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Abstract

We consider an infinite system of particles characterized by their posi-
tion and mass, in which coalescence occurs. Each particle endures Brown-
ian excitation, and is subjected to the attraction of a potential. We define
a stochastic process (X¢, Mt)tzo describing the evolution of the position
and mass of a typical particle. We show that under some conditions, the
mass process M; goes almost surely to infinity, while the position process
X tends almost surely to 0, as time tends to infinity.
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1 Introduction

We consider an infinite system of particles characterized by their position z € R?
and their mass m € N*. The mass of a particle stands for the number of elemen-
tary particles it contains. Each particle (of size m) endures three phenomena.
First, its spatial motion is under the influence of a Brownian excitation, with
a coefficient a(m). We naturally assume that the more a particle is large, the
more its motion is regular, that is, a is a decreasing function of m. Next, it
endures the effect of a potential: each particle is attracted by the origin 0, by a
force proportional to its mass so that the speed attraction is independent of the
mass. Finally, each particle coalesces with other particles. To be more precise,
we will assume that two particles (of masses ¢ and j) of which the locations are
at distance smaller than ¢ coalesce at rate e “¢K (i, ), to give one particle of
mass ¢ + j. The delocalisation parameter ¢ > 0 is fixed, while the coagulation
kernel K is given.

One may write down an integro-differential equation satisfied by the concentra-
tion f(t,x,i) of particles of size ¢ and position x at the instant ¢ (see Laurengot-
Mischler [4] for a special case of diffusions). We however adopt, in the present
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paper, a probabilistic approach in the spirit of Tanaka [6] (for the Boltzmann
equation), see also Deaconu-Fournier [1] for a coagulation equation. We con-
sider a stochastic process (X, M;):>0, describing the evolution of the location
and mass of a typical particle. In other words, we follow the location and mass
of the particle containing a randomly chosen (at t = 0) elementary particle.

There is an explicit link between (X, M;)i>0 and f(t, x,7): the law of (X, M;)
is given, for each ¢, by Q¢(dz,dm) = 3., if(t,z,i)6;(dm)dz (at least formally).

Our aim here is to show that under suitable conditions, almost surely, (i)
lim; .o M; = oo, and (ii) lim;—.. X; = 0. While point (i) is quite straight-
forward, point (ii) is much more difficult. Indeed, we have to use that M tends
sufficiently quickly to infinity, so that the “noise” coefficient a(M;) tends suf-
ficiently fast to 0. Thus in large time, the position process X; behaves as the
solution to an ordinary differential equation which is attracted by the origin.
It would of course be more interesting to treat the local case ¢ = 0 (see Section
4), but this would be much more difficult.

The paper is organized as follows: we give our notations, definitions and results
in Section 2. Then we write the proofs in several steps in Section 3. Finally, we
deal with related problems in Section 4.

2 Notations and results

Let us first of all describe the parameters of the equation we will study.
Assumption (H1):

1. The dimension d € N* satisfies d > 2.
2. The delocalisation parameter is ¢ > 0.
3. The initial condition Qg is a probability measure on R? x N* satisfying

/ (|| + m)Qo(dx,dm) < cc.
RIxN*

4. The excitation coefficient « : N* — (0,00) is non-increasing, (for the
simplicity of proofs, we will assume that a(1) = 1) and lim,, .. a(n) = 0.

5. The coagulation kernel K : N* x N* — [0, c0) satisfies, for some constant
Ay, for all 4, in N*, K(i,j) = K(j,i) < Ao(i + §).

6. The function C : Ry — R, is of class C?, bounded from above and from
below, and its derivative C' is bounded. Finally, C’(0) = 0.

7. The function u : Ry — R is of class C?, its derivative u’ is nonnegative,
u'(0) = 0.

8. There exists 1o > 0 such that for all z € Ry, u'(z) > nox.

9. For all i € N*, K(i,i) > 0.

As a simple example, one may note that C(x) = 1, u(z) = 2%, and K (4,5) = i+j
fulfill assumption (H1).
Let us now define the random objects that will drive the equation.



Notation 2.1 We consider two probability spaces: (Q, F,{Fi}i>0,P) is an ab-
stract space and ([0,1],B[0,1],dv) is an auxiliary space (here dvy denotes the
Lebesgue measure). In order to avoid confusion, the elements on this second
space will be called y-elements, and the expectation on [0, 1] will be denoted E,,
the laws L.,...

We denote by vg the volume of the d-dimensional unit ball.

