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Abstract. We study a particle system naturally associated to the 2-dimensional Keller-Segel

equation. It consists ofN Brownian particles in the plane, interacting through a binary attraction

in θ/(Nr), where r stands for the distance between two particles. When the intensity θ of this
attraction is greater than 2, this particle system explodes in finite time. We assume that N > 3θ

and study in details what happens near explosion. There are two slightly different scenarios,

depending on the values of N and θ, here is one: at explosion, a cluster consisting of precisely k0
particles emerges, for some deterministic k0 ≥ 7 depending on N and θ. Just before explosion,

there are infinitely many (k0 − 1)-ary collisions. There are also infinitely many (k0 − 2)-ary

collisions before each (k0 − 1)-ary collision. And there are infinitely many binary collisions
before each (k0 − 2)-ary collision. Finally, collisions of subsets of 3, . . . , k0 − 3 particles never

occur. The other scenario is similar except that there are no (k0 − 2)-ary collisions.

1. Introduction and main results

1.1. Informal definition of the model. We consider some scalar parameter θ > 0 and a number
N ≥ 2 of particles with positions Xt = (X1

t , . . . , X
N
t ) ∈ (R2)N at time t ≥ 0. Informally, we assume

that the dynamics of these particles are given by the system of S.D.E.s

dXi
t = dBit −

θ

N

∑
j 6=i

Xi
t −X

j
t

‖Xi
t −X

j
t ‖2

dt, i ∈ [[1, N ]],(1)

where the 2-dimensional Brownian motions ((Bit)t≥0)i∈[[1,N ]] are independent. In other words,
we have N Brownian particles in the plane interacting through an attraction in 1/r, which is
Coulombian in dimension 2. Actually, this S.D.E. does not clearly make sense, due to the singularity
of the drift, and we will use, as suggested by Cattiaux-Pédèches [4], the theory of Dirichlet spaces,
see Fukushima-Oshima-Takeda [11].

1.2. Brief motivation and informal presentation of the main results. This particle system
is very natural from a physical point of view, because, as we will see, there is a tight competition
between the Brownian excitation and the Coulombian attraction. It can also be seen as an ap-
proximation of the famous Keller-Segel equation [16], see also Patlak [20]. This nonlinear P.D.E.
has been introduced to model the collective motion of cells, which are attracted by a chemical
substance that they emit. It is well-known that a phase transition occurs: if the intensity of the
attraction is small, then there exist global solutions, while if the attraction is large, the solution
explodes in finite time.
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We will show that this phase transition already occurs at the level of the particle system (1):
there exist global (very weak) solutions if θ ∈ (0, 2) (subcritical case, see Proposition 3 below), but
solutions must explode in finite time if θ ≥ 2 (supercritical case).

To our knowledge, the supercritical case has not been studied in details, and we aim to describe
precisely the explosion phenomenon. Informally, we will show the following (see Theorem 5 below).
We assume that θ ≥ 2 and N > 3θ, we set k0 = d2N/θe ∈ [[7, N ]]. There exists a (very weak)
solution (Xt)t∈[0,ζ) to (1), with ζ <∞ a.s. and such thatXζ− = limt→ζ−Xt exists. Moreover, there
is a cluster containing precisely k0 particles in the configuration Xζ−, and no cluster containing
strictly more than k0 particles. Such a cluster containing k0 particles is inseparable, so that (1) is
meaningless (even in a very weak sense) after ζ. Just before explosion, there are infinitely many
k1-ary collisions, where k1 = k0 − 1. If (k0 − 3)(2− (k0 − 2)θ/N) < 2, we set k2 = k1 − 2 and just
before each k1-ary collision, there are infinitely many k2-collisions. Else, we set k2 = k1. In any
case, there are infinitely many binary collisions just before each k2-ary collision. During the whole
time interval [0, ζ), there are no k-ary collisions, for any k ∈ [[3, k2 − 1]].

This phenomenon seems surprising and original, in particular because of the gap between binary
and k2-ary collisions.

1.3. Sets of configurations. We introduce, for all K ⊂ [[1, N ]] and all x = (x1, . . . , xN ) ∈ (R2)N ,

SK(x) =
1

|K|
∑
i∈K

xi ∈ R2 and RK(x) =
∑
i∈K
‖xi − SK(x)‖2 =

1

2|K|
∑
i,j∈K

‖xi − xj‖2 ≥ 0.

Here |K| is the cardinal of K and ‖·‖ stands for the Euclidean norm in R2. Observe that RK(x) = 0
if and only if all the particles indexed in K are at the same place. We also set, for k ≥ 2,

Ek =
{
x ∈ (R2)N : ∀K ⊂ [[1, N ]] with cardinal |K| = k, RK(x) > 0

}
,

which represents the set of configurations with no cluster of k (or more) particles. Observe that
Ek = (R2)N for all k > N .

1.4. Bessel processes. We recall that a squared Bessel process (Zt)t≥0 of dimension δ ∈ R is a
nonnegative solution, killed when it reaches 0 if δ ≤ 0, of the equation

Zt = Z0 + 2

∫ t

0

√
ZsdWs + δt,

where (Wt)t≥0 is a 1-dimensional Brownian motion. We then say that (
√
Zt)t≥0 is a Bessel process

of dimension δ. This process has the following property, see Revuz-Yor [21, Chapter XI]:

• if δ ≥ 2, then a.s., for all t > 0, Zt > 0;

• if δ ∈ (0, 2), then a.s., Z is reflected infinitely often at 0;

• if δ ≤ 0, then Z a.s. hits 0 and is then killed.

Applying informally the Itô formula, one finds that Yt =
√
Zt should solve

Yt = Y0 +Wt +
δ − 1

2

∫ t

0

ds

Ys
,

which resembles (1) in that we have a Brownian excitation in competition with an attraction by
0, or a repulsion by 0, depending on the value of δ, proportional to 1/r. This formula rigorously
holds true only when δ > 1, see [21, Chapter XI].
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1.5. Some important quantities. Consider a (possibly very weak) solution (Xt)t≥0 to (1). As
we will see, when fixing a subset K ⊂ [[1, N ]] and when neglecting the interactions between the
particles indexed in K and the other ones, one finds that the process (RK(Xt))t≥0 behaves like a
squared Bessel process with dimension dθ,N (|K|), where

(2) dθ,N (k) = (k − 1)
(

2− kθ

N

)
.

Similar computations already appear in Haškovec-Schmeiser [12], see also [8]. A little study, see
Appendix A, see also Figure 1.5 and Subsection 1.8 for numerical examples, shows the following
facts. For r ∈ R+, we set dre = min{n ∈ N : n ≥ r}.
Lemma 1. Fix θ > 0 and N ≥ 2 such that N > θ. For k0 = d 2N

θ e ≥ 3, we have

(3) dθ,N (k) > 0 if k ∈ [[2, k0 − 1]] and dθ,N (k) ≤ 0 if k ≥ k0.

We also define k1 = k0 − 1, and

k2 =

{
k0 − 2 if dθ,N (k0 − 2) < 2,

k0 − 1 if dθ,N (k0 − 2) ≥ 2.

If θ ≥ 2 and N > 3θ, then k0 ∈ [[7, N ]] and it holds that

• dθ,N (2) ∈ (0, 2);

• dθ,N (k) ≥ 2 if k ∈ [[3, k2 − 1]];

• dθ,N (k) ∈ (0, 2) if k ∈ {k2, k1};

• dθ,N (k) ≤ 0 if k ≥ k0.

Figure 1. Plot of dθ,N (k) as a function of k ∈ [[2, N ]] with N = 9 and with
θ = 2.35 (left) and θ = 2.42 (right).

k0 = 8, k1 = 7, k2 = 7 k0 = 8, k1 = 7, k2 = 6

We thus expect that there may be some non sticky k-ary collisions for k ∈ {2, k2, k1}, some
sticky k-ary collisions when k ≥ k0, but no k-ary collision for k ∈ [[3, k2 − 1]].

1.6. Generator and invariant measure. As we will see in Subsection 3.13, the S.D.E. (1) cannot
have a solution in the classical sense, at least when dθ,N (k1) ∈ (0, 1), because the drift term cannot
be integrable in time. We will thus define a solution through the theory of the Dirichlet spaces.

