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Abstract

Using the main ideas of Tanaka [18], the measure solution {Pt}t of a 2-dimensional
spatially homogeneous Boltzmann equation of Maxwellian molecules without cutoff is
related to a Poisson-driven nonlinear stochastic differential equation. Using this tool
and a generalized law of large numbers, we present two ways to prove the convergence
of the empirical measure associated with an interacting particle system to this measure
solution of the Boltzmann equation. Then we give numerical results. We finally discuss
about a central limit theorem associated with the above law of large numbers.
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1 Introduction.

Our aim in this paper is to introduce a probabilistic interpretation of 2-dimensional Boltz-
mann equations without cutoff in order to define a simple Monte-Carlo algorithm for the
simulation of the solutions of these equations. We prove the convergence of the empirical
measure of underlying interacting stochastic particle systems to this solution, and obtain
a central limit theorem describing the rate of the previous approximation. In this setting,
deterministic particle methods seem difficult to develop, whereas this stochastic particle
method is very natural in a probabilistic point of view and easy to implement.

We consider here spatially homogeneous Boltzmann equations of Maxwellian molecules
without cutoff in IR2. Following Fournier [8], we describe a stochastic pure jump process,
for which the time-marginals flow is measure-solution of the equation. Because of the possi-
ble explosions of the jump measure, which is just assumed to have a second order moment,
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this process is defined as a solution of a nonlinear stochastic differential equation driven
by a compensated Poisson measure, and we will work in L2 spaces. The nonlinearity is
modeled by adding an auxiliary probability space.
This framework is a generalization in dimension 2 of Desvillettes-Graham-Méléard [4] con-
cerning a Kac equation without cutoff inspired by an original idea of representation due to
Tanaka [18]. In [18], the jump measure has a one-order moment and one can directly use
Poisson point processes.

As in [4], we approximate the law of the stochastic process by simulable interacting particle
systems, proving a generalized law of large numbers on a path space. We use a result of
Graham-Méléard [9] who discuss this problem in a general context, but in a cutoff case. We
consider first cutoff approximations of our model and associate with each cutoff equation
some cutoff approximating interacting particle systems. The cutoff model converges to the
model without cutoff with an easily computable rate of convergence. Then one chooses
a sequence of cutoff approximations indexed by the size n of the approximating particle
systems and converging to 0 as n tends to infinity in a good asymptotics such that finally
the empirical measures of the particle systems converge to the solution of the Boltzmann
equation without cutoff. We describe the algorithm related with this convergence and give
some numerical results. We observe that for the moment of order 4, a uniform (in the cutoff
parameter) central limit theorem holds.

In the last part of the paper, we prove that the fluctuation processes related to the particle
systems with cutoff converge in law, when the size of the system tends to infinity, to a
generalized Ornstein-Uhlenbeck process in an adapted functional space. This is inspired
by Ferland, Fernique, Giroud, [5], and by Méléard [13]. We finally discuss about possible
uniform controls of these limiting processes, not depending on the cutoff parameter of the
equation. By this way, we prove rigorously the numerical observations.

Notations
K will denote a constant which may change from line to line.
For a Polish space E, P(E) will denote the space of probability measures on E. It will
be endowed with the topology of the weak convergence. P2(E) will be the subspace of
probability measures with a second order moment.
If V is a random variable on a probability space, L(V ) will denote the law of V .

2 A probabilistic interpretation of the 2D Boltzmann equa-

tion.

We recall here the main results obtained by Fournier in his thesis [7], see also [8], concern-
ing a probabilistic interpretation of the 2-dimensional spatially homogeneous Boltzmann
equation without cutoff for Maxwellian molecules.
The Boltzmann equation we consider describes the evolution of the density f(t, v) of par-
ticles with velocity v ∈ IR2 at time t in a rarefied gas:

∂f

∂t
= Q(f, f), (2.1)
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whereQ is a quadratic collision kernel acting on the variables t and v, preserving momentum
and kinetic energy, of the form

Q(f, f)(t, v) =

∫

v∗∈IR
2

∫ π

θ=−π

(

f(t, v′)f(t, v′∗) − f(t, v)f(t, v∗)

)

β(|v − v∗|, θ) sin θ dθdv∗

with
v′ = v +A(θ)(v − v∗) ; v′∗ = v −A(θ)(v − v∗) (2.2)

and

A(θ) =
1

2

(

cos θ − 1 − sin θ
sin θ cos θ − 1

)

Remark 2.1 For each θ ∈ [−π, π] \ {0},

|A(θ)| ≤ K|θ| (2.3)

|A(θ) −A(ϕ)| ≤ K|θ − ϕ|. (2.4)

The cross section β is an even and positive function. If the molecules in the gas interact

according to an inverse power law in 1/rs with s ≥ 2, then β(z, θ) = z
s−5
s−1 d(|θ|) where

d ∈ L∞
loc(]0, π]) and d(θ) sin θ ∼ K(s)θ−

s+1
s−1 when θ goes to zero, for some K(s) > 0.

Physically, this explosion comes from the accumulation of grazing collisions. This equation
seems very difficult to study and we will restrict our attention to the case of Maxwellian
molecules for which the cross section β(z, θ) sin θ = β(θ) only depends on θ and is even.
The only condition we assume, following the physical behaviour, is that

∫ π

0
θ2β(θ)dθ < +∞. (2.5)

Equation (2.1) has to be understood in a weak sense. By a standard integration by parts,
we define a solution f as satisfying for each φ ∈ C2

b (IR
2)

∂

∂t

∫

IR2
f(t, v)φ(v)dv =

∫

IR2
×IR2

∫ π

−π
(φ(v′) − φ(v))β(θ)dθf(t, v)dvf(t, v∗)dv∗.

But here the RHS term may explode, since the function β may have an infinite mass on
[0, π]. Thus we have to compensate this term. Finally, we will use the following definition
of the solutions of (2.1).

Definition 2.2 We say that a probability measure flow (Pt)t is a measure-solution of the
Boltzmann equation (2.1) if for each φ ∈ C2

b (IR
2)

〈φ, Pt〉 = 〈φ, P0〉 +

∫ t

0
〈Kφ

β (v, v∗), Ps(dv)Ps(dv
∗)〉 ds, (2.6)

where Kφ
β is defined in the compensated form

Kφ
β (v, v∗) = −b(v − v∗).∇φ(v) (2.7)

+

∫ π

−π

(

φ(v +A(θ)(v − v∗)) − φ(v) −A(θ)(v − v∗).∇φ(v)

)

β(θ)dθ
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and where

b =

∫ π

−π
(1 − cos θ)β(θ)dθ. (2.8)

The following result can be deduced from Toscani-Villani, [19], Theorem 5.

Theorem 2.3 Assume that P0 is a probability measure on IR2 admitting a moment of order
2, and that β is a cross section satisfying

∫ π
0 θ

2β(θ)dθ < ∞. The uniqueness of a measure
solution holds for the Boltzmann equation (2.6).

We thus deduce the following important remark.

Remark 2.4 Thanks to Theorem 2.3, we are sure that in the case where the existence of
a weak function-solution f(t, v) to (2.1) holds for P0 ∈ P2(IR

3), the measure-solution Pt we
will study in the sequel is given by Pt(dv) = f(t, v)dv.

We have conservation of mass in (2.6), which leads to a probabilistic approach. We consider
(2.6) as the evolution equation of the flow of marginals of a Markov process for which the
law is defined by a martingale problem.

Definition 2.5 Let β be a cross section such that
∫ π
0 θ

2β(θ)dθ < +∞ and P0 in P2(IR
2).

We say that P ∈ P(ID(IR+, IR2)) solves the nonlinear martingale problem MP (β, P0) start-
ing at P0 if for V the canonical process under P , the law of V0 is P0 and for any φ ∈ C2

b (IR
2),

φ(Vt) − φ(V0) −
∫ t

0
〈Kφ

β (Vs, v∗), Ps(dv∗)〉ds (2.9)

is a square-integrable martingale. Here, the nonlinearity appears through Ps which denotes
the marginal of P at time s.

Remark 2.6 If P is a solution of MP (β, P0), then its marginal flow {Pt}t is a measure-
solution of the Boltzmann equation, in the sense of Definition (2.2).

1) The simple case of a Boltzmann equation with cutoff

We first consider in this part the simpler so-called cutoff case for which
∫ π
0 β(θ)dθ < +∞.

