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Abstract : We consider a 2-dimensional spatially homogeneous Boltzmann equation without
cutoff, which we relate to a Poisson driven nonlinear S.D.E. We know from [8] that this S.D.E.
admits a solution Vt, and that for each t > 0, the law of Vt admits a density f(t, .). This
density satisfies the Boltzmann equation. We use here the stochastic calculus of variations
for Poisson functionals, in order to prove that f does never vanish.

Résumé : Nous considèrons une équation de Boltzmann bidimensionnelle, spatialement ho-
mogène sans cutoff. Nous associons à cette équation une équation différentielle stochastique
poissonnienne non linéaire. Nous savons par [8] que cette E.D.S. admet une solution Vt, et
que pour chaque t > 0, la loi de Vt admet une densité f(t, .). La fonction f(t, v) obtenue
satisfait l’équation de Boltzmann. Nous utilisons ici le calcul des variations stochastiques
pour des fonctionnelles de mesures de Poisson, afin de prouver que f ne s’annule jamais.
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1 Introduction and statement of the main result.

The 2-dimensional spatially homogeneous Boltzmann equation of Maxwellian molecules deals
with the density f(t, v) of particles which have the speed v ∈ IR2 at the instant t ≥ 0 in a
sufficiently dilute (2-dimensional) gas :

∂f

∂t
(t, v) =

∫

v∗∈IR2

∫ π

θ=−π

[

f(t, v′)f(t, v′∗) − f(t, v)f(t, v∗)
]

β(θ)dθdv∗ (1.1)

where, if Rθ is the rotation of angle θ,

v′ =
v + v∗

2
+ Rθ

(

v − v∗
2

)

; v′∗ =
v + v∗

2
− Rθ

(

v − v∗
2

)

(1.2)

The new speeds v′ and v′∗ are the velocities of two molecules which had the speeds v and v∗,
after a collision of angle θ. The ”cross section” β is an even and positive function on [−π, π]\{0}
which explodes at 0 as 1/|θ|s with s ∈]1, 3[ in the case of interactions in 1/rα, with α > 2. Thus,
the natural assumption (which we will suppose) is

∫ π

0
θ2β(θ)dθ < ∞ (1.3)

In this case, equation (1.1) is said to be without cutoff. The case with cutoff, namely when
∫ π

0
β(θ)dθ < ∞, has been much investigated by the analysts, and they have obtained some

existence, regularity and strict positivity results.

In this paper, we prove, by using the stochastic calculus of variations on the Poisson space, a
strict lowerbound for the solution f of (1.1) built in [8], in the case where the cross section
sufficiently explodes.
To this aim, we use a probabilistic approach to the Boltzmann equations of Maxwellian molecules
first introduced by Tanaka, [19], and more recently by Desvillettes, Graham, Méléard, [7], [11]
in the one dimensional case, see also [8] for the case of equation (1.1). Indeed, we build a non
classical Poisson driven S.D.E., of which we denote by Vt the solution. This S.D.E. is related to
equation (1.1) in the following sense : its probability flow L(Vt) is a measure solution of (1.1).
In [8], the Malliavin calculus is used to prove that for each t > 0, L(Vt) admits a smooth density
f(t, v), which satisfies (1.1) in a weak sense.
The strict positivity of f seems to be unknown by the analysts in the case without cutoff, and
might be useful to justify computations in which the entropy appears. In the case with cutoff,
much more is known : Pulvirenti and Wennberg have proved a Maxwellian lowerbound in [18].
Their method is based on the separation of the gain and loss terms, which typically cannot be
used in the present case.

Lowerbounds of the density for Wiener functionals have been worked out by Aida, Kusuoka,
Stroock, [1], Ben Arous, Léandre, [3], see also Bally, Pardoux, [2]. In the case of Poisson func-
tionals, the strict positivity of the density in small time has been studied by Léandre, [15],
Ishikawa, [12], and Picard, [17].
The first result of strict positivity of the density for Poisson functionnals is due to Léandre,
[16], who was considering simple jump processes with finite variations. In [10], we have given
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a sufficient condition for the strict positivity in every time for one-dimensional Poisson-driven
S.D.E.s, and this approach does allow to deal almost only with processes with infinite variations.
In [9], we have applied this method to the Kac equation without cutoff, which is a caricatural
one-dimensional version of the Boltzmann equation.
The strict positivity of the density for general 2-dimensional Poisson driven S.D.E.s seems to be
a very difficult problem, but in the case of the S.D.E. related to (1.1), the method works quite
easily. The main differences between the one-dimensional caricatural Kac equation and equation
(1.1) are the following. First, we have to deal with a determinant. We thus have to assume an
additional condition on the support of the initial distribution. Furthermore, we have to prove
that for each t > 0, the support of f(t, .) contains that of the initial distribution. Another techni-
cal problem is that one cannot solve explicitely Doléans-Dade equations with values in M2×2(IR).

Let us now be precise. First, we define the solutions of (1.1) in the following (weak) sense.

Definition 1.1 Let P0 be a probability on IR2 that admits a moment of order 2. A positive
function f on IR+ × IR2 is a solution of (1.1) with initial data P0 if for every test function
φ ∈ C2

b (IR2),

∫

v∈IR2

f(t, v)φ(v)dv =

∫

v∈IR2

φ(v)P0(dv) −
b

2

∫ t

0

∫

v∈IR2

∫

v∗∈IR2

〈

φ′(v), v − v∗
〉

dv∗dvds (1.4)

+

∫ t

0

∫

v∈IR2

∫

v∗∈IR2

∫ π

−π
f(s, v)f(s, v∗)

[

φ(v′) − φ(v) −
〈

φ′(v), v′ − v
〉]

β(θ)dθdv∗dvds

where φ′ denotes the gradient of φ, where 〈 . , . 〉 stands for the scalar product in IR2, where v′

is defined by (1.2), and where

b =

∫ π

−π
(1 − cos θ)β(θ)dθ (1.5)

In [8], one assumes that

Assumption (H) :

1. The initial distribution P0 admits a moment of order 2, and β satisfies (1.3),

2. β = β0 + β1, where β1 is even and positive on [−π, π]\{0}, and there exists k0 > 0,

θ0 ∈]0, π[, and r ∈]1, 3[ such that β0(θ) =
k0

|θ|r
1[−θ0,θ0](θ),

3. P0 is not a Dirac mass.

Let us also consider the following random elements :

Notation 1.2 Assume (H)-1. We denote by N a Poisson measure on [0,∞[×[0, 1] × [−π, π],
with intensity measure :

ν(dθ, dα, ds) = β(θ)dθdαds (1.6)

and by Ñ the associated compensated measure. We consider a IR2-valued random variable V0

independent of N , of which the law is P0. We will consider [0, 1] as a probability space, denote
by dα the Lebesgue measure on [0, 1], and denote by Eα and Lα the expectation and law on
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([0, 1],B([0, 1]), dα).
If (H)-2 also holds, we suppose that N = N0 + N1, where N0 and N1 are two independent
Poisson measures on [0,∞[×[0, 1] × [−π, π], with intensity measures :

ν0(dθ, dα, ds) = β0(θ)dθdαds ; ν1(dθ, dα, ds) = β1(θ)dθdαds (1.7)

In this case, we also assume that our probability space is the canonical one associated with the
independent random elements V0, N0, and N1 :

(Ω,F , {Ft}, P ) = (Ω′,F ′, {F ′}, P ′) ⊗ (Ω0,F0, {F0
t }, P

0) ⊗ (Ω1,F1, {F1
t }, P

1) (1.8)

The following Theorem is proved in [8] (Theorems 2.8 and 2.9).