We will denote by (Xo, My) a Fo-measurable R¢ x N*-valued random variable
on Q with law Qo. We also consider a d-dimensional (Fy)i>o-adapted Brownian
motion (Bi)i>o0 = (B}, ..., B})i>0 on Q. We finally denote by N¢(dt,dv,du) a
(Fi)e>o0-adapted Poisson measure on [0,00) x [0,1] X [0, c0) with intensity mea-
sure (1/vqe®)dtdydu.

The random objects (Xo, My), B, and N* are independent.

Let us finally introduce the dynamics we are interested in.

Definition 2.2 A stochastic process (X¢, My)i>o is said to solve (SDE) if the
following conditions hold.

(i) X is a continuous (F;)i>o-adapted R -valued process, and M is a nonde-
creasing cadlag (Fy)e>o-adapted N* -valued process.

(i) For allT >0, E [sup[()’T](|Xt|2 + Mt)] < 0.
(iii) There exist a y-process (Xi, My)i>o such that
£,(%,31) = £(X, M) (2.1)

and some random objects (Xo, My), B, and N as in Notation 2.1 such
that for all t > 0, a.s.,

Xt=xo+/0 (a (M.)C (|X.])* dB.

1/t < d> C' (X)) 1/t , X,
+— o (Mg — =) ———Xds — = C(|Xs|)u' (| Xs]) 7==ds
5 ) om0 (1-5) = 5 | COXaDw (XD 5

t pl poo
M; = M, Msf 1 - 1 -
e +/0/0/0 ™) e
N¢(ds,dvy,du) (2.2)

Recalling that (X, M) should describe the evolution of the location and mass of
a particle containing a typical elementary particle, this equation is quite natural.
Let us explain it right now.

We assume that each particle, with a given mass m, independently of the others,
and without the effect of the potential, would move according to a reversible



diffusion, with a noise coefficient a(m). This is the Brownian excitation. In
such a case, its location X; would satisfy the following S.D.E.

!
dX, = /a(m)C (|X.])dB; + a(m) <1 - §> mxsds (2.3)
2 2 | X |

Note that the generator of such a diffusion is simply the Laplace-Beltrami op-
erator corresponding to the (radial) Riemanian metric g;; = C(|2])d;;.
Next, our particle is subjected to the effect of a (radial) potential, at a force
proportional to its mass, so that the speed is independant of the mass. This
explains why we add the term

1 , X,
5 (XD (1X.) s (2.4)
in the S.D.E. satisfied by X;. The fact that this term does not depend of the
mass is natural, since for instance, we know that particles do fall at a speed
independent of their mass in a Newtonian potential.

Now, the masses of particles being non constant in our model, we obtain that
the location {X;};>o of our typical particle, whose mass is {M,;}+>o, satisfies
the first equation in (2.2).

Finally, the second equation in (2.2) explains that our typical particle does
coalesce with other (typical) particles: we add M,_(v) to the mass of our particle
(that is, we set M, = M,_ 4+ M._(~)), with rate e =K (M,_, M,_(7))/M._(~)
and under the condition that |X,(y) — X,| < e. Here (X,(7), Mi(v)) may be
seen as the characteristics (location, mass) of another typical particle at the
instant s, since we require that £, (X, M) = £(X, M) in (2.1).

The rate K(i,j)/j (instead of K(i,7)) comes from the fact that we deal with
particles containing a given elementary particle, so that each particle (of size j)
is represented j times: we have to divide the rate.

For a precise link between (X, M;);>0 and integro-differential equations, see
[2], [1] (for slightly different contexts).

Proposition 2.3 Assume (H1). Then there exists a solution (X¢, My)i>o0 to
(SDE).

We omit the proof of this proposition. Indeed, using the strong existence and
uniqueness of the S.D.E. satisfied by X if o was constant (see Equation (3.7)
below), one may adapt easily the method of Fournier-Giet [3]. Although the
equations in [3] are spatially homogeneous, the delocalization allows such an
extension. Let us now state a first result.

Theorem 2.4 Assume (H1), and consider a solution (X, M;)¢>o to (SDE).
Then a.s., limg_. oo My = 0o while lim;_. o, E[| X;|?] = 0.

We are not able to prove, under (H1), that X; tends a.s. to 0, and this might be
false. Indeed, if a does not tend sufficiently quickly to 0, the process X might
be recurrent. We thus add an hypothesis.



Assumption (H2): There exist some constant ¢y < oo and Gy € (3/4,1) such
that for all m € N*, a(m) < 4. There exists ag > 0 such that for any
i,j €N, K(i,5)/j 2 ao.

Then the following result holds.

Theorem 2.5 Assume (H1), (H2), and consider a solution (X, M)i>o to
(SDE). Then a.s., lim;_ ., X; = 0.

