
Strit positivity of the density for simple jumpproesses using the tools of support theorems.Appliation to the Ka equation without uto�.Niolas FournierApril 23, 2001AbstratConsider the one-dimensional solution X = fXtgt2[0;T ℄ of a possibly degen-erate stohasti di�erential equation driven by a (non ompensated) Poissonmeasure. We denote by M a set of deterministi integer-valued measuresassoiated with the onsidered Poisson measure. For m 2 M, we denoteby S(m) = fSt(m)gt2[0;T ℄ the skeleton assoiated with X. We assume someregularity onditions, whih allow to de�ne a sort of "derivative" DSt(m)of St(m) with respet to m. Then we �x t 2℄0; T ℄, y 2 IR, and we provethat as soon there exists m 2 M suh that St(m) = y, DSt(m) 6= 0, and�St(m) = 0, the law of Xt is bounded below by a nonnegative measure ad-mitting a ontinuous density not vanishing at y. In the ase where the lawof Xt admits a ontinuous density pt, this means that pt(y) > 0. We �nallyapply the desribed method in order to prove that the solution to a Kaequation without uto� does never vanish.Key words : Stohasti di�erential equations with jumps, Stohasti alulus ofvariations, Support theorems, Boltzmann equations.MSC 2000 : 60H07, 60H10, 60J75, 82C40.Running title : Positive density of jumping SDEs.1. Introdution. Consider the following one-dimensional stohasti di�eren-tial equation on [0; T ℄ :Xt = x0 + Z t0 ZO h(Xs�; z)N(ds; dz) + Z t0 g(Xs)ds(1.1)where O is an open subset of IR, N is a Poisson measure on IR+�O with intensitymeasure �(ds; dz) = '(z)dsdz. The C1 funtion ' : O 7! IR+ is supposed to bestritly positive. 1



2 The problem we study in the present paper is the following : at whih pointsy 2 IR is the law of Xt (for some �xed t > 0) bounded below by a measureadmitting a ontinuous density � satisfying �(y) > 0 ? In other words, if L(Xt)admits a ontinuous density pt, we would like to haraterize the set fpt > 0g.In [9℄, a partial answer is given in the more general ase where the Poissonmeasure is ompensated : under a strong non-degeneray assumption, the law ofXt is bounded below by a measure admitting a ontinuous stritly positive densityon IR. This result is not optimal. First, it allows to onsider almost only the asewhere X has in�nite variations : the non-degeneray assumption is very strong.Furthermore, we obviously an not, with suh a method, study the ase where Xtis inreasing, or a.s. nonnegative : either the density is positive everywhere, or themethod used in [9℄ fails.This method was adapted from a work of Bally, Pardoux, [2℄, who were dealingwith the strit positivity of the density of Wiener funtionnals, and from the workof Bihteler, Gravereaux, Jaod, [4℄, who were interested in the stohasti alulusof variations for Poisson funtionals.We now would like to transpose to the Poisson ontext the ideas of Ben Arous,L�eandre, [3℄, see also Aida, Kusuoka, Strook, [1℄, and Millet, Sanz, [19℄. Consider-ing the solution Yt of a Gaussian stohasti di�erential equation, they haraterizethe set of the points of stritly positive density of Yt by using the usual tools ofsupport theorems. Indeed, they onsider the assoiated "skeleton" St(h), for h inan appropriate Cameron-Martin spae. Then, instead of "di�erentiating" Yt(!)with respet to !, they "di�erentiate" St(h) with respet to h. Then they just haveto deal with deterministi objets : they prove that the density pt of Yt does notvanish at y 2 IR if and only if there exists h suh that y = St(h) and ��hSt(h) 6= 0.We will see that in the Poisson ontext, the transposed method is quite onvining,sine it drives to natural assumptions, and no non-degeneray ondition is needed.We will use the Malliavin alulus for jump proesses developped by Bihteler,Gravereaux, Jaod, [5℄ and [4℄, and the main ideas of Simon, [22℄, who deals withsupport theorems for jump proesses (see also [12℄).We onsider here proesses with �nite variations for two reasons : �rstly, it drivesto easier omputations, and seondly, the ase with in�nite variations is oftenontained in [9℄.Let us mention that to our knowledge, almost all the works about lowerboundsof the density for Poisson funtionals onern asymptotially small time : seeL�eandre, [17℄, Ishikawa, [14℄, and Piard, [20℄.The only known result is that of L�eandre, [18℄, who deals with the simpler asewhere the proess X an be written as the sum of its jumps. He also assumesa non-degeneray ondition, whih implies that the law of Xt admits a smoothdensity. However, our method follows the same sheme.The main motivation of this work is the study of spatially homogeneous Boltz-mann equations. Tanaka, [23℄, showed an ingenious way to relate the solution f(t; v)



3of a Boltzmann equation to the solution Vt of a Poisson driven (non lassial)S.D.E. : the law of Vt is given by f(t; v)dv. Using this approah and the Malliavinalulus for jump proesses, Graham and M�el�eard, [13℄, have reently proved someexistene and regularity results for the solution of a Ka equation, whih is aone-dimensional "ariature" of the Boltzmann equation. These results have beenextended to the 2-dimensional ase in [8℄.Analysts and theoritial physiists are interested in the strit positivity of f . Inpartiular, it allows them to deal "rigorously" with the entropy of f , and it seemsto be usefull for proving the onvergene to equilibrium. Pulvirenti and Wennberghave proved in [21℄ a Maxwellian lowerbound for f , by using analyti methods,under a uto� assumption orresponding to the ase where the proess Vt has a�nite number of jumps a.s. But this assumption is not physially reasonnable, andthe method used in [21℄ breaks down in the non uto� ase. We have applied, in[10℄, [11℄, the method of [9℄, in order to prove that when Vt has in�nite variations,f does never vanish. Thus a ase is still open : what does happen when Vt has�nite variations, but an in�nite number of jumps ? The present method will apply.This paper is organized as follows. In Setion 2, we state our assumptions andmain result, and we deal with remarks and examples of appliations. In Setion3, we introdue some notations and de�nitions. Then we state a "support type"proposition, and we prove our main result. The "support type" proposition is provedin Setion 4. In Setion 5, we use the desribed method, in order to prove the stritpositivity of the solution to a Ka equation without uto�. Finally, a "jump" versionof Gronwall's Lemma is stated and proved in the Appendix.2. Statement of the main result. First of all, let us state our hypothesis.Assumption (H) : the funtion g is C3 on IR, and its derivatives of order1 to 3 are bounded. The funtion h(x; z) is of lass C3 on IR �O. Thepartial derivatives h(n+q)xnzq (with n+q � 3) are bounded as soon as q � 1,and there exists a funtion � 2 L1(O;'(z)dz) suh thatjh(0; z)j+ jh0x(x; z)j+ jh00xx(x; z)j+ jh000xxx(x; z)j � �(z)(2.1)Under (H), Eq. (1.1) learly admits a unique solution X = fXtgt2[0;T ℄, adapted,belonging a.s. to the set of �adl�ag funtions IDT = ID([0; T ℄; IR), and satisfyingE sup[0;T ℄ jXtj! <1(2.2)We now would like to build a skeleton assoiated with Eq. (1.1), by followingthe ideas of Simon, [22℄. By "skeleton", we mean a family fS:(m)gm2M of solutionsto ordinary di�erential equations with jumps, obtained by replaing the Poissonrandom measure N by deterministi integer-valued measures m 2 M in Eq. (1.1).This way, we will obtain a rigorous version of the following assertion : let t � 0 andy 2 IR be �xed ;



4 there exists ! 2 
 suh that Xt(!) = yif and only if there exists m 2 M suh that St(m) = y(2.3)This will allow us to know where the law of Xt (for t �xed) may be boundedbelow.We �rst onsider an inreasing sequene of open subsets Op � O, suh that[p�1Op = O and suh that for eah p, ROp '(z)dz < 1. (If RO '(z)dz < 1, thenwe simply set Op = O). For eah p, we onsider the set of deterministi integer-valued measuresMp = ( nXi=1 Æ(ti;zi) ,n 2 IN; 0 < t1 < ::: < tn < T; zi 2 Op)(2.4)with the onventionP01 = 0, and we setM = [pMp(2.5)For eah m = Pni=1 Æ(ti;zi) 2 M, we denote by St(m) the unique solution of thefollowing deterministi di�erential equation on [0; T ℄ :St(m) = x0 + Z t0 ZO h(Ss�(m); z)m(ds; dz) + Z t0 g(Ss(m))ds= x0 + nXi=1 h(Sti�(m); zi)1ft�tig + Z t0 g(Ss(m))ds(2.6)Under (H), one an prove that this equation admits a unique solution belonging toIDT , by applying standard arguments on eah time interval [0; t1[, [t1; t2[, ..., [tn; T ℄.In order to deal with the density of Xt, we have to introdue a sort of derivativeof St(m) with respet to m. This will replae the usual "derivative" of Xt(!) withrespet to ! (see [5℄, [4℄, [9℄,...). To this aim, we introdue some "diretions" inwhih we will be able to "perturbe" St(m), and then to di�erentiate the obtainedexpression.Notation 2.1. �O denotes the boundary of O in �IR = IR [ f�1;+1g.Definition 2.2.1. Let �(z) be a C1 positive funtion on O, going to 0 as z tends to �O, and suhthat j�0j < 1. Then the following funtions are well-de�ned on O :��(z) = 1'(z) � supfj'0(w)j ; jw � zj � j�(z)jg��(z) = j�0(z)j+ 3j�(z)j��(z)(2.7)



