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Abstract

The regularity of the scaling profiles ψ to Smoluchowski’s coagulation equation is studied
when the coagulation kernel K is given by K(x, y) = xλ + yλ with λ ∈ (0, 1). More precisely,
ψ is C1-smooth on (0,∞) and decays exponentially fast for large x. Furthermore, the singular
behaviour of ψ(x) as x→ 0 is identified, thus giving a rigorous proof of physical conjectures.
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1 Introduction

We investigate the small and large mass behaviour and the regularity of the scaling profile of
mass-conserving self-similar solutions to the Smoluchowski coagulation equation [8, 18]

∂tc(t, x) = Lc(c(t, .))(x), (t, x) ∈ (0,∞) × (0,∞), (1.1)

where the coagulation reaction term Lc is defined by

Lc(c)(x) =
1

2

∫ x

0
K(y, x− y) c(y) c(x− y) dy − c(x)

∫ ∞

0
K(x, y) c(y) dy (1.2)

for x ∈ (0,∞). Recall that the Smoluchowski coagulation equation (1.1) is a mean-field model
describing the growth of particles by successive binary mergers and c(t, x) denotes the density of
particles of mass x ∈ (0,∞) at time t ≥ 0. The coagulation kernel K(x, y) models the likelihood
that two particles with respective masses x and y merge into a single one (with mass x+ y) and is
a symmetric and nonnegative function on (0,∞) × (0,∞).

When K is homogeneous of degree λ ∈ (−∞, 1) (that is, K(ax, ay) = aλ K(x, y)), the dynamical
scaling hypothesis conjectured by physicists predicts that solutions to (1.1) behave in a self-similar
way for large times, i.e.

c(t, x) ∼ cS(t, x) = s(t)−2 ψ
(

xs(t)−1
)

as t→ ∞ , (1.3)

∗Institut Elie Cartan - Nancy, Université Henri Poincaré - Nancy I, BP 239, F–54506 Vandœuvre-lès-Nancy cedex,

France. E-mail: fournier@iecn.u-nancy.fr
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where cS is a self-similar solution to (1.1), see [7, 15] and the references therein. While the validity
of (1.3) is still an open problem (except for the constant kernel K = 1 and the additive kernel
K(x, y) = x + y, see [1, 2, 4, 12, 16, 17]), a first step in that direction was recently achieved in
[9, 11] where the existence of self-similar solutions cS to (1.1) as described in (1.3) was proved for
a large class of homogeneous coagulation kernels.

Nevertheless, for the so-called “sum” kernel K given by

K(x, y) = xλ + yλ , (x, y) ∈ (0,∞)2 , (1.4)

for some λ ∈ (0, 1), the integrability properties of the scaling profile ψ for small mass obtained in
[9, 11] are weaker than that predicted by physicists [7, 15] and one purpose of this work is to fill
this gap. More precisely, the scaling profile ψ of the self-similar solution to (1.1) constructed in
[9, 11] is such that ψ ∈ L1(0,∞;xσ dx) for each σ ≥ λ. In this paper, we extend this property to
σ ≥ τ − 1 where τ < 1+λ is given by (1.8) below. We actually prove that ψ(x) ∼ L0 x

−τ as x→ 0
for some L0 > 0, which is exactly the small mass behaviour for ψ expected from previous formal
computations [7, 15].

The second aim of this paper is to improve the large mass estimates on ψ obtained so far. More
precisely, we prove that ψ(x) ≤ C e−̺x for some C > 0 and ̺ > 0 but also that ψ cannot decay faster
than any exponential. These two facts perfectly agree with the conjecture that ψ(x) ∼ A x−λ e−δx

as x→ ∞ for some constants A > 0 and δ > 0 [7, 15], which we have been yet unable to prove.

Finally, as a by-product of the analysis of the behaviour of ψ for large and small masses, we
also study the smoothness of the scaling profile ψ on (0,∞).

Let us now state precisely our results and first recall the definition of a scaling profile to (1.1).

Definition 1.1 Consider the coagulation kernel K defined by (1.4) for some λ ∈ (0, 1), and set
γ := 1/(1− λ). A scaling profile to (1.1) is a strictly positive function ψ ∈ L1(0,∞;xdx) such that

∫ ∞

0
x ψ(x) dx = 1 , ψ ∈ L1(0,∞;xσdx) for each σ ≥ λ , (1.5)

γ

∫ ∞

0
x2ψ(x)φ′(x)dx =

∫ ∞

0

∫ ∞

0
xK(x, y)[φ(x+ y) − φ(x)]ψ(x)ψ(y)dydx (1.6)

for any φ ∈ C1
b ([0,∞)), and

γz2ψ(z) =

∫ z

0

∫ ∞

z−x
K(x, y)xψ(x)ψ(y)dydx for a.e. z ∈ (0,∞), (1.7)

the right-hand side of (1.7) being finite for almost every z ∈ (0,∞).

For the coagulation kernel (1.4), the existence of a scaling profile ψ to (1.1) in the sense of
Definition 1.1 follows from [11], see also [9]. It is also shown in these papers that, if ψ is a
scaling profile to (1.1) in the sense of Definition 1.1, the function cS(t, x) = t−2γψ(xt−γ), (t, x) ∈
(0,∞) × (0,∞) solves (1.1) in a weak sense and is thus a self-similar solution to (1.1). Let us also
mention at this point that the choice of the constant γ on the left-hand side of (1.7) and of the
value 1 for the first moment of ψ is only made for convenience. Indeed, if ψ is a scaling profile to
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(1.1) in the sense of Definition 1.1, the function ψa,b(x) := a ψ(bx) is also a scaling profile to (1.1)
with aγb−(1+λ) instead of γ on the left-hand side of (1.7) and with a first moment equal to ab−2.

We will prove here the following properties of scaling profiles.

Theorem 1.2 Let ψ be a scaling profile to (1.1) in the sense of Definition 1.1 for the coagulation
kernel (1.4). Then ψ ∈ C1((0,∞)) and, setting

τ := 2 −
1

γ

∫ ∞

0
xλ ψ(x) dx , (1.8)

we have τ ∈ (1,min {3/2, 1 + λ}) and there exists L0 > 0 such that

lim
z→0

zτψ(z) = L0 . (1.9)

Moreover, for any ̺ < 2−γ−2γγ−1, there exists a constant C0(̺) such that

ψ(z) ≤ C0(̺) e
−̺z for z ∈ [1,∞) . (1.10)

Finally there exists ̺1 > 0 such that

∫ ∞

1
ψ(z) e̺1z dz = ∞ , (1.11)

so that (1.10) cannot hold true for any ̺ > 0.

As already mentioned, the behaviour (1.9) of ψ for small masses has been obtained by formal
arguments in the physical literature [7, 15] and we herein provide a rigorous proof of this fact. From
a physical point of view, it seems to be quite important that the exponent τ is not determined a
priori but implicitly defined, which contrasts markedly with other kernels (such as the so-called
“product” kernel K(x, y) = (xy)λ/2, λ ∈ (0, 1), for which it is conjectured that τ = 1 + λ [7, 15]).
Notice also that, if (1.3) holds true, we have c(t, x)/c(t, 1) ∼ x−τ for fixed x at large times and the
exponent τ thus describes the x-dependence of the solutions c to (1.1) for x ≪ tγ . In fact, some
analytical upper and lower bounds for τ are available [3, 5, 6] and numerical simulations have been
performed which allow to compute approximate values of τ [3, 10, 13, 14]. In this direction, we give
a rigorous proof of the fact that τ < 1 + λ and also show that τ > 1 for each λ ∈ (0, 1). Seemingly,
the latter bound was only known for λ in a neighbourhood of 1 [5].

It is also conjectured in [7, 15] that, for large z, ψ(z) ∼ Az−λe−δz for some constants A > 0
and δ > 0. We only prove the weaker assertions (1.10) and (1.11) but point out that they agree
with this conjecture.

