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Abstract. We prove an inequality on the Wasserstein distance with quadratic cost between two
solutions of the spatially homogeneous Boltzmann equation without angular cutoff, from which
we deduce some uniqueness results. In particular, we obtain a local (in time) well-posedness
result in the case of (possibly very) soft potentials. A global well-posedeness result is shown for
all regularized hard and soft potentials without angular cutoff. Our uniqueness result seems to
be the first one applying to a strong angular singularity, except in the special case of Maxwell
molecules.
Our proof relies on the ideas of Tanaka [15]: we give a probabilistic interpretation of the Boltz-
mann equation in terms of a stochastic process. Then we show how to couple two such processes
started with two different initial conditions, in such a way that they almost surely remain close
to each other.
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1. Introduction and main results

1.1. The Boltzmann equation. Let f(t, v) be the density of particles with velocity v ∈ R
3 at

time t ≥ 0 in a spatially homogeneous dilute gas. Then under some assumptions, f solves the
Boltzmann equation

∂tft(v) =

∫

R3

dv∗

∫

S2

dσB(|v − v∗|, θ)
[

ft(v
′)ft(v

′
∗) − ft(v)ft(v∗)

]

,(1.1)

where the pre-collisional velocities are given by

(1.2) v′ =
v + v∗

2
+

|v − v∗|

2
σ, v′∗ =

v + v∗
2

−
|v − v∗|

2
σ

and θ is the so-called deviation angle defined by cos θ = (v−v∗)
|v−v∗|

· σ. The collision kernel B =

B(|v − v∗|, θ) = B(|v′ − v′∗|, θ) depends on the nature of the interactions between particles.

This equation is quite natural: it says that for each v ∈ R
3, new particles with velocity v appear

due to a collision between two particles with velocities v′ and v′∗, at rate B(|v′ − v′∗|, θ), while
particles with velocity v disappear because they collide with another particle with velocity v∗, at
rate B(|v − v∗|, θ). See Desvillettes [3] and Villani [19] for more much more details.
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Since the collisions are assumed to be elastic, conservation of mass, momentum and kinetic energy
hold at least formally for solutions to (1.1), that is for all t ≥ 0,

(1.3)

∫

R3

ft(v)φ(v) dv =

∫

R3

f0(v)φ(v) dv, φ(v) = 1, v, |v|2,

and we classically may assume without loss of generality that
∫

R3 f0(v) dv = 1.

1.2. Assumptions on the collision kernel. We will assume that for some functions Φ : R+ 7→
R+ and β : (0, π] 7→ (0,∞),

(A1) B(|v − v∗|, θ) sin θ = Φ(|v − v∗|)β(θ).

In the case of an interaction potential V (s) = 1/rs, with s ∈ (2,∞), one has

(1.5) Φ(z) = zγ , β(θ)
0
∼ cst θ−1−ν , with γ =

s− 5

s− 1
∈ (−3, 1), ν =

2

s− 1
∈ (0, 2).

On classically names hard potentials the case when γ ∈ (0, 1) (i.e., s > 5), Maxwellian molecules
the case when γ = 0 (i.e., s = 5), moderately soft potentials the case when γ ∈ (−1, 0) (i.e.,
s ∈ (3, 5)), and very soft potentials the case when γ ∈ (−3,−1) (i.e., s ∈ (2, 3)).

In any case,
∫

0+ β(θ)dθ = +∞, which expresses the affluence of grazing collisions, that is collisions
with a very small deviation. We will assume here the general physically reasonnable conditions

(A2)

∫ π

0

β(θ)dθ = +∞, κ1 :=

∫ π

0

θ2 β(θ)dθ < +∞.

We now introduce, for θ ∈ (0, π],

(1.7) H(θ) :=

∫ π

θ

β(x)dx and G(z) := H−1(z).

Here H is a continuous deacreasing bijection from (0, π] into [0,+∞), and its inverse function
G : [0,+∞) 7→ (0, π] is defined by G(H(θ)) = θ, and H(G(z)) = z. We will suppose that there
exists κ2 > 0 such that for all x, y ∈ R+,

(A3)

∫ ∞

0

(G(z/x) −G(z/y))
2
dz ≤ κ2

(x− y)2

x+ y
.

Concerning the velocity part of the cross section, we will assume that for all x, y ∈ R+,

min(x2, y2)
[Φ(x) − Φ(y)]2

Φ(x) + Φ(y)
+ (x− y)2[Φ(x) + Φ(y)]

+ min(x, y)|x − y||Φ(x) − Φ(y)| ≤ (x− y)2[Ψ(x) + Ψ(y)].(1.9)

for some function Ψ : R+ 7→ R+, with for some γ ∈ (−3, 0], some κ3 > 0, for all x ∈ R+,

(A4(γ)) Ψ(x) ≤ κ3x
γ .

Under Assumption ((A4)(γ)), we can easy see that necessarily for all x ∈ R+, Φ(x) ≤ Ψ(x), and
then Φ(x) ≤ κ3x

γ .
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These assumptions are not very transparent. However, the following lemma, proved in the appen-
dix, shows how they apply. Roughly, (A3) is very satisfying, (A4(0)) corresponds to regularized
velocity cross sections, while (A4(γ)) allows us to deal with general soft potentials.

Lemma 1.1. (i) Assume that there are 0 < c < C and ν ∈ (0, 2) such that for all θ ∈ (0, π],
cθ−ν−1 ≤ β(θ) ≤ Cθ−ν−1. Then (A2-A3) hold.
(ii) Assume that Φ(x) = min(xα, A) for some A > 0, some α ∈ R, or that Φ(x) = (ε + x)α for
some ε > 0, α < 0. Then (A4(0)) holds.
(iii) Assume that for some γ ∈ (−3, 0], Φ(x) = xγ . Then (A4(γ)) holds.

1.3. Goals, existing results and difficulties. We study in this paper the well-posedness of the
spatially homogeneous Boltzmann equation for singular collision kernel as introduced above. In
particular we are interested in uniqueness and stability with respect to the initial condition.

In the case of a collision kernel with angular cutoff, that is when
∫ π

0 β(θ)dθ < +∞, there are some
optimal existence and uniqueness results: see Mischler-Wennberg [14] and Lu-Mouhot [13].

The case of collision kernels without cutoff is much more difficult, but is very important, since it
corresponds to the previously described physical collision kernels. This difficulty is not surprising:
on each compact time interval, each particle collides with infinitely (resp. finitely) many others in
the case without (resp. with) cutoff.

In all the previously cited physical situations, global existence of weak solutions has been proved
by Villani [18] by using some compactness methods.

Until recently, the only uniqueness result obtained for non cutoff collision kernel was concerning
Maxwellian molecules, studied successively by Tanaka [15], Horowitz-Karandikar [12], Toscani-
Villani [17]: it was proved in [17] that uniqueness holds for the Boltzmann equation as soon as Φ
is constant and (A2) is met, for any initial (measure) datum with finite mass and energy, that is
∫

R3(1 + |v|2) f0(dv) < +∞.

There has been recently three papers in the case where β is non cutoff and Φ is not constant.
The case where Φ is bounded (together with additionnal regularity assumptions) was treated in
[8], for essentially any initial (measure) datum such that

∫

Rd(1 + |v|)f0(dv) < ∞. More realistic
collision kernels have been treated by Desvillettes-Mouhot [5] and Fournier-Mouhot [11] (including
hard and moderately soft potentials). However, all these results apply only when assuming the
following condition, stronger than (A2),

(1.11)

∫ π

0

θβ(θ)dθ <∞.

In particular, this does not apply to very soft potentials (s ∈ (2, 3]). Weighted Sobolev spaces were
used in [5], while the results of [11] rely on the Kantorovich-Rubinsten distance.

In the present paper, we obtain the first uniqueness result which can deal with the case where only
(A2) is supposed. Our result is based on the use of the Wasserstein distance with quadratic cost.
The main interest of our paper concerns very soft potentials, for which we obtain the uniqueness
of the solution provided it remains in Lp(R3), for some p large enough. Since we are only able to
propagate locally such a property, we obtain some local (in time) well-posedness result.

Our method certainly applies to the case of hard potentials. We however do not treat this case
in the present paper, since there are already some available uniqueness results, as said previously.
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Let us also mention that in a companion paper, we use a similar method to get some uniqueness
result for the Landau equation with soft potentials, which was still open.

Our proof is probabilistic, and we did not manage to rewrite it in an analytic way. The main idea
is quite simple: for two solutions (ft)t≥0, (f̃t)t≥0 to the Boltzmann equation, we construct two

stochastic processes (Vt)t≥0 and (Ṽt)t≥0 whose time marginal laws are given by (ft)t≥0 and (f̃t)t≥0,

and which are coupled in such a way that E[|Vt − Ṽt|
2] is “small” for all times. This bounds from

above the Wasserstein distance with quadratic cost between ft and f̃t.

1.4. Notation. Let us denote by C2
∞ (resp. C2

b , resp. C2
c ) the set of C2-functions φ : R

3 7→ R of
which the second derivative is bounded (resp. of which the derivatives of order 0 to 2 are bounded,
resp. which are compactly supported).

Let also Lp(R3) be the space of measurable functions f with ‖f‖Lp(R3) :=
(∫

R3 f
p(v) dv

)1/p
< +∞.

Let P(R3) be the set of probability measures on R
3, and

P2(R
3) =

{

f ∈ P(R3), m2(f) <∞
}

with m2(f) :=

∫

R3

|v|2 f(dv).

For α ∈ (−3, 0], we introduce the space Jα of probability measures f on R
3 such that

Jα(f) := sup
v∈R3

∫

R3

|v − v∗|
αf(dv∗) <∞.(1.12)

Of course, for any probability measure f , J0(f) = 1. Let L∞([0, T ],P2(R
3)), L1([0, T ], Lp(R3))

and L1([0, T ],Jα) be the sets of measurable families (ft)t∈[0,T ] of probability measures on R
3 with

sup[0,T ] m2(ft) < +∞,
∫ T

0
‖ft‖Lp(R3) dt < +∞, and

∫ T

0
Jα(ft)dt < +∞ respectively.

1.5. Weak solutions. We follow here [9]. For each X ∈ R
3, we introduce I(X), J(X) ∈ R

3 such

that ( X
|X| ,

I(X)
|X| ,

J(X)
|X| ) is an orthonormal basis of R

3. We also require that I(−X) = −I(X) and

J(−X) = −J(X) for convenience. For X, v, v∗ ∈ R
3, for θ ∈ [0, π] and ϕ ∈ [0, 2π), we set

(1.13)















Γ(X,ϕ) := (cosϕ)I(X) + (sinϕ)J(X),
v′ := v′(v, v∗, θ, ϕ) := v − 1−cos θ

2 (v − v∗) + sin θ
2 Γ(v − v∗, ϕ),

v′∗ := v′∗(v, v∗, θ, ϕ) := v∗ + 1−cos θ
2 (v − v∗) −

sin θ
2 Γ(v − v∗, ϕ),

a := a(v, v∗, θ, ϕ) := (v′ − v) = −(v′∗ − v∗),

which is nothing but a suitable spherical parameterization of (1.2): we write σ ∈ S
2 as σ =

v−v∗

|v−v∗|
cos θ + I(v−v∗)

|v−v∗|
sin θ cosϕ+ J(v−v∗)

|v−v∗|
sin θ sinϕ.

Let us observe at once that

v′(v∗, v, θ, ϕ) = v′∗(v, v∗, θ, ϕ), v′∗(v∗, v, θ, ϕ) = v′(v, v∗, θ, ϕ),(1.14)

v′(v, v∗, π − θ, ϕ) = v′∗(v, v∗, θ, ϕ+ π), v′∗(v, v∗, π − θ, ϕ) = v′(v, v∗, θ, ϕ+ π).(1.15)

Let us define the notion of weak solutions we shall use.

Definition 1.2. Let B be a collision kernel which satisfies (A1-A2). A family f = (ft)t∈[0,T ] ∈

L∞([0, T ],P2(R
3)) is a weak solution to (1.1) if

(1.16)

∫ T

0

dt

∫

R3

ft(dv)

∫

R3

ft(dv∗)Φ(|v − v∗|) |v − v∗|
2 < +∞,
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and if for any φ ∈ C2
∞, and any t ∈ [0, T ],

(1.17)

∫

R3

φ(v) ft(dv) =

∫

R3

φ(v) f0(dv) +

∫ t

0

ds

∫

R3

fs(dv)

∫

R3

fs(dv∗)Aφ(v, v∗),

where

(1.18) Aφ(v, v∗) =
Φ(|v − v∗|)

2

∫ π

0

β(θ)dθ

∫ 2π

0

dϕ [φ(v′) + φ(v′∗) − φ(v) − φ(v∗)] .

As noted by Villani [18, p 291], one has, for all v, v∗ ∈ R
3, all θ ∈ [0, π], all φ ∈ C2

∞,

(1.19)

∣

∣

∣

∣

∫ 2π

0

dϕ [φ(v′) + φ(v′∗) − φ(v) − φ(v∗)]

∣

∣

∣

∣

≤ C||φ′′||∞θ
2|v − v∗|

2,

so that thanks to assumption (A2), (1.16) ensures that all the terms in (1.17) are well-defined.
The proof of (1.19) is given in the appendix for the sake of completeness.

