
On long time behavior of some 
oagulationpro
essesNi
olas Fournier1, Bernard Roynette1, Etienne Tanr�e2Abstra
tWe 
onsider an in�nite system of parti
les 
hara
terized by their posi-tion and mass, in whi
h 
oales
en
e o

urs. Ea
h parti
le endures Brown-ian ex
itation, and is subje
ted to the attra
tion of a potential. We de�nea sto
hasti
 pro
ess (Xt;Mt)t�0 des
ribing the evolution of the positionand mass of a typi
al parti
le. We show that under some 
onditions, themass pro
ess Mt goes almost surely to in�nity, while the position pro
essXt tends almost surely to 0, as time tends to in�nity.Key words : Nonlinear sto
hasti
 di�erential equations with jumps, Coales
en
e.MSC 2000 : 60H10, 60K40.1 Introdu
tionWe 
onsider an in�nite system of parti
les 
hara
terized by their position x 2 Rdand their massm 2 N� . The mass of a parti
le stands for the number of elemen-tary parti
les it 
ontains. Ea
h parti
le (of size m) endures three phenomena.First, its spatial motion is under the in
uen
e of a Brownian ex
itation, witha 
oeÆ
ient �(m). We naturally assume that the more a parti
le is large, themore its motion is regular, that is, � is a de
reasing fun
tion of m. Next, itendures the e�e
t of a potential: ea
h parti
le is attra
ted by the origin 0, by afor
e proportional to its mass so that the speed attra
tion is independent of themass. Finally, ea
h parti
le 
oales
es with other parti
les. To be more pre
ise,we will assume that two parti
les (of masses i and j) of whi
h the lo
ations areat distan
e smaller than " 
oales
e at rate "�dK(i; j), to give one parti
le ofmass i + j. The delo
alisation parameter " > 0 is �xed, while the 
oagulationkernel K is given.One may write down an integro-di�erential equation satis�ed by the 
on
entra-tion f(t; x; i) of parti
les of size i and position x at the instant t (see Lauren�
ot-Mis
hler [4℄ for a spe
ial 
ase of di�usions). We however adopt, in the present1Institut Elie Cartan, Campus S
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paper, a probabilisti
 approa
h in the spirit of Tanaka [6℄ (for the Boltzmannequation), see also Dea
onu-Fournier [1℄ for a 
oagulation equation. We 
on-sider a sto
hasti
 pro
ess (Xt;Mt)t�0, des
ribing the evolution of the lo
ationand mass of a typi
al parti
le. In other words, we follow the lo
ation and massof the parti
le 
ontaining a randomly 
hosen (at t = 0) elementary parti
le.There is an expli
it link between (Xt;Mt)t�0 and f(t; x; i): the law of (Xt;Mt)is given, for ea
h t, by Qt(dx; dm) =Pi�1 if(t; x; i)Æi(dm)dx (at least formally).Our aim here is to show that under suitable 
onditions, almost surely, (i)limt!1Mt = 1, and (ii) limt!1Xt = 0. While point (i) is quite straight-forward, point (ii) is mu
h more diÆ
ult. Indeed, we have to use that M tendssuÆ
iently qui
kly to in�nity, so that the \noise" 
oeÆ
ient �(Mt) tends suf-�
iently fast to 0. Thus in large time, the position pro
ess Xt behaves as thesolution to an ordinary di�erential equation whi
h is attra
ted by the origin.It would of 
ourse be more interesting to treat the lo
al 
ase " = 0 (see Se
tion4), but this would be mu
h more diÆ
ult.The paper is organized as follows: we give our notations, de�nitions and resultsin Se
tion 2. Then we write the proofs in several steps in Se
tion 3. Finally, wedeal with related problems in Se
tion 4.2 Notations and resultsLet us �rst of all des
ribe the parameters of the equation we will study.Assumption (H1):1. The dimension d 2 N� satis�es d � 2.2. The delo
alisation parameter is " > 0.3. The initial 
ondition Q0 is a probability measure on Rd � N� satisfyingZRd�N�(jxj2 +m)Q0(dx; dm) <1:4. The ex
itation 
oeÆ
ient � : N� 7! (0;1) is non-in
reasing, (for thesimpli
ity of proofs, we will assume that �(1) = 1) and limn!1 �(n) = 0.5. The 
oagulation kernel K : N� � N� 7! [0;1) satis�es, for some 
onstantA0, for all i; j in N� , K(i; j) = K(j; i) � A0(i+ j).6. The fun
tion C : R+ 7! R+ is of 
lass C2, bounded from above and frombelow, and its derivative C 0 is bounded. Finally, C 0(0) = 0.7. The fun
tion u : R+ 7! R is of 
lass C2, its derivative u0 is nonnegative,u0(0) = 0.8. There exists �0 > 0 su
h that for all x 2 R+ , u0(x) � �0x.9. For all i 2 N� , K(i; i) > 0.As a simple example, one may note that C(x) = 1, u(x) = x2, andK(i; j) = i+jful�ll assumption (H1).Let us now de�ne the random obje
ts that will drive the equation.2