We finally mention that the arguments developed below are specific for the analysis of the small
mass behaviour of the scaling profile for the sum kernel (1.4). In particular, it seems likely that
the study of the scaling profile associated to the “product” kernel K(x, y) = (xy)λ/2, λ ∈ (0, 1),
requires completely different computations.

As already observed in [7, Eq. (4.30c)], it is possible to combine (1.7) and (1.9) to obtain the
second term of the expansion of ψ as z → 0.
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Corollary 1.3 Let ψ be a scaling profile to (1.1) in the sense of Definition 1.1 for the coagulation
kernel (1.4). Recalling that τ is defined by (1.8) and introducing

J :=

∫ 1

0
x1+λ−τ (1 − x)1−τ dx and L1 :=

J L2
0

γ

(λ+ 2 − 2τ) (3 + λ− 2τ)

(τ − 1)(1 + λ− τ)2
,

we have
ψ(z) = L0 z

−τ + L1 z
1+λ−2τ + o

(

z1+λ−2τ
)

as z → 0 . (1.12)

Observe that J is indeed finite by the bounds on τ obtained in Theorem 1.2 and that the sign
of L1 depends on whether τ is above or below 1 + (λ/2). According to [5, Table 1], the latter is
certainly true for λ ∈ (0, 0.366) so that L1 > 0 in that case. For other values of λ, a negative or
vanishing value of L1 cannot a priori be excluded.

As a final comment, let us mention that one might hope that the qualitative information ob-
tained in Theorem 1.2 could be a small step towards a proof of the uniqueness of the scaling profile
ψ and thus towards the proof of (1.3), but this does not seem obvious.

The remainder of the paper is devoted to the proof of Theorem 1.2 and Corollary 1.3. We
start with some useful moment estimates in Section 2 where we prove that τ < 1 + λ and that
ψ ∈ L1(0,∞;xσdx) for σ ∈ (τ − 1, λ). These moment estimates then allow us to prove (1.9) in
Section 3. At this point, arguing by contradiction enables us to exclude that τ = 1. We next prove
(1.10) in Section 4: the first step here is that ψ has some finite exponential moments. Gathering
these information, the C1-smoothness of ψ is shown in Section 5.

From now on, ψ is a scaling profile to (1.1) in the sense of Definition 1.1 for the coagulation
kernel (1.4). For σ ∈ R and z ∈ (0,∞), we put

Mσ :=

∫ ∞

0
xσ ψ(x) dx ∈ (0,∞] and Mσ(z) :=

∫ z

0
xσ ψ(x) dx ∈ (0,∞] .

2 Moment estimates

In this section, we show that we can extend the range of σ for which ψ ∈ L1(0,∞;xσdx). More
precisely, we have the following result:

Proposition 2.1 We have τ < 1 + λ and ψ ∈ L1(0,∞;xσdx) for each σ ∈ (τ − 1, λ).

The fact that τ < 1 + λ follows from the following lower bound for Mλ.

Lemma 2.2 There holds Mλ ≥ 2λ.

Proof. We take φ(x) = xλ−1 in (1.6) and obtain, thanks to the symmetry of K,

Mλ =

∫ ∞

0

∫ ∞

0
K(x, y)

[

xλ − x (x+ y)λ−1
]

ψ(x) ψ(y) dydx

=
1

2

∫ ∞

0

∫ ∞

0
K(x, y)

[

xλ + yλ − (x+ y)λ
]

ψ(x) ψ(y) dydx .
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To justify rigorously this equality, consider a sequence of functions φε ∈ C1
b ([0,∞)) such that

φε(x) = xλ−1 for x > ε and write (1.6) with φε. Since Mσ < ∞ for σ ≥ λ by (1.5), we may let
ε→ 0 and obtain the claimed identity. Recalling that

xλ + yλ ≤ 21−λ (x+ y)λ and xλ + yλ − (x+ y)λ ≤
(xy)λ

(x+ y)λ
(2.1)

(see Appendix A), we further obtain

Mλ ≤
1

2λ

∫ ∞

0

∫ ∞

0
(xy)λ ψ(x) ψ(y) dydx ≤

M2
λ

2λ
,

and the finiteness of Mλ implies the claim. �

Proof of Proposition 2.1. We first check that Lemma 2.2 warrants that τ < 1 + λ. Indeed, by
Lemma 2.2 and the definitions of τ and γ, we have

1 + λ− τ = (1 − λ)(Mλ − 1) ≥ (1 − λ)(2λ − 1) > 0 .

We next fix σ ∈ (τ − 1, λ) and introduce the following approximation of xσ−1. For ε ∈ (0, 1),
we define ϕε ∈ C1

b ([0,∞)) by

ϕε(x) :=







xσ−1 if x ∈ [ε,∞) ,

(2 − σ) εσ−1 − (1 − σ) εσ−2 x if x ∈ [0, ε] .

Then

ϕ′
ε(x) :=







(σ − 1) xσ−2 if x ∈ [ε,∞) ,

(σ − 1) εσ−2 if x ∈ [0, ε] ,

and ϕε is a non-negative and non-increasing function such that

x |ϕ′
ε(x)| ≤ (1 − σ) ϕε(x) , x ∈ [0,∞) , (2.2)

ϕε(x) ≤ xσ−1 , x ∈ [0,∞) . (2.3)

Since ϕε ∈ C1
b ([0,∞)) and is non-increasing, we may take φ = ϕε in (1.6) and obtain

∫ ∞

0

∫ ∞

0
x K(x, y) [ϕε(x) − ϕε(x+ y)] ψ(x) ψ(y) dydx = γ

∫ ∞

0
x2 |ϕ′

ε(x)| ψ(x) dx .

Since ϕε is non-increasing and K(x, y) ≥ yλ, we have

K(x, y) [ϕε(x) − ϕε(x+ y)] ≥ yλ [ϕε(x) − ϕε(x+ y)] .

Thanks to this lower bound and (2.2), we obtain

∫ ∞

0

∫ ∞

0
x yλ [ϕε(x) − ϕε(x+ y)] ψ(x) ψ(y) dydx ≤ (1 − σ) γ

∫ ∞

0
x ϕε(x) ψ(x) dx ,
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whence

[Mλ − (1 − σ) γ]

∫ ∞

0
x ϕε(x) ψ(x) dx ≤

∫ ∞

0

∫ ∞

0
x yλ ϕε(x+ y) ψ(x) ψ(y) dydx .

Since σ < λ < 1, we may use once more the monotonicity of ϕε and the fact that ϕε(z) = zσ−1 for
z ≥ ε to deduce that, for δ ∈ (0, 1),

[Mλ − (1 − σ) γ]

∫ ∞

0
x ϕε(x) ψ(x) dx

≤

∫ ∞

0

∫ ε

0
x yλ ϕε(x) ψ(x) ψ(y) dydx+

∫ ∞

0

∫ ∞

ε
x yλ (x+ y)σ−1 ψ(x) ψ(y) dydx

≤ Mλ(ε)

∫ ∞

0
x ϕε(x) ψ(x) dx+

∫ ∞

0

∫ ∞

ε

x

(x+ y)1−λ

yλ

(x+ y)λ−σ
ψ(x) ψ(y) dydx

≤ Mλ(ε)

∫ ∞

0
x ϕε(x) ψ(x) dx+

∫ δ

0

∫ ∞

ε
xλ yσ ψ(x) ψ(y) dydx

+

∫ ∞

δ

∫ ∞

ε
xλ yλ

δλ−σ
ψ(x) ψ(y) dydx

≤ (Mλ(ε) +Mλ(δ))

∫ ∞

0
x ϕε(x) ψ(x) dx+

M2
λ

δλ−σ
.

Recalling the definition (1.8) of τ , we have thus shown that, for δ ∈ (0, 1) and ε ∈ (0, δ), there
holds

[γ (σ − (τ − 1)) − 2 Mλ(δ)]

∫ ∞

0
x ϕε(x) ψ(x) dx ≤

M2
λ

δλ−σ
.