For x = (x1, . . . , xN ) ∈ (R2)N and for dx the Lebesgue measure on (R2)N , we set

(4) m(x) =
∏

1≤i 6=j≤N

‖xi − xj‖−θ/N and µ(dx) = m(x)dx,
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where {1 ≤ i 6= j ≤ N} stands for the set {(i, j) ∈ [[1, N ]]2 : i 6= j}. Informally, the generator of
the solution to (1) is given by LX , where for ϕ ∈ C2((R2)N ),

(5) LXϕ(x) =
1

2
∆ϕ(x)− θ

N

∑
1≤i 6=j≤N

xi − xj

‖xi − xj‖2
· ∇xiϕ(x) =

1

2m(x)
div[m(x)∇ϕ(x)],

see (11) for the last equality. It is well-defined for all x ∈ E2 and µ-symmetric. Indeed, an
integration by parts shows that

(6) ∀ ϕ,ψ ∈ C2
c (E2),

∫
(R2)N

ϕLXψ dµ = −1

2

∫
(R2)N

∇ϕ · ∇ψ dµ =

∫
(R2)N

ψLXϕ dµ.

As we will see in Proposition A.1, the measure µ is Radon on (R2)N in the subcritical case
θ ∈ (0, 2), while it is Radon on Ek0 (and not on Ek0+1) in the supercritical case θ ≥ 2. This will
allow us to use some results found in Fukushima-Oshima-Takeda [11] and to obtain the following
existence result.

Proposition 2. We fix N ≥ 2 and θ > 0 such that N > θ and recall that k0 = d2N/θe. We
set X = Ek0 and X4 = X ∪ {4}, where 4 is a cemetery point. There exists a diffusion X =
(ΩX ,MX , (Xt)t≥0, (PXx )x∈X4) with values in X4, which is µ-symmetric, with regular Dirichlet

space (EX ,FX) on L2((R2)N , µ) with core C∞c (X ) defined by

for all ϕ ∈ C∞c (X ), EX(ϕ,ϕ) =
1

2

∫
(R2)N

‖∇ϕ‖2dµ = −
∫

(R2)N
ϕLXϕ dµ

and such that for all x ∈ E2, all t > 0, the law of Xt under Px has a density with respect
to the Lebesgue measure on (R2)N . We call such a process a KS(θ,N)-process and denote by
ζ = inf{t ≥ 0 : Xt = 4} its life-time.

We refer to Subsection B.1 for a quick summary about the notions used in this proposition:
diffusion (i.e. continuous Hunt process), link between its generator, semi-group and Dirichlet space,
definition of the one-point compactification topology endowing X4, etc. Let us mention that by
definition, 4 is absorbing, i.e. Xt = 4 for all t ≥ ζ. Also, t 7→ Xt is a priori continuous on [0,∞)
only for the one-point compactification topology on X4, which precisely means that it is continuous
for the usual topology of (R2)N during [0, ζ), and it holds that ζ = limn→∞ inf{t ≥ 0 : Xt /∈ Kn}
for any increasing sequence of compact subsets (Kn)n≥1 of Ek0 such that ∪n≥1Kn = Ek0 .

As we will see in Remark 29, for all x ∈ E2, under PXx , Xt solves (1) during [0, σ), where
σ = inf{t ≥ 0 : Xt /∈ E2}. By the Markov property, this implies Xt solves (1) during any open
time-interval on which it does not visit X \ E2.

When θ < 2, we have k0 > N and thus Ek0 = (R2)N . We will easily prove the following
non-explosion result, which is almost contained in Cattiaux-Pédèches [4], who treat the case where
θ ∈ (0, 2(N − 2)/(N − 1)).

Proposition 3. Fix θ ∈ (0, 2) and N ≥ 2. Consider the KS(θ,N)-process X introduced in
Proposition 2. For all x ∈ E2, we have Px(ζ =∞) = 1.

When θ ≥ 2, we will see that there is explosion. Note that any collision of a set of k ≥ k0

particles makes the process leave Ek0 and thus explode. However, it is not clear at all at this point
that explosion is due to a precise collision: the process could explode because it tends to infinity
(which is not hard to exclude) or to the boundary of Ek0 with possibly many oscillations.
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1.7. Main result. To avoid any confusion, let us define precisely what we call a collision.

Definition 4. (i) For K ⊂ [[1, N ]], we say that there is a K-collision in the configuration x ∈ (R2)N

if RK(x) = 0 and if RK∪{i}(x) > 0 for all i ∈ [[1, N ]] \K.

(ii) For a (R2)N -valued process (Xt)t∈[0,ζ), we say that there is a K-collision at time s ∈ [0, ζ)
if there is a K-collision in the configuration Xs.

The main result of this paper is the following description of the explosion phenomenon.

Theorem 5. Assume that θ ≥ 2, that N > 3θ and recall that k0 ∈ [[7, N ]], k1 = k0 − 1 and
k2 ∈ {k0 − 1, k0 − 2} were defined in Lemma 1. Consider the KS(θ,N)-process X introduced in
Proposition 2. For all x ∈ E2, we Px-a.s. have the following properties:

(i) ζ is finite and Xζ− = limt→ζ−Xt exists for the usual topology of (R2)N ;

(ii) there is K0 ⊂ [[1, N ]] with cardinal |K0| = k0 such that there is a K0-collision in the
configuration Xζ−, and for all K ⊂ [[1, N ]] such that |K| > k0, there is no K-collision in the
configuration Xζ−;

(iii) for all t ∈ [0, ζ) and all K ⊂ K0 with cardinal |K| = k1, there is an infinite number of
K-collisions during (t, ζ) and none of these instants of K-collision is isolated;

(iv) if k2 = k0 − 2, then for all L ⊂ K ⊂ K0 such that |L| = k2 and |K| = k1, for all instant
t ∈ (0, ζ) of K-collision and all s ∈ [0, t), there is an infinite number of L-collisions during (s, t)
and none of these instants of L-collision is isolated;

(v) for all K ⊂ [[1, N ]] with cardinal |K| ∈ [[3, k2 − 1]], there is no K-collision during [0, ζ);

(vi) for all L ⊂ K ⊂ K0 such that |L| = 2 and |K| = k2, for all instant t ∈ (0, ζ) of K-collision
and all s ∈ [0, t), there is an infinite number of L-collisions during (s, t) and none of these instants
of L-collision is isolated.

The condition θ ≥ 2 is crucial to guarantee that k0 ≤ N . On the contrary, we impose N > 3θ
for simplicity, because Lemma 1 does not hold true without this assumption. The other cases
may also be studied, but we believe this is not very restrictive: N is thought as very large when
compared to θ, at least as far as the approximation of the Keller-Segel equation is concerned.

1.8. Comments. Let us mention that the very precise values of N and θ influence the value k2.

(a) If N = 200 and θ = 4.04, we have k0 = 100, k1 = 99 and k2 = 98.

(b) If N = 200 and θ = 4.015, we have k0 = 100 and k1 = k2 = 99.

Let us describe informally, in the chronological order, what happens e.g. in case (b) above.
We start with 200 particles at 200 different places. During the whole story, there is no k-ary
collision for k = 3, . . . , 98. Here and there, two particles meet, they collide an infinite number
of times, but manage to separate. Then at some times, we have 98 particles close to each other
and there are many binary collisions. Then, if a 99-th particle arrives in the same zone (and
this eventually occurs), there are infinitely many 99-ary collisions, with infinitely many binary
collisions of all possible pairs before each. These 99 particles may manage to separate forever, or
for a large time, but if a 100-th particle arrives in the zone (and this situation eventually occurs),
then there are infinitely many 99-ary collisions of all the possible subsets and, finally, a 100-ary
collision producing explosion, and the story is finished. Informally, the resulting cluster is not able
to separate, because the attraction dominates the Brownian excitation, since a Bessel process of
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dimension dθ,N (100) ≤ 0 is absorbed when it reaches 0. We hope to be able, in a future work, to
propose and justify a model describing what happens after explosion.

1.9. References. In many papers about the Keller-Segel equation, the parameter χ = 4πθ is used,
so that the transition at θ = 2 corresponds to the transition at χ = 8π. As already mentioned, this
nonlinear P.D.E. has been introduced to model the collective motion of cells, which are attracted
by a chemical substance that they emit. It describes the density ft(x) of particles (cells) with
position x ∈ R2 at time t ≥ 0 and writes, in the so-called parabolic-elliptic case,

(7) ∂tft(x) + θdivx((K ? ft)(x)ft(x)) =
1

2
∆xft(x), where K(x) = − x

|x|2
.

Informally, this solution should be the mean-field limit of the particle system (1) as N →∞.