5We say that � belongs to the lass D if for some ontant  < 1,j�j+ �� 2 L1(O;'(z)dz) \ L1(O;'(z)dz) ; ��(z) � (2.8)2. If � 2 D, we set, for eah � 2 [�1; 1℄,��(z) = z + ��(z)(2.9)One easily dedues from the supposed properties that for all � 2 [�1; 1℄, themap z 7! ��(z) is an inreasing bijetion from O into itself. This allows us tode�ne, for eah m 2 M, the new integer-valued measure ��(m) 2M by��(m)(A) = Z T0 ZO 1A(s; ��(z))m(ds; dz)(2.10)In other words, if m =Pni=1 Æ(ti;zi), then ��(m) =Pni=1 Æ(ti;��(zi)).We will see in the next setion (see Proposition 3.4) that under (H), for allm 2 M, all � 2 D, and all t > 0, the map � 7! St(��(m)) is twie di�erentiableon [�1; 1℄, thanks to (H). In partiular, D�St(m) = ���St(��(m))���=0 satis�es thelinear deterministi equation :D�St(m) = Z t0 ZO h0x(Ss�(m); z)D�Ss�(m)m(ds; dz) + Z t0 g0(Ss(m))D�Ss(m)ds+ Z t0 ZO h0z(Ss�(m); z)�(z)m(ds; dz)(2.11)We now an state our main result.Theorem 2.3. Assume (H), and let t0 2℄0; T ℄, y0 2 IR be �xed. Assume thatthere exists m0 2M suh that, for some � 2 D,y0 = St0(m0) ; m0(ft0g �O) = 0 ; D�St0(m0) 6= 0(2.12)Then the law of Xt0 is bounded below by a nonnegative measure admitting a ontin-uous density �y0(y) on IR, satisfying �y0(y0) > 0.In the ase where L(Xt0) admits a ontinuous density pt0 , this means that pt0(y0) >0. Let us omment this result. First notie that, for t0 > 0 �xed, the only pointsy whih may be some points of positive density for Xt0 are those y whih belongto the interior of the support of the law of Xt0 . We will prove (see Proposition(3.5) that the support of the law of X: is the losure, in IDT endowed with theSkorokhod topology, of the set fS:(m) ; m 2 Mg. But we will only dedue thatthe support of the law of Xt0 ontains fSt0(m) ; m 2 M; m(ft0g � O) = 0g.This omes from the fat that the appliation t0 7! x(t0), from IDT into IR, is notontinuous on IDT , exept at the points x 2 IDT not jumping at t0. The onditionm(ft0g � O) = 0 implies that �St0(m) = 0. This explains the two �rst onditionsin (2.12).



6Roughly speaking, the last ondition in (2.12) implies the existene some � > 0 andof a neighborhood V of m0 in M suh that the map m 7! St0(m) is a submersionfrom V into [y0��; y0+�℄. More and more heuristially, in view of (2.3) this impliesthat ! 7! Xt0(!) is a loal submersion into [y0 � �; y0 + �℄. Hene, for all � < �,the quantity P (jXt0 � y0j < �) will be (at least) of order �, whih implies thatthe density of Xt0 at y0, obtained as the limit of 1�P (jXt0 � y0j < �), is stritlypositive.Let us now deal with remarks whih might allow to apply easily Theorem 2.3.Remark 2.4. Let t0 > 0 be �xed, and let ℄a; b[� IR (a and b may be in�nite).Assume that for eah y0 2℄a; b[, the assumptions of Theorem 2.3 are satis�ed. Thenthe law of Xt0 is bounded below by nonnegative measure admitting a ontinuousdensity �t0(y) on IR, never vanishing on ℄a; b[.Proof. Let us write ℄a; b[= [nKn, where Kn is an inreasing sequene ofompat subsets of ℄a; b[. Then it is not hard to dedue from Theorem 2.3 thatfor eah n, there exists a onstant n > 0 suh that L(Xt0)(dy) � n1Kn(y)dy.The sequene n may be hosen dereasing to 0. Then one an build a ontinuousfuntion �t0 on IR, suh that for y 2 Kn=Kn�1, �t0(y) 2 [n+1; n℄, and �t0(y) = 0for y outside of ℄a; b[. Then L(Xt0)(dy) � �t0(y)dy, and the Remark is proved.The seond remark shows a simple way to hoose the "diretions" � 2 D.Remark 2.5. Let ~� be a C1 funtion on O, suh that supp ~� � [ni=1[ai; bi℄,where [ai; bi℄ are disjoint ompat subsets of O. Then there exists a onstant � > 0suh that �~� belongs to D.The last remark deals with an expliit omputation of D�St(m), and the proof isontained in Jaod, [15℄, Jaod, Shiryaev, [16℄ (who onsider muh more ompliatedequations).Remark 2.6. Let m = Pni=1 Æ(ti;zi) 2 M. Consider the following linear (de-terministi) equation :At(m) = 1 + Z t0 ZO h0x(Ss�(m); z)As�(m)m(ds; dz) + Z t0 g0(Ss(m))As(m)dsThen At(m) = exp�Z t0 g0(Ss(m))ds� � nYi=1 �1 + h0x(Sti�(m); zi)1ft�tig�(2.13)Assume now that for all i 2 f1; :::; ng, 1 + h0x(Sti�(m); zi) 6= 0. Then A(m) doesnever vanish, and the solution of (2.11) an be written as :D�St(m) = At(m) Z t0 ZO h0z(Ss�(m); z)As�(m)(1 + h0x(Ss�(m); z))�(z)m(ds; dz)(2.14)



7In partiular, if for some i 2 f1; :::; ng,h0z(Sti�(m); zi) 6= 0 and 8 j 6= i; zj 6= zithen there exists � 2 D suh that D�St(m) 6= 0 for all t > ti. ( It suÆes to hooseany � 2 D suh that �(zi) 6= 0, but �(zj) = 0 for all j 6= i).We now give some examples of appliations.Example 1 : We onsider the following S.D.E.Xt = x0 + Z t0 Z 10 a(Xs�)zN(ds; dz)(2.15)with '(z) = z�, for some � > �2, on O =℄0; 1[. If a is C3b on IR, (H) is learly met.Assume now that for some a0 > 0, a(x) � a0 for all x. Then for all t > 0, the lawof Xt is bounded below by a positive measure admitting a ontinuous density �t onIR, suh that �t does never vanish on ℄x0;+1[. This result is optimal, sine for allt > 0, Xt � x0 a.s.Indeed, let t0 > 0 and y0 > x0. Then it is lear, sine a(x) � a0 > 0 and sineO =℄0; 1[, that there existsm0 =Pni=1 Æ(ti;zi), suh that 0 < t1 < ::: < tn < t0, suhthat the zi are distints, and suh that y0 = St0(m0). Of ourse, m(ft0g �O) = 0.We thus just have to hek that there exists � 2 D suh that D�St0(m0) 6= 0.Sine the zi are distints, there exists � > 0 suh that for all i 2 f1; :::; n � 1g,zi =2℄zn� �; zn+ �[, and suh that ℄zn� �; zn+ �[�℄0; 1[. We hoose � 2 D in suh away that �(zn) 6= 0, and supp � � [zn � �=2; zn + �=2℄. This way,St0(��(m0)) = x0 + n�1Xi=1 a(Sti�(m0))�(zi) + a(Stn�(m0))� (zn + ��(zn))whih implies that D�St0(m0) = a(Stn�(m0))�(zn) 6= 0(2.16)Remark 2.4 allows to onlude.Example 2 : We onsider the ase of the following S.D.E.Xt = x0 + Z t0 Xsds+ Z t0 ZO a(Xs�)�(z)N(ds; dz)(2.17)h(x; z) = a(x)�(z) is supposed to be nonnegative and to satisfy (H). We assumethat a(x0) > 0, that �0 does never vanish, and that f�(z); z 2 Og =℄0;+1[. Thenfor eah t > 0, the law of Xt is bounded below by a nonnegative measure admittinga ontinuous density �t on IR, never vanishing on ℄x0et0 ;+1[. This result is optimal,sine for all t > 0, Xt � x0et a.s.Let t0 > 0 and y0 > x0et0 be �xed. One an easily hek that if m = Æ(t1;z1) 2 M,with t1 < t0, then St0(m) = x0et0 + a(x0et1)�(z1)et0�t1(2.18)



