
Stri
t positivity of the density for simple jumppro
esses using the tools of support theorems.Appli
ation to the Ka
 equation without 
uto�.Ni
olas FournierApril 23, 2001Abstra
tConsider the one-dimensional solution X = fXtgt2[0;T ℄ of a possibly degen-erate sto
hasti
 di�erential equation driven by a (non 
ompensated) Poissonmeasure. We denote by M a set of deterministi
 integer-valued measuresasso
iated with the 
onsidered Poisson measure. For m 2 M, we denoteby S(m) = fSt(m)gt2[0;T ℄ the skeleton asso
iated with X. We assume someregularity 
onditions, whi
h allow to de�ne a sort of "derivative" DSt(m)of St(m) with respe
t to m. Then we �x t 2℄0; T ℄, y 2 IR, and we provethat as soon there exists m 2 M su
h that St(m) = y, DSt(m) 6= 0, and�St(m) = 0, the law of Xt is bounded below by a nonnegative measure ad-mitting a 
ontinuous density not vanishing at y. In the 
ase where the lawof Xt admits a 
ontinuous density pt, this means that pt(y) > 0. We �nallyapply the des
ribed method in order to prove that the solution to a Ka
equation without 
uto� does never vanish.Key words : Sto
hasti
 di�erential equations with jumps, Sto
hasti
 
al
ulus ofvariations, Support theorems, Boltzmann equations.MSC 2000 : 60H07, 60H10, 60J75, 82C40.Running title : Positive density of jumping SDEs.1. Introdu
tion. Consider the following one-dimensional sto
hasti
 di�eren-tial equation on [0; T ℄ :Xt = x0 + Z t0 ZO h(Xs�; z)N(ds; dz) + Z t0 g(Xs)ds(1.1)where O is an open subset of IR, N is a Poisson measure on IR+�O with intensitymeasure �(ds; dz) = '(z)dsdz. The C1 fun
tion ' : O 7! IR+ is supposed to bestri
tly positive. 1



2 The problem we study in the present paper is the following : at whi
h pointsy 2 IR is the law of Xt (for some �xed t > 0) bounded below by a measureadmitting a 
ontinuous density � satisfying �(y) > 0 ? In other words, if L(Xt)admits a 
ontinuous density pt, we would like to 
hara
terize the set fpt > 0g.In [9℄, a partial answer is given in the more general 
ase where the Poissonmeasure is 
ompensated : under a strong non-degenera
y assumption, the law ofXt is bounded below by a measure admitting a 
ontinuous stri
tly positive densityon IR. This result is not optimal. First, it allows to 
onsider almost only the 
asewhere X has in�nite variations : the non-degenera
y assumption is very strong.Furthermore, we obviously 
an not, with su
h a method, study the 
ase where Xtis in
reasing, or a.s. nonnegative : either the density is positive everywhere, or themethod used in [9℄ fails.This method was adapted from a work of Bally, Pardoux, [2℄, who were dealingwith the stri
t positivity of the density of Wiener fun
tionnals, and from the workof Bi
hteler, Gravereaux, Ja
od, [4℄, who were interested in the sto
hasti
 
al
ulusof variations for Poisson fun
tionals.We now would like to transpose to the Poisson 
ontext the ideas of Ben Arous,L�eandre, [3℄, see also Aida, Kusuoka, Stroo
k, [1℄, and Millet, Sanz, [19℄. Consider-ing the solution Yt of a Gaussian sto
hasti
 di�erential equation, they 
hara
terizethe set of the points of stri
tly positive density of Yt by using the usual tools ofsupport theorems. Indeed, they 
onsider the asso
iated "skeleton" St(h), for h inan appropriate Cameron-Martin spa
e. Then, instead of "di�erentiating" Yt(!)with respe
t to !, they "di�erentiate" St(h) with respe
t to h. Then they just haveto deal with deterministi
 obje
ts : they prove that the density pt of Yt does notvanish at y 2 IR if and only if there exists h su
h that y = St(h) and ��hSt(h) 6= 0.We will see that in the Poisson 
ontext, the transposed method is quite 
onvin
ing,sin
e it drives to natural assumptions, and no non-degenera
y 
ondition is needed.We will use the Malliavin 
al
ulus for jump pro
esses developped by Bi
hteler,Gravereaux, Ja
od, [5℄ and [4℄, and the main ideas of Simon, [22℄, who deals withsupport theorems for jump pro
esses (see also [12℄).We 
onsider here pro
esses with �nite variations for two reasons : �rstly, it drivesto easier 
omputations, and se
ondly, the 
ase with in�nite variations is often
ontained in [9℄.Let us mention that to our knowledge, almost all the works about lowerboundsof the density for Poisson fun
tionals 
on
ern asymptoti
ally small time : seeL�eandre, [17℄, Ishikawa, [14℄, and Pi
ard, [20℄.The only known result is that of L�eandre, [18℄, who deals with the simpler 
asewhere the pro
ess X 
an be written as the sum of its jumps. He also assumesa non-degenera
y 
ondition, whi
h implies that the law of Xt admits a smoothdensity. However, our method follows the same s
heme.The main motivation of this work is the study of spatially homogeneous Boltz-mann equations. Tanaka, [23℄, showed an ingenious way to relate the solution f(t; v)



3of a Boltzmann equation to the solution Vt of a Poisson driven (non 
lassi
al)S.D.E. : the law of Vt is given by f(t; v)dv. Using this approa
h and the Malliavin
al
ulus for jump pro
esses, Graham and M�el�eard, [13℄, have re
ently proved someexisten
e and regularity results for the solution of a Ka
 equation, whi
h is aone-dimensional "
ari
ature" of the Boltzmann equation. These results have beenextended to the 2-dimensional 
ase in [8℄.Analysts and theoriti
al physi
ists are interested in the stri
t positivity of f . Inparti
ular, it allows them to deal "rigorously" with the entropy of f , and it seemsto be usefull for proving the 
onvergen
e to equilibrium. Pulvirenti and Wennberghave proved in [21℄ a Maxwellian lowerbound for f , by using analyti
 methods,under a 
uto� assumption 
orresponding to the 
ase where the pro
ess Vt has a�nite number of jumps a.s. But this assumption is not physi
ally reasonnable, andthe method used in [21℄ breaks down in the non 
uto� 
ase. We have applied, in[10℄, [11℄, the method of [9℄, in order to prove that when Vt has in�nite variations,f does never vanish. Thus a 
ase is still open : what does happen when Vt has�nite variations, but an in�nite number of jumps ? The present method will apply.This paper is organized as follows. In Se
tion 2, we state our assumptions andmain result, and we deal with remarks and examples of appli
ations. In Se
tion3, we introdu
e some notations and de�nitions. Then we state a "support type"proposition, and we prove our main result. The "support type" proposition is provedin Se
tion 4. In Se
tion 5, we use the des
ribed method, in order to prove the stri
tpositivity of the solution to a Ka
 equation without 
uto�. Finally, a "jump" versionof Gronwall's Lemma is stated and proved in the Appendix.2. Statement of the main result. First of all, let us state our hypothesis.Assumption (H) : the fun
tion g is C3 on IR, and its derivatives of order1 to 3 are bounded. The fun
tion h(x; z) is of 
lass C3 on IR �O. Thepartial derivatives h(n+q)xnzq (with n+q � 3) are bounded as soon as q � 1,and there exists a fun
tion � 2 L1(O;'(z)dz) su
h thatjh(0; z)j+ jh0x(x; z)j+ jh00xx(x; z)j+ jh000xxx(x; z)j � �(z)(2.1)Under (H), Eq. (1.1) 
learly admits a unique solution X = fXtgt2[0;T ℄, adapted,belonging a.s. to the set of 
�adl�ag fun
tions IDT = ID([0; T ℄; IR), and satisfyingE sup[0;T ℄ jXtj! <1(2.2)We now would like to build a skeleton asso
iated with Eq. (1.1), by followingthe ideas of Simon, [22℄. By "skeleton", we mean a family fS:(m)gm2M of solutionsto ordinary di�erential equations with jumps, obtained by repla
ing the Poissonrandom measure N by deterministi
 integer-valued measures m 2 M in Eq. (1.1).This way, we will obtain a rigorous version of the following assertion : let t � 0 andy 2 IR be �xed ;



4 there exists ! 2 
 su
h that Xt(!) = yif and only if there exists m 2 M su
h that St(m) = y(2.3)This will allow us to know where the law of Xt (for t �xed) may be boundedbelow.We �rst 
onsider an in
reasing sequen
e of open subsets Op � O, su
h that[p�1Op = O and su
h that for ea
h p, ROp '(z)dz < 1. (If RO '(z)dz < 1, thenwe simply set Op = O). For ea
h p, we 
onsider the set of deterministi
 integer-valued measuresMp = ( nXi=1 Æ(ti;zi) ,n 2 IN; 0 < t1 < ::: < tn < T; zi 2 Op)(2.4)with the 
onventionP01 = 0, and we setM = [pMp(2.5)For ea
h m = Pni=1 Æ(ti;zi) 2 M, we denote by St(m) the unique solution of thefollowing deterministi
 di�erential equation on [0; T ℄ :St(m) = x0 + Z t0 ZO h(Ss�(m); z)m(ds; dz) + Z t0 g(Ss(m))ds= x0 + nXi=1 h(Sti�(m); zi)1ft�tig + Z t0 g(Ss(m))ds(2.6)Under (H), one 
an prove that this equation admits a unique solution belonging toIDT , by applying standard arguments on ea
h time interval [0; t1[, [t1; t2[, ..., [tn; T ℄.In order to deal with the density of Xt, we have to introdu
e a sort of derivativeof St(m) with respe
t to m. This will repla
e the usual "derivative" of Xt(!) withrespe
t to ! (see [5℄, [4℄, [9℄,...). To this aim, we introdu
e some "dire
tions" inwhi
h we will be able to "perturbe" St(m), and then to di�erentiate the obtainedexpression.Notation 2.1. �O denotes the boundary of O in �IR = IR [ f�1;+1g.Definition 2.2.1. Let �(z) be a C1 positive fun
tion on O, going to 0 as z tends to �O, and su
hthat j�0j < 1. Then the following fun
tions are well-de�ned on O :��(z) = 1'(z) � supfj'0(w)j ; jw � zj � j�(z)jg��(z) = j�0(z)j+ 3j�(z)j��(z)(2.7)



