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Abstract

Consider the one-dimensional solution X = {X;},c[o,r] of a possibly degen-
erate stochastic differential equation driven by a (non compensated) Poisson
measure. We denote by M a set of deterministic integer-valued measures
associated with the considered Poisson measure. For m € M, we denote
by S(m) = {Se¢(m)}icpo, ) the skeleton associated with X. We assume some
regularity conditions, which allow to define a sort of ”derivative” D.S;(m)
of S¢(m) with respect to m. Then we fix ¢t €]0,7], y € IR, and we prove
that as soon there exists m € M such that Si(m) =y, DSi(m) # 0, and
ASi(m) = 0, the law of X; is bounded below by a nonnegative measure ad-
mitting a continuous density not vanishing at y. In the case where the law
of X; admits a continuous density p:, this means that p:(y) > 0. We finally
apply the described method in order to prove that the solution to a Kac
equation without cutoff does never vanish.
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1. Introduction. Consider the following one-dimensional stochastic differen-
tial equation on [0,7] :

(1.1) X =xz0 + /Ot/oh(Xs_,z)N(ds,dz) + /Otg(Xs)ds

where O is an open subset of IR, N is a Poisson measure on IR x O with intensity
measure v(ds,dz) = p(z)dsdz. The C' function ¢ : O — IR' is supposed to be
strictly positive.



The problem we study in the present paper is the following : at which points
y € IR is the law of X; (for some fixed ¢ > 0) bounded below by a measure
admitting a continuous density 0 satisfying 6(y) > 0 7 In other words, if £(X})
admits a continuous density p, we would like to characterize the set {p; > 0}.

In [9], a partial answer is given in the more general case where the Poisson

measure is compensated : under a strong non-degeneracy assumption, the law of
X is bounded below by a measure admitting a continuous strictly positive density
on IR. This result is not optimal. First, it allows to consider almost only the case
where X has infinite variations : the non-degeneracy assumption is very strong.
Furthermore, we obviously can not, with such a method, study the case where X;
is increasing, or a.s. nonnegative : either the density is positive everywhere, or the
method used in [9] fails.
This method was adapted from a work of Bally, Pardoux, [2], who were dealing
with the strict positivity of the density of Wiener functionnals, and from the work
of Bichteler, Gravereaux, Jacod, [4], who were interested in the stochastic calculus
of variations for Poisson functionals.

We now would like to transpose to the Poisson context the ideas of Ben Arous,
Léandre, [3], see also Aida, Kusuoka, Stroock, [1], and Millet, Sanz, [19]. Consider-
ing the solution Y; of a Gaussian stochastic differential equation, they characterize
the set of the points of strictly positive density of Y; by using the usual tools of
support theorems. Indeed, they consider the associated ”skeleton” S;(h), for h in
an appropriate Cameron-Martin space. Then, instead of ”differentiating” Y;(w)
with respect to w, they ”differentiate” S;(h) with respect to h. Then they just have
to deal with deterministic objects : they prove that the density p; of Y; does not
vanish at y € IR if and only if there exists h such that y = S¢(h) and -2-S(h) # 0.
We will see that in the Poisson context, the transposed method is quite convincing,
since it drives to natural assumptions, and no non-degeneracy condition is needed.
We will use the Malliavin calculus for jump processes developped by Bichteler,
Gravereaux, Jacod, [5] and [4], and the main ideas of Simon, [22], who deals with
support theorems for jump processes (see also [12]).

We consider here processes with finite variations for two reasons : firstly, it drives
to easier computations, and secondly, the case with infinite variations is often
contained in [9].

Let us mention that to our knowledge, almost all the works about lowerbounds

of the density for Poisson functionals concern asymptotically small time : see
Léandre, [17], Ishikawa, [14], and Picard, [20].
The only known result is that of Léandre, [18], who deals with the simpler case
where the process X can be written as the sum of its jumps. He also assumes
a non-degeneracy condition, which implies that the law of X; admits a smooth
density. However, our method follows the same scheme.

The main motivation of this work is the study of spatially homogeneous Boltz-
mann equations. Tanaka, [23], showed an ingenious way to relate the solution f(¢,v)



of a Boltzmann equation to the solution V; of a Poisson driven (non classical)
S.D.E. : the law of V; is given by f(t,v)dv. Using this approach and the Malliavin
calculus for jump processes, Graham and Méléard, [13], have recently proved some
existence and regularity results for the solution of a Kac equation, which is a
one-dimensional ”caricature” of the Boltzmann equation. These results have been
extended to the 2-dimensional case in [8].

Analysts and theoritical physicists are interested in the strict positivity of f. In
particular, it allows them to deal "rigorously” with the entropy of f, and it seems
to be usefull for proving the convergence to equilibrium. Pulvirenti and Wennberg
have proved in [21] a Maxwellian lowerbound for f, by using analytic methods,
under a cutoff assumption corresponding to the case where the process V; has a
finite number of jumps a.s. But this assumption is not physically reasonnable, and
the method used in [21] breaks down in the non cutoff case. We have applied, in
[10], [11], the method of [9], in order to prove that when V; has infinite variations,
f does never vanish. Thus a case is still open : what does happen when V; has
finite variations, but an infinite number of jumps ? The present method will apply.

This paper is organized as follows. In Section 2, we state our assumptions and
main result, and we deal with remarks and examples of applications. In Section
3, we introduce some notations and definitions. Then we state a ”support type”
proposition, and we prove our main result. The ”support type” proposition is proved
in Section 4. In Section 5, we use the described method, in order to prove the strict
positivity of the solution to a Kac equation without cutoff. Finally, a ” jump” version
of Gronwall’s Lemma is stated and proved in the Appendix.

2. Statement of the main result. First of all, let us state our hypothesis.

Assumption (H) : the function g is C® on IR, and its derivatives of order

1 to 3 are bounded. The function h(z, z) is of class C* on IR x O. The

partial derivatives h;ﬁtqq) (with n+¢ < 3) are bounded as soon as ¢ > 1,

and there exists a function n € L'(0, p(2)dz) such that

(2.1) B0, 2)] + |hi (2, 2)| + |hiy (@, 2)] + i (2, 2)| < (2)

Under (H), Eq. (1.1) clearly admits a unique solution X = {X;},c[0,77, adapted,
belonging a.s. to the set of cadlag functions IDy = ID([0, T], IR), and satisfying

(2.2) E (sup |Xt|> <00

(0,77

We now would like to build a skeleton associated with Eq. (1.1), by following
the ideas of Simon, [22]. By ”skeleton”, we mean a family {S (m)}mea of solutions
to ordinary differential equations with jumps, obtained by replacing the Poisson
random measure N by deterministic integer-valued measures m € M in Eq. (1.1).
This way, we will obtain a rigorous version of the following assertion : let ¢ > 0 and
y € IR be fixed ;



there exists w € Q such that Xi(w) =y

(2:3) if and only i f there exists m € M such that Si(m) =y

This will allow us to know where the law of X; (for ¢ fixed) may be bounded
below.

We first consider an increasing sequence of open subsets O, C O, such that
Up>10, = O and such that for each p, fop @(z)dz < oo. (If [, ¢(z)dz < oo, then
we simply set O, = O). For each p, we consider the set of deterministic integer-
valued measures

(2.4) M, = {26(ti7zi) /n EN,0<t1 <..<t,<T, z € Op}
i=1
with the convention 2(1) =0, and we set

(2.5) M =U,M,

For each m = Y"1, O(t:,25) € M, we denote by S;(m) the unique solution of the
following deterministic differential equation on [0,7] :

&mw:mﬁflﬁ@JMmemm+AE@mmw

(2.6) =19+ Z h(S¢,—(m), zi) 1>,y + /0 g(Ss(m))ds

Under (H), one can prove that this equation admits a unique solution belonging to
IDr, by applying standard arguments on each time interval [0, t1], [t1, t2], .., [tn, T]-

In order to deal with the density of X;, we have to introduce a sort of derivative
of S¢(m) with respect to m. This will replace the usual ”derivative” of X;(w) with
respect to w (see [5], [4], [9],...). To this aim, we introduce some ”directions” in
which we will be able to ”perturbe” S;(m), and then to differentiate the obtained
expression.