Notation 2.1 We 
onsider two probability spa
es: (
;F ; fFtgt�0;P) is an ab-stra
t spa
e and ([0; 1℄;B[0; 1℄; d
) is an auxiliary spa
e (here d
 denotes theLebesgue measure). In order to avoid 
onfusion, the elements on this se
ondspa
e will be 
alled 
-elements, and the expe
tation on [0; 1℄ will be denoted E
 ,the laws L
 ,...We denote by vd the volume of the d-dimensional unit ball.We will denote by (X0;M0) a F0-measurable Rd � N� -valued random variableon 
 with law Q0. We also 
onsider a d-dimensional (Ft)t�0-adapted Brownianmotion (Bt)t�0 = (B1t ; :::; Bdt )t�0 on 
. We �nally denote by N"(dt; d
; du) a(Ft)t�0-adapted Poisson measure on [0;1)� [0; 1℄� [0;1) with intensity mea-sure (1=vd"d)dtd
du.The random obje
ts (X0;M0), B, and N" are independent.Let us �nally introdu
e the dynami
s we are interested in.De�nition 2.2 A sto
hasti
 pro
ess (Xt;Mt)t�0 is said to solve (SDE) if thefollowing 
onditions hold.(i) X is a 
ontinuous (Ft)t�0-adapted Rd -valued pro
ess, and M is a nonde-
reasing 
�adl�ag (Ft)t�0-adapted N� -valued pro
ess.(ii) For all T > 0, E hsup[0;T ℄(jXtj2 +Mt)i <1.(iii) There exist a 
-pro
ess ( ~Xt; ~Mt)t�0 su
h thatL
( ~X; ~M) = L(X;M) (2.1)and some random obje
ts (X0;M0), B, and N as in Notation 2.1 su
hthat for all t � 0, a.s.,Xt = X0 + Z t0 (� (Ms)C (jXsj)) 12 dBs+12 Z t0 � (Ms)�1� d2� C 0 (jXsj)jXsj Xsds� 12 Z t0 C (jXsj)u0 (jXsj) XsjXsjdsMt =M0 + Z t0Z 10 Z 10 ~Ms�(
)1�u�K(Ms�; ~Ms�(
))~Ms�(
) �1fjXs� ~Xs(
)j<"gN"(ds; d
; du) (2.2)Re
alling that (X;M) should des
ribe the evolution of the lo
ation and mass ofa parti
le 
ontaining a typi
al elementary parti
le, this equation is quite natural.Let us explain it right now.We assume that ea
h parti
le, with a given massm, independently of the others,and without the e�e
t of the potential, would move a

ording to a reversible3



di�usion, with a noise 
oeÆ
ient �(m). This is the Brownian ex
itation. Insu
h a 
ase, its lo
ation Xt would satisfy the following S.D.E.dXt =p�(m)C (jXsj)dBs + �(m)2 �1� d2� C 0 (jXsj)jXsj Xsds (2.3)Note that the generator of su
h a di�usion is simply the Lapla
e-Beltrami op-erator 
orresponding to the (radial) Riemanian metri
 gij = C(jxj)Æij .Next, our parti
le is subje
ted to the e�e
t of a (radial) potential, at a for
eproportional to its mass, so that the speed is independant of the mass. Thisexplains why we add the term�12C (jXsj)u0 (jXsj) XsjXsjds (2.4)in the S.D.E. satis�ed by Xt. The fa
t that this term does not depend of themass is natural, sin
e for instan
e, we know that parti
les do fall at a speedindependent of their mass in a Newtonian potential.Now, the masses of parti
les being non 
onstant in our model, we obtain thatthe lo
ation fXtgt�0 of our typi
al parti
le, whose mass is fMtgt�0, satis�esthe �rst equation in (2.2).Finally, the se
ond equation in (2.2) explains that our typi
al parti
le does
oales
e with other (typi
al) parti
les: we add ~Ms�(
) to the mass of our parti
le(that is, we set Ms =Ms� + ~Ms�(
)), with rate "�dK(Ms�; ~Ms�(
))= ~Ms�(
)and under the 
ondition that j ~Xs(
) � Xsj � ". Here ( ~Xs(
); ~Ms(
)) may beseen as the 
hara
teristi
s (lo
ation, mass) of another typi
al parti
le at theinstant s, sin
e we require that L
( ~X; ~M) = L(X;M) in (2.1).The rate K(i; j)=j (instead of K(i; j)) 
omes from the fa
t that we deal withparti
les 
ontaining a given elementary parti
le, so that ea
h parti
le (of size j)is represented j times: we have to divide the rate.For a pre
ise link between (Xt;Mt)t�0 and integro-di�erential equations, see[2℄, [1℄ (for slightly di�erent 
ontexts).Proposition 2.3 Assume (H1). Then there exists a solution (Xt;Mt)t�0 to(SDE).We omit the proof of this proposition. Indeed, using the strong existen
e anduniqueness of the S.D.E. satis�ed by X if � was 
onstant (see Equation (3.7)below), one may adapt easily the method of Fournier-Giet [3℄. Although theequations in [3℄ are spatially homogeneous, the delo
alization allows su
h anextension. Let us now state a �rst result.Theorem 2.4 Assume (H1), and 
onsider a solution (Xt;Mt)t�0 to (SDE).Then a.s., limt!1Mt =1 while limt!1 E [jXt j2℄ = 0.We are not able to prove, under (H1), that Xt tends a.s. to 0, and this might befalse. Indeed, if � does not tend suÆ
iently qui
kly to 0, the pro
ess X mightbe re
urrent. We thus add an hypothesis.4