5We say that � belongs to the 
lass D if for some 
ontant 
 < 1,j�j+ �� 2 L1(O;'(z)dz) \ L1(O;'(z)dz) ; ��(z) � 
(2.8)2. If � 2 D, we set, for ea
h � 2 [�1; 1℄,
��(z) = z + ��(z)(2.9)One easily dedu
es from the supposed properties that for all � 2 [�1; 1℄, themap z 7! 
��(z) is an in
reasing bije
tion from O into itself. This allows us tode�ne, for ea
h m 2 M, the new integer-valued measure 
��(m) 2M by
��(m)(A) = Z T0 ZO 1A(s; 
��(z))m(ds; dz)(2.10)In other words, if m =Pni=1 Æ(ti;zi), then 
��(m) =Pni=1 Æ(ti;
��(zi)).We will see in the next se
tion (see Proposition 3.4) that under (H), for allm 2 M, all � 2 D, and all t > 0, the map � 7! St(
��(m)) is twi
e di�erentiableon [�1; 1℄, thanks to (H). In parti
ular, D�St(m) = ���St(
��(m))���=0 satis�es thelinear deterministi
 equation :D�St(m) = Z t0 ZO h0x(Ss�(m); z)D�Ss�(m)m(ds; dz) + Z t0 g0(Ss(m))D�Ss(m)ds+ Z t0 ZO h0z(Ss�(m); z)�(z)m(ds; dz)(2.11)We now 
an state our main result.Theorem 2.3. Assume (H), and let t0 2℄0; T ℄, y0 2 IR be �xed. Assume thatthere exists m0 2M su
h that, for some � 2 D,y0 = St0(m0) ; m0(ft0g �O) = 0 ; D�St0(m0) 6= 0(2.12)Then the law of Xt0 is bounded below by a nonnegative measure admitting a 
ontin-uous density �y0(y) on IR, satisfying �y0(y0) > 0.In the 
ase where L(Xt0) admits a 
ontinuous density pt0 , this means that pt0(y0) >0. Let us 
omment this result. First noti
e that, for t0 > 0 �xed, the only pointsy whi
h may be some points of positive density for Xt0 are those y whi
h belongto the interior of the support of the law of Xt0 . We will prove (see Proposition(3.5) that the support of the law of X: is the 
losure, in IDT endowed with theSkorokhod topology, of the set fS:(m) ; m 2 Mg. But we will only dedu
e thatthe support of the law of Xt0 
ontains fSt0(m) ; m 2 M; m(ft0g � O) = 0g.This 
omes from the fa
t that the appli
ation t0 7! x(t0), from IDT into IR, is not
ontinuous on IDT , ex
ept at the points x 2 IDT not jumping at t0. The 
onditionm(ft0g � O) = 0 implies that �St0(m) = 0. This explains the two �rst 
onditionsin (2.12).



6Roughly speaking, the last 
ondition in (2.12) implies the existen
e some � > 0 andof a neighborhood V of m0 in M su
h that the map m 7! St0(m) is a submersionfrom V into [y0��; y0+�℄. More and more heuristi
ally, in view of (2.3) this impliesthat ! 7! Xt0(!) is a lo
al submersion into [y0 � �; y0 + �℄. Hen
e, for all � < �,the quantity P (jXt0 � y0j < �) will be (at least) of order �, whi
h implies thatthe density of Xt0 at y0, obtained as the limit of 1�P (jXt0 � y0j < �), is stri
tlypositive.Let us now deal with remarks whi
h might allow to apply easily Theorem 2.3.Remark 2.4. Let t0 > 0 be �xed, and let ℄a; b[� IR (a and b may be in�nite).Assume that for ea
h y0 2℄a; b[, the assumptions of Theorem 2.3 are satis�ed. Thenthe law of Xt0 is bounded below by nonnegative measure admitting a 
ontinuousdensity �t0(y) on IR, never vanishing on ℄a; b[.Proof. Let us write ℄a; b[= [nKn, where Kn is an in
reasing sequen
e of
ompa
t subsets of ℄a; b[. Then it is not hard to dedu
e from Theorem 2.3 thatfor ea
h n, there exists a 
onstant 
n > 0 su
h that L(Xt0)(dy) � 
n1Kn(y)dy.The sequen
e 
n may be 
hosen de
reasing to 0. Then one 
an build a 
ontinuousfun
tion �t0 on IR, su
h that for y 2 Kn=Kn�1, �t0(y) 2 [
n+1; 
n℄, and �t0(y) = 0for y outside of ℄a; b[. Then L(Xt0)(dy) � �t0(y)dy, and the Remark is proved.The se
ond remark shows a simple way to 
hoose the "dire
tions" � 2 D.Remark 2.5. Let ~� be a C1 fun
tion on O, su
h that supp ~� � [ni=1[ai; bi℄,where [ai; bi℄ are disjoint 
ompa
t subsets of O. Then there exists a 
onstant � > 0su
h that �~� belongs to D.The last remark deals with an expli
it 
omputation of D�St(m), and the proof is
ontained in Ja
od, [15℄, Ja
od, Shiryaev, [16℄ (who 
onsider mu
h more 
ompli
atedequations).Remark 2.6. Let m = Pni=1 Æ(ti;zi) 2 M. Consider the following linear (de-terministi
) equation :At(m) = 1 + Z t0 ZO h0x(Ss�(m); z)As�(m)m(ds; dz) + Z t0 g0(Ss(m))As(m)dsThen At(m) = exp�Z t0 g0(Ss(m))ds� � nYi=1 �1 + h0x(Sti�(m); zi)1ft�tig�(2.13)Assume now that for all i 2 f1; :::; ng, 1 + h0x(Sti�(m); zi) 6= 0. Then A(m) doesnever vanish, and the solution of (2.11) 
an be written as :D�St(m) = At(m) Z t0 ZO h0z(Ss�(m); z)As�(m)(1 + h0x(Ss�(m); z))�(z)m(ds; dz)(2.14)



7In parti
ular, if for some i 2 f1; :::; ng,h0z(Sti�(m); zi) 6= 0 and 8 j 6= i; zj 6= zithen there exists � 2 D su
h that D�St(m) 6= 0 for all t > ti. ( It suÆ
es to 
hooseany � 2 D su
h that �(zi) 6= 0, but �(zj) = 0 for all j 6= i).We now give some examples of appli
ations.Example 1 : We 
onsider the following S.D.E.Xt = x0 + Z t0 Z 10 a(Xs�)zN(ds; dz)(2.15)with '(z) = z�, for some � > �2, on O =℄0; 1[. If a is C3b on IR, (H) is 
learly met.Assume now that for some a0 > 0, a(x) � a0 for all x. Then for all t > 0, the lawof Xt is bounded below by a positive measure admitting a 
ontinuous density �t onIR, su
h that �t does never vanish on ℄x0;+1[. This result is optimal, sin
e for allt > 0, Xt � x0 a.s.Indeed, let t0 > 0 and y0 > x0. Then it is 
lear, sin
e a(x) � a0 > 0 and sin
eO =℄0; 1[, that there existsm0 =Pni=1 Æ(ti;zi), su
h that 0 < t1 < ::: < tn < t0, su
hthat the zi are distin
ts, and su
h that y0 = St0(m0). Of 
ourse, m(ft0g �O) = 0.We thus just have to 
he
k that there exists � 2 D su
h that D�St0(m0) 6= 0.Sin
e the zi are distin
ts, there exists � > 0 su
h that for all i 2 f1; :::; n � 1g,zi =2℄zn� �; zn+ �[, and su
h that ℄zn� �; zn+ �[�℄0; 1[. We 
hoose � 2 D in su
h away that �(zn) 6= 0, and supp � � [zn � �=2; zn + �=2℄. This way,St0(
��(m0)) = x0 + n�1Xi=1 a(Sti�(m0))�(zi) + a(Stn�(m0))� (zn + ��(zn))whi
h implies that D�St0(m0) = a(Stn�(m0))�(zn) 6= 0(2.16)Remark 2.4 allows to 
on
lude.Example 2 : We 
onsider the 
ase of the following S.D.E.Xt = x0 + Z t0 Xsds+ Z t0 ZO a(Xs�)�(z)N(ds; dz)(2.17)h(x; z) = a(x)�(z) is supposed to be nonnegative and to satisfy (H). We assumethat a(x0) > 0, that �0 does never vanish, and that f�(z); z 2 Og =℄0;+1[. Thenfor ea
h t > 0, the law of Xt is bounded below by a nonnegative measure admittinga 
ontinuous density �t on IR, never vanishing on ℄x0et0 ;+1[. This result is optimal,sin
e for all t > 0, Xt � x0et a.s.Let t0 > 0 and y0 > x0et0 be �xed. One 
an easily 
he
k that if m = Æ(t1;z1) 2 M,with t1 < t0, then St0(m) = x0et0 + a(x0et1)�(z1)et0�t1(2.18)