Theorem 1.3 Assume (H)-1. There exists a IR2-valued càdlàg adapted process {Vt(ω)} on Ω
and a IR2-valued process {Wt(α)} on [0, 1] such that, if

A(θ) =
1

2

(

cos θ − 1 − sin θ
sin θ cos θ − 1

)

(1.9)

then

Vt(ω) = V0(ω) +

∫ t

0

∫ 1

0

∫ π

−π
A(θ)(Vs−(ω) − Ws−(α))Ñ (ω, dθdαds)

−
b

2

∫ t

0

∫ 1

0
(Vs−(ω) − Ws−(α)) dαds

Lα(W ) = L(V ) ; E

(

sup
[0,T ]

‖ Vt ‖
2

)

< ∞























































(1.10)

The obtained law L(V ) = Lα(W ) is unique.

Finally, the main Theorem of [8] (Theorem 3.1) is the following.

Theorem 1.4 Assume (H). Let (V,W ) be a solution of (1.10). Then for all t > 0, the law of
Vt admits a density f(t, .) with respect to the Lebesgue measure on IR2. The obtained function
f is a solution of the Boltzmann equation (1.1) in the sense of Definition 1.1.

It is also proved in [8] (Theorems 3.2 and 3.3) that under an additional assumption, the solution
f is regular in the following sense : for each t > 0, f(t, .) is in C∞(IR2), and f is continuous on
]0,∞[×IR2.

Let us now give our assumption, which is more stringent than (H) : we need a stronger explosion
of the cross section, and the support of the initial distribution has to be large enough.

Assumption (SP ) :

1. The same as (H)-1,

2. The same as (H)-2, but with r ∈ [2, 3[,
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3. For each X0 ∈ IR2, there exist 0 < ǫ < η < ∞ such that

P0

({

X ∈ IR2 / |Xx − Xx
0 | < ǫ , |Xy − Xy

0 | > η
})

> 0 (1.11)

P0

({

X ∈ IR2 / |Xy − Xy
0 | < ǫ , |Xx − Xx

0 | > η
})

> 0 (1.12)

Our main result is the following :

Theorem 1.5 Assume (SP ), and consider the solution f in the sense of Definition 1.1 of equa-
tion (1.1) built in Theorem 1.4. There exists a strictly positive function g(t, v) on ]0,+∞[×IR2,
continuous in v, such that for all t > 0, all φ ∈ C+

b (IR2),

∫

IR2

φ(v)f(t, v)dv ≥

∫

IR2

φ(v)g(t, v)dv (1.13)

In particular, if f is continuous in v, then f is strictly positive on ]0,+∞[×IR2.

Let us say a word about our assumptions. (SP )-1 is quite reasonable. Indeed, the analysts
almost always assume that P0 admits a density (see e.g. Desvillettes, [6]) ; the assumption
∫

‖ v ‖2 P0(dv) < ∞ means that the energy of the initial system is finite ; and (1.3) is
physically natural. (SP )-2 means that the cross section contains a sufficiently ”large” and
”regular” part, which will allow us to use the Malliavin calculus. Notice that the fact that
r ≥ 2 means that

∫

|θ|β(θ)dθ = ∞ : we really need a strong explosion of the cross section.
Finally, (SP )-3 is a technical condition. Notice that (SP )-3 is satisfied if supp P0 contains
{(x, 0) , x ≥ 0} ∪ {(0, y) , y ≥ 0}, or even {(n, 0) , n ∈ IN} ∪ {(0, n) , n ∈ IN}. If the support
of P0 is bounded, then the condition is not satisfied.

Finally, let us notice that in our proof, we check the following Lemma :

Lemma 1.6 Assume (H)-1, and consider a solution (V,W ) of (1.10). Then for each t > 0,

supp P0 ⊂ supp L(Vt) (1.14)

The present work is organized as follows. In Section 2, we prove Lemma 1.6. In the third section,
we state a criterion of strict positivity of the density for Poisson functionals, which we apply to
Vt in the next sections.

In the whole work, we will assume at least (H)-1, use notation 1.2, and consider a
solution (V,W ) of (1.10). We will always work on the time interval [0, T ], for some
T > 0 fixed. We will denote by K a constant of which the value may change from
line to line.

2 Conservation of the support.

This section is dedicated to the proof of Lemma 1.6, which will be useful to prove Theorem 1.5.
We fix X0 ∈ supp P0 = supp P ◦ V −1

0 , ǫ > 0, and t > 0. We have to show that

P (‖ Vt − X0 ‖≤ ǫ) > 0 (2.1)
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The main idea of the proof is very simple : since V0 and N are independent, we can build a
subset of Ω, of positive probability, on which V0 is near X0 and N is very small. On this subset,
Vt will be near V0, and thus near X0.

For p ∈ IN∗, we denote by Np the restriction N |[0,T ]×[0,1]×{[−π,π]/[−1/p,1/p]}, which is a finite
Poisson measure. Then, we split Vt into

Vt = V0 + Ap
t + Bp

t (2.2)

where

Ap
t =

∫ t

0

∫ 1

0

∫ π

−π
A(θ)(Vs− − Ws−(α))Np(dθdαds) (2.3)

and, if bp =

∫ 1/p

−1/p
(1 − cos θ)β(θ)dθ,

Bp
t =

∫ t

0

∫ 1

0

∫ 1/p

−1/p
A(θ)(Vs− − Ws−(α))Ñ (dθdαds)

−
bp

2

∫ t

0

∫ 1

0
(Vs− − Ws−(α))dαds (2.4)

We consider the set
Ωp = {‖ V0 − X0 ‖< ǫ/2 ; Np ≡ 0} (2.5)

of which the probability is strictly positive (for each p), since V0 and Np are independent, since
X0 ∈ supp P ◦ V −1