NOTATION 2.1. 9O denotes the boundary of O in IR = IR U {—o0, +00}.

DEFINITION 2.2.

1. Let a(z) be a C! positive function on O, going to 0 as z tends to O, and such
that |a'| < 1. Then the following functions are well-defined on O :

ba(2) = —— x sup{lg'(W)| ; |w — 2| < |a(2)]}

o(2)

(2.7) €a(2) = [/ (2)] + 3|a(2)|a(2)



We say that a belongs to the class D if for some contant ¢ < 1,
(28) ol +& € L'(0,p(2)dz) N L¥(0,¢(2)dz) 5 fal2) <c

2. If a € D, we set, for each X € [—1,1],
(2.9) W) =2+ Aa(2)

One easily deduces from the supposed properties that for all A € [—1,1], the
map z — yA(2) is an increasing bijection from O into itself. This allows us to
define, for each m € M, the new integer-valued measure v)(m) € M by

T
(2.10) A (m)(A) = / /O 145,72 (2))m(ds, dz)

n

In other words, if m =7, 04, ..y, then va(m) =31 | Ots 2 (20)) -

We will see in the next section (see Proposition 3.4) that under (H), for all
m € M, all @ € D, and all t > 0, the map A — S;(y2(m)) is twice differentiable
on [—1,1], thanks to (H). In particular, D,S:(m) = %St(vg‘(m))|)\:0 satisfies the
linear deterministic equation :

DC,S,g(m):/0 /Oh;(S’s,(m),z)DaSs,(m)m(ds,dz)+/0 g'(Ss(m))DySs(m)ds

(2.11) + /0 /O 1. (Ss_(m), 2)a(z)m(ds, dz)

We now can state our main result.

THEOREM 2.3.  Assume (H), and let ty €]0,T], yo € IR be fized. Assume that
there exists mg € M such that, for some a € D,

(2.12) Yo = Sto(mo) 3 mo({te} x O) =0 ;  DaSi,(mo) # 0

Then the law of Xy, is bounded below by a nonnegative measure admitting a contin-
uous density 0y, (y) on IR, satisfying 0,,(yo) > 0.

In the case where L(Xy,) admits a continuous density pe,, this means that py, (yo) >
0.

Let us comment this result. First notice that, for o > 0 fixed, the only points
y which may be some points of positive density for X;, are those y which belong
to the interior of the support of the law of X;,. We will prove (see Proposition
(3.5) that the support of the law of X is the closure, in Dy endowed with the
Skorokhod topology, of the set {S.(m) , m € M}. But we will only deduce that
the support of the law of X, contains {Si(m) , m € M, m({to} x O) = 0}.
This comes from the fact that the application ¢y — x(to), from D7 into IR, is not
continuous on D, except at the points € ID7 not jumping at tyo. The condition
m({to} x O) = 0 implies that AS;, (m) = 0. This explains the two first conditions
in (2.12).
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Roughly speaking, the last condition in (2.12) implies the existence some € > 0 and
of a neighborhood V of mg in M such that the map m + S; (m) is a submersion
from V into [yo —¢€, yo + €]. More and more heuristically, in view of (2.3) this implies
that w — Xy, (w) is a local submersion into [yo — €,yo + €]. Hence, for all n < e,
the quantity P(|X:, — yo| < 1) will be (at least) of order n, which implies that
the density of X, at yo, obtained as the limit of %P(|Xt0 —yo| < 1), is strictly
positive.

Let us now deal with remarks which might allow to apply easily Theorem 2.3.

REMARK 2.4.  Let tg > 0 be fized, and let Ja,b[C IR (a and b may be infinite).
Assume that for each yo €]a, b, the assumptions of Theorem 2.3 are satisfied. Then
the law of Xy, is bounded below by nonnegative measure admitting a continuous
density 0:,(y) on IR, never vanishing on ]a, b|.

PROOF. Let us write Ja,b[= U,K,, where K, is an increasing sequence of
compact subsets of ]a,b[. Then it is not hard to deduce from Theorem 2.3 that
for each m, there exists a constant ¢, > 0 such that £(Xy,)(dy) > enlk, (y)dy.
The sequence ¢, may be chosen decreasing to 0. Then one can build a continuous
function 0y, on IR, such that for y € K,,/Kp_1, 0t,(y) € [cnt1,¢n], and B4, (y) =0
for y outside of ]a,b[. Then L(Xy,)(dy) > 6:,(y)dy, and the Remark is proved. O

The second remark shows a simple way to choose the ”directions” a € D.

REMARK 2.5. Let & be a C' function on O, such that supp & C U™, [a;,bi],
where [a;,b;] are disjoint compact subsets of O. Then there exists a constant € > 0
such that ea belongs to D.

The last remark deals with an explicit computation of D,S¢(m), and the proof is
contained in Jacod, [15], Jacod, Shiryaev, [16] (who consider much more complicated
equations).

REMARK 2.6.  Let m = Y., 6(1,..,) € M. Consider the following linear (de-
terministic) equation :

Ai(m) = 1—}—/0 /Oh;(Ss_(m),z)AS_(m)m(ds,dz)+/0 g'(Ss(m))Ags(m)ds

Then

n

(2.13) Ay(m) =exp (/0 g'(SS(m))ds> X H (L4 hl(Se,—(m), zi) Lit>ey)

i=1
Assume now that for all i € {1,...,n}, 1 4+ h,(St,—(m), z;) # 0. Then A(m) does
never vanish, and the solution of (2.11) can be written as :

_ ' h.(Ss—(m), 2)
(2.14) D,Si(m) = A,g(m)/0 /O A, () (1 % 7 (5o (m)’z))a(z)m(ds,dz)




In particular, if for some i € {1,...,n},
h.(St,—(m),z;) #0 and Vj#i, z; #2

then there exists o € D such that Do Si(m) # 0 for all t > t;. ( It suffices to choose
any a € D such that a(z;) # 0, but a(z;) =0 for all j #i).

We now give some examples of applications.

EXAMPLE 1 : We consider the following S.D.E.

(2.15) X =xo + /Ot /01 a(Xs—)zN(ds,dz)

with ¢(2) = 27, for some 8 > —2, on O =]0,1[. If a is C} on IR, (H) is clearly met.
Assume now that for some ag > 0, a(x) > ag for all z. Then for all ¢ > 0, the law
of X is bounded below by a positive measure admitting a continuous density 6; on
IR, such that 6; does never vanish on ]zg, +00[. This result is optimal, since for all
t >0, X; > xp as.

Indeed, let to > 0 and yo > zo. Then it is clear, since a(xz) > ap > 0 and since
O =)0, 1[, that there exists mg = >, (¢;,2:), such that 0 < #; < ... < t, < to, such
that the z; are distincts, and such that yo = S, (mo). Of course, m({tp} x O) = 0.
We thus just have to check that there exists & € D such that D,S;,(mo) # 0.
Since the z; are distincts, there exists e > 0 such that for all ¢ € {1,...,n — 1},
zi ¢)zn — €, 2y + €[, and such that |z, — €, z,, + €[C]0, 1[. We choose o € D in such a
way that a(z,) # 0, and supp a C [z, — €/2, z,, + €/2]. This way,

a2 0m0)) = 20 + 3 alS (m0)n(z0) + 0(Stu—(1m0) X (20 + Aa(zn)
which implies that
(2.16) Dy, Sty (mo) = a(St, —(mo))a(zn) # 0

Remark 2.4 allows to conclude.

EXAMPLE 2 : We consider the case of the following S.D.E.

(2.17) X =z + /Ot Xsds + /Ot/oa(Xs_)n(z)N(ds,dz)

h(z,z) = a(z)n(z) is supposed to be nonnegative and to satisfy (H). We assume
that a(zo) > 0, that " does never vanish, and that {n(z); z € O} =]0, +oc[. Then
for each t > 0, the law of X; is bounded below by a nonnegative measure admitting
a continuous density 6; on IR, never vanishing on ]zge’, +oo[. This result is optimal,
since for all t > 0, X; > xpel a.s.

