
On long time behavior of some oagulationproessesNiolas Fournier1, Bernard Roynette1, Etienne Tanr�e2AbstratWe onsider an in�nite system of partiles haraterized by their posi-tion and mass, in whih oalesene ours. Eah partile endures Brown-ian exitation, and is subjeted to the attration of a potential. We de�nea stohasti proess (Xt;Mt)t�0 desribing the evolution of the positionand mass of a typial partile. We show that under some onditions, themass proess Mt goes almost surely to in�nity, while the position proessXt tends almost surely to 0, as time tends to in�nity.Key words : Nonlinear stohasti di�erential equations with jumps, Coalesene.MSC 2000 : 60H10, 60K40.1 IntrodutionWe onsider an in�nite system of partiles haraterized by their position x 2 Rdand their massm 2 N� . The mass of a partile stands for the number of elemen-tary partiles it ontains. Eah partile (of size m) endures three phenomena.First, its spatial motion is under the inuene of a Brownian exitation, witha oeÆient �(m). We naturally assume that the more a partile is large, themore its motion is regular, that is, � is a dereasing funtion of m. Next, itendures the e�et of a potential: eah partile is attrated by the origin 0, by afore proportional to its mass so that the speed attration is independent of themass. Finally, eah partile oaleses with other partiles. To be more preise,we will assume that two partiles (of masses i and j) of whih the loations areat distane smaller than " oalese at rate "�dK(i; j), to give one partile ofmass i + j. The deloalisation parameter " > 0 is �xed, while the oagulationkernel K is given.One may write down an integro-di�erential equation satis�ed by the onentra-tion f(t; x; i) of partiles of size i and position x at the instant t (see Lauren�ot-Mishler [4℄ for a speial ase of di�usions). We however adopt, in the present1Institut Elie Cartan, Campus Sienti�que, BP 239, 54506 Vand�uvre-l�es-Nany Cedex,Frane, fournier�ien.u-nany.fr, roynette�ien.u-nany.fr2INRIA, Projet OMEGA, 2004 route des Luioles, BP93, 06902 Sophia-Antipolis, Frane,Etienne.Tanre�sophia.inria.fr. 1



paper, a probabilisti approah in the spirit of Tanaka [6℄ (for the Boltzmannequation), see also Deaonu-Fournier [1℄ for a oagulation equation. We on-sider a stohasti proess (Xt;Mt)t�0, desribing the evolution of the loationand mass of a typial partile. In other words, we follow the loation and massof the partile ontaining a randomly hosen (at t = 0) elementary partile.There is an expliit link between (Xt;Mt)t�0 and f(t; x; i): the law of (Xt;Mt)is given, for eah t, by Qt(dx; dm) =Pi�1 if(t; x; i)Æi(dm)dx (at least formally).Our aim here is to show that under suitable onditions, almost surely, (i)limt!1Mt = 1, and (ii) limt!1Xt = 0. While point (i) is quite straight-forward, point (ii) is muh more diÆult. Indeed, we have to use that M tendssuÆiently quikly to in�nity, so that the \noise" oeÆient �(Mt) tends suf-�iently fast to 0. Thus in large time, the position proess Xt behaves as thesolution to an ordinary di�erential equation whih is attrated by the origin.It would of ourse be more interesting to treat the loal ase " = 0 (see Setion4), but this would be muh more diÆult.The paper is organized as follows: we give our notations, de�nitions and resultsin Setion 2. Then we write the proofs in several steps in Setion 3. Finally, wedeal with related problems in Setion 4.2 Notations and resultsLet us �rst of all desribe the parameters of the equation we will study.Assumption (H1):1. The dimension d 2 N� satis�es d � 2.2. The deloalisation parameter is " > 0.3. The initial ondition Q0 is a probability measure on Rd � N� satisfyingZRd�N�(jxj2 +m)Q0(dx; dm) <1:4. The exitation oeÆient � : N� 7! (0;1) is non-inreasing, (for thesimpliity of proofs, we will assume that �(1) = 1) and limn!1 �(n) = 0.5. The oagulation kernel K : N� � N� 7! [0;1) satis�es, for some onstantA0, for all i; j in N� , K(i; j) = K(j; i) � A0(i+ j).6. The funtion C : R+ 7! R+ is of lass C2, bounded from above and frombelow, and its derivative C 0 is bounded. Finally, C 0(0) = 0.7. The funtion u : R+ 7! R is of lass C2, its derivative u0 is nonnegative,u0(0) = 0.8. There exists �0 > 0 suh that for all x 2 R+ , u0(x) � �0x.9. For all i 2 N� , K(i; i) > 0.As a simple example, one may note that C(x) = 1, u(x) = x2, andK(i; j) = i+jful�ll assumption (H1).Let us now de�ne the random objets that will drive the equation.2



Notation 2.1 We onsider two probability spaes: (
;F ; fFtgt�0;P) is an ab-strat spae and ([0; 1℄;B[0; 1℄; d) is an auxiliary spae (here d denotes theLebesgue measure). In order to avoid onfusion, the elements on this seondspae will be alled -elements, and the expetation on [0; 1℄ will be denoted E ,the laws L ,...We denote by vd the volume of the d-dimensional unit ball.We will denote by (X0;M0) a F0-measurable Rd � N� -valued random variableon 
 with law Q0. We also onsider a d-dimensional (Ft)t�0-adapted Brownianmotion (Bt)t�0 = (B1t ; :::; Bdt )t�0 on 
. We �nally denote by N"(dt; d; du) a(Ft)t�0-adapted Poisson measure on [0;1)� [0; 1℄� [0;1) with intensity mea-sure (1=vd"d)dtddu.The random objets (X0;M0), B, and N" are independent.Let us �nally introdue the dynamis we are interested in.De�nition 2.2 A stohasti proess (Xt;Mt)t�0 is said to solve (SDE) if thefollowing onditions hold.(i) X is a ontinuous (Ft)t�0-adapted Rd -valued proess, and M is a nonde-reasing �adl�ag (Ft)t�0-adapted N� -valued proess.(ii) For all T > 0, E hsup[0;T ℄(jXtj2 +Mt)i <1.(iii) There exist a -proess ( ~Xt; ~Mt)t�0 suh thatL( ~X; ~M) = L(X;M) (2.1)and some random objets (X0;M0), B, and N as in Notation 2.1 suhthat for all t � 0, a.s.,Xt = X0 + Z t0 (� (Ms)C (jXsj)) 12 dBs+12 Z t0 � (Ms)�1� d2� C 0 (jXsj)jXsj Xsds� 12 Z t0 C (jXsj)u0 (jXsj) XsjXsjdsMt =M0 + Z t0Z 10 Z 10 ~Ms�()1�u�K(Ms�; ~Ms�())~Ms�() �1fjXs� ~Xs()j<"gN"(ds; d; du) (2.2)Realling that (X;M) should desribe the evolution of the loation and mass ofa partile ontaining a typial elementary partile, this equation is quite natural.Let us explain it right now.We assume that eah partile, with a given massm, independently of the others,and without the e�et of the potential, would move aording to a reversible3



di�usion, with a noise oeÆient �(m). This is the Brownian exitation. Insuh a ase, its loation Xt would satisfy the following S.D.E.dXt =p�(m)C (jXsj)dBs + �(m)2 �1� d2� C 0 (jXsj)jXsj Xsds (2.3)Note that the generator of suh a di�usion is simply the Laplae-Beltrami op-erator orresponding to the (radial) Riemanian metri gij = C(jxj)Æij .Next, our partile is subjeted to the e�et of a (radial) potential, at a foreproportional to its mass, so that the speed is independant of the mass. Thisexplains why we add the term�12C (jXsj)u0 (jXsj) XsjXsjds (2.4)in the S.D.E. satis�ed by Xt. The fat that this term does not depend of themass is natural, sine for instane, we know that partiles do fall at a speedindependent of their mass in a Newtonian potential.Now, the masses of partiles being non onstant in our model, we obtain thatthe loation fXtgt�0 of our typial partile, whose mass is fMtgt�0, satis�esthe �rst equation in (2.2).Finally, the seond equation in (2.2) explains that our typial partile doesoalese with other (typial) partiles: we add ~Ms�() to the mass of our partile(that is, we set Ms =Ms� + ~Ms�()), with rate "�dK(Ms�; ~Ms�())= ~Ms�()and under the ondition that j ~Xs() � Xsj � ". Here ( ~Xs(); ~Ms()) may beseen as the harateristis (loation, mass) of another typial partile at theinstant s, sine we require that L( ~X; ~M) = L(X;M) in (2.1).The rate K(i; j)=j (instead of K(i; j)) omes from the fat that we deal withpartiles ontaining a given elementary partile, so that eah partile (of size j)is represented j times: we have to divide the rate.For a preise link between (Xt;Mt)t�0 and integro-di�erential equations, see[2℄, [1℄ (for slightly di�erent ontexts).Proposition 2.3 Assume (H1). Then there exists a solution (Xt;Mt)t�0 to(SDE).We omit the proof of this proposition. Indeed, using the strong existene anduniqueness of the S.D.E. satis�ed by X if � was onstant (see Equation (3.7)below), one may adapt easily the method of Fournier-Giet [3℄. Although theequations in [3℄ are spatially homogeneous, the deloalization allows suh anextension. Let us now state a �rst result.Theorem 2.4 Assume (H1), and onsider a solution (Xt;Mt)t�0 to (SDE).Then a.s., limt!1Mt =1 while limt!1 E [jXt j2℄ = 0.We are not able to prove, under (H1), that Xt tends a.s. to 0, and this might befalse. Indeed, if � does not tend suÆiently quikly to 0, the proess X mightbe reurrent. We thus add an hypothesis.4



Assumption (H2): There exist some onstant 0 < 1 and �0 2 (3=4; 1) suhthat for all m 2 N� , �(m) � 0m�0 . There exists a0 > 0 suh that for anyi; j 2 N� , K(i; j)=j � a0.Then the following result holds.Theorem 2.5 Assume (H1), (H2), and onsider a solution (Xt;Mt)t�0 to(SDE). Then a.s., limt!1Xt = 0.Before proving these statements, let us explain the main intuition of these on-vergene results.First, M tends to in�nity, sine if not, then M stops to inrease, so that thenoise oeÆient of X beomes onstant. In suh a ase, X will be reurrent.This means that for some i, the onentration of partiles of mass i, of whihthe loation is smaller than "=2, will be bounded below by some  > 0 (inde-pendently of t suÆiently large). This implies, sine K(i; i) > 0, that eah timeX is suÆiently lose to 0 (whih happens in�nitely often sine X is reurrent),its oalesene rate is bounded below. Hene M an not stop to inrease.Next X tends to 0, beause sine �(M) tends to 0, one may hope that fort suÆiently large, X behaves as the (deterministi) solution y of y0(t) =� 12C(jy(t)j)u0(jy(t)j)y(t)=jy(t)j, whih tends to 0 as time tends to in�nity.3 ProofsWe break the proofs in several steps. In Subsetion 3.1, we study the propertiesof the motion of partiles with onstant mass. Subsetion 3.2 is devoted to thedivergene of the mass proess. We next show in Subsetion 3.3 that the positionproess tends to 0 in L2(
). We introdue a hange of time in Subsetion3.4, whih will allow to use omparison theorems and to onlude the proof ofTheorem 2.5 in Subsetion 3.5.3.1 When � is onstantNotation 3.1 We �rst of all introdue, for eah � 2 (0; 1℄, the operator ��,de�ned, for all f : Rd 7! R of lass C2 by��f(x) = �2 hC(jxj)�f(x) + �1� d2� C0(jxj)jxj x:rf(x)i� 12C(jxj)u0(jxj)jxj x:rf(x) (3.5)We also denote by k� = [RRd e�u(jxj)=�C(jxj)�d=2dx℄�1, whih is positive thanksto (H1) (6 and 7) and by��(dx) = k�e�u(jxj)=�C(jxj)�d=2dx (3.6)whih is a probability measure on Rd . 5