Assumption (H2): There exist some 
onstant 
0 < 1 and �0 2 (3=4; 1) su
hthat for all m 2 N� , �(m) � 
0m�0 . There exists a0 > 0 su
h that for anyi; j 2 N� , K(i; j)=j � a0.Then the following result holds.Theorem 2.5 Assume (H1), (H2), and 
onsider a solution (Xt;Mt)t�0 to(SDE). Then a.s., limt!1Xt = 0.Before proving these statements, let us explain the main intuition of these 
on-vergen
e results.First, M tends to in�nity, sin
e if not, then M stops to in
rease, so that thenoise 
oeÆ
ient of X be
omes 
onstant. In su
h a 
ase, X will be re
urrent.This means that for some i, the 
on
entration of parti
les of mass i, of whi
hthe lo
ation is smaller than "=2, will be bounded below by some 
 > 0 (inde-pendently of t suÆ
iently large). This implies, sin
e K(i; i) > 0, that ea
h timeX is suÆ
iently 
lose to 0 (whi
h happens in�nitely often sin
e X is re
urrent),its 
oales
en
e rate is bounded below. Hen
e M 
an not stop to in
rease.Next X tends to 0, be
ause sin
e �(M) tends to 0, one may hope that fort suÆ
iently large, X behaves as the (deterministi
) solution y of y0(t) =� 12C(jy(t)j)u0(jy(t)j)y(t)=jy(t)j, whi
h tends to 0 as time tends to in�nity.3 ProofsWe break the proofs in several steps. In Subse
tion 3.1, we study the propertiesof the motion of parti
les with 
onstant mass. Subse
tion 3.2 is devoted to thedivergen
e of the mass pro
ess. We next show in Subse
tion 3.3 that the positionpro
ess tends to 0 in L2(
). We introdu
e a 
hange of time in Subse
tion3.4, whi
h will allow to use 
omparison theorems and to 
on
lude the proof ofTheorem 2.5 in Subse
tion 3.5.3.1 When � is 
onstantNotation 3.1 We �rst of all introdu
e, for ea
h � 2 (0; 1℄, the operator ��,de�ned, for all f : Rd 7! R of 
lass C2 by��f(x) = �2 hC(jxj)�f(x) + �1� d2� C0(jxj)jxj x:rf(x)i� 12C(jxj)u0(jxj)jxj x:rf(x) (3.5)We also denote by k� = [RRd e�u(jxj)=�C(jxj)�d=2dx℄�1, whi
h is positive thanksto (H1) (6 and 7) and by��(dx) = k�e�u(jxj)=�C(jxj)�d=2dx (3.6)whi
h is a probability measure on Rd . 5



We also will 
onsider the motion that one parti
le would follow independentlyof the others, if it had a 
onstant mass.De�nition 3.2 Assume (H1). Let � 2 (0; 1℄ and x 2 Rd be �xed. We willdenote by X�;x = (X�;xt )t�0 the unique strong solution of the following S.D.E.:X�;xt = x+ Z t0 (�C (jX�;xs j)) 12 dBs + �2 (1� d=2)Z t0 C 0 (jX�;xs j)jX�;xs j X�;xs ds�12 Z t0 C (jX�;xs j)u0 (jX�;xs j) X�;xsjX�;xs j ds (3.7)Under (H1), strong existen
e and uniqueness of su
h a pro
ess is well-known:all the 
oeÆ
ients are lo
ally lips
hitz 
ontinuous, the di�usion 
oeÆ
ient isbounded, while the drift 
oeÆ
ient is attra
ting to 0 (see (H1)-6,7). Then thefollowing proposition is 
lassi
al.Proposition 3.3 Assume (H1). Let � 2 (0; 1℄ and x 2 Rd be �xed.(i) The generator of the di�usion pro
ess X�;x is ��.(ii) The operator �� is symmetri
 with respe
t to ��(dx). More pre
isely, forany f and g in C2b (Rd ).ZRd g(x)��f(x)��(dx) = ��2 ZRdC(jxj)[rf(x):rg(x)℄��(dx) (3.8)(iii) An ergodi
 theorem holds for X�;x, i.e. for all Borel subset � of Rd , a.s.,limt!1 1t Z t0 1fX�;xs 2�gds = ��(�) (3.9)3.2 Almost sure divergen
e of the mass pro
essLemma 3.4 Assume (H1). Consider a solution (Xt;Mt)t�0 to (SDE). Al-most surely, as t tends to in�nity, Mt tends to in�nity.Proof First re
all that M is N� -valued, so that it is in parti
ular alwaysgreater than 1, and all its jumps are greater that 1. Furthermore, M is a.s.non-de
reasing, so that it a.s. has a �nite or in�nite limit M1. Thus,fM1 <1g = [t2N� [p2N� �t;p where �t;p = f8s � t; Ms = pg (3.10)We have to prove that for ea
h t; p, P[�t;p℄ = 0. We assume the 
ontrary, thatis there exists t0; p0 su
h that P[�t0;p0 ℄ > 0.Denote by ~�t0;p0 = f
 2 [0; 1℄ ; 8s � t0; ~Ms = p0g. Then, thanks to (2.1),R 10 1~�t0;p0 (
)d
 = P[�t0;p0 ℄ > 0.Then we note that on �t0;p0 , Xt 
oin
ides for all t � t0 with X�(p0);Xt0t�t0 , where6