Theorem 2.7 Let β be a cross section such that ‖β‖1 =
∫ π
0 β(θ)dθ < +∞ and P0 ∈ P(IR).

There exists a unique solution P β to the nonlinear martingale problem MP (β, P0). Its flow

of time-marginals (P βt )t≥0 is the unique (probability measure flow) solution of the equation
(2.6).

Proof. The proof is standard and is almost contained in [4] which concerns the one-
dimensional case, and follows Shiga-Tanaka, [15], Lemma 2.3. Since β is in L1([0, π]) and
is even, the jump operator has the simpler form: ∀φ ∈ C2

b (IR
3),

Kφ
β (v, v∗) =

∫ π

−π
(φ(v +A(θ)(v − v∗)) − φ(v)) β(θ)dθ (2.10)
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and moreover for any flow (Qt)t in ID(IR+,P(IR2))

φ ∈ L∞(IR2) ⇒ 〈Kφ
β (., v∗), Qs(dv∗)〉 ∈ L∞(IR2). (2.11)

Then the operator φ 7→ 〈Kφ
β (., v∗), Qs(dv∗)〉 is a pure-jump Markov operator generating a

unique law PQ in P(ID(IR+, IR2)) starting at P0. Its flow of marginals satisfies a linear
evolution equation: for φ ∈ L∞(IR2),

〈φ, PQt 〉 = 〈φ, P0〉 +

∫ t

0
〈Kφ

β (v, v∗), PQs (dv)Qs(dv
∗)〉 ds. (2.12)

Let |µ| = sup{〈φ, µ〉 : ‖φ‖∞ ≤ 1} denote the variation norm. For (Qit)t≥0, i = 1, 2, and the

corresponding solutions (PQ
i

t )t≥0, one proves easily that

|PQ1

t − PQ
2

t | ≤ 4π‖β‖1

∫ t

0
(|PQ1

s − PQ
2

s | + |Q1
s −Q2

s|) ds (2.13)

and a standard fixed point argument gives the result. 2

By adapting the proof of Desvillettes, [3], Theorem A.1, one can prove

Theorem 2.8 Let us assume that
∫ π
0 β(θ)dθ < +∞. Let f0 ≥ 0 be an initial density datum

such that
∫

IR3 f0(v)(1 + |v|2)dv < +∞. Then there exists a unique density solution fβ(t, v)

of (2.1) in L∞(IR+, L1(IR2, (1 + |v|2)dv)) with initial datum f0. This solution satisfies the
conservation of momentum and energy.

Using Remark 2.4, we see that under the assumptions of Theorem 2.8, the solution P β of
the martingale problem with initial distribution P0(dv) = f0(v)dv satisfies, for each t > 0,

P βt (dv) = fβ(t, v)dv, where fβ is defined in Theorem 2.8.

2) The case of a Boltzmann equation without cutoff

In this case without cutoff, the existence and uniqueness of the nonlinear martingale prob-
lem (2.9) is not so natural as in the cutoff case. In order to prove the existence, we associate
with this martingale problem a nonlinear stochastic differential equation on a greater prob-
ability space. We recall here the results obtained by Fournier [8] concerning the existence
of a solution of this SDE on each finite-time interval [0, T ], proved by a generalized Picard-
iteration and giving as corollary the existence and uniqueness of a solution of the nonlinear
martingale problem.

We consider now two probability spaces : the first one is the abstract space
(Ω,F , {Ft}t∈[0,T ], P ) and the second one is ([0, 1],B([0, 1]), dα). In order to avoid any
confusion, the processes on ([0, 1],B([0, 1]), dα) will be called α-processes, the expectation
under dα will be denoted Eα, and the laws Lα.
If Q is a probability on IDT = ID([0, T ], IR2), we will say that Q ∈ P2(IDT ) if
∫

x∈IDT
sup[0,T ] |x(t)|2Q(dx) <∞. A càdlàg adapted process Ys on [0, T ] will be said to be a

L2
T -process if its law belongs to P2(IDT ).
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Notation 2.9 Let V0 be a IR2-valued F0-measurable random variable, let N be a {Ft}-
Poisson measure on [0, T ]× [0, 1]× [−π, π]. Let Y be a L2

T -process and W a L2
T -α-process,

and let b ∈ IR. Then we denote by X = F (V0, Y,W,N, b) the L2
T -process defined by

Xt(ω) = V0(ω) +

∫ t

0

∫ 1

0

∫ π

−π
A(θ)(Ys−(ω) −Ws−(α))Ñ (dθ, dα, ds)

− b
2

∫ t

0

∫ 1

0
(Ys(ω) −Ws(α)) dαds. (2.14)

where Ñ(dθ, dα, ds) is the compensated Poisson measure associated with N .

Definition 2.10 We will say that (V,W,N) is a solution of SDE(β, P0) if V is a L2
T -

process with L(V0) = P0, W is a L2
T -α-process such that Lα(W ) = L(V ), N is a {Ft}-

Poisson measure on [0, T ] × [0, 1] × [−π, π] with intensity measure β(θ)dθdαds, and V =
F (V0, V,W,N, b), where b =

∫ π
−π(1 − cos θ)β(θ)dθ. That means

Vt(ω) = V0(ω) +

∫ t

0

∫ 1

0

∫ π

−π
A(θ) (Vs−(ω) −Ws−(α)) Ñ(dθ, dα, ds)

− b
2

∫ t

0

∫ 1

0
(Vs(ω) −Ws(α)) dαds ; Lα(W ) = L(V ). (2.15)

Remark 2.11 If (V,W,N) is a solution of SDE(β, P0), then L(V ) = Lα(W ) is a solu-
tion of MP (β, P0), and thus {L(Vs)}s∈[0,T ] is the unique measure-solution of (2.6). (The
uniqueness is recalled in Theorem 2.3).

Theorem 2.12 (proved in [8]) Assume that P0 is a probability measure on IR2 admitting
a moment of order 2, and that β is a cross section satisfying

∫ π
0 θ

2β(θ)dθ <∞. Then
1) SDE(β, P0) admits a solution (V,W,N) and the law P β = L(V ) = Lα(W ) is unique.
2) MP (β, P0) admits a unique solution, which is given by P β.

Remark 2.13 If P0 is not a Dirac measure and has finite moments of all orders and
under some assumption on β, it is also proved in [8] that for each t >, P βt has a density
function of class C∞, which will then be the unique weak function-solution of the Boltzmann
equation. What is interesting is that P0 can be degenerated; the regularity of the solution,
as soon as t > 0, is due to the explosions of the jump measure, related to an accumulation
of small jumps of the underlying process. The proof uses a stochastic calculus of variations
(Malliavin calculus).

3 Stochastic Approximations for the Boltzmann equation

with cutoff.

3.1 The interacting particle systems

Still under the cutoff assumption
∫ π
0 β(θ)dθ < +∞, and following (2.10), it is natural to

introduce mean-field interacting particle systems which approximate in a Monte-Carlo sense
the nonlinear martingale problem (2.9). The natural interpretation of the nonlinearity in
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(2.9) leads to a simple mean field interacting system but a physical interpretation of the
equation leads also naturally to a binary mean field interacting particle system.
In both cases, these n-particles systems are pure-jump Markov processes with values in
(IR2)n and with generators defined for φ ∈ Cb((IR2)n) by

1

n− 1

∑

1≤i6=j≤n

∫ π

−π

(

φ(vn + ei.(A(θ)(vi − vj))) − φ(vn)

)

β(θ)dθ. (3.1)

for the simple mean-field interacting particle system and by:

1

n− 1

∑

1≤i6=j≤n

∫ π

−π

1

2

(

φ(vn + ei.(A(θ)(vi− vj)) + ej.(A(θ)(vj − vi)))−φ(vn)

)

β(θ)dθ. (3.2)

for the binary mean-field interacting particle system. In these formula, vn = (v1, ..., vn)
denotes the generic point of (IR2)n and ei : h ∈ IR2 7→ ei.h = (0, ..., 0, h, 0, ..., 0) ∈ (IR2)n

with h at the i-th place.
Both cases can be treated indifferently in a probabilistic point of view. The first particle
system can be refered the Nanbu algorithm (cf. [14], [1]) and is as simple as possible. The
second one can be related to the Bird algorithm (cf. [20]). Its main interest is that it
conserves momentum and kinetic energy. Moreover, a set of numerical experiences (see
Subsection 4.3) shows that it looks better. Since it is also slightly more rapid, we consider,
from now on, only the binary mean-field systems, even if in a theorical point of view,
the simple mean-field systems have a similar behaviour.

