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Abstract. We consider the approximate Euler scheme for Lévy-driven sto-
chastic differential equations. We study the rate of convergence in law of the
paths. We show that when approximating the small jumps by Gaussian vari-
ables, the convergence is much faster than when simply neglecting them. For
example, when the Lévy measure of the driving process behaves like |z|−1−αdz
near 0, for some α ∈ (1, 2), we obtain an error of order 1/

√
n with a computa-

tional cost of order nα. For a similar error when neglecting the small jumps,
see [14], the computational cost is of order nα/(2−α), which is huge when α is
close to 2.
In the same spirit, we study the problem of the approximation of a Lévy-driven
S.D.E. by a Brownian S.D.E. when the Lévy process has no large jumps.
Our results rely on some results of Rio [13] about the central limit theorem,
in the spirit of the famous paper by Komlós-Major-Tsunády [11].
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1. Introduction

Let (Zt)t≥0 be a one-dimensional square integrable Lévy process. Then for some
a ∈ R, b ∈ R+ and some measure ν on R∗ := R\{0} satisfying

∫
R∗

z2ν(dz) < ∞,

(1) Zt = at + bBt +

∫ t

0

∫

R∗

zÑ(ds, dz),

where (Bt)t≥0 is a standard Brownian motion, independent of a Poisson measure

N(ds, dz) on [0,∞) × R∗ with intensity measure dsν(dz) and where Ñ is its com-
pensated Poisson measure, see Jacod-Shiryaev [10].

We consider, for some x ∈ R and some function σ : R 7→ R, the S.D.E.

(2) Xt = x +

∫ t

0

σ(Xs−)dZs.

Using some classical results (see e.g. Ikeda-Watanabe [5]), there is strong existence
and uniqueness for (2) as soon as σ is Lipschitz continuous: for any given couple
(B, N), there exists an unique càdlàg adapted solution (Xt)t≥0 to (2). By adapted,
we mean adapted to the filtration (Ft)t≥0 generated by (B, N).

We consider two related problems in this paper. The first one deals with the
numerical approximation of the solution (Xt)t≥0. It is discussed in the next section
in the case where σ is bounded and Lipschitz continuous. We extend our study in
Section 7 to the case where σ is locally Lipschitz continuous with at most linear
growth, and where the Lévy measure ν satisfies only

∫
R∗

min(z2, 1)ν(dz) < ∞.

1
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The second problem concerns the approximation of (Xt)t≥0 by the solution to a
Brownian S.D.E., when Z has only small jumps, and is discussed in Section 3.

Our results are based on a recent work of Rio [13] that concerns the rate of conver-
gence in the central limit theorem, when using the quadratic Wasserstein distance.
This result and its application to Lévy processes, is exposed in Section 4.
The proofs are handled in Sections 5 and 6. We give some numerical illustrations
in Section 8.

2. Numerical simulation

The first goal of this paper is to study a numerical scheme to solve (2). The first idea
is to perform an Euler scheme (Xn

i/n)n≥0 with time-step 1/n, see Jacod [6], Jacod-

Protter [9], Protter-Talay [12] for rates of convergence. However, this is generally
not a good scheme in practise, unless one knows how to simulate the increments of
the underlying Lévy process, which is the case e.g. when Z is a stable process.

We assume here that the Lévy measure ν is known explicitly: one can thus simulate
random variables with law ν(dz)1A(z)/ν(A), for any A such that ν(A) < ∞.

The first idea is to approximate the increments of Z by ∆̂n,ǫ
i = Zǫ

i/n − Zǫ
(i−1)/n ,

where Zǫ
t is the same Lévy process as Z without its (compensated) jumps smaller

than ǫ. However, Asmussen-Rosinski [1] have shown that for a Lévy process with
many small jumps, it is more convenient to approximate small jumps by some

Gaussian variables than to neglect them. We thus introduce ∆n,ǫ
i = ∆̂n,ǫ

i + Un,ǫ
i ,

where Un,ǫ
i is Gaussian with same mean and variance as the neglected jumps and

is independent of ∆̂n,ǫ
i . The arguments of [1] concern only Lévy processes and rely

on explicit computations.

Let us write (X̂n,ǫ
[nt]/n)t≥0 (resp. (Xn,ǫ

[nt]/n)t≥0) for the Euler scheme using the ap-

proximate increments (∆̂n,ǫ
i )i≥1 (resp. (∆n,ǫ

i )i≥1). They of course have a similar
computational cost.

Jacod-Kurtz-Méléard-Protter [8] have computed systematically the weak error for
the approximate Euler scheme. In particular, they prove some very precise estimates
of E[g(Xn,ǫ

[nt]/n)]−E[g(Xt)] for g smooth enough. The obtained rate of convergence

is very satisfying.

Assume now that the goal is to approximate some functional of the path of the
solution (e.g. supt∈[0,T ] |Xt|). Then we have to estimate the error between the laws

of the paths of the processes (not only between the laws of the time marginals).
A common way to perform such an analysis is to introduce a suitable coupling
between the numerical scheme (Xn,ǫ

[nt]/n)t≥0 and the true solution (Xt)t≥0 and to

estimate the (discretized) strong error E[supt∈[0,T ] |Xn,ǫ
[nt]/n −X[nt]/n|2]. We refer to

Jacod-Jakubowski-Mémin [7] for the speed of convergence of the discretized process
(X[nt]/n)t≥0 to the whole process (Xt)t≥0.

Rubenthaler [14] has studied the strong error when neglecting small jumps. He ob-

tains roughly E[supt∈[0,T ] |X̂n,ǫ
[nt]/n−X[nt]/n|2] ≃ CT (n−1 +

∫
|z|≤ǫ z2ν(dz)) (if b 6= 0).

For ν very singular near 0, the obtained precision is very low. Let us mention that
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in some particular cases, a more efficient method was introduced in Rubenthaler-
Wiktorsson [15].

Our aim here is to prove that the strong error is much lower when using Xn,ǫ
[nt]/n,

see Subsection 2.4 and Section 8 below.

The main difficulty is to find a suitable coupling between the true increments (Zi/n−
Z(i−1)/n)i≥1 and the approximate increments (∆n,ǫ

i )i≥1: clearly, one considers Z,
then one erases its jumps smaller than ǫ, but how to build the additional Gaussian
variable in such a way that it is a.s. close to the erased jumps? We will use a
recent result of Rio [13], which gives some very precise rate of convergence for the
standard central limit theorem in Wasserstein distance, in the spirit of Komlós-
Major-Tsunády [11].