X�;x is de�ned by (3.7) with the Brownian motion Bt0+� �Bt0 . Note also thatX�(p0);Xt0t�t0 is independent ofN";t0 = N"j[t0;1)�[0;1℄�[0;1). For the same reasons,we may write, for 
 2 ~�t0;p0 , ~Xt(
) as ~X�(p0); ~Xt0t�t0 . Using (2.2), we dedu
e thaton �t0;p0 , for all t � t0,Mt = p0 + Z tt0 Z 10 Z 10 ~Ms�(
)1�u�K(Ms�; ~Ms�(
))~Ms�(
) ��1fjXs� ~Xs(
)j<"gN"(ds; d
; du)� Z tt0 Z 10 Z 10 1fjXsj< "2g1fj ~Xs(
)j< "2g�1f
2~�t0;p0g1�u�K(p0; ~Ms�(
))~Ms�(
) �N"(ds; d
; du)= Z tt0 Z 10 Z 10 1�jX�(p0);Xt0s�t0 j< "2�1�j ~X�(p0); ~Xt0s�t0 (
)j< "2��1f
2~�t0;p0g1nu�K(p0;p0)p0 oN"(ds; d
; du) (3.11)Hen
e, still on �t0;p0 , M1 � N";t0(E), whereE = n(s; 
; u); s � t0; u � K(p0; p0)=p0; 
 2 ~�t0;p0 ;jX�(p0);Xt0s�t0 j < "2 ; j ~X�(p0); ~Xt0s�t0 (
)j < "2o (3.12)One easily dedu
es from Proposition 3.3 (iii) (sin
e ��(p0)(jxj < "=2) > 0),(H1)-9 and the fa
t that X and ~X are independent (sin
e they are de�ned ondi�erent probability spa
es) that if P
[~�t0;p0 ℄ > 0, then almost surely,Z 1t0 ds Z 10 d
 Z 10 du1f(s;
;u)2Eg =1 (3.13)We also know that E is independent of N";t0 (sin
e X�(p0);Xt0t�t0 is independentof N";t0). Re
alling that N";t0(ds; d
; du) is a Poisson measure with intensitymeasure (v�1d "�d)dsd
du, we dedu
e that almost surely, N";t0(E) = 1. Weobtain that on �t0;p0 , M1 = 1, whi
h is a 
ontradi
tion. This 
on
ludes theproof. �3.3 Convergen
e in L2 of the position pro
essWe now prove the se
ond part of Theorem 2.4.Lemma 3.5 Assume (H1). Consider a solution (Xt;Mt)t�0 to (SDE). Thenlimt!1 E [jXt j2℄ = 0. 7



Proof First note that thanks to (H1) (6 and 8), there exists b > 0 su
h thatfor all r 2 R+ , C(r)u0(r) � 2br. Next denote by Y the unique strong solutionof (here the mass pro
ess is 
onsidered as a parameter)Yt = X0 + Z t0 (� (Ms)C (jYsj)) 12 dBs+12 Z t0 � (Ms)�1� d2� C 0 (jYsj)jYsj Ysds� b Z t0 Ysds (3.14)In other words, Y satis�es the same equation as X repla
ing the drift term�C(Xs)u0(Xs)=2 by �bYs. Writing the SDEs satis�ed by jXtj2 and jYtj2, andusing the standard 
omparison theorem (see Revuz-Yor, [5℄), one dedu
es thata.s., for all t � 0, jXtj2 � jYtj2.We thus just have to 
he
k that limt!1 E [jYt j2℄ = 0. But Y 
an be written asYt = e�bthX0 + Z t0 ebs (� (Ms)C (jYsj)) 12 dBs+ 12 Z t0 ebs� (Ms)�1� d2� C 0 (jYsj)jYsj Ysdsi (3.15)We obtained this formula using the method of \variation of 
onstants". Onemight however 
he
k dire
tly that the pro
ess de�ned by (3.15) satis�es (3.14)and use a uniqueness argument.Using �nally the fa
ts that C and C 0 are bounded (see (H1)), that � is smallerthan 1, and that, thanks to the Lebesgue Theorem and Lemma 3.4, E [�(Mt )℄and E [�2 (Mt)℄ de
rease to 0 as t tends to in�nity leads to the 
on
lusion: forsome 
onstant A whose values 
hanges from line to line,E �jYtj2� � Ae�2bt "1 + Z t0 e2bsE [�(Ms )℄ds+ E  �Z t0 ebs�(Ms)ds�2!#� Ae�2bt 241 + Z t=20 e2bsds+ Z t=20 ebsds!235+Ae�2btE [�(Mt=2 ) + �2(Mt=2)℄24Z tt=2 e2bsds+ Z tt=2 ebsds!235� A �e�2bt + e�bt + E [�(Mt=2 ) + �2(Mt=2)℄� (3.16)whi
h tends to 0 as t tends to in�nity. �As an immediate 
orollary, we dedu
e thatCorollary 3.6 Assume (H1). Then a.s., lim inft!1 jXtj = 0.8