8Sine a(x0) > 0, sine a is ontinuous, we an hoose t1 2℄0; t0[ small enough, inorder to obtain that a(x0et1) > 0. We thus an hoose z1 2 O suh that �(z1) =(y0 � x0et0)=(a(x0et1)et0�t1). Then, if m0 = Æ(t1;z1), St0(m0) = y0 and m0(ft0g �O) = 0. Furthermore, one an easily hek that if � 2 D, with �(z1) 6= 0,St0(��(m0)) = x0et0 + a(x0et1)�(z1 + ��(z1))et0�t1(2.19)and thus D�St0(m0) = a(x0et1)et0�t1�0(z1)�(z1) 6= 0(2.20)Remark 2.4 allows to onlude.Of ourse, in every of these partiular ases, there may exist simpler arguments,but Theorem 2.3 uni�es the proofs.3. Framework. First of all, we introdue some notations.Notation 3.1. Let � belong to D, and � 2 [�1; 1℄. Reall that the map �� wasde�ned by (2.10). For eah ! 2 
, we de�ne the new integer-valued random measure��(N(!)) on [0; T ℄�O by��(N(!))(A) = Z T0 ZO 1A(s; ��(z))N(!; ds; dz)(3.1)We denote by T �� : 
 7! 
 the shift de�ned (and entirely de�ned) byNÆT �� = ��(N).We will use the following riterion of positivity.Theorem 3.2. Let X be a real-valued random variable on 
 and let y0 2 IR.Assume that for some � of lass D, the map � 7! X Æ T �� is a.s. twie di�erentiableon [�1; 1℄. Assume that there exists  > 0, Æ > 0, and k < 1, suh that for allr 2℄0; 1℄, P (�(r)) > 0(3.2)where�(r) = (jX � y0j < r ; ��� ���X Æ T �� ����=0��� �  ; supj�j�Æ h�� ���X Æ T �� ��+ ��� �2��2X Æ T �� ���i � k)(3.3)Then there exists a ontinuous funtion �y0(:) : IR 7! IR+ suh that �y0(y0) > 0 andsuh that for all f 2 C+b (IR),E(f(X)) � ZIR f(y)�y0(y)dy(3.4)This result is a partiular ase of Theorem 3.3 in [9℄. Let us however give anidea of the proof.



9Proof.Thanks to the de�nition of the lassD, one an hek, using the GirsanovTheorem for random measures, see Jaod, Shiryaev, [16℄, the existene, for eah �,eah � 2 D, of a Dol�eans-Dade martingale G�t > 0 suh that �G�T :P �Æ�T �� ��1 = P .Furthermore, G�T is a.s. ontinuous in �. Let f � 0 be a ontinuous funtion on IR.Then E(f(X)) = E(f(X Æ T �� )G�T ) � 12E �Z 1�1 f(X Æ T �� )G�T d�1�(r)�(3.5)Using a "uniform version" of the loal inverse Theorem, one an hek the existeneof � > 0, R > 0 (as small as we want) suh that for eah ! 2 �(r), the map� 7! T �� (!) is a di�eomorphism from V (!) �℄ � R;R[ into ℄X Æ T 0� (!) � �;X ÆT 0� (!)+ �[=℄X(!)��;X(!)� �[. We hoose r > 0 in suh a way that r < �. Thisway, using the substitution y = X Æ T �� (!) for eah ! 2 �(r), we obtainE(f(X)) � 12E �ZV f(X Æ T �� )G�T d�1�(r)�(3.6)� 12E Z X+�X�� f(y)� G(XÆT :�)�1(y)T��� [X Æ T :�℄((X Æ T :�)�1(y))dy1�(r)! � ZIR f(y)�(y)dywhere, if  is a ontinuous funtion on IR suh that 1[0;r℄ �  � 1[0;�℄,�(y) = 12E " (jX � yj)(1 ^ G(XÆT :�)�1(y)T��� [X Æ T :�℄((X Æ T :�)�1(y))) 1�(r)#(3.7)It is lear that �(y0) > 0, and one an prove that � is ontinuous by using theLebesgue Theorem.Our aim is of ourse to apply this result to the solution Xt of Eq (1.1). We thushave to hek that for all � 2 D, all t 2 [0; T ℄, the map � 7! Xt Æ T �� is suÆientlyregular.Proposition 3.3. Assume (H). Let X be the solution of Eq. (1.1), and let� 2 D. Then for all t 2 [0; T ℄, the map � 7! X�;�t = XtÆT �� is a.s twie di�erentiableon [�1; 1℄. For eah � �xed, the proesses X�;�t , ���X�;�t and �2��2X�;�t belong a.s. toIDT , and satisfy the following S.D.E.s :X�;�t = x0 + Z t0 ZO h(X�;�s� ; ��(z))N(ds; dz) + Z t0 g(X�;�s )ds(3.8)���X�;�t = Z t0 ZO h0x(X�;�s� ; ��(z)) ���X�;�s� N(ds; dz) + Z t0 g0(X�;�s ) ���X�;�s ds+ Z t0 ZO h0z(X�;�s� ; ��(z))�(z)N(ds; dz)(3.9)



10 �2��2X�;�t = Z t0 ZO h0x(X�;�s� ; ��(z)) �2��2X�;�s� N(ds; dz) + Z t0 g0(X�;�s ) �2��2X�;�s ds+ Z t0 ZO h00xx(X�;�s� ; ��(z))� ���X�;�s� �2N(ds; dz)(3.10) + Z t0 g00(X�;�s ) � ���X�;�s �2 ds+2 Z t0 ZO h00zx(X�;�s� ; ��(z)) ���X�;�s� �(z)N(ds; dz)+ Z t0 ZO h00zz(X�;�s� ; ��(z))�2(z)N(ds; dz)This proposition is quite easy to hek, using the positivity of the measure N . IfN is a �nite Poisson measure, i.e. if RO '(z)dz <1, then one an prove, using (H),Lemma 6.1 and equations (3.8), (3.9), (3.10), the existene of a.s. �nite randomvariables A(!) and B(!) suh that for all t 2 [0; T ℄, all �; �+ � 2 [�1; 1℄ :���X�+�;�t �X�;�t � � ���X�;�t ��� � A� �2(3.11) ��� ���X�+�;�t � ���X�;�t � � �2��2X�;�t ��� � B � �2(3.12)whih allows to onlude. If N is in�nite, one has to approximateN with a sequeneof �nite Poisson measures, and to prove the onvergenes. See [9℄ for a similar (bumore diÆult) problem.We also have to di�erentiate the skeleton.Proposition 3.4. Assume (H). Let m 2 M and � 2 D be �xed. Then forall t 2 [0; T ℄, the map � 7! St(��(m)) is twie di�erentiable on [�1; 1℄. For eah ��xed, the funtions St(��(m)), ���St(��(m)), and �2��2St(��(m)) belong to IDT , andsatisfy the following equations :St(��(m)) = x0 + Z t0 ZO h(Ss�(��(m)); ��(z))m(ds; dz) + Z t0 g(Ss�(��(m)))ds(3.13) ���St(��(m)) = Z t0 ZO h0x(Ss�(��(m)); ��(z)) ���Ss�(��(m))m(ds; dz)+ Z t0 g0(Ss(��(m))) ���Ss�(��(m))ds



11+ Z t0 ZO h0z(Ss�(��(m)); ��(z))�(z)m(ds; dz)(3.14)�2��2St(��(m)) = Z t0 ZO h0x(Ss�(��(m)); ��(z)) �2��2Ss�(��(m))m(ds; dz)+ Z t0 g0(Ss(��(m))) �2��2Ss(��(m))ds+ Z t0 ZO h00xx(Ss�(��(m)); ��(z)) � ���Ss�(��(m))�2m(ds; dz)+ Z t0 g00(Ss(��(m))) � ���Ss(��(m))�2 ds+2 Z t0 ZO h00zx(Ss�(��(m)); ��(z)) ���Ss�(��(m))�(z)m(ds; dz)+ Z t0 ZO h00zz(Ss�(��(m)); ��(z))�2(z)m(ds; dz)(3.15)The proof of this proposition is quite easy : it suÆes to use the de�nition of thedi�erentiability, and to show inequalities as (3.11) and (3.12), by using (H) andLemma 6.1.As a �nal tool, we reall the de�nition of the Skorokhod distane on IDT . First,the set of the hanges of times is de�ned by :� = f (t) 2 C([0; T ℄; [0; T ℄) /  (0) = 0;  (T ) = T;  is stritly inreasinggThe norm on � is de�ned by :jjj jjj = sup0�s<t�T ����ln� (t)�  (s)t� s �����(3.16)Finally, if x and y belong to IDT , the distane between x and y is given by :Æ(x; y) = inf 2�(sup[0;T ℄ jx(t) � y Æ  (t)j+ jjj jjj)(3.17)Our main result will be proved as a onsequene of Theorem 3.2 and of the"support type" proposition below, that will be heked in the next setion.Proposition 3.5. Let m 2M and � 2 D be �xed. For all � > 0, the set
�m(�) = n supj�j�1 Æ �X�;�; S(��(m))� � � ; supj�j�1 Æ � ���X�;�; ���S(��(m))� � � ;