We refer to the recent review paper on (7) by Arumugam-Tyagi [1]. The best existence of
a global solution to (7), including all the subcritical parameters θ ∈ (0, 2), is due to Blanchet-
Dolbeault-Perthame [2]. The blow-up of solutions to (7), in the supercritical case θ > 2, has been
studied e.g. by Fatkullin [7] and Velasquez [24, 25]. More close to our study, Suzuki [23] has shown,
still in the supercritical case, the appearance of a Dirac mass with a precise (critical) weight, at
explosion. This is the equivalent, in the limit N → ∞, to the fact that limt→ζ−Xt exists and
corresponds to a K-collision, for some K ⊂ [[1, N ]] with precise cardinal k0. Let us finally mention
Dolbeault-Schmeiser [6], who propose a post-explosion model in the supercritical case.

Concerning particle systems associated with (7), let us mention Stevens [22], who studies a
physically more complete particle system with two types of particles, for cells and chemo-attractant
particles, with a regularized attraction kernel. Haškovec and Schmeiser [12, 13] study a particle
system closer to (1), but with, again, a regularized attraction kernel.

Cattiaux-Pédèches [4], as well as [8], study the system (1) without regularization in the subcrit-
ical case: existence of a global solution to (1) has been shown in [8] when θ ∈ (0, 2(N−2)/(N−1)),
and uniqueness of this solution has been established in [4]. Also, the theory of Dirichlet spaces
has been used in [4] to build a solution to (1). Finally, the limit as N →∞ to a solution of (7) is
proved in [8] in the very subcritical case where θ ∈ (0, 1/2), up to extraction of a subsequence. This
last result has been improved by Bresch-Jabin-Wang [3], who remove the necessity of extracting
a subsequence and consider the (still very subcritical) case where θ ∈ (0, 1). Olivera-Richard-
Tomasevic [18] have recently established the N →∞ convergence of a smoothed version of (1), for
all the subcritical cases θ ∈ (0, 2). Informally, in view of the mean distance between particles, the
regularization used in [18] is not far from being physically reasonable. There is also a related paper
of Jabir-Talay-Tomasevic [14] about a one-dimensional but more complicated parabolic-parabolic
model.

Let us finally mention the seminal paper of Osada [19], see also [9] for a more recent study,
which concerns the vortex model: this is very close to (1), but the attraction −x/|x|2 is replaced
by a rotating interaction x⊥/|x|2, so that particles never encounter.

1.10. Originality and difficulties. To our knowledge, this is the first study of the supercritical
Keller-Segel particle system near explosion. We hope that this model, which makes compete
diffusion and Coulomb interactions, is very natural from a physical point of view, beyond the Keller-
Segel community. The phenomenon we discovered seems surprising and original, in particular
because of the gap between binary and k2-ary collisions. We are not aware of other works, possibly
dealing with other models, showing such a behavior.
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In Section 3, we give the main arguments of the proofs, with quite a high level of precision,
but ignoring the technical issues. While it is rather clear, intuitively, that the process explodes in
finite time when θ ≥ 2 and that no K-collisions may occur for |K| ∈ [[3, k2 − 1]], the continuity at
explosion is delicate, and some rather deep arguments are required to show that that each k2-ary
collision is preceded by many binary collisions, that each k1-ary collision is preceded by many
k2-ary collisions, that explosion is preceded by many k1-ary collisions, and that explosion is due to
the emergence of a cluster with precise size k0 (which more or less says that a possible (k0 + 1)-ary
collision would necessarily be preceded by a k0-collision).

Actually, the rigorous proofs are made technically much more involved than those presented in
Section 3, because we have to use the theory of Dirichlet spaces. Due to the singularity of the
interactions and to the occurrence of many collisions near explosion, we can unfortunately not,
as already mentioned, deal at the rigorous level directly with the S.D.E. (1). We thus have to
use some suitable heavy versions of some usual tools such as Itô’s formula, Girsanov’s theorem,
time-change, etc.

1.11. Plan of the paper. In Section 2, we introduce some notation of constant use. In Section 3,
we explain the main ideas of the proofs, with quite a high level of precision, but without speaking
of the heavy technical issues related to the use of the theory of Dirichlet spaces. Section 4 is
devoted to the existence of a first version of the Keller-Segel process, namely without the property
that PXx ◦X−1

t has a density, and we introduce a spherical Keller-Segel process. In Section 5, we
show that the Keller-Segel process enjoys a crucial and noticeable decomposition in terms of a 2-
dimensional Brownian motion, a squared Bessel process and a spherical process. Section 6 consists
in building some smooth approximations of some indicator functions that behave well under the
action of the generator LX . In Section 7, we make use of the Girsanov theorem to prove that
when two sets of particles of a KS-process are not too close from each other, they behave as two
independent smaller KS-processes. In Section 8, we study explosion and continuity (in the usual
sense) at the explosion time. Section 9 is devoted to establish some parts of Theorem 5 for some
particular ranges of values of N and θ. Using the results of Section 7, we reduce the general study
to the special cases of Section 9 and we prove, in Section 10, that the conclusions of Theorem 5
hold true quasi-everywhere. Finally, in Section 11, we remove the restriction quasi-everywhere and
conclude the proofs of Propositions 2 and 3 and of Theorem 5.

Appendix A contains a few elementary computations: proof of Lemma 1, proof that µ is Radon
on Ek0 , and study of a similar measure on a sphere. We end the paper with Appendix B, that
summarizes all the notions and results about Dirichlet spaces and Hunt processes we shall use.

2. Notation

We introduce the spaces

H =
{
x ∈ (R2)N : S[[1,N ]](x) = 0

}
, S =

{
x ∈ (R2)N :

N∑
i=1

‖xi‖2 = 1
}

and S = H ∩ S.

For u ∈ S, we have S[[1,N ]](u) = 0 and R[[1,N ]](u) = 1. We consider the (unnormalized) Lebesgue
measure σ on S, as well as, recall (4),

(8) β(du) = m(u)σ(du).

We define γ : R2 → (R2)N by γ(z) = (z, . . . , z) and Ψ : R2 × R∗+ × S→ EN ⊂ (R2)N by

(9) Ψ(z, r, u) = γ(z) +
√
r u, i.e. (Ψ(z, r, u))i = z −

√
rui for i ∈ [[1, N ]].
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We have S[[1,N ]](Ψ(z, r, u)) = z and R[[1,N ]](Ψ(z, r, u)) = r.

The orthogonal projection πH : (R2)N → H is given by

πH(x) = x− γ(S[[1,N ]](x)), i.e. (πH(x))i = xi − S[[1,N ]](x) for i ∈ [[1, N ]]

and we introduce ΦS : EN → S defined by

ΦS(x) =
πHx

||πHx||
, i.e. (ΦS(x))i =

xi − S[[1,N ]](x)√
R[[1,N ]](x)

for i ∈ [[1, N ]].(10)

For x ∈ (R2)N \ {0}, the projections πx⊥ : (R2)N → x⊥ and πx : (R2)N → span(x) are given by

πx⊥(y) = y − x · y
||x||2

x and πx(y) =
x · y
||x||2

x,

where x · y =
∑N
i=1 x

i · yi.

We denote by b : E2 → (R2)N the drift coefficient of (1): for x = (x1, . . . , xN ) ∈ E2,

(11) b(x) =
∇m(x)

2m(x)
=
∇ log m(x)

2
∈ (R2)N , i.e. bi(x) = − θ

N

∑
j 6=i

xi − xj

‖xi − xj‖2
∈ R2

for i ∈ [[1, N ]]. Indeed, since log m(x) = − θ
2N

∑
1≤i 6=j≤N log ||xi − xj ||2, we e.g. have

∇x1 log m(x)

2
= − θ

4N
∇x1

[ N∑
i=2

log ||xi−x1||2 +

N∑
j=2

log ||x1−xj ||2
]

= − θ

2N
∇x1

N∑
j=2

log ||x1−xj ||2,

whence

∇x1 log m(x)

2
= − θ

N

N∑
j=2

x1 − xj

‖x1 − xj‖2
.

Finally, we introduce the natural operators defined for ϕ ∈ C1(S) and u ∈ S by

(12) ∇Sϕ(u) = ∇[ϕ ◦ ΦS](u) ∈ (R2)N and ∆Sϕ(u) = ∆[ϕ ◦ ΦS](u) ∈ R,

where ∇ and ∆ stand for the usual gradient and Laplacian in (R2)N . Since S ⊂ EN ⊂ (R2)N ,
with EN open, and since ΦS is smooth on EN , we can indeed define ∇[ϕ ◦ΦS](u) and ∆[ϕ ◦ΦS](u)
for all u ∈ S. Similarly, for ϕ ∈ C1(S, (R2)N ) and u ∈ S, we set

(13) divSϕ(u) = div[ϕ ◦ ΦS](u) ∈ R.

