
Support theorem for the solution of a white noise drivenparaboli S.P.D.E. with temporal Poissonian jumps.Niolas FOURNIER101, July, 1999AbstratWe study the weak solution X of a paraboli stohasti partial di�erential equationdriven by two independent proesses : a gaussian white noise, and a �nite Poisson mea-sure. We haraterize the support of the law of X as the losure in ID ([0; T ℄;C([0; 1℄)),endowed with its Skorokhod topology, of a set of weak solutions of ordinary partialdi�erential equations.Key words : Paraboli stohasti partial di�erential equations, Support theorem, Poissonmeasure, White noise.MSC 91 : 60H15, 60F99, 60G55, 60G57.1 Introdution.Consider on [0; T ℄ � [0; 1℄ a spae-time white noise W (dx; dt) based on dxdt (see Walsh,[13℄, p 269). Denote by (E; d) a Polish spae, endowed with a positive �nite measure q, andby N(dt; dz) a Poisson measure on [0; T ℄�E, with intensity measure dtq(dz), independentof W . Our purpose is to study the following stohasti partial di�erential equation on[0; T ℄� [0; 1℄�X�t (t; x) = �2X�x2 (t; x) + b(X(t; x)) + �(X(t; x)) _Wx;t + ZE g(X(t�; x); z) _Nt(dz) (1.1)with Neumann boundary onditions�X�x (t; 0) = �X�x (t; 1) = 0 ; 8 t > 0 (1.2)1Laboratoire de Probabilit�es, UMR 7599, Universit�e Paris VI, 4, Plae Jussieu, Tour 56, 3o �etage, F-75252Paris C�edex 05, fournier�proba.jussieu.fr. 1



and deterministi initial ondition X0(x) 2 C([0; 1℄). The symbol _Nt(dz) (resp. _Wt;x)stands for the heuristial Radon-Nikodym density of N(dt; dz) (resp. W (dx; dt)) with re-spet to the Lebesgue measure dt (resp. dtdx). We ould also write, with abusive notations,_Nt(dz)dtdx = dxN(dt; dz) and _Wx;tdtdx =W (dx; dt).We denote by ID ([0; T ℄;C([0; 1℄)) the set of �adl�ag funtions from [0; T ℄ into C([0; 1℄),endowed with the orresponding Skorokhod topology. In this paper, we haraterize thesupport of the law of a weak solution X of equation (1.1) as the losure of a set of weaksolutions of ordinary partial di�erential equations in ID ([0; T ℄;C([0; 1℄)).Paraboli S.P.D.E.s driven by a white noise, i.e. equation (1.1) with g � 0, have beenintrodued by Walsh, [12℄ and [13℄. In [13℄, he de�nes his weak solutions, then he proves atheorem of existene, uniqueness and regularity. Sine, various properties of Walsh's equa-tion have been investigated : Malliavin alulus, large deviations, support theorem (seeBally, Millet, Sanz-Sol�e, [2℄) ...But Walsh builds his equation in order to model a disontinuous neurophysiologial phe-nomenon. In [12℄, he explains that the white noiseW approximates a Poisson point proess.This approximation is realisti beause there are many jumps, and the jumps are very small,but in any ase, the observed phenomenon is disontinuous. However, S.P.D.E.s with jumpsare muh less known. In the ase of temporal and spatial jumps, Saint Loubert Bi�e havestudied in [9℄ the existene, uniqueness, regularity, and variational alulus. See also [5℄ forother results on the same subjet. Nevertheless, no result about the \joint" regularity ofthe weak solutions has been proved in this ase : we do not really know in whih spae theweak solution \lives", thus no support theorem may hold for the moment.In the ase of equation (1.1) with � � 0, but with q(E) = 1, and with a ompensatedPoisson measure, Albeverio et al. have heked in [1℄ the existene and uniqueness of a\modi�ed �adl�ag" weak solution u(t; x) : a.s., u is ontinuous in x ; and u is right ontinu-ous and has left limits in L2(
) in the variable t. One more time, we do not know in whihspae lies a.s. the weak solution.Sine Strook and Varadhan established in [11℄ their famous support theorem for di�usionproesses, their has been many investigations on the subjet. In partiular, Millet and Sanzhave onsiderably simpli�ed in [8℄ the proof of Strook and Varadhan. But the only sup-port theorem for jump proesses seems to be that of Simon in [10℄, who studies a stohastidi�erential equation driven by a (ompensated or not) in�nite Poisson measure. At last,let us mention that as far as we know, no support theorem seems to be known in the aseof equations driven by two independent (but di�erent) random elements.This work is organized as follows. In the seond setion, we de�ne the weak solutions of(1.1), by following the Walsh ideas, [13℄. Using Ikeda and Watanabe's method, see [6℄, andapplying Walsh's results, we sketh the proof of an existene and uniqueness result. Wede�ne the \skeleton" assoiated with equation (1.1), by using the Cameron-Martin spaeassoiated with W and the set of �nite ounting measures assoiated with N . Finally, westate our support theorem.The third setion is devoted to a simpli�ation of the problem. First, we use a loalization2



argument, in order to obtain weaker assumptions. Then we prove that it suÆes to hektwo simpler support theorems. The �rst one is proved in the fourth setion, and is relatedto an equation similar to (1.1), but without white noise : _Wt;x is repaed by _h(t; x), whereh is an element of the Cameron-Martin spae assoiated with W . The seond one is provedin the �fth setion, and deals with an equation without Poisson measure, but with anadditional "jump drift". This onludes the proof of our main result.The sixth setion is devoted to an extension of our result to the ase where the Poissonmeasure is a.s. in�nite (q(E) =1), but where the di�usion oeÆient is onstant (�(x) =�).Finally, one an �nd tehnial results in the Appendix lying at the end of the paper.2 Framework.Let us �rst de�ne the weak solutions of (1.1). To this aim, we need some assumptions :Assumption (H) : the funtions � and b : IR 7! IR, satisfy a global Lipshitzondition. The funtion g : IR�E 7! IR is measurable on IR�E, and for eahz 2 E, the map g(:; z) is ontinuous on IR.We de�ne the weak solutions of (1.1) by following the Walsh ideas, [13℄, p 311-322. Considerthe Green kernel Gt(x; y) assoiated with the deterministi system :�u�t = �2u�x2 ; �u�x (t; 0) = �u�x (t; 1) = 0 (2.1)This kernel an be expliitely omputed :Gt(x; y) = 1p4�t Xn2Z "exp �(y � x� 2nL)24t !+ exp �(y + x� 2nL)24t !# (2.2)If � belongs to C([0; 1℄), we setGt(�; x) = 8>><>>: �(x) if t = 0Z 10 Gt(x; y)�(y)dy if t > 0 (2.3)The Appendix of this work ontains tehnial results about this kernel. We endow ourprobability spae (
;F ; P ) with the anonial �ltration assoiated with the independentrandom elements W and N :Ft = � fW (A) ; A 2 B([0; 1℄ � [0; t℄)g _ � fN(B) ; B 2 B([0; t℄�E)g (2.4)A proess X(t; x) on [0; T ℄� [0; 1℄ is said to be adapted if for all t � 0, all x 2 [0; 1℄, X(t; x)is Ft-measurable.As Walsh, see also Saint Loubert Bi�e, [9℄, or Fournier, [5℄, we de�ne the weak solutions of(1.1) in the following sense. 3