2.1. Notation. We introduce, for ǫ ∈ (0, 1), k ∈ N,

Fǫ(ν) =

∫

|z|>ǫ

ν(dz), mk(ν) =

∫

R∗

|z|kν(dz),(3)

mk,ǫ(ν) =

∫

|z|≤ǫ

|z|kν(dz), βǫ(ν) =
m4,ǫ(ν)

m2,ǫ(ν)
.

Observe that we always have βǫ(ν) ≤ ǫ2 and Fǫ(ν) ≤ ǫ−2m2(ν).

For n ∈ N and t ≥ 0, we set ρn(t) = [nt]/n, where [x] is the integer part of x.

2.2. Numerical scheme. Let n ∈ N and ǫ ∈ (0, 1) be fixed. We introduce an i.i.d.
sequence (∆n,ǫ

i )i≥1 of random variables, with

(4) ∆n,ǫ
1 = an,ǫ + bn,ǫG +

Nn,ǫ∑

i=1

Y ǫ
i ,

where an,ǫ = (a −
∫
|z|>ǫ zν(dz))/n, where b2

n,ǫ = (b2 + m2,ǫ(ν))/n, where G is

Gaussian with mean 0 and variance 1, where Nn,ǫ is Poisson distributed with mean
Fǫ(ν)/n and where Y ǫ

1 , Y ǫ
2 , ... are i.i.d. with law ν(dz)1|z|>ǫ/Fǫ(ν). All these ran-

dom variables are assumed to be independent. Then we introduce the scheme

(5) Xn,ǫ
0 = x, Xn,ǫ

(i+1)/n = Xn,ǫ
i/n + σ(Xn,ǫ

i/n)∆n,ǫ
i+1 (i ≥ 0).

Remark 1. (i) The cost of simulation of ∆n,ǫ
1 is of order 1+E[Nn,ǫ] = 1+Fǫ(ν)/n,

whence that of (Xn,ǫ
ρn(t))t∈[0,T ] is of order Tn(1 + Fǫ(ν)/n) = T (n + Fǫ(ν)), as in

[14].
(ii) ∆n,ǫ

i+1 has the same law as Zǫ
(i+1)/n −Zǫ

i/n + Un,ǫ
i , where Un,ǫ

i is Gaussian with

same mean and variance as
∫ (i+1)/n

i/n

∫
|z|≤ǫ zÑ(ds, dz) and where Zǫ

t = at + bBt +
∫ t

0

∫
|z|>ǫ

zÑ(ds, dz).

(iii) The key argument of the paper is to use a suitable coupling between Un,ǫ
i and∫ (i+1)/n

i/n

∫
|z|≤ǫ zÑ(ds, dz). As shown in Lemma 8, there exists such a coupling

satisfying E[|Un,ǫ
i −

∫ (i+1)/n

i/n

∫
|z|≤ǫ

zÑ(ds, dz)|2] ≤ Cβǫ(ν). Then we will choose

∆n,ǫ
i+1 = Zǫ

(i+1)/n − Zǫ
i/n + Un,ǫ

i .
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2.3. Main result. We may now state our main result.

Theorem 2. Assume that σ : R 7→ R is bounded and Lipschitz continuous. Let
ǫ ∈ (0, 1) and n ∈ N. There is a coupling between a solution (Xt)t≥0 to (2) and an
approximated solution (Xn,ǫ

ρn(t))t≥0 as in Subsection 2.2 such that for all T > 0,

E

[
sup

t∈[0,T ]

|Xρn(t) − Xn,ǫ
ρn(t)|2

]
≤ CT

(
n−1 + nβǫ(ν)

)
,

where the constant CT depends only on T, σ, a, b, m2(ν).

The first bound n−1 is due to the time discretization (Euler scheme) and the second
bound nβǫ(ν) is due to the approximation of the increments of the Lévy process.
As noted by Jacod [6], the first bound may be improved if there is no Brownian
motion b = 0 (but we have to work with some weaker norm).

2.4. Optimization. Choose ǫ = 1/n. Then recalling that βǫ(ν) ≤ ǫ2, we get

E

[
sup

t∈[0,T ]

|Xρn(t) − X
n,1/n
ρn(t) |2

]
≤ CT /n,

for a mean cost to simulate (X
n,1/n
ρn(t) )t∈[0,T ] of order T (n + F1/n(ν)).

• We always have Fǫ(ν) ≤ m2(ν)ǫ−2, so that the cost is always smaller than CTn2.

• If ν(dz)
z→0≃ |z|−1−αdz for some α ∈ (0, 2), then Fǫ(ν) ≃ ǫ−α, so that the cost is

of order T (n + nα).

When neglecting the small jumps, one gets, for a mean cost of order T (n + Fǫ(ν)),

E

[
sup

t∈[0,T ]

|Xρn(t) − X̂n,ǫ
ρn(t)|2

]
≤ CT (1/n + m2(ǫ)),

see [14]. In the case where ν(dz)
z→0≃ |z|−1−αdz for some α ∈ (0, 2), we have

m2(ǫ) ≃ ǫ2−α and Fǫ(ν) ≃ ǫ−α. Thus to get an mean squared error of order 1/n,
one has to choose ǫ = n−1/(2−α), which yields a cost of order T (n+nα/(2−α)). This
is huge when α is close to 2.

2.5. Discussion. The computational cost to get a given precision does not explode
when the Lévy measure becomes very singular near 0. The more ν is singular at
0, the more there are jumps greater than ǫ, which costs many simulations. But
the more it is singular, the more the jumps smaller than ǫ are well-approximated
by Gaussian random variables. These two phenomena are in competition and we
prove that the second one compensates (partly) the first one.

Our result involves a suitable coupling between the solution (Xt)t≥0 and its approx-
imation (Xn,ǫ

t )t≥0. This might seem uninteresting in practise, since by assumption,
(Xt)t≥0 is completely unknown. But this is always the case when dealing with
strong errors. In our opinion, this is just an artificial way to estimate the rate of
convergence of the paths in law, using a Wasserstein type distance. For example,
our result allows us to estimate the error when approximating E[F ((Xρn(t))t∈[0,T ])]
by E[F ((Xn,ǫ

ρn(t))t∈[0,T ])], for some Lipschitz functional F .

Recall that Theorem 2 is extended in Section 7 to the case where σ is locally
Lipschitz with at most linear growth and where m2(ν) might be infinite.
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Let us finally mention that the simulation algorithm can easily be adapted to the
case of dimension d ≥ 2. We believe that the result still holds. However, the result
of Rio [13] is not known in the multidimensional setting. We could use instead the
results of Einmahl [3] or Zaitsev [19]. This would be much more technical.