To conclude this subsection, we note that for all ϕ ∈ C∞((R2)N ), for all u ∈ S,

∇S(ϕ|S)(u) = πH(πu⊥(∇ϕ(u))).(14)

Indeed, it suffices to observe that settingG(x) = x/||x|| for all x ∈ (R2)N\{0}, we have ΦS = G◦πH ,
dxG = πx⊥/||x|| and dxπH = πH and that for u ∈ S, we have πH(u) = u and ||πH(u)|| = 1.

3. Main ideas of the proofs

Here we explain the main ideas of the proofs of Proposition 3 and Theorem 5. The arguments
below are completely informal. In particular, we do as if our KS(θ,N)-process (Xt)t∈[0,ζ) was a
true solution to (1) until explosion and we apply Itô’s formula without care. We always assume at
least that N ≥ 2, θ > 0 and N > θ, which implies that k0 = d2N/θe ≥ 3.
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3.1. Existence. The existence of the KS(θ,N)-process (Xt)t∈[0,ζ), with values in Ek0 , is an easy
application of Fukushima-Oshima-Takeda [11, Theorem 7.2.1]. The only difficulty is to show that
the invariant measure µ is a Radon on Ek0 , see Proposition A.1. The process may explode, i.e.
get out of any compact subset of Ek0 in finite time. Observe that a typical compact subset of Ek0
is of the form, for ε > 0,

Kε = {x ∈ (R2)N : ||x|| ≤ 1/ε and for all K ⊂ [[1, N ]] such that |K| = k0, RK(x) ≥ ε}.

3.2. Center of mass and dispersion process. One can verify, using Itô’s formula, that the
center of mass S[[1,N ]](X) is a 2-dimensional Brownian motion with diffusion constant N−1/2, that
the dispersion process R[[1,N ]](X) is a squared Bessel process with dimension dθ,N (N), recall (2),
and that these two processes are independent.

Consequently, if ζ < ∞, the limits limt→ζ− S[[1,N ]](Xt) and limt→ζ−R[[1,N ]](Xt) a.s. exist, and
this implies that lim supt→ζ− ||Xt|| <∞: the process cannot explode to infinity, it can only explode
because it tends to the boundary of Ek0 . If moreover k0 > N (i.e. if θ < 2), this is sufficient to
show that ζ =∞, since then Ek0 = (R2)N .

3.3. Behavior of distant subsets of particles. Consider a partition K1, . . . ,Kp of [[1, N ]]. If
we neglect interactions between particles of which the indexes are not in the same subset, we have,
for each ` ∈ [[1, p]], setting θ̃` = θ|K`|/N ,

dXi
t = dBit −

θ̃`
|K`|

∑
j∈K`\{i}

Xi
t −X

j
t

‖Xi
t −X

j
t ‖2

dt, i ∈ K`

and we recognize a KS(θ̃`, |K`|)-process.

During time intervals where particles indexed in different subsets are far enough from each
other, we can indeed bound the interaction between those particles, so that the Girsanov theorem
tells us that (Xi

t)i∈K1
, . . . , (Xi

t)i∈Kp behave similarly, in the sense of trajectories, as independent

KS(θ̃1, |K1|), ..., KS(θ̃p, |Kp|)-processes.

3.4. Brownian and Bessel behaviors of isolated subsets of particles. Consider K ⊂ [[1, N ]].
As seen just above, during time intervals where the particles indexed in K are far from all the
other ones, the system (Xi

t)i∈K behaves, in the sense of trajectories, like a KS(θ|K|/N, |K|)-
process. Hence, as seen in Subsection 3.2, SK(Xt) behaves like a 2-dimensional Brownian motion
with diffusion constant |K|−1/2 and RK(Xt) behaves like a squared Bessel process of dimension
dθ|K|/N,|K|(|K|), which equals dθ,N (|K|), recall (2).

3.5. Continuity at explosion. Here we assume that N > θ ≥ 2, so that k0 ∈ [[2, N ]] and we
explain why a.s., ζ <∞ and Xζ− = limt→ζ−Xt exists, in the usual sense of (R2)N .

(a) We first show that ζ < ∞ a.s. On the event where ζ = ∞, the squared Bessel process
R[[1,N ]](X) is defined for all times. Recall that dθ,N (N) ≤ 0 (because θ ≥ 2) and that a squared
Bessel process with negative dimension can be defined on the whole time half-line and a.s. becomes
negative in finite time. Since R[[1,N ]](X) ≥ 0 by definition, this contradicts the fact that ζ =∞.

Similarly, one can show that a KS(θ,N)-process has no chance to be defined after the first
hitting time τK of 0 by RK(Xt), where |K| = k0: this makes the choice of the space Ek0 very
natural. Indeed, assume that X is defined during [0, ζ ′) with ζ ′ > τK . Consider the maximal
subset L of [[1, N ]] containing K and such that RL(XτK ) = 0. Then there is ε > 0 such that
during [τK , τK + ε] ⊂ [0, ζ ′), the particles labeled in L are far from the ones labeled outside
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L. By Subsection 3.4, (RL(XτK+t))t∈[0,ε] behaves like a squared Bessel process with dimension
dθ,N (|L|) issued from 0. But such a process is instantaneously negative, because dθ,N (|L|) ≤ 0
(since |L| ≥ k0). Since RL(X) ≥ 0, this contradicts the fact that τK ∈ [0, ζ ′).

(b) We next show by reverse induction that a.s. for all K ⊂ [[1, N ]] with |K| ≥ 2, we have

(15) either lim
t→ζ−

RK(Xt) = 0 or lim inf
t→ζ−

RK(Xt) > 0.

If K = [[1, N ]], limt→ζ−RK(Xt) exists by continuity of the (true) squared Bessel process RK(Xt)
and this implies the result. We now fix n ∈ [[3, N ]] and assume that (15) holds true for all K
such that |K| ≥ n. We consider K ⊂ [[1, N ]] with |K| = n − 1: by induction assumption, either
there is i /∈ K such that limt→ζ−RK∪{i}(Xt) = 0 and then limt→ζ−RK(Xt) = 0, or for all
i ∈ [[1, N ]] \K, lim inft→ζ−RK∪{i}(Xt) > 0. In this last case, and when lim supt→ζ−RK(Xt) > 0
and lim inft→ζ−RK(Xt) = 0 (which is the negation of (15)), there are α > 0 and ε > 0 such that
(i) RK(Xt) upcrosses [ε/2, ε] infinitely often during [ζ − α, ζ) and (ii) for all t ∈ [ζ − α, ζ) such
that RK(Xt) < ε, the particles indexed in K are far from all the other ones (because then RK(Xt)
is small and RK∪{i}(Xt) is large for all i /∈ K), so that RK(Xt) behaves like a squared Bessel
process with dimension dθ,N (|K|), see Subsection 3.4. Points (i) and (ii) are in contradiction, since
a squared Bessel process is continuous and thus cannot upcross [ε/2, ε] infinitely often during a
finite time interval.

(c) We now show that limt→ζ−Xt exists. Using (b) and the (random) equivalence relation
on [[1, N ]] defined by i ∼ j if and only if limt→ζ−R{i,j}(Xt) = 0, one can build a (random)
partition K = (Kp)p∈[[1,`]] of [[1, N ]] such that for all p ∈ [[1, `]], limt→ζ−RKp(Xt) = 0 and
lim inft→ζ−mini/∈Kp RKp∪{i}(Xt) > 0. Hence, there is α ∈ [0, ζ) such that for all p 6= q, the
particles labeled in Kp are far from the ones labeled in Kq during [α, ζ). As seen in Subsection
3.4, we conclude that for all p ∈ [[1, `]], SKp(Xt) behaves like a Brownian motion during [α, ζ), and
thus Mp = limt→ζ− SKp(Xt) exists. Since moreover limt→ζ−RKp(Xt) = 0, we deduce that for all

i ∈ Kp, limt→ζ−X
i
t = Mp. As a conclusion limt→ζ−X

i
t exists for all i ∈ [[1, N ]].