3.4 A 
hange of timeA diÆ
ulty to study the almost sure asymptoti
s of the lo
ation pro
ess X isthat we 
an not 
ompare the solutions X�;x to (3.7) with di�erent values of �,sin
e � appears in the di�usion 
oeÆ
ient. A way to over
ome this problem isto introdu
e a 
hange of time, in order to make � appear in the drift term, asfollows.Lemma 3.7 Assume (H1), and 
onsider a solution (Xt;Mt)t�0 to (2.2). LetRt = jXtj. ThenRt = R0 + Z t0 (�(Ms)C(Rs)) 12 d ~Bs + d� 12 Z t0 �(Ms)C(Rs)Rs ds+12 Z t0 ��1� d2��(Ms)C 0(Rs)� C(Rs)u0(Rs)� ds (3.17)where ~Bt =Pdi=1 R t0 XidBisRs is a one-dimensional Brownian motion, whileR2t = R20 + 2 Z t0 (�(Ms)C(Rs)) 12 Rsd ~Bs + Z t0 �(Ms)�1� d2�C 0(Rs)Rs ds� Z t0 C(Rs)u0(Rs)Rs ds+ d Z t0 �(Ms)C(Rs) ds (3.18)The proof is a straightforward appli
ation of the Itô formula.Lemma 3.8 Assume (H1), and 
onsider a solution (Xt;Mt)t�0 to (2.2). De-note by At = Z t0 �(Ms)ds, and by �t = inffs; As > tg its inverse. Then�t := R �t0 p�(Ms)d ~Bs is a Brownian motion, andR�t = R0 + Z t0 pC(R�s)d�s + d� 12 Z t0 C(R�s)R�s ds+12 Z t0 ��1� d2�C 0(R�s)� C(R�s)u0(R�s)�(M�s) � ds (3.19)The proof is again immediate. The fa
t that � is a Brownian motion 
omesfrom Theorem 1.7 (p. 182) in Revuz-Yor [5℄. We now introdu
e another pro
ess,whi
h 
orresponds to parti
les with 
onstant mass.Notation 3.9 Assume (H1). Let � 2 (0; 1℄ and � > 0 be �xed. Considera one-dimensional Brownian motion W . We denote by Z�;� = (Z�;�t )t�0 theunique strong solution ofZ�;�t = �+ Z t0 qC(Z�;�s )dWs + d� 12 Z t0 C(Z�;�s )Z�;�s ds+12 Z t0 ��1� d2�C 0(Z�;�s )� C(Z�;�s )u0(Z�;�s )� � ds (3.20)9



Equation (3.20) is obtained by repla
ing the non-
onstant fun
tion �(Ms) bythe 
onstant � in (3.19).3.5 Almost sure 
onvergen
e of the position pro
essWe �nally prove Theorem 2.5. We begin with a straightforward 
onsequen
e ofLemma 3.5.Lemma 3.10 Assume (H1). There exists s0 > 0 su
h that for all s � s0,P[Xs < "=2℄ � 1=2.Lemma 3.11 Assume (H1). There exist k > 0 and �0 > 0 su
h that for all� > 0, all � > 0, all � 2 (0; �0℄, all � 2 (0; 1℄, for Z�;� de�ned in Lemma 3.9,with a Brownian motion W ,P( supt2[0;�℄ ����Z t0 Z�;�s qC(Z�;�s )dWs���� > �) � k(1 + �)��2 (3.21)Proof We break the proof in two steps.Step 1 We �rst 
he
k that there exist some 
onstants �0 > 0, A > 0, B > 0su
h that for all � 2 (0; �0℄, all � 2 (0; 1℄, all t � 0,�(t) = E �[Z�;�t ℄2� � A�+Ae�(B=�)t (3.22)where the �rst equality stands for a de�nition. Let � the fun
tion on R+ bede�ned by �(z) := dC(z) +�1� d2� zC 0(z)� C(z)u0(z)z� (3.23)Then a simple 
omputation using the Itô formula leads toE �[Z�;�t ℄2� = �2 + Z t0 E (�[Z�;�s ℄) ds (3.24)Using (H1) (6 and 8), we obtain that for some 
onstants A > 0, B > 0,�(z) � A+Az �Bz2=� (3.25)for all z � 0. We thus have for � small enough (say for � � �0), for some
onstants A > 0, B > 0, �(z) � A� B� z2 (3.26)for all z � 0. We thus dedu
e from (3.24) and the Jensen inequality that�0(t) � A� B� �(t), from whi
h one easily dedu
es that for all t � 0,�(t) � �2e�(B=�)t + A�B h1� e�(B=�)ti (3.27)10