0 , and since Np is a finite Poisson measure.
It is clear from (2.2) and (2.5), since Ωp belongs to σ(V0, N

p), and thanks to the Bienaymé-
Tchebichev inequality applied to the conditional probability measure P ( . |σ(V0, N

p)), that

P (‖ Vt − X0 ‖≤ ǫ) ≥ P (‖ V0 − X0 ‖≤ ǫ/2 ; Ap
t = 0 ; ‖ Bp

t ‖≤ ǫ/2)

≥ P (Ωp ; ‖ Bp
t ‖≤ ǫ/2)

≥ E
(

1ΩpP (‖ Bp
t ‖≤ ǫ/2 |σ(V0, N

p))
)

≥ E

(

1Ωp

{

1 −
4

ǫ2
E
(

‖ Bp
t ‖2

∣

∣

∣σ(V0, N
p)
)

})

(2.6)

Since N |[0,T ]×[0,1]×[−1/p,1/p] is independent of V0 and Np, it clearly is a Poisson measure under
the conditional probability measure P ( . |σ(V0, N

p)). Thus, using Burkholder’s inequality, the

facts that Eα

(

sup[0,T ] ‖ Wt ‖
2
)

< ∞, and ‖ A(θ) ‖≤ Kθ2, we see that

E
(

‖ Bp
t ‖2 |σ(V0, N

p)
)

≤ K

∫ t

0

∫ 1

0

∫ 1/p

−1/p
θ2
[

E
(

‖ Vs ‖
2 |σ(V0, N

p)
)

+ ‖ Ws(α) ‖2
]

β(θ)dθdαds
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+Kb2
p

∫ t

0

∫ 1

0

[

E
(

‖ Vs ‖
2 |σ(V0, N

p)
)

+ ‖ Ws(α) ‖2
]

dαds

≤ up

[

1 +

∫ t

0
E
(

‖ Vs ‖
2 |σ(V0, N

p)
)

ds

]

(2.7)

where the sequence up decreases to 0 when p goes to infinity. Furthermore, thanks to (2.2) and
the definition of Ωp,

1Ωp ‖ Vt ‖≤ 1Ωp [‖ X0 ‖ +ǫ+ ‖ Bp
t ‖] (2.8)

from which we deduce the existence of a constant K, not depending on p, such that

1ΩpE
(

‖ Vt ‖
2 |σ(V0, N

p)
)

≤ 1Ωp

[

K + K

∫ t

0
E
(

‖ Vs ‖
2 |σ(V0, N

p)
)

ds

]

(2.9)

Gronwall’s lemma allows us to conclude that

1ΩpE
(

‖ Vt ‖
2 |σ(V0, N

p)
)

≤ K1Ωp (2.10)

Finally, using (2.7), we obtain

1ΩpE
(

‖ Bp
t ‖2 |σ(V0, N

p)
)

≤ Kup1Ωp (2.11)

Using (2.6), we see that

P (‖ Vt − X0 ‖≤ ǫ) ≥ E
[

1Ωp

(

1 − Kup/ǫ
2
)]

≥
(

1 − Kup/ǫ
2
)

P (Ωp) (2.12)

Recalling that for each p, P (Ωp) > 0, and choosing p large enough, in order that up ≤ ǫ2/K, we
deduce (2.1), and Lemma 1.6 follows.

3 A criterion of strict positivity.

This section contains two parts. We first introduce some general notations and definitions about
Bismut’s approach of the Malliavin calculus on our Poisson space. Then we adapt the criterion
of strict positivity of Bally, Pardoux, [2] (which deals with the Wiener functionals) to our prob-
ability space.

In the following definition, we precise the perturbations we will use. We have already introduced
such a perturbation in [8], but we have to define here all the possible perturbations.

Definition 3.1 A predictable IR2-valued function v(ω, s, θ, α) on Ω × [0, T ] × [−θ0, θ0] × [0, 1]
is said to be a ”perturbation” if for all fixed ω, s, α, v(ω, s, ., α) is C1 on [−θ0, θ0], and if there
exist some even positive (deterministic) functions η and ρ on [−θ0, θ0] such that

‖ v(s, θ, α) ‖≤ η(θ) ; ‖ v′(s, θ, α) ‖≤ ρ(θ) (3.1)
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η(θ) ≤
|θ|

2
; η(−θ0) = η(θ0) = 0 (3.2)

if ξ(θ) = ρ(θ) + r2r+2 η(θ)

|θ|
then ‖ ξ ‖∞≤

1

2
and ξ ∈ L1(β0(θ)dθ) (3.3)

Notice that thanks to (3.3), η and ρ are in L1 ∩ L∞(β0(θ)dθ).

Consider now a fixed perturbation v. For λ ∈ B(0, 1) (this ball is that of IR2), we set

γλ(s, θ, α) = θ + 〈λ, v(s, θ, α)〉 (3.4)

where 〈 , 〉 denotes the scalar product of IR2. Thanks to (3.1), (3.2), and (3.3), it is easy to
check that for each λ, s, α, ω, γλ(s, ., α) is an increasing bijection from [−θ0, θ0]\{0} into itself.
Then we denote by Nλ

0 = γλ(N0) the image measure of N0 by γλ : for any Borel subset A of
[0, T ] × [−θ0, θ0] × [0, 1],

Nλ(A) =

∫ T

0

∫ 1

0

∫ π

−π
1A(s, γλ(s, θ, α), α)N0(dθdαds) (3.5)

We also define the shift Sλ on Ω by

V0 ◦ Sλ = V0 ; N0 ◦ Sλ = Nλ
0 ; N1 ◦ Sλ = N1 (3.6)

We will need the following predictable function :

Y λ(s, θ, α) =
β0(γ

λ(s, θ, α))

β0(θ)

(

1 +
〈

λ, v′(s, θ, α)
〉)

(3.7)

Then it is easy to check that for all λ,

γλ
(

Y λ.ν0

)

= ν0 (3.8)

Indeed, for any Borel set A ⊂ [0, T ] × [0, 1] × [−π, π],

γλ
(

Y λ.ν0

)

(A) =

∫ T

0

∫ 1

0

∫ π

−π
1A(s, α, γλ(s, θ, α))Y λ(s, θ, α)β0(θ)dθdαds

=

∫ T

0

∫ 1

0

∫ π

−π
1A(s, α, γλ(s, θ, α)) ×

∂

∂θ
γλ(s, θ, α) × β0(γ

λ(s, θ, α))dθdαds

=

∫ T

0

∫ 1

0

∫ π

−π
1A(s, α, θ′)β0(θ

′)dθ′dαds

= ν0(A) (3.9)

where the last inequality comes from the substitution θ′ = γλ(s, θ, α).
We will also need the following inequality : for all λ, µ ∈ B(0, 1) (recall that ξ is defined in
(3.3)),

∣

∣

∣Y λ(s, θ, α) − Y µ(s, θ, α)
∣

∣

∣ ≤‖ λ − µ ‖ ×ξ(θ) (3.10)
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which we now prove, using (3.1), (3.2), and (3.3).