3. Brownian approximation

It is classical in applied sciences to approximate discontinuous phenomena by con-
tinuous ones. Here, we examine how far the solution to (2) is from the solution of
a continuous Brownian SDE. Let us mention some more complicated models where
such a problem occurs.
(a) The Boltzmann equation is a P.D.E. that can be related to a Poisson-driven
S.D.E. (see Tanaka [16]), while the Landau equation can be related to a Brownian
S.D.E. (see Guérin [4]). In the grazing collision limit, the Boltzmann equation is
known to converge to the Landau equation (see Villani [17]). However, no conver-
gence rate is known.
(b) In [18], Walsh approximates a Poisson-driven stochastic heat equation by a
white-noise driven S.P.D.E. He proves some convergence results, without rate.

Here, we consider only the simple case of one-dimensional Lévy-driven S.D.E.s, but
we hope that the main ideas of our proof might apply to more complicated models.

Consider the Lévy process introduced in (1), consider x ∈ R, σ : R 7→ R Lipschitz
continuous, and the unique solution (Xt)t≥0 to (2). Recall (3), consider a Brownian
motion (Wt)t≥0 and set

(6) Z̃t = at +
√

b2 + m2(ν)Wt,

which has the same mean and variance as Zt. Let (X̃t)t≥0 be the unique solution
to

(7) X̃t = x +

∫ t

0

σ(X̃s−)dZ̃s.

Theorem 3. Assume that σ is Lipschitz continuous and bounded. Then it is pos-
sible to couple the solutions (Xt)t≥0 to (2) and (X̃t)t≥0 to (7) in such a way that
for all p ≥ 4, all T > 0, all n ≥ 1,

E

[
sup

t∈[0,T ]

|Xt − X̃t|2
]
≤ CT,p

(
n2/p−1 + mp(ν)2/p + nm4(ν)

)
,

where CT,p depends only on p, T, σ, a, b, m2(ν).

If we only know that m4(ν) < ∞ , then we choose n = [m4(ν)−2/3] + 1 and to get

E

[
supt∈[0,T ] |Xt − X̃t|2

]
≤ CT (m4(ν)1/3 + m4(ν)).

Consider a sequence of Lévy processes (Zǫ
t )t≥0 with drift a, diffusion coefficient b

and Lévy measure νǫ, such that z2νǫ(dz) tends weakly to the Dirac mass δ0(dz).
Then limǫ→0 m2(νǫ) = 1, while in almost all cases, limǫ→0 mp(νǫ) = 0 for some (or
all) p > 2.

Consider the solution to Xǫ
t = x +

∫ t

0 σ(Xǫ
s−)dZǫ

s. Then it is well-known and easy
to show that (Xǫ

t )t≥0 tends in law to the solution of a Brownian S.D.E. Theorem 3
provides a rate of convergence (for some Wasserstein distance). To our knowledge,
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it is the first result in that direction. For example, we will immediately deduce the
following corollary.

Corollary 4. Assume that σ is Lipschitz continuous and bounded. Assume that
ν({|z| > ǫ}) = 0 for some ǫ ∈ (0, 1]. Then it is possible to couple the solutions

(Xt)t≥0 to (2) and (X̃t)t≥0 to (7) in such a way that for all η ∈ (0, 1), all T > 0,

E

[
sup

t∈[0,T ]

|Xt − X̃t|2
]
≤ CT,ηǫ1−η

where CT,η depends only on η, T, σ, a, b, m2(ν).

4. Coupling results

Consider two laws P, Q on R with finite variance. The Wasserstein distance W2 is
defined by

W2
2 (P, Q) = inf

{
E
[
|X − Y |2

]
, L(X) = P,L(Y ) = Q

}
.

With an abuse of notation, we also write W2(X, Y ) = W2(X, Q) = W2(P, Q) if
L(X) = P and L(Y ) = Q. We recall the following result of Rio [13, Theorem 4.1].

Theorem 5. There is an universal constant C such that for any sequence of i.i.d.
random variables (Yi)i≥1 with mean 0 and variance θ2, for any n ≥ 1,

W2
2

(
1√
n

n∑

i=1

Yi,N (0, θ2)

)
≤ C

E[Y 4
1 ]

nθ2

Here N (0, θ2) is the Gaussian distribution with mean 0 and variance θ2. Recall
now (3).

Corollary 6. Consider a pure jump centered Lévy process (Yt)t≥0 with Lévy mea-

sure µ. In other words Yt =
∫ t

0

∫
R∗

zM̃(ds, dz), where M̃ is a compensated Poisson

measure with intensity dsµ(dz). There is an universal constant C such that

∀ t ≥ 0, W2
2 (Yt,N (0, tm2(µ))) ≤ C

m4(µ)

m2(µ)
.

Proof. Let t > 0. For n ≥ 1, i ≥ 1, write Y n
i = n1/2

∫ it/n

(i−1)t/n

∫
R∗

zM̃(ds, dz),

whence Yt = n−1/2
∑n

i=1 Y n
i . The Y n

i are i.i.d., centered, E[(Y n
1 )2] = tm2(µ), and

E[(Y n
1 )4] =n2

E




(∫ t/n

0

∫

R∗

z2M(ds, dz)

)2




=n2
E




(∫ t/n

0

∫

R∗

z2M̃(ds, dz) + (t/n)m2(µ)

)2




=n2
[
tm4(µ)/n + (tm2(µ)/n)2

]
= ntm4(µ) + t2m2(µ).

Using Theorem 5, we get

W2
2 (Yt,N (0, tm2(µ))) ≤ C

ntm4(µ) + t2m2(µ)

ntm2(µ)

n→∞−→ C
m4(µ)

m2(µ)
,

which concludes the proof. �
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This result is quite surprising at first glance: since the variances of the involved
variables are tm2(µ), it would be natural to get a bound that decreases to 0 as t
decreases to 0 (and that explodes for large t). Of course, we deduce the bound
W2

2 (Yt,N (0, tm2(µ))) ≤ C min(m4(µ)/m2(µ), tm2(µ)), but this is now optimal, as
shown in the following example.