1.6. A suitable distance. Let us now introduce the distance on P2(R
3) we shall use. For g, g̃ ∈

P2(R
3), let H(g, g̃) be the set of probability measures on R

3 ×R
3 with first marginal g and second

marginal g̃. We then set

W2(g, g̃) = inf

{

(
∫

R3×R3

|v − ṽ|2G(dv, dṽ)

)1/2

, G ∈ H(g, g̃)

}

= min

{

(
∫

R3×R3

|v − ṽ|2G(dv, dṽ)

)1/2

, G ∈ H(g, g̃)

}

.(1.20)

This distance is the so-called Wasserstein distance with quadratic cost. We refer to Villani [20,
Chapter 2] for more details on this distance.

Our result is based on the use of this distance. A remarkable result, due to Tanaka [15], is that

in the Maxwellian case, that is when Φ ≡ 1, t 7→ W2(ft, f̃t) is nonincreasing for each pair of

reasonnable solutions f, f̃ to the Boltzmann equation.

1.7. The main results. Our main result is the following inequality.

Theorem 1.3. Assume (A1-A2-A3-A4(γ)) for some γ ∈ (−3, 0]. Let us consider two weak

solutions (ft)t∈[0,T ], (f̃t)t∈[0,T ] to (1.1) lying in L∞([0, T ],P2(R
3)) ∩ L1([0, T ],Jγ). Assume fur-

thermore than for all t ∈ [0, T ], ft (or f̃t) has a density with respect to the Lebesgue measure on
R

3. There exists a constant K = K(κ1, κ2, κ3) such that for all t ∈ [0, T ],

W2(ft, f̃t) ≤W2(f0, f̃0) exp

(

K

∫ t

0

Jγ(fs + f̃s)ds

)

.(1.21)

Observe here that the technical assumption that ft has a density can easily be removed, provided
one has some uniform estimates on Jγ(ft), as will be the case in the applications below.

We first give some application to the case of mollified velocity cross sections.

Corollary 1.4. Assume (A1-A2-A3-A4(0)). For any f0 ∈ P2(R
3), any T > 0, there exists a

unique weak solution (ft)t∈[0,T ] ∈ L∞([0, T ],P2(R
3)) to (1.1). Furthermore, there exists a constant

K = K(κ1, κ2, κ3) such that for any pair of weak solutions (ft)t∈[0,T ] and (f̃t)t∈[0,T ] to (1.1) in

L∞([0, T ],P2(R
3)), any t > 0,

W2(ft, f̃t) ≤W2(f0, f̃0)e
Kt.(1.22)
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We now apply our inequality to the case of soft potentials.

Corollary 1.5. Assume (A1-A2-A3-A4(γ)) for some γ ∈ (−3, 0], and let p ∈ (3/(3 + γ),∞).

(i) For any pair of weak solutions (ft)t∈[0,T ], (f̃t)t∈[0,T ] to (1.1) lying in L∞([0, T ],P2(R
3)) ∩

L1([0, T ], Lp(R3)), there holds

(1.23) ∀ t ∈ [0, T ], W2(ft, f̃t) ≤W2(f0, f̃0) exp

(

Kp

∫ t

0

[1 + ‖fs‖Lp(R3) + ‖f̃s‖Lp(R3)]ds

)

where Kp depends only on γ, p, κ1, κ2, κ3. Uniqueness and stability with respect to the initial con-
dition thus hold in L∞([0, T ],P2(R

3)) ∩ L1([0, T ], Lp(R3)).
(ii) For any f0 ∈ P2(R

3) ∩ Lp(R3), there exists T∗ = T∗
(

‖f0‖Lp(R3), p, γ, κ1, κ2, κ3

)

> 0 such that

there exists a unique weak solution (ft)t∈[0,T∗) to (1.1) lying in L∞
loc

(

[0, T∗),P2(R
3) ∩ Lp(R3)

)

.

The rest of the paper is dedicated to the proof of these results. We first state some preliminary
lemmas in Section 2. Since the rigorous proof of Theorem 1.3, handled in Section 4, is quite
complicated, we first give some formal arguments in Section 3. Corollaries 1.4 and 1.5 are checked
in Section 5. Finally, an appendix containing technical computations lies at the end of the paper.

2. Preliminaries

We start by a suitable way to rewrite the collision operator. The main interest of the following
expression is that we make disappear the velocity-dependance Φ(|v− v∗|) in the rate. Such a trick
was already used in [10].

Lemma 2.1. Assume (A1-A2) and set

(2.1) κ0 := π

∫ π

0

(1 − cos θ)β(θ)dθ.

Recalling (1.7) and (1.13), define, for z ∈ (0,∞), ϕ ∈ [0, 2π), v, v∗ ∈ R
3,

(2.2) c(v, v∗, z, ϕ) := a[v, v∗, G(z/Φ(|v − v∗|)), ϕ].

We have Aφ(v, v∗) = 1
2 [Ãφ(v, v∗) + Ãφ(v∗, v)] for all v, v∗ ∈ R

3 and φ ∈ C2
∞, where

Ãφ(v, v∗) =

∫ ∞

0

dz

∫ 2π

0

dϕ
(

φ[v + c(v, v∗, z, ϕ)] − φ[v] − c[v, v∗, z, ϕ].∇φ[v]
)

−κ0Φ(|v − v∗|)∇φ(v).(v − v∗)

=

∫ ∞

0

dz

∫ 2π

0

dϕ
(

φ[v + c(v, v∗, ϕ+ ϕ0)] − φ[v] − c[v, v∗, z, ϕ+ ϕ0].∇φ[v]
)

−κ0Φ(|v − v∗|)∇φ(v).(v − v∗),(2.3)

the second equality holding for any ϕ0 ∈ [0, 2π) (which may depend on v, v∗, z). As a consequence,

we may replace A by Ã in (1.17).

This lemma is proved in the appendix. Let us now recall a fundamental remark by Tanaka [15],
slighlty precised in [9, Lemma 2.6]. We use here notation (1.13).

Lemma 2.2. There exists a measurable function ϕ0 : R
3 × R

3 7→ [0, 2π), such that for all X,Y ∈
R

3, all ϕ ∈ [0, 2π),

(2.4) |Γ(X,ϕ) − Γ(Y, ϕ+ ϕ0(X,Y ))| ≤ 3|X − Y |.

The following fundammental estimates, on which our results rely, are proved in the appendix.
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Lemma 2.3. Assume (A1-A2-A3) and (1.9). There exists a constant C = C(κ1, κ2) such that
the following estimates hold.
(i) For v, v∗, ṽ, ṽ∗ ∈ R

3,

∫ ∞

0

dz

∫ 2π

0

dϕ|c(v, v∗, z, ϕ)|2 ≤ C|v − v∗|
2Φ(|v − v∗|),(2.5)

∫ ∞

0

dz

∫ 2π

0

dϕ|c(v, v∗, z, ϕ) − c(ṽ, ṽ∗, z, ϕ+ ϕ0(v − v∗, ṽ − ṽ∗))|
2(2.6)

≤ C(|v − ṽ|2 + |v∗ − ṽ∗|
2)(Ψ(|v − v∗|) + Ψ(|ṽ − ṽ∗|)),

∫ ∞

0

dz

∣

∣

∣

∣

∫ 2π

0

dϕ c(v, v∗, z, ϕ)

∣

∣

∣

∣

≤ C|v − v∗|Φ(|v − v∗|),(2.7)

∫ ∞

0

dz

∣

∣

∣

∣

∫ 2π

0

dϕ[c(v, v∗, z, ϕ) − c(ṽ, ṽ∗, z, ϕ)]

∣

∣

∣

∣

(2.8)

≤ C(|v − ṽ| + |v∗ − ṽ∗|)(Ψ(|v − v∗|) + Ψ(|ṽ − ṽ∗|)).

(ii) For any φ ∈ C2
b , any v, v∗ ∈ R

3,

(2.9) |Ãφ(v, v∗)| ≤ CΦ(|v − v∗|)
(

|v − v∗|.||φ
′||∞ + |v − v∗|

2||φ′′||∞
)

.

(iii) For any φ ∈ C2
c with supp φ ⊂ {|v| ≤ x}, for all v, v∗ ∈ R

3,

|Ãφ(v, v∗)| ≤ C
(

||φ′||∞|v − v∗| + ||φ′′||∞|v − v∗|
2
)

Φ(|v − v∗|)11{|v|≤2x}

+C||φ||∞
|v − v∗|

2Φ(|v − v∗|)

|v|2
11{|v|≥2x}.(2.10)

We now state again some estimates that will be usefull when passing to the limit in some cutoff
Boltzmann equations.

Lemma 2.4. We assume (A1-A2-A3) and (1.9). For k ≥ 1 and x ∈ R+, we set

(2.11) hk
0(x) := π

∫ k

0

dz[1 − cos(G[z/Φ(x)])] and εk
0(x) :=

∫ G[k/Φ(x)]

0

θ2β(θ)dθ

There exists a constant C = C(κ1, κ2) such that for all v, v∗ ∈ R
3, all x, y ∈ R+, all k ≥ 1,

∫ ∞

k

dz

∫ 2π

0

dϕ|c(v, v∗, z, ϕ)|2 ≤ C|v − v∗|
2Φ(|v − v∗|)ε

k
0(|v − v∗|)(2.12)

|xhk
0(x) − yhk

0(y)| ≤ C|x− y|(Ψ(x) + Ψ(y)),(2.13)

|κ0xΦ(x) − xhk
0(x)| ≤ CxΦ(x)εk

0(x).(2.14)

Furthermore, εk
0 is bounded by κ1, and for all x ∈ R+, limk ε

k
0(x) = 0.

This Lemma will be checked in the appendix, as the following continuity property of Ã.

Lemma 2.5. Assume (A1-A2-A3-A4)(γ), for some γ ∈ (−3, 0], and consider g ∈ P2(R
3) ∩ Jγ .

Then for any φ ∈ C2
c , v 7→

∫

R3 g(dv∗)Ãφ(v, v∗) is continuous on R
3.
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3. A short and unrigorous proof

We give here the main idea of this paper in the cutoff case. In the case without cutoff, we are not
able to give a direct proof (not relying on the use of Poisson measures, martingale problems,... see
the next section). We consider a solution (ft)t∈[0,T ] to the Boltzmann equation. Then

(3.15)
d

dt

∫

R3

φ(v)ft(dv) =

∫

R3

ft(dv)

∫

R3

ft(dv∗)Ãφ(v, v∗),

and we can formally write

(3.16) Ãφ(v, v∗) = 2π

∫ ∞

0

dz

∫ 2π

0

dϕ

2π
[φ(v + c(v, v∗, z, ϕ)) − φ(v)].

This roughly means the following: take a particle at random at time t, and call its velocity Vt.
Then Vt is ft-distributed. Then for all z ∈ R+, it will collide, at rate 2πdz, with another particle
with velocity V ∗

t (independant and also ft-distributed), it will choose α uniformly in [0, 2π), and
its new velocity after the collision will be Zt(z) := Vt + c(Vt, V

∗
t , z, α). Let us call ∆(ft, z) the law

of Zt(z).

Then if we have two solutions (ft)t∈[0,T ], (f̃t)t∈[0,T ] to (1.1), it is natural to think that

d

dt
W 2

2 (ft, f̃t) ≤

∫ ∞

0

2πdz[W 2
2 (∆(ft, z),∆(f̃t, z)) −W 2

2 (ft, f̃t)].(3.17)

Indeed, at each time t, for each z, ft and f̃t are replaced by ∆(ft, z) and ∆(f̃t, z) at rate 2πdz.

Such an inequality can be rigorously and easily obtained when truncating the integral
∫∞

0 dz into
∫ k

0
dz, by using the dual formulation of the Wasserstein distance (see Villani [20]).