De�nition 2.1 Let X0 : [0; 1℄ 7! IR be a ontinuous deterministi funtion. Consider anadapted proess X(t; x) on [0; T ℄� [0; 1℄, lying a.s. in ID ([0; T ℄;C([0; 1℄)). Then X is saidto be a weak solution of (1.1) if and only if it satis�es the following evolution equationX(t; x) = Gt(X0; x) + Z t0 Z 10 Gt�s(x; y) [b(X(s; y))dyds + �(X(s; y))W (dy; ds)℄+ Z t0 ZE Z 10 Gt�s(x; y)g(X(s�; y); z)dy N(ds; dz) (2.5)where Gt(X0; x) is de�ned by (2.3), and with the onventionZ 10 G0(x; y)g(X(s�; y); z)dy = g(X(s�; x); z) (2.6)We now establish a result of existene and uniqueness of suh a solution. Sine q(E) is�nite, N([0; T ℄�E) is a.s. �nite, and thus N an a.s. be written asN(dt; dz) = �Xi=1 Æ(Ti;Zi)(dt; dz) (2.7)with � 2 IN , 0 < T1 < ::: < T� < T , and Z1; :::; Z� 2 E. Hene, equation (2.5) an bewritten asX(t; x) = Gt(X0; x) + Z t0 Z 10 Gt�s(x; y) [b(X(s; y))dyds + �(X(s; y))W (dy; ds)℄+ �Xi=1 1Ift�Tig Z 10 Gt�Ti(x; y)g(X(Ti�; y); Zi)dy (2.8)Working reursively on the time intervals [0; T1[, [T1; T2[,..., [T�; T ℄, as Ikeda and Watanabe(proof of Theorem 9-1 p 231-232 in [6℄), using Walsh's Theorems of existene, uniqueness,and regularity for equation (1.1) with g � 0 (see [13℄, Theorem 3-2 p 313 and Corollary 3-4p 317), and using the well-known estimates of the Green kernel stated in the Appendix,one an prove the following proposition :Proposition 2.2 Assume (H). Equation (1.1) admits a unique adapted solution X(t; x)on [0; T ℄� [0; 1℄, lying a.s. in ID ([0; T ℄;C([0; 1℄)). The uniqueness holds in the sense whereif Y is another adapted solution lying in ID ([0; T ℄;C([0; 1℄)), then a.s.,sup[0;T ℄�[0;1℄ jX(t; x) � Y (t; x)j = 0 (2.9)We are now interested in the support of the law of X. Let us �rst reall the de�nition of theSkorokhod distane on ID ([0; T ℄;C([0; 1℄)). We onsider the set of the "hanges of time" :� = f� 2 C([0; T ℄) / �(0) = 0; �(T ) = T; � is stritly inreasingg (2.10)For � 2 �, we set jjj�jjj = sup0�s<t�T ����ln��(t)� �(s)t� s ����� (2.11)4



The Skorokhod distane between two elements � and  of ID ([0; T ℄;C([0; 1℄)) is given byÆ(�;  ) = inf�2�( sup[0;T ℄�[0;1℄ j�(�(t); x) �  (t; x)j+ jjj�jjj) (2.12)ID ([0; T ℄;C([0; 1℄)), endowed with Æ, is a Polish spae (see e.g. Jaod, Shiryaev, [7℄, p 289).We now introdue some notations, desribing the \supports" of W and N : we denote byH = �h(t; x) = Z t0 Z x0 _h(s; y)dyds� _h 2 L2([0; T ℄� [0; 1℄)� (2.13)the Cameron-Martin spae assoiated withW . We also onsider the set of the �nite ount-ing measures on [0; T ℄�E, the support of whih is ontained in [0; T ℄� supp q :M = 8><>:m(dt; dz) = nXi=1 Æ(ti ;zi)(dt; dz) , n 2 IN; 0 < t1 < ::: < tn < T;z1; :::; zn 2 supp q 9>=>; (2.14)with the onvention P0i=1 = 0. Notie that for all ! 2 
, N(!) belongs to M. But ingeneral, (with abusive notation) _W (!) =2 H, sine _W (!) is not even well-de�ned.The following proposition, desribes the \skeleton" assoiated with our evolution equation.Proposition 2.3 Assume (H). Let h 2 H and m 2 M be �xed. The following ordi-nary evolution equation admits a unique solution, whih we denote by S(h;m), lying inID ([0; T ℄;C([0; 1℄)) :S(h;m)(t; x) = Gt(X0; x) + Z t0 Z 10 Gt�s(x; y)hb(S(h;m)(s; y))dyds+�(S(h;m)(s; y)) _h(s; y)dydsi+ Z t0 ZE Z 10 Gt�s(x; y)g(S(h;m)(s�; y); z)dy m(ds; dz) (2.15)This proposition an be proved as Proposition 2.2. Equation (2.15) is the same as (2.5),but we have replaed W (dy; ds) and N(ds; dz) by _h(s; y)dyds and m(ds; dz).Finally, we reall the following standard remark :Remark 2.4 Let Z be a random variable with values in a Polish spae A endowed with adistane �. Reall that the support supp� P ÆZ�1 of the law of Z related to the distane �is the smaller losed subset F of (A;�) satisfying P (Z 2 F ) = 1.Let B be a subset of A, and let B� be its losure in (A;�).1. If a.s., Z 2 B�, then supp� P Æ Z�1 � B� (2.16)5



2. If for all b 2 B, all � > 0, P (�(b; Z) < �) > 0 (2.17)then B� � supp� P Æ Z�1 (2.18)In order to establish a support Theorem, we need the following assumptions.Assumption (S1) : the funtion � is C3 on IR.Assumption (S2) : for eah z0 2 E, eah n 2 IN ,supjxj�n jg(x; z) � g(x; z0)j �!d(z;z0)!0 0 (2.19)For eah z0 2 E, eah n 2 IN , there exists a onstant �n(z0) > 0, and a funtion nz0(u) : IR+ 7! IR+, dereasing to 0 when u dereases to 0, suh that for alljxj � n, jyj � n, supd(z;z0)��n(z0) jg(x; z) � g(y; z)j �  nz0(jx� yj) (2.20)Assumption (S1) is nearly the same as that of Bally, Millet, Sanz, [2℄, who prove a supporttheorem in the ase where g � 0, and omes from a Taylor developpement of order 3. Infat they assume that � is C3b , but a loalisation proedure an be done (see the proof ofProposition 3.1 in the next setion).Assumption (S2) says that g is loally uniformly ontinuous. In the partiular ase whereE is loally ompat, (S2) is satis�ed as soon as g is ontinuous on [0; T ℄ �E.Now we an state our main result :Theorem 2.5 Under (H), (S1), and (S2), if X denotes the unique weak solution of equa-tion (1.1), suppÆ P ÆX�1 = fS(h;m) / h 2 H ; m 2MgÆ (2.21)3 Simpli�ation of the problem.First, we "deloalize" (S1) and (S2), by using a standard argument. Consider the followingassumptions, stronger than (S1) and (S2).Assumption (S01) : the funtion � is C3 on IR, bounded with its derivatives.Assumption (S02) : For all z0 2 E,supx2IR jg(x; z0)j <1 ; supx2IR jg(x; z) � g(x; z0)j �!d(z;z0)!0 0 (3.1)For all z0 2 E, there exists �(z0) > 0, and a funtion  z0(u) : IR+ 7! IR+,dereasing to 0 when u dereases to 0, suh that for all x; y 2 IR,supd(z;z0)��(z0) jg(x; z) � g(y; z)j �  z0(jx� yj) (3.2)6