We denote by V β,n = (V β,1n, ..., V β,nn) the Markov process defined by (3.2) and initial i.i.d.
data (V i

0 ). Then for each n, i,

Mβ,iφ
t = φ(V β,in

t ) − φ(V i
0 ) (3.3)

− 1

n

n
∑

j=1

∫ t

0

∫ π

−π

(

φ(V β,in
s +A(θ)(V β,in

s − V β,jn
s )) − φ(V β,in

s )
)

β(θ)dθds

is a martingale, with Doob-Meyer process given by

< Mβ,iφ >t=
1

n

n
∑

j=1

∫ t

0

∫ π

−π

(

φ(V β,in
s +A(θ)(V β,in

s − V β,jn
s ))) − φ(V β,in

s )
)2
β(θ)dθds, (3.4)

and for i 6= j,

< Mβ,iφ,Mβ,jφ >t =
1

n

∫ t

0

∫ π

−π

(

φ(V β,in
s +A(θ)(V β,in

s − V β,jn
s ))) − φ(V β,in

s )
)

(

φ(V β,jn
s +A(θ)(V β,jn

s − V β,in
s ))

)

β(θ)dθds.

Finally, by summing (3.3) over i and if

µβ,n =
1

n

n
∑

i=1

δV β,in (3.5)
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denotes the empirical measure of the system, the flow of marginals (µβ,nt )t≥0 is a semi-
martingale in the sense where for each bounded function φ,

< φ,µβ,nt > = < φ,µβ,n0 > +Mφ,n
t (3.6)

+

∫ t

0

〈∫ π

−π
(φ(v +A(θ)(v − v∗)) − φ(v))β(θ)dθ, µβ,ns (dv)µβ,ns (dv∗)

〉

ds

where Mφ,n is a square integrable martingale whose Doob-Meyer process

< Mφ,n >t =
1

n

∫ t

0

〈1

2

∫ π

−π

(

φ(v +A(θ)(v − v∗)) − φ(v)

+φ(v∗ +A(θ)(v∗ − v)) − φ(v∗)
)2
β(θ)dθ, µβ,ns (dv)µβ,ns (dv∗)

〉

ds.

The pathwise representation

In this cutoff case, we could obtain a representation of the interacting systems in terms of
solutions of SDE’s driven by Poisson point measures (without compensation), but in view
of what follows, we consider as in the previous section a pathwise representation of these
processes using compensated Poisson point measures.
We introduce a family of independent Poisson point measures (N ij)1≤i<j≤n on [0, T ] ×
[−π, π] with intensities 1

2β(θ)dθds and their compensated parts (Ñ ij)1≤i,j≤n. For i > j, we
set N ij = N ji. Now consider the processes V β,in solutions of

V β,in
t = V β,in

0 +
1

n− 1

n
∑

j 6=i=1

∫ t

0

∫ π

−π

(

A(θ)(V β,in
s− − V β,jn

s− )
)

Ñ ij(dθ, ds) (3.7)

− b

2(n− 1)

n
∑

j 6=i=1

∫ t

0
(V β,in
s − V β,jn

s )ds.

3.2 The asymptotics results

We are here in a standard case for which many studies have been done. The specific
asymptotic behaviour one obtains in this case is called propagation of chaos. It means that
the independance of the initial laws propagate: the coordinates of each finite subsystem of
the particle system tend to become independent as the size of the system tends to infinity,
with common law P β. This result, due to the mean field interaction, is equivalent to the
convergence of the empirical measures of the system to P β and is then a generalized law of
large numbers. Usually the proof follows a standard criterion of tightness-uniqueness, as it
can be found in Méléard [12], Section 4, and as it will be developed below. The convergence
is then understood as a convergence in law, in the path space ID([0, T ], IR2). Here, because
the dynamics is just a jump dynamics, one can prove a stronger approximation result,
due to Graham-Méléard [9] Theorem 3.1. For a given T > 0, let us denote by |.|T the
total variation norm in the space of signed measures on ID([0, T ], IR2). Then we have a
propagation of chaos result in variation norm.

Theorem 3.1 Let (V i
0 )i≥1 be i.i.d. P0-distributed random variables. For given T > 0 and

k ∈ IN∗,

|L(V β,1n, ..., V β,kn) − (P β)⊗k|T ≤ Kk
exp(‖β‖1T )

n
,

with K1,K2 = 6 and Kk = 2k(k − 1) for k > 2.
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This theorem is proved by using a pathwise representation of a particle during a finite
time-interval [0, T ], obtained on a random graph which describes the interaction past of
this particle. One associates with a couple of particles their random graph and compare
it by a coupling to the random graphs we would obtain if the particles were independent.
Some computations using the collision time Poisson laws allow us to quantify the probability
of a difference between these graphs. The limit law can also be represented on a random
tree and the proof consists also in coupling the random graph with the random tree.
The following corollary will be the basis for the numerical approximations in the sequel.

Corollary 3.2 The empirical measure µβ,n = 1
n

∑n
i=1 δV β,in converges in probability in

P(ID([0, T ], IR2)) to P β, with the rate
√

exp(‖β‖1T )
n . (The space P(ID([0, T ], IR2)) is endowed

with the weak topology for the Skorohod metric on ID([0, T ], IR2)).

Then we can prove that under the assumptions of Theorem 2.8, the empirical measure at
time t converges for each fixed t to the function fβ(t, .) solution of the Boltzmann equation
with cutoff. We now consider the case without cutoff which is the original part of the paper.

4 Stochastic particle approximations for the Boltzmann equa-

tion without cutoff

4.1 A strong Approach

Convergence of some cutoff approximations. Let us consider the cutoff cross sections
βl defined for l ≥ 1 by

βl(θ) = β(θ)1[ 1
l
,π](|θ|).

We are interested in the convergence, when l tends to infinity, of the solution P βl of the
martingale problem on ID([0, T ], IR2) with cross section βl to that of the martingale problem
P β with cross section β on ID([0, T ], IR2). Usually (for example for a similar problem in
dimension one [4]), one constructs a pathwise coupling of processes, respectively with laws
P βl and P β, and comparable in a pathwise sense.

Notation 4.1 We consider on P2(IR
2) and P2(IDT ) the Vaserstein metrics:

ρ(q1, q2) = inf

{

E
(

|V −W |2
)1/2

/

L(V ) = q1 , L(W ) = q2

}

, (4.1)

ρT (Q1, Q2) = inf







E

(

sup
[0,T ]

|Vt −Wt|2
)1/2 /

L(V ) = Q1 , L(W ) = Q2







(4.2)

We set

b =

∫ π

0
(1 − cos θ)β(θ)dθ , bl =

∫ π

1/l
(1 − cos θ)β(θ)dθ. (4.3)

Let us remark that b− bl tends to 0 when l tends to infinity.
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Theorem 4.2 Let P0 ∈ P2(IR
2). Let β be a cross section satisfying

∫ π
0 θ

2β(θ)dθ <∞, and
let βl(θ) = β(θ)1[1/l,π](|θ|). Let P β (resp. P βl) be the unique solution of MP (β, P0) (resp.
MP (βl, P0)). Then

ρT (P β , P βl) ≤
(∫

IR2
|v|2P0(dv)

)1/2√

2(b− bl) + T (b− bl)24
√
Te16b+2b2T (4.4)

Proof. As in [4], we use coupling techniques. Let l ≥ 1 be fixed. We consider a Poisson
measure N(dθ, dα, ds) with intensity measure β(θ)dθdαds. We also consider the Poisson
measure with cutoff Nl = N |[0,T ]×[0,1×{[−π,π]\[−1/l,1/l]}, of which the intensity is βl(θ)dθdαds.