We then claim that for all pair of laws f, f̃ on R
3,

∫ ∞

0

2πdz[W 2
2 (∆(f, z),∆(f̃ , z)) −W 2

2 (f, f̃)] ≤ CW 2
2 (f, f̃)[Jγ(f) + Jγ(f̃)],(3.18)

where C depends only on κ1, κ2, κ3, see (A1-A2-A3-A4)(γ). Gathering (3.17) and (3.18), Theo-
rem 1.3 would follow immediately from the generalized Gronwall Lemma 6.1.
Let us prove (3.18). Consider thus f, f̃ two probability distributions on R

3, and two couples (V, Ṽ )

and (V∗, Ṽ∗) with V and V∗ f -distributed, Ṽ and Ṽ∗ f̃ -distributed, with (V, Ṽ ) independent of

(V∗, Ṽ∗), and such that E[|V − Ṽ |2] = E[|V∗ − Ṽ∗|
2] = W 2

2 (f, f̃). Choose α uniformly distributed

on [0, 2π) (independent of everything else), and set α̃ = α+ϕ0(V −V∗, Ṽ − Ṽ∗) (modulo 2π), where
ϕ0 was introduced in Lemma 2.2. Then α̃ is also uniformly distributed on [0, 2π), and is also

independent of (V, Ṽ , V∗, Ṽ∗). As a consequence, Z(z) = V + c(V, V∗, z, α) is ∆(f, z)-distributed,

and Z̃(z) = Ṽ + c(Ṽ , Ṽ∗, z, α̃) is ∆(f̃ , z)-distributed, so that

(3.19) W 2
2 (∆(f, z),∆(f̃ , z)) −W 2

2 (f, f̃) ≤ E[|Z(z) − Z̃(z)|2 − |V − Ṽ |2] =: δ(z).
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But a simple computation using (2.6) and (2.8) shows that for some constant C = C(κ1, κ2, κ3),
∫ ∞

0

dzδ(z) =

∫ ∞

0

dz

∫ 2π

0

dϕ

2π
E
[

|c(V, V∗, z, ϕ) − c(Ṽ , Ṽ∗, z, ϕ+ ϕ0(V − V∗, Ṽ − Ṽ∗))|
2

+2(V − Ṽ )(c(V, V∗, z, ϕ) − c(Ṽ , Ṽ∗, z, ϕ+ ϕ0(V − V∗, Ṽ − Ṽ∗)))
]

≤ CE
[

(|V − Ṽ |2 + |V∗ − Ṽ∗|
2)(Ψ(|V − V∗|) + Ψ(|Ṽ − Ṽ∗|))

]

≤ CE
[

|V − Ṽ |2(|V − V∗|
γ + |Ṽ − Ṽ∗|

γ)
]

(3.20)

by a symmetry argument and (A4)(γ). Using finally the definition of Jγ and the independance of

(V, Ṽ ) and (V∗, Ṽ∗), one easily deduces that
∫ ∞

0

dzδ(z) ≤ CE
[

|V − Ṽ |2
]

(sup
v
E[|v − V∗|

γ ] + sup
ṽ
E[|ṽ − Ṽ∗|

γ ])

= CW 2
2 (f, f̃)[Jγ(f) + Jγ(f̃)].(3.21)

This concludes the proof of (3.18).

4. Coupling Boltzmann processes

To prove Theorem 1.3, we will use some probabilistic arguments, which is of course a natural way
to couple two solutions of the Boltzmann equation. We follow the line of Tanaka [15] (see also [9]),
who was dealing with the Maxwellian case, that is Φ ≡ 1.

In the whole section, C (resp. CT ) stands for a constant whose value may change from line to line,
and which depend only on κ1, κ2, κ3, γ (resp. κ1, κ2, κ3, γ, T ).

Recall that DT = D([0, T ],R3) stands for the Skorokhod space of càdlàg functions, see Ethier-Kurtz
[6] for many details on this topic. We consider a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ).

Notation 4.1. Let g = (gt)t∈[0,T ] be a measurable family of probability measures on R
3.

(i) We say that N is a g-Poisson measure if it is a (Ft)t∈[0,T ]-Poisson measure on [0, T ] × R
3 ×

[0,∞) × [0, 2π) with intensity measure dsgs(dv)dzdϕ. We denote by Ñ its compensated Poisson
measure.
(ii) For k ≥ 1, V0 a F0-measurable R

3-valued random variable and N a g-Poisson measure, we
define (V k

t )t∈[0,T ] the unique solution to

V k
t = V0 +

∫ t

0

∫

R3

∫ k

0

∫ 2π

0

c(V k
s−, v, z, ϕ)N(ds, dv, dz, dϕ).(4.1)

Then (V k
t )t∈[0,T ] is adapted to (Ft)t∈[0,T ] and belongs a.s. to DT . We will refer to (V k

t )t∈[0,T ] as
the (V0, g, k,N)-process. Its law does not depend on the choice of the probability space, on N , and
depends on V0 only through its law.

The existence and uniqueness of V k is obvious, because N([0, T ]×R
3× [0, k]× [0, 2π)) is a.s. finite,

so that (4.1) is nothing but a recursive equation.
We will show the following result at the end of this section.

Lemma 4.2. Assume (A1-A2-A3-A4(γ)), for some γ ∈ (−3, 0]. Consider a weak solution
(ft)t∈[0,T ] ∈ L∞([0, T ],P2(R

3)) ∩ L1([0, T ],Jγ) to (1.1). Consider any F0-measurable random
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variable V0 ∼ f0. Consider a f -Poisson measure N , and for each k ≥ 1, the (V0, f, k,N)-process
(V k

t )t∈[0,T ]. For each t ∈ [0, T ], denote by fk
t the law of V k

t . Then

(4.2) lim
k→∞

sup
[0,T ]

W 2
2 (ft, f

k
t ) = 0.

Thus we will study a solution f to (1.1) through its related stochastic process V k
t . We start with

some moment computations.

Lemma 4.3. Assume (A1-A2-A3-A4)(γ) for some γ ∈ (−3, 0]. Let g ∈ L∞([0, T ],P2(R
3)) ∩

L1([0, T ],Jγ). There exists a constant KT (g) depending only on T, γ, κ1, κ2, κ3, g such that for
each k ≥ 1, V0 ∈ L2, each g-Poisson measure N , the (V0, g, k,N)-process (V k

t )t∈[0,T ] satisfies

(4.3) E

[

sup
[0,T ]

|V k
t |2

]

≤ KT (g){1 + E[|V0|
2]}.

Proof. Let k ≥ 1 be fixed. Writing the Poisson measure N as Ñ + dsgs(dv)dzdϕ, we obtain, using
the Doob inequality, that for t ∈ [0, T ], E[sup[0,t] |V

k
s |2] ≤ C{E[|V0|

2] +At +Bt}, where

At := E

[

∫ t

0

ds

∫

R3

gs(dv)

∫ k

0

dz

∫ 2π

0

dϕ|c(V k
s , v, z, ϕ)|2

]

,

Bt := E



sup
[0,t]

∣

∣

∣

∣

∣

∫ t

0

ds

∫

R3

gs(dv)

∫ k

0

dz

∫ 2π

0

dϕc(V k
s , v, z, ϕ)

∣

∣

∣

∣

∣

2


 .(4.4)

Using now (2.5) and then (A4(γ)), we get

At ≤ CE

[
∫ t

0

ds

∫

R3

gs(dv)|V
k

s − v|2+γ

]

,(4.5)

while (2.7) and (A4(γ)) yield

Bt ≤ CE

[

∣

∣

∣

∣

∫ t

0

ds

∫

R3

gs(dv)|V
k

s − v|γ+1

∣

∣

∣

∣

2
]

.(4.6)

We then have to divide the study into several cases.

Case γ ∈ [−1, 0]. Then γ + 2 ∈ [0, 2], so that |V k
s − v|2+γ ≤ C(1 + |V k

s |2 + |v|2), and one

easily checks that At ≤ CT (1 +
∫ t

0 m2(gs)ds +
∫ t

0 E[|V k
s |2]ds). Furthermore γ + 1 ∈ [0, 1], so that

|V k
s − v|1+γ ≤ C(1 + |V k

s | + |v|). Thus Bt ≤ CT (1 +
∫ t

0
m2(gs)ds+

∫ t

0
E[|V k

s |2]ds) by the Cauchy-

Schwarz inequality. We finally find E[sup[0,t] |V
k
s |2] ≤ CT (1+E[|V0|

2]+
∫ t

0
m2(gs)ds+

∫ t

0
E[|V k

s |2]ds)

and the conclusion follows by the Gronwall Lemma, since
∫ T

0 m2(gs)ds <∞ by assumption.

Case γ ∈ [−2,−1]. Since γ + 2 ∈ [0, 2], we obtain as previously At ≤ C(1 +
∫ t

0 m2(gs)ds +
∫ t

0 E[|V k
s |2]ds). On the other hand, γ < γ + 1 ≤ 0, so that |V k

s − v|γ+1 ≤ 1 + |V k
s − v|γ . Recalling

(1.12), we deduce that
∫

R3 gs(dv)|V
k

s − v|γ+1 ≤ 1 +
∫

R3 gs(dv)|V
k

s − v|γ ≤ 1 + Jγ(gs), and thus

Bt ≤ C|
∫ t

0
(1 + Jγ(gs))ds|

2. We finally get E[sup[0,t] |V
k
s |2] ≤ CT (1 + E[|V0|

2] +
∫ t

0
m2(gs)ds +

∫ t

0
E[|V k

s |2]ds + |
∫ t

0
(1 + Jγ(gs))ds|

2), and the conclusion follows by the Gronwall Lemma, since
∫ T

0
m2(gs)ds+

∫ T

0
Jγ(gs)ds <∞ by assumption.
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Case γ ∈ (−3,−2]. Since γ < γ+1 ≤ 0, we obtain as previously that Bt ≤ C|
∫ t

0 (1+Jγ(gs))ds|
2. A

similar argument, using that γ < γ+2 ≤ 0 (and thus xγ+2 ≤ 1+xγ), yields At ≤ C
∫ t

0 (1+Jγ(gs))ds.

We finally find E[sup[0,t] |V
k
s |2] ≤ CT (E[|V0|

2] +
∫ t

0 (1 + Jγ(gs))ds + |
∫ t

0 (1 + Jγ(gs))ds|
2), and the

conclusion follows, since
∫ T

0 Jγ(gs)ds <∞ by assumption. �

Tanaka [15] (see also [9, Lemma 4.7]) observed the following elementary fact.

Lemma 4.4. Consider a (Ft)t∈[0,T ]-Poisson measure µ(ds, dx, dϕ) on [0, T ] × F × [0, 2π) with
intensity measure dsν(dx)dϕ, for some measurable space space F endowed with a nonnegative
measure ν. Then for any predictable map ϕ∗ : Ω × [0, T ] × F 7→ [0, 2π), the random measure
µ∗(ds, dx, dϕ) on [0, T ] × F × [0, 2π) defined by

(4.7) µ∗(A) =

∫ T

0

∫

F

∫ 2π

0

11A(s, x, ϕ+ ϕ∗(s, x))µ(ds, dx, dϕ) ∀ A ⊂ [0, T ]× F × [0, 2π)

is again a (Ft)t∈[0,T ]-Poisson measure with intensity measure dsν(dx)dϕ. Of course, we write
ϕ+ ϕ∗(s, x) for its value modulo 2π.

Our main result will be based on the following proposition.

Proposition 4.5. Assume (A1-A2-A3-A4(γ)), for some γ ∈ (−3, 0]. Let k ≥ 1, V0, Ṽ0 two
F0-measurable R

3-valued random variables. We also consider g and g̃ in L∞([0, T ],P2(R
3)) ∩

L1([0, T ],Jγ). Let us finally consider, for each s ∈ [0, T ], Rs ∈ H(gs, g̃s) such that s 7→ Rs is
measurable. We may find a g-Poisson measure N and a g̃-Poisson measure M such that, for V k

the (V0, g, k,N)-process and Ṽ k the (Ṽ0, g̃, k,M)-process, the following property holds.
(i) If γ ∈ (−3, 0), set α(γ) = min(1/|γ|, |γ|/2) > 0. For all L ≥ 1, all t ∈ [0, T ],

E[|V k
t − Ṽ k

t |2] ≤ E[|V0 − Ṽ0|
2] +KT (g, g̃, V0, Ṽ0)L

−α(γ)

+C

∫ t

0

dsE

[
∫

R3×R3

Rs(dv, dṽ)
{

|V k
s − Ṽ k

s |2 + |v − ṽ|2}min(|V k
s − v|γ + |Ṽ k

s − ṽ|γ , L)
}

]

,(4.8)

where KT (V0, Ṽ0, g, g̃) depends only on T, γ, κ1, κ2, κ3, g, g̃ and E[|V0|
2], E[|Ṽ0|

2].
(ii) If γ = 0, for all t ∈ [0, T ],

E[|V k
t − Ṽ k

t |2] ≤ E[|V0 − Ṽ0|
2] + C

∫ t

0

dsE

[
∫

R3×R3

Rs(dv, dṽ)
{

|V k
s − Ṽ k

s |2 + |v − ṽ|2}
}

]

.(4.9)

Proof. Let thus k ≥ 1, g, g̃, V0, Ṽ0, and (Rs)s∈[0,T ] be as in the statement. We introduce a Poisson

measure ∆ on [0, T ]× (R3×R
3)× [0,∞)× [0, 2π) with intensity measure dsRs(dv, dṽ)dzdϕ. Then,

since the restriction of this measure to z ∈ [0, k] is a.s. finite, there exists a unique pair of processes

(V k
t )t∈[0,T ] and (Ṽ k

t )t∈[0,T ], solution of

V k
t = V0 +

∫ t

0

∫

R3×R3

∫ k

0

∫ 2π

0

c(V k
s−, v, z, ϕ)∆(ds, d(v, ṽ), dz, dϕ),

Ṽ k
t = Ṽ0 +

∫ t

0

∫

R3×R3

∫ k

0

∫ 2π

0

c(Ṽ k
s−, ṽ, z, ϕ+ ϕ0(V

k
s− − v, Ṽ k

s− − ṽ))∆(ds, d(v, ṽ), dz, dϕ),(4.10)
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where ϕ0 was introduced in Lemma 2.2. Consider now the random measures N and M defined on
[0, T ]× R

3 × [0,∞) × [0, 2π) by

N(A) =

∫ T

0

∫

R3×R3

∫ ∞

0

∫ 2π

0

11A(s, v, z, ϕ)∆(ds, d(v, ṽ), dz, dϕ),

M(A) =

∫ T

0

∫

R3×R3

∫ ∞

0

∫ 2π

0

11A(s, ṽ, z, ϕ+ ϕ0(V
k
s− − v, Ṽ k

s− − ṽ))∆(ds, d(v, ṽ), dz, dϕ).(4.11)

Then N is classically a g-Poisson measure, since for each s, gs is the first marginal of Rs. Furthe-
more, M is a g̃-Poisson-measure, since for each s, g̃s is the second marginal of Rs, and due Lemma
(4.4).