Let to > 0 and yo > zge’ be fixed. One can easily check that if m = O(t1,2) € M,
with ¢; < tg, then

(2.18) Sty (M) = mpe’® + a(zge't)n(zy)efo 1



8

Since a(zg) > 0, since a is continuous, we can choose t; €]0,ty[ small enough, in
order to obtain that a(zge’’) > 0. We thus can choose z; € O such that n(z1) =
(yo — zoe'®)/(a(zoe' e~ ). Then, if mo = 4, 2,), Sto(Mo) = yo and mg({te} X
0O) = 0. Furthermore, one can easily check that if & € D, with a(z;) # 0,

(2.19) Sto (’yg‘(mo)) = 20e'® 4 a(zoe!)n(z1 + Aa(z;))eo ™0
and thus
(2.20) Dy Sty (mo) = a(zoe ey (21)a(z1) #0

Remark 2.4 allows to conclude.

Of course, in every of these particular cases, there may exist simpler arguments,
but Theorem 2.3 unifies the proofs.

3. Framework. First of all, we introduce some notations.
NOTATION 3.1. Let a belong to D, and A € [—1,1]. Recall that the map v was

defined by (2.10). For each w € ), we define the new integer-valued random measure
Ya(N(w)) on [0,T] x O by

(31) AN = [ [ 142N
We denote by T.) : Q0+ Q) the shift defined (and entirely defined) by NoT = v)(N).
We will use the following criterion of positivity.
THEOREM 3.2. Let X be a real-valued random variable on Q and let yo € IR.
Assume that for some a of class D, the map X\ — X o T is a.s. twice differentiable

on [—1,1]. Assume that there exists ¢ > 0, 6 > 0, and k < oo, such that for all
r €]0,1],

(3.2) P(A(r)) >0

where

A(T):{|X_yo|<’°a HX T2 ‘Zc, sup [|%Xo72|+‘33—;Xo7';] gk}
A=0 IAI<6

Then there exists a continuous function 6,,(.) : IR = IRY such that 6, (yo) > 0 and
such that for all f € C}f (IR),

(3.4) B(f(X)) > /R F ()80 (v)dy

This result is a particular case of Theorem 3.3 in [9]. Let us however give an
idea of the proof.
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PROOF. Thanks to the definition of the class D, one can check, using the Girsanov
Theorem for random measures, see Jacod, Shiryaev, [16], the existence, for each A,
each a € D, of a Doléans-Dade martingale G > 0 such that (G}..P) o (72‘)_1 =P.
Furthermore, G is a.s. continuous in A. Let f > 0 be a continuous function on IR.
Then

1 1
33 BUC) =BG oTNEH 2 5F ([ F(X o TG
Using a ”uniform version” of the local inverse Theorem, one can check the existence
of > 0, R > 0 (as small as we want) such that for each w € A(r), the map
A = T)Mw) is a diffeomorphism from V(w) C] — R, R[ into ]X o T2(w) — 3, X o

T (w) + B[=]X (w) — B, X (w) — B[. We choose r > 0 in such a way that r < 3. This
way, using the substitution y = X o 7} (w) for each w € A(r), we obtain

(3.6) B(J(X)) 2 3F ( | sexe EA)G%dxlAm)

L[ xes GIXT) W)
3" </xa W) X e T o T i) 1A > [ 1w

where, if 1) is a continuous function on IR such that 1p ) < ¢ < 1jg 51,

¥ {1 . GEFXOTC;)_ (y) } . ‘|
YIX =D\ N X e ) | A

It is clear that 6(yo) > 0, and one can prove that 6 is continuous by using the
Lebesgue Theorem. O

[\)

(B7)  H) = E

Our aim is of course to apply this result to the solution X; of Eq (1.1). We thus
have to check that for all a € D, all t € [0,T], the map A = X; o T, is sufficiently
regular.

PROPOSITION 3.3.  Assume (H). Let X be the solution of Eq. (1.1), and let

a € D. Then for allt € [0,T], the map X\ — XV® = X, 0T is a.s twice differentiable

on [—1,1]. For each X fized, the processes X;"*, ;’AX’\ " and 38)\2 X belong a.s. to

]DT, and satisfy the following S.D.E.s :
t
(3.8) XM —a:o—l—/ /h XM AM2)N (ds,dz)—l—/ g(X2%)ds
0
t
foxd = [ [ e e Vs, + [ o (6 fexieds

(3.9) //h’ (X2 A2 (2))a(z)N(ds, dz)
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t
B XM = //h’ (X272 (2) 25 X "N (ds, dz) + /Og'()(;ﬂ)w)(A *ds
2
(3.10) / / BE(XDY ) (2)) (%Xjf) N(ds, dz)
t 2
+ [ g (e ds
0
+2/ / WL (X%, 70 (2)) & X % a(z) N (ds, dz)

//h” (X2, 42 (2))a?(2)N (ds, dz)

This proposition is quite easy to check using the positivity of the measure N. If
N is a finite Poisson measure, i.e. if [, p(z)dz < oo, then one can prove, using (H),
Lemma 6.1 and equations (3 8), (3.9), (3 10), the existence of a.s. finite random
variables A(w) and B(w) such that for all t € [0,T], all A, A+ p € [-1,1] :

(3.11) ‘Xt”“’“ — XM p L X0 < A X

(3.12) ‘BX)"H‘Q——X}‘C”—MB/\QX}‘C“ < B x 2

which allows to conclude. If N is infinite, one has to approximate N with a sequence
of finite Poisson measures, and to prove the convergences. See [9] for a similar (bu
more difficult) problem.

We also have to differentiate the skeleton.
PROPOSITION 3.4.  Assume (H). Let m € M and a € D be fized. Then for
all t € [0,T], the map A — S; (fya( )) is twice diﬁerentiable on [—1,1]. For each A

fized, the functions S;(v)(m)), ZSi(v)(m)), and 3= St('yé‘(m)) belong to D, and
satisfy the following equations :

Si(v2(m)) = o + / [ 1S (G m) (s, )+ /Otg<ss(vé<m>>>ds

2.5,y (m / / B (Sam (72 (1)), 72 (2)) 2 S (72 () (s, dz)

+ / 0 (Sa(72 (1)) & Sa— (72 () )ds
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(3.14) / [ S 2m). Ao m(ds, a2
Fesi2m) = [ t L P51 m). 72(20) B S () (s )
- g (Sy (22 m))) L S (12 m)) s
b RS QA (S () s, a2
" / (S (32 m) (S (2 m))” ds
2 / | RS- 02 m). 22 S (A m(ds, )

(3.15) / / W, (1)), 72 (2))a? (2)m(ds, dz)

The proof of this proposition is quite easy : it suffices to use the definition of the
differentiability, and to show inequalities as (3.11) and (3.12), by using (H) and
Lemma 6.1.

As a final tool, we recall the definition of the Skorokhod distance on IDr. First,
the set of the changes of times is defined by :

A ={y(t) e C([0,T],[0,T]) / ¥(0) =0, »(T) =T, 1 is strictly increasing}
The norm on A is defined by :

(3.16) Il = sup
0<s<t<T

i (2 —ws))‘

t—s
Finally, if z and y belong to IDr, the distance between x and y is given by :

(3.17) 6(z,y) = inf ¢ sup |z(t) —y o ()] + |||
YEA | [0,T]
Our main result will be proved as a consequence of Theorem 3.2 and of the
”support type” proposition below, that will be checked in the next section.

PROPOSITION 3.5. Letm € M and o € D be fized. For all € > 0, the set

g, (e) = { sup 8 (X1, S(32(m))) < e; sup 6 (F XN, LS(7A(m))) < e
AI<1 <1
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(3.18) sup 8 (Z X0, 22 S(32(m))) < e |
A<t

has a strictly positive probability.

Assuming for a moment that this proposition holds, we prove our main result.
In order to apply Theorem 3.2, we need two lemmas. The first one is probably a
well-known fact about the Skorokhod distance, and can be easily proved.