∣

∣

∣Y λ(s, θ, α) − Y µ(s, θ, α)
∣

∣

∣ ≤
β0(γ

λ(s, θ, α))

β0(θ)
× ‖ λ − µ ‖ × ‖ v′(s, θ, α) ‖

+|1+ < µ, v′(s, θ, α) > | ×
|β0(γ

µ(s, θ, α)) − β0(γ
λ(s, θ, α))|

β0(θ)

≤ ‖ λ − µ ‖ ×ρ(θ)×

[

1 +
|γλ(s, θ, α) − θ| × sup[θ,γλ(s,θ,α)] |β

′
0(φ)|

β0(θ)

]

+
3

2
×

|γλ(s, θ, α) − γµ(s, θ, α)| × sup[γµ(s,θ,α),γλ(s,θ,α)] |β
′
0(φ)|

β0(θ)

(we have used the fact that ρ ≤ 1/2, which is obvious from (3.3)). But for all λ, µ, it is easily
checked that

sup
[γµ(s,θ,α),γλ(s,θ,α)]

|β′
0(φ)| ≤ sup

[|θ|−η(θ),|θ|+η(θ)]
|β′

0(φ)| ≤ k0r/(|θ| − η(θ))r+1 ≤ 2r+1rk0/|θ|
r+1

since η(θ) ≤ |θ|/2. We finally obtain

∣

∣

∣Y λ(s, θ, α) − Y µ(s, θ, α)
∣

∣

∣ ≤ ‖ λ − µ ‖ ×ρ(θ)×
[

1 + r2r+1η(θ)/|θ|
]

+
3

2
r2r+1 ‖ λ − µ ‖ ×η(θ)/|θ|

≤ ‖ λ − µ ‖ ×

[

ρ(θ) + r2r+1 η(θ)

|θ|
× (ρ(θ) + 3/2)

]

≤ ‖ λ − µ ‖ ×ξ(θ) (3.11)

and (3.10) is proved.
We also consider the following martingale

Mλ
t =

∫ t

0

∫ 1

0

∫ π

−π
(Y λ(s, θ, α) − 1)Ñ0(dθdαds) (3.12)

and its Doléans-Dade exponential (see Jacod, Shiryaev, [14])

Gλ
t = E(Mλ)t = eMλ

t

∏

0≤s≤t

(

1 + ∆Mλ
s

)

e−∆Mλ
s (3.13)

Since |Y λ − 1| ≤ ξ ≤ 1/2, it is clear that Gλ is always strictly positive on [0, T ]. We now set
P λ = Gλ

T .P . Using equation (3.8), and the Girsanov Theorem for random measures (see Jacod,
Shiryaev, [14], p 157) one can show that P λ ◦ (Sλ)−1 = P , i.e. that the law of (V0, N

λ
0 , N1)

under P λ is the same as the one of (V0, N0, N1) under P .

Finally, it is quite easy, by using the explicit expression (3.13) of Gλ, to check the following
lemma.
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Lemma 3.2 Let v be a perturbation, and Gλ the associated exponential martingale. Then for
all t > 0, all ω ∈ Ω, the map λ 7→ Gλ

t (ω) is continuous on B(0, 1).

We now give the criterion of strict positivity we will use.

Theorem 3.3 Let X be a IR2-valued random variable on Ω, and let X0 ∈ IR2. Assume that
there exists a sequence vn of perturbations such that, if Xn(λ) = X ◦Sλ

n, then for all n, the map

λ 7→ Xn(λ) (3.14)

is a.s. twice differentiable on B(0, 1). Assume that there exist c > 0, δ > 0, and k < ∞, such
that for all r > 0,

lim
n→∞

P (Λn(r)) > 0 (3.15)

where

Λn(r) =

{

‖ X − X0 ‖< r ,

∣

∣

∣

∣

det
∂

∂λ
Xn(0)

∣

∣

∣

∣

≥ c , sup
‖λ‖≤δ

[

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂λ
Xn(λ)

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂2

∂λ2
Xn(λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

]

≤ k

}

(3.16)
Then there exists a continuous function θX0

(.) : IR2 7→ IR+, such that θX0
(X0) > 0, and such

that for all φ ∈ C+
b (IR2),

E (φ(X)) ≥

∫

IR2

φ(y)θX0
(y)dy (3.17)

In order to prove this criterion, it suffices to copy the proof of Theorem 3.3 in [10] or Theorem
2.3 in [9]. Let us just recall the 2-dimensional version of the uniform local inverse Theorem used
in the proof, that can be found in Aida, Kusuoka, Stroock, [1] :

Lemma 3.4 Let c > 0, δ > 0, and k < ∞ be fixed. Consider the following set :

G =

{

g : IR2 7→ IR2

/

∣

∣det g′(0)
∣

∣ ≥ c , sup
|x|≤δ

[

‖ g(x) ‖ + ‖ g′(x) ‖ + ‖ g′′(x) ‖
]

≤ k

}

(3.18)

Then there exist α > 0 and R > 0 such that for every g ∈ G, there exists a neighborhood Vg of
0 contained in B(0, R) such that g is a diffeomorphism from Vg to B(g(0), α).

We finally state a useful remark, of which the proof can be found in [10], Remark 3.5.

Remark 3.5 Let X be a IR2-valued random variable on Ω. Assume that for every
X0 ∈ supp P ◦X−1, the assumptions of Theorem 3.3 are satisfied. Then the law of X is bounded
below by a measure admitting a strictly positive continuous density on IR2 with respect to the
Lebesgue measure on IR2.

From now on, T > 0 is fixed, and so is X0 ∈ IR2.

In the next section, we will consider a fixed perturbation vn, and we will compute V n
t (λ) and

its derivatives for any t ∈ [0, T ]. Section 5 is devoted to the explicit choice of the sequence vn of
perturbations. In Section 6, we will first prove that for some β > 0, some δ > 0, a.s.,

lim inf
n→∞

∣

∣

∣

∣

det
∂

∂λ
V n

T (0)

∣

∣

∣

∣

≥ β1{‖VT −X0‖≤δ} (3.19)
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Then we will check that for some constant K, for all n ∈ IN , all λ ∈ B(0, 1),
∣

∣

∣

∣

∣

∣

∣

∣

∂

∂λ
V n

T (λ)

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂2

∂λ2
V n

T (λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ K (3.20)

Finally, we will easily conclude.

4 Differentiability of the perturbed process.

In this section, we consider a fixed perturbation vn. We compute V n
t (λ) = Vt ◦ Sλ

n and its
derivatives with respect to λ. The rigorous proof of the differentiability of similar processes can
be found in [8] or [9].