Thus (V k
t )t∈[0,T ] (resp. (Ṽ k)t∈[0,T ]) is the (V0, g, k,N)-process (resp. the (Ṽ0, g̃, k,M)-process).

Next, setting for simplicity c := c(V k
s−, v, z, ϕ) and c̃ := c(Ṽ k

s−, ṽ, z, ϕ+ ϕ0(V
k
s− − v, Ṽ k

s− − ṽ)), we
get

|V k
t − Ṽ k

t |2 = |V0 − Ṽ0|
2 +

∫ t

0

∫

R3×R3

∫ k

0

∫ 2π

0

{

|V k
s− + c− Ṽ k

s− − c̃|2 − |V k
s− − Ṽ k

s−|
2
}

∆(ds, d(v, ṽ), dz, dϕ).(4.12)

Hence, taking expectations,

E[|V k
t − Ṽ k

t |2] = E[|V0 − Ṽ0|
2]

+

∫ t

0

dsE

{

∫

R3×R3

Rs(dv, dṽ)

∫ k

0

dz

∫ 2π

0

dϕ[|c− c̃|2 + 2(V k
s − Ṽ k

s ).(c− c̃)]

}

.(4.13)

Now, using (2.6), (2.8) and (A4)(γ), we easily deduce that a.s.,

∫ k

0

dz

∫ 2π

0

dϕ[|c− c̃|2 + 2(V k
s − Ṽ k

s ).(c− c̃)]

≤ C(|V k
s − Ṽ k

s |2 + |v − ṽ|2)(|V k
s − v|γ + |Ṽ k

s − ṽ|γ),(4.14)

while using (2.5), (2.7) and (A4)(γ), we obtain a.s.

∫ k

0

dz

∫ 2π

0

dϕ[|c− c̃|2 + 2(V k
s − Ṽ k

s ).(c− c̃)]

≤ C|V k
s − v|2+γ + C|Ṽ k

s − ṽ|2+γ + C|V k
s − Ṽ k

s |
{

|V k
s − v|1+γ + |Ṽ k

s − ṽ|1+γ
}

.(4.15)

If γ = 0, (4.9) follows immediately from (4.13) and (4.14). We thus now assume that γ ∈ (−3, 0).

Let L ≥ 1 be fixed. We insert (4.14) (resp. (4.15)) in (4.13) when |V k
s − v|γ + |Ṽ k

s − ṽ|γ ≤ L (resp.

|V k
s − v|γ + |Ṽ k

s − ṽ|γ > L), and we obtain

E[|V k
t − Ṽ k

t |2] ≤ E[|V0 − Ṽ0|
2] + C

4
∑

i=1

(Ii,L
t + Ĩi,L

t )

+C

∫ t

0

dsE

[
∫

R3×R3

Rs(dv, dṽ)
{

|V k
s − Ṽ k

s |2 + |v − ṽ|2}min(|V k
s − v|γ + |Ṽ k

s − ṽ|γ , L)
}

]

,(4.16)
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where

I1,L
t :=

∫ t

0

dsE

[
∫

R3×R3

Rs(dv, dṽ)|V
k
s − v|2+γ11{|V k

s −v|γ>L/2}

]

,

I2,L
t :=

∫ t

0

dsE

[
∫

R3×R3

Rs(dv, dṽ)|Ṽ
k
s − ṽ|2+γ11{|V k

s −v|γ>L/2}

]

,

I3,L
t :=

∫ t

0

dsE

[
∫

R3×R3

Rs(dv, dṽ)|V
k
s − Ṽ k

s ||V k
s − v|1+γ11{|V k

s −v|γ>L/2}

]

,

I4,L
t :=

∫ t

0

dsE

[
∫

R3×R3

Rs(dv, dṽ)|V
k
s − Ṽ k

s ||Ṽ k
s − ṽ|1+γ11{|V k

s −v|γ>L/2}

]

,(4.17)

and where Ĩ1,L
t , ..., Ĩ4,L

t have the same expressions replacing V k
s , Ṽ

k
s , v, ṽ by Ṽ k

s , V
k
s , ṽ, v.

We first treat the case of I1,L. Since Rs ∈ H(gs, g̃s) and γ ∈ (−3, 0), and using notation (1.12) one
has

I1,L
t =

∫ t

0

dsE

[
∫

R3

gs(dv)|V
k

s − v|2+γ11{|V k
s −v|γ>L/2}

]

≤ CL2/γ

∫ t

0

dsE

[
∫

R3

gs(dv)|V
k

s − v|γ
]

≤ CL2/γ

∫ t

0

dsJγ(gs) ≤ KT (g)L−α(γ),(4.18)

since 2/|γ| ≥ α(γ). Similarly, since 1/|γ| ≥ α(γ)

I3,L
t =

∫ t

0

dsE

[

|V k
s − Ṽ k

s |

∫

R3

gs(dv)|V
k

s − v|1+γ11{|V k
s −v|γ>L/2}

]

≤ CL1/γE

[

sup
[0,T ]

(|V k
s | + |Ṽ k

s |)

]

∫ t

0

dsJγ(gs) ≤ KT (g, g̃, V0, Ṽ0)L
−α(γ),(4.19)

where we used Lemma 4.3. We now study I2,L
t when γ ∈ [−2, 0), so that γ + 2 ∈ [0, 2). Using the

Hölder inequality, we get

I2,L
t ≤ E





(
∫ t

0

ds

∫

R3×R3

Rs(dv, dṽ)|Ṽ
k
s − ṽ|2

)

2+γ
2
(
∫ t

0

ds

∫

R3×R3

Rs(dv, dṽ)11{|V k
s −v|γ>L/2}

)

|γ|
2





= E





(
∫ t

0

ds

∫

R3

g̃s(dṽ)|Ṽ
k
s − ṽ|2

)

2+γ
2
(
∫ t

0

ds

∫

R3

gs(dv)11{|V k
s −v|γ>L/2}

)

|γ|
2





≤ CE





(
∫ t

0

ds(m2(g̃s) + |Ṽ k
s |2)

)

2+γ
2
(
∫ t

0

ds

∫

R3

gs(dv)
|V k

s − v|γ

L/2

)

|γ|
2





≤ CLγ/2{1 + sup
[0,T ]

m2(g̃s) + E[sup
[0,T ]

|Ṽ k
s |2]}

(
∫ t

0

dsJγ(gs)ds

)

|γ|
2

≤ KT (g, g̃, Ṽ0)L
−α(γ),(4.20)
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by Lemma 4.3, since γ+2
γ ∈ [0, 1] and |γ|/2 ≥ α(γ). We next study I2,L

t when γ ∈ (−3,−2), so

that γ + 2 ∈ (−1, 0). The Hölder inequality yields

I2,L
t ≤ E





(
∫ t

0

ds

∫

R3×R3

Rs(dv, dṽ)|Ṽ
k
s − ṽ|γ

)

2+γ
γ
(
∫ t

0

ds

∫

R3×R3

Rs(dv, dṽ)11{|V k
s −v|γ>L/2}

)

2
|γ|





= E





(
∫ t

0

ds

∫

R3

g̃s(dṽ)|Ṽ
k
s − ṽ|γ

)

2+γ
γ
(
∫ t

0

ds

∫

R3

gs(dv)11{|V k
s −v|γ>L/2}

)

2
|γ|





≤ C

(
∫ t

0

dsJγ(g̃s)

)

2+γ
γ
(
∫ t

0

dsJγ(gs)

)

2
|γ|

L2/γ ≤ KT (g, g̃)L−α(γ),(4.21)

since 2/|γ| ≥ α(γ). Let us now upperbound I4,L
t in the case γ ∈ [−1, 0), so that 1 + γ ∈ [0, 1).

Using the Hölder inequality, one finds as usual (since (1 + γ)/2 ≤ 1/2),

I4,L
t ≤ E

[

sup
[0,T ]

|V k
s − Ṽ k

s | ×

(
∫ t

0

ds

∫

R3

g̃s(dṽ)|Ṽ
k

s − ṽ|2
)

1+γ
2

×

(
∫ t

0

ds

∫

R3

gs(dv)11{|V k
s −v|γ>L/2}

)

1−γ
2 ]

≤ CE





{

sup
[0,T ]

(|V k
s | + |Ṽ k

s |)

}

{

1 +

∫ t

0

ds(m2(gs) + |V k
s |2)

}

1
2
{

1

L

∫ t

0

dsJγ(gs)

}

1−γ
2





≤ CL
γ−1

2 {1 + sup
[0,T ]

m2(g̃s) + E[sup
[0,T ]

(|V k
s |2 + |Ṽ k

s |2)]}

(
∫ t

0

dsJγ(gs)

)

1−γ
2

≤ KT (g, g̃, V0, Ṽ0)L
−α(γ),(4.22)

since (1 + |γ|)/2 ≥ α(γ) and by Lemma 4.3. Finally we consider I4,L
t in the case γ ∈ (−3,−2), so

that 1 + γ ∈ (γ, 0):

I4,L
t ≤ E

[

sup
[0,T ]

|V k
s − Ṽ k

s | ×

(
∫ t

0

ds

∫

R3

g̃s(dṽ)|Ṽ
k
s − ṽ|γ

)

1+γ
γ

×

(
∫ t

0

ds

∫

R3

gs(dv)11{|V k
s −v|γ>L/2}

)

1
|γ| ]

≤ CL1/γE[sup
[0,T ]

(|V k
s | + |Ṽ k

s |)]

(
∫ t

0

dsJγ(g̃s)

)

1+γ
γ
(
∫ t

0

dsJγ(gs)

)

1
|γ|

≤ KT (g, g̃, V0, Ṽ0)L
−α(γ).(4.23)

since 1/|γ| ≥ α(γ). Using the same computations for Ĩ1,L
t , ...Ĩ4,L

t , (4.8) follows immediately. �

Admitting for a moment Lemma 4.2, we give the
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Proof of Theorem 1.3. We thus assume (A1-A2-A3-A4(γ)) for some γ ∈ (−3, 0), the case γ = 0

is easier and left to the reader. We consider two weak solutions (ft)t∈[0,T ] and (f̃t)t∈[0,T ] to (1.1)

lying in L∞([0, T ],P2(R
3)) ∩ L1([0, T ]),Jγ).

We consider two F0-measurable random variables V0 ∼ f0 and Ṽ0 ∼ f̃0, such that W 2
2 (f0, f̃0) =

E[|V0− Ṽ0|
2], and for each s ∈ [0, T ], we consider Rs ∈ H(fs, f̃s) such that W 2

2 (fs, f̃s) =
∫

R3×R3 |v−

ṽ|2Rs(dv, dṽ). Due to Fontbona-Guérin-Méléard [7, Theorem 1.3], s 7→ Rs is measurable: indeed,
since by assumption ft has a density for all t ∈ [0, T ], the minimizer Rt is unique (see e.g. Villani
[20, Theorem 2.12]).

Finally, for each k ≥ 1, we consider some (V0, f, k,N)-process (V k
t )t∈[0,T ] and some (Ṽ0, f̃ , k,M)

process (Ṽ k
t )t∈[0,T ], coupled as in Proposition 4.5.

We set wk
t := E[|V k

t − Ṽ k
t |2] for each k ≥ 1, each t ∈ [0, T ]. Using Lemma 4.2, we deduce that for

all t ∈ [0, T ],

(4.24) ut := W 2
2 (ft, f̃t) ≤ lim sup

k
wk

t =: wt.

We observe at once that due to Lemma 4.3 and by assumption on f, f̃ ,

(4.25) sup
k

sup
[0,T ]

wk
t + sup

[0,T ]

wt <∞.

Due to Proposition 4.5, we know that for all L ≥ 1, all k ≥ 1, all t ∈ [0, T ],

wk
t ≤ u0 +K(T, f, f̃ , V0, Ṽ0)L

−α(γ)

+C

∫ t

0

dsE

[

|V k
s − Ṽ k

s |2
∫

R3×R3

Rs(dv, dṽ)(|V
k

s − v|γ + |Ṽ k
s − ṽ|γ)

]

+C

∫ t

0

dsE

[
∫

R3×R3

Rs(dv, dṽ)|v − ṽ|2 min(|V k
s − v|γ , L)

]

+C

∫ t

0

dsE

[
∫

R3×R3

Rs(dv, dṽ)|v − ṽ|2 min(|Ṽ k
s − ṽ|γ , L)

]

=: u0 +K(T, f, f̃ , V0, Ṽ0)L
−α(γ) + CAk(t, L) + CBk(t, L) + CB̃k(t, L).(4.26)

First, recalling (1.12) and that Rs ∈ H(fs, f̃s), we observe that

Ak(t, L) =

∫ t

0

dsE

[

|V k
s − Ṽ k

s |2
∫

R3

(fs(dv)|V
k
s − v|γ + f̃s(dṽ)|Ṽ

k
s − ṽ|γ)

]

≤

∫ t

0

ds wk
sJγ(fs + f̃s).(4.27)

Hence for all L ≥ 1, using (4.25), the Lebesgue Theorem and that Jγ(fs + f̃s) belongs to L1([0, T ])
by assumption,

(4.28) lim sup
k

Ak(t, L) ≤

∫ t

0

ds wsJγ(fs + f̃s).