Example. Consider, for ǫ > 0, µǫ = (2ǫ2)−1(δǫ + δ−ǫ) and the corresponding
pure jump (centered) Lévy process (Y ǫ

t )t≥0. It takes its values in ǫZ. Observe that
m2(µǫ) = 1 and m4(µǫ) = ǫ2. There is c > 0 such that for all t ≥ 0, all ǫ > 0,
W2

2 (Y ǫ
t ,N (0, t)) ≥ c min(ǫ2, t) = c min(m4(µǫ)/m2(µǫ), tm2(µǫ)). Indeed,

• if t ≤ ǫ2, then P(Y ǫ
t = 0) ≥ e−tµǫ(R) = e−t/ǫ2 ≥ 1/e, from which the lower-bound

W2
2 (Y ǫ

t ,N (0, t)) ≥ ct = c min(t, ǫ2) is easily deduced;
• if t ≥ ǫ2, use that W2

2 (Y ǫ
t ,N (0, t)) ≥ E[minn∈Z |t1/2G − nǫ|2] = tE[minn∈Z |G −

nǫt−1/2|2], where G is Gaussian with mean 0 and variance 1. Tedious computa-
tions show that there is c > 0 such that for any a ∈ (0, 1], E[minn∈Z |G − na|2] ≥
(a/4)2P(G ∈ ∪n∈Z[(n + 1/4)a, (n + 3/4)a]) ≥ ca2. Hence W2

2 (Y ǫ
t ,N (0, t)) ≥

ct(ǫt−1/2)2 = cǫ2 = c min(t, ǫ2).

5. Proof of Theorem 2

We recall elementary results about the Euler scheme for (2) in Subsection 5.1. We
introduce our coupling in Subsection 5.2, which allows us to compare our scheme
with the Euler scheme in Subsection 5.3. We conclude in Subsection 5.4. We assume
in the whole section that σ is bounded and Lipschitz continuous.

5.1. Euler scheme. We introduce the Euler scheme with step 1/n associated to
(2). Let

∆n
i = Zi/n − Z(i−1)/n (i ≥ 1),(8)

Xn
0 = x, Xn

(i+1)/n = Xn
i/n + σ

(
Xn

i/n

)
∆n

i+1 (i ≥ 0).(9)

The following result is classical.

Proposition 7. Consider a Lévy process (Zt)t≥0 as in (1). For (Xt)t≥0 the solu-
tion to (2) and for (Xn

i/n)i≥0 defined in (8)-(9),

E

[
sup

t∈[0,T ]

|Xρn(t) − Xn
ρn(t)|2

]
≤ CT /n,

where CT depends only on T, a, b, m2(ν) and σ.

We give a proof for the sake of completeness.

Proof. Using the Doob and Cauchy-Schwarz inequalities, we get, for 0 ≤ s ≤ t ≤ T ,

E

[
sup

u∈[s,t]

|Xu − Xs|2
]
≤ CE

[(
a

∫ t

s

|σ(Xu)|du

)2

+ sup
u∈[s,t]

(
b

∫ u

s

σ(Xv)dBv

)2

(10)

+ sup
u∈[s,t]

(∫ u

s

∫

R∗

σ(Xv−)zÑ(ds, dv)

)2 ]

≤ CT

∫ t

s

(a2 + b2 + m2(ν))||σ||2∞dv ≤ CT (t − s).
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Observe now that Xn
ρn(t) = x+

∫ ρn(t)

0
σ(Xn

ρn(s)−)dZs. Setting An
t = sup[0,t] |Xρn(s)−

Xn
ρn(s)|2, we thus get An

t = sup[0,t] |
∫ ρn(s)

0 (σ(Xu−) − σ(Xn
ρn(u)−))dZu|2. Using the

same arguments as in (10), then the Lipschitz property of σ and (10), we get

E[An
t ] ≤ CT

∫ ρn(t)

0

(a2 + b2 + m2(ν))E[(σ(Xs) − σ(Xn
ρn(s)))

2]ds

≤ CT

∫ t

0

E[(Xs − Xρn(s))
2 + (Xρn(s) − Xn

ρn(s))
2]ds

≤ CT

∫ t

0

(|s − ρn(s)| + E[An
s ]) ds.

We conclude using that |s − ρn(s)| ≤ 1/n and the Gronwall Lemma. �

5.2. Coupling. We now introduce a suitable coupling between the Euler scheme
(see Subsection 5.1) and our numerical scheme (see Subsection 2.2). Recall (3).

Lemma 8. Let n ∈ N and ǫ > 0. There exist two coupled families of i.i.d. random
variables (∆n

i )i≥1 and (∆n,ǫ
i )i≥1, distributed respectively as in (8) and (4) in such

a way that for each i ≥ 1,

E[(∆n
i − ∆n,ǫ

i )2] ≤ Cβǫ(ν),

where C is an universal constant. Furthermore, for all ǫ > 0, all n ∈ N, all i ≥ 1,

E[∆n
i ] = E[∆n,ǫ

i ] =
a

n
, Var[∆n

i ] = Var[∆n,ǫ
i ] =

b2 + m2(ν)

n
.

Proof. It of course suffices to build (∆n
1 , ∆n,ǫ

1 ) and then to take independent copies.
Consider a Poisson measure N(ds, dz) with intensity measure dsν(dz)1{|z|≤ǫ} on

[0,∞) × {|z| ≤ ǫ}. Observe that
∫ t

0

∫
|z|≤ǫ zÑ(ds, dz) is a centered pure jump Lévy

process with Lévy measure νǫ(dz) = 1|z|≤ǫν(dz). Then we use Corollary 6 and
enlarge the underlying probability space if necessary: there is a Gaussian ran-
dom variable Gn,ǫ

1 with mean 0 and variance m2(νǫ)/n = m2,ǫ(ν)/n such that

E

[
|
∫ 1/n

0

∫
|z|≤ǫ

zÑ(ds, dz) − Gn,ǫ
1 |2

]
≤ Cm4(νǫ)/m2(νǫ) = Cβǫ(ν).

We consider a Brownian motion (Bt)t≥0 and a Poisson measure N with inten-
sity measure dsν(dz)1{|z|>ǫ} on [0,∞) × {|z| > ǫ}, independent of the couple

(Gn,ǫ
1 ,
∫ 1/n

0

∫
|z|≤ǫ

zÑ(ds, dz)) and we set

• ∆n
1 := a/n + bB1/n +

∫ 1/n

0

∫
|z|≤ǫ

zÑ(ds, dz) +
∫ 1/n

0

∫
|z|>ǫ

zÑ(ds, dz),

• ∆n,ǫ
1 := a/n + bB1/n + Gn,ǫ

1 +
∫ 1/n

0

∫
|z|>ǫ zÑ(ds, dz).