In order to compute V n
t (λ), it suffices to replace each ω by Sλ

n(ω), and to use the definition of
Sλ

n :

V n
t (λ) = V0 +

∫ t

0

∫ 1

0

∫ π

−π
A(θ)(V n

s−(λ) − Ws−(α))Ñ (dθdαds)

−
b

2

∫ t

0

∫ 1

0
(V n

s−(λ) − Ws−(α))dαds (4.1)

+

∫ t

0

∫ 1

0

∫ π

−π

(

A(γλ
n(s, θ, α)) − A(θ)

)

(V n
s−(λ) − Ws−(α))N0(dθdαds)

We now introduce the following semi-martingale, with values in M2×2(IR) :

Kn
t (λ) =

∫ t

0

∫ 1

0

∫ π

−π
A(θ)Ñ(dθdαds) −

b

2
It

+

∫ t

0

∫ 1

0

∫ π

−π

(

A(γλ
n(s, θ, α)) − A(θ)

)

N0(dθdαds) (4.2)

where I is the unit 2 × 2 matrix. Differentiating (4.1), we obtain

∂

∂λ
V n

t (λ) =

∫ t

0
dKn

s (λ).
∂

∂λ
V n

s−(λ)

+

∫ t

0

∫ 1

0

∫ π

−π
A′(γλ

n(s, θ, α))(V n
s−(λ) − Ws−(α))vT

n (s, θ, α)N0(dθdαds) (4.3)

We have used the notation

(

a
b

)

(x y ) =

(

ax ay
bx by

)

. The 2 × 2 matrix
∂

∂λ
V n

t (λ) is given by
(

∂

∂λx
V n

t (λ)
∂

∂λy
V n

t (λ)

)

.

We thus see that
∂

∂λ
V n

t (λ) satisfies a linear S.D.E. We thus are able to compute its explicit

expression, which we now do.
First consider the Doléans-Dade exponential E(Kn(λ)) defined as the solution of :

E(Kn(λ))t = I +

∫ t

0
dKn(λ)s.E(Kn(λ))s− (4.4)
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Since I +∆Kn
s (λ) is always invertible (use the explicit expression of A(θ)), we know from Jacod,

[13], that E(Kn(λ)) is always a.s. for all t ∈ [0, T ].
Using the main result of Jacod, [13], we deduce that

∂

∂λ
V n

t (λ) = E(Kn(λ))t

∫ t

0

∫ 1

0

∫ π

−π
E(Kn(λ))−1

s−(I + ∆Kn
s (λ))−1A′

(

γλ
n(s, θ, α)

)

(

V n
s−(λ) − Ws−(α)

)

vT
n (s, θ, α)N0(dθdαds)

= E(Kn(λ))t

∫ t

0

∫ 1

0

∫ π

−π
E(Kn(λ))−1

s−

(

I + A(γλ
n(s, θ, α))

)−1
A′
(

γλ
n(s, θ, α)

)

(

V n
s−(λ) − Ws−(α)

)

vT
n (s, θ, α)N0(dθdαds) (4.5)

The last equality comes from the fact that N0 and N1 are independent, thus they never jump
at the same time (a.s.), and hence I + ∆Kn

s (λ) is taken in account in the integral against N0

only when the jump ∆Kn
s (λ) comes from N0.

Exactly in the same way, one can compute the second derivative :

∂2

∂λ2
V n

t (λ) = E(Kn(λ))t

∫ t

0

∫ 1

0

∫ π

−π
E(Kn(λ))−1

s−

(

I + A(γλ
n(s, θ, α))

)−1

×
[

2A′(γλ
n(s, θ, α))

∂

∂λ
V n

s−(λ) (4.6)

+A′′(γλ
n(s, θ, α))(V n

s−(λ) − Ws−(α))vT
n (s, θ, α)

]

vT
n (s, θ, α)N0(dθdαds)

Here,
∂

∂λ
V n

t (λ) is given by

(

∂

∂λx

∂

∂λ
V n

t (λ)
∂

∂λy

∂

∂λ
V n

t (λ)

)

, and we have used the notation
(

a b
c d

)

(x y ) =

(

ax bx ay by
cx dx cy dy

)

.

We will frequently use the following lemma. Recall that if M is a 2 × 2 matrix, then ‖ M ‖op=
sup‖X‖=1 ‖ MX ‖.

Lemma 4.1 For all 0 ≤ s ≤ t,

‖ E(Kn(λ))tE(Kn(λ))−1
s− ‖op≤ 1 (4.7)

To prove this Lemma, we first solve the Doléans-Dade equation in a very simple case.

Lemma 4.2 Let U be a M2×2(IR)-valued process that can be written as the finite sum of its
jumps : for some 0 ≤ T1 < ... < Tk ≤ T ,

Ut =
k
∑

i=1

∆UTi
1{Ti≤t} (4.8)
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Then

E(U)t =
k
∏

i=1

(

I + ∆UTi
1{Ti≤t}

)

(4.9)

where
∏k

i=1 Ai = Ak.Ak−1...A1.

Proof : it is immediate. Since

E(U)t = I +
k
∑

i=1

1{Ti≤t}∆UTi
.E(U)Ti− (4.10)

it suffices to work recursively on the time intervals [Ti, Ti+1[.

Proof of Lemma 4.1 : let us denote by N ǫ, N ǫ
0 , and N ǫ

1 the restrictions to [0, T ] × [0, 1] ×

{[−π, π]/[−ǫ, ǫ]} of N , N0, and N1. We also set bǫ =

∫

{[−π,π]/[−ǫ,ǫ]}
(1− cos θ)β(θ)dθ. We denote

by Kn,ǫ
t (λ) the semi-martingale given by (4.2) with Ñ ǫ, N ǫ

0 , and bǫ instead of Ñ , N0, and b. A
standard computation shows that

E

(

sup
t∈[0,T ]

‖ E(Kn,ǫ(λ))t − E(Kn(λ))t ‖
2

)

−→ǫ→0 0 (4.11)

Furthermore, splitting Ñ ǫ(dθdαds) into N ǫ(dθdαds)−1{|θ|∈[ǫ,π]}β(θ)dθdαds, one can check that

Kn,ǫ
t (λ) =

∫ t

0

∫ 1

0

∫ π

−π
A(γλ

n(s, θ, α))N ǫ
0(dθdαds) +

∫ t

0

∫ 1

0

∫ π

−π
A(θ)N ǫ

1(dθdαds) (4.12)

Thus Kn,ǫ
t (λ) satisfies the assumptions of Lemma 4.2. Thus, if 0 ≤ T1 ≤ ... ≤ Tk denote the

successive times of its jumps, we know that

E(Kn,ǫ(λ))t =
k
∏

i=1

(

I + ∆Kn,ǫ
Ti

(λ)1{Ti≤t}

)

(4.13)