Next, one easily checks that for each s ∈ [0, T ], the map v∗ 7→ αs(v∗) :=

∫

R3×R3

Rs(dv, dṽ)|v −

ṽ|2 min(|v∗ − v|γ , L) is continuous on R
3 and bounded by 2L(m2(fs)+m2(f̃s)). Since furthermore
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∫ T

0 (m2(fs) +m2(f̃s))ds <∞ by assumption, we easily deduce from Lemma 4.2 and the Lebesgue
Theorem that

lim
k
Bk(t, L) =

∫ t

0

ds

∫

R3×R3

Rs(dv, dṽ)|v − ṽ|2
∫

R3

fs(dv∗)min(|v∗ − v|γ , L)

≤

∫ t

0

ds

∫

R3×R3

Rs(dv, dṽ)|v − ṽ|2
∫

R3

fs(dv∗)|v∗ − v|γ

≤

∫ t

0

ds usJγ(fs) ≤

∫ t

0

ds wsJγ(fs).(4.29)

Using the same computation for B̃k(t, L), we finally obtain, for all L ≥ 1,

(4.30) wt ≤ u0 +K(T, f, f̃ , V0, Ṽ0)L
−α(γ) + C

∫ t

0

wsJγ(fs + f̃s)ds.

Making L tend to infinity, and using the generalized Gronwall Lemma 6.1, we deduce that for

t ∈ [0, T ], wt ≤ u0 exp(C
∫ t

0 Jγ(fs + f̃s)ds). Since W 2
2 (ft, f̃t) = ut ≤ wt, this concludes the

proof. �

It remains to prove the convergence Lemma 4.2. To this aim, we first prove a uniqueness result
for a linearized Boltzmann equation.

Lemma 4.6. Assume (A1-A2-A3-A4(γ)), for some γ ∈ (−3, 0]. Consider a weak solution
f = (ft)t∈[0,T ] ∈ L∞([0, T ],P2(R

3))∩L1([0, T ],Jγ) to (1.1). Assume that for some g = (gt)t∈[0,T ] ∈

L∞([0, T ],P2(R
3)) for all φ ∈ C2

c , all t ∈ [0, T ],
∫

R3

φ(v)gt(dv) =

∫

R3

φ(v)f0(dv) +

∫ t

0

ds

∫

R3

gs(dv)

∫

R3

fs(dv∗)Ãφ(v, v∗),(4.31)

with Ãφ defined by (2.3). Then g = f .

Proof. We thus assume (A1-A2-A3-A4(γ)) for some γ ∈ (−3, 0], and (unfortunately) use some
martingale problems techniques. We consider a weak solution f = (ft)t∈[0,T ] ∈ L∞([0, T ],P2(R

3))∩

L1([0, T ],Jγ) to (1.1). We also consider, for each t ≥ 0 the operator Ãt defined for φ ∈ C2
∞ and

v ∈ R
3 by

(4.32) Ãtφ(v) =

∫

R3

ft(dv∗)Ãφ(v, v∗).

We will prove that for any µ ∈ P2(R
3), there exists at most one g ∈ L∞([0, T ],P2(R

3)) such that
for all t ≥ 0, all φ ∈ C2

c ,

(4.33)

∫

R3

φ(v)gt(dv) =

∫

R3

φ(v)µ(dv) +

∫ t

0

ds

∫

R3

gs(dv)Ãsφ(v).

Since by assumption, f and g solve this equation with µ = f0, this will conclude the proof.

Step 1. Let µ ∈ P2(R
3). A càdlàg adapted R

3-valued stochastic process (Vt)t∈[0,T ] on some filtered

probability space (Ω,F , (Ft)t∈[0,T ], P ) is said to solve the martingale problem MP ((Ãt)t∈[0,T ], µ)

if P ◦ V −1
0 = µ and if for all φ ∈ C2

c , (Mφ
t )t∈[0,T ] is a (Ω,F , (Ft)t∈[0,T ], P )-martingale, where

(4.34) Mφ
t = φ(Vt) −

∫ t

0

Ãsφ(Vs)ds.
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Assume for a moment that:
(i) there exists a countable subset (φk)k≥1 ⊂ C2

c such that for all t ∈ [0, T ], the closure (for the

bounded pointwise convergence) of {(φk, Ãtφk), k ≥ 1} contains {(φ, Ãtφ), φ ∈ C2
c },

(ii) for each v0 ∈ R
3, there exists a solution to MP ((Ãt)t∈[0,T ], δv0

),

(iii) for each v0 ∈ R
3, uniqueness (in law) holds for MP ((Ãt)t∈[0,T ], δv0

).
Then, due to Bhatt-Karandikar [2, Theorem 5.2] (see also Remark 3.1 and Theorem 5.1 in [2] and
Theorem B.1 in [12]), uniqueness for (4.33) holds.

Step 2. First, (i) holds: consider any countable subset (φk)k≥1 ⊂ C2
c dense in C2

c , in the sense that
for ψ ∈ C2

c with supp ψ ⊂ {|v| ≤ x}, there exists a subsequence φkn
such that supp φkn

⊂ {|v| ≤
2x}, and limn→∞(||ψ − φkn

||∞ + ||ψ′ − φ′kn
||∞ + ||ψ′′ − φ′′kn

||∞) = 0.
We then have to prove that, for t ∈ [0, T ],

(a) Ãtφkn
(v) tends to Ãtψ(v) for all v ∈ R

3,

(b) and that supn ||Ãtφkn
||∞ <∞.

First, using Lemma 2.3-(ii) and (A4)(γ), we get, for v ∈ R
3,

|Ãtφkn
(v) − Ãtψ(v)| = |Ãt[φkn

− ψ](v)|

≤ C(||ψ′ − φ′kn
||∞ + ||ψ′′ − φ′′kn

||∞)

∫

R3

ft(dv∗)(|v − v∗| + |v − v∗|
2)|v − v∗|

γ ,(4.35)

which tends to 0 as n tends to infinity, provided αt :=

∫

R3

ft(dv∗)(|v− v∗|+ |v− v∗|
2)|v− v∗|

γ <∞.

But αt ≤

∫

R3

ft(dv∗)(1 + 2|v − v∗|
2)|v − v∗|

γ ≤ Jγ(ft) + 2

∫

R3

ft(dv∗)|v − v∗|
2+γ . If γ ∈ [−2, 0], then

|v − v∗|
2+γ ≤ 1 + 2|v|2 + 2|v∗|

2, so that αt ≤ Jγ(ft) + C(m2(ft) + 1 + |v|2) < ∞ by assumption.
If γ ∈ (−3,−2), then |v − v∗|

2+γ ≤ 1 + |v − v∗|
γ , so that αt ≤ 3Jγ(ft) + 1 < ∞. Thus (a)

holds, and it remains to prove (b). Set M := supn(||φkn
||∞ + ||φ′kn

||∞ + ||φ′′kn
||∞). If γ ∈

(−3,−2], then one easily deduces from (A4)(γ) and Lemma 2.3-(ii) that for all t, all n, all v,

|Ãtφkn
(v)| ≤ CM(1 + Jγ(ft)), which implies (b). If γ ∈ (−2, 0], we use Lemma 2.3-(iii), and get,

since |v − v∗|
2+γ ≤ 1 + 2|v|2 + 2|v∗|

2,

|Ãtφkn
(v)| ≤ CM

∫

R3

ft(dv∗)

[

1 + |v − v∗|
2+γ11{|v|≤4x} +

|v − v∗|
2+γ

|v|2
11{|v|≥4x}

]

≤ CM

∫

R3

ft(dv∗)
[

1 + x2 + |v∗|
2 + x−2(1 + |v∗|

2)
]

≤ CM(1 + x2 + x−2 +m2(ft)(1 + x−2)).(4.36)

Step 3. Classical arguments (see e.g. Tanaka [16, Section 4] or Desvillettes-Graham-Méléard [4,
Theorem 3.8]) yield that a process (Vt)t∈[0,T ] on some filtered probability space (Ω,F , (Ft)t∈[0,T ], P )

is a solution to MP ((Ãt)t∈[0,T ], δv0
) if and only if there exists, on a possibly enlarged probability

space, a (Ft)t∈[0,T ]-adapted f -Poisson measure N(dt, dv, dz, dϕ) such that (recall the expression

(2.3) of Ã, and that Ñ stands for the compensated Poisson measure)

Vt = v0 +

∫ t

0

∫

R3

∫ ∞

0

∫ 2π

0

c(Vs−, v, s, ϕ)Ñ(ds, dv, dz, dϕ)

−κ0

∫ t

0

ds

∫

R3

fs(dv)Φ(|Vs − v|)(Vs − v).(4.37)
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We thus just have to prove the existence and uniqueness in law for solutions to (4.37).

Step 4. We now check that for (Vt)t∈[0,T ] a solution to (4.37),

(4.38) E

[

sup
[0,T ]

|Vt|
2

]

<∞.

We introduce, for n ≥ 1, the stopping time τn = inf{t ≥ 0, |Vt| ≥ n}. Using the Doob and
Cauchy-Schwarz inequalities, thanks to (2.5) and (A4)(γ) we get

E

[

sup
[0,t∧τn]

|Vs|
2

]

≤ C|v0|
2 + CE

[
∫ t∧τn

0

ds

∫

R3

fs(dv)

∫ ∞

0

dz

∫ 2π

0

dϕ|c(Vs−, v, s, ϕ)|2
]

+CTE

[

∣

∣

∣

∣

∫ t∧τn

0

ds

∫

R3

fs(dv)Φ(|Vs− − v|)|Vs− − v|

∣

∣

∣

∣

2
]

(4.39)

≤ C|v0|
2 + CE

[
∫ t∧τn

0

ds

∫

R3

fs(dv)|Vs − v|2+γ

]

+ CTE

[

∣

∣

∣

∣

∫ t∧τn

0

ds

∫

R3

fs(dv)|Vs − v|1+γ

∣

∣

∣

∣

2
]

.

Separating as usual the cases γ ∈ (−3,−2], γ ∈ (−2,−1] and γ ∈ (−1, 0] (see e.g. the proof of
Lemma 4.3), we obtain in any case

E

[

sup
[0,t∧τn]

|Vs|
2

]

≤ C|v0|
2 + CTE

[
∫ t∧τn

0

ds|Vs|
2

]

+ CT

∫ T

0

Jγ(fs)ds

+CT

(

∫ T

0

Jγ(fs)ds

)2

+ CT

∫ T

0

dsm2(fs)

≤ CT (v0, f) + CT

∫ t

0

dsE

[

sup
[0,s∧τn]

|Vu|
2

]

.(4.40)

The Gronwall Lemma ensures us that for all n ≥ 1, E
[

sup[0,T∧τn] |Vs|
2
]

≤ CT (v0, f)eTCT . We

immediately deduce that a.s., limn τn = ∞, and then that (4.38) holds.

Step 5. Let (Vt)t∈[0,T ] be a càdlàg adapted solution to (4.37), for some f -Poisson measure N .

Recall Lemma 2.2, and define (Ṽ k
t )t∈[0,T ] as the solution (which clearly exists and is unique since

11{z≤k}N(ds, dv, dz, dϕ) is a.s. finite)

Ṽ k
t = v0 +

∫ t

0

∫

R3

∫ k

0

∫ 2π

0

c(Ṽ k
s−, v, z, ϕ+ ϕ0(Vs− − v, Ṽ k

s− − v))N(ds, dv, dz, dϕ).(4.41)

The map ϕ0(Vs− − v,Ṽ
k
s− − v) being predictable, we deduce from Lemma 4.4 that N0 defined by

N0(A) =
∫ T

0

∫

R3

∫∞

0

∫ 2π

0
11A(s, v, z, ϕ + ϕ0(Vs− − v, Ṽ k

s− − v))N(ds, dv, dz, dϕ) is still a f -Poisson

measure. Hence (Ṽ k
t )t∈[0,T ] is nothing but the (v0, f, k,N0)-process, and its law is entirely deter-

mined by v0 and f , see Notation 4.1.