Before proving these statements, let us explain the main intuition of these con-
vergence results.

First, M tends to infinity, since if not, then M stops to increase, so that the
noise coefficient of X becomes constant. In such a case, X will be recurrent.
This means that for some 7, the concentration of particles of mass ¢, of which
the location is smaller than /2, will be bounded below by some ¢ > 0 (inde-
pendently of ¢ sufficiently large). This implies, since K (i,7) > 0, that each time
X is sufficiently close to 0 (which happens infinitely often since X is recurrent),
its coalescence rate is bounded below. Hence M can not stop to increase.
Next X tends to 0, because since a(M) tends to 0, one may hope that for
t sufficiently large, X behaves as the (deterministic) solution y of y'(t) =
—2C(ly(&)Dw'(Jy(t))y(t)/|y(t)|, which tends to 0 as time tends to infinity.

3 Proofs

We break the proofs in several steps. In Subsection 3.1, we study the properties
of the motion of particles with constant mass. Subsection 3.2 is devoted to the
divergence of the mass process. We next show in Subsection 3.3 that the position
process tends to 0 in L?(Q). We introduce a change of time in Subsection
3.4, which will allow to use comparison theorems and to conclude the proof of
Theorem 2.5 in Subsection 3.5.

3.1 When « is constant

Notation 3.1 We first of all introduce, for each o € (0,1], the operator Ty,
defined, for all f: R — R of class C? by

Taf(@) = §[CUaDAS() + (1 - ) CUav (o)
—1C(|2) e V ()

(3.5)

We also denote by ko = [[pae™"1=D/*C(|2|)=4/2dz] =", which is positive thanks
to (H1) (6 and 7) and by

Vo(dz) = kae™"U=D/aC(|2]) = 2 da (3.6)

which is a probability measure on R .



We also will consider the motion that one particle would follow independently
of the others, if it had a constant mass.

Definition 3.2 Assume (H1). Let a € (0,1] and x € R? be fired. We will
denote by X = (X" )i>0 the unique strong solution of the following S.D.E.:

t Xaz
X;*vf:H/ (aC (|X&*|))? dBs + & (1—d/2)/ |(| || X0 ds
0 0
——/ C Xzl (X271) 75 zz|ds (3.7)

Under (H1), strong existence and uniqueness of such a process is well-known:
all the coefficients are locally lipschitz continuous, the diffusion coefficient is
bounded, while the drift coefficient is attracting to 0 (see (H1)-6,7). Then the
following proposition is classical.

Proposition 3.3 Assume (H1). Let a € (0,1] and z € R? be fized.

(1) The generator of the diffusion process X ** is Ty.

(11) The operator T is symmetric with respect to v,(dx). More precisely, for
any f and g in CE(RY).

[ s@rat@matdn = =5 [ )iV i@ Vol (33)
Rd Rd

(iii) An ergodic theorem holds for X%, i.e. for all Borel subset A of R?, a.s

1t
lim —/0 Lixerepyds = va(A) (3.9)

t—oo t

3.2 Almost sure divergence of the mass process

Lemma 3.4 Assume (H1). Consider a solution (X, M¢);>o to (SDE). Al
most surely, as t tends to infinity, M, tends to infinity.

Proof First recall that M is N*-valued, so that it is in particular always
greater than 1, and all its jumps are greater that 1. Furthermore, M is a.s.
non-decreasing, so that it a.s. has a finite or infinite limit M.,. Thus,

(Moo <o} = |J |J Tp where Typ={Vs>t, M.=p} (3.10)
teEN* peN*

We have to prove that for each ¢, p, P[I'; ;] = 0. We assume the contrary, that
is there exists tg, po such that P[T'y, p,] >0

Denote by Ty, », = {7 € [0,1] ; Vs > to5, M, = po}. Then, thanks to (2.1),
1

fO ]]‘f‘f.o‘po (PY)dfy = ]P[Fto,po] > 0.