8Sin
e a(x0) > 0, sin
e a is 
ontinuous, we 
an 
hoose t1 2℄0; t0[ small enough, inorder to obtain that a(x0et1) > 0. We thus 
an 
hoose z1 2 O su
h that �(z1) =(y0 � x0et0)=(a(x0et1)et0�t1). Then, if m0 = Æ(t1;z1), St0(m0) = y0 and m0(ft0g �O) = 0. Furthermore, one 
an easily 
he
k that if � 2 D, with �(z1) 6= 0,St0(
��(m0)) = x0et0 + a(x0et1)�(z1 + ��(z1))et0�t1(2.19)and thus D�St0(m0) = a(x0et1)et0�t1�0(z1)�(z1) 6= 0(2.20)Remark 2.4 allows to 
on
lude.Of 
ourse, in every of these parti
ular 
ases, there may exist simpler arguments,but Theorem 2.3 uni�es the proofs.3. Framework. First of all, we introdu
e some notations.Notation 3.1. Let � belong to D, and � 2 [�1; 1℄. Re
all that the map 
�� wasde�ned by (2.10). For ea
h ! 2 
, we de�ne the new integer-valued random measure
��(N(!)) on [0; T ℄�O by
��(N(!))(A) = Z T0 ZO 1A(s; 
��(z))N(!; ds; dz)(3.1)We denote by T �� : 
 7! 
 the shift de�ned (and entirely de�ned) byNÆT �� = 
��(N).We will use the following 
riterion of positivity.Theorem 3.2. Let X be a real-valued random variable on 
 and let y0 2 IR.Assume that for some � of 
lass D, the map � 7! X Æ T �� is a.s. twi
e di�erentiableon [�1; 1℄. Assume that there exists 
 > 0, Æ > 0, and k < 1, su
h that for allr 2℄0; 1℄, P (�(r)) > 0(3.2)where�(r) = (jX � y0j < r ; ��� ���X Æ T �� ����=0��� � 
 ; supj�j�Æ h�� ���X Æ T �� ��+ ��� �2��2X Æ T �� ���i � k)(3.3)Then there exists a 
ontinuous fun
tion �y0(:) : IR 7! IR+ su
h that �y0(y0) > 0 andsu
h that for all f 2 C+b (IR),E(f(X)) � ZIR f(y)�y0(y)dy(3.4)This result is a parti
ular 
ase of Theorem 3.3 in [9℄. Let us however give anidea of the proof.



9Proof.Thanks to the de�nition of the 
lassD, one 
an 
he
k, using the GirsanovTheorem for random measures, see Ja
od, Shiryaev, [16℄, the existen
e, for ea
h �,ea
h � 2 D, of a Dol�eans-Dade martingale G�t > 0 su
h that �G�T :P �Æ�T �� ��1 = P .Furthermore, G�T is a.s. 
ontinuous in �. Let f � 0 be a 
ontinuous fun
tion on IR.Then E(f(X)) = E(f(X Æ T �� )G�T ) � 12E �Z 1�1 f(X Æ T �� )G�T d�1�(r)�(3.5)Using a "uniform version" of the lo
al inverse Theorem, one 
an 
he
k the existen
eof � > 0, R > 0 (as small as we want) su
h that for ea
h ! 2 �(r), the map� 7! T �� (!) is a di�eomorphism from V (!) �℄ � R;R[ into ℄X Æ T 0� (!) � �;X ÆT 0� (!)+ �[=℄X(!)��;X(!)� �[. We 
hoose r > 0 in su
h a way that r < �. Thisway, using the substitution y = X Æ T �� (!) for ea
h ! 2 �(r), we obtainE(f(X)) � 12E �ZV f(X Æ T �� )G�T d�1�(r)�(3.6)� 12E Z X+�X�� f(y)� G(XÆT :�)�1(y)T��� [X Æ T :�℄((X Æ T :�)�1(y))dy1�(r)! � ZIR f(y)�(y)dywhere, if  is a 
ontinuous fun
tion on IR su
h that 1[0;r℄ �  � 1[0;�℄,�(y) = 12E " (jX � yj)(1 ^ G(XÆT :�)�1(y)T��� [X Æ T :�℄((X Æ T :�)�1(y))) 1�(r)#(3.7)It is 
lear that �(y0) > 0, and one 
an prove that � is 
ontinuous by using theLebesgue Theorem.Our aim is of 
ourse to apply this result to the solution Xt of Eq (1.1). We thushave to 
he
k that for all � 2 D, all t 2 [0; T ℄, the map � 7! Xt Æ T �� is suÆ
ientlyregular.Proposition 3.3. Assume (H). Let X be the solution of Eq. (1.1), and let� 2 D. Then for all t 2 [0; T ℄, the map � 7! X�;�t = XtÆT �� is a.s twi
e di�erentiableon [�1; 1℄. For ea
h � �xed, the pro
esses X�;�t , ���X�;�t and �2��2X�;�t belong a.s. toIDT , and satisfy the following S.D.E.s :X�;�t = x0 + Z t0 ZO h(X�;�s� ; 
��(z))N(ds; dz) + Z t0 g(X�;�s )ds(3.8)���X�;�t = Z t0 ZO h0x(X�;�s� ; 
��(z)) ���X�;�s� N(ds; dz) + Z t0 g0(X�;�s ) ���X�;�s ds+ Z t0 ZO h0z(X�;�s� ; 
��(z))�(z)N(ds; dz)(3.9)



10 �2��2X�;�t = Z t0 ZO h0x(X�;�s� ; 
��(z)) �2��2X�;�s� N(ds; dz) + Z t0 g0(X�;�s ) �2��2X�;�s ds+ Z t0 ZO h00xx(X�;�s� ; 
��(z))� ���X�;�s� �2N(ds; dz)(3.10) + Z t0 g00(X�;�s ) � ���X�;�s �2 ds+2 Z t0 ZO h00zx(X�;�s� ; 
��(z)) ���X�;�s� �(z)N(ds; dz)+ Z t0 ZO h00zz(X�;�s� ; 
��(z))�2(z)N(ds; dz)This proposition is quite easy to 
he
k, using the positivity of the measure N . IfN is a �nite Poisson measure, i.e. if RO '(z)dz <1, then one 
an prove, using (H),Lemma 6.1 and equations (3.8), (3.9), (3.10), the existen
e of a.s. �nite randomvariables A(!) and B(!) su
h that for all t 2 [0; T ℄, all �; �+ � 2 [�1; 1℄ :���X�+�;�t �X�;�t � � ���X�;�t ��� � A� �2(3.11) ��� ���X�+�;�t � ���X�;�t � � �2��2X�;�t ��� � B � �2(3.12)whi
h allows to 
on
lude. If N is in�nite, one has to approximateN with a sequen
eof �nite Poisson measures, and to prove the 
onvergen
es. See [9℄ for a similar (bumore diÆ
ult) problem.We also have to di�erentiate the skeleton.Proposition 3.4. Assume (H). Let m 2 M and � 2 D be �xed. Then forall t 2 [0; T ℄, the map � 7! St(
��(m)) is twi
e di�erentiable on [�1; 1℄. For ea
h ��xed, the fun
tions St(
��(m)), ���St(
��(m)), and �2��2St(
��(m)) belong to IDT , andsatisfy the following equations :St(
��(m)) = x0 + Z t0 ZO h(Ss�(
��(m)); 
��(z))m(ds; dz) + Z t0 g(Ss�(
��(m)))ds(3.13) ���St(
��(m)) = Z t0 ZO h0x(Ss�(
��(m)); 
��(z)) ���Ss�(
��(m))m(ds; dz)+ Z t0 g0(Ss(
��(m))) ���Ss�(
��(m))ds



11+ Z t0 ZO h0z(Ss�(
��(m)); 
��(z))�(z)m(ds; dz)(3.14)�2��2St(
��(m)) = Z t0 ZO h0x(Ss�(
��(m)); 
��(z)) �2��2Ss�(
��(m))m(ds; dz)+ Z t0 g0(Ss(
��(m))) �2��2Ss(
��(m))ds+ Z t0 ZO h00xx(Ss�(
��(m)); 
��(z)) � ���Ss�(
��(m))�2m(ds; dz)+ Z t0 g00(Ss(
��(m))) � ���Ss(
��(m))�2 ds+2 Z t0 ZO h00zx(Ss�(
��(m)); 
��(z)) ���Ss�(
��(m))�(z)m(ds; dz)+ Z t0 ZO h00zz(Ss�(
��(m)); 
��(z))�2(z)m(ds; dz)(3.15)The proof of this proposition is quite easy : it suÆ
es to use the de�nition of thedi�erentiability, and to show inequalities as (3.11) and (3.12), by using (H) andLemma 6.1.As a �nal tool, we re
all the de�nition of the Skorokhod distan
e on IDT . First,the set of the 
hanges of times is de�ned by :� = f (t) 2 C([0; T ℄; [0; T ℄) /  (0) = 0;  (T ) = T;  is stri
tly in
reasinggThe norm on � is de�ned by :jjj jjj = sup0�s<t�T ����ln� (t)�  (s)t� s �����(3.16)Finally, if x and y belong to IDT , the distan
e between x and y is given by :Æ(x; y) = inf 2�(sup[0;T ℄ jx(t) � y Æ  (t)j+ jjj jjj)(3.17)Our main result will be proved as a 
onsequen
e of Theorem 3.2 and of the"support type" proposition below, that will be 
he
ked in the next se
tion.Proposition 3.5. Let m 2M and � 2 D be �xed. For all � > 0, the set
�m(�) = n supj�j�1 Æ �X�;�; S(
��(m))� � � ; supj�j�1 Æ � ���X�;�; ���S(
��(m))� � � ;