Since σ > τ − 1 and ψ ∈ L1(0,∞;xλdx) by (1.5), there exists δ0 > 0 such that 4 Mλ(δ0) ≤
γ (σ − (τ − 1)). Therefore, for ε ∈ (0, δ0), it follows from the above inequality that

γ (σ − (τ − 1))

2

∫ ∞

0
x ϕε(x) ψ(x) dx ≤

M2
λ

δλ−σ
0

.

In particular,
∫ ∞

ε
xσ ψ(x) dx ≤

2 δσ−λ
0 M2

λ

γ (σ − (τ − 1))

for ε ∈ (0, δ0). The Fatou lemma then allows us to complete the proof of Proposition 2.1. �

We next give some lower and upper bounds for τ which will be helpful to investigate the
short and large x behaviour of ψ. These bounds have already been observed in the physical
literature [3, 5, 6, 7] with more or less rigorous arguments. We provide a proof below for the sake
of completeness.

Proposition 2.3 There holds τ ∈ [1, 3/2).

Proof. We first establish the lower bound τ ≥ 1. Indeed, assume for contradiction that τ < 1.
Then ψ ∈ L1(0,∞) by Proposition 2.1 and we can take φ(x) = 1/x in (1.6) (consider as before a
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sequence of functions φε ∈ C1
b ([0,∞)) such that φε(x) = x−1 for x > ε, write (1.6) with φε and

pass to the limit as ε→ 0 using the facts that M0 <∞ and Mλ <∞ by (1.5)). We thus obtain

γ M0 = −γ

∫ ∞

0
x2ψ(x)φ′(x)dx

=

∫ ∞

0

∫ ∞

0
x(xλ + yλ) (φ(x) − φ(x+ y))ψ(x)ψ(y)dydx

=

∫ ∞

0

∫ ∞

0
(xλ + yλ)

y

x+ y
ψ(x)ψ(y)dydx

=
1

2

∫ ∞

0

∫ ∞

0
(xλ + yλ)ψ(x)ψ(y)dydx = M0Mλ,

whence Mλ = γ since M0 is assumed to be finite. Recalling the definition (1.8) of τ , we would have
τ = 1 and a contradiction.

We next turn to the upper bound and follow [5, 6]. If λ ∈ (0, 1/2], the inequality τ < 1 + λ
obtained in Proposition 2.1 implies that τ < 3/2. If λ ∈ (1/2, 1), the proof relies on the inequality

(x+ y)2λ − x2λ − y2λ ≤
(

22λ − 2
)

(xy)λ , (x, y) ∈ (0,∞) × (0,∞) , (2.4)

(see [6, Eq. (5.4)]), a proof of which is given in the Appendix. Since M2λ < ∞ by (1.5), we may
take φ(x) = x2λ−1, x ∈ (0,∞), in (1.6) (consider as before an approximating sequence of functions
φε ∈ C1

b ([0,∞))) and use (2.4) to obtain

γ (2λ − 1) M2λ =
1

2

∫ ∞

0

∫ ∞

0
K(x, y) [(x+ y) φ(x+ y) − x φ(x) − y φ(y)] ψ(x) ψ(y) dydx

≤
(

22λ−1 − 1
)

∫ ∞

0

∫ ∞

0

(

xλ + yλ
)

(xy)λ ψ(x) ψ(y) dydx

≤
(

22λ − 2
)

M2λ Mλ ,

whence, since M2λ <∞,
2λ− 1

22λ − 2
≤
Mλ

γ
= 2 − τ .

Now, as x 7−→ 2x is strictly convex, x 7−→ (2x − 2) /(x − 1) is an increasing function. Therefore,
since λ ∈ (1/2, 1), we have 2λ < 2 and thus

(

22λ − 2
)

/(2λ − 1) < 2, whence τ < 3/2. �

3 Small mass behaviour

We now identify the behaviour of ψ(z) as z → 0.

Proposition 3.1 There exists L0 ∈ (0,∞) such that

lim
z→0

zτ ψ(z) = L0 . (3.1)
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The proof of Proposition 3.1 splits in several steps: we first study the behaviour of

H(z) :=

∫ z

0
x ψ(x) dx (3.2)

as z → 0 and show that zτ−2 H(z) has a non-negative limit ℓ ∈ [0,∞) as z → 0. This part of the
proof relies on the fact that (1.7) can also be written

γ
(

z H ′(z) + (τ − 2) H(z)
)

= A(z) −B(z) , z ∈ (0,∞) , (3.3)

where

A(z) :=

∫ z

0
x1+λ ψ(x) Ψ(z − x) dx , z ∈ (0,∞) , (3.4)

B(z) :=

∫ z

0
x ψ(x)

∫ z−x

0
yλ ψ(y) dydx , z ∈ (0,∞) , (3.5)

and

Ψ(z) :=

∫ ∞

z
ψ(x) dx , z ∈ (0,∞) . (3.6)

In a second step, we study the integrability properties of x 7→ x ψ(x) and Ψ and then deduce that
z 7→ zτ ψ(z) belongs to L∞(0, 1). The final step is devoted to the proof that ℓ > 0.

Lemma 3.2 There exist C1 > 0 and ℓ ∈ [0,∞) such that

H(z) ≤ C1 z
2−τ , z ∈ (0,∞) , (3.7)

lim
z→0

zτ−2 H(z) = ℓ . (3.8)

Proof. We first notice that (1.7) also reads

γ z2 ψ(z) = A(z) +Mλ H(z) −B(z) , (3.9)

whence (3.3) by the definition (1.8) of τ . Next, since τ ∈ [1, 1 + λ) by Propositions 2.1 and
2.3, we may fix σ ∈ (τ − 1, (τ − 1 + λ)/2) and recall that Mσ < ∞ by Proposition 2.1. Since
1 − σ > λ− σ > 0, we have

B(z) =

∫ z

0

∫ z−x

0
xσ x1−σ yσ yλ−σ ψ(x) ψ(y) dydx ≤M2

σ z1+λ−2σ

for z ∈ (0, 1). Since A ≥ 0, we deduce from (3.3) and the previous upper bound on B that, for
z ∈ (0, 1),

γ
d

dz

(

zτ−2 H(z)
)

= γ zτ−3
(

z H ′(z) + (τ − 2) H(z)
)

≥ −M2
σ zτ+λ−2σ−2 ,

whence, since τ + λ− 2σ − 2 > −1,

d

dz

(

zτ−2 H(z) +
M2

σ

γ

zτ+λ−2σ−1

τ + λ− 2σ − 1

)

≥ 0 . (3.10)
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On the one hand, we infer from (3.10) after integration over (z, 1), z ∈ (0, 1), that

H(1) +
M2

σ

γ

1

τ + λ− 2σ − 1
≥ zτ−2 H(z) +

M2
σ

γ

zτ+λ−2σ−1

τ + λ− 2σ − 1
.

Since H(1) ≤ M1 = 1, we conclude that there is C1 > 0 such that zτ−2 H(z) ≤ C1 for z ∈ (0, 1).
Now, if z ≥ 1, the bound τ < 1 + λ < 2 (see Proposition 2.1) ensures that zτ−2 H(z) ≤ H(z) ≤
M1 = 1, and we have thus proved (3.7).

On the other hand, it follows from (3.10) that there exists ℓ ∈ [0,∞) such that

lim
z→0

(

zτ−2 H(z) +
M2

σ

γ

zτ+λ−2σ−1

τ + λ− 2σ − 1

)

= ℓ .

Since τ − 1 + λ > 2σ, limz→0 z
τ+λ−2σ−1 = 0, from which (3.8) readily follows. �

We now proceed as in [11, Lemma 4.1] to study the integrability of x 7→ x ψ(x) and x 7→ Ψ(x).