We also will onsider the motion that one partile would follow independentlyof the others, if it had a onstant mass.De�nition 3.2 Assume (H1). Let � 2 (0; 1℄ and x 2 Rd be �xed. We willdenote by X�;x = (X�;xt )t�0 the unique strong solution of the following S.D.E.:X�;xt = x+ Z t0 (�C (jX�;xs j)) 12 dBs + �2 (1� d=2)Z t0 C 0 (jX�;xs j)jX�;xs j X�;xs ds�12 Z t0 C (jX�;xs j)u0 (jX�;xs j) X�;xsjX�;xs j ds (3.7)Under (H1), strong existene and uniqueness of suh a proess is well-known:all the oeÆients are loally lipshitz ontinuous, the di�usion oeÆient isbounded, while the drift oeÆient is attrating to 0 (see (H1)-6,7). Then thefollowing proposition is lassial.Proposition 3.3 Assume (H1). Let � 2 (0; 1℄ and x 2 Rd be �xed.(i) The generator of the di�usion proess X�;x is ��.(ii) The operator �� is symmetri with respet to ��(dx). More preisely, forany f and g in C2b (Rd ).ZRd g(x)��f(x)��(dx) = ��2 ZRdC(jxj)[rf(x):rg(x)℄��(dx) (3.8)(iii) An ergodi theorem holds for X�;x, i.e. for all Borel subset � of Rd , a.s.,limt!1 1t Z t0 1fX�;xs 2�gds = ��(�) (3.9)3.2 Almost sure divergene of the mass proessLemma 3.4 Assume (H1). Consider a solution (Xt;Mt)t�0 to (SDE). Al-most surely, as t tends to in�nity, Mt tends to in�nity.Proof First reall that M is N� -valued, so that it is in partiular alwaysgreater than 1, and all its jumps are greater that 1. Furthermore, M is a.s.non-dereasing, so that it a.s. has a �nite or in�nite limit M1. Thus,fM1 <1g = [t2N� [p2N� �t;p where �t;p = f8s � t; Ms = pg (3.10)We have to prove that for eah t; p, P[�t;p℄ = 0. We assume the ontrary, thatis there exists t0; p0 suh that P[�t0;p0 ℄ > 0.Denote by ~�t0;p0 = f 2 [0; 1℄ ; 8s � t0; ~Ms = p0g. Then, thanks to (2.1),R 10 1~�t0;p0 ()d = P[�t0;p0 ℄ > 0.Then we note that on �t0;p0 , Xt oinides for all t � t0 with X�(p0);Xt0t�t0 , where6



X�;x is de�ned by (3.7) with the Brownian motion Bt0+� �Bt0 . Note also thatX�(p0);Xt0t�t0 is independent ofN";t0 = N"j[t0;1)�[0;1℄�[0;1). For the same reasons,we may write, for  2 ~�t0;p0 , ~Xt() as ~X�(p0); ~Xt0t�t0 . Using (2.2), we dedue thaton �t0;p0 , for all t � t0,Mt = p0 + Z tt0 Z 10 Z 10 ~Ms�()1�u�K(Ms�; ~Ms�())~Ms�() ��1fjXs� ~Xs()j<"gN"(ds; d; du)� Z tt0 Z 10 Z 10 1fjXsj< "2g1fj ~Xs()j< "2g�1f2~�t0;p0g1�u�K(p0; ~Ms�())~Ms�() �N"(ds; d; du)= Z tt0 Z 10 Z 10 1�jX�(p0);Xt0s�t0 j< "2�1�j ~X�(p0); ~Xt0s�t0 ()j< "2��1f2~�t0;p0g1nu�K(p0;p0)p0 oN"(ds; d; du) (3.11)Hene, still on �t0;p0 , M1 � N";t0(E), whereE = n(s; ; u); s � t0; u � K(p0; p0)=p0;  2 ~�t0;p0 ;jX�(p0);Xt0s�t0 j < "2 ; j ~X�(p0); ~Xt0s�t0 ()j < "2o (3.12)One easily dedues from Proposition 3.3 (iii) (sine ��(p0)(jxj < "=2) > 0),(H1)-9 and the fat that X and ~X are independent (sine they are de�ned ondi�erent probability spaes) that if P[~�t0;p0 ℄ > 0, then almost surely,Z 1t0 ds Z 10 d Z 10 du1f(s;;u)2Eg =1 (3.13)We also know that E is independent of N";t0 (sine X�(p0);Xt0t�t0 is independentof N";t0). Realling that N";t0(ds; d; du) is a Poisson measure with intensitymeasure (v�1d "�d)dsddu, we dedue that almost surely, N";t0(E) = 1. Weobtain that on �t0;p0 , M1 = 1, whih is a ontradition. This onludes theproof. �3.3 Convergene in L2 of the position proessWe now prove the seond part of Theorem 2.4.Lemma 3.5 Assume (H1). Consider a solution (Xt;Mt)t�0 to (SDE). Thenlimt!1 E [jXt j2℄ = 0. 7



Proof First note that thanks to (H1) (6 and 8), there exists b > 0 suh thatfor all r 2 R+ , C(r)u0(r) � 2br. Next denote by Y the unique strong solutionof (here the mass proess is onsidered as a parameter)Yt = X0 + Z t0 (� (Ms)C (jYsj)) 12 dBs+12 Z t0 � (Ms)�1� d2� C 0 (jYsj)jYsj Ysds� b Z t0 Ysds (3.14)In other words, Y satis�es the same equation as X replaing the drift term�C(Xs)u0(Xs)=2 by �bYs. Writing the SDEs satis�ed by jXtj2 and jYtj2, andusing the standard omparison theorem (see Revuz-Yor, [5℄), one dedues thata.s., for all t � 0, jXtj2 � jYtj2.We thus just have to hek that limt!1 E [jYt j2℄ = 0. But Y an be written asYt = e�bthX0 + Z t0 ebs (� (Ms)C (jYsj)) 12 dBs+ 12 Z t0 ebs� (Ms)�1� d2� C 0 (jYsj)jYsj Ysdsi (3.15)We obtained this formula using the method of \variation of onstants". Onemight however hek diretly that the proess de�ned by (3.15) satis�es (3.14)and use a uniqueness argument.Using �nally the fats that C and C 0 are bounded (see (H1)), that � is smallerthan 1, and that, thanks to the Lebesgue Theorem and Lemma 3.4, E [�(Mt )℄and E [�2 (Mt)℄ derease to 0 as t tends to in�nity leads to the onlusion: forsome onstant A whose values hanges from line to line,E �jYtj2� � Ae�2bt "1 + Z t0 e2bsE [�(Ms )℄ds+ E  �Z t0 ebs�(Ms)ds�2!