Then we perform an iteration scheme. We take V0 of law P0 and define V l,0 = V 0 = V0,
When everything is built up to k, we set using Notation 2.9

V k+1 = F (V0, V
k,W k, N, b), V l,k+1 = F (V0, V

l,k,W l,k, Nl, bl).

and we choose α-processes W k and W l,k such that

Lα(W k,W l,k|W k−1, ...,W 0,W l,k−1, ...,W l,0) = L(V k, V l,k|V k−1, ..., V 0, V l,k−1, ..., V l,0)

Then one proves easily by standard stochastic calculus that the sequences (V k)k≥0, (W k)k≥0

and (V l,k)k≥0, (W l,k)k≥0 are Cauchy’s sequences and then converge for the L2-norm and
a.s. (using the Borel-Cantelli Lemma) to limits V , W and V l, W l, and necessarily,
V = F (V0, V,W,N, b) and V l = F (V0, V

l,W l, Nl, bl) and Lα(W,W l) = L(V, V l). Hence
(V,W,N) and (V l,W l, Nl) are respectively solutions of SDE(β, P0) and SDE(βl, P0). Thus
L(V ) = Lα(W ) = P β and L(V l) = Lα(W l) = P βl . We get, using Doob’s Formula and
Itô’s calculus, setting φlx(t) = E(sup[0,t] |V x

s − V l,x
s |2) and φly(t) = E(sup[0,t] |V y

s − V l,y
s |2),

φlx(t) ≤ 16

∫ π

−π
(cos θ − 1)2β(θ)dθ

∫ t

0
φlx(s)ds + 16

∫ π

−π
(sin θ)2β(θ)dθ

∫ t

0
φly(s)ds

+4b2T

∫ t

0
φlx(s)ds +

∫ 1/l

−1/l
(cos θ − 1)2β(θ)dθ

∫ t

0
E(|V x

s |2)ds

+

∫ 1/l

−1/l
(sin θ)2β(θ)dθ

∫ t

0
E(|V y

s |2)ds + (b− bl)
2T

∫ t

0
E(|V x

s |2)ds

Using the same computation for φly(t), we deduce that if φl(t) = φlx(t) + φly(t), using the
conservation of the kinetic energy, i.e. E(|Vt|2) = E(|V 2

0 |),

φl(t) ≤ [32b + 4b2T ]

∫ t

0
φl(s)ds

+32(b− bl)TE(|V0|2) + 16(b − bl)
2T 2E(|V0|2)

One concludes by using Gronwall’s Lemma, and the obvious fact that φl(t) ≥ ρ2
T (P β , P βl).

2

Convergence rates for the interacting particle systems.
We consider the same cutoff cross section βl as before. Then with each l, one can associate
a particle system (V βl,n) as defined in Subsection 2.3.
We can now state our main pathwise convergence result.
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Theorem 4.3 Let β be a cross section. Let us consider a sequence l(n) of integers going
to infinity in such a way that

exp
(

T ‖ βl(n) ‖1

)

= o(n) (4.5)

and let (V i
0 )i∈IN be i.i.d. P0-distributed random variables. Then

1) For every fixed k and every T > 0, the sequence of laws L(V βl(n),1n, ..., V βl(n),kn) of
probability measures on the path space ID([0, T ], (IR2)k) converges weakly to (P β)⊗k, where
P β is the unique solution of MP (β, P0). Moreover, we have the convergence estimates

sup
0≤t≤T

ρ2
(

L(V
βl(n),kn
t ), P βt

)

≤ ρ2
T

(

L(V βl(n),kn), P β
)

(4.6)

≤ 6
exp

(

T ‖ βl(n) ‖1

)

n
+ 16Te32b+4b2T

∫

|v|2P0(dv)
[

2(b− bl) + T (b− bl)
2
]

2) The empirical measures of the system µβl(n),n converge in probability to P β in the path
space P(ID([0, T ], IR2)).

The proof is immediate by associating Theorem 3.1 and Theorem 4.2.

In the case of potential interactions in 1/rs, s > 2, we know that

β(|θ|) ≤ C|θ|−α, C > 0, α ∈]1, 3[. (4.7)

Then one has to choose the sequence l(n) in such a way that

exp

(

T
2C

α− 1
l(n)α−1

)

= o(n) (4.8)

Of couse, this choice of sequences l(n) is not very good in a practical point of view. Its
interest is to give a ”bound” for the choice of (l(n)) in the method. This strong convergence
is thus stringent about the correlation of l and n. We will see in the following subsection
that if we accept a less good convergence, no correlation is needed between the convergence
of l and n to infinity.

4.2 A weak Approach

We consider the same cutoff cross section βl as before and associate as before with each l
the particle system (V βl,n) as defined in Subsection 2.3.
Let us introduce the sequence of laws (πl,n)n of µβl,n, which are probability measures on
P(ID([0, T ], IR2).

Theorem 4.4 Assume that the initial particles are independent with a two order moments
common law P0. Then if n tends to infinity and l tends to infinity, the sequence (πl,n)l,n
converges for the weak topology to δPβ , and thus the sequence (µβl,n) converges in law and
in probability to P β.

11



Proof. To prove this theorem we follow the classical trilogy of arguments:
1) Tightness of (πl,n)l,n in P(P(ID([0, T ], IR2)),
2) Identification of the limiting values of (πl,n)n as solution of a nonlinear martingale
problem,
3) Uniqueness of the solution of the martingale problem.
The third point has already be done.
One knows (cf. [12], Lemma 4.5), that the tightness of (πl,n)l,n is equivalent to the tightness
of the laws of the semimartingales V βl,1n belonging to P(ID([0, T ], IR2). This tightness can

be proved by showing the tightness of the law of the supremum of V βl,1n
t on [0, T ], and the

Aldous criterion for V βl,1n.
One proves easily by a good use of Doob’s inequality and Burkholer-Davis-Gundy inequality
for (3.7) that

sup
l,n

E(sup
t≤T

|V βl,1n
t |2) < +∞, (4.9)

from which we deduce without difficulty the tightness of the laws of V βl,1n and the the
tightness of the sequence (πl,n).
Let us now prove that all the limit values are solutions of the nonlinear martingale problem
(2.9).
Consider π∞ ∈ P(P(ID([0, T ], IR2))) be an accumulation point of (πl,n)l,n. It is the limit
point of a subsequence we still denote by (πl,n)l,n. Our aim is to prove that π∞ = δPβl .
For φ ∈ C2

b (IR
2), 0 ≤ s1, ..., sq ≤ s ≤ t, g1, ..., gq ∈ Cb(IR

2), Q ∈ P(ID([0, T ], IR2)), set, for X
the canonical process on ID([0, T ], IR2).

F (Q) =

〈

Q,

(

φ(Xt) − φ(X0) −
∫ t

s
〈Kφ

β (Xu, v∗), Qu(dv∗)〉
)

g1(Xs1)...gq(Xsq)

〉

.

We have to prove that < π∞, |F | >= 0. The mapping F is not continuous since the
projection X 7→ Xt are not continuous for the Skorohod topology. However, for any Q ∈
P(ID([0, T ], IR2)), X 7→ Xt is Q-almost surely continuous for all t outside an at most
countable set DQ, and then F is continuous at point Q if s, t, s1, ..., sq are not in DQ.We
use here the continuity and boundedness of φ, g1, ..., gq and also the continuity of (q, v) 7→
〈Kφ

β (v, v∗), q(dv∗)〉 on P(ID([0, T ], IR2)) × IR2.
Now one can show that the set D of all t for which π∞(Q, t ∈ DQ) > 0 is again at most
countable. Thus, if s, t, s1, ..., sq are in Dc, F is π∞-a.s. continuous. Then,

〈

π∞, F 2
〉

= lim
l,n

〈

πl,n, F 2〉

But
〈

πl,n, |F |
〉

≤
〈

πl,n, |F l|
〉

+
〈

πl,n, |F − F l|
〉

, where F l is defined by

F l(Q) =

〈

Q,

(

φ(Xt) − φ(X0) −
∫ t

s
〈Kφ

βl
(Xu, v∗), Qu(dv∗)〉

)

g1(Xs1)...gq(Xsq)

〉

.

Firstly,

〈

πl,n, (F l)2
〉

= E((F l)2(µβl,n)) = E





(

1

n

n
∑

i=1

(Mβl,iφ
t −Mβl,iφ

s )g1(V
βl,in
s1 )...gq(V

βl,in
sq

)

)2



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=
1

n
E

(

(

(Mβl,1φ
t −Mβl,1φ

s )g1(V
βl,n
s1 )...gq(V

βl,1n
sq

)
)2
)

+
n− 1

n
E
(

(Mβl,1φ
t −Mβl,1φ

s )(Mβl,2φ
t −Mβl,2φ

s )g1(V
βl,1n
s1 )...gq(V

βl,1n
sq

)

g1(V
βl,2n
s1 )...gq(V

βl,2n
sq

)
)

.