We will now show that (Ṽ k
t )t≥0 goes in probability to (Vt)t≥0, which will yield the uniqueness of

the law of (Vt)t≥0 and thus will end the proof of (iii). To this end, we first observe that due to
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Step 4 and Lemma 4.3,

C(T, f, v0) := E

[

sup
[0,T ]

|Vt|
2

]

+ sup
k
E

[

sup
[0,T ]

|Ṽ k
t |2

]

<∞.(4.42)

Then, we may rewrite, recalling (2.11)

Ṽ k
t = v0 +

∫ t

0

∫

R3

∫ k

0

∫ 2π

0

c(Ṽ k
s−, v, z, ϕ+ ϕ0(Vs− − v, Ṽ k

s− − v))Ñ (ds, dv, dz, dϕ)

+

∫ t

0

ds

∫

R3

fs(dv)h
k
0(|Ṽ k

s − v|)(Ṽ k
s − v).(4.43)

This is due to the fact that
∫ k

0
dz
∫ 2π

0
dϕc(V, v, z, ϕ) = −(V − v)hk

0(|V − v|). Hence,

(Vt − Ṽ k
t ) = A1,k

t +A2,k
t +A3,k

t +A4,k
t ,(4.44)

where

A1,k
t :=

∫ t

0

∫

R3

∫ k

0

∫ 2π

0

[c(Vs−, v, z, ϕ) − c(Ṽ k
s−, v, z, ϕ+ ϕ0(Vs− − v, Ṽ k

s− − v))]Ñ (ds, dv, dz, dϕ),

A2,k
t :=

∫ t

0

∫

R3

∫ ∞

k

∫ 2π

0

c(Vs−, v, z, ϕ)Ñ(ds, dv, dz, dϕ),

A3,k
t :=

∫ t

0

ds

∫

R3

fs(dv)[h
k
0(|Vs − v|)(Vs − v) − hk

0(|Ṽ
k
s − v|)(Ṽ k

s − v)],

A4,k
t :=

∫ t

0

ds

∫

R3

fs(dv)[κ0Φ(|Vs − v|)(Vs − v) − hk
0(|Vs − v|)(Vs − v)].

First, we immediately deduce from the Doob inequality, (2.6) and (A4)(γ), that

E

[

sup
[0,t]

|A1,k
s |2

]

≤ C

∫ t

0

ds

∫

R3

fs(dv)E
[

|Vs − Ṽ k
s |2(|Vs − v|γ + |Ṽ k

s − v|γ)
]

≤ C

∫ t

0

dsE
[

|Vs − Ṽ k
s |2
]

Jγ(fs).(4.45)

Next, Doob’s inequality, (2.12) and (A4)(γ) yield

(4.46) E

[

sup
[0,t]

|A2,k
s |2

]

≤ C

∫ T

0

ds

∫

R3

fs(dv)E
[

|Vs − v|2+γεk
0(|Vs − v|)

]

→ 0

as k tends to infinity, since due to Lemma 2.4, εk
0 is bounded and tends simply to 0, and since

|Vs − v|2+γ belongs to L1(dsfs(dv)P (dω)) (as usual, if 2 + γ ≥ 0, this follows from (4.42) and the
fact that f ∈ L∞([0, T ],P2(R

3)), while if 2 + γ < 0, we just use that f ∈ L1([0, T ],Jγ)).
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Using (2.13), (A4)(γ), and then the Cauchy-Schwarz inequality, we obtain

E

[

sup
[0,t]

|A3,k
s |2

]

≤ CE

[

(
∫ t

0

ds

∫

R3

fs(dv)|Vs − Ṽ k
s |(|Vs − v|γ + |Ṽ k

s − v|γ)

)2
]

≤ CE

[

(
∫ t

0

ds|Vs − Ṽ k
s |Jγ(fs)

)2
]

≤ C

(
∫ t

0

dsE[|Vs − Ṽ k
s |2]Jγ(fs)

)

(

∫ T

0

dsJγ(fs)

)

.(4.47)

Finally, (2.14) and (A4)(γ) allow us to obtain,

E

[

sup
[0,t]

|A4,k
s |2

]

≤ CE





(

∫ T

0

ds

∫

R3

fs(dv)|Vs − v|1+γεk
0(|Vs − v|)

)2


→ 0(4.48)

using similar arguments as for the study of A1,k. We thus obtain, for some ηk going to 0, some
constant C(T, f),

(4.49) E
[

|Vt − Ṽ k
t |2
]

≤ ηk + C(T, f)

∫ t

0

dsE[|Vs − Ṽ k
s |2]Jγ(fs).

The generalized Gronwall Lemma 6.1 and the fact that f ∈ L1([0, T ],Jγ) by assumption allow us
to conclude that

(4.50) E

[

sup
[0,T ]

|Vt − Ṽ k
t |2

]

≤ ηk exp[C(T, f)

∫ T

0

dsJγ(fs)] → 0

as k tends to infinity. Hence (Ṽ k
t )t∈[0,T ] goes in probability to (Vt)t∈[0,T ].

Step 6. It remains to prove (ii), i.e. the existence for MP ((Ãt)t∈[0,T ], δv0
). We use to this aim a

Picard iteration. Let N be a f -Poisson measure as in Step 2. We consider the constant process
V 0

t ≡ v0, we set ϕ∗
0 = 0 and we define recursively

V n+1
t = v0 +

∫ t

0

∫

R3

∫ ∞

0

∫ 2π

0

c(V n
s−, v, z, ϕ+ ϕ∗

n(s, v))Ñ(ds, dv, dz, dϕ)

−κ0

∫ t

0

ds

∫

R3

fs(dv)Φ(|V n
s − v|)(V n

s − v),(4.51)

and ϕ∗
n+1(s, v) = ϕ∗

n(s, v) + ϕ0(V
n+1
s− − v, V n

s− − v), where ϕ0 is defined by Lemma 2.2. A compu-
tation based on Doob’s inequality using (2.6) and that |xΦ(x)− yΦ(y)| ≤ min(x, y)|Φ(x)−Φ(y)|+
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|x− y|(Φ(x) + Φ(y)) ≤ C|x− y|(xγ + yγ) yields that for all t ∈ [0, T ], all n ≥ 1,

E

[

sup
[0,t]

|V n+1
s − V n

s |2

]

≤ C

∫ t

0

ds

∫

R3

fs(dv)E[|V n
s − V n−1

s |2(|V n
s − v|γ + |V n−1

s − v|γ)]

+CE

[

(
∫ t

0

ds

∫

R3

fs(dv)|V
n

s − V n−1
s |(|V n

s − v|γ + |V n−1
s − v|γ)]

)2
]

≤ C

∫ t

0

dsE[|V n
s − V n−1

s |2]Jγ(fs)

+C

(

∫ T

0

dsJγ(fs)

)

(
∫ t

0

dsE[|V n
s − V n−1

s |2]Jγ(fs)

)

≤ C(T, f)

∫ t

0

dsE[|V n
s − V n−1

s |2]Jγ(fs).(4.52)

Using Lemma 6.1, we deduce that
∑

nE
[

sup[0,T ] |V
n+1
s − V n

s |2
]

<∞, so that there exists a càdlàg

adapted process (Vt)t∈[0,T ] such that

(4.53) lim
n
E

[

sup
[0,T ]

|Vs − V n
s |2

]

= 0 and E

[

sup
[0,T ]

|Vs|
2

]

<∞.

To show that (Vt)t≥0 satisfies MP ((Ãt)t∈[0,T ], δv0
)), we need to check that for all 0 ≤ s1 ≤ ... ≤

sl ≤ s ≤ t ≤ T , all φ1, ..., φl ∈ Cc(R
3), and all φ ∈ C2

c ,

(4.54) E

[(

l
∏

i=1

φi(Vsi
)

)

(

φ(Vt) − φ(Vs) −

∫ t

s

Ãuφ(Vu)du

)

]

= 0.

But we know from (4.51) that for all n ≥ 1,

(4.55) E

[(

l
∏

i=1

φi(V
n
si

)

)

(

φ(V n+1
t ) − φ(V n+1

s ) −

∫ t

s

Ãuφ(V n
u )du

)

]

= 0.

It remains to pass to the limit in (4.55) to obtain (4.54). It suffices to use (4.53), and to observe

that the map (vu)u∈[0,T ] 7→ K((vu)u∈[0,T ]) :=
(

∏l
i=1 φi(vsi

)
)(

φ(vt) − φ(vs) −
∫ t

s Ãuφ(Vu)du
)

is

continuous on DT (endowed here with the uniform convergence) and bounded. First, we have

shown in Step 2-(b) that Ãtφ is bounded by Cφ(1 +m2(ft) + Jγ(ft)), and we easily deduce that
K is bounded since f ∈ L∞([0, T ],P2(R

3)) ∩ L1([0, T ],Jγ). Next, the only difficulty concerning

the continuity of K is to check that of (vu)u∈[0,T ] 7→
∫ t

s dsÃuφ(vu)du. Since Ãuφ is bounded by

Cφ(1+m2(fu)+Jγ(fu)) ∈ L1([0, T ]), it suffices to check that for each u ∈ [0, T ], Ãuφ is continuous
on R

3. This follows from Lemma 2.5. �

We finally conclude the section with the

Proof of Lemma 4.2. The proof is actually almost contained in that of Lemma 4.6. Indeed,
consider a weak solution f ∈ L∞([0, T ],P2(R

3)) ∩ L1([0, T ],Jγ) to (1.1), and define, for each

t ∈ [0, T ], the operator Ãt by (4.32). We have checked in Step 6 the existence of a solution to

MP ((Ãt)t∈[0,T ], δv0
). Of course, the same arguments allow us to prove the existence of a solution
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(Vt)t∈[0,T ] to MP ((Ãt)t∈[0,T ], f0), since f0 ∈ P2(R
3). Consider now the law gt of Vt. Then taking

expectations in (4.34), one easily deduces that (gt)t∈[0,T ] solves (4.31), so that due to Lemma 4.6,
g = f . Hence for each t ∈ [0, T ], the law of Vt is nothing but ft. Next, using Steps 3 and 5,

we have shown how to build some f -Poisson measures Nk in such a way that for (Ṽ k
t )t∈[0,T ] the

(V0, f, k,N
k)-process, limk E[sup[0,T ] |Vt − Ṽ k

t |2] = 0. Denoting by fk
t the law of Ṽ k

t , this of course

implies that limk sup[0,T ]W2(ft, f
k
t ) = 0, which was our goal. �

5. Applications

We now prove our well-posedness results. We start with the case of regularized velocity cross
sections.

Proof of Corollary 1.4. We assume (A1-A2-A3-A4(0)). We oberve that for any g ∈ P2(R
3),

J0(g) ≤ 1. Hence for any pair of solutions (ft) and (f̃t)t∈[0,T ], and such that one of them has a
density for all times, (1.22) follows immediately from Theorem 1.3.
Let us now prove the existence result. We found no reference about such an existence result,
but it is completely standard. The case where f0 ∈ P2(R

3) has a finite entropy, that is when
∫

R3

f0(v) log(1 + f0(v))dv < ∞ can be treated following the line of Villani [18] (and is much more

easy since we assume here that Φ is bounded, while true soft potentials were treated there). The
obtained solution has furthermore a finite entropy (and thus a density) for all times. Then the
existence result for any f0 ∈ P2(R

3) is a straightforward consequence of (1.22): it suffices to
consider a sequence fn

0 ∈ P2(R
3) with finite entropy, tending to f0 for the distance W2, and the

associated weak solutions (fn
t )t∈[0,T ] to (1.17). Then (1.22) ensures us that there exists (ft)t∈[0,T ]

such that limn→∞ sup[0,T ]W2(f
n
t , ft) = 0. It is then not hard to pass to the limit in (1.17), and to

deduce that (ft)t∈[0,T ] is indeed a weak solution to (1.17).

Let us now extend (1.22) to any pair of solutions (ft)t∈[0,T ], (f̃t)t∈[0,T ]), without assuming that ft

(or f̃t) has a density for all times: consider fn
0 with a finite entropy, such that W2(f0, f

n
0 ) tends to

0, and the associated solution (fn
t )t∈[0,T ]. Since fn

t has a finite entropy (and thus a density) for
all times, we deduce that for all n ≥ 1, all t ∈ [0, T ],

W2(ft, f̃t) ≤ W2(ft, f
n
t ) +W2(f

n
t , f̃t) ≤ [W2(f0, f

n
0 ) +W2(f

n
0 , f̃0)]e

Kt

≤ [2W2(f0, f
n
0 ) +W2(f0, f̃0)]e

Kt(5.1)

by the triangular inequality. Letting n tend to infinity, we obtain (1.22). The uniqueness result is
now straightforward. �

We now study the case of soft potentials.

Proof of Corollary 1.5. We consider γ ∈ (−3, 0), and assume (A1)-(A2)-(A3)-(A4)(γ).

First note that we consider only solutions with densities here, since we work in Lp with p >
3/(3 + γ) > 1.
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We also observe that for α ∈ (−3, 0), and for p ∈ (3/(3 + α),∞], there exists a constant Cα,p such
that for any g ∈ P2(R

3) ∩ Lp(R3), any v ∈ R
d,

Jα(g) = sup
v∈R3

∫

R3

g(v∗) |v − v∗|
α dv∗

≤ sup
v∈R3

∫

|v∗−v|<1

g(v∗) |v − v∗|
α dv∗ + sup

v∈R3

∫

|v∗−v|≥1

g(v∗) dv∗

≤ Cα,p ‖g‖Lp(R3) + 1,(5.2)

where Cα,p = supv∈R3 [
∫

|v∗−v|≤1
|v − v∗|

αp/(p−1)dv∗]
(p−1)/p = [

∫

|v∗|≤1
|v∗|

αp/(p−1)dv∗]
(p−1)/p < ∞,

since by assumption, αp/(p− 1) > −3.

Step 1. We first observe that point (i) is an immediate consequence of Theorem 1.3 and (5.2),
since we deal with solutions with densities.