Proposition 3.1 If Theorem 2.5 holds under (H), (S01) and (S02), then it also holds under(H), (S1) and (S2).We will prove this proposition at the end of the setion.We now would like to hek that Theorem 2.5 holds as soon as two easier support theoremsare valid. The �rst one deals with equation 2.5 with a "deterministi" white noise, and theseond one with a "deterministi" Poisson measure.We �rst introdue some notations. If h 2 H (resp. m 2 M), we denote by Xh (resp.Xm) the solution of equation (2.5) where we have replaed W (dy; ds) by _h(s; y)dyds (resp.N(dt; dz) by m(dt; dz)). In other words,Xh(t; x) = Gt(X0; x) + Z t0 Z 10 Gt�s(x; y) hb(Xh(s; y))dyds + �(Xh(s; y)) _h(s; y)dydsi+ Z t0 ZE Z 10 Gt�s(x; y)g(Xh(s�; y); z)dy N(ds; dz) (3.3)Xm(t; x) = Gt(X0; x) + Z t0 Z 10 Gt�s(x; y) [b(Xm(s; y))dyds + �(Xm(s; y))W (dy; ds)℄+ Z t0 ZE Z 10 Gt�s(x; y)g(Xm(s�; y); z)dy m(ds; dz) (3.4)We ould also write, with abusive notations, Xh = S(h;N), and Xm = S( _W;m). The nextsetions are devoted to the proof of the following propositions.Proposition 3.2 Assume (H) and (S02). Let h 2 H, m 2M, and � > 0 be �xed. ThenP (Æ(S(h;m);Xh) � �) > 0 (3.5)We now denote by k u k1= sup[0;T ℄�[0;1℄ ju(t; x)j the supremum norm on [0; T ℄� [0; 1℄.Proposition 3.3 Assume (H), (S01) and (S02). Let m 2M be �xed. Thensuppk k1 P ÆX�1m = fS(h;m) / h 2 Hgk k1 (3.6)Let us remark that this seond result implies the weaker one :suppÆ P ÆX�1m = fS(h;m) / h 2 HgÆ (3.7)Assuming for a moment that these propositions hold, we prove our main result.Proof of Theorem 2.5 : using Remark 2.4, we break the proof in two parts.7



1) We �rst hek that a.s., X belongs to fS(h;m) / h 2 H; m 2MgÆ. Consider the mapfrom M to [0; 1℄, de�ned by�(�) = P �X� 2 fS(h;m) / h 2 H; m 2MgÆ� (3.8)Let us �rst prove that a.s.,P �X 2 fS(h;m) / h 2 H; m 2MgÆ ��� �(N)� = �(N) (3.9)where �(N) = � fN(A) ; A 2 B([0; T ℄�E)g (3.10)In order to understand (3.9), let us work with the anonial produt spae(
;F ; P ) = (
W ;FW ; PW )
 (
N ;FN ; PN ) (3.11)assoiated with W and N . Every element ! of 
 an be written as (!W ; !N ), where!W 2 C([0; T ℄� [0; 1℄) and !N 2M. Thus,P �X 2 fS(h;m) / h 2 H; m 2MgÆ ��� �(N)� (!)= Z 1InX(!W ;!N )2fS(h;m) / h2H; m2MgÆodPW (!W ) (3.12)But obviously, X(!) = X(!W ; !N ) = X!N (!W ), where X� was de�ned by (3.4) for eah� 2M. Thus, P �X 2 fS(h;m) / h 2 H; m 2MgÆ ��� �(N)� (!)= PW �X!N 2 fS(h;m) / h 2 H; m 2MgÆ� (3.13)Now, we notie, sine for eah � 2M, X� is independent of N , that�(�) = PW �X� 2 fS(h;m) / h 2 H; m 2MgÆ� (3.14)Comparing (3.13) and (3.14), we dedue (3.9). Hene, we obtainP �X 2 fS(h;m) / h 2 H; m 2MgÆ� = E(�(N)) (3.15)Finally, it is lear from the de�nition of � and from Proposition 3.3 that � � 1. Theonlusion follows easily.2) We now �x h 2 H, m 2M, and � > 0. We have to hek thatP0 = P (Æ(X;S(h;m)) � �) > 0 (3.16)First, P0 � P (Æ(X;Xh) � �=2 ; Æ(Xh; S(h;m)) � �=2) (3.17)8



Notiing that Xh is �(N)-measurable, we see thatP0 � E h1IfÆ(Xh; S(h;m)) � �=2gP (Æ(X;Xh) � �=2 j �(N))i (3.18)But we know from Proposition 3.3 that for all m 2M, (m) = P (Æ(Xm; S(h;m)) � �=2) > 0 (3.19)Working on the anonial produt spae as in 1), and notiing that for all ! = (!W ; !N ) 2
, X(!) = X!N (!W ) and Xh(!) = S(h; !N ) (all of this without abusive notation), wededue that a.s., P (Æ(X;Xh) � �=2 j �(N)) =  (N) > 0 (3.20)Thus, (3.16) holds as soon as P (Æ(Xh; S(h;m)) � �=2) > 0 (3.21)whih never fails, thanks to Proposition 3.2.Provided we hek Propositions 3.1, 3.2 and 3.3, Theorem 2.5 is be proved.In order to prove Proposition 3.1, we begin with a Lemma.Lemma 3.4 Consider some funtions �, b, g (resp. ��, �b and �g) satisfying (H), and denoteby X (resp. �X) the orresponding unique weak solution of (1.1). Assume that for someA 2 IR+,8 jxj � A; 8 z 2 E; �(x) = ��(x) ; b(x) = �b(x) and g(x; z) = �g(x; z) (3.22)Then there exists ~
 � 
 suh that P (~
) = 1 andf~! 2 
 / k X(!) k1� Ag � n! 2 ~
 Æ k X(!) � �X(!) k1= 0o (3.23)Proof of Lemma 3.4 : we onsider the stopping time � = inf ft � 0 ; supx jX(t; x)j � Ag.Then the proesses X� (t; x) = X(t ^ �; x) and �X� (t; x) = �X(t ^ �; x) satisfy the sameevolution equation :X� (t; x) = Gt(X0; x) + Z t^�0 Z 10 Gt�s(x; y) ��b(X� (s; y))dyds + ��(X� (s; y))W (dy; ds)�+ Z t^�0 ZE Z 10 Gt�s(x; y)�g(X� (s�; y); z)dy N(ds; dz) (3.24)A uniqueness argument yields that a.s., say for all ! 2 ~
, with P (~
) = 1, X� = �X� on[0; T ℄ � [0; 1℄. This yields that for all ! 2 ~
, all t � � , and all x 2 [0; 1℄, X(t; x) = �X(t; x).This implies thatn! 2 ~
 / k X(!) k1� Ao � n! 2 ~
 / �(!) > T o � n! 2 ~
 Æ k X(!)� �X(!) k1= 0o(3.25)9