LEMMA 3.6.
1. Forallz,y in D7, || 2 |l <|| ¥ |loo +6(z, ).

2. Lety € IDy be fized. Assume that for someto € [0,T], Ay(to) = 0. Then for all
€ > 0, there exists r(e) > 0 such that for all x € IDr satisfying 6(x,y) < r(e),
the following inequality holds :

(3.19) |z(to) — y(to)| < €
The second one deals with a technical property of the skeleton.

LeMMA 3.7.  Assume (H). For allm e M, a € D,

(3.20) sup {|St (am)| + |35 Se(va (m)) | + ‘avst (va(m ))‘} <0
IAI<1, 0<t<T

ProoF. We will only prove that sup, , | 2S¢ (v (m))| < oo, because the other
cases can be checked similarly. We thus use equation (3.14), an we write m as
> (¢;,2)- Our aim is to apply Lemma 6.1 for each A.

First of all, notice that thanks to (H) and (2.9), for all z € IR, z € O, all |A] <1,

(3:21) [, (75 (2))| < By (2, 2)] + |72 (2) = 2% || B oo < K {n(2) + |a(2)[}
Hence, for all i € {1,...,n},

(3.22) (2,70 (i) < K sup {n(zx) + |e(z)|} < C
ke{l,...,n}
Thus

|55, Am)] < 3 [ &Su— (20| Lty
=1
g ||oo/ | 2-Sa(v2 ()| ds + 1 | B, [looll @ flac

(3.23) <K1+K2/|m (vA(m |ds+K32|8AStl (A (m))| Liest,y

i=1
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where the constants K; do not depend on A. Applying lemma 6.1, we deduce the
existence of a constant C', not depending on A, such that

(3.24) sup | £55:(va(m))| < C
[0,T]
This concludes the proof. O
We finally prove our main result.

PROOF OF THEOREM 2.3. We consider to €]0,T], mg € M, and yg = S, (mp).
We assume that mo({to} x O) = 0. We know, by assumption, that

(3.25) |{ msto Yo (m |>\ 0}| >0
for some a € D, which we now consider. Thanks to Lemma 3.7,
2
ko = sup {|St(72(m0))| + |C%St(72(m0))| + ‘%St(ﬁ(mo))‘} < oo
IAI<1, 0<¢<T
(3.26)

Our aim is to prove that for all » > 0, there exists € > 0 such that

< 2;
:0}‘_60/ )

A,
| Xto — w0l <73 H,‘%\Xtoa N
(3.27) Q% (&) C

mo

Ao
+ ‘E)/\Z Xto

SUP|\|<1 H 3)‘Xt0’a ] <k +1

where Q0 (e) is defined in Proposition 3.5. This will suffice, thanks to Theorem 3.2
and Proposition 3.5.

Let us now check (3.27). Let w € Q5 (), for some € > 0. Since mg({to} X O) = 0, it
is clear from equatlons (3.13) and (3.14) that the cadlag functions ¢ — Si(mg) and
t— St('ya mg) |>\ are continuous at to. We thus deduce from Lemma 3.6-2
and the fact that w € Q“ o, (€) the existence of a decreasing to 0 function ((e), such
that

(3.28) X1, = ol = | Xty — Sto(mo)| = | X™ = Sty (73 (o)) < (e)
and

(3290 |{&xa

)\:0}‘ |{ BAStO 7a mo) |A 0}| ) > co —((e)

On the other hand, thanks to Lemma 3.6-1, since w € Q, (€), it is clear that for
all A <1,

sup [|Zx0 |+ | x| < sup [[&SiGAm)] + | &= Siadm))]] + 2
te[0,T] te[0,T]
(3.30) < ko + 2¢

We now choose € €]0,1/2] small enough, in order that ((e) < r A (cp/2). This way,
(3.27) is clearly satisfied, and this concludes the proof. O



14

4. Proof of the ”support type” proposition. Our aim in this section is to
prove Proposition 3.5. Thus, in the whole sequel, p, m = 2?21 O(t:,21) € My, and
a € D are fixed, and (H) is assumed. For simplicity, we denote v* = v (see (2.9)),
X} = X, and S} = Si(y*(m)). All the constants C' and K below will depend
only on the functions g and h, on m, «, and T'.

We set tg =0, t,41 =T, and

G = il el s o=l d(e,00)

We also set N, = N|[0,T]><Op7 which is a finite Poisson measure, by 0 < T} < T <
.. < T, < T its successive times of jump, and by Z1, Zs, ..., Z,, € O, the size of its
jumps. In other words,

(4.2) Z O(T(w), Z: (w))

Finally, we denote by XP*, 2 XP* and %X”’A the solutions of equations (3.8),
(3.9), and (3.10), where N has been replaced by N,, X* by X*7, 2 X* by 2 X P,
and 25 X* by 25 XM,

We begin with a lemma.

LeMMA 4.1.  Let a €]0,(/10[, b €]0,do/2[, and ¢ > 0 be fized. Consider the
sets

(4.3) Ti(a,b)={weQ Ju=n,andVi, t; —a <T; <t |2: — Zi| < b}

(44)  Ta(0) ={w€9 // /0/0 2) + Jalz )|)N(ds,dz)§c}

Then the set 'y (a,b) NTa(c) has a strictly positive probability.

PROOF. First of all, notice that 'y (a, b) € o(NN,) is clearly independent of I'z(¢) €
a(Nljo,11x(0/0,))- On the other hand, it is well-known that T'y(a,b) has a strictly
positive probability. We thus just have to check that P(T'2(c)) > 0.

Consider, for ¢ > p, the following random variables :

71 = / Lo o, )+t N )

(4.5) Zy —/ /o/o z) + |a(2)|) N(ds,dz)

We see that Z, = Z]+Z, for any ¢. For all ¢, P(Z] = 0) > 0, because N0 77x0,/0,
is a finite Poisson measure. When ¢ goes to infinity, Z, goes to 0 in L' (and thus
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in probability) because n + |a| € L' (0, ¢(z)dz). But clearly, Z{ is independent of
Z, for all ¢ > p. Hence for all ¢,

(4.6) P(T1(0)) = P(Z, < ¢) > P(Z1 = 0)P(Z, < o)

Choosing ¢ large enough, we obtain P(Z, < ¢) > 0, and the lemma follows. O

The following Lemma, proves Proposition 3.5 in the case where N is a finite
Poisson measure.

LEMMA 4.2.  For all € > 0, there ezists a. €]0,/10[ and b, €]0,do/2[ such
that

(47) Fl(ae,be) C Al(E)
where
Ai(e) = { sup & (XPA, 9N <e; sup § (X7, L 5Y) <e;
AI<1 [A<1
22 xpA 92 gA
(4.8) |§\1\1§pl§ (3)\2X ) 3)\25 )) <e }

PROOF. Let a €]0,p/10[ and b €]0, do/2[ be fixed. We consider v €]2a, (o/5[, to
be chosen later. The element w € T’y (a, b) is now fixed.
First of all, we consider the polygonal change of time ¢ € A defined by

$(0) =0,
(4.9) ¥(T)=T

Simple computations show that

(4.10) sup [¢(t) —t| <a ;5 |[[[Y[ll < 2a/y
[0,T]
T
(4.11) and / Liy(s)zsrds < 2ny = Cy
0

This change of time will allow us to prove the lemma. Indeed, we will check the
existence of a constant K < oo, not depending on a, b, on w € T'1(a,b) nor on
A € [-1,1], such that

(4.12) sup ‘Xg“ - Sg(t)‘ < K(b+7)
te[0,T]
9 A 9
(4.13) tes[lépT] aXiT = msﬁa)‘ <K(®+7)
2 2
(4.14) sup [ XPA = 28| < KB+ )

te[0,T]
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This way, we will obtain, for all w € 'y (a, b),

sup (8 (X7, 8%) +6 (F X7, 55 +6 (GaXr, 5 SY)| <3K(b+7) +6a/y
A<t

Choosing b < (¢/3K) A (do/2), v < (¢/3K) A ((o/5), and a. < (ey/18) A ({p/10) A
(7v/2), we will obtain (4.7). We thus just have to prove (4.12), (4.13), and (4.14).
Since the three proofs are similar, we will only check (4.13). We thus assume that
(4.12) is proved. Then we set A} = E%ti’)‘ — 2.5}, A direct computation, using
equations (3.9), (3.14), and the fact that 1y >ty = lg>7), shows that for all
w € T'i(a,b),