12 supj�j�1 Æ � �2��2X�;�; �2��2S(
��(m))� � � o(3.18)has a stri
tly positive probability.Assuming for a moment that this proposition holds, we prove our main result.In order to apply Theorem 3.2, we need two lemmas. The �rst one is probably awell-known fa
t about the Skorokhod distan
e, and 
an be easily proved.Lemma 3.6.1. For all x, y in IDT , k x k1�k y k1 +Æ(x; y).2. Let y 2 IDT be �xed. Assume that for some t0 2 [0; T ℄,�y(t0) = 0. Then for all� > 0, there exists r(�) > 0 su
h that for all x 2 IDT satisfying Æ(x; y) � r(�),the following inequality holds :jx(t0)� y(t0)j � �(3.19)The se
ond one deals with a te
hni
al property of the skeleton.Lemma 3.7. Assume (H). For all m 2 M, � 2 D,supj�j�1; 0�t�T n��St(
��(m))��+ �� ���St(
��(m))��+ ��� �2��2St(
��(m))���o <1(3.20)Proof. We will only prove that sup�;t j ���St(
��(m))j < 1, be
ause the other
ases 
an be 
he
ked similarly. We thus use equation (3.14), an we write m asPni=1 Æ(ti;zi). Our aim is to apply Lemma 6.1 for ea
h �.First of all, noti
e that thanks to (H) and (2.9), for all x 2 IR, z 2 O, all j�j � 1,jh0x(x; 
��(z))j � jh0x(x; z)j+ j
��(z)� zj� k h00xz k1� K f�(z) + j�(z)jg(3.21)Hen
e, for all i 2 f1; :::; ng,jh0x(x; 
��(zi))j � K supk2f1;:::;ngf�(zk) + j�(zk)jg � C(3.22)Thus�� ���St(
��(m))�� � C nXi=1 �� ���Sti�(
��(m))�� 1ft�tig+ k g0 k1 Z t0 �� ���Ss(
��(m))�� ds+ n k h0z k1k � k1� K1 +K2 Z t0 �� ���Ss(
��(m))�� ds+K3 nXi=1 �� ���Sti�(
��(m))�� 1ft�tig(3.23)



13where the 
onstants Ki do not depend on �. Applying lemma 6.1, we dedu
e theexisten
e of a 
onstant C, not depending on �, su
h thatsup[0;T ℄ �� ���St(
��(m))�� � C(3.24)This 
on
ludes the proof.We �nally prove our main result.Proof of Theorem 2.3. We 
onsider t0 2℄0; T ℄, m0 2 M, and y0 = St0(m0).We assume that m0(ft0g �O) = 0. We know, by assumption, that
0 = ��� ���St0(
��(m))���=0	�� > 0(3.25)for some � 2 D, whi
h we now 
onsider. Thanks to Lemma 3.7,k0 = supj�j�1; 0�t�T n��St(
��(m0))��+ �� ���St(
��(m0))��+ ��� �2��2St(
��(m0))���o <1(3.26)Our aim is to prove that for all r > 0, there exists � > 0 su
h that
�m0(�) �8>><>>: jXt0 � y0j < r ; ���n ���X�;�t0 ����=0o��� � 
0=2 ;supj�j�1 h��� ���X�;�t0 ���+ ��� �2��2X�;�t0 ���i � k0 + 19>>=>>;(3.27)where 
�m0(�) is de�ned in Proposition 3.5. This will suÆ
e, thanks to Theorem 3.2and Proposition 3.5.Let us now 
he
k (3.27). Let ! 2 
�m0(�), for some � > 0. Sin
e m0(ft0g�O) = 0, itis 
lear from equations (3.13) and (3.14) that the 
�adl�ag fun
tions t 7! St(m0) andt 7! ���St(
��(m0))���=0 are 
ontinuous at t0. We thus dedu
e from Lemma 3.6-2and the fa
t that ! 2 
�m0(�) the existen
e of a de
reasing to 0 fun
tion �(�), su
hthat jXt0 � y0j = jXt0 � St0(m0)j = jX0;�t0 � St0(
0�(m0))j � �(�)(3.28)and ���n ���X�;�t0 ����=0o��� � ��� ���St0(
��(m0))���=0	��� �(�) � 
0 � �(�)(3.29)On the other hand, thanks to Lemma 3.6-1, sin
e ! 2 
�m0(�), it is 
lear that forall j�j � 1,supt2[0;T ℄ h��� ���X�;�t ���+ ��� �2��2X�;�t ���i � supt2[0;T ℄ h�� ���St(
��(m))��+ ��� �2��2St(
��(m))���i+ 2�� k0 + 2�(3.30)We now 
hoose � 2℄0; 1=2℄ small enough, in order that �(�) � r ^ (
0=2). This way,(3.27) is 
learly satis�ed, and this 
on
ludes the proof.



14 4. Proof of the "support type" proposition. Our aim in this se
tion is toprove Proposition 3.5. Thus, in the whole sequel, p, m = Pni=1 Æ(ti;zi) 2 Mp, and� 2 D are �xed, and (H) is assumed. For simpli
ity, we denote 
� = 
�� (see (2.9)),X�t = X�;�t , and S�t = St(
�(m)). All the 
onstants C and K below will dependonly on the fun
tions g and h, on m, �, and T .We set t0 = 0, tn+1 = T , and�0 = infi2f0;:::;ng jti+1 � tij ; d0 = infi2f1;:::;ng d(zi; �Op)(4.1)We also set Np = N j[0;T ℄�Op , whi
h is a �nite Poisson measure, by 0 < T1 < T2 <::: < T� < T its su

essive times of jump, and by Z1; Z2; :::; Z� 2 Op the size of itsjumps. In other words, Np(!) = �(!)Xi=1 Æ(Ti(!);Zi(!))(4.2)Finally, we denote by Xp;�, ���Xp;�, and �2��2Xp;� the solutions of equations (3.8),(3.9), and (3.10), where N has been repla
ed by Np, X� by X�;p, ���X� by ���X�;p,and �2��2X� by �2��2X�;p.We begin with a lemma.Lemma 4.1. Let a 2℄0; �0=10[, b 2℄0; d0=2[, and 
 > 0 be �xed. Consider thesets �1(a; b) = f! 2 
 / � = n; and 8 i; ti � a � Ti � ti; jzi � Zij � bg(4.3) �2(
) = (! 2 
 , Z T0 ZO=Op (�(z) + j�(z)j)N(ds; dz) � 
)(4.4)Then the set �1(a; b) \ �2(
) has a stri
tly positive probability.Proof. First of all, noti
e that �1(a; b) 2 �(Np) is 
learly independent of �2(
) 2�(N j[0;T ℄�(O=Op)). On the other hand, it is well-known that �1(a; b) has a stri
tlypositive probability. We thus just have to 
he
k that P (�2(
)) > 0.Consider, for q � p, the following random variables :Zqp = Z T0 ZOq=Op (�(z) + j�(z)j)N(ds; dz)Zq = Z T0 ZO=Oq (�(z) + j�(z)j)N(ds; dz)(4.5)We see that Zp = Zqp+Zq for any q. For all q, P (Zqp = 0) > 0, be
ause N j[0;T ℄�Oq=Opis a �nite Poisson measure. When q goes to in�nity, Zq goes to 0 in L1 (and thus



15in probability) be
ause � + j�j 2 L1(O;'(z)dz). But 
learly, Zqp is independent ofZq for all q > p. Hen
e for all q,P (�1(
)) = P (Zp � 
) � P (Zqp = 0)P (Zq � 
)(4.6)Choosing q large enough, we obtain P (Zq � 
) > 0, and the lemma follows.The following Lemma proves Proposition 3.5 in the 
ase where N is a �nitePoisson measure.Lemma 4.2. For all � > 0, there exists a� 2℄0; �0=10[ and b� 2℄0; d0=2[ su
hthat �1(a�; b�) � �1(�)(4.7)where�1(�) = n supj�j�1 Æ �Xp;�; S�� � � ; supj�j�1 Æ � ���Xp;�; ���S�)� � � ;supj�j�1 Æ � �2��2Xp;�; �2��2S�)� � � o(4.8)Proof. Let a 2℄0; �0=10[ and b 2℄0; d0=2[ be �xed. We 
onsider 
 2℄2a; �0=5[, tobe 
hosen later. The element ! 2 �1(a; b) is now �xed.First of all, we 
onsider the polygonal 
hange of time  2 � de�ned by (0) = 0;8 i 2 f1; :::; ng;  (Ti � 
) = Ti � 
;  (Ti) = ti;  (Ti + 
) = Ti + 
; (T ) = T(4.9)Simple 
omputations show thatsup[0;T ℄ j (t)� tj � a ; jjj jjj � 2a=
(4.10) and Z T0 1f (s)6=sgds � 2n
 = C
(4.11)This 
hange of time will allow us to prove the lemma. Indeed, we will 
he
k theexisten
e of a 
onstant K < 1, not depending on a, b, on ! 2 �1(a; b) nor on� 2 [�1; 1℄, su
h that supt2[0;T ℄ ���Xp;�t � S� (t)��� � K(b+ 
)(4.12) supt2[0;T ℄ ��� ���Xp;�t � ���S� (t)��� � K(b+ 
)(4.13) supt2[0;T ℄ ��� �2��2Xp;�t � �2��2S� (t)��� � K(b+ 
)(4.14)