3.6. A spherical process. We recall that S, πH , πu⊥ and b were introduced in Section 2 and
introduce the possibly exploding (with life-time ξ) process (Ut)t∈[0,ξ) with values in S∩Ek0 , infor-
mally solving (we will also use here the theory of Dirichlet spaces), for some given U0 ∈ S ∩ Ek0
and some (R2)N -valued Brownian motion (Bt)t≥0,

Ut = U0 +

∫ t

0

πU⊥s πHdBs +

∫ t

0

πU⊥s πHb(Us)ds−
2N − 3

2

∫ t

0

Usds.

We call such a process a SKS(θ,N)-process.

One can check that this process is β-symmetric, where β is defined in (8), and that β is Radon
on S ∩ Ek0 , see Proposition A.3. And we will see that if k0 ≥ N , then β(S) < ∞, so that the
process (Ut)t≥0 is non-exploding and positive recurrent.

3.7. Decomposition of the process. We assume that N ≥ 2 and θ > 0 are such dθ,N (N) < 2
and, as usual, N > θ. We consider a 2-dimensional Brownian (Mt)t≥0 with diffusion constant

N−1/2, a squared Bessel process (Dt)t∈[0,τD) with dimension dθ,N (N) killed when it hits 0, with
life-time τD, and a SKS(θ,N)-process (Ut)t∈[0,ξ), these three processes being independent. We
introduce the time-change

At =

∫ t

0

ds

Ds
, t ∈ [0, τD).
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Since τD <∞ (because dθ,N (N) < 2), since DτD = 0 and since, roughly, the paths of (
√
Dt)t∈[0,τD)

are 1/2-Hölder continuous, it holds that AτD = ∞ a.s. We introduce the inverse function ρ :
[0,∞)→ [0, τD) of A : [0, τD)→ [0,∞).

We also set ζ ′ = ρξ and observe that ζ ′ ≤ τD, since ρ is [0, τD)-valued, and that ζ ′ < τD if and
only if ξ <∞. A fastidious but straightforward computation shows that, recalling (9),

Xt = Ψ(Mt, Dt, UAt), i.e. Xi
t = Mt +

√
DtU

i
At , i ∈ [[1, N ]],

which is well-defined during [0, ζ ′), solves (1).

This decomposition of the KS(θ,N)-process, which is noticeable in that U satisfies an au-
tonomous S.D.E. and thus is Markov, is at the basis of our analysis.

In other words, (Xt)t∈[0,ζ′) is the restriction to the time interval [0, ζ ′) of a KS(θ,N)-process
(Xt)t∈[0,ζ). Moreover, we have ζ ′ = ζ ∧ τD: if ξ is finite, then U gets out of S ∩ Ek0 at time ξ, so
that X gets out of Ek0 at time ζ ′ = ρξ < τD, whence ζ = ζ ′ = ζ ∧ τD; if next ξ =∞, then ζ ′ = τD
and U remains in Ek0 for all times, so that X remains in Ek0 during [0, τD), whence ζ ≥ τD.

We have S[[1,N ]](Xt) = Mt and R[[1,N ]](Xt) = Dt for all t ∈ [0, ζ ∧ τD), because U is S-valued.
By definition of S, the process U cannot have any [[1, N ]]-collision. But for any K ⊂ [[1, N ]] with
cardinal at most N − 1,

U has a K-collision at t ∈ [0, ξ) if and only if X has a K-collision at ρt ∈ [0, ζ ∧ τD).(16)

Moreover, as seen a few lines above, ξ < ∞ is equivalent to ζ < τD. In other words, since
R[[1,N ]](Xt) = Dt for all t ∈ [0, ζ ∧ τD) and since τD = inf{t > 0 : Dt = 0}, we have

ξ <∞ if and only if inf
t∈[0,ζ)

R[[1,N ]](Xt) > 0.(17)

3.8. Some special cases. Using the Girsanov theorem, see Subsection 3.4, we will manage to
reduce a large part of the study to the special cases that we examine in the present subsection.
Here we explain the following facts, for N ≥ 2 and θ > 0 with N > θ:

(a) if dθ,N (N − 1) ∈ (0, 2), then a.s., τD = inf{t > 0 : R[[1,N ]](Xt) = 0} ≤ ζ and for all r ∈ [0, τD),
all K ⊂ [[1, N ]] with |K| = N − 1, (Xt)t∈[0,ζ) has infinitely many K-collisions during [r, τD);

(b) if dθ,N (N − 1) ≤ 0 (whence k0 ≤ N − 1), then a.s., inft∈[0,ζ)R[[1,N ]](Xt) > 0.

We keep the same notation as in the previous subsection.

(i) We first verify that in (a), τD ≤ ζ. Since dθ,N (N − 1) ∈ (0, 2), it holds that k0 ≥ N . If first
k0 > N , then ζ = ∞ by Subsection 3.2 and we are done. If next k0 = N , then ζ < ∞ and Xζ−
exists by Subsection 3.5. Moreover Xζ− cannot belong to Ek0 = EN by definition of ζ and thus
has its N particles at the same place, i.e. R[[1,N ]](Xζ−) = 0: we have ζ = τD.

(ii) In (b), ζ <∞ by Subsection 3.5 because dθ,N (N − 1) ≤ 0 implies that θ ≥ 2.

(iii) We consider, in any case, the spherical process (Ut)t∈[0,ξ) and assume that ξ =∞. An Itô
computation shows that for K ⊂ [[1, N ]], for some 1-dimensional Brownian motion (Wt)t≥0,

dRK(Ut) =2
√
RK(Ut)(1−RK(Ut))dWt + dθ,N (|K|)dt− dθ,N (N)RK(Ut)dt

− 2θ

N

∑
i∈K,j /∈K

U it − U
j
t

||U it − U
j
t ||2
· (U it − SK(Ut))dt.
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We fix ε > 0 to be chosen later. During time intervals where mini∈K,j /∈K ‖U it − U
j
t ‖ ≥ ε, we thus

have, for some constant Cε,

dRK(Ut) ≤2
√
RK(Ut)(1−RK(Ut))dWt + dθ,N (|K|)dt+ Cε

√
RK(Ut)dt,(18)

where we used the Cauchy-Schwarz inequality and that RK(Ut) is uniformly bounded (because U

is S-valued). Hence, still during time intervals where mini∈K,j /∈K ‖U it − U
j
t ‖ ≥ ε, by comparison,

RK(Ut) is smaller than St, the solution to

(19) dSt = 2
√
St(1− St)dWt + dθ,N (|K|)dt+ Cε

√
Stdt.

And a little study involving scale functions/speed measures shows that this process hits zero in finite
time if and only if dθ,N (|K|) < 2, exactly as a squared Bessel process with dimension dθ,N (|K|).

(iv) We end the proof of (a). In this case, k0 ≥ N , so that U is non-exploding, as seen in
Subsection 3.6. Hence ξ =∞ and we can use (iii). Moreover, U is recurrent, still by Subsection 3.6.
We fix K with |K| = N − 1 and we choose ε > 0 small enough so that we have

β
({
u ∈ S : min

i∈K,j /∈K
‖ui − uj‖ ≥ ε

})
> 0,

where β is the invariant measure (8) of U . Hence the process mini∈K,j /∈K ‖U it −U
j
t ‖ visits the zone

(ε,∞) infinitely often and each time, RK(U) has a (uniformly) positive probability to hit 0 by (iii)
and since dθ,N (|K|) = dθ,N (N − 1) < 2. Consequently, for any s > 0, (Ut)t≥0 has infinitely many
K-collisions during [s,∞). Recalling (16) and that ζ ∧ τD = τD by (i), we conclude that for any
r ∈ [0, τD), (Xt)t∈[0,ζ) has infinitely many K-collisions during [r, τD).

(v) We finally complete the proof of (b). By (17), it is sufficient to show that ξ <∞ a.s.

Assume that U is recurrent (and thus non-exploding). Then we take K = [[2, N ]] and apply the
same reasoning as in (iv): since dθ,N (|K|) ≤ 0 < 2, RK(U) hits zero in finite time and this makes
U get out of EN−1 and thus explode, since U is (Ek0 ∩ S)-valued and since k0 ≤ N − 1. We thus
have a contradiction.