12 supj�j�1 Æ � �2��2X�;�; �2��2S(��(m))� � � o(3.18)has a stritly positive probability.Assuming for a moment that this proposition holds, we prove our main result.In order to apply Theorem 3.2, we need two lemmas. The �rst one is probably awell-known fat about the Skorokhod distane, and an be easily proved.Lemma 3.6.1. For all x, y in IDT , k x k1�k y k1 +Æ(x; y).2. Let y 2 IDT be �xed. Assume that for some t0 2 [0; T ℄,�y(t0) = 0. Then for all� > 0, there exists r(�) > 0 suh that for all x 2 IDT satisfying Æ(x; y) � r(�),the following inequality holds :jx(t0)� y(t0)j � �(3.19)The seond one deals with a tehnial property of the skeleton.Lemma 3.7. Assume (H). For all m 2 M, � 2 D,supj�j�1; 0�t�T n��St(��(m))��+ �� ���St(��(m))��+ ��� �2��2St(��(m))���o <1(3.20)Proof. We will only prove that sup�;t j ���St(��(m))j < 1, beause the otherases an be heked similarly. We thus use equation (3.14), an we write m asPni=1 Æ(ti;zi). Our aim is to apply Lemma 6.1 for eah �.First of all, notie that thanks to (H) and (2.9), for all x 2 IR, z 2 O, all j�j � 1,jh0x(x; ��(z))j � jh0x(x; z)j+ j��(z)� zj� k h00xz k1� K f�(z) + j�(z)jg(3.21)Hene, for all i 2 f1; :::; ng,jh0x(x; ��(zi))j � K supk2f1;:::;ngf�(zk) + j�(zk)jg � C(3.22)Thus�� ���St(��(m))�� � C nXi=1 �� ���Sti�(��(m))�� 1ft�tig+ k g0 k1 Z t0 �� ���Ss(��(m))�� ds+ n k h0z k1k � k1� K1 +K2 Z t0 �� ���Ss(��(m))�� ds+K3 nXi=1 �� ���Sti�(��(m))�� 1ft�tig(3.23)



13where the onstants Ki do not depend on �. Applying lemma 6.1, we dedue theexistene of a onstant C, not depending on �, suh thatsup[0;T ℄ �� ���St(��(m))�� � C(3.24)This onludes the proof.We �nally prove our main result.Proof of Theorem 2.3. We onsider t0 2℄0; T ℄, m0 2 M, and y0 = St0(m0).We assume that m0(ft0g �O) = 0. We know, by assumption, that0 = ��� ���St0(��(m))���=0	�� > 0(3.25)for some � 2 D, whih we now onsider. Thanks to Lemma 3.7,k0 = supj�j�1; 0�t�T n��St(��(m0))��+ �� ���St(��(m0))��+ ��� �2��2St(��(m0))���o <1(3.26)Our aim is to prove that for all r > 0, there exists � > 0 suh that
�m0(�) �8>><>>: jXt0 � y0j < r ; ���n ���X�;�t0 ����=0o��� � 0=2 ;supj�j�1 h��� ���X�;�t0 ���+ ��� �2��2X�;�t0 ���i � k0 + 19>>=>>;(3.27)where 
�m0(�) is de�ned in Proposition 3.5. This will suÆe, thanks to Theorem 3.2and Proposition 3.5.Let us now hek (3.27). Let ! 2 
�m0(�), for some � > 0. Sine m0(ft0g�O) = 0, itis lear from equations (3.13) and (3.14) that the �adl�ag funtions t 7! St(m0) andt 7! ���St(��(m0))���=0 are ontinuous at t0. We thus dedue from Lemma 3.6-2and the fat that ! 2 
�m0(�) the existene of a dereasing to 0 funtion �(�), suhthat jXt0 � y0j = jXt0 � St0(m0)j = jX0;�t0 � St0(0�(m0))j � �(�)(3.28)and ���n ���X�;�t0 ����=0o��� � ��� ���St0(��(m0))���=0	��� �(�) � 0 � �(�)(3.29)On the other hand, thanks to Lemma 3.6-1, sine ! 2 
�m0(�), it is lear that forall j�j � 1,supt2[0;T ℄ h��� ���X�;�t ���+ ��� �2��2X�;�t ���i � supt2[0;T ℄ h�� ���St(��(m))��+ ��� �2��2St(��(m))���i+ 2�� k0 + 2�(3.30)We now hoose � 2℄0; 1=2℄ small enough, in order that �(�) � r ^ (0=2). This way,(3.27) is learly satis�ed, and this onludes the proof.



14 4. Proof of the "support type" proposition. Our aim in this setion is toprove Proposition 3.5. Thus, in the whole sequel, p, m = Pni=1 Æ(ti;zi) 2 Mp, and� 2 D are �xed, and (H) is assumed. For simpliity, we denote � = �� (see (2.9)),X�t = X�;�t , and S�t = St(�(m)). All the onstants C and K below will dependonly on the funtions g and h, on m, �, and T .We set t0 = 0, tn+1 = T , and�0 = infi2f0;:::;ng jti+1 � tij ; d0 = infi2f1;:::;ng d(zi; �Op)(4.1)We also set Np = N j[0;T ℄�Op , whih is a �nite Poisson measure, by 0 < T1 < T2 <::: < T� < T its suessive times of jump, and by Z1; Z2; :::; Z� 2 Op the size of itsjumps. In other words, Np(!) = �(!)Xi=1 Æ(Ti(!);Zi(!))(4.2)Finally, we denote by Xp;�, ���Xp;�, and �2��2Xp;� the solutions of equations (3.8),(3.9), and (3.10), where N has been replaed by Np, X� by X�;p, ���X� by ���X�;p,and �2��2X� by �2��2X�;p.We begin with a lemma.Lemma 4.1. Let a 2℄0; �0=10[, b 2℄0; d0=2[, and  > 0 be �xed. Consider thesets �1(a; b) = f! 2 
 / � = n; and 8 i; ti � a � Ti � ti; jzi � Zij � bg(4.3) �2() = (! 2 
 , Z T0 ZO=Op (�(z) + j�(z)j)N(ds; dz) � )(4.4)Then the set �1(a; b) \ �2() has a stritly positive probability.Proof. First of all, notie that �1(a; b) 2 �(Np) is learly independent of �2() 2�(N j[0;T ℄�(O=Op)). On the other hand, it is well-known that �1(a; b) has a stritlypositive probability. We thus just have to hek that P (�2()) > 0.Consider, for q � p, the following random variables :Zqp = Z T0 ZOq=Op (�(z) + j�(z)j)N(ds; dz)Zq = Z T0 ZO=Oq (�(z) + j�(z)j)N(ds; dz)(4.5)We see that Zp = Zqp+Zq for any q. For all q, P (Zqp = 0) > 0, beause N j[0;T ℄�Oq=Opis a �nite Poisson measure. When q goes to in�nity, Zq goes to 0 in L1 (and thus



15in probability) beause � + j�j 2 L1(O;'(z)dz). But learly, Zqp is independent ofZq for all q > p. Hene for all q,P (�1()) = P (Zp � ) � P (Zqp = 0)P (Zq � )(4.6)Choosing q large enough, we obtain P (Zq � ) > 0, and the lemma follows.The following Lemma proves Proposition 3.5 in the ase where N is a �nitePoisson measure.Lemma 4.2. For all � > 0, there exists a� 2℄0; �0=10[ and b� 2℄0; d0=2[ suhthat �1(a�; b�) � �1(�)(4.7)where�1(�) = n supj�j�1 Æ �Xp;�; S�� � � ; supj�j�1 Æ � ���Xp;�; ���S�)� � � ;supj�j�1 Æ � �2��2Xp;�; �2��2S�)� � � o(4.8)Proof. Let a 2℄0; �0=10[ and b 2℄0; d0=2[ be �xed. We onsider  2℄2a; �0=5[, tobe hosen later. The element ! 2 �1(a; b) is now �xed.First of all, we onsider the polygonal hange of time  2 � de�ned by (0) = 0;8 i 2 f1; :::; ng;  (Ti � ) = Ti � ;  (Ti) = ti;  (Ti + ) = Ti + ; (T ) = T(4.9)Simple omputations show thatsup[0;T ℄ j (t)� tj � a ; jjj jjj � 2a=(4.10) and Z T0 1f (s)6=sgds � 2n = C(4.11)This hange of time will allow us to prove the lemma. Indeed, we will hek theexistene of a onstant K < 1, not depending on a, b, on ! 2 �1(a; b) nor on� 2 [�1; 1℄, suh that supt2[0;T ℄ ���Xp;�t � S� (t)��� � K(b+ )(4.12) supt2[0;T ℄ ��� ���Xp;�t � ���S� (t)��� � K(b+ )(4.13) supt2[0;T ℄ ��� �2��2Xp;�t � �2��2S� (t)��� � K(b+ )(4.14)