Then we note that on I'y, ,,, Xt coincides for all ¢ > t; with Xfi(f(?)’xt“, where



X% is defined by (3.7) with the Brownian motion By,+. — By,. Note also that

X::(?S)’X{'“ is independent of Nt = N¥(t9,00)x]0,1]x[0,00)- FOr the same reasons,

we may write, for v € Ty, o, X¢(7) as X?_(fg)’x'o. Using (2.2), we deduce that
on I'y, »,, for all ¢ > ¢y,

t 1 [e's]
M, = p -I-/ / / M, (7)1 (v
t 0 v Jo Jo ( ) {ug K(Mg_ Mq_( ))}

Mg _(7)

XLeix, - %, (1<} V' (ds, dy, du)

t 1 foe)
/t/o/o Hixi<s Hizmi<s)

x R{VGfto-Po}l{uﬁw}Ns(ds’ dv, du)

Mg_(7)

t 1 oo
1 1 ¢
a(pp) X¢ oo (po) X¢
/t/o/o (I R (I

x ]]'{’Yef‘fo‘po}]l{ug L“’}?{)‘?’O) }NE (dsa d’Y? du) (311)

v

Hence, still on Ty, p,, Moo > N (E), where

E= {(Sa’%u)a 52 to, u < K’(pOapO)/pOa’y € ftmpm

o X g oo X €
e < S IR o ()] < S (3.12)
One easily deduces from Proposition 3.3 (iii) (since v, (p,)(|2| < ¢/2) > 0),

(H1)-9 and the fact that X and X are independent (since they are defined on
different probability spaces) that if P, [I';, ,,] > 0, then almost surely,

oo 1 oo
/ ds / d’}// d’u,]l{(s’%u)gE} =00 (3.13)
to 0 0

We also know that E is independent of N (since Xf:(f(?)’xt“ is independent
of N&%). Recalling that N (ds,dy,du) is a Poisson measure with intensity
measure (v;'e~%)dsdydu, we deduce that almost surely, N (E) = co. We
obtain that on I'y, ,,, M« = 0o, which is a contradiction. This concludes the
proof. O

3.3 Convergence in L? of the position process

We now prove the second part of Theorem 2.4.

Lemma 3.5 Assume (H1). Consider a solution (X, Mi)i>o to (SDE). Then
limt_,oo E[|Xt|2] =0.



Proof First note that thanks to (H1) (6 and 8), there exists b > 0 such that
for all » € Ry, C(r)u’(r) > 2br. Next denote by Y the unique strong solution
of (here the mass process is considered as a parameter)

m:%+A«ﬂMMwmm%&

+%/0ta(M)<1—§> Cl&ﬁ' Y.ds —b/ Y.ds (3.14)

In other words, Y satisfies the same equation as X replacing the drift term
—C(X)u'(Xs)/2 by —bY,. Writing the SDEs satisfied by |X;|? and |Y;|?, and
using the standard comparison theorem (see Revuz-Yor, [5]), one deduces that
a.s., for all t > 0, | X¢|*> < |V %

We thus just have to check that lim;_.., E[|Y;|?] = 0. But Y can be written as

Vim0 [ @One !
+1 /Ot eb*a (M,) (1 - 5) C'é'}? |)Yds] (3.15)

We obtained this formula using the method of “variation of constants”. One
might however check directly that the process defined by (3.15) satisfies (3.14)
and use a uniqueness argument.

Using finally the facts that C' and C’ are bounded (see (H1)), that « is smaller
than 1, and that, thanks to the Lebesgue Theorem and Lemma 3.4, E[a(M;)]
and E[a? (M;)] decrease to 0 as t tends to infinity leads to the conclusion: for
some constant A whose values changes from line to line,

1+ /Ot e?*Ela(M,)]ds + ( {/Ot ebsa(Ms)ds] 2)]

E[|)/'t|2] S A672bt

|_ t/2 t/2 2'|
< Ae 14 / e ds + / ePsds
[ : ]
[ Cas) |
+A€72bt]E[O{(Mt/2) + oz2(Mt/2)] / e ds + / e ds
2 ")
< Ae ™ e L Ela(My)y) + a(My5)]) (3.16)
which tends to 0 as ¢ tends to infinity. O

As an immediate corollary, we deduce that

Corollary 3.6 Assume (H1). Then a.s., liminf;_. . | X;| = 0.



3.4 A change of time

A difficulty to study the almost sure asymptotics of the location process X is
that we can not compare the solutions X** to (3.7) with different values of «,
since a appears in the diffusion coefficient. A way to overcome this problem is
to introduce a change of time, in order to make « appear in the drift term, as
follows.

Lemma 3.7 Assume (H1), and consider a solution (Xy, My)i>o to (2.2). Let
Rt = |Xt| Then

~ d-1

Ro=Ro+ | (@(M)C(R) dB. + / a(M.)C(R,)

R,

5 ds

% /Ot {(1 _ g) o(M,)C'(Ry) — C’(Rs)u’(Rs)] ds  (3.17)

o d t X;dB! . . . . . .
where By = Y7, |, =g is a one-dimensional Brownian motion, while

R? =R + 2/t (a(MS)C(RS))% R.dB, + /t a(Msy) <1 - g) C'(R.)R, ds
0 0
_/t C(R.)u'(R)R. ds+d/ta(Ms)C’(Rs)ds (3.18)
0 0

The proof is a straightforward application of the It6 formula.