Hence U is transient and it eventually gets out of the compact of Ek0 ∩ S
K = {u ∈ S : ∀K ⊂ [[1, N ]] such that |K| = k0, we have RK(u) ≥ ε},

for any fixed ε > 0. Hence on the event where ξ =∞, limt→∞min|K|=k0 RK(Ut) = 0 a.s. Recalling
now that k0 ≤ N − 1 and that U is S-valued (whence R[[1,N ]](Ut) = 1) we can a.s. find K with
|K| ∈ [[k0, N − 1]] such that lim inft→∞RK(Ut) = 0 but lim inft→∞mini/∈K RK∪{i}(Ut) > 0. It is
then not too hard to find α > 0 and ε > 0 such that each time RK(Ut) < α (which often happens),
all the particles indexed in K are far from all the other ones with a distance greater than ε > 0.
We conclude from (iii), since dθ,N (|K|) ≤ 0 (because |K| ≥ k0) that each time RK(Ut) < α, it has
a (uniformly) positive probability to hit zero. On the event ξ = ∞, this will eventually happen,
so that the process U will have a K-collision and thus will leave Ek0 in finite time. Hence U will
explode, so that ξ <∞.

3.9. Size of the cluster. We assume that N > 3θ ≥ 6. Hence ζ < ∞ and Xζ− exists, by
Subsection 3.5. Moreover, by definition of ζ, we know that Xζ− /∈ Ek0 . We want now to show
that Xζ− ∈ Ek0+1, i.e. that the cluster causing explosion is precisely composed of k0 particles.
If k0 = N , there is nothing to do, since then Ek0+1 = (R2)N . Now if k0 ≤ N − 1, we assume
by contradiction, that there is K ⊂ [[1, N ]] with |K| ≥ k0 + 1 such that RK(Xζ−) = 0 and
mini/∈K RK∪{i}(Xζ−) > 0. Then there is α > 0 such that during [ζ−α, ζ), the particles indexed in

K are far from the other ones, so that (Xi
t)t∈[0,ζ),i∈K behaves like a KS(θ|K|/N, |K|)-process by
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Subsection 3.3. Observe now that dθ|K|/N,|K|(|K| − 1) = dθ,N (|K| − 1) ≤ 0 because |K| − 1 ≥ k0

and |K| > θ|K|/N because N > θ. We thus know from the special case (b) of Subsection 3.8 that
inft∈[ζ−α,ζ)RK(Xt) > 0, which contradicts the fact that RK(Xζ−) = 0.

3.10. Collisions before explosion. We fix again N > 3θ ≥ 6. We recall that k1 = k0 − 1
and we show that there are infinitely many k1-ary collisions just before explosion. We know from
the previous subsection that there exists K0 ⊂ [[1, N ]] such that |K0| = k0 and RK0

(Xζ−) = 0
and mini/∈K0

RK0∪{i}(Xζ−) > 0. Then there is α > 0 such that during [ζ − α, ζ), the particles

indexed in K0 are far from the other ones, so that (Xi
t)i∈K0

behaves like a KS(θk0/N, k0)-process
by Subsection 3.3. Observe now that dθk0/N,k0(k0 − 1) = dθ,N (k0 − 1) ∈ (0, 2) thanks to Lemma 1
and that k0 > θk0/N because N > θ. We thus know from the special case (a) of Subsection 3.8
that (Xi

t)i∈K0
has infinitely many (K0 \ {i})-collisions just before ζ, for all i ∈ K0.

When k2 = k1 − 1, one can show in the very same way that for all K with |K| = k1, for all
i ∈ K, there are infinitely many (K \ {i})-collisions just before each K-collision. We may also use
Subsection 3.8-(a), since dθk1/N,k1(k1 − 1) = dθ,N (k2) ∈ (0, 2), see Lemma 1.

3.11. Absence of other collisions. We want to show that when N > 3θ ≥ 6, for K ⊂ [[1, N ]] with
|K| ∈ [[3, k2− 1]], there is no K-collision during (0, ζ). Suppose by contradiction that there is K ⊂
[[1, N ]] with |K| ∈ [[3, k2−1]] and t ∈ (0, ζ) such that RK(Xt) = 0 and for all i /∈ K, RK∪{i}(Xt) > 0.
Then there is α > 0 such that during [t − α, t], the particles indexed in K are far from the other
ones, so that RK(Xt) behaves like a squared Bessel process with dimension dθ|K|/N,|K|(|K|), see
Subsection 3.4. Since dθ|K|/N,|K|(|K|) = dθ,N (|K|) ≥ 2 because |K| ∈ [[3, k2 − 1]], see Lemma 1,
such a Bessel process cannot hit zero, whence a contradiction.

3.12. Binary collisions. We still assume that N > 3θ ≥ 6, we suppose that there is a K-collision
for some K ⊂ [[1, N ]] such that |K| = k2 at some time t ∈ (0, ζ) and we want to show that there are
infinitely many binary collisions just before t. There is α > 0 such that the particles indexed in K
are far from all the other ones during [t−α, t], so that Subsection 3.3 tells us that (Xi

t)i∈K behaves
like a KS(θk2/N, k2)-process. We observe that k2 ≥ 5, that dθk2/N,k2(k2 − 1) = dθ,N (k2 − 1) ≥ 2
and that dθk2/N,k2(k2) = dθ,N (k2) ∈ (0, 2) by Lemma 1.

We are reduced to show that a KS(θ,N)-process, that we still denote by (Xi
t)i∈[[1,N ]],t≥0, such

that N ≥ 5, dθ,N (N −1) ≥ 2 and dθ,N (N) ∈ (0, 2), a.s. has infinitely many binary collisions before
the first instant τD of [[1, N ]]-collision. Such a process does not explode, because k0 > N (since
dθ,N (N) > 0), see Subsection 3.2. Hence using (16) (which is licit since dθ,N (N) < 2), we only
have to show that e.g. U1 collides infinitely often with U2 during [0,∞).

First, one easily gets convinced that the probability that e.g. X1 collides with X2 before τD
is positive, because the probability that all the particles are pairwise far from each other, except
X1 and X2, during the time interval [0, 1], is positive. On this kind of event, by Subsection 3.4,
R{1,2}(Xt) behaves like a squared Bessel process with dimension dθ,N (2) ∈ (0, 2) and thus hits zero
during [0, 1] (and thus before τD) with positive probability.

Using again (16), we conclude that the probability that U1 collides with U2 in finite time is
positive. Since now U is positive recurrent, recall Subsection 3.6 and that k0 > N (because
dθ,N (N) > 0), we conclude that U1 collides infinitely often with U2 during [0,∞) as desired.

3.13. Non-integrability of the drift term. Here we check that when dθ,N (k1) ∈ (0, 1), the
S.D.E. (1) cannot have a solution in the classical sense, because the drift term is not integrable in



14 NICOLAS FOURNIER AND YOAN TARDY

time. More precisely, recall that there is some K-collision at some time τ strictly before explosion,
for some K ⊂ [[1, N ]] with cardinal k1. We now show that a.s., for a > 0,∫ τ+a

τ−a

N∑
i=1

∥∥∥∑
j 6=i

Xi
s −Xj

s

||Xi
s −X

j
s ||2

∥∥∥ds =∞,

which indeed shows the non-integrability of the drift term. Since τ is an instant of K-collision,
there exists a > 0 small enough so that during [τ − a, τ + a] ⊂ [0, ζ), the particles labeled in K are
far from the particles labeled in Kc. It clearly suffices to show that Z =∞ a.s., where

Z =

∫ τ+a

τ−a

∑
i∈K

∥∥∥ ∑
j∈K,j 6=i

Xi
s −Xj

s

||Xi
s −X

j
s ||2

∥∥∥ds.

But

Z =

∫ τ+a

τ−a

f(Vs)√
RK(Xs)

ds, where Vs = (V is )i∈K is defined by V is =
Xi
s − SK(Xs)√
RK(Xs)

,

so that Vs a.s. belongs to SK = {(vi)i∈K ∈ (R2)|K| :
∑
i∈K v

i = 0,
∑
i∈K ||vi||2 = 1}, and where

f(v) =
∑
i∈K

∥∥∥ ∑
j∈K,j 6=i

vi − vj

||vi − vj ||2
∥∥∥

for each v ∈ SK . Since the invariant measure m of X satisfies m(Ec2) = 0, it a.s. holds true that
Xs ∈ E2 for a.e. s ∈ [0, ζ) (at least for a.e. initial condition), so that a.s., f(Vs) is well-defined for
a.e. s ∈ [0, ζ). We now show that f is bounded from below on SK . We have

f(v) ≥ max
i∈K

∥∥∥ ∑
j∈K,j 6=i

vi − vj

||vi − vj ||2
∥∥∥ ≥

√√√√ 1

|K|
∑
i∈K

∥∥∥ ∑
j∈K,j 6=i

vi − vj
||vi − vj ||2

∥∥∥2

.