16This way, we will obtain, for all ! 2 �1(a; b),supj�j�1 hÆ �Xp;�; S��+ Æ � ���Xp;�; ���S��+ Æ � �2��2Xp;�; ���S��i � 3K(b+ ) + 6a=Choosing b� < (�=3K) ^ (d0=2),  < (�=3K)^ (�0=5), and a� < (�=18)^ (�0=10)^(=2), we will obtain (4.7). We thus just have to prove (4.12), (4.13), and (4.14).Sine the three proofs are similar, we will only hek (4.13). We thus assume that(4.12) is proved. Then we set ��t = ���Xp;�t � ���S�t . A diret omputation, usingequations (3.9), (3.14), and the fat that 1f (t)�tig = 1ft�Tig, shows that for all! 2 �1(a; b),j��t j � nXi=1 jh0x(Xp;�Ti�; �(Zi))j � ��� ���Xp;�Ti� � ���S�ti����� 1ft�Tig+ nXi=1 �� ���S�ti���� ���h0x(Xp;�Ti�; �(Zi))� h0x(S�ti�; �(Zi))���� 1ft�Tig+ nXi=1 �� ���S�ti���� ��h0x(S�ti�; �(Zi))� h0x(S�ti�; �(zi))��� 1ft�Tig+ nXi=1 ���h0z(Xp;�Ti�; �(Zi))���� j�(Zi)� �(zi)j � 1ft�Tig+ nXi=1 j�(zi)j � ���h0z(Xp;�Ti�; �(Zi))� h0z(S�ti�; �(Zi))���� 1ft�Tig+ nXi=1 j�(zi)j � ��h0z(S�ti�; �(Zi))� h0z(S�ti�; �(zi))��� 1ft�Tig+ Z  (t)t jg0(S�s )j � �� ���S�s �� ds+ Z t0 ���g0(S� (s)) ���S� (s) � g0(S�s ) ���S�s ��� ds+ Z t0 jg0(Xp;�s )j � ��� ���S� (s) � ���Xp;�s ��� ds+ Z t0 ��� ���S� (s)���� jg0(S� (s))� g0(Xp;�s )jds� A�t +B�t + :::+ J�t(4.15)



17We study these terms one by one. First notie that thanks to (H), sine � belongsto D and ! 2 �1(a; b), for all x in IR, all i in f1; :::; ng,jh0x(x; �(Zi))j � jh0x(x; zi)j+ k h00zx k1 j�(Zi)� zij� supk �(zk) +K(jZi � zij+ k � k1) � K +K(b+K) � K(4.16)This way, we obtain, sine ti =  (Ti),A�t � K nXi=1 j��Ti�j � 1ft�Tig(4.17)Using Lemma 3.7, we know that for some k0 <1,supt;� hjS�t j+ �� ���S�t ��+ ��� �2��2S�t ���i � k0(4.18)Furthermore, one an hek as previously (see (4.16)) that for all x in IR,, all i inf1; :::; ng, jh00xx(x; �(Zi))j � K(4.19)Sine ti =  (Ti), we dedue thatB�t � k0K nXi=1 jXp;�Ti� � S� (Ti)�j � 1ft�Tig(4.20)Using �nally (4.12), we obtain B�t � K(b+ )(4.21)It is lear that C�t � k0 k h00zx k1 nXi=1 j�(Zi)� �(zi)j� K nXi=1 fjZi � zij+ k �0 k1 jZi � zijg � Kb(4.22)and that D�t �k h0z k1 nXi=1 k �0 k1 jZi � zij � Kb(4.23)Using again (4.12), we see thatE�t �k � k1k h00zx k1 nXi=1 ���Xp;�Ti� � S� (Ti)���� � K(b+ )(4.24)One an also hek thatF �t �k � k1k h00zz k1 nXi=1 ���(Zi)� �(zi)�� � Kb(4.25)



18Using (4.18) and (4.10), we obtainG�t �k g0 k1 k0j (t)� tj � Ka(4.26)Due to (4.18) and (4.11), we see thatH�t � 2 k g0 k1 k0 Z T0 1f (s)6=sgds � K(4.27)It is immediate that I�t �k g0 k1 Z t0 j��s jds(4.28)We �nally obtain, thanks to (4.12) and (4.18),J�t � k0T k g00 k1 K(b+ ) � K(b+ )(4.29)We thus have proved, sine 2a � , thatj��t j � K1(b+ ) +K2 Z t0 j��s jds+K3 nXi=1 j��Ti�j1ft�Tig(4.30)where the onstants Ki do not depend on � 2 [�1; 1℄ nor on ! 2 �1(a; b). We nowapply Lemma 6.1, whih yields the existene of a onstant K4, suh thatsup[0;T ℄ ����s �� � K4(b+ )(4.31)Hene, for all ! 2 �1(a; b), all � 2 [�1; 1℄, (4.13) holds, and the lemma is proved.Our aim is now to establish the following result, whih will allow to onlude theproof of Proposition 3.5.Lemma 4.3. For all � > 0, there exists � > 0 suh that for all a 2℄0; �0=10[,all b 2℄0; d0=2[, �1(a; b) \ �2(�) � �2(�)(4.32)where�2(�) = n supj�j�1 k X� �Xp;� k1� � ; supj�j�1 k ���X� � ���Xp;� k1� � ;supj�j�1 k �2��2X� � �2��2Xp;� k1� � o(4.33)In order to prove this result, we have to begin with a tehnial lemma.Lemma 4.4. There exists K0 < 1 and 0 > 0 suh that for all a 2℄0; �0=10[,all b 2℄0; d0=2[, and all  < 0,�1(a; b) \ �2() � ( supj�j�1; 0�t�T h��X�t ��+ �� ���X�t ��+ ��� �2��2X�t ���i � K0)(4.34)



19Proof.A diret omputation, using equation (3.8), shows that for all � 2 [�1; 1℄,all ! 2 �1(a; b) \ �2(),jX�t j � jx0j+ nXi=1 jh(X�Ti�; �(Zi))j1ft�Tig+ Z t0 ZO=Op jh(X�s�; �(z))jN(ds; dz) + Z t0 jg(X�s ))jds(4.35)Using (H), and the fat that ! 2 �1(a; b), one easily heks that for all i 2 f1; :::; ng,jh(X�Ti�; �(Zi))j � K(1 + jX�Ti�j)(4.36)It is also lear, thanks to (H) and (2.9), thatjh(X�s�; �(z))j � jh(X�s�; z)j+ j�(z)� zj supu jh0z(X�s�; u)j� K(1 + jX�s�j)(�(z) + j�(z)j)(4.37)and jg(X�s�)j � K(1 + jX�s�j)(4.38)HenejX�t j � K +K nXi=1 jX�Ti�j1ft�Tig +K Z t0 jX�s jds+K Z t0 ZO=Op(�(z) + j�(z)j)N(ds; dz)+K sup[0;t℄ jX�s j � Z t0 ZO=Op(�(z) + j�(z)j)N(ds; dz)But, sine the left hand side member is inreasing, and sine ! 2 �2(), wededue that if  � 1,sup[0;t℄ jX�s j � K +K nXi=1 jX�Ti�j1ft�Tig +K Z t0 jX�s jds+K� sup[0;t℄ jX�s j(4.39)Thus, if 10 = (1=2K) ^ 1, we dedue that as soon as  � 10,2 sup[0;t℄ jX�s j � K +K nXi=1 jX�Ti�j1ft�Tig +K Z t0 jX�s jds(4.40)Lemma 6.1 allows to onlude the existene of a onstant K10 , not depending ona 2℄0; �0=10[, b 2℄0; d0=2[,  � 10, � 2 [�1; 1℄ nor on ! 2 �1(a; b) \ �2() suh thatsup[0;T ℄ jX�s j � K10(4.41)



20One an hek in the same way the existene of 20 > 0 and K20 < 1 suh that if � 20, for all � 2 [�1; 1℄ and all ! 2 �1(a; b) \ �2(),sup[0;T ℄ h�� ���X�s ��+ ��� �2��2X�s ���i � K20(4.42)Choosing 0 = 10 ^ 20 and K0 = K10 +K20 onludes the proof of the lemma.We are now able to prove Lemma 4.3.Proof of Lemma 4.3. First of all, we onsider a 2℄0; �0=10[, b 2℄0; d0=2[, and 2℄0; 0[. We work with an element ! of �1(a; b) \ �2(). We have to hek thatsup�2[�1;1℄ supt2[0;T ℄ ���X�t �Xp;�t ��� � K(4.43) sup�2[�1;1℄ supt2[0;T ℄ ��� ���X�t � ���Xp;�t ��� � K(4.44) sup�2[�1;1℄ supt2[0;T ℄ ��� �2��2X�t � �2��2Xp;�t ��� � K(4.45)As usual, the proofs of the three inequalities are similar, and we will only hek(4.44). We thus assume that (4.43) holds. From now on, � 2 [�1; 1℄ is �xed, and weset V �t = ���X�t � ���Xp;�t . One obtains, sine ! 2 �1(a; b) \ �2(),jV �t j � nXi=1 �� ���X�Ti���� ���h0x(X�Ti�; �(Zi))� h0x(Xp;�Ti�; �(Zi))���� 1ft�Tig+ nXi=1 ���h0x(Xp;�Ti�; �(Zi))���� ��V �Ti���� 1ft�Tig+ Z t0 ZO=Op ��h0x(X�s�; �(z))��� �� ���X�s���N(ds; dz)+ Z t0 �� ���X�s ��� ��g0(X�s )� g0(Xp;�s )�� ds+ Z t0 ��g0(Xp;�s )��� ��V �s �� ds+ nXi=1 j�(Zi)j � ���h0z(X�Ti�; �(Zi))� h0z(Xp;�Ti�; �(Zi))���� 1ft�Tig+ Z t0 ZO=Op ��h0z(X�s�; �(z))��� j�(z)jN(ds; dz)