Lemma 3.8 Assume (H1), and consider a solution (X¢, My)i>o to (2.2). De-
t

note by Ay = / a(Ms)ds, and by 7 = inf{s, As > t} its inverse. Then
0 ~

B = OTt v a(Mg)dBs is a Brownian motion, and

t _1 :

R. = Ro+ [ JORydp. + 2 . / CE%R s
0 0 Ts
t

[ (-9, - Hapt,

The proof is again immediate. The fact that g is a Brownian motion comes
from Theorem 1.7 (p. 182) in Revuz-Yor [5]. We now introduce another process,
which corresponds to particles with constant mass.

(3.19)

Notation 3.9 Assume (H1). Let a € (0,1] and p > 0 be fized. Consider
a one-dimensional Brownian motion W. We denote by Z%* = (Z;"")i>q the
unique strong solution of

¢ d—1 [t C(Z%r
Z8° = p +/ C(Z&P)dW, + / ( s ) ds
1 Ot d 2 C OZa sz/’pZQ P (320)
_l__/ |:<1__> Cl(zg,p)_ ( S )’lL( S ):| dS
2 Jo 2 «



Equation (3.20) is obtained by replacing the non-constant function «(Mjs) by
the constant « in (3.19).

3.5 Almost sure convergence of the position process

We finally prove Theorem 2.5. We begin with a straightforward consequence of
Lemma 3.5.

Lemma 3.10 Assume (H1). There exists so > 0 such that for all s > s,
P[X, < /2] > 1/2.

Lemma 3.11 Assume (H1). There exist k > 0 and oy > 0 such that for all
o>0,al)X>0, al a € (0,ap], all p € (0,1], for Z*? defined in Lemma 3.9,
with a Brownian motion W,

t
Pq sup /Z;’"”\/C(Z?’p)dWs
{te[o,a] 0

Proof We break the proof in two steps.
Step 1 We first check that there exist some constants ag > 0, A >0, B > 0
such that for all a € (0, ap], all p € (0,1], all ¢ > 0,

> A} < Mt o)a (3.21)

)\2

o(t) = E([Z{"]) < Aa + Ae B/t (3.22)

where the first equality stands for a definition. Let # the function on Ry be
defined by

0(z) :==dC(z) + <1 — g) 2C"(2) — W (3.23)
Then a simple computation using the It6 formula leads to
B(1277) = + [ B(eiz)ds (324
Using (H1) (6 and 8), we obtain that for some constants A > 0, B > 0,
6(2) < A+ Az — B2?/a (3.25)

for all 2 > 0. We thus have for « small enough (say for a < «p), for some
constants A >0, B >0,

B(2) < A— §z2 (3.26)

for all z > 0. We thus deduce from (3.24) and the Jensen inequality that
o'(t) < A-— g (t), from which one easily deduces that for all ¢ > 0,

A
o(t) < pPe (BNt 4 fa 1 e*<B/a>t] (3.27)

10



Hence (3.22) holds.

Step 2 Using Doob’s inequality, the fact that C' is bounded (see (H1)), and
Step 1, we obtain the existence of a constant k (whose value changes from line
to line) such that for all ¢ > 0,

sup / Z3P
te[0,0]

which ends the proof. O

> A) < ﬁ/ E[(Z2*)?] ds

k
< — —(B/a)s < — .
<3 /0 [Aa + Ae lds < )\2a(1 +o0) (3.28)

Notation 3.12 Assume (H1). For a € (0,a0], A > 0, 0 > 0, p > 0, and
(Wi)ieo,0] @ one dimensional Brownian motion, we consider the event

[z Jezmiaw,

the process Z“* being defined by Lemma 3.9 with the Brownian motion W. We
have a lower bound of the probability of this event, thanks to Lemma 3.11.

Ai’;( = { sup

te[0,0]

< A} (3.29)

Lemma 3.13 Assume (H1). There exists a constant a1 > 0 such that for all
a € (0,a0], A> 0,0 >0, p>0, and (Wy)e0,0] @ Brownian motion, the process
Z*P being defined by Lemma 3.9 with the Brownian motion W,

Avp (W) C{ sup [ZF]? < (p? V[a1a+A])+A} (3.30)

t€[0,0]

Proof First note that, thanks to the It6 formula,

t t
ik =p2+/ e(Zs‘”’)der/ Z&P\C(Z5F)aw (3.31)
0 0

where § was defined by (3.23). Note also that 6(z) < 0 for 22 > aja, the
constant a; not depending on a. Fix w € A) (W), a<ag, A>0,and p > 0.