Lemma 3.3 Consider σ ∈ (τ − 1, 1]. Then x 7→ x ψ(x) and Ψ belong to L1/σ(0,∞) and there
exists C2(σ) > 0 such that

Ψ(z) ≤ C2(σ) z−σ , z ∈ (0,∞) . (3.11)

Proof. For σ = 1, Lemma 3.3 follows at once from (1.5). Consider next σ ∈ (τ − 1, 1). We take
ϑ ∈ C∞

0 ((0,∞)) and choose

φ(x) =

∫ x

0
ϑ(y) y−1 dy , x ∈ [0,∞) ,

in (1.6). Setting p = 1/σ and p′ = p/(p − 1), it follows from Proposition 2.1 and the Hölder
inequality that

γ

∣

∣

∣

∣

∫ ∞

0
x ψ(x) ϑ(x) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

0

∫ ∞

0
x K(x, y)

∫ x+y

x
ϑ(z) z−1 dz ψ(x) ψ(y) dydx

∣

∣

∣

∣

≤ ‖ϑ‖Lp′

∫ ∞

0

∫ ∞

0
x K(x, y)

(
∫ x+y

x
z−p dz

)1/p

ψ(x) ψ(y) dydx

≤ ‖ϑ‖Lp′

∫ ∞

0

∫ ∞

0

[

x1+λ x−1 y1/p + x yλ

(

x1−p

p− 1

)1/p
]

ψ(x) ψ(y) dydx

≤ ‖ϑ‖Lp′

(

1 + (p− 1)−1/p
)

Mλ Mσ .

A duality argument then yields that x 7→ x ψ(x) belongs to Lp(0,∞).

We next notice that we have

Ψ(z) = z−σ

∫ ∞

z
zσ ψ(x) dx ≤ z−σ

∫ ∞

z
xσ ψ(x) dx ≤Mσ z

−σ
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by Proposition 2.1, whence (3.11). Finally, we deduce from (3.11), Proposition 2.1 and the Fubini
theorem that

∫ ∞

0
Ψ(z)1/σ dz ≤

∫ ∞

0

(

C2(σ) z−σ
)(1/σ)−1

∫ ∞

z
ψ(x) dxdz

≤ C2(σ)(1/σ)−1

∫ ∞

0
ψ(x)

∫ x

0
zσ−1 dzdx

≤ C2(σ)(1/σ)−1 Mσ

σ
,

and the proof of Lemma 3.3 is complete. �

Lemma 3.4 There is a constant C3 such that

ψ(z) ≤ C3 z
−τ , z ∈ (0, 1) . (3.12)

Proof. We infer from (1.5) and (3.7) that, for z ∈ (0,∞),
∫ z

0
x ψ(x)

∫ ∞

z−x
yλ ψ(y) dydx ≤Mλ H(z) ≤ C min {z2−τ , 1} . (3.13)

Next recall that τ − 1 < min {λ, 1/2} by Proposition 2.1 and Proposition 2.3. Hence σ =
min {1/2, (λ + τ − 1)/2} > τ − 1. Consequently, x 7→ x ψ(x) and Ψ belong to L1/σ(0,∞) by
Lemma 3.3. Since 1 − 2σ ≥ 0, the Hölder inequality (with p = 1/σ, q = 1/σ and r = 1/(1 − 2σ))
yields

∫ z

0
x1+λ ψ(x) Ψ(z − x) dx ≤ zλ

(
∫ z

0
[x ψ(x)]1/σ dx

)σ

‖Ψ‖L1/σ z1−2σ ≤ C z1+λ−2σ

for z ∈ (0,∞). Owing to (3.13) and the above estimate, we deduce from (1.7) that, for z ∈ (0,∞),

ψ(z) ≤ C
(

zλ−1−2σ + min {z−τ , z−2}
)

.

Since λ− 1− 2σ ≥ −τ , the above estimate implies that ψ(z) ≤ C z−τ for z ∈ (0, 1), whence (3.12).
�

We next turn to the proof of the positivity of ℓ. To this end, we first prove that M−σ cannot
be finite for large values of σ.

Lemma 3.5 If σ ∈ (−1,∞) is such that γ (σ + 1) >
(

1 + (σ + 1)λ
)

Mλ, then M−σ = ∞.

Proof. Assume for contradiction that M−σ < ∞ and put φ(x) = x−(1+σ) for x ∈ (0,∞). Since
σ > −1, we have

φ(x) − φ(x+ y) ≤ φ(x) ,

φ(x) − φ(x+ y) ≤ (σ + 1) y x−(σ+2)

for (x, y) ∈ (0,∞) × (0,∞), from which we deduce that

x1+λ (φ(x) − φ(x+ y)) ≤ x1+λ φ(x)1−λ (φ(x) − φ(x+ y))λ

≤ (σ + 1)λ x−σ yλ (3.14)
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and
x yλ (φ(x) − φ(x+ y)) ≤ x−σ yλ . (3.15)

Since M−σ and Mλ are both finite, (3.14) and (3.15) actually imply that we may take φ as a test
function in (1.6) (consider as before an approximating sequence of functions φε ∈ C1

b ([0,∞))).
Using (3.14) and (3.15), we further obtain that

γ (σ + 1) M−σ = −γ

∫ ∞

0
x2φ′(x)ψ(x)dx

=

∫ ∞

0

∫ ∞

0
(x1+λ + xyλ) (φ(x) − φ(x+ y))ψ(x)ψ(y)dydx

≤ (σ + 1)λMλ M−σ +Mλ M−σ

≤
[

1 + (σ + 1)λ
]

Mλ M−σ ,

whence a contradiction when γ (σ + 1) >
[

1 + (σ + 1)λ
]

Mλ. �

We show in the next lemma that, if ℓ = 0, ψ enjoys some regularizing properties for small z.

Lemma 3.6 Assume that there are α ≥ −τ and C > 0 such that

ψ(z) ≤ C zα , z ∈ (0, 1/2) , (3.16)

and recall that ℓ is defined in (3.8). Then there exists a constant C(α) > 0 such that

ψ(z) ≤
Mλ

γ
ℓ z−τ + C(α) ωα(z) , z ∈ (0, 1/2) , (3.17)

where ωα(z) = z1+λ+2α if α < −1, ω−1(z) = zλ−1 | ln (z)| and ωα(z) = zλ+α if α > −1.

Proof. We split the proof into three cases.
Case 1: α < −1. Since M1 = 1 it follows from (3.16) that, for z ∈ (0, 1/2),

Ψ(z) =

∫ ∞

z
ψ(x)dx ≤ C

∫ 1/2

z
xα dx+ 2

∫ ∞

1/2
x ψ(x) ≤ C(α) z1+α + 2 ≤ C(α) z1+α .

Recalling that A is given by (3.4), the previous upper bound on Ψ and (3.16) imply that, for
z ∈ (0, 1/2),

A(z) ≤ C(α)

∫ z

0
x1+λ+α (z − x)1+α dx ≤ C(α) z3+λ+2α .

Here we have used the fact that 1 + α > −1 since α ≥ −τ > −2. We then infer from (3.3) that

d

dz

(

zτ−2 H(z)
)

≤
zτ−3

γ
A(z) ≤ C(α) zτ+λ+2α .

Since τ + λ+ 2α ≥ λ− τ > −1, we may integrate the above inequality between 0 and z ∈ (0, 1/2)
and use (3.8) to deduce that

zτ−2 H(z) ≤ ℓ+ C(α) zτ+λ+2α+1,

H(z) ≤ ℓ z2−τ + C(α) z3+λ+2α .

11



Using the previous upper bounds on H and A, we finally conclude from (3.3) that

ψ(z) ≤
Mλ

γ

H(z)

z2
+
A(z)

γ z2
≤
Mλ

γ
ℓ z−τ + C(α) z1+λ+2α ,

whence (3.17) for α < −1.

Case 2: α = −1. In that case, it follows from (1.5) and (3.16) that Ψ(z) ≤ C | ln (z)| for z ∈ (0, 1/2).
We then proceed as in Case 1 to conclude that (3.17) holds true for α = −1.