A1 < D IR P (Z0)] x| & XY — & SY | Lusmy

i=1

n
+D_ |xSi-| x

i=1

By (XBY 2N (20) = By (SN (Z0)] % Loy

+ D3t | x (B (S - 7N (Z0) = B (S 7 (=) X Lgesmy

i=1

n

2

i=1

+Z|a (z:)]

HLXRA, N2 X Ja(2) - alz)] % Lty

X [BLOXEY 22 (20) = BLSA- 2 (20)] % Loy

+> " lalz)] x [BL(SE_, 7 (Z0) = RL(Sh M 2)| % Ly

w(t)
+/ ' (S2)] x | 2&52| ds
t

t

+
0

§(S30) &S — 9'(S)) 552 ds
t

+ [l x| Sh - s
0

t
el
+/0 S

(4.15) <A +B)+..+ T}

x g (S}s) — ¢'(X2)|ds
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We study these terms one by one. First notice that thanks to (H), since a belongs
to D and w € Ty (a,b), for all z in IR, all i in {1,...,n},

|1y (2,9 (Z)] < IRz, 20) 1+ | By [loo 177 (Z0) = =il

(4.16) < supn(z) + K(1Zi— 2+ |l a o) < K + K(b+K) < K
k
This way, we obtain, since t; = ¥(T;),
(4.17) AN S KA} [ X 1oty
i=1

Using Lemma 3.7, we know that for some ko < 0o,

(4.18) sup 1S + | 552 + | B 2] < ho

Furthermore, one can check as previously (see (4.16)) that for all z in IR,, all 7 in
{1,...,n},

(4.19) |hige (2,7 (Z0)| < K

Since t; = ¢(T;), we deduce that

(4.20) B} < koK Y |XEX =830y | X 1Ty
i=1

Using finally (4.12), we obtain

(4.21) B} <K(b+7)

It is clear that

n
Y < Fo W2, oo 3= 11A(Z1) = 2 (20)
i=1

(4.22) <KDY {I1Zi—zil+ | & oo 1Zi — 2]} < KD
i=1
and that
(4.23) D} <P, Moo D Il @ oo 1Zi = 2i] < KD
i=1

Using again (4.12), we see that
n
A
(420) B} <llalloell By o 30 [XBY = S| S K(b+7)
i=1
One can also check that

(4.25) F} <l allsoll B2 lloo D PM(Zs) =7 (20)] < K
i=1
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Using (4.18) and (4.10), we obtain

(4.26) G <l g lloe kolto(t) —t| < Ka
Due to (4.18) and (4.11), we see that

(4.27) Hy <2 ¢ [l ko /OT Lig(syzsyds < Ky

It is immediate that

(1.25) Rl I [ 1825

We finally obtain, thanks to (4.12) and (4.18),

(4.29) T < kT |l g" lloo K(b+7) < K(b+7)

We thus have proved, since 2a < v, that

@) AN Kb+ [ ANds + a3 1AY Ly
i=1

where the constants K; do not depend on A € [—1,1] nor on w € I';(a,b). We now
apply Lemma 6.1, which yields the existence of a constant Ky, such that

(4.31) sup |A}| < Ky(b+7)
[0,T)]
Hence, for all w € Ty (a,b), all A € [—1,1], (4.13) holds, and the lemma is proved. (I

Our aim is now to establish the following result, which will allow to conclude the
proof of Proposition 3.5.

LEMMA 4.3.  For all € > 0, there exists c. > 0 such that for all a €]0,(y/10],
all b €]0,do /2],

(4.32) Ty (a,b) NTa(ce) C Aa(e)
where
Aso(e) = { sup || X* = X7 o< e sup || XN = ZXPN (o< e
[AI<1 A<1
2 2
(4.33) sup [ 355X = X0 oo € }

In order to prove this result, we have to begin with a technical lemma.

LEMMA 4.4.  There exists Ko < 0o and c¢o > 0 such that for all a €]0,(o/10],
all b €]0,do/2[, and all ¢ < ¢y,

(4.34) Ty(a,b) NTs(c) C { sup [|X2] + |4 X2 + | 2 X2 gKO}
[A<1,0<t<T
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PROOF. A direct computation, using equation (3.8), shows that for all A € [-1,1],
all w € T'y(a,b) NTy(c),

X2 < Jzol + ) I(XR Y (Z0)) 1 us Ty

i=1

t t
(4.35) w [ e eI s ) + [ 1g0e)lds

o Jojo, 0
Using (H), and the fact that w € T';(a, b), one easily checks that for all ¢ € {1,...,n},
(4.36) [W(X7,_ANZi)| < K(L+]X3,_))
It is also clear, thanks to (H) and (2.9), that

WX, 7 (2)] < WX, 2)] + IvA(2) — 2| sup [hL (X, w)]

(4.37) < K1+ |X2 () + a(2)

and

(4.38) (X)) < K(1+ X2 ])

Hence
n t t

XN <K+ KS XD [lgory + K / X)|ds + K / (n(2) + |al2) )N (ds, dz)
i=1 0 o JO/O,

t
LK sup X2 x / / (1(2) + (=) N (ds, dz)
[0,] o Jo/0O,

But, since the left hand side member is increasing, and since w € T's(c), we
deduce that if ¢ <1,

n t
(4.39) sup | X} < K + KZ |X1)\17|1{t2T¢} + K/ |XXds + Kec x sup | X2
[0,] P} 0 [0,¢]

Thus, if ¢} = (1/2K) A 1, we deduce that as soon as ¢ < ¢},
n t
(4.40) 25up | X < K+ K Y [X3_[lpsry + K/ | X2 ds
[0,t] i1 B 0

Lemma 6.1 allows to conclude the existence of a constant K}, not depending on
a €]0,¢o/10[, b €]0,do/2[, ¢ < cb, A € [-1,1] nor on w € T'y(a,b) N Ty(c) such that

(4.41) sup [ X2 < K{
[0, 77
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One can check in the same way the existence of ¢§ > 0 and K3 < oo such that if
c<c, forall A € [-1,1] and all w € Ty (a,b) NT2(c),

(4.42) sup [| 4 X2 +| 2= X2 < K3
[0,T]
Choosing ¢y = ¢ A c3 and Ky = K} + K3 concludes the proof of the lemma. [

We are now able to prove Lemma 4.3.

PrROOF OF LEMMA 4.3. First of all, we consider a €]0,(o/10[, b €]0,do/2[, and
¢ €]0, ¢o[. We work with an element w of 'y (a, b) N T'y(c). We have to check that

(4.43) sup  sup ‘X* XPH ‘<Kc
AE[-1,1] t€[0,T]
(4.44) sup  sup |Z X} — %ti’)“ < Kc
AE[—-1,1] t€[0,T]
(4.45) sup  sup Ba—;X,f‘ ;;Xp’ ‘SKC

\€[—1,1] t€[0,T]

As usual, the proofs of the three inequalities are similar, and we will only check
(4.44). We thus assume that (4.43) holds. From now on, A € [—1,1] is fixed, and we
set V> = B%Xt)‘ - %ti’)‘. One obtains, since w € T'y(a,b) NT'2(c),

n
VA<D & X7 x

i=1

>

¢
+/ / | (X2 M (2)| x | & X2 | N(ds, dz)
o Jojo,

t
+ / 82 |9 (2) — g/ (X2

(00, -y (20) = (XY 7N (Z0)| X Ly

L (XB A (Z; ‘ V2 _| x 1oy

x B, (X3 _,vNZi) — hfz(X%}La’YA(Zi)) X 1>ty

+Z|a

t , R .
+/0 /O/Op |WL(X2, 7™ (2)| x |a(2)| N(ds, dz)
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(4.46) <A +BM .. +G}

Let’s compute. Thanks to Lemma 4.4, using (H), the fact that w € T'y(a,b) N
['s(c), and (4.43), one easily checks that A} < K¢, and that

n
(4.47) B} <KDY |[Va_| x lysty

i=1

For the same reasons, we obtain

(4.48) C}+ D} + F} + G} < Kc
and

t
(4.49) E) <K / [V ds

0
We finally can write, for all w € T';(a,b) NT'y(c), with a < {/10, b < do/2, ¢ < co,

t n
(4.50) V2| §K0+K/ VMds+ K> [V | x sy
0 i=1

where K does not depend on w, A, a, b, nor ¢. Using Lemma (6.1) allows to
conclude that (4.44) holds, and the lemma is proved. O

We finally are able to conclude.