The first term goes to zero because of the uniform integrability given by the L2-bounds
and the second term tends to zero, as it is easy to see on (3.5). Let us remark that the
convergences are uniform on l. Hence

lim
n

〈

πl,n, |F l|
〉

= 0, uniformly in l.

Next,

〈

πl,n, |F − F l|
〉

= E(|F − F l|(µβl,n))

= E

(∣

∣

∣

∣

〈

µβl,n,

∫ t

s

∫ π

−π

(

Kφ
β (Xu, v∗) −Kφ

βl
(Xu, v∗)

)

µβl,n
u du

〉∣

∣

∣

∣

)

≤ Kl sup
n,l

E

(

sup
u≤T

〈µβl,n
u , |v|2〉

)

by using the form of Kφ
β with φ ∈ C2

b (IR
2) and (2.8). The second term of the product is

finite by (4.9) and Kl = Cte
∫ π
−π θ

2|β(θ) − βl(θ)|dθ tends to zero as l tends to infinity.
We have then proved that

〈π∞, |F |〉 = 0.

Thus, F (Q) is π∞-a.s. equal to zero, for every s, t, s1, ..., sq outside of the countable set
D. It is sufficient to assure that π∞-a.s., Q is solution of the nonlinear martingale problem
(2.9). This problem as a unique solution P β as seen in Section 2, and π∞ is the Dirac mass
at P β.
Therefore, we have finally proved that (L(µβl,n)) converge when l and n tend to infinity, to
the Dirac mass at P β and the theorem is proved. 2

4.3 Numerical Results

First of all, let us mention that the simulation algorithm related with the Bird system
looks better than the one related with Nanbu’s system. Hence, we will study the binary
algorithm. We choose a typical cross section without cutoff, which does not admit a moment
of order 1 :

β(θ) =
1

2π sin2 θ
1{0<|θ|<π/2} (4.1)

and we consider the following initial distribution of the velocities :

P0(dv) = 1[−1/2,1/2]2(v)dv (4.2)

We want to deal with known quantities, thus we consider the moments of order 4 :

m4(t) =

∫

IR2
|v|4P βt (dv) ; ml

4(t) =

∫

IR2
|v|4P βl

t (dv) (4.3)
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which we would like to compare with

ml,n
4 (t) =

∫

IR2
|v|4µn,βl

t (dv) (4.4)

where µn,βl
t is the empirical measure defined by (3.5). A simple computation shows that

m4(t) =
1

18

(

1 − e−t/4
)

+
7

180
e−t/4

(4.5)

ml
4(t) =

1

18

(

1 − e−t/4+t/2πl
)

+
19

240
e−t/4+t/2πl

We choose t = t0 = 2. Then one easily checks that

|m4(t0) −ml
4(t0)| × 100/m4(t0) ∼ 7.1/l% (4.6)

Then, using simulation, we see that

|ml,n
4 (t0) −ml

4(t0)| × 100/m4(t0) ∼ 103/
√
n% (4.7)

and in particular does not depend on l, as shows figure 1 below.
This suggests that a central limit theorem might hold for the moments of each particle
system µβl,n (l fixed), with constants not depending too much on l.
This question is studied in the next section.

5 Study of the fluctuations

5.1 The fluctuation process associated with the cutoff kernel

In Méléard [13], we study the fluctuations associated with a cutoff Boltzmann model, under
a uniform moment hypothesis on the jump measure. The techniques used to obtain the
convergence of the fluctuation processes consist in immersing these fluctuations in weighted
Sobolev spaces and in obtaining compactness by using uniform bounds and Hilbert-Schmidt
embeddings between some of these spaces.
Here, we need first to cutoff the jump measure to hope some results, and even under this
hypothesis, the moment condition on the jump measures assumed in [13] is not satisfied.
Then we do not know how to obtain good estimates in weighted Sobolev spaces. Here we
use a simpler space introduced by Ferland, Fernique, Giroux [5] for the Kac equation and
which is adequate here since we are in a spatially homogeneous situation.
We are interested here in the behaviour of the fluctuations of the empirical measures µβl,n

to P βl when l > 0 is fixed and n tends to infinity. More precisely we define the fluctuation
process ηn,l defined for bounded functions φ by

< φ, ηn,lt >=
√
n(< φ,µβl,n

t > − < φ,P βl
t >). (5.1)

For simplicity we will denote µβl,n = µn,l in all what follows and we assume that

Hypothesis (M): The initial law P0 has first order moments.

It is easy to prove by standard arguments that this moment condition propagates.
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Figure 1: error (in %) of one simulation as a function of n
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Proposition 5.1 Under hypothesis (M), for each T > 0,

sup
n
E

(

sup
t≤T

|V βl,in
t |

)

< +∞. (5.2)

sup
n
E

(

sup
t≤T

< |v|, µn,lt >

)

< +∞ ;

∫

x∈ID([0,T ],IR2
)
sup
[0,T ]

|x(t)|P βl(dx) < +∞. (5.3)

The stochastic equation (3.6) satisfied by the flow of empirical measures and the evolution
equation (2.6) satisfied by the limit flow P βl allow us to get the flow of fluctuation processes
as solution of the stochastic differential equation

< φ, ηn,lt > = < φ, ηn,l0 > +Nn,l
t (φ) +

∫ t

0

〈

Kφ
βl

(v, v∗), η
n,l
s (dv)µn,ls (dv∗)

〉

ds

+

∫ t

0

〈

Kφ
βl

(v, v∗), P
β
s (dv)ηn,ls (dv∗)

〉

ds (5.4)

where Nn,l(φ) is a square integrable martingale whose Doob-Meyer process is

< Nn,l(φ) >t =

∫ t

0

〈1

2

∫ π

−π
(φ(v +A(θ)(v − v∗) − φ(v) (5.5)
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+φ(v∗ +A(θ)(v∗ − v)) − φ(v∗))
2β(θ)dθ, µn,ls (dv)µn,ls (dv∗)

〉

ds.

Since ηn,lt is, for each n, l, t, a signed measure, the first difficulty to overcome is to find a

suitable space in which ηn,lt and its eventual limits can be immersed. Here we consider the
space H defined as follows.

Definition 5.2 For any function such that this term makes sense, one defines

‖f‖ =

(∫

IR2
|∇f(v)|2dv

) 1
2

. (5.6)

This is a seminorm on the space K of bounded functions with a bounded derivative in
L2(IR2). The seminorm is Hilbertian and the corresponding Hilbert space is denoted by H.
We will denote by H ′ its topological dual space, with the norm ‖.‖−1.

Lemma 5.3 If φ ∈ H, then for x, y ∈ IR2,

|φ(x) − φ(y)| ≤ ‖φ‖
√

|x− y|;

and then for each orthonormal basis (φp) in H, for fixed v,w ∈ IR2,

∑

p≥1

(φp(v) − φp(w))2 ≤ |v − w|.

Since each function of H satisfies φ(0) = 0, we deduce that

∑

p≥1

(φp(v))
2 ≤ |v|.

Proof. The proof just consists in writing

|φ(x) − φ(y)| = |h(1) − h(0)| = |
∫ 1

0
h′(t)dt| ≤

(∫ 1

0
(h′(t))2dt

)

1
2

where h(t) = φ(y + t(x − y)) ; h′(t) = (x − y).∇φ(y + t(x − y)). Then one applies the
Parseval inequality to the linear mapping φ 7→ φ(v) − φ(w) 2

We can deduce the

Corollary 5.4 The fluctuation process takes its values in H, as soon as the condition (M)
is satisfied.