Case 3: α > −1. In that case, ψ ∈ L1(0, 1/2), which, together with (1.5), implies that Ψ ∈
L∞(0,∞). We then proceed as in Case 1 to complete the proof of Lemma 3.6. �

Lemma 3.7 There holds ℓ > 0, where ℓ ∈ [0,∞) is defined in (3.8).

Proof. Assume for contradiction that ℓ = 0. We first prove that

ψ(z) ≤ C z−1 , z ∈ (0, 1/2) . (3.18)

Since (3.18) is clearly true if τ = 1, we consider now the case τ > 1. Introducing the sequence
(αk)k≥0 defined by α0 = −τ and αk+1 = 2 αk +λ+1 for k ≥ 0, we notice that αk = 2k (λ+1−τ)−
(λ + 1) for k ≥ 0 and, since τ < 1 + λ by Proposition 2.1, (αk)k≥0 is an increasing sequence such
that αk → ∞ as k → ∞. In particular, there exists a unique k0 ≥ 0 such that αk0

< −1 ≤ αk0+1.
We next claim that

ψ(z) ≤ C(k) zαk+1 , z ∈ (0, 1/2) , (3.19)

for each k ∈ {0, . . . , k0}. Indeed, we argue by induction and first consider the case k = 0. Owing
to Lemma 3.4, the bound (3.16) holds true for α = α0 < −1 and, since we have assumed that
ℓ = 0, Lemma 3.6 implies that the assertion (3.19) is true for k = 0. Assume now that (3.19) holds
true for some k ∈ {0, . . . , k0 − 1}. Then ψ enjoys the property (3.16) with α = αk+1 < −1 and
Lemma 3.6 (with ℓ = 0) ensures that the assertion (3.19) is true for k + 1.

Having proved (3.19), we apply (3.19) with k = k0 and conclude that

ψ(z) ≤ C zαk0+1 ≤ C z−1

for z ∈ (0, 1/2). Therefore, (3.18) is also valid for τ > 1.

Now, thanks to (3.18), we are in a position to apply Lemma 3.6 with α = −1 and deduce that,
since ℓ = 0,

ψ(z) ≤ C zλ−1 | ln (z)| , z ∈ (0, 1/2) .

Choosing λ′ ∈ (λ/2, λ), the previous upper bound yields

ψ(z) ≤ C zλ′−1 , z ∈ (0, 1/2) . (3.20)

Introducing the sequence (βk)k≥0 defined by βk = λ′ − 1 + kλ, k ≥ 0, we claim that

ψ(z) ≤ C zβk , z ∈ (0, 1/2) , (3.21)

for each k ≥ 0. By (3.20), the assertion (3.21) is clearly true for k = 0. We next argue by induction
and assume that (3.21) is satisfied for some k ≥ 0. Since βk > β0 > −1, we infer from Lemma 3.6
with α = βk (and ℓ = 0) that (3.21) holds true for k + 1, which completes the proof of (3.21).
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Since βk → ∞ as k → ∞, it readily follows from (3.21) that ψ ∈ L1(0, 1/2;x−σdx) for each
σ > 0, which, together with (1.5), implies thatM−σ <∞ for each σ > 0 and contradicts Lemma 3.5.
Therefore, ℓ > 0. �

We are now in a position to complete the proof of Proposition 3.1.

Proof of Proposition 3.1. By Proposition 2.1, we may fix δ ∈ (0, 1 + λ − τ). Due to Proposi-
tion 2.3, σ = τ+δ > 1. For z ∈ (0, 1/2), we infer from (3.11) and (3.12) that, since σ−1 ∈ (τ−1, 1),

zτ−2 A(z) ≤ C(σ) zτ−2

∫ z

0
x1+λ−τ (z − x)1−σ dx ≤ C(σ) z1+λ−σ .

We used here that 1 + λ − τ > −1, while 1 − σ > −1. Thanks to the choice of δ, 1 + λ − σ > 0
and we realize that zτ−2 A(z) → 0 as z → 0. Similarly, since 1 − τ > λ − τ > −1, it follows from
(3.12) that, for z ∈ (0, 1/2),

zτ−2 B(z) ≤ Czτ−2

∫ z

0
x1−τdx

∫ z−x

0
yλ−τdy ≤ C zτ−2

∫ z

0
x1−τ (z − x)1+λ−τ dx ≤ C z1+λ−τ ,

and limz→0 z
τ−2 B(z) = 0. We now multiply (3.9) by zτ−2 and pass to the limit as z → 0 with the

help of (3.8) to obtain (3.1) with L0 := (Mλ ℓ)/γ. �

As a consequence of Proposition 3.1, we can exclude that τ is equal to 1. This has already been
shown in [5] for λ ≥ 0.7 by obtaining an explicit lower bound for τ . The proof we give now does
not provide such a lower bound but warrants that τ > 1 for every λ ∈ (0, 1).

Proposition 3.8 There holds τ > 1.

Proof. Assume for contradiction that τ = 1 and fix z ∈ (0,∞). We take φ(x) = max {x, z}−1,
x ∈ (0,∞), in (1.6) to obtain

γ Ψ(z) =
1

2

∫ ∞

0

∫ ∞

0
K(x, y) [x φ(x) + y φ(y) − (x+ y) φ(x+ y)] ψ(x) ψ(y) dydx

=
1

2

∫ ∞

z

∫ ∞

z
K(x, y) ψ(x) ψ(y) dydx

+
1

2z

∫ ∞

z

∫ z

0
y K(x, y) ψ(x) ψ(y) dydx

+
1

2z

∫ z

0

∫ ∞

z
x K(x, y) ψ(x) ψ(y) dydx

+
1

2z

∫ z

0

∫ z

z−x
(x+ y − z) K(x, y) ψ(x) ψ(y) dydx

= Ψ(z)

(
∫ ∞

z
xλ ψ(x) dx+

1

z

∫ z

0
x1+λ ψ(x) dx

)

+
1

z

(
∫ z

0
x ψ(x) dx

) (
∫ ∞

z
yλ ψ(y) dy

)

+
1

z

∫ z

0

∫ z

z−x
(x+ y − z) xλ ψ(x) ψ(y) dydx .

Since τ = 1, it follows from (1.8) that γ = Mλ and the above equality becomes
(
∫ z

0
xλ ψ(x) dx−

1

z

∫ z

0
x1+λ ψ(x) dx

)

Ψ(z) =
R(z)

z
(3.22)
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with

R(z) :=

(
∫ z

0
x ψ(x) dx

) (
∫ ∞

z
yλ ψ(y) dy

)

+

∫ z

0

∫ z

z−x
(x+ y − z) xλ ψ(x) ψ(y) dydx .

On the one hand, for z ∈ (0, 1), we have
∫ z

0

∫ z

z−x
(x+ y − z) xλ ψ(x) ψ(y) dydx ≤ C

∫ z

0

∫ z

z−x
y xλ x−1 y−1 dydx

≤ C z1+λ

by Lemma 3.4 and the assumption that τ = 1, and

lim
z→0

1

z

(
∫ z

0
x ψ(x) dx

) (
∫ ∞

z
yλ ψ(y) dy

)

= L0 Mλ

by (1.5) and Proposition 3.1. Therefore,

lim
z→0

R(z)

z
= L0 Mλ . (3.23)

On the other hand, the assumption that τ = 1 and Proposition 3.1 entail that, as z → 0,
(
∫ z

0
xλ ψ(x) dx−

1

z

∫ z

0
x1+λ ψ(x) dx

)

∼ L0

∫ z

0

(

1 −
x

z

)

xλ−1 dx

∼
L0

λ (λ+ 1)
zλ. (3.24)

Therefore, by (3.22), (3.23) and (3.24) we have

lim
z→0

zλ Ψ(z) = λ (λ+ 1) Mλ > 0 . (3.25)

But ψ(z) ∼ L0 z
−1 as z → 0 implies that Ψ(z) ∼ L0 | ln z| as z → 0, which clearly contradicts

(3.25) since λ > 0. Consequently, τ > 1. �

We end this section by identifying the second term of the expansion of ψ(z) as z → 0.