16This way, we will obtain, for all ! 2 �1(a; b),supj�j�1 hÆ �Xp;�; S��+ Æ � ���Xp;�; ���S��+ Æ � �2��2Xp;�; ���S��i � 3K(b+ 
) + 6a=
Choosing b� < (�=3K) ^ (d0=2), 
 < (�=3K)^ (�0=5), and a� < (�
=18)^ (�0=10)^(
=2), we will obtain (4.7). We thus just have to prove (4.12), (4.13), and (4.14).Sin
e the three proofs are similar, we will only 
he
k (4.13). We thus assume that(4.12) is proved. Then we set ��t = ���Xp;�t � ���S�t . A dire
t 
omputation, usingequations (3.9), (3.14), and the fa
t that 1f (t)�tig = 1ft�Tig, shows that for all! 2 �1(a; b),j��t j � nXi=1 jh0x(Xp;�Ti�; 
�(Zi))j � ��� ���Xp;�Ti� � ���S�ti����� 1ft�Tig+ nXi=1 �� ���S�ti���� ���h0x(Xp;�Ti�; 
�(Zi))� h0x(S�ti�; 
�(Zi))���� 1ft�Tig+ nXi=1 �� ���S�ti���� ��h0x(S�ti�; 
�(Zi))� h0x(S�ti�; 
�(zi))��� 1ft�Tig+ nXi=1 ���h0z(Xp;�Ti�; 
�(Zi))���� j�(Zi)� �(zi)j � 1ft�Tig+ nXi=1 j�(zi)j � ���h0z(Xp;�Ti�; 
�(Zi))� h0z(S�ti�; 
�(Zi))���� 1ft�Tig+ nXi=1 j�(zi)j � ��h0z(S�ti�; 
�(Zi))� h0z(S�ti�; 
�(zi))��� 1ft�Tig+ Z  (t)t jg0(S�s )j � �� ���S�s �� ds+ Z t0 ���g0(S� (s)) ���S� (s) � g0(S�s ) ���S�s ��� ds+ Z t0 jg0(Xp;�s )j � ��� ���S� (s) � ���Xp;�s ��� ds+ Z t0 ��� ���S� (s)���� jg0(S� (s))� g0(Xp;�s )jds� A�t +B�t + :::+ J�t(4.15)



17We study these terms one by one. First noti
e that thanks to (H), sin
e � belongsto D and ! 2 �1(a; b), for all x in IR, all i in f1; :::; ng,jh0x(x; 
�(Zi))j � jh0x(x; zi)j+ k h00zx k1 j
�(Zi)� zij� supk �(zk) +K(jZi � zij+ k � k1) � K +K(b+K) � K(4.16)This way, we obtain, sin
e ti =  (Ti),A�t � K nXi=1 j��Ti�j � 1ft�Tig(4.17)Using Lemma 3.7, we know that for some k0 <1,supt;� hjS�t j+ �� ���S�t ��+ ��� �2��2S�t ���i � k0(4.18)Furthermore, one 
an 
he
k as previously (see (4.16)) that for all x in IR,, all i inf1; :::; ng, jh00xx(x; 
�(Zi))j � K(4.19)Sin
e ti =  (Ti), we dedu
e thatB�t � k0K nXi=1 jXp;�Ti� � S� (Ti)�j � 1ft�Tig(4.20)Using �nally (4.12), we obtain B�t � K(b+ 
)(4.21)It is 
lear that C�t � k0 k h00zx k1 nXi=1 j
�(Zi)� 
�(zi)j� K nXi=1 fjZi � zij+ k �0 k1 jZi � zijg � Kb(4.22)and that D�t �k h0z k1 nXi=1 k �0 k1 jZi � zij � Kb(4.23)Using again (4.12), we see thatE�t �k � k1k h00zx k1 nXi=1 ���Xp;�Ti� � S� (Ti)���� � K(b+ 
)(4.24)One 
an also 
he
k thatF �t �k � k1k h00zz k1 nXi=1 ��
�(Zi)� 
�(zi)�� � Kb(4.25)



18Using (4.18) and (4.10), we obtainG�t �k g0 k1 k0j (t)� tj � Ka(4.26)Due to (4.18) and (4.11), we see thatH�t � 2 k g0 k1 k0 Z T0 1f (s)6=sgds � K
(4.27)It is immediate that I�t �k g0 k1 Z t0 j��s jds(4.28)We �nally obtain, thanks to (4.12) and (4.18),J�t � k0T k g00 k1 K(b+ 
) � K(b+ 
)(4.29)We thus have proved, sin
e 2a � 
, thatj��t j � K1(b+ 
) +K2 Z t0 j��s jds+K3 nXi=1 j��Ti�j1ft�Tig(4.30)where the 
onstants Ki do not depend on � 2 [�1; 1℄ nor on ! 2 �1(a; b). We nowapply Lemma 6.1, whi
h yields the existen
e of a 
onstant K4, su
h thatsup[0;T ℄ ����s �� � K4(b+ 
)(4.31)Hen
e, for all ! 2 �1(a; b), all � 2 [�1; 1℄, (4.13) holds, and the lemma is proved.Our aim is now to establish the following result, whi
h will allow to 
on
lude theproof of Proposition 3.5.Lemma 4.3. For all � > 0, there exists 
� > 0 su
h that for all a 2℄0; �0=10[,all b 2℄0; d0=2[, �1(a; b) \ �2(
�) � �2(�)(4.32)where�2(�) = n supj�j�1 k X� �Xp;� k1� � ; supj�j�1 k ���X� � ���Xp;� k1� � ;supj�j�1 k �2��2X� � �2��2Xp;� k1� � o(4.33)In order to prove this result, we have to begin with a te
hni
al lemma.Lemma 4.4. There exists K0 < 1 and 
0 > 0 su
h that for all a 2℄0; �0=10[,all b 2℄0; d0=2[, and all 
 < 
0,�1(a; b) \ �2(
) � ( supj�j�1; 0�t�T h��X�t ��+ �� ���X�t ��+ ��� �2��2X�t ���i � K0)(4.34)



19Proof.A dire
t 
omputation, using equation (3.8), shows that for all � 2 [�1; 1℄,all ! 2 �1(a; b) \ �2(
),jX�t j � jx0j+ nXi=1 jh(X�Ti�; 
�(Zi))j1ft�Tig+ Z t0 ZO=Op jh(X�s�; 
�(z))jN(ds; dz) + Z t0 jg(X�s ))jds(4.35)Using (H), and the fa
t that ! 2 �1(a; b), one easily 
he
ks that for all i 2 f1; :::; ng,jh(X�Ti�; 
�(Zi))j � K(1 + jX�Ti�j)(4.36)It is also 
lear, thanks to (H) and (2.9), thatjh(X�s�; 
�(z))j � jh(X�s�; z)j+ j
�(z)� zj supu jh0z(X�s�; u)j� K(1 + jX�s�j)(�(z) + j�(z)j)(4.37)and jg(X�s�)j � K(1 + jX�s�j)(4.38)Hen
ejX�t j � K +K nXi=1 jX�Ti�j1ft�Tig +K Z t0 jX�s jds+K Z t0 ZO=Op(�(z) + j�(z)j)N(ds; dz)+K sup[0;t℄ jX�s j � Z t0 ZO=Op(�(z) + j�(z)j)N(ds; dz)But, sin
e the left hand side member is in
reasing, and sin
e ! 2 �2(
), wededu
e that if 
 � 1,sup[0;t℄ jX�s j � K +K nXi=1 jX�Ti�j1ft�Tig +K Z t0 jX�s jds+K
� sup[0;t℄ jX�s j(4.39)Thus, if 
10 = (1=2K) ^ 1, we dedu
e that as soon as 
 � 
10,2 sup[0;t℄ jX�s j � K +K nXi=1 jX�Ti�j1ft�Tig +K Z t0 jX�s jds(4.40)Lemma 6.1 allows to 
on
lude the existen
e of a 
onstant K10 , not depending ona 2℄0; �0=10[, b 2℄0; d0=2[, 
 � 
10, � 2 [�1; 1℄ nor on ! 2 �1(a; b) \ �2(
) su
h thatsup[0;T ℄ jX�s j � K10(4.41)



20One 
an 
he
k in the same way the existen
e of 
20 > 0 and K20 < 1 su
h that if
 � 
20, for all � 2 [�1; 1℄ and all ! 2 �1(a; b) \ �2(
),sup[0;T ℄ h�� ���X�s ��+ ��� �2��2X�s ���i � K20(4.42)Choosing 
0 = 
10 ^ 
20 and K0 = K10 +K20 
on
ludes the proof of the lemma.We are now able to prove Lemma 4.3.Proof of Lemma 4.3. First of all, we 
onsider a 2℄0; �0=10[, b 2℄0; d0=2[, and
 2℄0; 
0[. We work with an element ! of �1(a; b) \ �2(
). We have to 
he
k thatsup�2[�1;1℄ supt2[0;T ℄ ���X�t �Xp;�t ��� � K
(4.43) sup�2[�1;1℄ supt2[0;T ℄ ��� ���X�t � ���Xp;�t ��� � K
(4.44) sup�2[�1;1℄ supt2[0;T ℄ ��� �2��2X�t � �2��2Xp;�t ��� � K
(4.45)As usual, the proofs of the three inequalities are similar, and we will only 
he
k(4.44). We thus assume that (4.43) holds. From now on, � 2 [�1; 1℄ is �xed, and weset V �t = ���X�t � ���Xp;�t . One obtains, sin
e ! 2 �1(a; b) \ �2(
),jV �t j � nXi=1 �� ���X�Ti���� ���h0x(X�Ti�; 
�(Zi))� h0x(Xp;�Ti�; 
�(Zi))���� 1ft�Tig+ nXi=1 ���h0x(Xp;�Ti�; 
�(Zi))���� ��V �Ti���� 1ft�Tig+ Z t0 ZO=Op ��h0x(X�s�; 
�(z))��� �� ���X�s���N(ds; dz)+ Z t0 �� ���X�s ��� ��g0(X�s )� g0(Xp;�s )�� ds+ Z t0 ��g0(Xp;�s )��� ��V �s �� ds+ nXi=1 j�(Zi)j � ���h0z(X�Ti�; 
�(Zi))� h0z(Xp;�Ti�; 
�(Zi))���� 1ft�Tig+ Z t0 ZO=Op ��h0z(X�s�; 
�(z))��� j�(z)jN(ds; dz)