Step 2. We now check point (ii). We only have to prove the existence of solutions, since uniqueness
follows from point (i). Using some results of Villani [18, Theorems 1 and 3], we know that for
γ ∈ (−3, 0), for any f0 ∈ P2(R

3) satisfying

(5.3)

∫

R3

f0(v) log(1 + f0(v))dv <∞,

there exists a weak solution (ft)t≥0 ∈ L∞([0,∞), L1(R3, (1 + |v|2) dv)) to (1.1) starting from f0.
Recall that if f0 ∈ P2(R

3) ∩ Lp(R3) for some p > 1, then (5.3) holds. Then the existence result
of point (ii) follows immediately from the following a priori estimate, which guarantees that if
f0 ∈ Lp(Rd) for some p > 3/(3 + γ), then this bound propagates locally (in time): there exists
C = C(p, γ, κ1, κ2, κ3) such that any weak solution to (1.1) a priori satisfies

(5.4)
d

dt
‖ft‖Lp ≤ C

(

1 + ‖ft‖
2
Lp(R3)

)

.

This will guarantee that for 0 ≤ t < T∗ := 1
C (π/2 − arctan ||f0||Lp), we have

(5.5) ‖ft‖Lp ≤ tan (arctan ‖f0‖Lp + C t) .

Thus point (ii) will be proved.

To obtain (5.4), we follow the method of Desvillettes-Mouhot, see [5, Proposition 3.2]. First, one

classically may replace, in Aφ taken in the form (1.18), β(θ) by β̂(θ) = [β(θ)+β(π−θ)]11{θ∈(0,π/2]},
see e.g. [1, Introduction] or [5, Section 2]. This relies on the use of (1.15). Next, following the line
of [5, proof of Proposition 3.2], we get

(5.6)
d

dt

∫

R3

|ft(v)|
pdv ≤ (p− 1)

∫

R3

ft(v∗)dv∗

∫

R3

dvΦ(|v − v∗|)

∫ π/2

0

β̂(θ)dθ

∫ 2π

0

dϕ[fp
t (v′) − fp

t (v)],

where v′ is given by (1.13). Using now the cancelation Lemma of Alexandre-Desvillettes-Villani-

Wennberg [1, Lemma 1] (with N = 3, f given by fp
t , and B(|v− v∗|, cos θ) sin θ = β̂(θ)Φ(|v− v∗|)),

we obtain

d

dt

∫

R3

|ft(v)|
pdv ≤ 2π(p− 1)

∫

R3

ft(v∗)dv∗

∫

R3

fp
t (v)dv

∫ π/2

0

β̂(θ)dθ

∣

∣cos−3(θ/2)Φ(|v − v∗| cos−1(θ/2)) − Φ(|v − v∗|)
∣

∣ .(5.7)
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Due to (A4)(γ), we know that |Φ(x) − Φ(y)| ≤ κ3(x
γ + yγ)|x− y|/min(x, y). One easily deduces

that for some constant C = C(κ3), for all x ∈ R+, all θ ∈ (0, π/2],
∣

∣cos−3(θ/2)Φ(x cos−1(θ/2)) − Φ(x)
∣

∣ ≤
∣

∣cos−3(θ/2) − 1
∣

∣Φ(x)

+ cos−3(θ/2)
∣

∣Φ(x cos−1(θ/2)) − Φ(x)
∣

∣

≤ Cθ2xγ + C|x cos−1(θ/2) − x|(xγ + (x cos−1(θ/2))γ)/x

≤ Cθ2xγ .(5.8)

we used here that | cos−3(θ/2) − 1| + | cos−1(θ/2) − 1| ≤ cstθ2 for all θ ∈ (0, π/2].

Since
∫ π/2

0 θ2β̂(θ)dθ ≤ κ1, we finally get, with C = C(γ, p, κ1, κ2, κ3),

d

dt

∫

R3

|ft(v)|
pdv ≤ C

∫

R3

fp
t (v)dv

∫

R3

|v − v∗|
γft(v∗)dv∗

≤ C

(

∫

R3

fp
t (v)dv + Cγ,p

[
∫

R3

fp
t (v)dv

]1+1/p
)

(5.9)

the last inequality using (5.2). This yields

d

dt
||ft||Lp ≤ C

(

||ft||Lp + Cγ,p||ft||
2
Lp

)

,(5.10)

from which (5.4) immediately follows. �

6. Appendix

We start this annex by recalling the generalized Gronwall Lemma and the associated Picard
Lemma.

Lemma 6.1. Let T ≥ 0 and a nonnegative function v on [0, T ] such that
∫ T

0 v(s)ds <∞.

(i) Any nonnegative bounded function on [0, T ] satisfying u(t) ≤ a+
∫ t

0 u(s)v(s)ds for all t ∈ [0, T ]

also satisfies u(t) ≤ a exp(
∫ t

0
v(s)ds) for all t ∈ [0, T ].

(ii) Consider a sequence of nonnegative functions un on [0, T ], with u0 bounded and un+1(t) ≤
∫ t

0 un(s)v(s)ds for all n ≥ 0, all t ∈ [0, T ]. Then
∑

n≥0 sup[0,T ] un(t) ≤ ||u0||∞ exp(
∫ T

0 v(s)ds).

We carry on with the

Proof of Lemma 1.1. We first prove (i). Recall that H(θ) =
∫ π

θ
β(x)dx, that G is its inverse

function, and that cθ−1−ν ≤ β(θ) ≤ Cθ−1−ν for some ν ∈ (0, 2). Since H(θ) ≤ a(θ−ν −π−ν) (with
a = C/ν), we deduce that G(z) ≤ (z/a+ π−ν)−1/ν . Now for 0 ≤ z ≤ w

0 ≤ G(z) −G(w) = −

∫ w

z

G′(u)du =

∫ w

z

du

β(G(u))
≤

1

c

∫ w

z

G(u)ν+1

≤
1

c

∫ w

z

(u/a+ π−ν)−1−1/ν ≤ A
[

(z/a+ π−ν)−1/ν − (w/a+ π−ν)−1/ν
]

≤ B
[

(1 + εz)−1/ν − (1 + εw)−1/ν
]

(6.11)

for some constants A, B, ε > 0. We set α = 1/ν > 1/2, and first treat the



VERY SINGULAR BOLTZMANN EQUATIONS 25

Case α ∈ (1/2, 1]. Let thus x ≥ y > 0, and z ∈ (0,∞). Using the inequality |uα − vα| ≤ cst
|u− v|/(u1−α + v1−α), we obtain, the value of B changing from line to line,

|G(z/x) −G(z/y)|2 ≤ B|(1 + εz/x)−1 − (1 + εz/y)−1|2((1 + εz/x)α−1 + (1 + εz/y)α−1)−2

≤ B

∣

∣

∣

∣

x

x+ εz
−

y

y + εz

∣

∣

∣

∣

2(
x+ εz

x

)2−2α

≤ B(x − y)2z2x2α−2(x + εz)−2α(y + εz)−2

≤ B(x − y)2x2α−2(x+ εz)−2α.(6.12)

Integrating this inequality, we get
∫ ∞

0

dz|G(z/x) −G(z/y)|2 ≤ B(x− y)2x2α−2x1−2α ≤ B
(x− y)2

x
≤ B

(x− y)2

x+ y
,(6.13)

since x ≥ y by assumption.

Case α ∈ [1,∞). Let x ≥ y > 0. Then

|G(z/x) −G(z/y)|2 ≤ B|(1 + εz/x)−α − (1 + εz/y)−α|2

≤ B|(1 + εz/x)−1 − (1 + εz/y)−1|2,(6.14)

and we may use the same computation as previously with α = 1.

We leave the proof (ii) to the reader, and finally prove (iii). We thus assume that Φ(x) = xγ for
some γ ∈ (−3, 0), and show that (1.9) holds with Ψ(x) =cst.xγ . First, it is of course immediate
that (x− y)2[Φ(x) + Φ(y)] ≤ (x− y)2[xγ + yγ ]. Next,

min(x, y)|x − y||Φ(x) − Φ(y)| ≤ |γ|min(x, y)(x − y)2 min(x, y)γ−1

≤ |γ|(x− y)2 min(x, y)γ ≤ |γ|(x− y)2(xγ + yγ).(6.15)

Finally,

min(x2, y2)
|Φ(x) − Φ(y)|2

Φ(x) + Φ(y)
≤ |γ|2 min(x2, y2)(x− y)2

min(x, y)2γ−2

xγ + yγ

≤ |γ|2(x− y)2 min(x, y)γ ≤ |γ|2(x− y)2(xγ + yγ).(6.16)

As a conclusion, (1.9) holds with Ψ(x) := (1 + |γ| + γ2)xγ . �

Next, we give the

Proof of (1.19). Let thus φ ∈ C2
∞, denote by φ′′ its Hessian matrix, and set ∆ = ∆(v, v∗, θ, ϕ) =

φ(v′)+φ(v′∗)−φ(v)−φ(v∗), where we used the shortened notation (1.13). Recalling that v′ = v+a
while v′∗ = v∗ − a, a Taylor expansion yields that for some w1, w2 ∈ R

3, ∆ = a.[∇φ(v)−∇φ(v∗)] +
1
2a.[φ

′′(w1)+φ
′′(w2)]a. Recall now that

∫ 2π

0 adϕ = − 1−cos θ
2 (v−v∗), and that |a|2 = 1−cos θ

2 |v−v∗|
2.

Hence
∣

∣

∣

∣

∫ 2π

0

∆dϕ

∣

∣

∣

∣

≤
1 − cos θ

2
|v − v∗|.|∇φ(v) −∇φ(v∗)| + 2π||φ′′||∞

1 − cos θ

2
|v − v∗|

2

≤ C(1 − cos θ)||φ′′||∞|v − v∗|
2,(6.17)

which yields the desired result, since 1 − cos θ ≤ θ2. �

Next, we treat the
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Proof of Lemma 2.1. First, the second equality in (2.3) is obvious, since c(v, v∗, z, .) is 2π-peridodic.

Next, we consider φ ∈ C2
∞. We have already seen that Aφ is well-defined (see (1.19)), and Ãφ is also

well-defined, since, setting c = c(v, v∗, z, ϕ) for simplicity, |φ(v+c)−φ(v)−c.∇φ(v)| ≤ |c|2||φ′′||∞/2.
Using the substitution θ = G(z/Φ(|v − v∗|)), which yields dz = −Φ(|v − v∗|)β(θ)dθ, we get,

∫ ∞

0

dz

∫ 2π

0

dϕ|c(v, v∗, z, ϕ)|2 = Φ(|v − v∗|)

∫ π

0

β(θ)dθ

∫ 2π

0

dϕ|a(v, v∗, θ, ϕ)|2

= Φ(|v − v∗|)

∫ π

0

β(θ)dθ

∫ 2π

0

dϕ|v − v∗|
2 1 − cos θ

2
≤ C|v − v∗|

2Φ(|v − v∗|)(6.18)

thanks to (A2), where C depends only on κ1. Thus Ãφ is well-defined for φ ∈ C2
∞, and if φ ∈ C2

b ,

(6.19) |Ãφ(v, v∗)| ≤ C||φ′′||∞|v − v∗|
2Φ(|v − v∗|) + C||φ′||∞|v − v∗|Φ(|v − v∗|).

Next, we consider again φ ∈ C2
∞. Using the substitution θ = G(z/Φ(|v − v∗|)), we observe that

(using the shortened notation (1.13))

Ãφ(v, v∗) = Φ(|v − v∗|)

[
∫ π

0

β(θ)dθ

∫ 2π

0

dϕ[φ(v′) − φ(v) − a.∇φ(v)] − κ0(v − v∗).∇φ(v)

]

.(6.20)

Using now (1.14) and that
∫ π

0
β(θ)dθ

∫ 2π

0
dϕa = −κ0(v − v∗), we obtain

Ãφ(v, v∗) + Ãφ(v∗, v)

2
=

Φ(|v − v∗|)

2

∫ π

0

β(θ)dθ

∫ 2π

0

dϕ[φ(v′) + φ(v′∗) − φ(v) − φ(v∗)],(6.21)

which was our goal. �

Proof of Lemma 2.3. First (2.5) has already been proved, see (6.18). Using again the substitution
θ = G(z/Φ(|v − v∗|)), we obtain (2.7):

∫ ∞

0

dz

∣

∣

∣

∣

∫ 2π

0

dϕc(v, v∗, z, ϕ)

∣

∣

∣

∣

= Φ(|v − v∗|)

∫ π

0

β(θ)dθ

∣

∣

∣

∣

∫ 2π

0

dϕa(v, v∗, θ, ϕ)

∣

∣

∣

∣

= π|v − v∗|Φ(|v − v∗|)

∫ π

0

β(θ)dθ [1 − cos θ] ≤ C|v − v∗|Φ(|v − v∗|).(6.22)

Next, we observe that

∆ := |c(v, v∗, z, ϕ) − c(ṽ, ṽ∗, z, ϕ+ ϕ0(v − v∗, ṽ − ṽ∗)|
2

≤ 4

∣

∣

∣

∣

1 − cosG(z/Φ(|v − v∗|))

2
[(v − v∗) − (ṽ − ṽ∗)])

∣

∣

∣

∣

2

+4

∣

∣

∣

∣

cosG(z/Φ(|ṽ − ṽ∗|)) − cosG(z/Φ(|v − v∗|))