PrROOF OF PROPOSITION 3.5. It is a simple association of the previous lemmas.
Let € > 0 be fixed. Then, thanks to lemmas 4.2 and 4.3,

(4.51) [y (acs2,be2) NTa(ces2) C Ai(e/2) N A2(e/2) C Q7 (€)
Thanks to Lemma 4.1, we deduce that P(Q,(€)) > 0, and the proposition is proved.
|

5. Strict positivity of a solution to a Kac equation. The Kac equation
deals with the density of particles in a gaz, and is a one-dimensional ” caricature” of
the famous spatially homogeneous Boltzmann equation. We denote by f(¢,v) the
density of particles which have the velocity v € IR at the instant ¢ > 0. Then

6 g = [T e = S0 7 00) 860 0,
where
(5.2) v' =vcosh —wv,sinf ; vl =wsinf + v, cosh

are the post-collisional velocities. The ”cross section” 3 is an even and positive
function on [—7,7]\{0} exploding near 0 because of an accumulation of ”grazing
collisions”, but satisfying the physically reasonnable assumption

(5.3) /0 " 028(0)d0 < oo
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We are interested in the strict positivity of the solution to (5.1). In the case with
cutoff, namely when foﬂ B(0)df < oo, the analysts Pulvirenti and Wennberg have
proved in [21] a Maxwellian lowerbound for f. It is also proved in [10] that f
does never vanish if foﬂ 05(8)df = co. We now would like to study the case where
Jo B(0)dO = oo, but [ 08(6)df < oo.

First, we will consider solutions in the following (weak) sense, which is obtained
by using a standard integration by parts.

DEFINITION 5.1.  Let Py be a probability measure on IR that admits a moment
of order 2. A positive function f on]0,4+0o[X IR is a weak solution of Eq. (5.1) with
initial distribution Py if for every test function ¢ € CZ(IR),

/ B(0) £ (t,v)d = / 6(0) Po (dv)
vER veER

TN ——

(5.4) f(s,0)f(s,v.)B(8)ddv.dvds
We now state our assumption.

Assumption (K) :

1. The initial distribution P, admits a moment of order 2, and

JT68(0)d8 < oo.

2. Py isnot a Dirac mass at 0. The cross section splits into 8 = Sy+/51,
where (1 is even and positive on [—m, 7]\{0}, and there exists ky >

0, By €]0, [, and r €]1,2[ such that fo(f) = Eﬁ;q{_gmgd(oy
Following Graham, Méléard, [13], we build the following random elements.
NOTATION 5.2.  We denote by Ny and N two independant Poisson measures

on IRy x [0,1] x [—m, ], with intensity measures :
(5.5) vo(ds,da, df) = Bo(0)dsdadf ; vy (ds,da,dl) = B (0)dsdadl

We will write N = Ng + N1. We consider a real-valued random variable Vy inde-
pendant of Ny and Ny, of which the law is Py. We also assume that our probability
space is the canonical one associated with the independent random elements Vi, Ny,
and Ny :

(0 F AR}, P) = (O, F {F}, P) o (Q°, F° AR}, P & (@, F L {F},P)

We will consider [0,1] as a probability space, denote by da the Lebesgue measure on
[0,1], by Eo and L, the expectation and law on ([0, 1], B([0,1]),da).
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The following results are proved by Desvillettes, Graham, Méléard, [6], Theorem
3.6, and Graham, Méléard, [13], Theorem 1.6 and Corollary 1.8.

THEOREM 5.3.

1. Assume (K)-1. There ezists a cadlig adapted process {Vi(w)} on Q and a
process {Wy(a)} on [0,1] such that

Vi(w) = W(w) + /0 /0 /j [(cos® — 1)V,_(w) — (sin @) W,_ ()]
(5.6) N(w,ds,da, df)

Lo(W)=L(V) and E (sup Vf) < o0
(0,7

The uniqueness in law holds, in the sense that L(V) = Lo (W) is unique.

2. Assume (K). Then for each t > 0, the law of V; admits a density f(t,.) with
respect to the Lebesque measure on IR. The obtained function f is a solution
to the Kac equation (5.1) in the sense of Definition 5.1.

3. Assume furthermore that Py admits some moments of all orders. Then for
each t > 0, the function f(t,v) is of class C*® inv € IR.

The result we will prove in this section is the following.

THEOREM 5.4.  Assume (K), and consider the solution f in the sense of Def-
inition 5.1 of equation (5.1) built in Theorem 5.3. Then there exists a strictly
positive function g(t,v) on ]0,+oo[XIR, continuous in v, such that for all t > 0,
ft,v)dv > g(t,v)dv.

If f(t,v) is continuous in v (for example, if Py admits some moments of all orders),
this means that f(t,v) does never vanish.

In the sequel, we will sketch the proof of this result, by applying the method
described in the previous sections to the process {V;} solution of (5.6) built in
Theorem 5.3-1. We will always work on the finite time interval [0,T], for some
T > 0 fixed, which of course suffices. In a first subsection, we will introduce the
skeleton associated with {V;}, we will define the ”directions” associated with N,
and state an intermediate result, looking like Theorem 2.3. We will sketch the
proof of this result in a second subsection. Finally, we will conclude in the last
subsection, by studying the skeleton.

We give the following lemma that will be frequently used.

LEMMA 5.5.  Assume (K)-1. For all t > 0, supp Py C supp L(V;) =
supp Lo (W).



24

The main idea of the proof is very simple. If N were a finite Poisson measure,
it would be immediate. One thus has to approximate N with a sequence of finite
Poisson measures NP. Then, V; will be close to V; on the set where N? = 0 (of
which the probability is strictly positive), and N —N? will go to 0 in a certain sense.
One concludes by using the independence, for each p, of V5, NP, and N — NP. See
[11], Lemma 1.6 for the rigorous proof of a very similar lemma.

5.1. An intermediate result. First of all, we introduce the skeleton associated
with {V;}. Notice that instead of one random element (in the case of Eq. (1.1)),
we have to deal with three : Vj, Ny, Ny. Inspired by Lemma 5.5 and the form of
equation (5.6), we consider

(5.7) Vo=supp Py ; Mo=U,M5 ; My =U,M}

where

P _ _ - nelN,0<t)1 <..<t,<T,
0 — {m = ;g(ti,’wi,ei) / w; € VO; |91| e]l/p,eo[

n
EIN,0<t1 <..<t,<T
M =2aqg=N Gt winn | " ’ n <
{q 1:21 (ti,w3,0:) /wi € Vo, |0i| € supp ﬂlﬂ]l/l’ﬂf[}

Then, for vg € Vo, m € My, and ¢ € M, we denote by S(vg,m,q) the unique
solution of the deterministic equation :

t e
Sy(v0,m, q) = vo+ / / (S, (v0,m, q)(cos 6 — 1) — wsin 8} (m-+q)(ds, dw, d)
0 RJ—x

(5.8)
We also introduce the following directions in which we will ”differentiate”
S(vo, m, q) with respect to m.

DEFINITION 5.6.

1. Leta be a C! function on [—6q,00]. We say that a belongs to D if |a(8)] < |6]/2,
if a(—80) = a(80) =0, if £(6) < 1/2, and if € € L' (5o(6)d8), where
|(0)]

(5.9) £(0) = |/ (8)] + 3r x 27“+1W

2. If a € D, we set, for each X € [—1,1], y2(0) = 6 + Xa(h), which is an
increasing bijection from | — 6o, 00[\{0} into itself. For any m € M, the new
integer-valued measure y(m) still belongs to M.