Hen
e (3.22) holds.Step 2 Using Doob's inequality, the fa
t that C is bounded (see (H1)), andStep 1, we obtain the existen
e of a 
onstant k (whose value 
hanges from lineto line) su
h that for all � > 0,P supt2[0;�℄ ����Z t0 Z�;�s qC(Z�;�s )dWs���� > �! � k�2 Z �0 E �(Z�;�s )2� ds� k�2 Z �0 [A�+Ae�(B=�)s℄ds � k�2�(1 + �) (3.28)whi
h ends the proof. �Notation 3.12 Assume (H1). For � 2 (0; �0℄, � > 0, � > 0, � > 0, and(Wt)t2[0;�℄ a one dimensional Brownian motion, we 
onsider the eventA�;��;�(W ) = ( supt2[0;�℄ ����Z t0 Z�;�s qC(Z�;�s )dWs���� � �) (3.29)the pro
ess Z�;� being de�ned by Lemma 3.9 with the Brownian motion W . Wehave a lower bound of the probability of this event, thanks to Lemma 3.11.Lemma 3.13 Assume (H1). There exists a 
onstant a1 > 0 su
h that for all� 2 (0; �0℄, � > 0, � > 0, � > 0, and (Wt)t2[0;�℄ a Brownian motion, the pro
essZ�;� being de�ned by Lemma 3.9 with the Brownian motion W ,A�;��;�(W ) � ( supt2[0;�℄[Z�;�t ℄2 � (�2 _ [a1�+ �℄) + �) (3.30)Proof First note that, thanks to the Itô formula,[Z�;�t ℄2 = �2 + Z t0 �(Z�;�s )ds+ Z t0 Z�;�s qC(Z�;�s )dWs (3.31)where � was de�ned by (3.23). Note also that �(z) � 0 for z2 � a1�, the
onstant a1 not depending on �. Fix ! 2 A�;��;�(W ), � < �0, � > 0, and � > 0.Denote by '(t) = Z t0 Z�;�s qC(Z�;�s )dWs, and by y(t) = [Z�;�t ℄2 �'(t). Then ysatis�es y(t) = �2 + Z t0 �(s; y(s))ds (3.32)where �(s; x) = �(px+'(s)). But sin
e ! belongs to A�;��;�(W ), we dedu
e thatj'(s)j is bounded by � (for s � �), so that �(s; x) � 0 for all s 2 [0; �℄, x ��+a1�. A 
lassi
al argument shows that for ea
h t 2 [0; �℄, y(t) � �2_[�+a1�℄.Hen
e, [Z�;�t ℄2 � �+ �2 _ [�+ a1�℄, whi
h was our aim.11



�Lemma 3.14 Let Nt a standard Poisson pro
ess with parameter � > 0. Forall x < 1� 1=e, all t � 0, P(Nt � x�t) � exp (��t[1� 1=e� x℄).Proof A simple 
omputation shows thatP(Nt � x�t) = P �e�Nt � e�x�t� � ex�tE �e�Nt� = ex�te��t[1�1=e℄ (3.33)�Lemma 3.15 Assume (H1). Re
all the notations of Lemma 3.8. On the setwhere A1 <1, limt!1Xt = 0 a.s.Proof It of 
ourse suÆ
es to show that Rt tends a.s. to 0 on the set whereA1 < 1. We thus 
onsider ! to be �xed in fA1 < 1g in the whole proofbelow. Thanks to (3.18), for all t � 0,Z t0 [C(Rs)u0(Rs)� (1� d=2)�(Ms)
0(Rs)℄Rsds (3.34)� R20 + 2 Z t0 [�(Ms)C(Rs)℄1=2Rsd ~Bs + d Z t0 �(Ms)C(Rs)dsBut, sin
e we know that �(Ms) tends to 0, we dedu
e from (H1) (6 and 8) thatfor t suÆ
iently large, C(Rs)u0(Rs) � (1 � d=2)�(Ms)
0(Rs) � 0. Hen
e theleft hand side of (3.34) is nonde
reasing (for t suÆ
iently large), so that it isa.s. bounded below. On the other hand, sin
e C is bounded, it is immediate toobtain that (sin
e A1 <1) R10 �(Ms)C(Rs)ds <1.We dedu
e that the sto
hasti
 integral R t0 [�(Ms)C(Rs)℄1=2Rsd ~Bs is boundedbelow. Hen
e it does 
onverge, so that R10 �(Ms)C(Rs)R2sds < 1. Hen
e theright hand side of (3.34) 
onverges, so that the left hand side, whi
h is non-de
reasing (for t suÆ
iently large) does also 
onverge. Thus, we obtain, using(3.18), that R2t (and thus also Rt) does a.s. 
onverge as t tends to in�nity.Let R1 be its limit. We know that a.s., limt!1 suph>0 jRt+h�Rtj = 0. Assumethat R1 > 0. Then Rt+h �Rt = �1t;t+h +�2t;t+h +�3t;t+h (3.35)where �1t;t+h = R t+ht [�(Ms)C(Rs)℄1=2Rsd ~Bs tends to 0 uniformly in h sin
e Cis bounded and sin
e R10 �(Ms)C(Rs)R2sds <1;where �2t;t+h = R t+ht �(Ms)C(Rs)Rs ds also tends to 0 uniformly in h, sin
e C isbounded, sin
e R1 > 0, and sin
e A1 <1;12