Denote by (¢ / Z3P\[C(Z8P)dW, and by y(t) = [Z;]? — ¢(t). Then y

satisfies
y(t) = p* + / C(s,y(3))ds (3.32)

where ((s,2) = 0(\/T + ¢(s)). But since w belongs to A} (W), we deduce that
|p(s)| is bounded by A (for s < o), so that ((s,z) < 0 for all s E [0,0], x >
Ataja. A classical argument shows that for each t € [0, 0], y(t) < p>V[A+a10a].
Hence, [Z;7"]> < A+ p? V [\ + a1a], which was our aim.

11



Lemma 3.14 Let N; a standard Poisson process with parameter p > 0. For
allz <1—1/e, allt >0, P(N; < zut) < exp(—ut[l —1/e — z]).

Proof A simple computation shows that

P(N; < aut) =P (e7V* > e7™#) < e™E (e™ V) = etitentll=1/e] (3 33)

Lemma 3.15 Assume (H1). Recall the notations of Lemma 3.8. On the set
where As < 00, limy_.oo Xt =0 a.s.

Proof It of course suffices to show that R; tends a.s. to 0 on the set where
As < 00. We thus consider w to be fixed in {4, < oo} in the whole proof
below. Thanks to (3.18), for all ¢t > 0,

/0 [C(R)u' (Rs) — (1 — d/2)a(My)c'(R,)] Reds (3.34)
<Rj+2 /t[a(Ms)O(RS)]l/QRSdBS + d/t a(M,)C(R,)ds
0 0

But, since we know that (M) tends to 0, we deduce from (H1) (6 and 8) that
for ¢ sufficiently large, C(Rs)u'(Rs) — (1 — d/2)a(M;)c'(Rs) > 0. Hence the
left hand side of (3.34) is nondecreasing (for ¢ sufficiently large), so that it is
a.s. bounded below. On the other hand, since C' is bounded, it is immediate to
obtain that (since Ao < 00) [;° a(M,)C(Rs)ds < oc.

We deduce that the stochastic integral [, [a(M,)C(R,)]"/*R.dB, is bounded
below. Hence it does converge, so that [ a(M;)C(Rs)R?ds < co. Hence the
right hand side of (3.34) converges, so that the left hand side, which is non-
decreasing (for ¢ sufficiently large) does also converge. Thus, we obtain, using
(3.18), that R? (and thus also R;) does a.s. converge as t tends to infinity.

Let R be its limit. We know that a.s., lim; .o sup,~q |Ri4n —R¢| = 0. Assume
that Ro, > 0. Then

Riyn — R = A%,u—h + A?7t+h + Ait+h (3.35)

where A}, = tt+h[a(Ms)C(Rs)]1/2deBS tends to 0 uniformly in A since C
is bounded and since [ a(M,)C(Rs)R%ds < oo;
where A7, , = :+h %f(m)ds also tends to 0 uniformly in A, since C' is
bounded, since Ro, > 0, and since A, < oc;
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and where A}, = :+h [(1—d/2)a(Ms)C'(Rs) — C(Rs)u'(Rs)] ds behaves as

—C(Roo )t/ (Roo )h for t large enough since C’ is bounded and since A, < oo.
Since C(r)u'/(r) does not vanish except for r = 0, (see (H1) 6 and &), this
contradicts the fact that R, > 0, and ends the proof. |

Lemma 3.16 Assume (H1) and (H2). Recall the notations of Lemma 3.8. On
the set where Ao = 00, lim;_, o X; =0 a.s.

Proof We break the proof in several steps. In the whole proof, we consider w
to be fixed in {A = o0}.

Step 1 We introduce in this step the notations.

First note that on the set where A, = oo, 7 < oo for all £. However,
lim;_. o, v = 00, since the map « is smaller than 1 (see (H1)-4).

We consider 0 < n < £/2 to be fixed. We will show that a.s. (on {As = o0}),

limsup R;, <7 (3.36)

t—o00

which of course suffices. For each n > 1, we consider a set of numbers m,, € N*
(an increasing sequence of masses), p, € (0,7) (a nondecreasing sequence of
initial points), o, > 0 (a sequence of widthes of time intervals), and a sequence
An > 0 (of fluctuations controls). We will choose these sequences conveniently
at the end of the proof. Let us however right now assume that (recall that aq
and a; were defined in Lemmas 3.11 and 3.13), setting po = (ao/2)(v4e?) ™! (ag
is defined in (H2)),

a(my) < ag (3.37)
Y o= (3.38)
i=1
V> 1, pro=p5Viaa(ms) + A+ A, <n° (3.39)
Mpy1 — My
Vn>1, 0< <1-1/e—1/2 (3.40)

MOUn/a(mn)

We will consider here only times greater than sy defined in Lemma 3.10. Note
that a.s., 75 > so for all s > sy, by definition of 7 (see Lemma 3.8) and since
the map « is smaller than 1 (see (H1)-4). Recall that the Brownian motion 3
was defined in Lemma 3.8.