Proof of Proposition 3.1 : we assume that theorem 2.5 holds under (H), (S01) and (S02),and we onsider funtions b, � and g satisfying only (H), (S1) and (S2). We need a sequeneof C1b funtions �n : IR 7! [0; 1℄, satisfying :�n(x) = 8><>: 1 if jxj � n0 if jxj � n+ 1 (3.26)Then the funtions �n(x) = �(x)�n(x) and gn(x; z) = g(x; z)�n(x) learly satisfy (S01) and(S02). Denote by Xn the solution of equation (2.5) with �n and gn instead of � and g.Lemma 3.4 yields that there exists ~
 � 
 suh that P (~
) = 1 and for all n 2 IN ,n! 2 ~
 / k X(!) k1� no � n! 2 ~
 / k X(!) �Xn(!) k1= 0o (3.27)In the same way, we de�ne Sn(h;m), for h 2 H and m 2 M, as the solution of equation(2.15) with �n and gn instead of � and g. We obtain, for all n 2 IN ,if k S(h;m) k1� n or k Sn(h;m) k1� n; then S(h;m) = Sn(h;m) (3.28)Sine Theorem 2.5 holds under (H), (S01), and (S02), we know that for eah n 2 IN ,suppÆ P ÆX�1n = fSn(h;m) / h 2 H ; m 2MgÆ (3.29)Using Remark 2.4, Proposition 3.1 will hold if we hek that on one hand,P �X 2 fS(h;m) / h 2 H ; m 2MgÆ� = 1 (3.30)and on the other hand that for all h 2 H, all m 2M, all � > 0,P (Æ(X;S(h;m)) � �) > 0 (3.31)Let us �rst prove (3.30). Let ! 2 ~
 be �xed. Sine X(!) belongs to ID ([0; T ℄;C([0; 1℄)), itis bounded, and there exists n 2 IN (depending on !) suh thatn �k X(!) k1 +1 (3.32)whih yields X(!) = Xn(!). But for all � > 0, we know from (3.29) that for almost all! 2 ~
, there exists h 2 H and m 2M (depending on !) suh thatÆ(Xn(!); Sn(h;m)) � � (3.33)This and (3.32) yield (if � � 1), that k Sn(h;m) k1� n, and thus that Sn(h;m) = S(h;m).Hene, Æ(X(!); S(h;m)) � � (3.34)whih onludes the proof of (3.30), sine P (~
) = 1.In order to prove (3.31), we �x h 2 H, m 2M, and � > 0. We onsider n 2 IN suh thatn �k S(h;m) k1 +1 (3.35)10



This way, if � < 1,P (Æ(X;S(h;m)) � �) = P (Æ(X;Sn(h;m)) � �)= P (k X k1� n; Æ(X;Sn(h;m)) � �)= P (Æ(Xn; Sn(h;m)) � �) (3.36)thanks to (3.27). From (3.29), this probability is stritly positive, whih yields (3.31).Proposition 3.1 is proved.4 The ase where "W is deterministi".This setion is devoted to the proof of Proposition 3.2. We follow here partially the methodof Simon [10℄, who studies the support of Poisson driven S.D.E.s (without Wiener term).The extension of his method to S.P.D.E.s drives to tehnial problems, essentially beausewe have to ontrol the explosion of the Green kernel Gt(x; y). Another new diÆulty ap-pears, beause we have to add a seond drift, in whih the term _h(s; y) belongs only toL2([0; T ℄ � [0; 1℄).In the whole setion,h(t; x) = Z t0 Z x0 _h(s; y)dyds 2 H and m(dt; dz) = nXi=1 Æ(ti;zi)(dt; dz) 2M (4.1)are �xed. We set t0 = 0, tn+1 = T , and�0 = infi=0;:::;n jti+1 � tij > 0 (4.2)For simpliity, we set S = S(h;m). We denote by 0 < T1(!) < ::: < T�(!)(!) the suessivetimes of jump of N(!), and by Z1(!), ..., Z�(!)(!) the size of its jumps. In other words,N(!; dt; dz) = �(!)Xi=1 Æ(Ti(!);Zi(!))(dt; dz) (4.3)We reall that for all � 2℄0; �0[, and all � > 0, the set
(�; �) = f! 2 
 / �(!) = n; ti � � < Ti(!) < ti; d(zi; Zi(!)) � � g (4.4)has a stritly positive probability. We will hek that for all � > 0, there exists � > 0, and� > 0 suh that for all ! 2 
(�; �), Æ(Xh(!); S) � � (4.5)whih will imply Proposition 3.2. 11



In the whole setion, the onstant C depends only on h, m, and on the parameters (�; b; g,X0, and T ) of equation (1.1).From now on, we onsider ! 2 
(�; �).First, we hoose 0 < � < �0=16, and 0 < � < �(z1) ^ ::: ^ �(zn), where �(zi) was de�nedin assumption (S02). For some  2℄2�; �0=8[, whih will be hosen later, we de�ne thepolygonal hange of time � 2 � by �(0) = 0, �(T ) = T , and for all i 2 f1; :::; ng,�(Ti � ) = Ti �  ; �(Ti) = ti ; �(Ti + ) = ti +  �(Ti + 2) = Ti + 2 (4.6)Notie that all the properties below hold :for all t 2 [Ti; Ti + ℄; �(t)� ti = t� Ti (4.7)Z T0 1If�(s)6=sgds � 3n (4.8)for all t 2 [0; T ℄; �(t) � t and 1If�(t)�tig = 1Ift�Tig (4.9)k �� I k1� � (4.10)Furthermore, it is easy to hek thatjjj�jjj � jln(1� �=)j _ jln(1 + �=)j � 2�= (4.11)where the last inequality holds beause �= � 1=2. We have to prove that if � > 0 and� > 0 are small enough then for some  well hosen,k S(�(t); x) �Xh(t; x) k1 +jjj�jjj � � (4.12)We now set S�(t; x) = S(�(t); x). Then, using (4.9), we see that for any ! 2 
(�; �),S�(t; x)�Xh(t; x) = G�(t)(X0; x)�Gt(X0; x)+ Z t0 Z 10 �G�(t)�s(x; y)�Gt�s(x; y)� hb(S(s; y)) + �(S(s; y)) _h(s; y)i dyds+ Z �(t)t Z 10 G�(t)�s(x; y) hb(S(s; y)) + �(S(s; y)) _h(s; y)i dyds+ Z t0 Z 10 Gt�s(x; y)hfb(S(s; y)) � b(S�(s; y))g+f�(S(s; y)) � �(S�(s; y))g _h(s; y)idyds+ Z t0 Z 10 Gt�s(x; y)hfb(S�(s; y))� b(Xh(s; y))g12