Proof of Corollary 1.3. Since τ > 1 by Proposition 3.8, we deduce from (3.1) that

(A−B)(z) ∼ J L2
0

(λ+ 2 − 2τ)

(τ − 1)(1 + λ− τ)
z3+λ−2τ + o

(

z3+λ−2τ
)

as z → 0, where J is defined in Corollary 1.3 and A and B by (3.4) and (3.5), respectively. Since

γ
d

dz

(

zτ−2 H(z)
)

= zτ−3 (A−B)(z)

by (3.3) and τ < 1 + λ, we further deduce from (3.8) that

H(z) = ℓ z2−τ +
J L2

0

γ

(λ+ 2 − 2τ)

(τ − 1)(1 + λ− τ)2
z3+λ−2τ + o

(

z3+λ−2τ
)

as z → 0. Inserting the expansions of A−B and H just obtained in (3.9), we are led to (1.12). �
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4 Large mass behaviour

We first establish the finiteness of some exponential moments of ψ.

Lemma 4.1 Set α0 := 2−γγγ−1. Then for all α ∈ [0, α0),

∫ ∞

1
eαx ψ(x) dx <∞ . (4.1)

Proof. For a > 1 and α ∈ (0,∞), we define

Φa(α) :=

∫ ∞

0

x2

x ∧ a
eα(x∧a)ψ(x)dx (4.2)

with the notation x ∧ a := min{x, a}. By (1.5), Φa is well-defined and differentiable on [0,∞) and
satisfies

1 = M1 ≤ Φa(0) =

∫ a

0
xψ(x)dx + a−1

∫ ∞

a
x2ψ(x)dx ≤ 1 +M2/a . (4.3)

Furthermore, using (1.6) with φ′(x) = eα(x∧a), we obtain

Φ′
a(α) =

∫ ∞

0
x2eα(x∧a)ψ(x)dx

= γ−1

∫ ∞

0

∫ ∞

0
(x1+λ + xyλ)

∫ x+y

x
eα(z∧a)dz ψ(y)ψ(x)dydx

≤ γ−1

∫ ∞

0

∫ ∞

0
(x1+λ + xyλ)yeα(x∧a)eα(y∧a)ψ(y)ψ(x)dydx

≤ 2γ−1

∫ ∞

0
x1+λeα(x∧a)ψ(x)dx

∫ ∞

0
yeα(y∧a)ψ(y)dy

≤ 2γ−1Φa(α)

∫ ∞

0
xλ µα,a(x) dx ,

where µα,a(x) := x eα(x∧a) ψ(x), x ∈ (0,∞). Clearly, µα,a ∈ L1(0,∞) by (1.5) and we deduce from
the Jensen inequality that

‖µα,a‖L1

∫ ∞

0
xλ µα,a(x)

‖µα,a‖L1

dx ≤ ‖µα,a‖
1−λ
L1

{
∫ ∞

0
x µα,a(x) dx

}λ

≤ Φa(α)1−λΦ′
a(α)λ.

Therefore, [Φ′
a(α)]1−λ ≤ 2γ−1Φa(α)2−λ, whence, since γ = 1/(1 − λ),

Φ′
a(α)Φa(α)−1−γ ≤ 2γγ−γ .

After integration, we obtain that, for all α ∈ [0, α0(a)) with α0(a) := 2−γγγ−1Φa(0)
−γ ,

Φa(α) ≤
[

Φa(0)
−γ − 2γγ1−γ α

]−1/γ
.
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Now, fix α ∈ (0, α0). Since lima→∞ Φa(0) = 1 by (4.3), the right-hand side of the above inequality
is bounded from above by a constant which does not depend on a large enough. Consequently, the
Fatou Lemma implies that

∫ ∞

1
eαx ψ(x) dx ≤ lim sup

a→∞

∫ a

1
eαx ψ(x) dx ≤ lim sup

a→∞
Φa(α) <∞,

which completes the proof. �

From (1.7) and (4.1), we deduce that ψ decays at least exponentially fast at infinity.

Proposition 4.2 Set ̺0 := α0/4 = 2−γ−2γγ−1. Then for any ̺ ∈ (0, ̺0), there exists C(̺) > 0
such that

ψ(z) ≤ C(̺) e−̺z for z ∈ [1,∞) .

Proof. Since τ − 1 < 1/2 by Proposition 2.3, Lemma 3.3 ensures that both x 7→ x ψ(x) and Ψ
belong to L2(0,∞). We then infer from (1.7), (3.13) and the Hölder inequality that, for z ∈ (0,∞),

γ z2 ψ(z) ≤ zλ

(
∫ z

0
[x ψ(x)]2 dx

)1/2

‖Ψ‖L2 + C z1−λ min {z1+λ−τ , zλ−1} ,

whence
ψ(z) ≤ C

(

zλ−2 + z−(1+λ)
)

, z ∈ (0,∞) , (4.4)

since τ −1 < λ < 1. Note also that it follows easily from Lemma 4.1 and (1.5) that for every ε > 0,
α ∈ [0, α0) and p ≥ 0, we have

A(ε, α, p) =

∫ ∞

ε
xpeαxψ(x)dx <∞. (4.5)

Next, for z ≥ 1, it follows from (1.7), Lemma 3.3 and (4.4) that for α ∈ [0, α0),

γ z2 ψ(z) ≤

∫ z/2

0
x1+λψ(x)dx

∫ ∞

z/2
ψ(y)dy +

∫ z/2

0
xψ(x)dx

∫ ∞

z/2
yλψ(y)dy

+

∫ z

z/2
x1+λ ψ(x) Ψ(z − x) dx+

∫ z

z/2
x ψ(x) dx

∫ ∞

z−x
yλψ(y)dy

≤ M1+λe
−(αz)/2A(1/2, α, 0) +M1e

−(αz)/2A(1/2, α, λ)

+ zλ

(

∫ z

z/2
[x ψ(x)]2 dx

)1/2

‖Ψ‖L2 +Mλ e
−(αz)/2 A(1/2, α, 1)

≤ C(α) e−(αz)/2 + C zλ

(

∫ z

z/2
x2
[

xλ−2 + x−(1+λ)
]

ψ(x) dx

)1/2

≤ C(α) e−(αz)/2 + zλe−(αz)/4 [A(1/2, α, λ) +A(1/2, α, 1 − λ)]1/2

≤ C(α)zλe−(αz)/4 .

The above inequality readily implies that, for any α ∈ [0, α0), there exists a constant C(α) > 0
such that ψ(z) ≤ C(α) e−(αz)/4 for z ≥ 1, whence the expected result. �
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Corollary 4.3 For each p ≥ τ , there exists C(p) > 0 such that

ψ(z) ≤ C(p) z−p , z ∈ (0,∞) . (4.6)

Proof. Since
ψ(z) ≤ C z−τ ≤ C z−p for p ≥ τ and z ∈ (0, 1)

by Lemma 3.4, Corollary 4.3 is a straightforward consequence of Proposition 4.2. �

We end this section with the proof of (1.11).