Hence, if 0 ≤ s ≤ t,

E(Kn,ǫ(λ))tE(Kn,ǫ(λ))−1
s− =

k
∏

i=1

(

I + ∆Kn,ǫ
Ti

(λ)1{s<Ti≤t}

)

(4.14)

But every jump of Kn,ǫ(λ) can be written as A(φ), for some φ ∈ [−π, π]. One easily checks that
for all φ, ‖ I + A(φ) ‖op≤ 1. Thus it is clear that for all ǫ > 0, all 0 ≤ s ≤ t,

‖ E(Kn,ǫ(λ))tE(Kn,ǫ(λ))−1
s− ‖op≤ 1 (4.15)

From (4.11), we deduce that there exists a sequence ǫk decreasing to 0 such that a.s.,

sup
t∈[0,T ]

‖ E(Kn,ǫk(λ))t − E(Kn(λ))t ‖−→k→∞ 0 (4.16)

One easily concludes : a.s., E(Kn,ǫk(λ))t goes to E(Kn(λ))t for all t ∈ [0, T ]. Thus a.s., for all
0 ≤ s < t, E(Kn,ǫk(λ))t and E(Kn,ǫk(λ))−1

s− go to E(Kn(λ))t and E(Kn(λ))−1
s− respectively, and

hence E(Kn,ǫk(λ))tE(Kn,ǫk(λ))−1
s− go to E(Kn(λ))tE(Kn(λ))−1

s−.
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5 Choice of the sequence of perturbations.

Our aim is now to choose a sequence of perturbations such that (3.19) and (3.20) are satisfied.
An easy computation, using (4.3), shows that

∂

∂λ
V n

T (0) = −
1

2
E(K)T

∫ T

0

∫ 1

0

∫ π

−π
E(K)−1

s−Jn(s, θ, α)N0(dθdαds) (5.1)

where K = Kn(0), which obviously does not depend on n, see (4.2) and (3.4), and where the
2 × 2 matrix Jn(s, θ, α) is given by





















vx
n(s, θ, α)

[

(V y
s− − W y

s−(α))

+f(θ)(V x
s− − W x

s−(α))
]

vy
n(s, θ, α)

[

(V y
s− − W y

s−(α))

+f(θ)(V x
s− − W x

s−(α))
]

vx
n(s, θ, α)

[

− (V x
s− − W x

s−(α))

+f(θ)(V y
s− − W y

s−(α))
]

vy
n(s, θ, α)

[

− (V x
s− − W x

s−(α))

+f(θ)(V y
s− − W y

s−(α))
]





















(5.2)

where f(θ) = (1 + cos θ)−1 sin θ. The main idea for choosing vn is the following : first, we will
get rid of the random terms E(K)T and E(K)−1

s−, by using a localization procedure at T , and by

using the a.s. continuity of E(K) at T . Then we will compute the determinant of
∂

∂λ
V n

T (0) in

the most natural way : we will write it as ad− bc. Then we will choose vx
n and vy

n in such a way
that ad is large but bc is small.

Let us now define rigorously our perturbation. First, we recall the following Lemma, that can
be found in [9]. This lemma uses the fact that in (SP )-2, r ≥ 2, i.e. that

∫

|θ|β(θ)dθ = ∞.

Lemma 5.1 Assume (SP )-1,2. One can build a sequence φn of positive, even, C1 functions on
[−θ0, θ0] such that φn(−θ0) = φn(θ0) = 0, such that φn(θ) ≤ k|θ| ∧ (1/2) for some k ≤ 1/2, such
that if

ξn(θ) = |φ′
n(θ)| + r2r+2 φn(θ)

|θ|
(5.3)

then ξn ∈ L1(β0(θ)dθ) and ξn ≤ 1/2, and such that there exists a sequence an, decreasing to 0
when n tends to infinity, and satisfying

an

∫ θ0

−θ0

φn(θ)β0(θ)dθ −→ ∞ (5.4)

an

∫ θ0

−θ0

|θ|φn(θ)β0(θ)dθ −→ 0 (5.5)

Then we prove a Lemma which uses assumption (SP )-3. For some 0 < ǫ < η < k < ∞, we set

Hx
s =

{

α ∈ [0, 1]
/

|W x
s−(α) − Xx

0 | < ǫ, η < |W y
s−(α) − Xy

0 | < k
}

(5.6)

Hy
s =

{

α ∈ [0, 1]
/

|W y
s−(α) − Xy

0 | < ǫ, η < |W x
s−(α) − Xx

0 | < k
}

(5.7)
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Lemma 5.2 Assume (SP ), and recall that X0 ∈ IR2 is fixed. There exist q > 0, 0 < ǫ < η < k
such that for all s ∈ [T/2, T ],

Pα (Hx
s ) ≥ q ; Pα (Hy

s) ≥ q (5.8)

Proof : first we consider the constants 0 < ǫ < η associated with X0 by assumption (SP )-3. It
is clearly possible to choose k < ∞ large enough, in such a way that

Pα (Hx
0) > 0 ; Pα (Hy

0) > 0 (5.9)

It is thus clear from Lemma 1.6 that for all s ∈ [0, T ],

Pα (Hx
s ) > 0 ; Pα (Hy

s) > 0 (5.10)

On the other hand, the map t 7→ L(Vt) = Lα(Wt) is weakly continuous, since V satisfies a quite
simple S.D.E. We also know from Theorem 1.4 that for all t > 0 (and thus for all t ∈ [T/2, T ]),
L(Vt) is absolutely continuous with respect to the Lebesgue measure on IR2. Since Hx

s (resp.
Hy

s) can be written as {Ws− ∈ Ox} (resp. {Ws− ∈ Oy}) for some open subset Ox (resp. Oy) of
IR2, we deduce that the maps s 7→ Pα (Hx

s ) and s 7→ Pα (Hy
s) are continuous. Since continuous

functions which never vanish on a compact interval are bounded below by a strictly positive
constant q > 0, one easily concludes.

We now are able to define our perturbation. First consider the processes on [T − an, T ] (recall
that an and φn were defined in Lemma 5.1) :

Zn,x
t =

∫ t

T−an

∫ 1

0

∫ π

−π
1Hx

s
(α)φn(θ)N0(dθdαds) (5.11)

Zn,y
t =

∫ t

T−an

∫ 1

0

∫ π

−π
1Hy

s
(α)φn(θ)N0(dθdαds) (5.12)

We fix c > 0 (which will be chosen later), and we set

T x
n = inf {t > T − an / Zn,x

t ≥ c} (5.13)

T y
n = inf {t > T − an / Zn,y

t ≥ c} (5.14)

We now denote by sg(x) the sign of x. The constant δ > 0 will be chosen later. We set

vx
n(s, θ, α) = 1{‖Vs−−X0‖<δ}1[T−an,T x

n∧T ](s)1Hx
s
(α)sg(V y

s− − W y
s−(α))φn(θ) (5.15)

vy
n(s, θ, α) = −1{‖Vs−−X0‖<δ}1[T−an,T y

n∧T ](s)1Hy
s
(α)sg(V x

s− − W x
s−(α))φn(θ) (5.16)

For each n, vn is a perturbation (see Definition 3.1), since it is predictable, and since it satisfies
(3.1), (3.2), and (3.3) thanks to Lemma 5.1.