2
[ṽ − ṽ∗])

∣

∣

∣

∣

2

+4

∣

∣

∣

∣

sinG(z/Φ(|v − v∗|))

2
[Γ(v − v∗, ϕ) − Γ(ṽ − ṽ∗, ϕ+ ϕ0(v − v∗, ṽ − ṽ∗))])

∣

∣

∣

∣

2

+4

∣

∣

∣

∣

sinG(z/Φ(|ṽ − ṽ∗|)) − sinG(z/Φ(|v − v∗|))

2
Γ(ṽ − ṽ∗, ϕ+ ϕ0(v − v∗, ṽ − ṽ∗))

∣

∣

∣

∣

2

.(6.23)
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Using now Lemma 2.2, that |Γ(X,ϕ)| = |X |, and easy estimates about cosinus and sinus functions,
we deduce that

∆ ≤ C|(v − v∗) − (ṽ − ṽ∗)|
2G2(z/Φ(|v − v∗|))

+C|ṽ − ṽ∗|
2 |G(z/Φ(|v − v∗|)) −G(z/Φ(|ṽ − ṽ∗|))|

2
.(6.24)

On the one hand, the substitution θ = G(z/Φ(|v−v∗|)) yields that
∫∞

0
dz
∫ 2π

0
dϕG2(z/Φ(|v−v∗|)) =

2πΦ(|v − v∗|)
∫ π

0
θ2β(θ)dθ = 2πκ1Φ(|v − v∗|), and on the other hand we may use (A3). We thus

get
∫ ∞

0

dz

∫ 2π

0

dϕ∆ ≤ C|(v − v∗) − (ṽ − ṽ∗)|
2Φ(|v − v∗|)

+C|ṽ − ṽ∗|
2 (Φ(|v − v∗|) − Φ(|ṽ − ṽ∗|))

2

Φ(|v − v∗|) + Φ(|ṽ − ṽ∗|)
.(6.25)

But using a symmetry argument, we easily deduce that
∫ ∞

0

dz

∫ 2π

0

dϕ∆ ≤ C|(v − v∗) − (ṽ − ṽ∗)|
2(Φ(|v − v∗|) + Φ(|ṽ − ṽ∗|))

+Cmin(|v − v∗|
2, |ṽ − ṽ∗|

2)
(Φ(|v − v∗|) − Φ(|ṽ − ṽ∗|))

2

Φ(|v − v∗|) + Φ(|ṽ − ṽ∗|)
.(6.26)

Then (1.9) leads us to
∫ ∞

0

dz

∫ 2π

0

dϕ∆ ≤ C|(v − v∗) − (ṽ − ṽ∗)|
2[Ψ(|v − v∗|) + Ψ(|ṽ − ṽ∗|)](6.27)

which yields (2.6). We finally check (2.8). Integrating first against dϕ, we get

D :=

∫ ∞

0

dz

∣

∣

∣

∣

∫ 2π

0

dϕ[c(v, v∗, z, ϕ) − c(ṽ, ṽ∗, z, ϕ)]

∣

∣

∣

∣

= π

∫ ∞

0

dz
∣

∣

∣
(v − v∗)[1 − cosG(z/Φ(|v − v∗|))] − (ṽ − ṽ∗)[1 − cosG(z/Φ(|ṽ − ṽ∗|))]

∣

∣

∣

≤ π|(v − v∗) − (ṽ − ṽ∗)|

∫ ∞

0

dz[1 − cosG(z/Φ(|v − v∗|))]

+π|ṽ − ṽ∗|

∫ ∞

0

dz |cosG(z/Φ(|v − v∗|)) − cosG(z/Φ(|ṽ − ṽ∗|))|

≤ π|(v − v∗) − (ṽ − ṽ∗)|

∫ ∞

0

dzG2(z/Φ(|v − v∗|))

+π|ṽ − ṽ∗|

∫ ∞

0

dz
∣

∣

∣
G2(z/Φ(|v − v∗|)) −G2(z/Φ(|ṽ − ṽ∗|))

∣

∣

∣
.(6.28)

The monotonicity of G ensures us that for any x, y > 0,
∫ ∞

0

dz
∣

∣

∣
G2(z/x) −G2(z/y)

∣

∣

∣
=
∣

∣

∣

∫ ∞

0

dzG2(z/x) −

∫ ∞

0

dzG2(z/y)
∣

∣

∣
.(6.29)

On the other hand,
∫∞

0
dzG2(z/x) = xκ1 (recall (A2)), thanks to the substitution θ = G(z/x).

We thus obtain

D ≤ κ1π|(v − v∗) − (ṽ − ṽ∗)|Φ(|v − v∗|) + κ1π|ṽ − ṽ∗|.|Φ(|v − v∗|) − Φ(|ṽ − ṽ∗|)|.(6.30)
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A symmetry argument and then (1.9) thus yields

D ≤ κ1π|(v − v∗) − (ṽ − ṽ∗)|(Φ(|v − v∗|) + Φ(|ṽ − ṽ∗|))

+κ1πmin(|v − v∗|, |ṽ − ṽ∗|)|Φ(|v − v∗|) − Φ(|ṽ − ṽ∗|)|

≤ κ1π|(v − v∗) − (ṽ − ṽ∗)|(Ψ(|v − v∗|) + Ψ(|ṽ − ṽ∗|)),(6.31)

from which (2.8) follows.

We have already checked point (ii), see (6.19). Let us finally prove point (iii), following the line of
[12, Lemma 4.1]. We thus consider φ ∈ C2

c , with supp φ ⊂ {|v| ≤ x}. Recalling (6.20), we see that

|Ãφ(v, v∗)| ≤ κ0Φ(|v − v∗|)|v − v∗|||φ
′||∞11{|v|≤x}

+Φ(|v − v∗|)11{|v|≤2x}

∫ π

0

β(θ)dθ

∫ 2π

0

dϕ|φ(v′) − φ(v) − a.∇φ(v)|

+Φ(|v − v∗|)11{|v|≥2x}

∫ π

0

β(θ)dθ

∫ 2π

0

dϕ|φ(v′)| =: A1 +A2 +A3.(6.32)

Recalling that v′ = v + a, we deduce that |φ(v′) − φ(v) − a.∇φ(v)| ≤ |a|2||φ′′||∞/2, and then
recalling (6.18), we deduce that A2 ≤ C||φ′′||∞Φ(|v− v∗|)|v− v∗|

211{|v|≤2x}. Next, we observe that
|φ(v′)| ≤ ||φ||∞11{|v′|≤x}. Since v′ = v + a, we deduce that 11{|v|≥2x,|v′|≤x} ≤ 11{|v|≥2x,|a|≥|v|/2} ≤

11{|v|≥2x}
4|a|2

|v|2 . Thus, using (6.18) again,

A3 ≤ Φ(|v − v∗|)11{|v|≥2x}
4||φ||∞
|v|2

∫ π

0

β(θ)dθ

∫ 2π

0

dϕ|a|2

≤ CΦ(|v − v∗|)11{|v|≥2x}
||φ||∞|v − v∗|

2

|v|2
.(6.33)

As a conclusion, (2.10) holds, which concludes the proof. �

Let us now give the

Proof of Lemma 2.4. First, similarly to (6.18), we get

∫ ∞

k

dz

∫ 2π

0

dϕ|c(v, v∗, z, ϕ)|2 = Φ(|v − v∗|)

∫ G[k/Φ(|v−v∗|)]

0

β(θ)dθ

∫ 2π

0

dϕ|a(v, v∗, θ, ϕ)|2

= 2πΦ(|v − v∗|)|v − v∗|
2

∫ G[k/Φ(|v−v∗|)]

0

β(θ)
1 − cos θ

2
dθ

≤ C|v − v∗|
2Φ(|v − v∗|)ε

k
0(|v − v∗|)(6.34)

by definition of εk
0 , and since (1 − cos θ) ≤ θ2. This is nothing but (2.12). Next, one easily gets

|xhk
0(x)−yhk

0(y)| ≤ |x−y|(hk
0(x)+hk

0(y))+min(x, y)|hk
0(x)−hk

0(y)|. On the one hand, the definition
of hk

0 and the substitution θ = G(z/Φ(x)) yields hk
0(x) ≤ πΦ(x)

∫ π

0
(1 − cos θ)β(θ)dθ ≤ πκ1Φ(x),

and on the other hand, |hk
0(x)−hk

0(y)| ≤ π
∫∞

0 dz| cosG(z/Φ(x))−cosG(z/Φ(y))| ≤ C|Φ(x)−Φ(y)|,

recall the computations in (6.28-6.29-6.30). Hence (1.9) yields |xhk
0(x)−yhk

0(y)| ≤ C|x−y|(Φ(x)+
Φ(y)) +Cmin(x, y)|Φ(x)−Φ(y)| ≤ C|x− y|(Ψ(x) + Ψ(y)), i.e. (2.13). Next, an easy computation
shows that hk

0(x) = πΦ(x)
∫ π

G[k/Φ(x)](1− cosθ)β(θ)dθ. Hence, recalling (2.1), |κ0xΦ(x)−xhk
0(x)| =

xΦ(x)π
∫ G[k/Φ(x)]

0
(1 − cos θ)β(θ)dθ ≤ xΦ(x)πεk

0 (x).
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Finally, the fact that εk
0 is bounded by κ1 is obvious from (A2), and for x ≥ 0 fixed, k/Φ(x) tends

to infinity, so that G[k/Φ(x)] tends to 0, and thus εk
0(x) tends to 0. �

We conclude the paper with the

Proof of Lemma 2.5. We thus assume (A1-A2-A3-A4)(γ) for some γ ∈ (−3, 0], and consider
φ ∈ C2

c , and g ∈ P2(R
3) ∩ Jγ . We consider a sequence vn → v in R

3, and we have to show

that h(vn) → h(v), where h(v) :=
∫

R3 g(dv∗)Ãφ(v, v∗). Recalling (6.20), we write h(v) = h1(v) −
κ0∇φ(v).h2(v), with

h1(v) :=

∫

R3

g(dv∗)Φ(|v − v∗|)

∫ π

0

β(θ)dθ

∫ 2π

0

dϕ∆(v, v∗, θ, ϕ),

∆(v, v∗, θ, ϕ) := φ(v + a(v, v∗, θ, ϕ)) − φ(v) − a(v, v∗, θ, ϕ).∇φ(v),

h2(v) :=

∫

R3

g(dv∗)(v − v∗)Φ(v − v∗).(6.35)

First, due to (A4)(γ), one has |xΦ(x)− yΦ(y)| ≤ |x− y|(Φ(x) + Φ(y)) + min(x, y)|Φ(x)−Φ(y)| ≤
C|x− y|(xγ + yγ). Thus,

|h2(vn) − h2(v)| ≤ C

∫

R3

g(dv∗)|vn − v|(|vn − v∗|
γ + |v − v∗|

γ) ≤ C|vn − v|Jγ(g) → 0(6.36)

as n tends to infinity, since g ∈ Jγ by assumption. Next, we use the map ϕ0 introduced in Lemma
2.2, and write

h1(vn) =

∫

R3

g(dv∗)Φ(|vn − v∗|)

∫ π

0

β(θ)dθ

∫ 2π

0

dϕ∆(vn, v∗, θ, ϕ+ ϕ0(v − v∗, vn − v∗)).(6.37)

We now introduce, for ε > 0, hε
1, which is defined as h1 but replacing Φ by Φε(x) := Φ(max(x, ε)).

First, limn h
ε
1(vn) = hε

1(v) for each ε > 0, due to the Lebesgue Theorem and the following facts:
(i) Φε is continuous and bounded due to (A4)(γ) ;
(ii) limn ∆(vn, v∗, θ, ϕ+ϕ0(v− v∗, vn − v∗)) = ∆(v, v∗, θ, ϕ) for all v∗, θ, ϕ (because due to Lemma
2.2, limn a(vn, v∗, θ, ϕ+ ϕ0(v − v∗, vn − v∗)) = a(v, v∗, θ, ϕ) );
(iii) |∆(vn, v∗, θ, ϕ+ϕ0(v−v∗, vn−v∗))| ≤ Cφ|vn−v∗|

2θ2 ≤ Cφ(supn |vn|
2 + |v∗|

2)θ2 which belongs
to L1(g(dv∗)β(θ)dθdϕ) due to (A2) and since g ∈ L∞([0, T ],P2(R

3)).
We thus just have to prove that limε→0 lim supn |h1(vn)−hε

1(vn)| = 0 and limε→0 |h1(v)−h
ε
1(v)| = 0.

Using point (iii) above and then (A2)-(A4)(γ),

|h1(vn) − hε
1(vn)| ≤ Cφ

∫

R3

g(dv∗)Φ(|vn − v∗|)11{|vn−v∗|≤ε}

∫ π

0

β(θ)dθ

∫ 2π

0

dϕ|vn − v∗|
2θ2

≤ Cφ

∫

R3

g(dv∗)|vn − v∗|
2+γ11{|vn−v∗|≤ε} ≤ CφJγ(g)ε2.(6.38)

This implies that lim supn |h1(vn) − hε
1(vn)| ≤ CφJγ(g)ε2 → 0 as ε → 0. The same computation

shows that limε→0 |h1(v) − hε
1(v)| = 0, and this concludes the proof. �
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