Lemma 4.4 There exists α1 > 0 such that

∫ ∞

1
eα1xψ(x)dx = ∞. (4.7)

Proof. We argue by contradiction. Assume thus that ψ ∈ L1(1,∞; eαxdx) for every α > 0. Then,
for i = 0, 1, the map

Φi(α) :=

∫ ∞

1
xieαxψ(x)dx

is well-defined and belongs to C1([0,∞)). The strict positivity of ψ ensures that Φ0(0) > 0 while
we observe at once that for each α ≥ 0,

Φ0(α) ≥ Φ0(0)e
α . (4.8)

Next, an easy computation using (1.6) shows that

Φ′
1(α) =

∫ ∞

1
x2eαxψ(x)dx

= γ−1

∫ ∞

0

∫ ∞

0
(x1+λ + xyλ)

∫ x+y

x
eαz1{z≥1}dz ψ(y)ψ(x)dydx

≥ γ−1

∫ ∞

1
x1+λeαxψ(x)dx

∫ ∞

1

eαy − 1

α
ψ(y)dy

On the one hand, the Jensen inequality implies that

∫ ∞

1
x1+λeαxψ(x)dx ≥ Φ0(α)

∫ ∞

1
x1+λ

[

Φ0(α)−1eαxψ(x)
]

dx

≥ Φ0(α)

[
∫ ∞

1
xΦ0(α)−1eαxψ(x)dx

]1+λ

≥ Φ0(α)−λΦ1(α)1+λ

On the other hand, since ex − 1 ≥ ex/2 for x ≥ 1, we have

∫ ∞

1

eαy − 1

α
ψ(y)dy ≥

1

2α

∫ ∞

1
eαyψ(y)dy =

1

2α
Φ0(α)
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for α ≥ 1. Combining the above inequalities and using (4.8), we end up with

Φ′
1(α) ≥ Φ1(α)1+λ Φ0(α)1−λ

2γα
≥ Φ1(α)1+λ Φ0(0)

1−λe(1−λ)α

2γα
≥ εΦ1(α)1+λ,

for α ≥ 1, where ε = infα≥1(Φ0(0)
1−λe(1−λ)α)/(2γα) > 0. Since Φ1(1) > 0 (recall that ψ is strictly

positive on (0,∞)), this classically implies that there exists α1 ∈ (0,∞) such that limαրα1
Φ(α) =

∞, whence a contradiction. �

5 Regularity of ψ in (0,∞)

We finally study the smoothness of ψ. The main difficulty we face here is the singularity of ψ for
small mass and the proof of the C1-smoothness of ψ turns out to be rather technical. One could
probably show that ψ is C∞-smooth on (0,∞) as conjectured by the physicists, but this could be
rather technical and we have been unable to prove it.

Theorem 5.1 The function ψ is C1-smooth on (0,∞).

We first prove that ψ is Hölder continuous.

Lemma 5.2 The function ψ is continuous on (0,∞). More precisely, there is a constant C such
that for any z ∈ (0,∞) and h ∈ (0,∞),

∣

∣(z + h)2ψ(z + h) − z2ψ(z)
∣

∣ ≤ C h2−τ . (5.1)

Proof. The identity (1.7) reads

γz2ψ(z) = F (z) +G(z) , z ∈ (0,∞) , (5.2)

with

F (z) =

∫ z

0
x1+λ ψ(x)

∫ ∞

z−x
ψ(y) dydx ,

G(z) =

∫ z

0
x ψ(x)

∫ ∞

z−x
yλ ψ(y) dy .

Since τ ∈ (1, 2) by Proposition 3.8, it follows from (4.6) with p = 1 + λ and p = τ that,

|F (z + h) − F (z)| ≤

∫ z+h

z
x1+λ ψ(x)

∫ ∞

z+h−x
ψ(y)dydx

+

∫ z

0
x1+λ ψ(x)

∫ z+h−x

z−x
ψ(y) dy

≤ C

∫ z+h

z
(z + h− x)1−τ dx

+ C

∫ z

0

[

(z − x)1−τ − (z + h− x)1−τ
]

dx

≤ C h2−τ + C
(

h2−τ + z2−τ − (z + h)2−τ
)

≤ C h2−τ .
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Similarly, we infer from (1.5) and (4.6) with p = 1 + λ and p = τ that

|G(z + h) −G(z)| ≤

∫ z+h

z
x ψ(x)

∫ ∞

z+h−x
yλ ψ(y) dydx

+

∫ z

0
x ψ(x)

∫ z+h−x

z−x
yλ ψ(y) dydx

≤ C Mλ

∫ z+h

z
x1−τ dx+ C

∫ z

0
x−λ (z − x)λ−1

∫ z+h−x

z−x
y ψ(y) dydx

≤ C h2−τ + C

∫ z

0
x−λ (z − x)λ−1

[

(z + h− x)2−τ − (z − x)2−τ
]

dx

≤ C h2−τ

(

1 +

∫ z

0
x−λ (z − x)λ−1 dx

)

≤ C h2−τ

(

1 +

∫ 1

0
u−λ (1 − u)λ−1 du

)

≤ C h2−τ .

Therefore, (5.1) holds true, so that z 7→ z2ψ(z) is continuous on (0,∞) and the proof of Lemma 5.2
is complete. �

Proof of Theorem 5.1. Obviously, it suffices to show that z 7→ z2ψ(z) ∈ C1((0,∞)). Differenti-
ating (1.7) formally, we see that the first derivative D of x 7→ γ x2ψ(x) (if any) should be given by
D = D1 +D2 −D3 where

D1(x) :=

∫ x

0
d1(x, y) dy , (5.3)

d1(x, y) := 1(0,x)(y) ψ(y)
(

x1+λ ψ(x) − (x− y)1+λ ψ(x− y)
)

, (5.4)

D2(x) := x1+λ ψ(x) Ψ(x) +Mλ x ψ(x) , (5.5)

D3(x) :=

∫ x

0
yλ (x− y) ψ(y) ψ(x− y) dy (5.6)

for x ∈ (0,∞).

Step 1: We prove that D(x) is well-defined for x ∈ (0,∞) and that D ∈ L1(0, z) for z ∈ (0,∞).
For that purpose, we first note the following consequence of Lemma 5.2. For α ∈ (0, 2), there exists
a constant C(α) > 0 such that

|zα
2 ψ(z2) − zα

1 ψ(z1)| ≤ C(α)
(

zα−2
2 + z2−τ

1 min {z1, z2}
α+τ−4

)

|z2 − z1|
2−τ (5.7)

for (z1, z2) ∈ (0,∞) × (0,∞). Indeed, we infer from (4.6) (with p = τ) and Lemma 5.2 that

|zα
2 ψ(z2) − zα

1 ψ(z1)| ≤ zα−2
2

∣

∣z2
2 ψ(z2) − z2

1 ψ(z1)
∣

∣+ z2
1 ψ(z1)

∣

∣zα−2
2 − zα−2

1

∣

∣

≤ C zα−2
2 |z2 − z1|

2−τ + C z2−τ
1 min {z1, z2}

α+τ−4
∣

∣z2−τ
2 − z2−τ

1

∣

∣ ,

whence (5.7).
We now fix z ∈ (0,∞). By (4.6) (with p = τ) and (5.7) (with α = 1 + λ), we have

|d1(x, y)| ≤ C y−τ
(

xλ−1 + (x− y)λ−1
)

y2−τ 1(0,x)(y) ≤ C y2−2τ
(

xλ−1 + (x− y)λ−1
)

1(0,x)(y)

19



for x ∈ (0, z), so that
d1 ∈ L1((0, z) × (0, z)) , (5.8)

since 2 − 2τ > −1 by Proposition 2.3 and λ > 0. As a straightforward consequence of (5.8), we
deduce that D1 ∈ L1(0, z). Next, since τ > 1 by Proposition 3.8, we infer from (4.6) (with p = τ)
that

D2(x) ≤ C x2+λ−2τ + C x1−τ ,

and D2 ∈ L1(0, z). Similarly, since 1 − τ > λ− τ > −1, it follows from (4.6) with p = τ that

D3(x) ≤ C

∫ x

0
yλ−τ (x− y)1−τdx ≤ Cx2+λ−2τ ∈ L1(0, z).

Consequently, D ∈ L1(0, z).

Step 2: We now check that D is indeed the first derivative of z 7→ γ z2 ψ(z). We fix z ∈ (0,∞).
Since d1 ∈ L1((0, z) × (0, z)) by (5.8), the Fubini theorem yields

∫ z

0
D1(x) dx =

∫ z

0

∫ z

y
d1(x, y) dxdy

=

∫ z

0
ψ(y)

∫ z

y

(

M ′
1+λ(x) −M ′

1+λ(x− y)
)

dxdy

=

∫ z

0
ψ(y) (M1+λ(z) −M1+λ(z − y) −M1+λ(y)) dy

=

∫ z

0
ψ(y)

∫ z

z−y
x1+λ ψ(x) dxdy −

∫ z

0
ψ(y) M1+λ(y) dy .