#� Ae�2bt 241 + Z t=20 e2bsds+ Z t=20 ebsds!235+Ae�2btE [�(Mt=2 ) + �2(Mt=2)℄24Z tt=2 e2bsds+ Z tt=2 ebsds!235� A �e�2bt + e�bt + E [�(Mt=2 ) + �2(Mt=2)℄� (3.16)whih tends to 0 as t tends to in�nity. �As an immediate orollary, we dedue thatCorollary 3.6 Assume (H1). Then a.s., lim inft!1 jXtj = 0.8



3.4 A hange of timeA diÆulty to study the almost sure asymptotis of the loation proess X isthat we an not ompare the solutions X�;x to (3.7) with di�erent values of �,sine � appears in the di�usion oeÆient. A way to overome this problem isto introdue a hange of time, in order to make � appear in the drift term, asfollows.Lemma 3.7 Assume (H1), and onsider a solution (Xt;Mt)t�0 to (2.2). LetRt = jXtj. ThenRt = R0 + Z t0 (�(Ms)C(Rs)) 12 d ~Bs + d� 12 Z t0 �(Ms)C(Rs)Rs ds+12 Z t0 ��1� d2��(Ms)C 0(Rs)� C(Rs)u0(Rs)� ds (3.17)where ~Bt =Pdi=1 R t0 XidBisRs is a one-dimensional Brownian motion, whileR2t = R20 + 2 Z t0 (�(Ms)C(Rs)) 12 Rsd ~Bs + Z t0 �(Ms)�1� d2�C 0(Rs)Rs ds� Z t0 C(Rs)u0(Rs)Rs ds+ d Z t0 �(Ms)C(Rs) ds (3.18)The proof is a straightforward appliation of the Itô formula.Lemma 3.8 Assume (H1), and onsider a solution (Xt;Mt)t�0 to (2.2). De-note by At = Z t0 �(Ms)ds, and by �t = inffs; As > tg its inverse. Then�t := R �t0 p�(Ms)d ~Bs is a Brownian motion, andR�t = R0 + Z t0 pC(R�s)d�s + d� 12 Z t0 C(R�s)R�s ds+12 Z t0 ��1� d2�C 0(R�s)� C(R�s)u0(R�s)�(M�s) � ds (3.19)The proof is again immediate. The fat that � is a Brownian motion omesfrom Theorem 1.7 (p. 182) in Revuz-Yor [5℄. We now introdue another proess,whih orresponds to partiles with onstant mass.Notation 3.9 Assume (H1). Let � 2 (0; 1℄ and � > 0 be �xed. Considera one-dimensional Brownian motion W . We denote by Z�;� = (Z�;�t )t�0 theunique strong solution ofZ�;�t = �+ Z t0 qC(Z�;�s )dWs + d� 12 Z t0 C(Z�;�s )Z�;�s ds+12 Z t0 ��1� d2�C 0(Z�;�s )� C(Z�;�s )u0(Z�;�s )� � ds (3.20)9



Equation (3.20) is obtained by replaing the non-onstant funtion �(Ms) bythe onstant � in (3.19).3.5 Almost sure onvergene of the position proessWe �nally prove Theorem 2.5. We begin with a straightforward onsequene ofLemma 3.5.Lemma 3.10 Assume (H1). There exists s0 > 0 suh that for all s � s0,P[Xs < "=2℄ � 1=2.Lemma 3.11 Assume (H1). There exist k > 0 and �0 > 0 suh that for all� > 0, all � > 0, all � 2 (0; �0℄, all � 2 (0; 1℄, for Z�;� de�ned in Lemma 3.9,with a Brownian motion W ,P( supt2[0;�℄ ����Z t0 Z�;�s qC(Z�;�s )dWs���� > �) � k(1 + �)��2 (3.21)Proof We break the proof in two steps.Step 1 We �rst hek that there exist some onstants �0 > 0, A > 0, B > 0suh that for all � 2 (0; �0℄, all � 2 (0; 1℄, all t � 0,�(t) = E �[Z�;�t ℄2� � A�+Ae�(B=�)t (3.22)where the �rst equality stands for a de�nition. Let � the funtion on R+ bede�ned by �(z) := dC(z) +�1� d2� zC 0(z)� C(z)u0(z)z� (3.23)Then a simple omputation using the Itô formula leads toE �[Z�;�t ℄2� = �2 + Z t0 E (�[Z�;�s ℄) ds (3.24)Using (H1) (6 and 8), we obtain that for some onstants A > 0, B > 0,�(z) � A+Az �Bz2=� (3.25)for all z � 0. We thus have for � small enough (say for � � �0), for someonstants A > 0, B > 0, �(z) � A� B� z2 (3.26)for all z � 0. We thus dedue from (3.24) and the Jensen inequality that�0(t) � A� B� �(t), from whih one easily dedues that for all t � 0,�(t) � �2e�(B=�)t + A�B h1� e�(B=�)ti (3.27)10