Proof. Let φ be in H. We write

| < φ, ηn,lt > | ≤ √
n(< φ,µn,lt > + < φ,P βl

t >)

≤ ‖φ‖√n
(∫

IR2

√

|v|µn,lt (dv) +

∫

IR2

√

|v|P βl
t (dv)

)

since all functions of H are null at 0 and by using Lemma 5.3. Under (M), this quantity is
finite. 2

We have moreover
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Proposition 5.5 Assume (M). Then

sup
n
E
(

‖ηn,l0 ‖2
−1

)

< +∞. (5.7)

and for each n and T , there exists a constant Kn depending on n and T such that

E

(

sup
t≤T

‖ηn,lt ‖2
−1

)

≤ Kn. (5.8)

Proof. Let us consider an orthonormal basis (φp) of the Hilbert space H. Since the initial

values V βl,in
0 of the particle system are independent,

E
(

‖ηn,l0 ‖2
−1

)

= E

(

∑

p

< φp, η
n,l
0 >2

)

=
∑

p

E





1

n

(

n
∑

i=1

φp(V
βl,in
0 )− < φp, P

βl

0 >

)2




≤ 1

n

n
∑

i=1

E

(

∑

p

φ2
p(V

βl,in
0 )

)

by independence

≤ K

n

n
∑

i=1

E
(

|V βl,in
0 |

)

< +∞, by Lemma 5.3 and (M).

The second assertion is proved in the same way, except we loose the independence property.

E

(

sup
t≤T

‖ηn,lt ‖2
−1

)

= nE

(

sup
t≤T

∑

p

(

< φp, µ
n,l
t > − < φp, P

βl
t >

)2
)

≤ 2nE

(

sup
t≤T

(

∑

p

< φp, µ
n,l
t >2 +

∑

p

< φp, P
βl
t >2

))

≤ KnE

(

sup
t≤T

(

< |v|, µn,lt > + < |v|, P βl
t >

)

)

≤ Kn,

by Lemma 5.3 and Proposition 5.1. 2

Let us introduce, for each probability measure µ ∈ P(IR2) the drift operators

L1(µ)φ(v) =

∫

IR2
Kφ
βl

(v, v∗)µ(dv∗) ; L2(µ)φ(v) =

∫

IR2
Kφ
βl

(v∗, v)µ(dv∗).

Lemma 5.6 For i = 1, 2, Li(µ) are continuous linear operators on K and

‖Li(µ)‖ ≤ K‖βl‖1, (5.9)

where the constant K does not depend on µ.

Proof.
∫

IR2
dv

(

d

dv

∫

IR2
Kφ
βl

(v, v∗)µ(dv∗)

)2

=

∫

IR2
dv

(∫

IR2

∫ π

−π

(

(I +A(θ))∇φ(v′) −∇φ(v)

)

βl(θ)dθµ(dv∗)

)2

≤ ‖βl‖1

∫

IR2
µ(dv∗)

∫

IR2
dv

∫ π

−π

(

((I +A(θ))∇φ(v′))2 + (∇φ(v))2
)

)βl(θ)dθ

≤ K‖βl‖2
1

∫

IR2
(∇φ(v))2dv
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where we have used the change of variable v 7→ v′ in the first part of the integral. We thus
deduce that L1(µ) is continuous. A similar computation gives the same result for L2(µ). 2

Proposition 5.7 Let (φp) be an orthonormal basis of H, then for each T > 0,

sup
n
E





∑

p≥1

sup
t≤T

Nn,l
t (φp)

2



 < +∞. (5.10)

In particular,

sup
n
E

(

sup
t≤T

‖Nn,l
t ‖2

−1

)

< +∞. (5.11)

Proof. By Doob’s inequality,

E





∑

p≥1

sup
t≤T

Nn,l
t (φp)

2



 ≤ K
∑

p≥1

E
(

Nn,l
T (φp)

2
)

= K
∑

p≥1

E
(

< Nn,l(φp) >T
)

.

Here we have

∑

p≥1

E
(

< Nn,l(φp) >T
)

=

∫ T

0
E

〈

1

2

∫ π

−π

∑

p≥1

(φp(v +A(θ)(v − v∗)) − φp(v) + φp(v∗ +A(θ)(v∗ − v)) − φp(v∗))
2

βl(θ)dθ, µ
n,l
s (dv)µn,ls (dv∗)

〉

ds.

By Lemma 5.3, we deduce

∫ π

−π

∑

p≥1

(φp(v +A(θ)(v − v∗)) − φp(v) + φp(v∗ +A(θ)(v∗ − v)) − φp(v∗))
2βl(θ)dθ

≤ K|v − v∗|
∫ π

−π
|θ|βl(θ)dθ.

Then the proposition follows by Proposition 5.1. 2

5.2 Tightness and convergence results

Theorem 5.8 Let us consider an orthonormal basis (φp) of H with functions φp belonging
to K. Then

sup
n
E(sup

t≤T
‖ηn,lt ‖2

−1) ≤ KeK‖βl‖1T . (5.12)

We deduce that

sup
n
E(
∑

p

sup
t≤T

< φp, η
n,l
t >2) < +∞. (5.13)
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Proof. Let us consider an orthonormal basis (φp) of H with functions φp belonging to K.
For each p, one has

< φp, η
n,l
t >=< φp, η

n,l
0 > +Nn,l

t (φp) +

∫ t

0
< L1(µn,ls )φp + L2(P βl

s )φp, η
n,l
s > ds. (5.14)

Then,

E

(

sup
t≤T

∑

p

< φp, η
n,l
t >2

)

≤ K

(

E

(

∑

p

< φp, η
n,l
0 >2

)

+ E

(

∑

p

< Nn,l(φp) >
2
T

)

+

∫ T

0
E

(

sup
u≤s

∑

p

< L1(µn,lu )φp + L2(P βl
u )φp, η

n,l
u >2

)

ds

)

.

Thanks to Lemma 5.6, the linear operator L on K which with φ associates < L1(µn,lu )φ +
L2(P βl

u )φ, ηn,lu > satisfies
|L(φ)| ≤ K‖ηn,lu ‖−1‖βl‖1‖φ‖

where the constant K is independent of l, µn,lu and P βl
u . Thus ‖L‖ ≤ K‖ηn,lu ‖−1‖βl‖1 and

∑

p L(φp)
2 ≤ K2‖ηn,lu ‖2

−1‖βl‖2
1. Using this property and Proposition 5.7, we deduce that

E

(

sup
t≤T

∑

p

< φp, η
n,l
t >2

)

≤ K

(

E(
∑

p

< φp, η
n,l
0 >2) + 1 + ‖βl‖2

1

∫ t

0
E(sup

u≤s
‖ηn,lu ‖2

−1)ds

)

.

Gronwall’s inequality gives (5.12). Now, we come back to (5.14) and obtain similarly that

E

(

∑

p

sup
t≤T

< φp, η
n,l
t >2

)

≤ K

(

E(
∑

p

< φp, η
n,l
0 >2) + 1 + ‖βl‖2

1

∫ t

0
E(sup

u≤s
‖ηn,lu ‖2

−1)ds

)

.

which allows us to conclude. 2

Thanks to Theorem 5.8, we are now able to prove that the fluctuation trajectories are
almost surely càdlàg in H ′ and that their laws are tight when H ′ is endowed with its weak
topology.

Proposition 5.9 The trajectories of the fluctuation processes are almost surely strongly
càdlàg in H ′

Proof. For every function φ ∈ H, the process < φ, ηn,l > is càdlàg. Let us consider an
orthonormal complete basis (φp) in H. Thanks to (5.13) and for every fixed n, we can find

for every ε > 0 a positive real number M such that
∑

p>M supt≤T < φp, η
n,l
t >2< ε2

6 a.s.
Let (tm) be a sequence of real numbers greater than t which tends to t when m tends to
infinity. For m sufficiently large,

‖ηn,ltm − ηn,lt ‖2
−1 =

∑

p≥1

(

< φp, η
n,l
tm > − < φp, η

n,l
t >

)2

≤
∑

1≤p≤M

(

< φp, η
n,l
tm > − < φp, η

n,l
t >

)2

+2
∑

p>M

(

< φp, η
n,l
tm >2 + < φp, η

n,l
t >2

)

<
∑

1≤p≤M

ε2

3M
+

4ε2

6
= ε2.
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In the first term, we have used that for every function φp, the process < φp, η
n,l
t > is càdlàg.

We deduce that the mapping t 7→ ηn,lt is càd in H ′ and a similar proof implies that it is
also làg. 2

Theorem 5.10 Under (M), the laws of the fluctuation processes are relatively compact
on ID([0, T ],H ′), where H ′ is endowed with the weak topology and any limiting process has
strongly continuous paths.