REMARK 5.7. If a € D, then the assumptions of Definition 2.2 are satisfied in
the particular case where O =] — 0y,60[/{0}, and ¢(8) = Bo(0).
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PROOF. First, it is clear that a goes to 0 when 6 goes to 90 = {—6y,0,6,}.
Thanks to (5.9), one can check that |a'| < 1/2. Then, for example for 6 €]0, 6],

1

Pa(f) = —— sup |65(0)]
Bo(0) Gecio—|a(®)| o+1a(@)]
< g_r sup rko
ko geo—ja(o)o+late)) 0!
ro" r2rtl
1 < <

(3:10) SE-l@)T < 9
where the last inequality comes from the fact that |a(f)] < |#]/2. Hence,
(5.11) £(8) < [o/(6)] + 3la(®)lr2"1 /6 < £(6)
where £ is defined by (5.9). O

One easily checks that for all vy € Vy, all m € My, all ¢ € M;, and each
t > 0, the map A = S;(vo,72(m),q) is twice differentiable on [—1,1], and that
D,St(vg,m,q) = %St(vg, YA (m),q) |/\:0, satisfies the following linear equation :

t T
DaSe(v9,m, q) = / / DaSe—(v0,m, q)(c0s 8 — 1)(m + g)(ds, duw, d6)
0 RJ—7

t 71'
(5.12) —/ / {Ss—(vo,m, q)sinf + w cos 0} a(z)m(ds, dw, df)
0o JRJ—m

The following result will be proved by following the method described in the
previous sections.

THEOREM 5.8. Lett > 0, andy € IR be fized. Assume that there exists vy € Vg,
m € My, ¢ € M1, and o € D, such that

y=5Si(vo,m,q) ; (m+q)({t} x Rx[-m,7])=0
(5.13) D,St(vg,m,q) #0
Then the law of V; is bounded below by a nonnegative measure admitting a continuous

density not vanishing at y.

5.2. Sketch of the proof of Theorem 5.8. We first give a criterion of strict posi-
tivity. As usual, we define for all A € [-1,1], « € D, w € Q, the perturbed Poisson
measure v, (No). Then we consider the shift 7 on Q defined by

(5.14) VooT) =Vo 3 NooT) =7a(No) ; NioT) =N

In this situation, Theorem 3.2 still holds (this is a particular case of Theorem
2.3 in [10]). Furthermore, one can check (see [10]) that for all ¢ > 0, the map
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t— VM =V, 0 T2 is as. twice differentiable on [—1,1]. The following equations
are satisfied :

t 1 m
vy / / / [(cos Y2 (0) = 1) VM — sin 73(9)Ws_(a)] No(ds, da, df)
0 Jo -
(5.15) / / / cosB—l A _sin W, (a )] Ni(ds,da, df)

v /// cosya () — 1) LV *No(ds, da, df)

t 1 71'
-I-/ / / (cosf — 1) 8%VS)ZQNl(ds,da, df)
0o Jo —m

t 1 T
(5.16) - / / / [sin 2OV + cos 2 (0)Ws— (@)] a(6) No (ds, do db)
0 0 -7
88;2 Ve / / / (cosva(0) — 1) 2= V’\ *No(ds, da, df)

t 1 T
+/ / / (cos® — 1) 25 V.2 Ny (ds, da, df)
0 0 -7

t 1 T
(5.17) _2/0/0/ Sin2(6) 2 VM2 a(6) No (ds, das, db)

/ / /_ _ cosya(B)V;2™ — siny) () W,— () | o (8)No(ds, da, d)

The skeleton is also regular enough. For each A € [-1,1]. the cadlag functions

St(’UOafYoz( )7 )7 3>\St(1}0a7a( )vq)a and 3)\2515(1}0’704( ) q) Sa‘tISfy equatlons as
(5.15), (5.16), and (5.17), where Vg, Ny, and N; have been replaced by vy, m, and

q.
It thus suffices, as in Section 3, to prove the following proposition.

PROPOSITION 5.9.  Let vg € Vo, m € Mo, ¢ € My, and a € D be fized. Then
for all e > 0, the set

02, g(€) = { sup 6 (V2% 5(00,72(m),0)) < €
A<1

‘?\1|1<p ) (%V/\ a, 3)\5(1)0773(7’7’)7(])) <e;
<1



(5.18) sup & (W Ve %;S(vo,vé(m),q)) <e }
IA[<1

has a strictly positive probability.

We now would like to give an idea of the proof of this proposition. We thus fix
no ni
(5.19) vo € Vo, m= Z 6(t?,w?70?) S Mg, q= Z 6“37“’}70}) S ./\/li)
i=1 =1

and a € D. For simplicity, we denote V* = VM and S} = S;(vo, v (m),q). We
also consider the finite Poisson measures N¥ = N[ + N, where

Ho

(5.20) NE = Noljo,11x (0,11 {I=00.06]\ 1 /.1 /6]} = D O(T0,a0,67)
=1
M1

(5.21) NP = Niljo,11x[0.1]x {supp 8\~ 1/p.1/p]} = D 0T 0l 61
=1

We denote by VP the solution of equation (5.15) where Ny and N; have been
replaced by N} and NY. Then we consider the following sets.

Lo(e) ={w € /|Vo —vo| <€}

' (a,b,c) = {wEQ /,uozno, Vi, 19 —a < TP <Y, |WTlp(a?)—w?| <b;

1/p

r9(d) :{weﬂ // //W 0] + |a(6) |)(1+|Ws(a)|)N0(ds,da,d0)gd}
1/p

I (d) :{wGQ // //1/p|0|1+|W()|)N1(ds,da,d9)§d}

Then one can check that foralle >0,a >0,6>0,¢>0,d>0,a >0,V >0,
¢ > 0,d >0, small enough,

(5.22) P{To(e) NI¥(a,b,c)NTi(a,b',¢')NTI(d) NT5(d)} >0
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It suffices to use the some independence arguments, Lemma 5.5, the same arguments
as in the proof of Lemma 4.1, and the facts that (|0] + |a(9)|)(1 + |Ws(a)|) €
LY (Bo(#)dOdads) and |0](1 + [Ws(a)|) € L (B1(0)dOdads). Indeed, for example,

T 1 T
/0 /0 /_ (18] + [a(B)]) x (1 + W, (a)])Bo(6)dbdads

(5.23)  <T (1+Ea (sup |Wt|>> / " (161 + a(®)]) o(6)d8 < oo

[0,T] -7

This shows the way to prove Proposition 5.9 : following the ideas of Lemma 4.2,
one can check that for 8 > 0 fixed, then for ¢ > 0, a > 0, b > 0, ¢ > 0 small enough,

I‘0 (E) n F(l) (aa ba C) n F% (aa ba C)

C { sup & (V¥,S(vg,va(m),q)) < B3 sup 8 (Z VM, & S(vg,v2(m),q)) < B
[AI<1 (A<t

(5.24) sup 8 (2 VA, 5 S (00,72 (m),0)) < B |
[A<1

Then, following the ideas of Lemma 4.3, we see that for ( > 0 fixed, we obtain, if
€>0,a>0,b>0,c>0,and d > 0 are small enough,

I‘0 (E) n Ftl) (aa ba C) n F% (aa b7 C) n Fg (d) n F% (d)

c{sup VA=V o< ¢ sup | FVA = FVP (<
[A<1 (A<t

2 2
(5.25) sup | V= GV e ¢}

This concludes the proof of Proposition 5.9. O
The sketch of proof of Theorem 5.8 is complete.