21� A�t +B�t + :::+G�t(4.46)Let's ompute. Thanks to Lemma 4.4, using (H), the fat that ! 2 �1(a; b) \�2(), and (4.43), one easily heks that A�t � K, and thatB�t � K nXi=1 ��V �Ti���� 1ft�Tig(4.47)For the same reasons, we obtainC�t +D�t + F �t +G�t � K(4.48)and E�t � K Z t0 ��V �s �� ds(4.49)We �nally an write, for all ! 2 �1(a; b) \ �2(), with a < �0=10, b < d0=2,  < 0,��V �t �� � K+K Z t0 ��V �s �� ds+K nXi=1 ��V �Ti���� 1ft�Tig(4.50)where K does not depend on !, �, a, b, nor . Using Lemma (6.1) allows toonlude that (4.44) holds, and the lemma is proved.We �nally are able to onlude.Proof of Proposition 3.5. It is a simple assoiation of the previous lemmas.Let � > 0 be �xed. Then, thanks to lemmas 4.2 and 4.3,�1(a�=2; b�=2) \ �2(�=2) � �1(�=2) \ �2(�=2) � 
�m(�)(4.51)Thanks to Lemma 4.1, we dedue that P (
�m(�)) > 0, and the proposition is proved.5. Strit positivity of a solution to a Ka equation. The Ka equationdeals with the density of partiles in a gaz, and is a one-dimensional "ariature" ofthe famous spatially homogeneous Boltzmann equation. We denote by f(t; v) thedensity of partiles whih have the veloity v 2 IR at the instant t > 0. Then�f�t (t; v) = Zv�2IR Z ��=�� [f(t; v0)f(t; v0�)� f(t; v)f(t; v�)℄�(�)d�dv�(5.1)where v0 = v os � � v� sin � ; v0� = v sin � + v� os �(5.2)are the post-ollisional veloities. The "ross setion" � is an even and positivefuntion on [��; �℄nf0g exploding near 0 beause of an aumulation of "grazingollisions", but satisfying the physially reasonnable assumptionZ �0 �2�(�)d� <1(5.3)



22We are interested in the strit positivity of the solution to (5.1). In the ase withuto�, namely when R �0 �(�)d� < 1, the analysts Pulvirenti and Wennberg haveproved in [21℄ a Maxwellian lowerbound for f . It is also proved in [10℄ that fdoes never vanish if R �0 ��(�)d� = 1. We now would like to study the ase whereR �0 �(�)d� =1, but R �0 ��(�)d� <1.First, we will onsider solutions in the following (weak) sense, whih is obtainedby using a standard integration by parts.Definition 5.1. Let P0 be a probability measure on IR that admits a momentof order 2. A positive funtion f on ℄0;+1[�IR is a weak solution of Eq. (5.1) withinitial distribution P0 if for every test funtion � 2 C2b (IR),Zv2IR �(v)f(t; v)dv = Zv2IR �(v)P0(dv)+ Z t0 Zv2IR Zv�2IR Z ��� n�(v os � � v� sin �)� �(v)of(s; v)f(s; v�)�(�)d�dv�dvds(5.4)We now state our assumption.Assumption (K) :1. The initial distribution P0 admits a moment of order 2, andR �0 ��(�)d� <1.2. P0 is not a Dira mass at 0. The ross setion splits into � = �0+�1,where �1 is even and positive on [��; �℄nf0g, and there exists k0 >0, �0 2℄0; �[, and r 2℄1; 2[ suh that �0(�) = k0j�jr 1[��0;�0℄(�).Following Graham, M�el�eard, [13℄, we build the following random elements.Notation 5.2. We denote by N0 and N1 two independant Poisson measureson IR+ � [0; 1℄� [��; �℄, with intensity measures :�0(ds; d�; d�) = �0(�)dsd�d� ; �1(ds; d�; d�) = �1(�)dsd�d�(5.5)We will write N = N0 + N1. We onsider a real-valued random variable V0 inde-pendant of N0 and N1, of whih the law is P0. We also assume that our probabilityspae is the anonial one assoiated with the independent random elements V0, N0,and N1 :(
;F ; fFtg; P ) = (
0;F 0; fF 0g; P 0)
 (
0;F0; fF0t g; P 0)
 (
1;F1; fF1t g; P 1)We will onsider [0; 1℄ as a probability spae, denote by d� the Lebesgue measure on[0; 1℄, by E� and L� the expetation and law on ([0; 1℄;B([0; 1℄); d�).



23The following results are proved by Desvillettes, Graham, M�el�eard, [6℄, Theorem3.6, and Graham, M�el�eard, [13℄, Theorem 1.6 and Corollary 1.8.Theorem 5.3.1. Assume (K)-1. There exists a �adl�ag adapted proess fVt(!)g on 
 and aproess fWt(�)g on [0; 1℄ suh thatVt(!) = V0(!) + Z t0 Z 10 Z ��� �(os � � 1)Vs�(!)� (sin �)Ws�(�)�N(!; ds; d�; d�)(5.6)L�(W ) = L(V ) and E sup[0;T ℄V 2t ! <1The uniqueness in law holds, in the sense that L(V ) = L�(W ) is unique.2. Assume (K). Then for eah t > 0, the law of Vt admits a density f(t; :) withrespet to the Lebesgue measure on IR. The obtained funtion f is a solutionto the Ka equation (5.1) in the sense of De�nition 5.1.3. Assume furthermore that P0 admits some moments of all orders. Then foreah t > 0, the funtion f(t; v) is of lass C1 in v 2 IR.The result we will prove in this setion is the following.Theorem 5.4. Assume (K), and onsider the solution f in the sense of Def-inition 5.1 of equation (5.1) built in Theorem 5.3. Then there exists a stritlypositive funtion g(t; v) on ℄0;+1[�IR, ontinuous in v, suh that for all t > 0,f(t; v)dv � g(t; v)dv.If f(t; v) is ontinuous in v (for example, if P0 admits some moments of all orders),this means that f(t; v) does never vanish.In the sequel, we will sketh the proof of this result, by applying the methoddesribed in the previous setions to the proess fVtg solution of (5.6) built inTheorem 5.3-1. We will always work on the �nite time interval [0; T ℄, for someT > 0 �xed, whih of ourse suÆes. In a �rst subsetion, we will introdue theskeleton assoiated with fVtg, we will de�ne the "diretions" assoiated with N ,and state an intermediate result, looking like Theorem 2.3. We will sketh theproof of this result in a seond subsetion. Finally, we will onlude in the lastsubsetion, by studying the skeleton.We give the following lemma that will be frequently used.Lemma 5.5. Assume (K)-1. For all t � 0, supp P0 � supp L(Vt) =supp L�(Wt).



24 The main idea of the proof is very simple. If N were a �nite Poisson measure,it would be immediate. One thus has to approximate N with a sequene of �nitePoisson measures Np. Then, Vt will be lose to V0 on the set where Np = 0 (ofwhih the probability is stritly positive), and N�Np will go to 0 in a ertain sense.One onludes by using the independene, for eah p, of V0, Np, and N �Np. See[11℄, Lemma 1.6 for the rigorous proof of a very similar lemma.5.1. An intermediate result. First of all, we introdue the skeleton assoiatedwith fVtg. Notie that instead of one random element (in the ase of Eq. (1.1)),we have to deal with three : V0, N0, N1. Inspired by Lemma 5.5 and the form ofequation (5.6), we onsiderV0 = supp P0 ; M0 = [pMp0 ; M1 = [pMp1(5.7)where Mp0 = (m = nXi=1 Æ(ti;wi;�i) , n 2 IN; 0 < t1 < ::: < tn < T;wi 2 V0; j�ij 2℄1=p; �0[ )
Mp1 = (q = nXi=1 Æ(ti;wi;�i) , n 2 IN; 0 < t1 < ::: < tn < T;wi 2 V0; j�ij 2 supp �1\℄1=p; �[)Then, for v0 2 V0, m 2 M0, and q 2 M1, we denote by S(v0;m; q) the uniquesolution of the deterministi equation :St(v0;m; q) = v0+Z t0 ZIR Z ��� fSs�(v0;m; q)(os � � 1)� w sin �g (m+q)(ds; dw; d�)(5.8)We also introdue the following diretions in whih we will "di�erentiate"S(v0;m; q) with respet to m.Definition 5.6.1. Let � be a C1 funtion on [��0; �0℄. We say that � belongs toD if j�(�)j � j�j=2,if �(��0) = �(�0) = 0, if �(�) � 1=2, and if � 2 L1(�0(�)d�), where�(�) = j�0(�)j+ 3r � 2r+1 j�(�)jj�j(5.9)2. If � 2 D, we set, for eah � 2 [�1; 1℄, ��(�) = � + ��(�), whih is aninreasing bijetion from ℄� �0; �0[nf0g into itself. For any m 2M0, the newinteger-valued measure ��(m) still belongs to M0.Remark 5.7. If � 2 D, then the assumptions of De�nition 2.2 are satis�ed inthe partiular ase where O =℄� �0; �0[=f0g, and �(�) = �0(�).