Using now the Cauchy-Schwarz inequality and the fact that
∑
i∈K ||vi||2 = 1, we find that

f(v) ≥ 1√
|K|

∑
i∈K

∑
j∈K,j 6=i

vi − vj

||vi − vj ||2
· vi =

1

2
√
|K|

∑
i,j∈K,j 6=i

vi − vj

||vi − vj ||2
· (vi − vj) =

|K|(|K| − 1)

2
√
|K|

.

To conclude that Z =∞ a.s., it remains to verify that
∫ τ+a

τ−a [RK(Xs)]
−1/2ds =∞ a.s. By Subsec-

tion 3.4, RK(X) behaves like a squared Bessel process with dimension dθ,N (k1) during [τ−a, τ+a].

Since dθ,N (k1) ∈ (0, 1) and RK(Xτ ) = 0, we conclude that indeed,
∫ τ+a

τ−a [RK(Xs)]
−1/2ds =∞ a.s.:

this can be shown by comparison with the 1-dimensional Brownian motion.

4. Construction of the Keller-Segel particle system

The aim of this section is to build a first version of the Keller-Segel particle system using the
book of Fukushima-Oshima-Takeda [11]. We also build a S-valued process for later use.

Proposition 6. We fix N ≥ 2 and θ > 0 such that N > θ, recall that k0 = d2N/θe and that µ
and β were defined in (4) and (8). We set X = Ek0 and X4 = X ∪ {4}, as well as U = S ∩ Ek0
and U4 = U ∪ {4}, where 4 is a cemetery point.

(i) There exists a unique diffusion X = (ΩX ,MX , (Xt)t≥0, (PXx )x∈X4) with values in X4, which

is µ-symmetric, with regular Dirichlet space (EX,FX) on L2((R2)N,µ) with core C∞c (X ) defined by

for all ϕ ∈ C∞c (X ), EX(ϕ,ϕ) =
1

2

∫
(R2)N

‖∇ϕ‖2dµ.
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We call such a process a QKS(θ,N)-process and denote by ζ = inf{t ≥ 0 : Xt = 4} its life-time.

(ii) There exists a unique diffusion U = (ΩU ,MU , (Ut)t≥0, (PUu )u∈U4) with values in U4, which

is β-symmetric, with regular Dirichlet space (EU ,FU ) on L2(S, β) with core C∞c (U) defined by

for all ϕ ∈ C∞c (U), EU (ϕ,ϕ) =
1

2

∫
S
‖∇Sϕ‖2dβ.

We call such a process a QSKS(θ,N) -process and denote by ξ = inf{t ≥ 0 : Ut = 4} its life-time.

The proof that we can build a KS(θ,N)-process, i.e. a QKS(θ,N)-process such that PXx ◦X−1
t

has density for all x ∈ E2 and all t > 0 will be handled in Section 11.

We refer to Subsection B.1 for some explanations about the notions used in this proposition:
link between a diffusion (i.e. a continuous Hunt process), its generator, semi-group and its Dirichlet
space, definition of the one-point compactification topology, i.e. the topology endowing X4 and
U4, and about the quasi-everywhere notion. The state 4 is absorbing, i.e. Xt = 4 for all t ≥ ζ
and Ut = 4 for all t ≥ ξ.

Remark 7. By definition of the one-point compactification topology, for any increasing sequence
of compact subsets (Kn)n≥1 of X such that ∪n≥1Kn = X , ζ = limn→∞ inf{t ≥ 0 : Xt /∈ Kn}.

Similarly, for any increasing sequence of compact subsets (Ln)n≥1 of U such that ∪n≥1Ln = U ,
ξ = limn→∞ inf{t ≥ 0 : Ut /∈ Ln}.

The uniqueness stated e.g. in Proposition 6-(i) has to be understood in the following sense, see
[11, Theorem 4.2.8 p 167]: if we have another diffusion Y = (ΩY ,MY , (Yt)t≥0, (PYx )x∈X ) enjoying
the same properties, then quasi-everywhere, the law of (Yt)t≥0 under PYx equals the law of (Xt)t≥0

under PXx . The quasi-everywhere notion depends on the Hunt process under consideration but,
as recalled in Subsection B.1, two Hunt processes with the same Dirichlet space share the same
quasi-everywhere notion.

Proof of Proposition 6. We start with (i). We consider the bilinear form EX on C∞c (X ) defined by
EX(ϕ,ϕ)= 1

2

∫
(R2)N

||∇ϕ||2dµ. It is well-defined, since µ is Radon on X = Ek0 by Proposition A.1.

We first show that it is closable, see [11, page 2], i.e. that if (ϕn)n≥1 ⊂ C∞c (X ) is such that
limn ϕn = 0 in L2((R2)N , µ) and limn,m EX(ϕn − ϕm, ϕn − ϕm) = 0, then limn EX(ϕn, ϕn) = 0:
since ∇ϕn is a Cauchy sequence in L2((R2)N , µ), it converges to a limit g and it suffices to prove
that g = 0 a.e. For ψ ∈ C∞c (E2, (R2)N ), we have

∫
(R2)N

g · ψdµ = limn

∫
(R2)N

∇ϕn · ψdµ. But,

recalling (4),∫
(R2)N

∇ϕn · ψdµ =

∫
(R2)N

∇ϕn(x) · ψ(x)m(x)dx = −
∫

(R2)N
ϕn(x)div(m(x)ψ(x))dx.

Thus by the Cauchy-Schwarz inequality,∣∣∣ ∫
(R2)N

∇ϕn · ψdµ
∣∣∣ ≤ (∫

(R2)N
ϕ2
ndµ

)1/2(∫
(R2)N

|div(m(x)ψ(x))|2

m(x)
dx
)1/2

,

which tends to 0 since limn ϕn = 0 in L2((R2)N , µ), since ψ ∈ C∞c (E2, (R2)N ) and since m is
smooth and positive on E2. Thus

∫
(R2)N

g · ψdµ = 0 for all ψ ∈ C∞c (E2, (R2)N ), so that g = 0 a.e.

We can thus consider the extension of EX to FX = C∞c (X )
EX1

, where we have set EX1 (ϕ,ϕ) =∫
(R2)N

(ϕ2 + 1
2 ||∇ϕ||

2)dµ for ϕ ∈ C∞c (X ).
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Next, (EX ,FX) is obviously regular with core C∞c (X ), see [11, page 6], because C∞c (X ) is dense
in FX for the norm associated to EX1 by definition of FX and C∞c (X ) is dense, for the uniform
norm, in Cc(X ). It is also strongly local, see [11, page 6], i.e. EX(ϕ,ψ) = 1

2

∫
(R2)N

∇ϕ · ∇ψdµ = 0

if ϕ,ψ ∈ C∞c (X ) and if ϕ is constant on a neighborhood of Supp ψ.

Then [11, Theorems 7.2.2 page 380 and 4.2.8 page 167] imply the existence and uniqueness of
a Hunt process X = (ΩX ,MX , (Xt)t≥0, (PXx )x∈X4) with values in X4, which is µ-symmetric, of

which the Dirichlet space is (EX ,FX), and such that t 7→ Xt is PXx -a.s. continuous on [0, ζ) for all
x ∈ X , where ζ = inf{t ≥ 0 : Xt = 4}.

Furthermore, since EX is strongly local, we know from [11, Theorem 4.5.3 page 186] that we can
choose X (modifying PXx only on a properly exceptional set) such that Px(ζ < ∞, Xζ− = 4) = 1
for all x ∈ X . This implies that for all x ∈ X , Px-a.s., the map t 7→ Xt is continuous from [0,∞)
to X4, endowed with the one-point compactification topology on X4 recalled in Subsection B.1.
Hence X is a diffusion.

For (ii), the very same strategy applies. The only difference is the integration by parts to be
used for the closability: for ϕ ∈ C1

c (U) and ψ ∈ C1
c (S ∩ E2, (R2)N ), it classically holds that

(20)

∫
S
(∇Sϕ) · ψdβ =

∫
S
(∇Sϕ(u)) · ψ(u)m(u)σ(du) = −

∫
S
ϕ(u)divS(m(u)ψ(u))σ(du).

This can be shown naively using Lemma A.2. �

We now make explicit the generators of X and U when applied to some functions enjoying a few
properties. See Subsection B.1 for a precise definition of the generator of a Hunt process. We have
to introduce a few notation.