The following lemma is the key of the proof.

Lemma 5.3 The following convergence holds

lim
n→∞

P (T x
n < T ; T y

n < T ) = 1 (5.17)
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Proof : let us just check the convergence for T x
n .

P (T x
n < T ) = P (Zn,x

T ≥ c)

≥ 1 − ecE
(

e−Zn,x

T

)

≥ 1 − ec exp

{

−

∫ T

T−an

∫

Hx
s

∫ π

−π

(

1 − e−φn(θ)
)

β0(θ)dθdαds

}

≥ 1 − ec exp

{

−an × q ×
1

2

∫ π

−π
φn(θ)β0(θ)dθ

}

(5.18)

which goes to 1 thanks to equation (5.4). We have used Lemma 5.2 and the fact that since φn

is smaller than 1/2, 1 − e−φn ≥ φn/2.

6 Conclusion.

We are now able to prove Theorem 1.5. We begin with the following proposition :

Proposition 6.1 Recall that X0 ∈ IR2 is fixed. There exist some constants δ > 0, β > 0 such
that a.s.,

lim inf
n→∞

∣

∣

∣

∣

det
∂

∂λ
V n

T (0)

∣

∣

∣

∣

≥ β1{‖VT −X0‖<δ} (6.1)

First recall that

∂

∂λ
V n

T (0) = E(K)T

∫ T

0

∫ 1

0

∫ π

−π
E(K)−1

s− (I + A(θ))−1 A′ (θ)

(Vs− − Ws−(α)) vT
n (s, θ, α)N0(dθdαds) (6.2)

where Kt = Kn
t (0). First, we get rid of the random terms E(K)T and E(K)−1

s−.

Lemma 6.2 Consider

Dn
T =

∫ T

0

∫ 1

0

∫ π

−π
(I + A(θ))−1 A′ (θ) (Vs− − Ws−(α)) vT

n (s, θ, α)N0(dθdαds) (6.3)

Then a.s.,

lim inf
n→∞

∣

∣

∣

∣

det
∂

∂λ
V n

T (0)

∣

∣

∣

∣

= lim inf
n→∞

|det Dn
T | (6.4)

Proof : we just have to check that a.s., when n goes to infinity,

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂λ
V n

T (0) − Dn
T

∣

∣

∣

∣

∣

∣

∣

∣

−→ 0 (6.5)

First, it is clear that ‖ A′(θ) ‖≤ K. From (5.6), (5.7), and (5.15), (5.16), we deduce that

[‖ Vs− ‖ + ‖ Ws−(α) ‖] ‖ vn(s, θ, α) ‖≤ [2 ‖ X0 ‖ +δ + k] ‖ vn(s, θ, α) ‖ (6.6)
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Thus
∣

∣

∣

∣

∣

∣

∣

∣

∂

∂λ
V n

T (0) − Dn
T

∣

∣

∣

∣

∣

∣

∣

∣

≤ K sup
[T−an,T ]

‖ E(K)T E(K)−1
s− − I ‖

×

∫ T

T−an

∫ 1

0

∫ π

−π
[|vx

n(s, θ, α)| + |vy
n(s, θ, α)|] N0(dθdαds)

≤ K sup
[T−an,T ]

‖ E(K)T E(K)−1
s− − I ‖ ×

[

Zn,x
T x

n
+ Zn,y

T y
n

]

≤ K(2c + 1) sup
[T−an,T ]

‖ E(K)T E(K)−1
s− − I ‖ (6.7)

thanks to the definitions of vn, Zn, and Tn. This term goes to 0, because the map t 7→ E(K)t is
a.s. continuous at T .

Proof of Proposition 6.1 : thanks to the previous lemma, it suffices to check the proposition

with Dn
T instead of

∂

∂λ
V n

T (0). First notice that

Dn
T = −

1

2

∫ t

0

∫ 1

0

∫ π

−π
Jn(s, θ, α)N0(dθdαds) (6.8)

where Jn was defined by (5.2). Computing the determinant in the most simple way, we write it
of the form

detDn
T =

1

4
× [Hn,xx

T Hn,yy
T − Hn,xy

T Hn,yx
T ] (6.9)

We want to prove that Hn,xx
T and Hn,yy

T are large, and that Hn,xy
T and Hn,yx

T are small.

First, we prove a lowerbound for Hn,xx
T =

∫ T

0

∫ 1

0

∫ π

−π
Jxx

n (s, θ, α)N0(dθdαds). First, we deduce

from (5.6) and (5.15) that

Jxx
n (s, θ, α) ≥

(

|V y
s− − W y

s−(α)| − |f(θ)||V x
s− − W x

s−(α)|
)

×1Hx
s
(α)1‖Vs−−X0‖<δ1[T−an,T∧T x

n ](s)φn(θ)

≥ ((η − δ) − |f(θ)|(ǫ + δ)) 1Hx
s
(α)1‖Vs−−X0‖<δ1[T−an,T∧T x

n ](s)φn(θ) (6.10)

Furthermore, |f(θ)| ≤

∣

∣

∣

∣

sin θ

1 + cos θ

∣

∣

∣

∣

≤

∣

∣

∣

∣

θ

1 + cos θ0

∣

∣

∣

∣

≤ K|θ|. We thus obtain

Hn,xx
T ≥ (η − δ)

∫ T∧T x
n

T−an

∫ 1

0

∫ π

−π
1{‖Vs−−X0‖<δ}1Hx

s
(α)φn(θ)N0(dθdαds)

−K(ǫ + δ)

∫ T

T−an

∫ 1

0

∫ π

−π
|θ|φn(θ)N0(dθdαds)

≥ (η − δ) inf
[T−an,T ]

1{‖Vs−−X0‖<δ} × Zn,x
T∧T x

n
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−K

∫ T∧T x
n

T−an

∫ 1

0

∫ π

−π
|θ|φn(θ)N0(dθdαds) (6.11)

Thanks to (5.5), the second term clearly goes to 0 a.s. On the other hand, we know from Lemma
5.3 that

lim inf
n→∞

Zn,x
T∧T x

n
≥ c (6.12)

Since V is a.s. continuous at T , we deduce that inf [T−an,T ] 1{‖Vs−−X0‖<δ} goes to 1{‖VT −X0‖<δ}.
This way, we obtain a.s.,

lim inf Hn,xx
T ≥ (η − δ) × c × 1{‖VT −X0‖<δ} (6.13)

The same lowerbound holds for lim infn→∞ Hn,yy
T .