25Proof. First, it is lear that � goes to 0 when � goes to �O = f��0; 0; �0g.Thanks to (5.9), one an hek that j�0j � 1=2. Then, for example for � 2℄0; �0[,��(�) = 1�0(�) sup��2[��j�(�)j;�+j�(�)j℄ j�00(��)j� �rk0 sup��2[��j�(�)j;�+j�(�)j℄ rk0��r+1� r�r(� � j�(�)j)r+1 � r2r+1�(5.10)where the last inequality omes from the fat that j�(�)j � j�j=2. Hene,��(�) � j�0(�)j+ 3j�(�)jr2r+1=� � �(�)(5.11)where � is de�ned by (5.9).One easily heks that for all v0 2 V0, all m 2 M0, all q 2 M1, and eaht � 0, the map � 7! St(v0; ��(m); q) is twie di�erentiable on [�1; 1℄, and thatD�St(v0;m; q) = ���St(v0; ��(m); q)���=0, satis�es the following linear equation :D�St(v0;m; q) = Z t0 ZIR Z ���D�Ss�(v0;m; q)(os � � 1)(m+ q)(ds; dw; d�)� Z t0 ZIR Z ��� fSs�(v0;m; q) sin � + w os �g�(z)m(ds; dw; d�)(5.12)The following result will be proved by following the method desribed in theprevious setions.Theorem 5.8. Let t > 0, and y 2 IR be �xed. Assume that there exists v0 2 V0,m 2M0, q 2 M1, and � 2 D, suh thaty = St(v0;m; q) ; (m+ q)(ftg � IR � [��; �℄) = 0D�St(v0;m; q) 6= 0(5.13)Then the law of Vt is bounded below by a nonnegative measure admitting a ontinuousdensity not vanishing at y.5.2. Sketh of the proof of Theorem 5.8. We �rst give a riterion of strit posi-tivity. As usual, we de�ne for all � 2 [�1; 1℄, � 2 D, ! 2 
, the perturbed Poissonmeasure ��(N0). Then we onsider the shift T �� on 
 de�ned byV0 Æ T �� = V0 ; N0 Æ T �� = ��(N0) ; N1 Æ T �� = N1(5.14)In this situation, Theorem 3.2 still holds (this is a partiular ase of Theorem2.3 in [10℄). Furthermore, one an hek (see [10℄) that for all t > 0, the map



26t 7! V �;�t = Vt Æ T �� is a.s. twie di�erentiable on [�1; 1℄. The following equationsare satis�ed :V �;�t = V0 + Z t0 Z 10 Z ��� h�os ��(�)� 1�V �;�s� � sin ��(�)Ws�(�)iN0(ds; d�; d�)+ Z t0 Z 10 Z ��� h(os � � 1)V �;�s� � sin �Ws�(�)iN1(ds; d�; d�)(5.15)���V �;�t = Z t0 Z 10 Z ��� �os ��(�)� 1� ���V �;�s� N0(ds; d�; d�)+ Z t0 Z 10 Z ��� (os � � 1) ���V �;�s� N1(ds; d�; d�)� Z t0 Z 10 Z ��� hsin ��(�)V �;�s� + os ��(�)Ws�(�)i�(�)N0(ds; d�; d�)(5.16)�2��2 V �;�t = Z t0 Z 10 Z ��� �os ��(�)� 1� �2��2 V �;�s� N0(ds; d�; d�)+ Z t0 Z 10 Z ��� (os � � 1) �2��2 V �;�s� N1(ds; d�; d�)�2 Z t0 Z 10 Z ��� sin ��(�) ���V �;�s� �(�)N0(ds; d�; d�)(5.17) � Z t0 Z 10 Z ��� hos ��(�)V �;�s� � sin ��(�)Ws�(�)i�2(�)N0(ds; d�; d�)The skeleton is also regular enough. For eah � 2 [�1; 1℄. the �adl�ag funtionsSt(v0; ��(m); q), ���St(v0; ��(m); q), and �2��2St(v0; ��(m); q) satisfy equations as(5.15), (5.16), and (5.17), where V0, N0, and N1 have been replaed by v0, m, andq.It thus suÆes, as in Setion 3, to prove the following proposition.Proposition 5.9. Let v0 2 V0, m 2 M0, q 2 M1, and � 2 D be �xed. Thenfor all � > 0, the set
�v0;m;q(�) = n supj�j�1 Æ �V �;�; S(v0; ��(m); q)� � � ;supj�j�1 Æ � ���V �;�; ���S(v0; ��(m); q)� � � ;



27supj�j�1 Æ � �2��2 V �;�; �2��2S(v0; ��(m); q)� � � o(5.18)has a stritly positive probability.We now would like to give an idea of the proof of this proposition. We thus �xv0 2 V0; m = n0Xi=1 Æ(t0i ;w0i ;�0i ) 2Mp0; q = n1Xi=1 Æ(t1i ;w1i ;�1i ) 2Mp1(5.19)and � 2 D. For simpliity, we denote V � = V �;�, and S�t = St(v0; ��(m); q). Wealso onsider the �nite Poisson measures Np = Np0 +Np1 , whereNp0 = N0j[0;T ℄�[0;1℄�f[��0;�0℄n[�1=p;1=p℄g = �0Xi=1 Æ(T 0i ;�0i ;�0i )(5.20) Np1 = N1j[0;T ℄�[0;1℄�fsupp �1n[�1=p;1=p℄g = �1Xi=1 Æ(T 1i ;�1i ;�1i )(5.21)We denote by V �;p the solution of equation (5.15) where N0 and N1 have beenreplaed by Np0 and Np1 . Then we onsider the following sets.�0(�) = f! 2 
 / jV0 � v0j � �g�01(a; b; ) = n! 2 
 . �0 = n0; 8 i; t0i � a � T 0i � t0i ; jWT 0i (�0i )� w0i j � b ;j�0i � �0i j � o�11(a; b; ) = n! 2 
 . �1 = n1; 8 i; t1i � a � T 1i � t1i ; jWT 1i (�1i )� w1i j � b ;j�1i � �1i j � o�02(d) = (! 2 
 , Z T0 Z 10 Z 1=p�1=p(j�j+ j�(�)j)(1 + jWs(�)j)N0(ds; d�; d�) � d)�12(d) = (! 2 
 , Z T0 Z 10 Z 1=p�1=p j�j(1 + jWs(�)j)N1(ds; d�; d�) � d)Then one an hek that for all � > 0, a > 0, b > 0,  > 0, d > 0, a0 > 0, b0 > 0,0 > 0, d0 > 0, small enough,P ��0(�) \ �01(a; b; ) \ �11(a0; b0; 0) \ �02(d) \ �12(d0)	 > 0(5.22)



28It suÆes to use the some independene arguments, Lemma 5.5, the same argumentsas in the proof of Lemma 4.1, and the fats that (j�j + j�(�)j)(1 + jWs(�)j) 2L1(�0(�)d�d�ds) and j�j(1 + jWs(�)j) 2 L1(�1(�)d�d�ds). Indeed, for example,Z T0 Z 10 Z ���(j�j+ j�(�)j) � (1 + jWs(�)j)�0(�)d�d�ds� T  1 +E� sup[0;T ℄ jWtj!!Z ��� (j�j+ j�(�)j) �0(�)d� <1(5.23)This shows the way to prove Proposition 5.9 : following the ideas of Lemma 4.2,one an hek that for � > 0 �xed, then for � > 0, a > 0, b > 0,  > 0 small enough,�0(�) \ �01(a; b; ) \ �11(a; b; )� n supj�j�1 Æ �V �;p; S(v0; ��(m); q)� � � ; supj�j�1 Æ � ���V �;p; ���S(v0; ��(m); q)� � � ;supj�j�1 Æ � �2��2 V �;p; �2��2S(v0; ��(m); q)� � � o(5.24)Then, following the ideas of Lemma 4.3, we see that for � > 0 �xed, we obtain, if� > 0, a > 0, b > 0,  > 0, and d > 0 are small enough,�0(�) \ �01(a; b; ) \ �11(a; b; ) \ �02(d) \ �12(d)� n supj�j�1 k V � � V �;p k1� � ; supj�j�1 k ���V � � ���V �;p k1� � ;supj�j�1 k �2��2 V � � �2��2 V �;p k1� � o(5.25)This onludes the proof of Proposition 5.9.The sketh of proof of Theorem 5.8 is omplete.5.3. Proof of Theorem 5.4. We now have to study the skeleton, in order tohek that under (K), every y in IR satis�es the assumptions of Theorem 5.8. Thus(K) is assumed. Hene V0 ontains (at least) one point v0 6= 0. Sine the supportof �1 might be the empty set, and sine the support of P0 might ontain only v0,we will only study the skeletons of the form S(m) = S(v0;m; 0), for m 2 N0, whereN0 is the following subset of V0 :N0 = (m = nXi=1 Æ(ti;v0;�i) 2M0)(5.26)We will prove the following proposition :