Step 2 We introduce the following random times and events defined recursively
by (recall Notation 3.12)

Ty = inf{t > so; M7, > m1,R-, < p1} (3.41)
Ay = Ait;":i),pl (Bris. — Br) N {M-p ., > ma} (3.42)

and, for n > 2,
T, = lnf{t >Tho1+ On—1; M‘rt > man'rf < pn} (343)
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Ay = Ao (Broo = Br,) N M . > My} (3.44)

a(mn),pn

Note that since lim,, a(n) = 0, since lim; 7, = 0o, Lemma 3.4 and Corollary 3.6
ensure that T), is a.s. finite for all n.

Our aim is to apply the Borel-Cantelli Lemma, in order to show that a.s., there
exists ng such that for all n > ng, A, holds. This will allow us to conclude.
First note that thanks to Lemma 3.13, (since « is non-increasing while m,, is
increasing, (3.37) ensures that a(m,) < ag for all n)

An c AM.,UH (ﬁTn +. — ﬁ’Tn )

a(my),pn

- { sup Z;l(m'n.)yp'n.

2
< pn Vara(my) + ] + /\n]} (3.45)
te[0,04]

Z2(m)n being defined with the Brownian motion 37, 4. — 37, . Since Rr. < pn
and since for all t > T,,, a(M,,) < a(m,,), one may deduce from the comparison

Theorem (see [5]) that a.s., for all t > 0, R < zpm=)P Hence

TP+t
A, C sup Rff < P2V Jaga(my) + M) + A
tE[Tyn, Tn+on]
} (3.46)

Next, with the notation (A,)¢ = Q/A,, we obtain, using (3.46) and Lemma
3.11,

N ™

C sup R, <
tE[Tn, Tn+on]

P4 < P[(Ad,. Gr —8r) ]
+P I:Air(b‘rf:),pn B+ = Pr.) N {Mry, ., > mn+1}c]
< k(1++)a(m”) 41, (3.47)
where

I,=P sup R, <e/2, M., .. — M., <mupy—my (3.48)
tE[Tn, Tnt0m] ' '

One easily understand, using (2.2), Lemma 3.10, the fact that M is always
greater than 1, and (H2) (K(i,7)/j > ap), that since 77, ++ > so and 077, 44+ >
a(my)~* for all t > 0, the process (M, ., — M- )iclo,r,] is bounded below
(on the event supcir, 7, 40,1 8 < €/2), Y Nija(m,), IV being a standard
Poisson process with rate po = (ag/2)(vac?)~!. Hence, Lemma 3.14 allows to
conclude, using (3.40), that

I, < exp[—poos/2a(mn,)] (3.49)
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n 2. (e/2)

n+3

T+ Tt Gt The2* G2 G+3
=The1 =he2 =Th3

Figure 1: A typical path of R2 for t > T), (n > ng).

We finally deduce that for all n > 1,

E(1+ o,)a(my,)

Pl(4,)] < L5

+ exp[— oo, /2a(m,)] (3.50)
Step 3 Recall now that the constants co, So, a1, ap and g are defined in (H2),
Lemmas 3.13 and 3.11 and before (3.37).

We first of all consider some exponent p € (3/8o,1/[1 — Bo]), which is possi-
ble since By € (3/4,1). Next, we choose o, constant o, = o, m, = 6nP,
Ao = 6m?/[nlog’(n + 1)], and p, = /n2/2+ >, Ai. Choosing &; large
enough (6; > (co/ap)'/P and & > (2a1co/n?)'/P0), 65 small enough (8 <
1/2% o [1/nlog?(n + 1)]), and finally o large enough (o > 6170 cop2rt 1),
we deduce that the conditions (3.37)—(3.40) are satisfied (with, for each n,
P2V [ara(my) + Ay] = p2), and, thanks to (H2),

> P[(An)] < 0 (3.51)

n>1

Using the Borel-Cantelli Lemma, we deduce that there a.s. exists ng such that
for all n > ng, A, holds. This implies that

sup R,, <17 (3.52)
>To,

Indeed, if A, holds for all n > ng, then on one hand, for all n > ng, Thy1 =
T, + o, (thanks to the first line of (3.46) and to condition (3.39)), and on the
other hand, for all n > no, supir, 7,44, B, < 7 (thanks to the first line of
(3.46) and to condition (3.39)). This ends the proof.