21� A�t +B�t + :::+G�t(4.46)Let's 
ompute. Thanks to Lemma 4.4, using (H), the fa
t that ! 2 �1(a; b) \�2(
), and (4.43), one easily 
he
ks that A�t � K
, and thatB�t � K nXi=1 ��V �Ti���� 1ft�Tig(4.47)For the same reasons, we obtainC�t +D�t + F �t +G�t � K
(4.48)and E�t � K Z t0 ��V �s �� ds(4.49)We �nally 
an write, for all ! 2 �1(a; b) \ �2(
), with a < �0=10, b < d0=2, 
 < 
0,��V �t �� � K
+K Z t0 ��V �s �� ds+K nXi=1 ��V �Ti���� 1ft�Tig(4.50)where K does not depend on !, �, a, b, nor 
. Using Lemma (6.1) allows to
on
lude that (4.44) holds, and the lemma is proved.We �nally are able to 
on
lude.Proof of Proposition 3.5. It is a simple asso
iation of the previous lemmas.Let � > 0 be �xed. Then, thanks to lemmas 4.2 and 4.3,�1(a�=2; b�=2) \ �2(
�=2) � �1(�=2) \ �2(�=2) � 
�m(�)(4.51)Thanks to Lemma 4.1, we dedu
e that P (
�m(�)) > 0, and the proposition is proved.5. Stri
t positivity of a solution to a Ka
 equation. The Ka
 equationdeals with the density of parti
les in a gaz, and is a one-dimensional "
ari
ature" ofthe famous spatially homogeneous Boltzmann equation. We denote by f(t; v) thedensity of parti
les whi
h have the velo
ity v 2 IR at the instant t > 0. Then�f�t (t; v) = Zv�2IR Z ��=�� [f(t; v0)f(t; v0�)� f(t; v)f(t; v�)℄�(�)d�dv�(5.1)where v0 = v 
os � � v� sin � ; v0� = v sin � + v� 
os �(5.2)are the post-
ollisional velo
ities. The "
ross se
tion" � is an even and positivefun
tion on [��; �℄nf0g exploding near 0 be
ause of an a

umulation of "grazing
ollisions", but satisfying the physi
ally reasonnable assumptionZ �0 �2�(�)d� <1(5.3)



22We are interested in the stri
t positivity of the solution to (5.1). In the 
ase with
uto�, namely when R �0 �(�)d� < 1, the analysts Pulvirenti and Wennberg haveproved in [21℄ a Maxwellian lowerbound for f . It is also proved in [10℄ that fdoes never vanish if R �0 ��(�)d� = 1. We now would like to study the 
ase whereR �0 �(�)d� =1, but R �0 ��(�)d� <1.First, we will 
onsider solutions in the following (weak) sense, whi
h is obtainedby using a standard integration by parts.Definition 5.1. Let P0 be a probability measure on IR that admits a momentof order 2. A positive fun
tion f on ℄0;+1[�IR is a weak solution of Eq. (5.1) withinitial distribution P0 if for every test fun
tion � 2 C2b (IR),Zv2IR �(v)f(t; v)dv = Zv2IR �(v)P0(dv)+ Z t0 Zv2IR Zv�2IR Z ��� n�(v 
os � � v� sin �)� �(v)of(s; v)f(s; v�)�(�)d�dv�dvds(5.4)We now state our assumption.Assumption (K) :1. The initial distribution P0 admits a moment of order 2, andR �0 ��(�)d� <1.2. P0 is not a Dira
 mass at 0. The 
ross se
tion splits into � = �0+�1,where �1 is even and positive on [��; �℄nf0g, and there exists k0 >0, �0 2℄0; �[, and r 2℄1; 2[ su
h that �0(�) = k0j�jr 1[��0;�0℄(�).Following Graham, M�el�eard, [13℄, we build the following random elements.Notation 5.2. We denote by N0 and N1 two independant Poisson measureson IR+ � [0; 1℄� [��; �℄, with intensity measures :�0(ds; d�; d�) = �0(�)dsd�d� ; �1(ds; d�; d�) = �1(�)dsd�d�(5.5)We will write N = N0 + N1. We 
onsider a real-valued random variable V0 inde-pendant of N0 and N1, of whi
h the law is P0. We also assume that our probabilityspa
e is the 
anoni
al one asso
iated with the independent random elements V0, N0,and N1 :(
;F ; fFtg; P ) = (
0;F 0; fF 0g; P 0)
 (
0;F0; fF0t g; P 0)
 (
1;F1; fF1t g; P 1)We will 
onsider [0; 1℄ as a probability spa
e, denote by d� the Lebesgue measure on[0; 1℄, by E� and L� the expe
tation and law on ([0; 1℄;B([0; 1℄); d�).



23The following results are proved by Desvillettes, Graham, M�el�eard, [6℄, Theorem3.6, and Graham, M�el�eard, [13℄, Theorem 1.6 and Corollary 1.8.Theorem 5.3.1. Assume (K)-1. There exists a 
�adl�ag adapted pro
ess fVt(!)g on 
 and apro
ess fWt(�)g on [0; 1℄ su
h thatVt(!) = V0(!) + Z t0 Z 10 Z ��� �(
os � � 1)Vs�(!)� (sin �)Ws�(�)�N(!; ds; d�; d�)(5.6)L�(W ) = L(V ) and E sup[0;T ℄V 2t ! <1The uniqueness in law holds, in the sense that L(V ) = L�(W ) is unique.2. Assume (K). Then for ea
h t > 0, the law of Vt admits a density f(t; :) withrespe
t to the Lebesgue measure on IR. The obtained fun
tion f is a solutionto the Ka
 equation (5.1) in the sense of De�nition 5.1.3. Assume furthermore that P0 admits some moments of all orders. Then forea
h t > 0, the fun
tion f(t; v) is of 
lass C1 in v 2 IR.The result we will prove in this se
tion is the following.Theorem 5.4. Assume (K), and 
onsider the solution f in the sense of Def-inition 5.1 of equation (5.1) built in Theorem 5.3. Then there exists a stri
tlypositive fun
tion g(t; v) on ℄0;+1[�IR, 
ontinuous in v, su
h that for all t > 0,f(t; v)dv � g(t; v)dv.If f(t; v) is 
ontinuous in v (for example, if P0 admits some moments of all orders),this means that f(t; v) does never vanish.In the sequel, we will sket
h the proof of this result, by applying the methoddes
ribed in the previous se
tions to the pro
ess fVtg solution of (5.6) built inTheorem 5.3-1. We will always work on the �nite time interval [0; T ℄, for someT > 0 �xed, whi
h of 
ourse suÆ
es. In a �rst subse
tion, we will introdu
e theskeleton asso
iated with fVtg, we will de�ne the "dire
tions" asso
iated with N ,and state an intermediate result, looking like Theorem 2.3. We will sket
h theproof of this result in a se
ond subse
tion. Finally, we will 
on
lude in the lastsubse
tion, by studying the skeleton.We give the following lemma that will be frequently used.Lemma 5.5. Assume (K)-1. For all t � 0, supp P0 � supp L(Vt) =supp L�(Wt).



24 The main idea of the proof is very simple. If N were a �nite Poisson measure,it would be immediate. One thus has to approximate N with a sequen
e of �nitePoisson measures Np. Then, Vt will be 
lose to V0 on the set where Np = 0 (ofwhi
h the probability is stri
tly positive), and N�Np will go to 0 in a 
ertain sense.One 
on
ludes by using the independen
e, for ea
h p, of V0, Np, and N �Np. See[11℄, Lemma 1.6 for the rigorous proof of a very similar lemma.5.1. An intermediate result. First of all, we introdu
e the skeleton asso
iatedwith fVtg. Noti
e that instead of one random element (in the 
ase of Eq. (1.1)),we have to deal with three : V0, N0, N1. Inspired by Lemma 5.5 and the form ofequation (5.6), we 
onsiderV0 = supp P0 ; M0 = [pMp0 ; M1 = [pMp1(5.7)where Mp0 = (m = nXi=1 Æ(ti;wi;�i) , n 2 IN; 0 < t1 < ::: < tn < T;wi 2 V0; j�ij 2℄1=p; �0[ )
Mp1 = (q = nXi=1 Æ(ti;wi;�i) , n 2 IN; 0 < t1 < ::: < tn < T;wi 2 V0; j�ij 2 supp �1\℄1=p; �[)Then, for v0 2 V0, m 2 M0, and q 2 M1, we denote by S(v0;m; q) the uniquesolution of the deterministi
 equation :St(v0;m; q) = v0+Z t0 ZIR Z ��� fSs�(v0;m; q)(
os � � 1)� w sin �g (m+q)(ds; dw; d�)(5.8)We also introdu
e the following dire
tions in whi
h we will "di�erentiate"S(v0;m; q) with respe
t to m.Definition 5.6.1. Let � be a C1 fun
tion on [��0; �0℄. We say that � belongs toD if j�(�)j � j�j=2,if �(��0) = �(�0) = 0, if �(�) � 1=2, and if � 2 L1(�0(�)d�), where�(�) = j�0(�)j+ 3r � 2r+1 j�(�)jj�j(5.9)2. If � 2 D, we set, for ea
h � 2 [�1; 1℄, 
��(�) = � + ��(�), whi
h is anin
reasing bije
tion from ℄� �0; �0[nf0g into itself. For any m 2M0, the newinteger-valued measure 
��(m) still belongs to M0.Remark 5.7. If � 2 D, then the assumptions of De�nition 2.2 are satis�ed inthe parti
ular 
ase where O =℄� �0; �0[=f0g, and �(�) = �0(�).