Hene (3.22) holds.Step 2 Using Doob's inequality, the fat that C is bounded (see (H1)), andStep 1, we obtain the existene of a onstant k (whose value hanges from lineto line) suh that for all � > 0,P supt2[0;�℄ ����Z t0 Z�;�s qC(Z�;�s )dWs���� > �! � k�2 Z �0 E �(Z�;�s )2� ds� k�2 Z �0 [A�+Ae�(B=�)s℄ds � k�2�(1 + �) (3.28)whih ends the proof. �Notation 3.12 Assume (H1). For � 2 (0; �0℄, � > 0, � > 0, � > 0, and(Wt)t2[0;�℄ a one dimensional Brownian motion, we onsider the eventA�;��;�(W ) = ( supt2[0;�℄ ����Z t0 Z�;�s qC(Z�;�s )dWs���� � �) (3.29)the proess Z�;� being de�ned by Lemma 3.9 with the Brownian motion W . Wehave a lower bound of the probability of this event, thanks to Lemma 3.11.Lemma 3.13 Assume (H1). There exists a onstant a1 > 0 suh that for all� 2 (0; �0℄, � > 0, � > 0, � > 0, and (Wt)t2[0;�℄ a Brownian motion, the proessZ�;� being de�ned by Lemma 3.9 with the Brownian motion W ,A�;��;�(W ) � ( supt2[0;�℄[Z�;�t ℄2 � (�2 _ [a1�+ �℄) + �) (3.30)Proof First note that, thanks to the Itô formula,[Z�;�t ℄2 = �2 + Z t0 �(Z�;�s )ds+ Z t0 Z�;�s qC(Z�;�s )dWs (3.31)where � was de�ned by (3.23). Note also that �(z) � 0 for z2 � a1�, theonstant a1 not depending on �. Fix ! 2 A�;��;�(W ), � < �0, � > 0, and � > 0.Denote by '(t) = Z t0 Z�;�s qC(Z�;�s )dWs, and by y(t) = [Z�;�t ℄2 �'(t). Then ysatis�es y(t) = �2 + Z t0 �(s; y(s))ds (3.32)where �(s; x) = �(px+'(s)). But sine ! belongs to A�;��;�(W ), we dedue thatj'(s)j is bounded by � (for s � �), so that �(s; x) � 0 for all s 2 [0; �℄, x ��+a1�. A lassial argument shows that for eah t 2 [0; �℄, y(t) � �2_[�+a1�℄.Hene, [Z�;�t ℄2 � �+ �2 _ [�+ a1�℄, whih was our aim.11



�Lemma 3.14 Let Nt a standard Poisson proess with parameter � > 0. Forall x < 1� 1=e, all t � 0, P(Nt � x�t) � exp (��t[1� 1=e� x℄).Proof A simple omputation shows thatP(Nt � x�t) = P �e�Nt � e�x�t� � ex�tE �e�Nt� = ex�te��t[1�1=e℄ (3.33)�Lemma 3.15 Assume (H1). Reall the notations of Lemma 3.8. On the setwhere A1 <1, limt!1Xt = 0 a.s.Proof It of ourse suÆes to show that Rt tends a.s. to 0 on the set whereA1 < 1. We thus onsider ! to be �xed in fA1 < 1g in the whole proofbelow. Thanks to (3.18), for all t � 0,Z t0 [C(Rs)u0(Rs)� (1� d=2)�(Ms)0(Rs)℄Rsds (3.34)� R20 + 2 Z t0 [�(Ms)C(Rs)℄1=2Rsd ~Bs + d Z t0 �(Ms)C(Rs)dsBut, sine we know that �(Ms) tends to 0, we dedue from (H1) (6 and 8) thatfor t suÆiently large, C(Rs)u0(Rs) � (1 � d=2)�(Ms)0(Rs) � 0. Hene theleft hand side of (3.34) is nondereasing (for t suÆiently large), so that it isa.s. bounded below. On the other hand, sine C is bounded, it is immediate toobtain that (sine A1 <1) R10 �(Ms)C(Rs)ds <1.We dedue that the stohasti integral R t0 [�(Ms)C(Rs)℄1=2Rsd ~Bs is boundedbelow. Hene it does onverge, so that R10 �(Ms)C(Rs)R2sds < 1. Hene theright hand side of (3.34) onverges, so that the left hand side, whih is non-dereasing (for t suÆiently large) does also onverge. Thus, we obtain, using(3.18), that R2t (and thus also Rt) does a.s. onverge as t tends to in�nity.Let R1 be its limit. We know that a.s., limt!1 suph>0 jRt+h�Rtj = 0. Assumethat R1 > 0. Then Rt+h �Rt = �1t;t+h +�2t;t+h +�3t;t+h (3.35)where �1t;t+h = R t+ht [�(Ms)C(Rs)℄1=2Rsd ~Bs tends to 0 uniformly in h sine Cis bounded and sine R10 �(Ms)C(Rs)R2sds <1;where �2t;t+h = R t+ht �(Ms)C(Rs)Rs ds also tends to 0 uniformly in h, sine C isbounded, sine R1 > 0, and sine A1 <1;12