We now compute Hn,xy
T =

∫ T

0

∫ 1

0

∫ π

−π
Jxy

n (s, θ, α)N0(dθdαds). Thanks to the definition of vx
n

and Hx
s ,

Jxy
n (s, θ, α) ≤ ((ǫ + δ) + |f(θ)|(k + δ)) 1Hx

s
(α)1‖Vs−−X0‖<δ1[T−an,T∧T x

n ](s)φn(θ) (6.14)

Hence,

Hn,xy
T ≤ sup

[T−an,T ]
1{‖Vs−−X0‖<δ} × (ǫ + δ)Zn,x

T∧T x
n

+K

∫ T

T−an

∫ 1

0

∫ π

−π
|θ|φn(θ)N0(dθdαds) (6.15)

The second term goes to 0 a.s., thanks to (5.5). The definitions of Zn,x and T x
n , and the fact

that φn ≤ 1/2 yield that Zn,x
T∧T x

n
≤ c + 1/2. Finally, using the a.s. continuity of V at T , we

deduce that a.s.,
lim sup

n→∞
|Hn,xy

T | ≤ (ǫ + δ)(c + 1/2)1{‖VT −X0‖<δ} (6.16)

The same upperbound holds for lim supn→∞ |Hn,yx
T |.

We finally deduce from (6.9) that

lim inf
n→∞

|detDn
T | ≥

[

c2(η − δ)2 − (c + 1/2)2(ǫ + δ)2
]

1{‖VT −X0‖<δ} (6.17)

Thus Proposition 6.1 will be proved if we exhibit δ > 0 and c > 0 such that c(η − δ) >
(c + 1/2)(ǫ + δ). Since 0 < ǫ < η, this is clearly possible : choose

δ =
η − ǫ

3
; c =

η + 2ǫ

η − ǫ
(6.18)

The first part of our criterion is satisfied.

We still have to check the following result.
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Proposition 6.3 There exists a constant K < ∞ such that for all n,

P

(

sup
‖λ‖≤1

{

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂λ
V n

T (λ)

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂2

∂λ2
V n

T (λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

}

≤ K

)

= 1 (6.19)

Proof : first, we prove a Lipschitz property (in λ) for V n
t (λ). Setting Un

t (λ, µ) = V n
t (λ)−V n

t (µ),

Un
t (λ, µ) =

∫ t

0
dKn

s (λ).Un
s−(λ, µ) (6.20)

+

∫ t

0

∫ 1

0

∫ π

−π

[

A
(

γλ
n(s, θ, α)

)

− A (γµ
n(s, θ, α))

]

[

V n
s−(µ) − Ws−(α)

]

N0(dθdαds)

Thus, using again the result of Jacod, [13],

Un
t (λ, µ) = E(Kn(λ))t

∫ t

0

∫ 1

0

∫ π

−π
E(Kn(λ))−1

s−

(

I + A(γλ
n(s, θ, α))

)−1

[

A
(

γλ
n(s, θ, α)

)

− A (γµ
n(s, θ, α))

]

[

V n
s−(µ) − Ws−(α)

]

N0(dθdαds) (6.21)

But, since |γλ
n(s, θ, α)| ≤ θ0 < π, it is clear that ‖

(

I + A(γλ
n(s, θ, α))

)−1
‖≤ K. Furthermore,

one easily checks that
∣

∣

∣

∣

∣

∣A
(

γλ
n(s, θ, α)

)

− A (γµ
n(s, θ, α))

∣

∣

∣

∣

∣

∣ ≤ K ‖ λ − µ ‖ × ‖ vn(s, θ, α) ‖ (6.22)

Using also Lemma 4.1, we deduce that

‖ Un
t (λ, µ) ‖ ≤ K ‖ λ − µ ‖

∫ t

0

∫ 1

0

∫ π

−π

[

‖ V n
s−(µ) ‖ + ‖ Ws−(α) ‖

]

‖ vn(s, θ, α) ‖ N0(dθdαds)

(6.23)

In particular, if µ = 0,
‖ V n

t (λ) ‖≤‖ Vt ‖ +KY (6.24)

where

Y =

∫ T

0

∫ 1

0

∫ π

−π
[‖ Vs− ‖ + ‖ Ws−(α) ‖]× ‖ vn(s, θ, α) ‖ N0(dθdαds)

≤ [2 ‖ X0 ‖ +δ + k] ×
(

Zn,x
T x

n
+ Zn,y

T y
n

)

≤ [2 ‖ X0 ‖ +δ + k] × (2c + 1) ≤ K (6.25)

We have used the definitions of vn, Zn, Tn, and Hs.

Let us now turn to the first derivative. We use expression (4.5). Using the same arguments as
above, and inequalities (6.24) and (6.25),

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂λ
V n

t (λ)

∣

∣

∣

∣

∣

∣

∣

∣

≤ K

∫ T

0

∫ 1

0

∫ π

−π

(

‖ V n
s−(λ) ‖ + ‖ Ws−(α) ‖

)

‖ vn(s, θ, α) ‖ N0(dθdαds)
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≤ K

∫ T

0

∫ 1

0

∫ π

−π
(‖ Vs− ‖ +Y + ‖ Ws−(α) ‖) ‖ vn(s, θ, α) ‖ N0(dθdαds)

≤ K ×
(

Zn,x
T x

n
+ Zn,y

T y
n

)

≤ K (6.26)

Exactly in the same way, one can check that for some constant K, for all λ, t, n,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂2

∂λ2
V n

t (λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ K (6.27)

We thus have proved the Proposition (6.3).

We are now able to conclude.

Proof of Theorem 1.5 :
We have fixed X0 ∈ IR2, and we have found a sequence of perturbations such that, for some
β > 0, δ > 0, K < ∞,

a.s., lim inf
n→∞

∣

∣

∣

∣

det
∂

∂λ
V n

T (0)

∣

∣

∣

∣

≥ β1{‖VT −X0‖≤δ} (6.28)

∀ n ∈ IN∗, P

(

sup
‖λ‖≤1

{

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂λ
V n

T (λ)

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂2

∂λ2
V n

T (λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

}

≤ K

)

= 1 (6.29)

from which we easily deduce, for all r > 0,

lim inf
n

P

(

‖ VT − X0 ‖≤ r ;

∣

∣

∣

∣

det
∂

∂λ
V n

T (0)

∣

∣

∣

∣

≥ β/2 ; sup
‖λ‖≤1

{

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂λ
V n

T (λ)

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂2

∂λ2
V n

T (λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

}

≤ K

)

≥ P (‖ VT − X0 ‖≤ r ∧ δ) (6.30)

It is thus clear that every X0 in the support of L(VT ) satisfies the assumptions of Theorem 3.3.
Applying Remark 3.5 drives immediately to the conclusion.
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