Then ∆n
1 has obviously the same law as Z1/n − Z0 (see (1) and (8)), while ∆n,ǫ

1

has also the desired law (see (4)). Indeed, bB1/n + Gn,ǫ
1 has a centered Gaussian

law with variance b2/n + m2,ǫ(ν)/n = b2
n,ǫ and a/n +

∫ 1/n

0

∫
|z|>ǫ zÑ(ds, dz) =

an,ǫ +
∫ 1/n

0

∫
|z|>ǫ zN(ds, dz). This last integral can be represented as in (4). Finally

E[(∆n
1 −∆n,ǫ

1 )2] ≤ E

[
|
∫ 1/n

0

∫
|z|≤ǫ zÑ(ds, dz) − Gn,ǫ

1 |2
]
≤ Cβǫ(ν) and the mean and

variance estimates are obvious. �
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5.3. Estimates. We now compare our scheme with the Euler scheme. To this
end, we introduce some notation. First, we consider the sequence (∆n

i , ∆n,ǫ
i )i≥1

introduced in Lemma 8. Then we consider (Xn
i/n)i≥0 and (Xn,ǫ

i/n)i≥0 defined in (9)

and (5). We introduce the filtration Fn,ǫ
i = σ(∆n

k , ∆n,ǫ
k , k ≤ i) and the processes,

for i ≥ 0 (with V n,ǫ
0 = 0)

Y n,ǫ
i = Xn

i/n − Xn,ǫ
i/n, V n,ǫ

i =
a

n

i−1∑

k=0

[σ(Xn
k/n) − σ(Xn,ǫ

k/n)], Mn,ǫ
i = Y n,ǫ

i − V n,ǫ
i .

Lemma 9. There is a constant C, depending only on σ, a, b, m2(ν) such that for
all N ≥ 1,

E

[
sup

i=0,...,N
|Y n,ǫ

i |2
]
≤ Cnβǫ(ν)(1 + C/n)N(1 + N2/n2).

Proof. We divide the proof into four steps.
Step 1. We prove that for all i ≥ 0, E

[
|Y n,ǫ

i |2
]
≤ Cnβǫ(ν)(1 + C/n)i. First,

E[|Y n,ǫ
i+1|2] = E[|Y n,ǫ

i |2] + E[(σ(Xn
i/n)∆n

i+1 − σ(Xn,ǫ
i/n)∆n,ǫ

i+1)
2]

+ 2E

[
Y n,ǫ

i (σ(Xn
i/n)∆n

i+1 − σ(Xn,ǫ
i/n)∆n,ǫ

i+1)
]

= E[|Y n,ǫ
i |2] + In,ǫ

i + Jn,ǫ
i .

Now, using Lemma 8 and that (∆n
i+1, ∆

n,ǫ
i+1) is independent of Fn,ǫ

i , we deduce that

Jn,ǫ
i =

2a

n
E

[
Y n,ǫ

i (σ(Xn
i/n) − σ(Xn,ǫ

i/n))
]
≤ C

n
E[|Y n,ǫ

i |2],

since σ is Lipschitz continuous. Using now the Lipschitz continuity and the bound-
edness of σ, together with Lemma 8 and the independence of (∆n

i+1, ∆
n,ǫ
i+1) with

respect to Fn,ǫ
i , we get

In,ǫ
i ≤ CE[|Y n,ǫ

i |2(∆n,ǫ
i+1)

2] + CE[(∆n,ǫ
i+1 − ∆n

i+1)
2] ≤ C

n
E[|Y n,ǫ

i |2] + Cβǫ(ν).

Finally, we get

E[|Y n,ǫ
i+1|2] ≤ (1 + C/n)E[|Y n,ǫ

i |2] + Cβǫ(ν).

Since Y n,ǫ
0 = 0, this entails that E[|Y n,ǫ

i |2] ≤ Cβǫ(ν)[1 + (1 + C/n) + ... + (1 +
C/n)i−1] ≤ Cnβǫ(ν)(1 + C/n)i.

Step 2. We check that for N ≥ 1, E[sup0,...,N |V n,ǫ
i |2] ≤ Cnβǫ(ν)(1+C/n)NN2/n2.

It suffices to use the Lipschitz property of σ, the Cauchy-Schwarz inequality and
then Step 1:

E

[
sup

1,...,N
|V n,ǫ

i |2
]
≤ CE




(

1

n

N−1∑

i=0

|Y n,ǫ
i |

)2


 ≤ C
N

n2

N−1∑

i=0

E[|Y n,ǫ
i |2]

≤ C
N2

n2
nβǫ(ν)(1 + C/n)N

Step 3. We now verify that (Mn,ǫ
i )i≥0 is a (Fn,ǫ

i )i≥0-martingale. We have Mn,ǫ
i+1 −

Mn,ǫ
i = σ(Xn

i/n)[∆n
i+1 − a/n]− σ(Xn,ǫ

i/n)[∆n,ǫ
i+1 − a/n]. The step is finished, since the

variables ∆n
i+1 − a/n and ∆n,ǫ

i+1 − a/n are centered and independent of Fn,ǫ
i .
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Step 4. Using the Doob inequality and then Steps 1 and 2, we get

E

[
sup

i=0,...,N
|Mn,ǫ

i |2
]
≤ C sup

i=0,...,N
E
[
|Mn,ǫ

i |2
]

≤ C sup
i=0,...,N

E
[
|Y n,ǫ

i |2
]
+ C sup

i=0,...,N
E
[
|V n,ǫ

i |2
]

≤ Cnβǫ(ν)(1 + C/n)N (1 + N2/n2).

But now, since Y n,ǫ
i = Mn,ǫ

i + V n,ǫ
i ,

E

[
sup

i=0,...,N
|Y n,ǫ

i |2
]
≤ CE

[
sup

i=0,...,N
|Mn,ǫ

i |2
]

+ CE

[
sup

i=0,...,N
|V n,ǫ

i |2
]

,

which allows us to conclude. �

Let us rewrite these estimates in terms of Xn and Xn,ǫ.

Lemma 10. Consider the sequence (∆n
i , ∆n,ǫ

i )i≥1 introduced in Lemma 8 and then
(Xn

i/n)i≥0 and (Xn,ǫ
i/n)i≥0 defined in (9) and (5). For all T ≥ 0,

E

[
sup

t∈[0,T ]

|Xn
ρn(t) − Xn,ǫ

ρn(t)|2
]
≤ CT nβǫ(ν),

where CT depends only on T, a, b, m2(ν), σ.