+f�(S�(s; y))� �(Xh(s; y))g _h(s; y)idyds+ nXi=1 1Ift�Tig Z 10 �G�(t)�ti(x; y)�Gt�Ti(x; y)� g(S(ti�; y); zi)dy+ nXi=1 1Ift�Tig Z 10 Gt�Ti(x; y) [g(S(ti�; y); zi)� g(S(ti�; y); Zi)℄ dy+ nXi=1 1Ift�Tig Z 10 Gt�Ti(x; y) [g(S(ti�; y); Zi)� g(Xh(Ti�; y); Zi)℄ dy= A(t; x) + :::+H(t; x) (4.13)We ompute these terms one by one, still assuming that ! 2 
(�; �).Sine �(t) = t for all t � T1 � , and hene for all t � 13�0=16jA(t; x)j � jA(t; x)j1Ift�13�0=16g �k X0 k1 1Ift�13�0=16g Z 10 jG�(t)(x; y)�Gt(x; y)jdy (4.14)Using the Appendix, (7.4), then (4.10), we see thatjA(t; x)j � C �(t)� t(13�0=16) 32 � C k �� I k1� C� (4.15)Using Cauhy-Shwarz's inequality, then the Appendix (7.5), and �nally (4.10), we obtainjB(t; x)j � �Z t0 Z 10 hb(S(s; y)) + �(S(s; y)) _h(s; y)i2 dyds� 12��Z t0 Z 10 hG�(t)�s)(x; y)�Gt�s(x; y)i2 dyds� 12� C �q�(t)� t� 12 � C� 14 (4.16)Exatly in the same way, jC(t; x)j � C� 14 .Using (H), we see thatjD(t; x)j � C Z t0 Z 10 Gt�s(x; y) jS(s; y)� S�(s; y)j �1 + j _h(s; y)j� dyds (4.17)Thanks to Cauhy-Shwarz's inequality, and the Appendix (7.2),jD(t; x)j � C  Z t0 supy2[0;1℄ jS(s; y)� S�(s; y)j2 ds Z 10 G2t�s(x; y)dy! 12� C �Z t0 1If�(s)6=sg dspt� s� 12 (4.18)13



Using the H�older inequality with p = 3 and q = 3=2, we dedue thatjD(t; x)j � C �Z t0 1f�(s)6=sgds�1=6 �Z t0 ds(t� s)3=4�1=3� C �Z t0 1f�(s)6=sgds�1=6 � C(3n)1=6 � C1=6 (4.19)thanks to (4.8).The same omputation drives us tojE(t; x)j � C  Z t0 supy2[0;1℄ jS�(s; y)�Xh(s; y)j2 dspt� s! 12 (4.20)Using (4.7), and (3.1) in (S02), we see thatjF (t; x)j � C nXi=1 1Ift�Ti+g supx;y2[0;1℄ ���G�(t)�ti(x; y)�Gt�Ti(x; y)��� (4.21)Thus, thanks to the Appendix (7.4),jF (t; x)j � C nXi=1 1Ift�Ti+g j(�(t)� ti)� (t� Ti)j[(�(t)� ti) ^ (t� Ti)℄ 32 (4.22)But t � Ti +  implies that �(t) � ti � �(Ti + ) � ti = . Hene, thanks to (4.10) andsine ! 2 
(�; �), jF (t; x)j � C k �� I k1 +supi jti � Tij 32 � C�= 32 (4.23)Using (7.3) of the appendix, we dedue thatjG(t; x)j � nXi=1 supy jg(S(ti�; y); zi)� g(S(ti�; y); Zi)j (4.24)Thanks to (3.1) in (S02), realling that for all i, d(zi; Zi) � �, we see that there exists afuntion '(�) from IR+ into itself, dereasing to 0 when � dereases to 0, depending onlyon h, m, and on the parameters of equation (1.1), suh thatjG(t; x)j � '(�) (4.25)In the same way, but using (3.2) and the fat that � � �(z1) ^ ::: ^ �(zn), we easily provethe existene of a funtion �(u) : IR+ 7! IR+, dereasing to 0 when u dereases to 0, suhthat jH(t; x)j � nXi=1 1Ift�Tig � �  supy2[0;1℄ jS(ti�; y)�Xh(Ti�; y)j!� nXi=1 1Ift�Tig � �  supy2[0;1℄ jS�(Ti�; y)�Xh(Ti�; y)j! (4.26)14



sine �(Ti) = ti.Finally, setting I(t) = supy2[0;1℄ jS�(t; y)�Xh(t; y)j (4.27)and K(�; ; �) = �1=4=3=2 + 1=4 + '(�) (4.28)we obtain :I(t) � CK(�; ; �) + C �Z t0 I2(s) dspt� s� 12 + C nXi=1 1Ift�Tig�(I(Ti�)) (4.29)Hene I2(t) � CK2(�; ; �) + C Z t0 I2(s) dspt� s + C nXi=1 1Ift�Tig�2(I(Ti�)) (4.30)Iterating one time this formula, we getI2(t) � CK2(�; ; �) + C nXi=1 1Ift�Tig�2(I(Ti�)) (4.31)+ C Z t0 "CK2(�; ; �) + C Z s0 I2(u) dups� u +C nXi=1 1Ifs�Tig�2(I(Ti�))# dspt� sUsing Fubini's Theorem, and notiing that Z tu dspt� sps� u � 4, we dedue thatI2(t) � CK2(�; ; �) + C Z t0 I2(u)du+ C nXi=1 1Ift�Tig�2(I(Ti�)) (4.32)We now apply Gronwall's Lemma on [0; T1[. This gives :sup[0;T1[ I2(t) � CK2(�; ; �)eCT � CK2(�; ; �) (4.33)Thus, on [0; T2[, I2(t) � CK2(�; ; �) + �2(CK2(�; ; �)) + C Z t0 I2(s)ds (4.34)Thanks to Gronwall's Lemma,sup[0;T2[ I2(t) � �CK2(�; ; �) + �2(K2(�; ; �))� eCT (4.35)Iterating this argument, we dedue the existene of a funtion �(u) : IR+ 7! IR+, dereasingto 0 when u dereases to 0, suh thatsup[0;T ℄ I(t) � � (K(�; ; �)) (4.36)15



Hene, there exists Æ > 0 suh that ifK(�; ; �) � Æ, then sup[0;T ℄ I(t) � �=2. It now suÆesto hoose �, , � small enough, suh thatK(�; ; �) � Æ ; 2�= � �=2 (4.37)whih will imply, for all ! 2 
(�; �),Æ(Xh(!); S) �k I(!) k1 +jjj�(!)jjj � � (4.38)First, we hoose � 2℄0; �(z1) ^ ::: ^ �(zn)[ small enough, in order to get '(�) � Æ=3. Thenwe hoose  in ℄0; (�0=8) ^ (Æ=3)6[. Finally, we hoose0 < � < =2 ^ �Æ 32 =3�4 ^ �=4 (4.39)Proposition 3.2 is proved.5 The ase where N is "deterministi".It remains to prove Proposition 3.3. In the whole setion,m(dt; dz) = nXi=1 Æ(ti ;zi)(dt; dz) 2M (5.1)is �xed. We set t0 = 0, tn+1 = T .We have to establish a support theorem for the solution of equation (3.4). Let us observethat this equation is not muh di�erent from that of Walsh [13℄. Indeed, it does onlyontain one additional term, a "jump drift". Nevertheless, it is far from possible to use amethod similar to that of Bally, Millet, Sanz-Sol�e in [2℄, who proved a support theorem forWalsh's equation, in partiular beause the solution of (3.4) does not lie in C([0; T ℄� [0; 1℄).But the times of jump of the solution Xm of equation (3.4) are deterministi, and the as-soiated skeleton S(h;m) (m is �xed) has the same times of jump. Thus we do not needthe Skorokhod topology : we will work with the stronger supremum norm on [0; T ℄� [0; 1℄.The method below onsists in applying the result of Bally, Millet, and Sanz-Sol�e on eahtime interval [ti; ti+1[. To this end, we will de�ne some proesses Xim, whih equal Xm onlyon [ti; ti+1[�[0; 1℄, but also give information about the behaviour of Xm after ti+1. We willalso assoiate with Xim some deterministi skeletons Sim(h). But we will apply the resultof [2℄ to the onditional law of Xim with respet to Fti (for eah i). Thus, we will have tode�ne a non-deterministi "onditional skeleton" T im(h). Then we will develop a tehnialway to "paste the piees".Reall that thanks to Remark 2.4, we have to prove on one hand that for all h 2 H, all� > 0, P (k Xm � S(h;m) k1� �) > 0 (5.2)16