and where �3t;t+h = R t+ht [(1� d=2)�(Ms)C 0(Rs)� C(Rs)u0(Rs)℄ ds behaves as�C(R1)u0(R1)h for t large enough sine C 0 is bounded and sine A1 < 1.Sine C(r)u0(r) does not vanish exept for r = 0, (see (H1) 6 and 8), thisontradits the fat that R1 > 0, and ends the proof. �Lemma 3.16 Assume (H1) and (H2). Reall the notations of Lemma 3.8. Onthe set where A1 =1, limt!1Xt = 0 a.s.Proof We break the proof in several steps. In the whole proof, we onsider !to be �xed in fA1 =1g.Step 1 We introdue in this step the notations.First note that on the set where A1 = 1, �t < 1 for all t. However,limt!1 �t =1, sine the map � is smaller than 1 (see (H1)-4).We onsider 0 < � < "=2 to be �xed. We will show that a.s. (on fA1 =1g),lim supt!1 R�t � � (3.36)whih of ourse suÆes. For eah n � 1, we onsider a set of numbers mn 2 N�(an inreasing sequene of masses), �n 2 (0; �) (a nondereasing sequene ofinitial points), �n > 0 (a sequene of widthes of time intervals), and a sequene�n > 0 (of utuations ontrols). We will hoose these sequenes onvenientlyat the end of the proof. Let us however right now assume that (reall that �0and a1 were de�ned in Lemmas 3.11 and 3.13), setting �0 = (a0=2)(vd"d)�1 (a0is de�ned in (H2)), �(m1) � �0 (3.37)1Xi=1 �i =1 (3.38)8n � 1; �2n+1 = �2n _ [a1�(mn) + �n℄ + �n � �2 (3.39)8n � 1; 0 � mn+1 �mn�0�n=�(mn) < 1� 1=e� 1=2 (3.40)We will onsider here only times greater than s0 de�ned in Lemma 3.10. Notethat a.s., �s � s0 for all s � s0, by de�nition of � (see Lemma 3.8) and sinethe map � is smaller than 1 (see (H1)-4). Reall that the Brownian motion �was de�ned in Lemma 3.8.Step 2We introdue the following random times and events de�ned reursivelyby (reall Notation 3.12)T1 = infft � s0; M�t � m1; R�t � �1g (3.41)A1 = A�1;�1�(m1);�1(�T1+� � �T1) \ �M�T1+�1 > m2	 (3.42)and, for n � 2,Tn = infft � Tn�1 + �n�1; M�t � mn; R�t � �ng (3.43)13



An = A�n;�n�(mn);�n(�Tn+� � �Tn) \ �M�Tn+�n > mn+1	 (3.44)Note that sine limn �(n) = 0, sine limt �t =1, Lemma 3.4 and Corollary 3.6ensure that Tn is a.s. �nite for all n.Our aim is to apply the Borel-Cantelli Lemma, in order to show that a.s., thereexists n0 suh that for all n � n0, An holds. This will allow us to onlude.First note that thanks to Lemma 3.13, (sine � is non-inreasing while mn isinreasing, (3.37) ensures that �(mn) � �0 for all n)An � A�n;�n�(mn);�n(�Tn+� � �Tn)� ( supt2[0;�n℄ ���Z�(mn);�nt ���2 � �n _ [a1�(mn) + �n℄ + �n℄) (3.45)Z�(mn);�nt being de�ned with the Brownian motion �Tn+���Tn . Sine R�Tn � �nand sine for all t � Tn, �(M�t) � �(mn), one may dedue from the omparisonTheorem (see [5℄) that a.s., for all t � 0, R�Tn+t � Z�(mn);�nt . HeneAn � ( supt2[Tn;Tn+�n℄R2�t � �2n _ [a0�(mn) + �n℄ + �n)� ( supt2[Tn;Tn+�n℄R�t � "2) (3.46)Next, with the notation (An) = 
=An, we obtain, using (3.46) and Lemma3.11, P [(An)℄ � P h�A�n;�n�(mn);�n(�Tn+� � �Tn)�i+P hA�n;�n�(mn);�n(�Tn+� � �Tn) \ �M�Tn+�n > mn+1	i� k(1 + �n)�(mn)�2n + In (3.47)whereIn = P" supt2[Tn;Tn+�n℄R�t � "=2; M�Tn+�n �M�Tn � mn+1 �mn# (3.48)One easily understand, using (2.2), Lemma 3.10, the fat that ~M is alwaysgreater than 1, and (H2) (K(i; j)=j � a0), that sine �Tn+t � s0 and �t�Tn+t ��(mn)�1 for all t � 0, the proess (M�Tn+�n �M�Tn )t2[0;�n℄ is bounded below(on the event supt2[Tn;Tn+�n℄R�t � "=2), by Nt=�(mn), N being a standardPoisson proess with rate �0 = (a0=2)(vd"d)�1. Hene, Lemma 3.14 allows toonlude, using (3.40), thatIn � exp[��0�n=2�(mn)℄ (3.49)14