Proof. With the previous notation, supt∈[0,T ] |Xn
ρn(t)−Xn,ǫ

ρn(t)| = supi=0,...,[nT ] |Y n,ǫ
i |.

Thus using Lemma 9, we get the bound Cnβǫ(ν)(1 + C/n)[nT ](1 + [nT ]2/n2) ≤
Cnβǫ(ν)eCT (1 + T 2), which ends the proof. �

5.4. Conclusion. We finally give the

Proof of Theorem 2. Fix n ∈ N and ǫ > 0. Denote by Q(du, dv) the joint law of
(∆n

1 , ∆n,ǫ
1 ) built in Lemma 8 and write Q(du, dv) = Q1(du)R(u, dv), where Q1(du)

is the law of ∆n
1 and where R(u, dv) is the law of ∆n,ǫ

1 conditionally to ∆n
1 = u.

Consider a Lévy process (Zt)t≥0 as in (1) and (Xt)t≥0 the corresponding solution to
(2). Set, for i ≥ 0, ∆n

i = Zi/n − Z(i−1)/n and consider the Euler scheme (Xn
i/n)i≥0

as in (9). For each i ≥ 1, let ∆n,ǫ
i be distributed according to R(∆n

i , dv), in such a
way that (∆n,ǫ

i )i≥1 is an i.i.d. sequence. Finally, let (Xn,ǫ
i/n)i≥0 as in (5).

By this way, the processes (Xt)t≥0, (Xn
i/n)i≥0 and (Xn,ǫ

i/n)i≥0 are coupled in such a

way that we may apply Proposition 7 and Lemma 10. We get

E

[
sup

t∈[0,T ]

|Xρn(t) − Xn,ǫ
ρn(t)|2

]

≤ 2E

[
sup

t∈[0,T ]

|Xρn(t) − Xn
ρn(t)|2 + sup

t∈[0,T ]

|Xn
ρn(t) − Xn,ǫ

ρn(t)|2
]

≤ CT [n−1 + nβǫ(ν)].

This concludes the proof. �
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6. Proofs of Theorem 3 and Corollary 4

We assume in the whole section that σ is bounded and Lipschtiz continuous. We
start with a technical lemma.

Lemma 11. Let (Xt)t≥0 and (X̃t)t≥0 be solutions to (2) and (7). Then for p ≥ 2,
for all t0 ≥ 0, all h ∈ (0, 1],

E

[
sup

t∈[t0,t0+h]

|Xt − Xt0 |p
]
≤ Cp(h

p/2 + hmp(ν)),

E

[
sup

t∈[t0,t0+h]

|X̃t − X̃t0 |p
]
≤ Cph

p/2,

where Cp depends only on p, σ, a, b, m2(ν).

Proof. It clearly suffices to treat the case of (Xt)t≥0, because (X̃t)t≥0 solves the
same equation (with ν replaced by 0 and b replaced by b + m2(ν)). Let thus p ≥ 2.
Using the Burkholder-Davies-Gundy inequality and the boundedness of σ, we get

E

[
sup

t∈[t0,t0+h]

|Xt − Xt0 |p
]
≤ CpE

[(∫ t0+h

t0

|aσ(Xs)|ds

)p]

+ CpE




(∫ t0+h

t0

b2σ2(Xs)ds

)p/2


+ CpE




(∫ t0+h

t0

∫

R∗

σ2(Xs)z
2N(ds, dz)

)p/2




≤ Cph
p + Cph

p/2 + CpE




(∫ t0+h

t0

∫

R∗

z2N(ds, dz)

)p/2


 ≤ Cph
p/2 + CpE[U

p/2
h ],

where Ut =
∫ t

0

∫
R∗

z2N(ds, dz). It remains to check that for t ≥ 0, E[U
p/2
t ] ≤

Cp(t
p/2 + tmp(ν)). But, with Cp depending on m2(ν),

E[U
p/2
t ] =

∫ t

0

ds

∫

R∗

ν(dz)E[(Us + z2)p/2 − Up/2
s ]

≤ Cp

∫ t

0

ds

∫

R∗

ν(dz)E[z2Up/2−1
s + |z|p] ≤ Cp

∫ t

0

E[Up/2−1
s ]ds + Cpmp(ν)t

≤ Cp

∫ t

0

E[Up/2
s ]ǫ−1ds + Cp(ǫ

p/2−1 + mp(ν))t,

for any ǫ > 0. Hence E[U
p/2
t ] ≤ Cp(ǫ

p/2−1t+mp(ν)t)eCpt/ǫ by the Gronwall Lemma.

Choosing ǫ = t, we conclude that E[U
p/2
t ] ≤ Cp(t

p/2 + mp(ν)t). �

Proof of Theorem 3. We fix n ≥ 1, T > 0 and p ≥ 4.

Step 1. Using Lemma 6 (see also Lemma 8) we deduce that we may couple two

i.i.d. families (∆n
i )i≥1 and (∆̃n

i )i≥1, in such a way that:
• (∆n

i )i≥1 has the same law as the increments (Zi/n − Z(i−1)/n)i≥1 of the Lévy
process (1);

• (∆̃n
i )i≥1 has the same law as the increments (Z̃i/n − Z̃(i−1)/n)i≥1 of the Lévy

process (6);

• for all i ≥ 1, E[(∆n
i − ∆̃n

i )2] ≤ Cm4(ν) (we allow constants to depend on m2(ν)).
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Step 2. We then set Xn
0 = X̃n

0 = x and for i ≥ 1, Xn
i/n = Xn

(i−1)/n +σ(Xn
(i−1)/n)∆n

i

and X̃n
i/n = X̃n

(i−1)/n + σ(X̃n
(i−1)/n)∆̃n

i . Using exactly the same arguments as in

Lemmas 9 and 10, we deduce that E

[
supt∈[0,T ] |Xn

ρn(t) − X̃n
ρn(t)|2

]
≤ CT nm4(ν),

where CT depends only on T, σ, a, b, m2(ν).

Step 3. But (Xn
ρn(t))t≥0 is the Euler discretization of (2), while (X̃n

ρn(t))t≥0 is

the Euler discretization of (7). Hence using Step 2, Proposition 7 and a suit-

able coupling as in the final proof of Theorem 2, E

[
supt∈[0,T ] |Xρn(t) − X̃ρn(t)|2

]
≤

CT (1/n + nm4(ν)).

Step 4. We now prove that E

[
supt∈[0,T ] |Xt − Xρn(t)|2

]
≤ CT,p(n

2/p−1+mp(ν)2/p).