and on the other hand thatP �Xm 2 fS(h;m) ; h 2 Hgk k1� = 1 (5.3)To this aim, we introdue some notations. First, if S(t; x) belongs to ID ([0; T ℄;C([0; 1℄)),and if 0 � u < v � T , k S k[u;v℄= supt2[u;v℄; x2[0;1℄ jS(t; x)j (5.4)We now de�ne reursively, for i in f0; :::; ng, the proesses Xim(t; x) on [ti; T ℄� [0; 1℄ :X0m(t; x) = Gt(X0; x) + Z t1^t0 Z 10 Gt�s(x; y)hb(X0m(s; y))dyds +�(X0m(s; y))W (dy; ds)i (5.5)and, for i 2 f1; :::; ng,Xim(t; x) = Xi�1m (t; x) + 1Ift�tig Z 10 Gt�ti(x; y)g(Xi�1m (ti�; y); zi)dy (5.6)+ Z ti+1^tti Z 10 Gt�s(x; y) hb(Xim(s; y))dyds+ �(Xim(s; y))W (dy; ds)iNotie that for all i,for all t 2 [ti; ti+1[; all x 2 [0; 1℄; Xim(t; x) = Xm(t; x) (5.7)Indeed, it suÆes to use a standard uniqueness argument. In the same way, we de�ne, forh 2 H, the funtions Sim(h) on [ti; T ℄� [0; 1℄, byS0m(h)(t; x) = Gt(X0; x) + Z t1^t0 Z 10 Gt�s(x; y)hb(S0m(h)(s; y))dyds (5.8)+�(S0m(h)(s; y)) _h(s; y)dydsiand, for i 2 f1; :::; ng,Sim(h)(t; x) = Si�1m (h)(t; x) + 1Ift�tig Z 10 Gt�ti(x; y)g(Si�1m (h)(ti�; y); zi)dy (5.9)+ Z ti+1^tti Z 10 Gt�s(x; y) hb(Sim(h)(s; y))dyds + �(Sim(h)(s; y)) _h(s; y)dydsiThen, for all i,for all t 2 [ti; ti+1[; all x 2 [0; 1℄; Sim(h)(t; x) = S(h;m)(t; x) (5.10)Finally, we de�ne the "onditional skeleton" assoiated with the onditional law of Ximwith respet to Fti :T im(h)(t; x) = Xi�1m (t; x) + 1Ift�tig Z 10 Gt�ti(x; y)g(Xi�1m (ti�; y); zi)dy (5.11)+ Z ti+1^tti Z 10 Gt�s(x; y) hb(T im(h)(s; y))dyds + �(T im(h)(s; y)) _h(s; y)dydsi17



The funtion T im(h) is de�ned on [ti; T ℄� [0; 1℄. For all t 2 [ti; T ℄, all x 2 [0; 1℄, T im(h)(t; x)is Fti-measurable.Then one an \nearly" use the Theorem of Bally, Millet, Sanz-Sol�e, [2℄ (see also Cardon-Weber, Millet, [3℄ for a more general setting), whih yields the following result.Proposition 5.1 Assume (H) and (S01). Then, with the above notations, for all i 2f0; :::; ng, the following onditional support theorem on [ti; T ℄� [0; 1℄ holds :suppk k[ti;T ℄ L �Xim j Fti � = fT im(h) / h 2 Hgk k[ti;T ℄ (5.12)In fat, the main theorem in [2℄ only yields the result for i = 0, with R t0 instead of R t^t10 .But onditioning is not a problem, and the initial values we obtain, for exampleXi�1m (t; x) + Z 10 Gt�ti(x; y)g(Xi�1m (ti�; y); zi)dy= Xi�1m (t; x) +Gt�ti �g(Xi�1m (ti�; :); zi); x� (5.13)behave on [ti; T ℄ exatly as Gt(X0; x) on [0; T ℄, sine they are Fti-measurable, sineg(Xi�1m (ti�; :); zi) is ontinuous on [0; 1℄, and sine Xi�1m (t; x) is ontinuous on [0; T ℄� [0; 1℄.Finally, it is lear that onsidering the integrals from ti to t^ ti+1 instead of 0 to t will nothange muh...We now establish a Lemma, whih will allow to paste the piees. If k Xim(!)�Sim(h) k[ti;T ℄is small, then the initial onditions assoiated with Si+1m (h) and T i+1m (h)(!) are near, andthus the distane between Si+1m (h) and T i+1m (h)(!) is small. We need this Lemma, beauseProposition 5.1 gives an idea of the distane between Xim(!) and T im(h)(!), but what weneed to ontrol is the distane between Sim(h) and Xim(!).Lemma 5.2 Assume (H), (S02). There exists a funtion (x; u) : IR+� IR+ 7! IR+, suhthat for eah x, (x; u) dereases to 0 when u dereases to 0, and suh that for all � > 0,all i 2 f0; :::; n � 1g,n! 2 
 .k Xim(!)� Sim(h) k[ti;T ℄� �o� n! 2 
 .k Si+1m (h) � T i+1m (h)(!) k[ti+1;T ℄� (k _hj[ti+1;ti+2℄ kL2 ; �)o (5.14)where k _hj[ti+1;ti+2℄ k2L2= R ti+2ti+1 R 10 _h2(s; y)dyds.Proof : Let ! belong to fk Xim�Sim(h) k[ti;T ℄� �g. Then, for all t in [ti+1; T ℄, all x in [0; 1℄,using (H), ��Si+1m (h)(t; x) � T i+1m (h)(t; x)�� � ��Sim(h)(t; x) �Xim(t; x)��+ Z 10 Gt�ti+1(x; y) ���g �Xim(ti+1�; y); zi�� g �Sim(h)(ti+1�; y); zi���� dy+C Z ti+2^tti+1 Z 10 Gt�s(x; y) ���Si+1m (h)(s; y) � T i+1m (h)(s; y)��� �1 + j _h(s; y)j� dyds (5.15)18



We now set F (t) = supx2[0;1℄ ���Si+1m (h)(t; x) � T i+1m (h)(t; x)��� (5.16)Using the assumption about !, assumption (S02), the Appendix (7.3) and (7.2), andCauhy-Shwarz's inequality, we get :F (t) � �+  zi(�) + C �1+ k _hj[ti+1;ti+2℄ kL2� Z tti+1 F 2(s) dspt� s! 12 (5.17)where  zi was de�ned in assumption (S02). Hene,F 2(t) � C�2 + C 2zi(�) + C �1+ k _hj[ti+1;ti+2℄ kL2�2 Z tti+1 F 2(s) dspt� s (5.18)Iterating one this formula (see the previous setion, inequalities (4.30), (4.31), and (4.32)for more preisions), we obtain the existene of a funtion , satisfying the assumptions ofthe statement, suh thatF 2(t) �  �k _hj[ti+1;ti+2℄ kL2 ; ��+ C �1+ k _hj[ti+1;ti+2℄ kL2�2 Z tti+1 F 2(s)ds (5.19)Gronwall's Lemma allows to onlude.In order to simplify the notations, we assume in the sequel that n = 2, i.e. thatm(dt; dz) = Æ(t1;z1) + Æ(t2;z2) (5.20)1) We �x h 2 H, and � > 0, and we hek thatP0 = P (k Xm � S(h;m) k1� �) > 0 (5.21)First, using (5.7) and (5.10), we see thatP0 � P� k X0m � S0m(h) k[0;T ℄� �=3; k X1m � S1m(h) k[t1;T ℄� �=3;k X2m � S2m(h) k[t2;T ℄� �=3� (5.22)Notiing that for eah i, Xim is Fti+1 -measurable and Sim(h) is deterministi, we obtain, byonditionning our probability with respet to Ft2 ,P0 � Eh1Ifk X0m � S0m(h) k[0;T ℄� �=3g1Ifk X1m � S1m(h) k[t1;T ℄� �=3g�P �k X2m � S2m(h) k[t2;T ℄� �=3 ��� Ft2� i (5.23)On the other hand,
19