29Proposition 5.10. Let y 2 IR, and let t > 0 be �xed. There exists m 2 N0,and � 2 D, suh thatSt(m) = y ; m(ftg � IR � [��0; �0℄) = 0 ; D�St(m) 6= 0(5.27)This proposition, omposed with Theorem 5.8, drives immediately to Theorem5.4. Thus, the whole sequel is devoted to the proof of this proposition.We will assume that v0 = 1. We may do so. Indeed, assume that v0 6= 1.Then we notie that (V=v0;W=v0) satisfy (5.6) with initial ondition V0=v0. Thesupport of the law of V0=v0 ontains 1. One onludes easily by using the uniquenessin law for (5.6).We now onsider the setE = f(n; �1; :::; �n) / n 2 IN; �i 2℄� �0; �0[nf0gg(5.28)and the funtion F from E into IR, de�ned reursively byF (0) = 1 ; F (n+ 1; �1; :::; �n; �n+1) = F (n; �1; :::; �n) os �n+1 � sin �n+1The main idea is that we have to prove that F is surjetive. Indeed, for any t > 0�xed, hoosing m = Pni=1 Æ(ti;1;�i) 2 N0, with 0 < t1 < ::: < tn < t, we see thatSt(m) = F (n; �1; :::; �n). We �rst prove a lemma showing that F an go to in�nity.Lemma 5.11. There exists a sequene '0n in ℄ � �0; 0[[℄0; �0[ suh that thesequene F (n; '01; :::; '0n) inreases to in�nity as n tends to in�nity.Proof. First notie that for any u > 0, the funtion gu(�) = u os � � sin � on[��; �℄ reahes its maximum at �u = � artan1=u, and that gu(�u) = p1 + u2.Assume �rst that �0 > �=4. We de�ne reursively, for n � 0,'0n+1 = � artan 1F (n; '01; :::; '0n)(5.29)We also set un = F (n; '01; :::; '0n). Then un grows to in�nity, beause u0 = 1 andun+1 =p1 + u2n. We thus just have to prove that for all i � 1, '0i 2℄� �0; �0[nf0g.But '01 = � artan1 = ��=4 2℄ � �0; 0[, and, sine un inreases to in�nity, wededue from (5.29) that '0n inreases to 0, whih allows to onlude that for all i,'0i 2℄� �0; 0[.Assume now that �0 � �=4, and onsider the sequene u0n = F (n;��0=2; :::;��0=2).Then u00 = 1, and u0n+1 = (os �0=2)u0n + sin �0=2, from whih we dedue that forall n � 0, u0n = (os �0=2)n + sin �0=21� os �0=2 (1� (os �0=2)n)(5.30)



30Hene u0n inreases to (sin �0=2)=(1� os �0=2) > 1= tan �0, and there exists n0 � 0suh that artan 1=u0n0 < �0. We thus set '01 = ::: = '0n0 = ��0=2, and reursively,for n � n0, '0n+1 = � artan 1F (n; '01; :::; '0n)(5.31)One onludes, as in the ase where �0 > �=4, that F (n; '01; :::; '0n) goes to in�nity,and that for all i, '0i 2℄� �0; 0[.A seond lemma, shows that F an reah �1.Lemma 5.12. There exists m0 2 IN ,  01,..., 0m0 in ℄0; �0[, suh that for alln 2 f0; :::;m0 � 1g, F (n;  01 ; :::;  0n) � F (n+ 1;  01 ; :::;  0n+1) andF (m0;  01 ; :::;  0m0) = �1(5.32)Proof. Notie that the sequene F (n; �0=2; :::; �0=2) goes to � sin(�0=2)=(1 �os(�0=2)) < �1 (beause �0 < �). We denote by m0 2 IN the �rst n 2 IN suhthat F (m0; �0=2; :::; �0=2) � �1. ThenF (m0�1; �0=2; :::; �0=2) os 0�sin 0 > �1 � F (m0�1; �0=2; :::; �0=2) os �0=2�sin �0=2(5.33)Thus there exists  0m0 2℄0; �0=2℄ suh that �1 = F (m0�1; �0=2; :::; �0=2) os 0m0 �sin 0m0 = F (m0; �0=2; :::; �0=2;  0m0). We onlude by setting  01 = ::: =  0m0�1 =�0=2.Proof of Proposition 5.10. We break the proof in several steps.Step 1. We �rst prove that F is surjetive. Let y > 1. Thanks to Lemma 5.11,there exists n 2 IN suh that F (n; '01; :::; '0n) < y � F (n + 1; '01; :::; '0n+1). Thisan also be writtenF (n; '01; :::; '0n) os 0� sin 0 < y � F (n; '01; :::; '0n) os'0n+1 � sin'0n+1(5.34)Thus there exists � 2 ['0n+1; 0[ suh that y = F (n; '01; :::; '0n) os � � sin �. In otherwords, y = F (n+ 1; '01; :::; '0n; �), and F reahes y.If y 2 [0; 1℄, one an use the same argument, using Lemma 5.12 instead of Lemma5.11.Assume now that y � 0, and onsider n 2 IN , �1,...,�n in ℄� �0; �0[nf0g, suh that�y = F (n; �1; :::; �n). One an hek, using Lemma 5.12, thaty = F (m0 + n;  01 ; :::;  0m0 ;��1; :::;��n)(5.35)and F reahes y.Step 2. Let now y 2 IR be �xed, and let n 2 IN , �1,...,�n in ℄� �0; �0[nf0g suh thaty = F (n; �1; :::; �n). One an easily hek the existene of � 2℄0; �0[, �0 2℄0; �0[, assmall as we want, suh thaty = (y os�+ sin�) os�0 � sin�0(5.36)



31We hoose � and �0 small enough, in order to obtain �0 < inffj�1j; :::; j�njg, andsuh that y 6= �1= sin�0.Then it is lear that y = F (n+ 2; �1; :::; �n;��; �0)(5.37)We onsider any 0 < t1 < ::: < tn+2 < t, and we setm = nXi=1 Æ(ti;1;�i) + Æ(tn+1;1;��) + Æ(tn+2;1;�0)(5.38)whih belongs toN0. Then, y = St(m), andm(ftg�IR�℄��0; �0[) = 0. Furthermore,hoosing any � 2 D in suh a way that �(�0) 6= 0, but �(��) = �(�1) = ::: =�(�n) = 0, we see thatD�St(m) = ��� [(y os�+ sin�) os(�0 + ��(�0))� sin(�0 + ��(�0))℄���=0= ��(�0) [(y os�+ sin�) sin�0 + os�0℄(5.39)Thus D�St(m) 6= 0, exept if �0 = � artan1=(y os�+ sin�). But if so, y os� +sin� = �1= tan�0, and we dedue from (5.36) thaty = � os�0= tan�0 � sin�0 = �1= sin�0(5.40)whih was supposed to fail. Hene D�St(m) 6= 0, and this onludes the proof.The proof of Theorem 5.4 is omplete.6. Appendix. We give in this annex an extended version of Gronwall's lemma.Lemma 6.1. Let f be a positive �adl�ag funtion on [0; T ℄. Assume that for somea � 0, b � 0,  � 0, and some 0 � t1 < t2 < ::: < tn � T ,f(t) � a+ b Z t0 f(s)ds+  nXi=1 f(ti�)1ft�tig(6.1)Then there exists a onstant K, depending only b, , n, T , suh thatsup[0;T ℄ f(t) � K � a(6.2)A somewhat more general version of this Lemma an be found in the Appendixof Ethier, Kurtz, [7℄. We however give an idea of the proof.Proof. Thanks to Gronwall's Lemma, it is obvious that for all t 2 [0; t1[,f(t) � a� ebt1 � a� ebT(6.3)Hene f(t1�) � aebT , and thus, for all t 2 [0; t2[,f(t) � (a+ aebT ) + b Z t0 f(s)ds(6.4)
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