We set Γi = supt∈[i/n,(i+1)/n] |Xt − Xρn(t)| = supt∈[i/n,(i+1)/n] |Xt − Xi/n|. By

Lemma 11, E[Γp
i ] ≤ Cp[(1/n)p/2 + mp(ν)/n]. Thus, since p ≥ 2,

E

[
sup

t∈[0,T ]

|Xt − Xρn(t)|2
]
≤ E

[
sup

1,...,[nT ]

Γ2
i

]
≤ E

[
sup

1,...,[nT ]

Γp
i

]2/p

≤ E




[nT ]∑

i=1

Γp
i




2/p

≤ CT,pn
2/p
[
(1/n)p/2 + mp(ν)/n

]2/p

,

which ends the step.

Step 5. Exactly as in Step 4, we get E

[
supt∈[0,T ] |X̃t − X̃ρn(t)|2

]
≤ CT,pn

2/p−1.

Step 6. Using Steps 3, 4 and 5, we deduce that with a suitable coupling, we have
E[supt∈[0,T ] |Xt − X̃t|2] ≤ CT,p(n

2/p−1 + mp(ν)2/p + n−1 + nm4(ν)). �

We conclude this section with the

Proof of Corollary 4. Since ν({|z| > ǫ}) = 0, we deduce that mp(ν) ≤ m2(ν)ǫp−2,

for any p ≥ 2. Applying Theorem 3 and choosing n = [ǫ−p/(p−1)], we get the bound

CT,p

(
ǫ(1−2/p)(p/(p−1)) + ǫ(p−2)(2/p) + ǫ2−p/(p−1)

)
≤ CT,p(ǫ

1−1/(p−1) + ǫ2−4/p).

Hence for η ∈ (0, 1), it is possible to get the bound CT,ηǫ1−η, choosing p large
enough. �

7. Generalization

The goal of this section is to generalize Theorem 2 by using a standard localization
argument. In the important case where the driving Lévy process behaves like a
stable process, it does not hold that m2(ν) < ∞. We want here to treat the most
general case, that is

∫
R∗

min(z2, 1)ν(dz) < ∞. We will also show how to deal with

the case where σ is only locally Lipschitz continuous with at most linear growth.
Of course, we can not work in L2 any more, so that we will only prove a tightness
result. This will also determine the rate of convergence in law of the paths, but in
a weaker sense.

We thus consider a general one-dimensional Lévy process with Lévy measure ν:

(11) Zt = at + bBt +

∫ t

0

∫

[−1,1]\{0}

zÑ(ds, dz) +

∫ t

0

∫

R\[−1,1]

zN(ds, dz),



LÉVY-DRIVEN SDES 13

where (Bt)t≥0 is a standard Brownian motion, independent of a Poisson measure

N(ds, dz) on [0,∞) × R∗ with intensity measure dsν(dz) and where Ñ is its com-
pensated Poisson measure. Assuming that σ is locally Lipschitz continuous with at
most linear growth, it is well-known that (2) has a unique càdlàg adapted strong
solution (Xt)t≥0.

For n ≥ 1 and ǫ ∈ (0, 1), we introduce, as in (4), a sequence of i.i.d. random
variables (∆n,ǫ

i )i≥1, with

(12) ∆n,ǫ
1 = an,ǫ + bn,ǫG +

Nn,ǫ∑

i=1

Y ǫ
i ,

where an,ǫ = (a −
∫

ǫ<|z|≤1 zν(dz))/n, where b2
n,ǫ = (b2 + m2,ǫ(ν))/n, where G

is Gaussian with mean 0 and variance 1, where Nn,ǫ is Poisson distributed with
mean Fǫ(ν)/n and where Y ǫ

1 , Y ǫ
2 , ... are i.i.d. with law ν(dz)1|z|>ǫ/Fǫ(ν). All these

random variables are assumed to be independent. The only difference with (4) is
the value of an,ǫ. Then we introduce the approximated solution (Xn,ǫ

ρn(t))t≥0 as in

(5).

Theorem 12. Assume that σ : R 7→ R is locally Lipschitz continuous with at most
linear growth and that

∫
R∗

min(z2, 1)ν(dz) < ∞. For any n ∈ N and ǫ ∈ (0, 1), there

exists a coupling between a solution (Xt)t≥0 to (2) and an approximated solution
(Xn,ǫ

ρn(t))t≥0 such that for all T > 0, recall (3),

(13) lim
A→∞

sup
n∈N,ǫ∈(0,1)

P

(
(n−1 + nβǫ(ν))−1/2 sup

[0,T ]

|Xρn(t) − Xn,ǫ
ρn(t)| ≥ A

)
= 0.

Proof. The proof relies on a standard localization argument, and we only give the
main steps. We fix the terminal time T > 0.

Step 1. First we define, for K > 1, the Lévy process

ZK
t = at + bBt +

∫ t

0

∫

|z|≤1

zÑ(ds, dz) +

∫ t

0

∫

1≤|z|≤K

zN(ds, dz),

whose Lévy measure νK(dz) = 1{|z|≤K}ν(dz) satisfies m2(νK) < ∞. We also

introduce the sequence of i.i.d. random variables (∆n,ǫ,K
i )i≥1 as previously, using

νK instead of ν. We denote by (XK
t )t≥0 the solution to (2) with ZK instead

of Z, and by (Xn,ǫ,K
ρn(t) )t≥0 the approximated solution with (∆n,ǫ,K

i )i≥1 instead of

(∆n,ǫ
i )i≥1. One easily checks that

P

(
(XK

t )t∈[0,T ] = (Xt)t∈[0,T ], (X
n,ǫ,K
ρn(t) )t∈[0,T ] = (Xn,ǫ

ρn(t))t∈[0,T ]

)

≥ P(N([0, T ]× {|z| ≥ K}) = 0) = e−Tν({|z|≥K}).

Step 2. Since σ has at most linear growth and since m2(νK) < ∞, one easily checks
that

sup
n∈N,ǫ∈(0,1)

E

[
sup
[0,T ]

(
|XK

t |2 + |Xn,ǫ,K
ρn(t) |2

)]
≤ CK,T ,

where the constant CK,T possibly explodes when K increases to infinity.
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Step 3. For L > 0, we introduce σL(x) = σ((x ∨ −L) ∧ L) and we denote by

(XK,L
t )t≥0 and by (Xn,ǫ,K,L

ρn(t) )t≥0 the solutions to (2) and (5) with ZK instead of

Z, (∆n,ǫ,K
i )i≥1 instead of (∆n,ǫ

i )i≥1, and with σL instead of σ. Using Step 2, it is
easily deduced that

P

(
(XK,L

t )t∈[0,T ] = (XK
t )t∈[0,T ], (X

n,ǫ,K,L
ρn(t) )t∈[0,T ] = (Xn,ǫ,K

ρn(t) )t∈[0,T ]

)
≥ 1 − CK,T

L2
.