Proof. We are here inspired by Ferland-Fernique-Giroux [5]. Since the space H ′ is endowed
with the weak topology, it is no longer a Polish space but a Lusin space. Then, as proved
in Fernique, [6], the space ID([0, T ],H ′) is a Lusin space and any probability measure on
this path space is tight. That allows the author to obtain a general compactness criterion
for the laws of processes with values in a Lusin space. In the context of ID([0, T ],H ′), the
sequence of laws of (ηn,l) will be relatively compact as soon as the two following conditions
are satisfied:
1) There exists a sequence (Km) of weakly compact sets of H ′ such that

∀m ≥ 1,∀n ≥ 2, P (∃t ∈ [0, T ] | ηn,lt /∈ Km) ≤ 2−m.

2) For all φ ∈ K, the laws of the real processes (< φ, ηn,lt >) are relatively compact.

Let us show that these two properties are satisfied in our context. Proposition 5.8 shows
that M = supnE(supt≤T ‖ηn,lt ‖2

−1) < ∞. Then the sets Km = {η ∈ H ′ | ‖η‖2
−1 ≤ M2m}

are weakly compact sets and satisfy the condition (1).
Let us now prove the second point and fix a function φ ∈ K. Again by Proposition 5.8, we
obtain that the laws of < φ, ηn,lt > are relatively compact. We prove now that the Aldous

condition is satisfied. Since < φ, ηn,lt > is a semimartingale, we use the Rebolledo theorem
and prove that the Aldous condition is proved for the drift term and for the Doob-Meyer
process associated with the martingale part. Let τ be a stopping time.

sup
n

sup
r≤δ

P (| < Nn,l(φ) >τ+r − < Nn,l(φ) >τ | > ǫ)

≤ 1

ǫ
E

(

∫ τ+r

τ

∫ π

−π

(

φ(v +A(θ)(v − v∗)) − φ(v) + φ(v∗ +A(θ)(v∗ − v)) − φ(v∗)

)2

βl(θ)dθ

)

≤ δ
K‖φ‖2

ǫ

∫ π

−π
|θ|βl(θ)dθ sup

n
E(sup

t≤T
< |v|, µn,lt >)

which tends to 0 as δ tends to 0, uniformly in n. We have used here Lemma 5.3 and
Proposition 5.1.
Let us show now the Aldous condition for the drift term.

sup
n

sup
r≤δ

P (|
∫ τ+r

τ
< L1(µn,ls )φ+ L2(P βl

s )φ), ηn,ls > ds| > ǫ)

≤ K‖βl‖1
‖φ‖
ǫ
E

(∫ τ+r

τ
‖ηn,ls ‖−1ds

)

≤ δ
K‖φ‖‖βl‖1

ǫ
sup
n
E(sup

s≤T
‖ηn,ls ‖−1)
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which tends to 0 as δ tends to 0, uniformly in n, thanks to (5.13). The sequence (ηn,l)
is then uniformly tight in ID([0, T ],H ′). Moreover, by (5.13), we deduce that each limit
process ηl satisfies E(

∑

p supt≤T < φp, η
l >2) < ∞ and that t 7→< φp, η

l > is a.s. continu-
ous for any p. This is enough to prove as in Proposition 5.9 that any limiting process has
strongly continuous path. 2

Theorem 5.11 Under assumption (M), the sequence (Nn,l)n converges in law in
ID([0, T ],H ′) to a continuous Gaussian process W l with quadratic variation given for every
φ ∈ H and t ∈ [0, T ] by

< W l(φ) >t =

∫ t

0

〈

1

2

∫ π

−π
(φ(v +A(θ)(v − v∗)) − φ(v) + φ(v∗ +A(θ)(v∗ − v)) − φ(v∗))

2

βl(θ)dθ, P
βl
s (dv)P βl

s (dv∗)

〉

ds. (5.15)

Proof. The proof is given in two steps.
1) We first prove the tightness of the laws of (Nn,l) in ID([0, T ],H ′), where H ′ is endowed
with its weak topology. We proceed exactly as before, using Proposition 5.7.
We prove moreover that the accumulations points of the laws of (Nn,l) charge only
C([0, T ],H ′) (one says that the laws are C-tight). Following [11], it suffices to prove that

the sequence sups≤T ‖Nn,l
s − Nn,l

s− ‖−1 converges in probability to 0. It is easy to remark
that for each φ ∈ H, the jumps of Nn,l

. (φ) and of < φ,µn,l. > are at the same time and just
two particles jump at every jump time. Then, if the jump takes place at time t for particles
i and j,

|Nn,l
s (φ)−Nn,l

s− (φ)|2 =
1

n
|φ(V βl,in

s− +∆V βl,in
s )−φ(V βl,in

s− )+φ(V βl,jn
s− +∆V βl,jn

s )−φ(V βl,jn
s− )|2.

By Lemma 5.3, |φ(z + h) − φ(z)| ≤ K
√

|h|‖φ‖ and then

|Nn,l
s (φ) −Nn,l

s− (φ)|2 ≤ K

n
sup
s≤t

(

|V βl,in
s | + |V βl,jn

s |
)

‖φ‖.

Hence

E

(

sup
s≤T

‖Nn,l
s −Nn,l

s− ‖2
−1

)

≤ K

n

using (5.2).
2) Now we are able to study the convergence in law of Nn,l. We have already seen that
the laws of Nn,l are C-tight. Since moreover the sequence Nn,l is uniformly integrable as
elements of H ′ by (5.11), each limit of a subsequence is a continuous square integrable mar-
tingale. Otherwise, since the empirical measures µn,l converge in law to the deterministic
measure P βl , then for each φ ∈ H, the quadratic variation < Nn,l(φ) > defined in (5.5)
converge in law and then in probability to the deterministic limit defined in (5.15). Hence
each limit value (in law) of Nn,l is a continuous square integrable martingale with values
in H ′, with the deterministic Doob-Meyer process characterized by (5.15). The theorem is
then proved. 2

We now give the main theorem of the section.
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Theorem 5.12 Assume (M). Then the sequence (ηn,l)n converges in law in ID([0, T ],H ′)
to a continuous process ηl which satisfies: for each φ ∈ H,

< φ, ηlt >=< φ, ηl0 > +W l(φ) +

∫ t

0
< L1(P βl

s )φ+ L2(P βl
s )φ, ηls > ds. (5.16)

where ηl0 is a random variable with values in H ′ such that for all φ ∈ H, < φ, ηl0 > has a

gaussian law N
(

0,
∫

IR2 |v|2P0(dv) −
(

∫

IR2 vP0(dv)
)2
)

Proof. Let us consider an orthonormal basis (φp) of H with functions φp belonging to
K. We have seen that the sequence (ηn,l)n is uniformly tight in ID([0, T ],H ′), where H ′ is
endowed with the weak topology and that each limiting process ηl has strongly continuous
path. Let us consider a limit process ηl and then there exists a subsequence of (ηn,l)n ,
that we will again denote by (ηn,l)n for simplicity, and which converges in law to ηl.
For each function φ ∈ H, we first introduce the function Fφ defined from C([0, T ],H ′) to
IR by

Fφ(α) =< φ,αt > − < φ,α0 > −
∫ t

0
< L1(P βl

s )φ+ L2(P βl
s )φ, αs > ds.

The function Fφ is continuous and then the sequence (Fφ(η
n,l))n converges to Fφ(η

l).
Let us now prove that

∫ t
0 < L1(µn,ls )φ−L1(P βl

s )φ, ηls > ds tends in L1 (and thus in law) to
0 when n tends to infinity. We use (5.12) which implies in particular that for each φ ∈ H,

E(sup
t≤T

| < φ,µn,lt > − < φ,P βl
t > |2) 1

2 ≤ Kl‖φ‖√
n

.