P �k X2m � S2m(h) k[t2;T ℄� �=3 ��� Ft2�� P �k X2m � T 2m(h) k[t2;T ℄� �=6; k T 2m(h)� S2m(h) k[t2;T ℄� �=6��� Ft2�� 1Ifk T 2m(h) � S2m(h) k[t2;T ℄� �=6gP �k X2m � T 2m(h) k[t2;T ℄� �=6��� Ft2� (5.24)sine S2m(h) is deterministi and T 2m(h) is Ft2 -measurable. Using Proposition 5.1, we alsoknow that a.s., P �k X2m � T 2m(h) k[t2;T ℄� �=6��� Ft2� > 0 (5.25)Hene, it suÆes that P1 > 0, whereP1 = P� k X0m � S0m(h) k[0;T ℄� �=3; k X1m � S1m(h) k[t1;T ℄� �=3k T 2m(h)� S2m(h) k[t2;T ℄� �=6� (5.26)Thanks to Lemma 5.2, we know that for � > 0 small enough,k X1m � S1m(h) k[t1;T ℄< � =)k T 2m(h)� S2m(h) k[t2;T ℄� �=6 (5.27)Thus, P1 � P� k X0m � S0m(h) k[0;T ℄� �=3; k X1m � S1m(h) k[t1;T ℄� � ^ �=3� (5.28)Iterating this argument, we see that P0 is stritly positive as soon as P2 > 0, whereP2 = P� k X0m � S0m(h) k[0;T ℄� �� (5.29)for some � > 0 small enough. But it is lear that S0m(h) identially equals T 0m(h). Thus,Proposition 5.1 implies that P2 is stritly positive, and hene that (5.21) holds, whih wasour aim.2) We still have to hek thatP �Xm 2 fS(h;m) ; h 2 Hgk k1� = 1 (5.30)We know from Proposition 5.1 that for almost all !, say for all ! 2 �
, with P (�
) = 1,X0m(!) 2 fT 0m(h); h 2 Hgk k1 ; X1m(!) 2 fT 1m(h)(!); h 2 Hgk k1X2m(!) 2 fT 2m(h)(!); h 2 Hgk k1 (5.31)We now �x ! 2 �
. There exists h0n 2 H, h1n 2 H, h2n 2 H, (depending on !) suh that, fori 2 f0; 1; 2g, when n goes to in�nity,k Xim(!)� T im(hin)(!) k[ti;T ℄�! 0 (5.32)20



We now set hn;k;q(t; x) = h0n(t; x)1I[0;t1℄(t) + h1k(t; x)1I[t1;t2℄(t) + h2q(t; x)1I[t2;T ℄(t) (5.33)We �x � > 0, and we prove that for n, k, q large enough,k Xm(!)� S(hn;k;q;m) k[0;T ℄� � (5.34)whih will suÆe. One an easily hek, using (5.7) and (5.10), thatk Xm(!)� S(hn;k;q;m) k[0;T ℄� A0n(!) +A1k(!) +A2q(!) +B0n(!) +B1k(!) +B2q (!) (5.35)where (if i = 0; 1; 2 and l 2 IN )Ail(!) =k Xim(!)� T im(hil)(!) k[ti;T ℄ (5.36)and Bil (!) =k T im(hil)(!)� Sim(hil) k[ti;T ℄ (5.37)First notie that B0n vanishes identially. Thanks to Lemma 5.2, we know thatB1k(!) �  �k _h1kj[t1;t2℄ kL2 ; A0n(!)� (5.38)B2q (!) �  �k _h2q j[t2;T ℄ kL2 ; A1k(!) +B1k(!)� (5.39)i) First, we hoose q large enough, in order thatA2q(!) � �=6 (5.40)Now that q is �xed, we onsider � > 0 suh that �k _h2q j[t2;T ℄ kL2 ; �� � �=6 (5.41)ii) Then we hoose k in suh a way thatA1k(!) � �=6 ^ �=2 (5.42)and we onsider � > 0 suh that �k _h1kj[t1;t2℄ kL2 ; �� � �=6 ^ �=2 (5.43)iii) Finally, we hoose n suh that A0n(!) � �=6 ^ � (5.44)We dedue from (5.44), (5.38), and (5.43) thatB1k(!) � �=6 ^ �=2 (5.45)Thanks to (5.45), (5.42), (5.41), and (5.39), we also see thatB2q (!) � �=6 (5.46)Finally, using (5.35), (5.44), (5.42), (5.40), (5.45), (5.46), we dedue (5.34). We thus haveheked that for eah ! 2 �
, all � > 0, there exists h 2 H suh thatk Xm(!)� S(h;m) k1� � (5.47)Sine P (�
) = 1, (5.30) holds, and Proposition 3.3 is proved.21



6 Extension to the ase of an a.s. in�nite number of jumpswhen the di�usion oeÆient is onstant.We now onsider equation (1.1) in the following new setting : the di�usion oeÆient isonstant, �(x) � � ; but the positive measure q on E is only assumed to be �-�nite (apriori, q(E) = 1). N is still a Poisson measure on [0; T ℄ � E, with intensity measuredtq(dz). The evolution equation assoiated to equation (1.1) is still given by (2.5).We also onsider an inreasing sequene of subsets Ep of E satisfyingq(Ep) <1 ; [p2INEp = E (6.1)In order to obtain a result of existene and uniqueness, we state the following hypothesis :Assumption (A) : the funtion � is onstant. The funtion b satisfy a globalLipshitz ondition. There exists � 2 L1(E; q) suh that for all x; y 2 IR, allz 2 E, jg(0; z)j � �(z) ; jg(x; z) � g(y; z)j � jx� yj�(z) (6.2)Proposition 2.2 yields that equation (1.1) with Ep instead of E admits a unique weaksolution Xp lying in ID ([0; T ℄;C([0; 1℄)). Under (A), using strongly the fat that � isonstant, it is easy to hek that there exists an adapted proess X suh that, when p goesto in�nity, E  sup[0;T ℄�[0;1℄ jX(t; x) �Xp(t; x)j! �! 0 (6.3)This way, we obtain the existene of an adapted weak solution X of equation (1.1) withour new setting. See Remark 6.6 for the ase where � is not a onstant.The uniqueness is straightforward under (A), and we an state the following proposition.Proposition 6.1 Assume (A). Equation (1.1) admits a unique weak solution X(t; x), lyinga.s. in ID ([0; T ℄;C([0; 1℄)), and bounded in L1.We now onsiderMp = 8><>:m(dt; dz) = nXi=1 Æ(ti;zi)(dt; dz) , n 2 IN; 0 < t1 < ::: < tn < T;z1; :::; zn 2 supp q \Ep 9>=>; (6.4)and we setM = [pMp. The Cameron-Martin spae H assoiated withW is still de�ned by(2.13). For eah m 2M and h 2 H, we denote by S(h;m) the unique solution of equation(2.15) (there is no di�erene with Proposition 2.3, sine there exists p suh that m 2Mp).Sine g is already Lipshitz, we assume (T ) below instead of (S2),Assumption (T ) : for eah z0 2 E, eah n 2 IN ,supjxj�n jg(x; z) � g(x; z0)j �!d(z;z0)!0 0 (6.5)For eah z0 in E, there exists �(z0) > 0 suh thatsupd(z;z0)��(z0) �(z) <1 (6.6)22