Step 4. Since m2(νK) < ∞ and since σL is bounded and Lipschitz continuous, we
may applying Theorem 2: for each K, L, there exists a constant CK,L,T such that
with a suitable coupling,

E

[
sup
[0,T ]

|XK,L
ρn(t) − Xn,ǫ,K,L

ρn(t) |2
]
≤ CK,L,T (n−1 + βǫ(νL)).

Since L ≥ 1 > ǫ, we obviously have βǫ(νL) = βǫ(ν).

Step 5. Using Steps 1,3 and 4, we get, for all A > 0, K ≥ 1, L > 0, n ∈ N, ǫ ∈ (0, 1),

P

[
(n−1 + βǫ(νL))−1/2 sup

[0,T ]

|Xρn(t) − Xn,ǫ
ρn(t)| ≥ A

]

≤ 1 − e−Tν({|z|≥K}) +
CK,T

L2
+

CK,L,T

A2
.

Consequently, for all K ≥ 1, all L > 0,

lim sup
A→∞

sup
n∈N,ǫ∈(0,1)

P

[
(n−1 + βǫ(νL))−1/2 sup

[0,T ]

|Xρn(t) − Xn,ǫ
ρn(t)| ≥ A

]

≤ 1 − e−Tν({|z|≥K}) +
CK,T

L2
.

Taking the limit as L → ∞ and then the limit as K → ∞, the conclusion follows.
�

8. Numerical illustration

To illustrate our result, we consider the case of a stable driving Lévy process, of
which the increments may be simulated exactly, see Chambers-Mallows-Stuck [2].
We consider the Lévy process (11) with a = b = 0 and ν(dz) = |z|−α−1dz, for
α = 1.8, and the stochastic differential equation (2) starting from x = 0, with
σ(y) = (1 + y2)/(1 + y4). We are interested in the law of V = supt∈[0,1] Xt.

We introduce the exact Euler scheme (Xn
i/n)i=0,...,n with time-step 1/n, which can

be simulated exactly in this particular case.
For ǫ > 0, we introduce the scheme (Xn,ǫ

i/n)i=0,...,n studied in this paper, defined by

(4)-(5), and we denote by (X̂n,ǫ
i/n)i=0,...,n the scheme where the jumps smaller than

ǫ are simply neglected [14]. We also set

V n = sup
i=0,...,n

Xn
i/n, V n,ǫ = sup

i=0,...,n
Xn,ǫ

i/n, V̂ n,ǫ = sup
i=0,...,n

X̂n,ǫ
i/n.

In all the simulations, we have chosen n = 1000. Using a Monte-Carlo method
(with 106 simulations) and have estimated the density of V 1000. This density is
drawn on all the figures (its shape is slightly surprising). Next, we have performed
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105 simulations of V̂ 1000,ǫ and V 1000,ǫ for different values of ǫ, and we have drawn
a histogram.

As we can see from figures 1 to 3, the law of V 1000,ǫ is really much more close to
the law of V 1000 than the law of V̂ 1000,ǫ.

Finally, the time (in seconds) needed for each simulation of V̂ 1000,ǫ and V 1000,ǫ is
as follows:

ǫ = 0.1 ǫ = 0.01 ǫ = 0.001

V̂ 1000,ǫ 3.6 10−4 2.7 10−3 9.5 10−2

V 1000,ǫ 6.6 10−4 3.1 10−3 9.5 10−2

One observes that for ǫ very small, the additional cost to simulate V n,ǫ is insignifi-
cant. This is natural: the simulation schemes of V̂ n,ǫ and V n,ǫ are the same, except
that one needs to simulate additionally n Gaussian random variables for V n,ǫ. Thus
the additional cost does not depend on ǫ, and becomes insignificant when ǫ is small.

It took about 66 seconds to obtain Figure 1-(b), and about 9500 seconds to get
Figure 3-(a). Clearly, Figure 1-(b) is much more convincing. As a conclusion, it is
really better to approximate the small jumps by Gaussian random variables than
to neglect them, both from a theoretical and numerical point of view.

The shape of the density of V is quite surprising. Numerical simulations with other
values of α (or even with Z replaced by a standard Brownian motion) produces
similar shapes. This seems to be due to the fact σ is not monotonous. On figure

4, we have drawn simulations with σ(y) =
√

1 + y2, for which the density of V
has a more classical shape. But on figure 5, we have considered the oscillating case
σ(y) = 1.2+sin(4y), which seems to produce infinitely many modes for the density
of V .
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Simulations with σ(y) = (1 + y2)/(1 + y4).

Figure 1-(a): V 1000 and V̂ 1000,0.1 Figure 1-(b): V 1000 and V 1000,0.1
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Figure 2-(a): V 1000 and V̂ 1000,0.01 Figure 2-(b): V 1000 and V 1000,0.01
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Figure 3-(a): V 1000 and V̂ 1000,0.001 Figure 3-(b): V 1000 and V 1000,0.001
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Simulations with σ(y) =
√

1 + y2.

Figure 4-(a): V 1000 and V̂ 1000,0.01 Figure 4-(b): V 1000 and V 1000,0.01
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Simulations with σ(y) = 1.2 + sin(4y).

Figure 5-(a): V 1000 and V̂ 1000,0.01 Figure 5-(b): V 1000 and V 1000,0.01

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

[15] S. Rubenthaler, M. Wiktorsson, Improved convergence rate for the simulation of stochas-

tic differential equations driven by subordinated Lvy processes, Stochastic processes and their
applications, Volume 108, Issue 1, 1–26, 2003.

[16] H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules, Z.
Wahrsch. Verw. Gebiete 46 (1978/79), no. 1, 67–105.

[17] C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and

Landau equations, Arch. Rat. Mech. Anal. 143, 3, 273-307, 1998.
[18] J.B. Walsh, A stochastic model of neural response, Adv. in Appl. Prob., 13, 231–281, 1981.
[19] A. Yu. Zaitsev, Estimates for the strong approximation in multidimensional central limit

theorem, Proceedings of the International Congress of Mathematicians, Vol. III, 107–116,
2002.

Nicolas Fournier, LAMA UMR 8050, Faculté de Sciences et Technologies, Univer-
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