and where �3t;t+h = R t+ht [(1� d=2)�(Ms)C 0(Rs)� C(Rs)u0(Rs)℄ ds behaves as�C(R1)u0(R1)h for t large enough sin
e C 0 is bounded and sin
e A1 < 1.Sin
e C(r)u0(r) does not vanish ex
ept for r = 0, (see (H1) 6 and 8), this
ontradi
ts the fa
t that R1 > 0, and ends the proof. �Lemma 3.16 Assume (H1) and (H2). Re
all the notations of Lemma 3.8. Onthe set where A1 =1, limt!1Xt = 0 a.s.Proof We break the proof in several steps. In the whole proof, we 
onsider !to be �xed in fA1 =1g.Step 1 We introdu
e in this step the notations.First note that on the set where A1 = 1, �t < 1 for all t. However,limt!1 �t =1, sin
e the map � is smaller than 1 (see (H1)-4).We 
onsider 0 < � < "=2 to be �xed. We will show that a.s. (on fA1 =1g),lim supt!1 R�t � � (3.36)whi
h of 
ourse suÆ
es. For ea
h n � 1, we 
onsider a set of numbers mn 2 N�(an in
reasing sequen
e of masses), �n 2 (0; �) (a nonde
reasing sequen
e ofinitial points), �n > 0 (a sequen
e of widthes of time intervals), and a sequen
e�n > 0 (of 
u
tuations 
ontrols). We will 
hoose these sequen
es 
onvenientlyat the end of the proof. Let us however right now assume that (re
all that �0and a1 were de�ned in Lemmas 3.11 and 3.13), setting �0 = (a0=2)(vd"d)�1 (a0is de�ned in (H2)), �(m1) � �0 (3.37)1Xi=1 �i =1 (3.38)8n � 1; �2n+1 = �2n _ [a1�(mn) + �n℄ + �n � �2 (3.39)8n � 1; 0 � mn+1 �mn�0�n=�(mn) < 1� 1=e� 1=2 (3.40)We will 
onsider here only times greater than s0 de�ned in Lemma 3.10. Notethat a.s., �s � s0 for all s � s0, by de�nition of � (see Lemma 3.8) and sin
ethe map � is smaller than 1 (see (H1)-4). Re
all that the Brownian motion �was de�ned in Lemma 3.8.Step 2We introdu
e the following random times and events de�ned re
ursivelyby (re
all Notation 3.12)T1 = infft � s0; M�t � m1; R�t � �1g (3.41)A1 = A�1;�1�(m1);�1(�T1+� � �T1) \ �M�T1+�1 > m2	 (3.42)and, for n � 2,Tn = infft � Tn�1 + �n�1; M�t � mn; R�t � �ng (3.43)13



An = A�n;�n�(mn);�n(�Tn+� � �Tn) \ �M�Tn+�n > mn+1	 (3.44)Note that sin
e limn �(n) = 0, sin
e limt �t =1, Lemma 3.4 and Corollary 3.6ensure that Tn is a.s. �nite for all n.Our aim is to apply the Borel-Cantelli Lemma, in order to show that a.s., thereexists n0 su
h that for all n � n0, An holds. This will allow us to 
on
lude.First note that thanks to Lemma 3.13, (sin
e � is non-in
reasing while mn isin
reasing, (3.37) ensures that �(mn) � �0 for all n)An � A�n;�n�(mn);�n(�Tn+� � �Tn)� ( supt2[0;�n℄ ���Z�(mn);�nt ���2 � �n _ [a1�(mn) + �n℄ + �n℄) (3.45)Z�(mn);�nt being de�ned with the Brownian motion �Tn+���Tn . Sin
e R�Tn � �nand sin
e for all t � Tn, �(M�t) � �(mn), one may dedu
e from the 
omparisonTheorem (see [5℄) that a.s., for all t � 0, R�Tn+t � Z�(mn);�nt . Hen
eAn � ( supt2[Tn;Tn+�n℄R2�t � �2n _ [a0�(mn) + �n℄ + �n)� ( supt2[Tn;Tn+�n℄R�t � "2) (3.46)Next, with the notation (An)
 = 
=An, we obtain, using (3.46) and Lemma3.11, P [(An)
℄ � P h�A�n;�n�(mn);�n(�Tn+� � �Tn)�
i+P hA�n;�n�(mn);�n(�Tn+� � �Tn) \ �M�Tn+�n > mn+1	
i� k(1 + �n)�(mn)�2n + In (3.47)whereIn = P" supt2[Tn;Tn+�n℄R�t � "=2; M�Tn+�n �M�Tn � mn+1 �mn# (3.48)One easily understand, using (2.2), Lemma 3.10, the fa
t that ~M is alwaysgreater than 1, and (H2) (K(i; j)=j � a0), that sin
e �Tn+t � s0 and �t�Tn+t ��(mn)�1 for all t � 0, the pro
ess (M�Tn+�n �M�Tn )t2[0;�n℄ is bounded below(on the event supt2[Tn;Tn+�n℄R�t � "=2), by Nt=�(mn), N being a standardPoisson pro
ess with rate �0 = (a0=2)(vd"d)�1. Hen
e, Lemma 3.14 allows to
on
lude, using (3.40), thatIn � exp[��0�n=2�(mn)℄ (3.49)14
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al path of R2�: for t > Tn (n � n0).We �nally dedu
e that for all n � 1,P [(An)
℄ � k(1 + �n)�(mn)�2n + exp[��0�n=2�(mn)℄ (3.50)Step 3 Re
all now that the 
onstants 
0, �0, a1, �0 and �0 are de�ned in (H2),Lemmas 3.13 and 3.11 and before (3.37).We �rst of all 
onsider some exponent p 2 (3=�0; 1=[1 � �0℄), whi
h is possi-ble sin
e �0 2 (3=4; 1). Next, we 
hoose �n 
onstant �n = �, mn = Æ1np,�n = Æ2�2=[n log2(n + 1)℄, and �n = p�2=2 +Pni=1 �i. Choosing Æ1 largeenough (Æ1 � (
0=�0)1=�0 and Æ1 � (2a1
0=�2)1=�0), Æ2 small enough (Æ2 �1=2Pn�1[1=n log2(n+ 1)℄), and �nally � large enough (� � Æ1��01 
0p2p+1=�0),we dedu
e that the 
onditions (3.37){(3.40) are satis�ed (with, for ea
h n,�2n _ [a1�(mn) + �n℄ = �2n), and, thanks to (H2),Xn�1P [(An)
℄ <1 (3.51)Using the Borel-Cantelli Lemma, we dedu
e that there a.s. exists n0 su
h thatfor all n � n0, An holds. This implies thatsupt�Tn0 R�t � � (3.52)Indeed, if An holds for all n � n0, then on one hand, for all n � n0, Tn+1 =Tn + �n (thanks to the �rst line of (3.46) and to 
ondition (3.39)), and on theother hand, for all n � n0, sup[Tn;Tn+�n℄R�t � � (thanks to the �rst line of(3.46) and to 
ondition (3.39)). This ends the proof.On Figure 1, one 
an see a typi
al path of R2�t for n � n0. Note that duringthe time interval [Tn; Tn + �n℄, the in
rement of mass pro
ess M�� is at leastmn+1 �mn. �15