25Proof. First, it is 
lear that � goes to 0 when � goes to �O = f��0; 0; �0g.Thanks to (5.9), one 
an 
he
k that j�0j � 1=2. Then, for example for � 2℄0; �0[,��(�) = 1�0(�) sup��2[��j�(�)j;�+j�(�)j℄ j�00(��)j� �rk0 sup��2[��j�(�)j;�+j�(�)j℄ rk0��r+1� r�r(� � j�(�)j)r+1 � r2r+1�(5.10)where the last inequality 
omes from the fa
t that j�(�)j � j�j=2. Hen
e,��(�) � j�0(�)j+ 3j�(�)jr2r+1=� � �(�)(5.11)where � is de�ned by (5.9).One easily 
he
ks that for all v0 2 V0, all m 2 M0, all q 2 M1, and ea
ht � 0, the map � 7! St(v0; 
��(m); q) is twi
e di�erentiable on [�1; 1℄, and thatD�St(v0;m; q) = ���St(v0; 
��(m); q)���=0, satis�es the following linear equation :D�St(v0;m; q) = Z t0 ZIR Z ���D�Ss�(v0;m; q)(
os � � 1)(m+ q)(ds; dw; d�)� Z t0 ZIR Z ��� fSs�(v0;m; q) sin � + w 
os �g�(z)m(ds; dw; d�)(5.12)The following result will be proved by following the method des
ribed in theprevious se
tions.Theorem 5.8. Let t > 0, and y 2 IR be �xed. Assume that there exists v0 2 V0,m 2M0, q 2 M1, and � 2 D, su
h thaty = St(v0;m; q) ; (m+ q)(ftg � IR � [��; �℄) = 0D�St(v0;m; q) 6= 0(5.13)Then the law of Vt is bounded below by a nonnegative measure admitting a 
ontinuousdensity not vanishing at y.5.2. Sket
h of the proof of Theorem 5.8. We �rst give a 
riterion of stri
t posi-tivity. As usual, we de�ne for all � 2 [�1; 1℄, � 2 D, ! 2 
, the perturbed Poissonmeasure 
��(N0). Then we 
onsider the shift T �� on 
 de�ned byV0 Æ T �� = V0 ; N0 Æ T �� = 
��(N0) ; N1 Æ T �� = N1(5.14)In this situation, Theorem 3.2 still holds (this is a parti
ular 
ase of Theorem2.3 in [10℄). Furthermore, one 
an 
he
k (see [10℄) that for all t > 0, the map



26t 7! V �;�t = Vt Æ T �� is a.s. twi
e di�erentiable on [�1; 1℄. The following equationsare satis�ed :V �;�t = V0 + Z t0 Z 10 Z ��� h�
os 
��(�)� 1�V �;�s� � sin 
��(�)Ws�(�)iN0(ds; d�; d�)+ Z t0 Z 10 Z ��� h(
os � � 1)V �;�s� � sin �Ws�(�)iN1(ds; d�; d�)(5.15)���V �;�t = Z t0 Z 10 Z ��� �
os 
��(�)� 1� ���V �;�s� N0(ds; d�; d�)+ Z t0 Z 10 Z ��� (
os � � 1) ���V �;�s� N1(ds; d�; d�)� Z t0 Z 10 Z ��� hsin 
��(�)V �;�s� + 
os 
��(�)Ws�(�)i�(�)N0(ds; d�; d�)(5.16)�2��2 V �;�t = Z t0 Z 10 Z ��� �
os 
��(�)� 1� �2��2 V �;�s� N0(ds; d�; d�)+ Z t0 Z 10 Z ��� (
os � � 1) �2��2 V �;�s� N1(ds; d�; d�)�2 Z t0 Z 10 Z ��� sin 
��(�) ���V �;�s� �(�)N0(ds; d�; d�)(5.17) � Z t0 Z 10 Z ��� h
os 
��(�)V �;�s� � sin 
��(�)Ws�(�)i�2(�)N0(ds; d�; d�)The skeleton is also regular enough. For ea
h � 2 [�1; 1℄. the 
�adl�ag fun
tionsSt(v0; 
��(m); q), ���St(v0; 
��(m); q), and �2��2St(v0; 
��(m); q) satisfy equations as(5.15), (5.16), and (5.17), where V0, N0, and N1 have been repla
ed by v0, m, andq.It thus suÆ
es, as in Se
tion 3, to prove the following proposition.Proposition 5.9. Let v0 2 V0, m 2 M0, q 2 M1, and � 2 D be �xed. Thenfor all � > 0, the set
�v0;m;q(�) = n supj�j�1 Æ �V �;�; S(v0; 
��(m); q)� � � ;supj�j�1 Æ � ���V �;�; ���S(v0; 
��(m); q)� � � ;



27supj�j�1 Æ � �2��2 V �;�; �2��2S(v0; 
��(m); q)� � � o(5.18)has a stri
tly positive probability.We now would like to give an idea of the proof of this proposition. We thus �xv0 2 V0; m = n0Xi=1 Æ(t0i ;w0i ;�0i ) 2Mp0; q = n1Xi=1 Æ(t1i ;w1i ;�1i ) 2Mp1(5.19)and � 2 D. For simpli
ity, we denote V � = V �;�, and S�t = St(v0; 
��(m); q). Wealso 
onsider the �nite Poisson measures Np = Np0 +Np1 , whereNp0 = N0j[0;T ℄�[0;1℄�f[��0;�0℄n[�1=p;1=p℄g = �0Xi=1 Æ(T 0i ;�0i ;�0i )(5.20) Np1 = N1j[0;T ℄�[0;1℄�fsupp �1n[�1=p;1=p℄g = �1Xi=1 Æ(T 1i ;�1i ;�1i )(5.21)We denote by V �;p the solution of equation (5.15) where N0 and N1 have beenrepla
ed by Np0 and Np1 . Then we 
onsider the following sets.�0(�) = f! 2 
 / jV0 � v0j � �g�01(a; b; 
) = n! 2 
 . �0 = n0; 8 i; t0i � a � T 0i � t0i ; jWT 0i (�0i )� w0i j � b ;j�0i � �0i j � 
o�11(a; b; 
) = n! 2 
 . �1 = n1; 8 i; t1i � a � T 1i � t1i ; jWT 1i (�1i )� w1i j � b ;j�1i � �1i j � 
o�02(d) = (! 2 
 , Z T0 Z 10 Z 1=p�1=p(j�j+ j�(�)j)(1 + jWs(�)j)N0(ds; d�; d�) � d)�12(d) = (! 2 
 , Z T0 Z 10 Z 1=p�1=p j�j(1 + jWs(�)j)N1(ds; d�; d�) � d)Then one 
an 
he
k that for all � > 0, a > 0, b > 0, 
 > 0, d > 0, a0 > 0, b0 > 0,
0 > 0, d0 > 0, small enough,P ��0(�) \ �01(a; b; 
) \ �11(a0; b0; 
0) \ �02(d) \ �12(d0)	 > 0(5.22)



28It suÆ
es to use the some independen
e arguments, Lemma 5.5, the same argumentsas in the proof of Lemma 4.1, and the fa
ts that (j�j + j�(�)j)(1 + jWs(�)j) 2L1(�0(�)d�d�ds) and j�j(1 + jWs(�)j) 2 L1(�1(�)d�d�ds). Indeed, for example,Z T0 Z 10 Z ���(j�j+ j�(�)j) � (1 + jWs(�)j)�0(�)d�d�ds� T  1 +E� sup[0;T ℄ jWtj!!Z ��� (j�j+ j�(�)j) �0(�)d� <1(5.23)This shows the way to prove Proposition 5.9 : following the ideas of Lemma 4.2,one 
an 
he
k that for � > 0 �xed, then for � > 0, a > 0, b > 0, 
 > 0 small enough,�0(�) \ �01(a; b; 
) \ �11(a; b; 
)� n supj�j�1 Æ �V �;p; S(v0; 
��(m); q)� � � ; supj�j�1 Æ � ���V �;p; ���S(v0; 
��(m); q)� � � ;supj�j�1 Æ � �2��2 V �;p; �2��2S(v0; 
��(m); q)� � � o(5.24)Then, following the ideas of Lemma 4.3, we see that for � > 0 �xed, we obtain, if� > 0, a > 0, b > 0, 
 > 0, and d > 0 are small enough,�0(�) \ �01(a; b; 
) \ �11(a; b; 
) \ �02(d) \ �12(d)� n supj�j�1 k V � � V �;p k1� � ; supj�j�1 k ���V � � ���V �;p k1� � ;supj�j�1 k �2��2 V � � �2��2 V �;p k1� � o(5.25)This 
on
ludes the proof of Proposition 5.9.The sket
h of proof of Theorem 5.8 is 
omplete.5.3. Proof of Theorem 5.4. We now have to study the skeleton, in order to
he
k that under (K), every y in IR satis�es the assumptions of Theorem 5.8. Thus(K) is assumed. Hen
e V0 
ontains (at least) one point v0 6= 0. Sin
e the supportof �1 might be the empty set, and sin
e the support of P0 might 
ontain only v0,we will only study the skeletons of the form S(m) = S(v0;m; 0), for m 2 N0, whereN0 is the following subset of V0 :N0 = (m = nXi=1 Æ(ti;v0;�i) 2M0)(5.26)We will prove the following proposition :