5.3. Proof of Theorem 5.4. We now have to study the skeleton, in order to
check that under (K), every y in IR satisfies the assumptions of Theorem 5.8. Thus
(K) is assumed. Hence Vp contains (at least) one point vy # 0. Since the support
of 51 might be the empty set, and since the support of Py might contain only vy,
we will only study the skeletons of the form S(m) = S(vo, m,0), for m € Ny, where
Ny is the following subset of V :

(5.26) Ny = {m = Z‘S(ti,voﬁi) € Mo}
i=1

We will prove the following proposition :
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PROPOSITION 5.10. Lety € IR, and let t > 0 be fized. There exists m € Np,
and o € D, such that

(5.27)  Si(m)=y ; m{t}x Rx[~05,00]) =0 ; DaSi(m)#0

This proposition, composed with Theorem 5.8, drives immediately to Theorem
5.4. Thus, the whole sequel is devoted to the proof of this proposition.

WE WILL ASSUME THAT vy = 1. We may do so. Indeed, assume that vy # 1.
Then we notice that (V/vg, W/vg) satisfy (5.6) with initial condition Vg /vg. The
support of the law of V; /vy contains 1. One concludes easily by using the uniqueness
in law for (5.6).

We now consider the set
(5.28) E={(n,b1,...,0,) [ n€IN, 0; €] —6y,00[\{0} }
and the function F' from & into IR, defined recursively by
F0O)=1 ; Fn+1,61,..,0,,0h11)=F(n,01,....,60,)cosb,11 —sinbp,11

The main idea is that we have to prove that F' is surjective. Indeed, for any ¢ > 0
fixed, choosing m = Y"1 0(¢,.1,0,) € No, with 0 < #1 < ... < t,, < t, we see that
S¢(m) = F(n, 64, ...,0,). We first prove a lemma showing that F' can go to infinity.

LEMMA 5.11.  There exzists a sequence ¢2 in | — 6o,0[U]0,68o[ such that the
sequence F(n, Y, ...,%) increases to infinity as n tends to infinity.

PROOF. First notice that for any u > 0, the function g, (f) = ucosf — sinf on
[—7, ] reaches its maximum at 6" = — arctan 1/u, and that g, (0%) = V1 + u2.
Assume first that 6y > m/4. We define recursively, for n > 0,

1

(5.29) 2., = —arctan ———————
i F(n, @}, ..., 0%)

We also set u, = F(n, ¢, ...,©%). Then u, grows to infinity, because ug = 1 and
Unt1 = /1 + uZ. We thus just have to prove that for all i > 1, o9 €] — g, 80[\{0}.
But ¢! = —arctanl = —7/4 €] — 6,,0][, and, since u,, increases to infinity, we
deduce from (5.29) that ¢0 increases to 0, which allows to conclude that for all i,
(p? E] - 007 0[

Assume now that 6y < 7/4, and consider the sequence u,, = F(n, —6y/2, ..., —00/2).
Then uf = 1, and u;, ., = (cosby/2)u;, + sinfy/2, from which we deduce that for
alln >0,

sinfy/2

o n
(5.30) u,, = (cosfo/2)" + T cosfo/2

(1 = (cosbp/2)™)



30

Hence u!, increases to (sinfy/2)/(1 — cosfy/2) > 1/ tanby, and there exists ng > 0

such that arctan1/u), < 6. We thus set ¢ = ... = ¢\ = —6y/2, and recursively,
for n > ng,

1
(5.31) ¢h 1 = —arctan

F(n,¢},...,¢%)

One concludes, as in the case where 6y > 7/4, that F(n, ©?, ...,¢%) goes to infinity,
and that for all i, ©? €] — 6, 0[. O

A second lemma, shows that F' can reach —1.

LEMMA 5.12.  There exists mg € IN, 1/1?,...,@&210 in 10,00[, such that for all
n e {07 -y o — 1}7 F(TL,'QZJ?, 7¢'(r)7,) Z F(TL + 17¢?7 "'7,(/}?1,4»1) and

(532) F(m07¢?7'“7¢?n0) =-1

Proor. Notice that the sequence F'(n,60y/2,...,600/2) goes to —sin(fy/2)/(1 —
cos(fp/2)) < —1 (because #y < 7). We denote by mg € IN the first n € IN such
that F(m0,90/2, ,00/2) S —1. Then

F(mg—1,00/2,...,00/2) cos0—sin0 > —1 > F(mg—1,60/2, ...,00/2) cos 8y /2—sin by /2
(5.33)

Thus there exists ¢, €]0,60/2] such that —1 = F(mo —1,60/2, ...,00/2) cos D, —
singd, = F(mg,00/2,...,60/2,¢%, ). We conclude by setting ¢f = ... = ¢ =

mo—1

60/2. O
PROOF OF PROPOSITION 5.10. We break the proof in several steps.
Step 1. We first prove that F' is surjective. Let y > 1. Thanks to Lemma 5.11,

there exists n € IN such that F(n,¢Y,...,¢%) <y < F(n+ 1,4, ...,0%, ). This
can also be written

(5.34) F(n, ¢, ..., pn) cos0 — sin0 < y < F(n, ¢, ..., %) cos o 1 —sinph) |

Thus there exists 6 € [¢),,0[ such that y = F(n,¢?,...,%) cos§ — sinf. In other
words, y = F(n +1,¢9, ...,¢%,0), and F reaches y.

If y € [0,1], one can use the same argument, using Lemma 5.12 instead of Lemma
5.11.

Assume now that y < 0, and consider n € IN, 64,...,6,, in | — 8y, 65[\{0}, such that
—y = F(n,04,...,6,). One can check, using Lemma 5.12, that

(5.35) y = F(mo+ 1,90, ., =01, .., —0)

and F reaches y.

Step 2. Let now y € IR be fixed, and let n € IN, 64,...,0,, in | — 6y, 80[\{0} such that
y = F(n,0,...,0,). One can easily check the existence of ¢ €]0,8y[, ¢' €]0,8], as
small as we want, such that

(5.36) y = (ycos ¢ + sin @) cos ¢’ — sin ¢’
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We choose ¢ and ¢’ small enough, in order to obtain ¢' < inf{|0i],...,|0,|}, and
such that y # —1/sin¢’.
Then it is clear that

(5.37) y=Fn+2,0,..0,—0¢)
We consider any 0 < t; < ... < tpya < t, and we set

(5.38) M= 040100 F Otair1,-6) F Ot a1 00)

i=1
which belongs to Ng. Then, y = S¢(m), and m({t} x IRx]—6y,8[) = 0. Furthermore,
choosing any a € D in such a way that a(¢') # 0, but a(—¢) = a(f;) = ... =
a(fy,) =0, we see that

DaSi(m) = 75 [(y cos ¢ + sin ¢) cos(¢ + Aa(¢')) —sin(¢' + ra(¢'))]],_,

(5.39) = —a(¢') [(y cos ¢ + sin ¢) sin ¢’ + cos ¢']

Thus D,St(m) # 0, except if ¢' = —arctan1/(y cos ¢ + sin @). But if so, ycos ¢ +
sing = —1/tan¢’, and we deduce from (5.36) that

(5.40) y=—cos¢'/tand —sing’ = —1/sin¢’
which was supposed to fail. Hence D,S;(m) # 0, and this concludes the proof. [

The proof of Theorem 5.4 is complete.
6. Appendix. We give in this annex an extended version of Gronwall’s lemma.

LEMMA 6.1.  Let f be a positive cadlag function on [0,T]. Assume that for some
a>0,0>0,c>0, and some (0 <t; <ty <..<t,<T,

t n
(6.) O <avd [ s +e 3 f(t-) s
0 i=1
Then there exists a constant K, depending only b, ¢, n, T, such that
(6.2) sup f(t) < K xa
[0,T]

A somewhat more general version of this Lemma can be found in the Appendix
of Ethier, Kurtz, [7]. We however give an idea of the proof.

PrOOF. Thanks to Gronwall’s Lemma, it is obvious that for all ¢ € [0,#],
(6.3) f(t) <axe’™ <axelT
Hence f(t,—) < ae’”, and thus, for all t € [0, 5],

(6.4) f(t) < (a+ cae’™) + b/o f(s)ds
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which implies, thanks to Gronwall’s Lemma again, that for all ¢ € [0, t2],

6.5)

f(t) < (a+cae’T)e’ <ax (1+ce’)e”

Iterating the method, we obtain the result. O
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