A funtion g(x; z) = �(z)�(z) learly satis�es (A) and (T ) if � is lipshitz, and � 2 L1(E; q)is ontinuous. The aim of this setion is to prove the following result.Theorem 6.2 Under (A) and (T ), if X denotes the unique weak solution of equation (1.1),suppÆ P ÆX�1 = fS(h;m) / h 2 H ; m 2MgÆ (6.7)Sine the method of Simon [10℄, ombined with the previous setions, applies easily, we willonly sketh the Proof.First, for the same reasons as in the previous setions, see Proposition 3.1, we an assume,additionally to (A) and (T ), that for all x 2 IR, all z 2 E, jg(x; z)j � �(z) and for eahz0 2 E, supx2IR jg(x; z) � g(x; z0)j �!d(z;z0)!0 0 (6.8)Then, we notie that the diret inlusion (�) of Theorem 6.2 is immediate, thanks to The-orem 2.5 (for Xp) and thanks to the onvergene (6.3).We now �x p 2 IN , h 2 H, m =Pni=1 Æ(ti ;zi) 2Mp, and � > 0. We have to prove thatP (Æ(X;S(h;m)) � �) > 0 (6.9)To prove this, we will use three lemmas. The �rst one is a very partiular ase of the resultof Bally, Millet, Sanz, [2℄.Lemma 6.3 Let � > 0 be �xed, and let
0(�) = (! 2 
 ,supt;x ����Z t0 Z 10 Gt�s(x; y)nW (dy; ds)� _h(s; y)dydso���� � �) (6.10)Then P (
0(�)) > 0.We now write the restrition Np = N j[0;T ℄�Ep (reall that p is �xed) asNp(ds; dz) = �Xi=1 Æ(Ti;Zi)(ds; dz) (6.11)The seond lemma an be proved by using the same method as that of Proposition 3.2 (seeSetion 4). The only di�erene omes from the fat that Xp(!) depends on W , but sine� is onstant, Lemma 6.3 allows to deal easily with this problem.Lemma 6.4 Let � > 0 be �xed. There exists a set
1(�) 2 � fN(A) ; A 2 B([0; T ℄�Ep)g (6.12)suh that P (
1(�)) > 0, suh that for eah ! 2 
1(�),�(!) = n ;8i; d(zi; Zi(!)) � �(zi) (6.13)and suh that for some � > 0 small enough, every ! 2 
0(�) \ 
1(�) satis�esÆ(Xp(!); S(h;m)) � � (6.14)23



We will �nally use the following result :Lemma 6.5 Let  > 0 be �xed, and let
2() = (! 2 
 ,Z T0 ZE=Ep �(z)N(ds; dz) � ) (6.15)Then P (
2()) > 0.Proof of Lemma 6.5 : we set �p = Z T0 ZE=Ep �(z)N(ds; dz) (6.16)and, for q > p, �qp = Z T0 ZEq=Ep �(z)N(ds; dz) (6.17)We see that �p = �qp+ �q, that for all q, P (�qp = 0) > 0, and that when q goes to in�nity, �qgoes to 0 in probability. Sine for eah q, �qp is independent of �q, we an writeP (�p � ) � P (�qp = 0)P (�q � ) (6.18)and the lemma follows easily.We �nally sketh the proof of Theorem 6.2. An easy independane argument yields thatfor every � > 0, � > 0,  > 0, the set
3(�; �; ) = 
0(�) \ 
1(�) \ 
2() (6.19)has a stritly positive probability. We now have to to hoose �; �;  in suh a way that forall ! 2 
3(�; �; ), Æ(X(!); S(h;m)) � � (6.20)Let ! 2 
3(�; �; ) be �xed. If � is small enough, we know from Lemma 6.4 thatÆ(X(!); S(h;m)) � k X(!)�Xp(!) k1 +Æ(Xp(!); S(h;m))� k X(!)�Xp(!) k1 +� (6.21)We now set V p(t) = supx2[0;1℄ jX(t; x) �Xp(t; x)j (6.22)Using the Appendix, (A), (T ), sine jg(x; z)j � �(z), and sine ! belongs to 
3(�; �; ), wesee that V p(t) � C Z t0 V p(s)ds+ C nXi=1 1ft�TigV p(Ti�)�(Zi)+ Z T0 ZEnEp �(z)N(ds; dz)� C Z t0 V p(s)ds+ C nXi=1 1ft�TigV p(Ti�) +  (6.23)24



For the seond term, we have used (6.6) in Assumtion (T ), and the fat that for all i, Zibelongs to fz 2 E ; d(zi; z) � �(zi)g.Applying suessively Gronwall's Lemma on the time intervals [0; T1[, ..., [Tn; T ℄, we deduethat for all ! 2 
3(�; �; ), sup[0;T ℄V p(!; t) � C (6.24)The onlusion follows easily.Remark 6.6 Of ourse, we are also interested in the ase where q(E) = 1 and � is afuntion. In this ase, it is possible to prove (under assumptions) that the sequene Xp ofweak solutions of (1.1) where we have replaed E by Ep, onverges to an adapted proessX(t; x) in the following sense :supt;x E (jX(t; x) �Xp(t; x)j) �! 0 (6.25)One X is built, it might be possible to hek that it admits a modi�ation lying inID ([0; T ℄;C([0; 1℄)), by using the fat that X satis�es the evolution equation, but this is notimmediate. If so, it seems natural to think that our support theorem extends to this ase.However, everything will beome muh more tehnial. In partiular, the diret inlusion isnot obvious any more, sine (6.3) does not seem to hold any more.7 AppendixWe ollet here well-known estimates about the Green kernel Gt(x; y) assoiated with thedeterministi system (2.1), and whih has the expression (2.2). In all the inequalities below,the onstant C depends only on the terminal time value T . The three �rst estimates anbe found in [13℄, and the next ones are either easy onsequenes or lassial estimates.First, for all x; y 2 [0; 1℄ and all t 2 [0; T ℄,1p4�t exp(�(y � x)24t ) � Gt(x; y) � Cpt exp(�(y � x)24t ) (7.1)For all 0 < t < T , all x 2 [0; 1℄, Z 10 G2t (x; y)dy � Cpt (7.2)and Z 10 Gt(x; y)dy = 1 (7.3)For all 0 < s < t < T , all x; y 2 [0; 1℄, (see Lemma A3 in [4℄)jGt(x; y)�Gs(x; y)j � C jt� sjs 32 (7.4)and (see Lemma B1 in [2℄)Z s0 Z 10 (Gt�r(x; y)�Gs�r(x; y))2 dydr + Z ts Z 10 G2t�r(x; y)dydr � Cpt� s (7.5)25
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