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4 Related problemsWe �nally would like to talk about related problems. Points 1. and 2. mightbe interesting for applied physis, while points 3. and 4. are rather theoretialquestions.1. It would be more interesting to study the loal ase, where " = 0. In suha ase, the harateristis (Xt;Mt)t�0 of a typial partile would satisfy adi�erent and more ompliated equation. Indeed, the loation proess Xwould still satisfy the �rst equation in (2.2), but the mass proess wouldsatisfyMt =M0 + Z t0 ZRd�N� Z 10 m1nu�K(Ms�;m)m o�(ds; d(x;m); du) (4.53)the ounting random measure � on [0;1)� (Rd �N� )� [0;1) having theintensity measure dsfs(Xs; dm)du, the probability measure Qs(dx; dm) =dxfs(x; dm) standing for the law of (Xs;Ms) (for eah s). In other words,a partile does oalese with others at a rate depending on the density ofpartiles whih have the same loation. This is of ourse more deliate,but we hope that Proposition 2.3 and Theorems 2.4 and 2.5 would stillhold in suh a ontext.2. Consider now the standard ase where the loation of eah partile (of massm) is Brownian motion reeted in a bounded smooth domain D � Rd ,with a oeÆient �(m) (see [4℄). Then two behaviors may be possible.On one hand, if � dereases slowly to 0, then one may hope that eahpartile has a reurrent motion: Xt does onverge in law as t tends toin�nity, but does not onverge almost surely, and visits in�nitely ofteneah open subset of D. On the onverse, if � dereases quikly to 0, thenit is reasonable to think that Xt will onverge a.s. as time tends to in�nity,to a random position X1.Note that the standard P.D.E. approah does not seem to allow suhonsiderations.3. Assume now that we are in the loal ase " = 0 (see point 1. above),and that the e�et of the potential inreases as the mass of partiles in-rease. In other words, replae u0(jXsj) by �(Ms)u0(jXsj), for some fun-tion �(m) � 0 whih goes to in�nity with m. Then the more a partileis large, the more it visits neighborhoods of 0, so that it enounters manyother partiles, inreases more and more fast, and so on... Is there a gela-tion phenomenon in suh a ase? That is, does it exist T <1 suh thatP[MT =1; XT = 0℄ > 0?4. Finally, assume that the loation proess fXtgt�0 of a partile of size mis a di�usion depending on m, suh that:if m was onstant and smaller than some m0, Xt would be transient,16



if m was onstant and larger than m0 , Xt would be reurrent.Think, for example, to Bessel proesses of dimension �(m), for somenon-inreasing funtion �. Coupling suh a motion with oalesene, themasses would inrease, so that we might observe the following behavior:(i) with positive probability, the mass of our typial partile does notinrease too muh, so that its loation Xt will be transient, hene itwill never enounter other partiles, ... In other words,P[limt!1Mt < m0; limt!1 jXtj =1℄ > 0.(ii) with positive probability, the mass of our typial partile does in-rease, so that its loation Xt will be reurrent, so that it will en-ounter many other partiles, ... In other words,P[limt!1Mt =1; limt!1 jXtj = 0℄ > 0.Referenes[1℄ M. Deaonu and N. Fournier. Probabilisti approah of some disrete andontinuous oagulation equations with di�usion. Stohasti Proess. Appl.,101(1):83{111, 2002.[2℄ M. Deaonu, N. Fournier, and E. Tanr�e. A pure jump Markov proess asso-iated with Smoluhowski's oagulation equation. Ann. Probab., 30(4):1763{1796, 2002.[3℄ N. Fournier and J.-S. Giet. Exat simulation of nonlinear oagulation pro-esses. Pr�epubliation de l'Institut �Elie Cartan de Nany, 11, 2003.[4℄ Ph. Lauren�ot and S. Mishler. Global existene for the disrete di�u-sive oagulation-fragmentation equations in L1. Rev. Mat. Iberoameriana,18(3):731{745, 2002.[5℄ D. Revuz and M. Yor. Continuous martingales and Brownian motion, vol-ume 293 of Grundlehren der Mathematishen Wissenshaften [FundamentalPriniples of Mathematial Sienes℄. Springer-Verlag, Berlin, third edition,1999.[6℄ H. Tanaka. Probabilisti treatment of the Boltzmann equation of Maxwellianmoleules. Z. Wahrsh. Verw. Gebiete, 46(1):67{105, 1978/79.
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