Thus, since v∗ → Kφ
βl

(v, v∗) belongs to H,

E

(∣

∣

∣

∣

∫ t

0
< L1(µn,ls )φ− L1(P βl

s )φ, ηls > ds

∣

∣

∣

∣

)

≤ E

(∫ t

0
| <

∫

IR2
Kφ
βl

(v, v∗)(µ
n,l
s (dv∗) − P βl

s (dv∗)), η
l
s(dv) > |ds

)

≤
∫ t

0
E(‖ηls‖2

−1)
1
2E(‖

∫

IR2
Kφ
βl

(v, v∗)(µ
n,l
s (dv∗) − P βl

s (dv∗))‖2)
1
2 ds

≤
Kl‖Kφ

βl
‖

√
n

∫ t

0
E(‖ηls‖2

−1)
1
2ds

and always by (5.13), we deduce that this term tends to 0 as n tends to infinity.
Then since we have already seen the convergence of the martingale term and by adding the
previous results, we finally obtain that each limit point is solution of (5.16).
Now let us prove that such a solution is unique in ID([0, T ],H ′). The white noise W l is a
Gaussian martingale with respect to the filtration generated by (W,ηl) (cf. [11] Prop. 1.12
p.484). Then we adapt to our context the Yamada-Watanabe theorem and the pathwise
uniqueness of (5.16) will imply the uniqueness in law.
Now, let η1 and η2 two solutions of the equation. Then for (φp) an orthonormal basis of
H, and t ≤ T ,

‖η1
t − η2

t ‖2 =
∑

p

< φp, η
1
t − η2

t >
2 ≤ T

∫ t

0
< L1(P βl

s )φp + L2(P βl
s )φp, η

1
s − η2

s >
2 ds

≤ K‖βl‖2
1

∫ t

0
‖η1
s − η2

s‖2ds
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as seen in the proof of Theorem 5.8. Then, always by (5.12), we conclude by Gronwall’s
lemma that η1 = η2.
The theorem is then proved. 2

5.3 A uniform control of the limit fluctuation processes ?

We know from the previous subsection that for each l, the fluctuation process ηn,l goes to a
process ηl when n tends to infinity. We now wonder if this limit process ηl can be controlled
uniformly in l. This would allow us to say that the speed of convergence of the empirical
measure µn,l to the solution of the martingale problem P l does not depend too much on l.
However, we are not able to prove, for example, that for all test function φ (in a set of
regular bounded functions),

sup
l
E

[

sup
[0,T ]

| < ηlt, φ > |
]

<∞ (5.17)

It might even not be true. We have showed that µn,βl goes to P βl with a speed of con-
vergence in e‖βl‖1/

√
n. This may not be optimal, but it seems natural that this rate of

convergence becomes less and less good when ‖ βl ‖1 increases. Indeed, ‖ βl ‖1 is the mean
number of collisions for one particle (on the time interval [0, 1]). It is thus clear that the
more ‖ βl ‖1 will be large, the less the propagation of chaos will be fast.

It seems anyway that (5.17) holds for the moments of the Boltzmann equation, i.e. for
φ(v) = |v|2n, n ≥ 1. In particular, the experiences we have presented in Subsection 4.3
show that it should hold for the moment of order 4, which we now prove, in a special case
which simplifies the computations. As usual, V0 denotes a random variable of which the
law is the initial distibution P0 ∈ P2(IR

2) of our Boltzmann equation.

Proposition 5.13 We assume that for some p0 ∈ P2(IR),

P0 = p0 ⊗ p0, E(|V0|8) <∞, E(V0) = 0 (5.18)

Then, if φ(v) = |v|4,

sup
l
E

[

sup
[0,T ]

| < ηlt, φ > |
]

<∞ (5.19)

We begin with a lemma.

Lemma 5.14 1. Assume that E(|V0|4) <∞. Then, ψ(v) = |v|2,

sup
l
E

[

sup
[0,T ]

| < ηlt, ψ > |
]

<∞ (5.20)

2. We suppose the assumptions of Proposition 5.13. For X ∈ IR2, we set ζX(v) =
(v.X)2. There exists a family of deterministic functions γlt, uniformly bounded on
[0, T ], such that for each l,

< P βl
t , ζ

X >= γlt × |X|2 (5.21)
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Proof. Let us first prove 1. One easily checks that Kψ
βl

(v, v∗) = 1
2bl(|v∗|2 − |v|2) and thus

that Kψ
βl

(v, v∗) +Kψ
βl

(v∗, v) = 0. Hence, we know from equation (5.16) that

< ηlt, ψ > = < η0, ψ > +

∫ t

0

∫ π

−π

∫

IR2

∫

IR2

[

|v +A(θ)(v − v∗)|2 − |v|2

+|v∗ +A(θ)(v∗ − v)|2 − |v∗|2
]

W l(ds, dθ, dv, dv∗)

where W l is a white noise with intensity 1
2dsβl(θ)dθP

βl
s (dv)P βl

s (dv∗). On the other hand,
one can classically check that

sup
l

sup
[0,T ]

∫

IR2
|v|4P βl

s (dv) <∞ (5.22)

and (5.20) is easily deduced.

We are now interested in 2. Computing explicitely KζX

βl
(v, v∗), applying the fact that {P βl

t }
is a measure solution of the Boltzmann equation in the sense of Definition (2.2), using the

conservation of the momentum (for all t > 0,
∫

vP βl
t (dv) = 0) and of the kinetic energy

(for all t > 0,
∫ |v|2P βl

t (dv) = E(|V0|2)), one proves that < P βl

t , ζ
X > solves an ordinary

differential equation, that can be explicitely solved. One obtains

< P βl
t , ζ

X > = 4
dl

bl + dl
|X|2E(|V0|2)

+

[

E
[

(X.V0)
2
]

− 4
dl

bl + dl
|X|2E(|V0|2)

]

e
−

dl
8(bl+dl)

t
(5.23)

where dl =
∫ π
−π sin2 θdθ <∞. Since under our assumptions, E

[

(X.V0)
2
]

= E(|V0|2)|X|2/2,
the second part of the lemma follows. 2

Proof. of Proposition 5.13. We set Z lt =< ηlt, φ >. Then we know, from the expression
of ηl, that Z lt = Z0 + U lt +X l

t , where

U lt =

∫ t

0

∫

IR2

∫

IR2

[

Kβl

φ (v, v∗) +Kβl

φ (v∗, v)
]

P βl
s (dv∗)η

l
s(dv)ds

X l
t =

∫ t

0

∫ π

−π

∫

IR2

∫

IR2

[

|v +A(θ)(v − v∗)|4 − |v|4

+|v∗ +A(θ)(v∗ − v)|4 − |v∗|4
]

W l(ds, dθ, dv, dv∗)

Using the fact that E(|V0|8) <∞, one easily proves, using the Itô stochastic calculus, that
there exists a constant K, independent of l, such that supl E[sup[0,T ] |X l

t |] <∞.
A simple but tedious computation shows that

Kφ
βl

(v, v∗) = αl1|v|2|v∗|2 + αl2|v|4 + αl3|v∗|4 + αl4(v.v∗)
2 (5.24)

for some uniformly bounded constants αli. Hence

U lt = 2αl1

∫ t

0
< P βl

s , |v|2 >< ηls, |v|2 > ds+ (αl2 + αl3)

∫ t

0
< P βl

s , 1 >< ηls, |v|4 > ds

+(αl2 + αl3)

∫ t

0
< P βl

s , |v|4 >< ηls, 1 > ds+ αl4

∫ t

0

〈

ηls(dv), < P βl
s (dv∗), (v.v∗)

2 >
〉

ds

= U l,1t + ...+ U l,4t
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We deduce from the conservation of the kinetic energy and from Lemma 5.14-1. that
suplE[sup[0,T ] |U l,1t |] <∞.

Since < P βl
s , 1 >= 1, it is obvious that for a constant K independant of l,

E

[

sup
[0,t]

|U l,2s |
]

≤ K

∫ t

0
E
[

|Z ls|
]

ds (5.25)

It is clear that for each l, < ηls, 1 >= 0, and thus U l,3t vanishes identically. Finally, using
Lemma 5.14-2.,

U l,4t = 2αl4

∫ t

0
γls× < ηls, |v|2 > ds (5.26)

Since αl4 and γlt are uniformly bounded, we deduce, using Lemma 5.14-1., that

suplE[sup[0,T ] |U l,4t |] <∞. We have proved that

E

[

sup
[0,t]

|Z ls|
]

≤ K +K

∫ t

0
E(|Z ls|)ds (5.27)

where K does not depend on l. Gronwall’s Lemma allows to conclude. 2

Notice that using exactly the same arguments, one should be able to prove recursively that

for all n ≥ 1, suplE
[

sup[0,T ] | < ηlt, |v|2n > |
]

< ∞, but the computations should be much

more complicated.
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Doctorat de l’Université Paris 6 (1999).

25



[8] Fournier, N.: Existence and regularity study for a 2-dimensional Kac equation without
cutoff by a probabilistic approach, to appear in Annals of applied probability (2000).
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[16] Sznitman, A.S.: Équations de type de Boltzmann, spatialement homogènes, Z.
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