Owing to (4.6) and the bounds on τ , we may use again the Fubini theorem and obtain

∫ z

0
D1(x) dx =

∫ z

0
x1+λ ψ(x)

∫ z

z−x
ψ(y) dydx−

∫ z

0
x1+λ ψ(x)

∫ z

x
ψ(y) dydx . (5.9)

It also follows from the Fubini theorem that
∫ z

0
D3(x) dx =

∫ z

0
yλ ψ(y)

∫ z

y
(x− y) ψ(x− y) dxdy

=

∫ z

0
yλ ψ(y)

∫ z−y

0
x ψ(x) dxdy

=

∫ z

0
x ψ(x)

∫ z−x

0
yλ ψ(y) dydx . (5.10)
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Now, by (5.9) and (5.10) we have

∫ z

0
D(x) dx =

∫ z

0
x1+λ ψ(x)

∫ z

z−x
ψ(y) dydx−

∫ z

0
x1+λ ψ(x)

∫ z

x
ψ(y) dydx

+

∫ z

0
x1+λ ψ(x)

∫ ∞

x
ψ(y) dy +

∫ z

0
x ψ(x) dx

∫ ∞

0
yλψ(y)dy

−

∫ z

0
x ψ(x)

∫ z−x

0
yλ ψ(y) dydx

=

∫ z

0
x1+λ ψ(x)

∫ ∞

z−x
ψ(y) dydx+

∫ z

0
x ψ(x)

∫ ∞

z−x
yλ ψ(y) dydx

= γ z2 ψ(z)

by (1.7).

Step 3: We finally show that D ∈ C((0,∞)) and study separately D1, D2 and D3.
Let z ∈ (0,∞) and h ∈ (0,∞). On the one hand, it follows from (4.6) (with p = τ) and (5.7) (with
α = 1 + λ) that

∫ z+h

z
|d1(z + h, x)| dx ≤ C

∫ z+h

z
x−τ

(

(z + h)λ−1 + (z + h− x)λ−1
)

x2−τ dx

≤ C z2−2τ
(

h zλ−1 + hλ
)

. (5.11)

On the other hand, the continuity of ψ implies that

lim
h→0

d1(z + h, x) = d1(z, x)

for x ∈ (0, z), while a further use of (4.6) (with p = τ) and (5.7) (with α = 1 + λ) entails that, for
x ∈ (0, z) and h ∈ (0,∞),

|d1(z + h, x) − d1(z, x)| ≤ (|d1(z + h, x)| + |d1(z, x)|)

≤ C x−τ
(

(z + h)λ−1 + (z + h− x)λ−1 + zλ−1 + (z − x)λ−1
)

x2−τ

≤ C x2−2τ (z − x)λ−1 ∈ L1(0, z) .

We then deduce from the Lebesgue dominated convergence theorem that

lim
h→0

∫ z

0
|d1(z + h, x) − d1(z, x)| dx = 0 .

Noting that

|D1(z + h) −D1(z)| ≤

∫ z+h

z
|d1(z + h, x)| dx+

∫ z

0
|d1(z + h, x) − d1(z, x)| dx ,

and recalling (5.11), we conclude that limh→0 |D1(z + h) − D1(z)| = 0. Consequently, D1 ∈
C((0,∞)).
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Next, the continuity of D2 on (0,∞) obviously follows from that of ψ and Ψ.
Finally, for z ∈ (0,∞) and h ∈ (0,∞), we have

|D3(z + h) −D3(z)| ≤

∫ z+h

z
|d3(z + h, x)| dx+

∫ z

0
|d3(z + h, x) − d3(z, x)| dx ,

where d3(z, x) := xλ (z − x) ψ(x) ψ(z − x) 1(0,z)(x). Owing to the continuity of ψ, we have

lim
h→0

d3(z + h, x) = d3(z, x)

for x ∈ (0, z). We then infer from (4.6) (with p = τ) that, for x ∈ (0, z),

|d3(z + h, x) − d3(z, x)| ≤ |d3(z + h, x)| + |d3(z, x)|

≤ C xλ−τ
(

(z + h− x)1−τ + (z − x)1−τ
)

≤ C xλ−τ (z − x)1−τ ∈ L1(0, z) ,

recalling that 1 − τ > λ − τ > −1 by Proposition 2.1. We are thus in a position to apply the
Lebesgue dominated convergence theorem and obtain that

lim
h→0

∫ z

0
|d3(z + h, x) − d3(z, x)| dx = 0 .

We finally notice that, by (4.6) (with p = τ), we have

∫ z+h

z
|d3(z + h, x)| dx ≤ C

∫ z+h

z
xλ−τ (z − x)1−τ dx ≤ C zλ−τ h2−τ −→

h→0
0 .

Consequently, limh→0 |D3(z+h)−D3(z)| = 0, whence D3 ∈ C((0,∞)) and the proof of Theorem 5.1
is complete. �

Gathering the outcome of Proposition 2.1, Proposition 2.3, Proposition 3.1, Proposition 3.8,
Proposition 4.2, Lemma 4.4 and Theorem 5.1, we conclude that Theorem 1.2 holds true.

A Some useful inequalities

We devote this last section to a sketch of the proofs of the inequalities (2.1) and (2.4).

Proof of the first inequality of (2.1). It of course suffices to show this inequality when
0 < x < y. Dividing this inequality by yλ, we realize that it is enough to show that f(u) =
21−λ (1+u)λ−1−uλ ≥ 0 for u ∈ (0, 1). This is straightforward since f is a non-increasing function
on (0, 1) and f(1) = 0. �

Proof of the second inequality of (2.1). We observe that

(xy)λ

(x+ y)λ
+ (x+ y)λ − xλ − yλ =

(

(x+ y)λ − yλ
)

(

1 −
xλ

(x+ y)λ

)

≥ 0

for (x, y) ∈ (0,∞) × (0,∞). �
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Proof of (2.4). We fix λ ∈ (1/2, 1). By symmetry, it suffices to consider the case where 0 < y ≤ x.
Dividing (2.4) by x2λ, we conclude that it is enough to check that

f(x) := 1 + x2λ + (22λ − 2)xλ − (1 + x)2λ ≥ 0, x ∈ (0, 1] .

We first obtain
g(x) := x1−λf ′(x)/2λ = xλ + 22λ−1 − 1 − x1−λ(1 + x)2λ−1 .

Differentiating again, we get

h(x) := x1−λg′(x) = β(x/(1 + x)) ,

where, for u ∈ [0, 1/2],
β(u) = λ− (1 − λ)/u2λ−1 − (2λ− 1)u2−2λ

Easy computations show that β′(u) > 0 for u ∈ (0, 1/2) with β(0) = −∞ and β(1/2) > 0. We
deduce that there exists u0 ∈ (0, 1/2) such that β(u) < 0 on (0, u0), β(u0) = 0, while β(u) > 0 on
(u0, 1/2). The map x 7→ x/(1+x) being an increasing one-to-one mapping from (0, 1) onto (0, 1/2),
we deduce that there exists x0 ∈ (0, 1) such that h(x) < 0 on (0, x0), h(x0) = 0, while h(x) > 0
on (x0, 1). This implies that g′(x) < 0 on (0, x0), g

′(x0) = 0, while g′(x) > 0 on (x0, 1). Since
g(0) > 0 = g(1), we deduce that there exists x1 ∈ (0, 1) such that g(x) > 0 on (0, x1), g(x1) = 0,
while g(x) < 0 on (x1, 1). This of course ensures that f ′(x) > 0 on (0, x1), f

′(x1) = 0, while
f ′(x) < 0 on (x1, 1). Since f(0) = f(1) = 0, the conclusion follows. �
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