On Figure 1, one can see a typical path of sz for n > ny. Note that during
the time interval [T,,T, + 0,], the increment of mass process M, is at least
Mp41 — Mnp.

O
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4 Related problems

We finally would like to talk about related problems. Points 1. and 2. might
be interesting for applied physics, while points 3. and 4. are rather theoretical
questions.

1. Tt would be more interesting to study the local case, where ¢ = 0. In such
a case, the characteristics (X4, My):i>o of a typical particle would satisfy a
different and more complicated equation. Indeed, the location process X
would still satisfy the first equation in (2.2), but the mass process would
satisfy

t oo
M = M, +/ / / mly o p(ds,d(z,m),du) (4.53)
0 JRixN: Jo {us }

m

the counting random measure z on [0,00) x (R? x N*) x [0, 00) having the
intensity measure dsfs(Xs, dm)du, the probability measure Qs(dx,dm) =
dx fs(z,dm) standing for the law of (X, M) (for each s). In other words,
a particle does coalesce with others at a rate depending on the density of
particles which have the same location. This is of course more delicate,
but we hope that Proposition 2.3 and Theorems 2.4 and 2.5 would still
hold in such a context.

2. Consider now the standard case where the location of each particle (of mass
m) is Brownian motion reflected in a bounded smooth domain D C R?,
with a coefficient a(m) (see [4]). Then two behaviors may be possible.
On one hand, if o decreases slowly to 0, then one may hope that each
particle has a recurrent motion: X; does converge in law as ¢ tends to
infinity, but does not converge almost surely, and visits infinitely often
each open subset of D. On the converse, if o decreases quickly to 0, then
it is reasonable to think that X; will converge a.s. as time tends to infinity,
to a random position X .

Note that the standard P.D.E. approach does not seem to allow such
considerations.

3. Assume now that we are in the local case ¢ = 0 (see point 1. above),
and that the effect of the potential increases as the mass of particles in-
crease. In other words, replace u'(|X;|) by B(M;)u'(|Xs]), for some func-
tion 3(m) > 0 which goes to infinity with m. Then the more a particle
is large, the more it visits neighborhoods of 0, so that it encounters many
other particles, increases more and more fast, and so on... Is there a gela-
tion phenomenon in such a case? That is, does it exist T' < oo such that
]P[MT =00, X7 = 0] > 07?

4. Finally, assume that the location process {X;}:>o of a particle of size m
is a diffusion depending on m, such that:
if m was constant and smaller than some mg, X; would be transient,

16



if m was constant and larger than mq , X; would be recurrent.

Think, for example, to Bessel processes of dimension «(m), for some
non-increasing function «. Coupling such a motion with coalescence, the
masses would increase, so that we might observe the following behavior:

(i) with positive probability, the mass of our typical particle does not
increase too much, so that its location X; will be transient, hence it
will never encounter other particles, ... In other words,

Pllim;—. 0o My < mo,lim;—.o | X;| = 00] > 0.

(ii) with positive probability, the mass of our typical particle does in-
crease, so that its location X; will be recurrent, so that it will en-
counter many other particles, ... In other words,

]P[llmtéoo Mt = oo,limt_mo |Xt| = 0] > 0.

References

[1]

2]

8]

[4]

[5]

[6]

M. Deaconu and N. Fournier. Probabilistic approach of some discrete and
continuous coagulation equations with diffusion. Stochastic Process. Appl.,
101(1):83-111, 2002.

M. Deaconu, N. Fournier, and E. Tanré. A pure jump Markov process asso-
ciated with Smoluchowski’s coagulation equation. Ann. Probab., 30(4):1763—
1796, 2002.

N. Fournier and J.-S. Giet. Exact simulation of nonlinear coagulation pro-
cesses. Prépublication de I’Institut Elie Cartan de Nancy, 11, 2003.

Ph. Laurencot and S. Mischler. Global existence for the discrete diffu-
sive coagulation-fragmentation equations in L'. Rev. Mat. Iberoamericana,
18(3):731-745, 2002.

D. Revuz and M. Yor. Continuous martingales and Brownian motion, vol-
ume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition,
1999.

H. Tanaka. Probabilistic treatment of the Boltzmann equation of Maxwellian
molecules. Z. Wahrsch. Verw. Gebiete, 46(1):67-105, 1978/79.

17



