) below instead of (S2),Assumption (T ) : for ea
h z0 2 E, ea
h n 2 IN ,supjxj�n jg(x; z) � g(x; z0)j �!d(z;z0)!0 0 (6.5)For ea
h z0 in E, there exists �(z0) > 0 su
h thatsupd(z;z0)��(z0) �(z) <1 (6.6)22



A fun
tion g(x; z) = �(z)�(z) 
learly satis�es (A) and (T ) if � is lips
hitz, and � 2 L1(E; q)is 
ontinuous. The aim of this se
tion is to prove the following result.Theorem 6.2 Under (A) and (T ), if X denotes the unique weak solution of equation (1.1),suppÆ P ÆX�1 = fS(h;m) / h 2 H ; m 2MgÆ (6.7)Sin
e the method of Simon [10℄, 
ombined with the previous se
tions, applies easily, we willonly sket
h the Proof.First, for the same reasons as in the previous se
tions, see Proposition 3.1, we 
an assume,additionally to (A) and (T ), that for all x 2 IR, all z 2 E, jg(x; z)j � �(z) and for ea
hz0 2 E, supx2IR jg(x; z) � g(x; z0)j �!d(z;z0)!0 0 (6.8)Then, we noti
e that the dire
t in
lusion (�) of Theorem 6.2 is immediate, thanks to The-orem 2.5 (for Xp) and thanks to the 
onvergen
e (6.3).We now �x p 2 IN , h 2 H, m =Pni=1 Æ(ti ;zi) 2Mp, and � > 0. We have to prove thatP (Æ(X;S(h;m)) � �) > 0 (6.9)To prove this, we will use three lemmas. The �rst one is a very parti
ular 
ase of the resultof Bally, Millet, Sanz, [2℄.Lemma 6.3 Let � > 0 be �xed, and let
0(�) = (! 2 
 ,supt;x ����Z t0 Z 10 Gt�s(x; y)nW (dy; ds)� _h(s; y)dydso���� � �) (6.10)Then P (
0(�)) > 0.We now write the restri
tion Np = N j[0;T ℄�Ep (re
all that p is �xed) asNp(ds; dz) = �Xi=1 Æ(Ti;Zi)(ds; dz) (6.11)The se
ond lemma 
an be proved by using the same method as that of Proposition 3.2 (seeSe
tion 4). The only di�eren
e 
omes from the fa
t that Xp(!) depends on W , but sin
e� is 
onstant, Lemma 6.3 allows to deal easily with this problem.Lemma 6.4 Let � > 0 be �xed. There exists a set
1(�) 2 � fN(A) ; A 2 B([0; T ℄�Ep)g (6.12)su
h that P (
1(�)) > 0, su
h that for ea
h ! 2 
1(�),�(!) = n ;8i; d(zi; Zi(!)) � �(zi) (6.13)and su
h that for some � > 0 small enough, every ! 2 
0(�) \ 
1(�) satis�esÆ(Xp(!); S(h;m)) � � (6.14)23



We will �nally use the following result :Lemma 6.5 Let 
 > 0 be �xed, and let
2(
) = (! 2 
 ,Z T0 ZE=Ep �(z)N(ds; dz) � 
) (6.15)Then P (
2(
)) > 0.Proof of Lemma 6.5 : we set �p = Z T0 ZE=Ep �(z)N(ds; dz) (6.16)and, for q > p, �qp = Z T0 ZEq=Ep �(z)N(ds; dz) (6.17)We see that �p = �qp+ �q, that for all q, P (�qp = 0) > 0, and that when q goes to in�nity, �qgoes to 0 in probability. Sin
e for ea
h q, �qp is independent of �q, we 
an writeP (�p � 
) � P (�qp = 0)P (�q � 
) (6.18)and the lemma follows easily.We �nally sket
h the proof of Theorem 6.2. An easy independan
e argument yields thatfor every � > 0, � > 0, 
 > 0, the set
3(�; �; 
) = 
0(�) \ 
1(�) \ 
2(
) (6.19)has a stri
tly positive probability. We now have to to 
hoose �; �; 
 in su
h a way that forall ! 2 
3(�; �; 
), Æ(X(!); S(h;m)) � � (6.20)Let ! 2 
3(�; �; 
) be �xed. If � is small enough, we know from Lemma 6.4 thatÆ(X(!); S(h;m)) � k X(!)�Xp(!) k1 +Æ(Xp(!); S(h;m))� k X(!)�Xp(!) k1 +� (6.21)We now set V p(t) = supx2[0;1℄ jX(t; x) �Xp(t; x)j (6.22)Using the Appendix, (A), (T ), sin
e jg(x; z)j � �(z), and sin
e ! belongs to 
3(�; �; 
), wesee that V p(t) � C Z t0 V p(s)ds+ C nXi=1 1ft�TigV p(Ti�)�(Zi)+ Z T0 ZEnEp �(z)N(ds; dz)� C Z t0 V p(s)ds+ C nXi=1 1ft�TigV p(Ti�) + 
 (6.23)24



For the se
ond term, we have used (6.6) in Assumtion (T ), and the fa
t that for all i, Zibelongs to fz 2 E ; d(zi; z) � �(zi)g.Applying su

essively Gronwall's Lemma on the time intervals [0; T1[, ..., [Tn; T ℄, we dedu
ethat for all ! 2 
3(�; �; 
), sup[0;T ℄V p(!; t) � C
 (6.24)The 
on
lusion follows easily.Remark 6.6 Of 
ourse, we are also interested in the 
ase where q(E) = 1 and � is afun
tion. In this 
ase, it is possible to prove (under assumptions) that the sequen
e Xp ofweak solutions of (1.1) where we have repla
ed E by Ep, 
onverges to an adapted pro
essX(t; x) in the following sense :supt;x E (jX(t; x) �Xp(t; x)j) �! 0 (6.25)On
e X is built, it might be possible to 
he
k that it admits a modi�
ation lying inID ([0; T ℄;C([0; 1℄)), by using the fa
t that X satis�es the evolution equation, but this is notimmediate. If so, it seems natural to think that our support theorem extends to this 
ase.However, everything will be
ome mu
h more te
hni
al. In parti
ular, the dire
t in
lusion isnot obvious any more, sin
e (6.3) does not seem to hold any more.7 AppendixWe 
olle
t here well-known estimates about the Green kernel Gt(x; y) asso
iated with thedeterministi
 system (2.1), and whi
h has the expression (2.2). In all the inequalities below,the 
onstant C depends only on the terminal time value T . The three �rst estimates 
anbe found in [13℄, and the next ones are either easy 
onsequen
es or 
lassi
al estimates.First, for all x; y 2 [0; 1℄ and all t 2 [0; T ℄,1p4�t exp(�(y � x)24t ) � Gt(x; y) � Cpt exp(�(y � x)24t ) (7.1)For all 0 < t < T , all x 2 [0; 1℄, Z 10 G2t (x; y)dy � Cpt (7.2)and Z 10 Gt(x; y)dy = 1 (7.3)For all 0 < s < t < T , all x; y 2 [0; 1℄, (see Lemma A3 in [4℄)jGt(x; y)�Gs(x; y)j � C jt� sjs 32 (7.4)and (see Lemma B1 in [2℄)Z s0 Z 10 (Gt�r(x; y)�Gs�r(x; y))2 dydr + Z ts Z 10 G2t�r(x; y)dydr � Cpt� s (7.5)25



Finally, for all � 2 C([0; 1℄), the map(t; x) 7! Gt(�; x) (7.6)is 
ontinuous on [0; T ℄� [0; 1℄ (see Lemma A2 in [2℄ for a similar result).Referen
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