4 Related problemsWe �nally would like to talk about related problems. Points 1. and 2. mightbe interesting for applied physi
s, while points 3. and 4. are rather theoreti
alquestions.1. It would be more interesting to study the lo
al 
ase, where " = 0. In su
ha 
ase, the 
hara
teristi
s (Xt;Mt)t�0 of a typi
al parti
le would satisfy adi�erent and more 
ompli
ated equation. Indeed, the lo
ation pro
ess Xwould still satisfy the �rst equation in (2.2), but the mass pro
ess wouldsatisfyMt =M0 + Z t0 ZRd�N� Z 10 m1nu�K(Ms�;m)m o�(ds; d(x;m); du) (4.53)the 
ounting random measure � on [0;1)� (Rd �N� )� [0;1) having theintensity measure dsfs(Xs; dm)du, the probability measure Qs(dx; dm) =dxfs(x; dm) standing for the law of (Xs;Ms) (for ea
h s). In other words,a parti
le does 
oales
e with others at a rate depending on the density ofparti
les whi
h have the same lo
ation. This is of 
ourse more deli
ate,but we hope that Proposition 2.3 and Theorems 2.4 and 2.5 would stillhold in su
h a 
ontext.2. Consider now the standard 
ase where the lo
ation of ea
h parti
le (of massm) is Brownian motion re
e
ted in a bounded smooth domain D � Rd ,with a 
oeÆ
ient �(m) (see [4℄). Then two behaviors may be possible.On one hand, if � de
reases slowly to 0, then one may hope that ea
hparti
le has a re
urrent motion: Xt does 
onverge in law as t tends toin�nity, but does not 
onverge almost surely, and visits in�nitely oftenea
h open subset of D. On the 
onverse, if � de
reases qui
kly to 0, thenit is reasonable to think that Xt will 
onverge a.s. as time tends to in�nity,to a random position X1.Note that the standard P.D.E. approa
h does not seem to allow su
h
onsiderations.3. Assume now that we are in the lo
al 
ase " = 0 (see point 1. above),and that the e�e
t of the potential in
reases as the mass of parti
les in-
rease. In other words, repla
e u0(jXsj) by �(Ms)u0(jXsj), for some fun
-tion �(m) � 0 whi
h goes to in�nity with m. Then the more a parti
leis large, the more it visits neighborhoods of 0, so that it en
ounters manyother parti
les, in
reases more and more fast, and so on... Is there a gela-tion phenomenon in su
h a 
ase? That is, does it exist T <1 su
h thatP[MT =1; XT = 0℄ > 0?4. Finally, assume that the lo
ation pro
ess fXtgt�0 of a parti
le of size mis a di�usion depending on m, su
h that:if m was 
onstant and smaller than some m0, Xt would be transient,16



if m was 
onstant and larger than m0 , Xt would be re
urrent.Think, for example, to Bessel pro
esses of dimension �(m), for somenon-in
reasing fun
tion �. Coupling su
h a motion with 
oales
en
e, themasses would in
rease, so that we might observe the following behavior:(i) with positive probability, the mass of our typi
al parti
le does notin
rease too mu
h, so that its lo
ation Xt will be transient, hen
e itwill never en
ounter other parti
les, ... In other words,P[limt!1Mt < m0; limt!1 jXtj =1℄ > 0.(ii) with positive probability, the mass of our typi
al parti
le does in-
rease, so that its lo
ation Xt will be re
urrent, so that it will en-
ounter many other parti
les, ... In other words,P[limt!1Mt =1; limt!1 jXtj = 0℄ > 0.Referen
es[1℄ M. Dea
onu and N. Fournier. Probabilisti
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h of some dis
rete and
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