29Proposition 5.10. Let y 2 IR, and let t > 0 be �xed. There exists m 2 N0,and � 2 D, su
h thatSt(m) = y ; m(ftg � IR � [��0; �0℄) = 0 ; D�St(m) 6= 0(5.27)This proposition, 
omposed with Theorem 5.8, drives immediately to Theorem5.4. Thus, the whole sequel is devoted to the proof of this proposition.We will assume that v0 = 1. We may do so. Indeed, assume that v0 6= 1.Then we noti
e that (V=v0;W=v0) satisfy (5.6) with initial 
ondition V0=v0. Thesupport of the law of V0=v0 
ontains 1. One 
on
ludes easily by using the uniquenessin law for (5.6).We now 
onsider the setE = f(n; �1; :::; �n) / n 2 IN; �i 2℄� �0; �0[nf0gg(5.28)and the fun
tion F from E into IR, de�ned re
ursively byF (0) = 1 ; F (n+ 1; �1; :::; �n; �n+1) = F (n; �1; :::; �n) 
os �n+1 � sin �n+1The main idea is that we have to prove that F is surje
tive. Indeed, for any t > 0�xed, 
hoosing m = Pni=1 Æ(ti;1;�i) 2 N0, with 0 < t1 < ::: < tn < t, we see thatSt(m) = F (n; �1; :::; �n). We �rst prove a lemma showing that F 
an go to in�nity.Lemma 5.11. There exists a sequen
e '0n in ℄ � �0; 0[[℄0; �0[ su
h that thesequen
e F (n; '01; :::; '0n) in
reases to in�nity as n tends to in�nity.Proof. First noti
e that for any u > 0, the fun
tion gu(�) = u 
os � � sin � on[��; �℄ rea
hes its maximum at �u = � ar
tan1=u, and that gu(�u) = p1 + u2.Assume �rst that �0 > �=4. We de�ne re
ursively, for n � 0,'0n+1 = � ar
tan 1F (n; '01; :::; '0n)(5.29)We also set un = F (n; '01; :::; '0n). Then un grows to in�nity, be
ause u0 = 1 andun+1 =p1 + u2n. We thus just have to prove that for all i � 1, '0i 2℄� �0; �0[nf0g.But '01 = � ar
tan1 = ��=4 2℄ � �0; 0[, and, sin
e un in
reases to in�nity, wededu
e from (5.29) that '0n in
reases to 0, whi
h allows to 
on
lude that for all i,'0i 2℄� �0; 0[.Assume now that �0 � �=4, and 
onsider the sequen
e u0n = F (n;��0=2; :::;��0=2).Then u00 = 1, and u0n+1 = (
os �0=2)u0n + sin �0=2, from whi
h we dedu
e that forall n � 0, u0n = (
os �0=2)n + sin �0=21� 
os �0=2 (1� (
os �0=2)n)(5.30)



30Hen
e u0n in
reases to (sin �0=2)=(1� 
os �0=2) > 1= tan �0, and there exists n0 � 0su
h that ar
tan 1=u0n0 < �0. We thus set '01 = ::: = '0n0 = ��0=2, and re
ursively,for n � n0, '0n+1 = � ar
tan 1F (n; '01; :::; '0n)(5.31)One 
on
ludes, as in the 
ase where �0 > �=4, that F (n; '01; :::; '0n) goes to in�nity,and that for all i, '0i 2℄� �0; 0[.A se
ond lemma, shows that F 
an rea
h �1.Lemma 5.12. There exists m0 2 IN ,  01,..., 0m0 in ℄0; �0[, su
h that for alln 2 f0; :::;m0 � 1g, F (n;  01 ; :::;  0n) � F (n+ 1;  01 ; :::;  0n+1) andF (m0;  01 ; :::;  0m0) = �1(5.32)Proof. Noti
e that the sequen
e F (n; �0=2; :::; �0=2) goes to � sin(�0=2)=(1 �
os(�0=2)) < �1 (be
ause �0 < �). We denote by m0 2 IN the �rst n 2 IN su
hthat F (m0; �0=2; :::; �0=2) � �1. ThenF (m0�1; �0=2; :::; �0=2) 
os 0�sin 0 > �1 � F (m0�1; �0=2; :::; �0=2) 
os �0=2�sin �0=2(5.33)Thus there exists  0m0 2℄0; �0=2℄ su
h that �1 = F (m0�1; �0=2; :::; �0=2) 
os 0m0 �sin 0m0 = F (m0; �0=2; :::; �0=2;  0m0). We 
on
lude by setting  01 = ::: =  0m0�1 =�0=2.Proof of Proposition 5.10. We break the proof in several steps.Step 1. We �rst prove that F is surje
tive. Let y > 1. Thanks to Lemma 5.11,there exists n 2 IN su
h that F (n; '01; :::; '0n) < y � F (n + 1; '01; :::; '0n+1). This
an also be writtenF (n; '01; :::; '0n) 
os 0� sin 0 < y � F (n; '01; :::; '0n) 
os'0n+1 � sin'0n+1(5.34)Thus there exists � 2 ['0n+1; 0[ su
h that y = F (n; '01; :::; '0n) 
os � � sin �. In otherwords, y = F (n+ 1; '01; :::; '0n; �), and F rea
hes y.If y 2 [0; 1℄, one 
an use the same argument, using Lemma 5.12 instead of Lemma5.11.Assume now that y � 0, and 
onsider n 2 IN , �1,...,�n in ℄� �0; �0[nf0g, su
h that�y = F (n; �1; :::; �n). One 
an 
he
k, using Lemma 5.12, thaty = F (m0 + n;  01 ; :::;  0m0 ;��1; :::;��n)(5.35)and F rea
hes y.Step 2. Let now y 2 IR be �xed, and let n 2 IN , �1,...,�n in ℄� �0; �0[nf0g su
h thaty = F (n; �1; :::; �n). One 
an easily 
he
k the existen
e of � 2℄0; �0[, �0 2℄0; �0[, assmall as we want, su
h thaty = (y 
os�+ sin�) 
os�0 � sin�0(5.36)



31We 
hoose � and �0 small enough, in order to obtain �0 < inffj�1j; :::; j�njg, andsu
h that y 6= �1= sin�0.Then it is 
lear that y = F (n+ 2; �1; :::; �n;��; �0)(5.37)We 
onsider any 0 < t1 < ::: < tn+2 < t, and we setm = nXi=1 Æ(ti;1;�i) + Æ(tn+1;1;��) + Æ(tn+2;1;�0)(5.38)whi
h belongs toN0. Then, y = St(m), andm(ftg�IR�℄��0; �0[) = 0. Furthermore,
hoosing any � 2 D in su
h a way that �(�0) 6= 0, but �(��) = �(�1) = ::: =�(�n) = 0, we see thatD�St(m) = ��� [(y 
os�+ sin�) 
os(�0 + ��(�0))� sin(�0 + ��(�0))℄���=0= ��(�0) [(y 
os�+ sin�) sin�0 + 
os�0℄(5.39)Thus D�St(m) 6= 0, ex
ept if �0 = � ar
tan1=(y 
os�+ sin�). But if so, y 
os� +sin� = �1= tan�0, and we dedu
e from (5.36) thaty = � 
os�0= tan�0 � sin�0 = �1= sin�0(5.40)whi
h was supposed to fail. Hen
e D�St(m) 6= 0, and this 
on
ludes the proof.The proof of Theorem 5.4 is 
omplete.6. Appendix. We give in this annex an extended version of Gronwall's lemma.Lemma 6.1. Let f be a positive 
�adl�ag fun
tion on [0; T ℄. Assume that for somea � 0, b � 0, 
 � 0, and some 0 � t1 < t2 < ::: < tn � T ,f(t) � a+ b Z t0 f(s)ds+ 
 nXi=1 f(ti�)1ft�tig(6.1)Then there exists a 
onstant K, depending only b, 
, n, T , su
h thatsup[0;T ℄ f(t) � K � a(6.2)A somewhat more general version of this Lemma 
an be found in the Appendixof Ethier, Kurtz, [7℄. We however give an idea of the proof.Proof. Thanks to Gronwall's Lemma, it is obvious that for all t 2 [0; t1[,f(t) � a� ebt1 � a� ebT(6.3)Hen
e f(t1�) � aebT , and thus, for all t 2 [0; t2[,f(t) � (a+ 
aebT ) + b Z t0 f(s)ds(6.4)



32whi
h implies, thanks to Gronwall's Lemma again, that for all t 2 [0; t2[,f(t) � (a+ 
aebT )ebt2 � a� (1 + 
ebT )ebT(6.5)Iterating the method, we obtain the result.REFERENCES[1℄ S. Aida, S. Kusuoka, D. Stroo
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