For ϕ ∈ C∞((R2)N ), α ∈ (0, 1] and x ∈ (R2)N , we set

(21) LXα ϕ(x) =
1

2
∆ϕ(x)− θ

N

∑
1≤i6=j≤N

xi − xj

‖xi − xj‖2 + α
· (∇ϕ(x))i =

1

2mα(x)
div[mα(x)∇ϕ(x)],

where

mα(x) =
∏

1≤i6=j≤N

(‖xi − xj‖2 + α)−θ/(2N).

This is in accordance with (4), in the sense that m0 = m. The formula (21) makes sense for x ∈ E2

when α = 0 (with mα replaced by m) and we recall that for ϕ ∈ C∞((R2)N ) and x ∈ E2, LXϕ(x)
was defined in (5) by LXϕ(x) = LX0 ϕ(x). We will often use that for all ϕ,ψ ∈ C∞((R2)N ), all
x ∈ (R2)N , all α ∈ (0, 1],

LXα (ϕψ)(x) = ϕ(x)LXα ψ(x) + ψ(x)LXα ϕ(x) +∇ϕ(x) · ∇ψ(x).(22)

For ϕ ∈ C∞(S), α ∈ (0, 1] and u ∈ S, we set

(23) LUαϕ(u) =
1

2
∆Sϕ(u)− θ

N

∑
1≤i 6=j≤N

ui − uj

‖ui − uj‖2 + α
·(∇Sϕ(u))i =

1

2mα(u)
divS[mα(u)∇Sϕ(u)].

This formula makes sense for u ∈ S ∩ E2 when α = 0 (with mα replaced by m) and we set, for
ϕ ∈ C∞(S) and u ∈ S ∩ E2, LUϕ(u) = LU0 ϕ(u).

Remark 8. (i) Denote by (AX ,DAX ) the generator of the process X of Proposition 6-(i). If
ϕ ∈ C∞c (X ) satisfies supα∈(0,1] supx∈(R2)N |LXα ϕ(x)| <∞, then ϕ ∈ DAX and AXϕ = LXϕ.
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(ii) Denote by (AU ,DAU ) the generator of the process U of Proposition 6-(ii). If ϕ ∈ C∞c (U)
satisfies supα∈(0,1] supu∈S |LUαϕ(u)| <∞, then ϕ ∈ DAU and AUϕ = LUϕ.

Proof. To check (i), it suffices by (B.1) to verify that (a) ϕ ∈ FX , (b) LXϕ ∈ L2(X , µ) and (c) for
all ψ ∈ FX , we have EX(ϕ,ψ) = −

∫
X (LXϕ)ψdµ.

Point (a) is clear, since ϕ ∈ C∞c (X ). Point (b) follows from the facts that µ is Radon on X ,
that ϕ is compactly supported in X and that LXϕ ∈ L∞((R2)N ,dx), because for all x ∈ E2,
LXϕ(x) = limα→0 LXα ϕ(x). Concerning (c) it suffices, by definition of (EX ,FX) and since LXϕ ∈
L2(X , µ), to show that for all ψ ∈ C∞c (X ), we have 1

2

∫
(R2)N

∇ϕ · ∇ψdµ = −
∫

(R2)N
(LXϕ)ψdµ.

But for α ∈ (0, 1], by a standard integration by parts, since ϕ,ψ and mα are smooth,

1

2

∫
(R2)N

∇ϕ(x) · ∇ψ(x)mα(x)dx =− 1

2

∫
(R2)N

div(mα(x)∇ϕ(x))ψ(x)dx

=−
∫

(R2)N
[LXα ϕ(x)]ψ(x)mα(x)dx.

We conclude letting α→ 0 by dominated convergence, since mα →m and LXα ϕ→ LXϕ a.e., since
by assumption, |∇ϕ(x) ·∇ψ(x)mα(x)|+ |[LXα ϕ(x)]ψ(x)mα(x)| ≤ C1I{x∈K}m(x) for some constant

C and for K =Supp ψ which is compact in X , and since µ(K) =
∫
Km(x)dx <∞.

The proof of (ii) is exactly the same, using that if ϕ,ψ ∈ C∞(S), it holds that

1

2

∫
S
∇Sϕ · ∇Sψ mαdσ = −1

2

∫
S

divS(mα∇Sϕ)ψdσ = −
∫
S
[LUαϕ]ψmαdσ,

which can be shown naively using the projection ΦS, see (10), and Lemma A.2. �

We end the section with a quick irreducibility/recurrence/transience study of the spherical
process, see Subsection B.1 again for definitions.

Lemma 9. We fix N ≥ 2 and θ > 0 such that N > θ and consider the process U and its Dirichlet
space (EU ,FU ) as in Proposition 6-(ii).

(i) (EU ,FU ) is irreducible and we have the alternative:

• either (EU ,FU ) is recurrent and in particular it is non-exploding and for all measurable A ⊂ U
such that β(A) > 0, PUu (lim supt→∞{Ut ∈ A}) = 1 quasi-everywhere;

• or (EU ,FU ) is transient and in particular for all compact set K of U , we have quasi-everywhere
PUu (lim inft→∞{Ut ∈ K}) = 0.

(ii) If dθ,N (N − 1) > 0, then (EU ,FU ) is recurrent.

In the transient case, one might also prove that PUu (lim supt→∞{Ut ∈ K}) = 0, but this would
be useless for our purpose.

Proof. We start with (i). We first show that in any case, (EU ,FU ) is irreducible. By [11, Corollary
4.6.4 page 195] and since EU (ϕ,ϕ) = 1

2

∫
S ‖∇Sϕ‖2mdσ with m bounded from below by a constant

(on S), it suffices to prove that the σ-symmetric Hunt process with regular Dirichlet space (E ,F)
on L2(U , σ) with core C∞c (U) such that for all ϕ ∈ C∞c (U), E(ϕ,ϕ) = 1

2

∫
S ‖∇Sϕ‖2dσ is irreducible.

But this Hunt process is nothing but a S-valued Brownian motion. This Brownian motion is a
priori killed when it gets out of U , but this does a.s. never occur since such a Brownian motion
never has two (bi-dimensional) coordinates equal. This S-valued Brownian motion is of course
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irreducible. We conclude from [11, Lemma 1.6.4 page 55] that (EU ,FU ) is either recurrent or
transient.

• When (EU ,FU ) is recurrent, [11, Theorem 4.7.1-(iii) page 202] gives us the result.

• When (EU ,FU ) is transient, we fix a compact set K of U and we know from Lemma A.3 that
β(K) < ∞, so that by definition of transience, for β-a.e u ∈ U , EUu [

∫∞
0

1IK(Us)ds] < ∞. Setting

τKc = inf{t ≥ 0 : Ut /∈ K}, we get in particular that for β-a.e u ∈ U , PUu (τKc < ∞) = 1. But, by
[11, (4.1.9) page 155], u 7→ PUu (τKc < ∞) is finely continuous. Using [11, Lemma 4.1.5 page 155],
we deduce that PUu (τKc <∞) = 1 quasi-everywhere. The Markov property allows us to conclude.

Concerning (ii), we recall from Proposition A.3 that β(S) < ∞, because dθ,N (N − 1) > 0
implies that k0 ≥ N , see Lemma 1. Moreover, k0 ≥ N implies that Ek0 ⊃ EN ⊃ S, whence
U = Ek0 ∩ S = S is compact: the process cannot explode, i.e. ξ = ∞. Consequently, (EU ,FU )
is recurrent, since ϕ ≡ 1 belongs to L1(U , β) and since EUu [

∫∞
0
ϕ(Us)ds] = EUu [ξ] = ∞. Indeed,

as recalled Subsection B.1, if (EU ,FU ) was transient, we would have EUu [
∫∞

0
ϕ(Us)ds] <∞ for all

ϕ ∈ L1(U , β), with the convention that ϕ(4) = 0. �

5. Decomposition

The goal of this section is to prove the following decomposition of the Keller-Segel particle
system defined in Proposition 6-(i). This decomposition is noticeable and crucial for our purpose.

Proposition 10. We fix N ≥ 2 and θ > 0 such that N > θ, and we recall that k0 = d2N/θe, that
X = Ek0 and that U = S ∩ Ek0 .

For x ∈ EN , we set r = R[[1,N ]](x) > 0, z = S[[1,N ]](x) ∈ R2 and u = (x− γ(z))/
√
r ∈ S and we

consider three independent processes:

• (Mt)t≥0, a 2-dimensional Brownian motion with diffusion constant N−1/2 starting from z,

• (Dt)t≥0 a squared Bessel process with dimension dθ,N (N) starting from r and killed when it gets
out of (0,∞), with life-time τD = inf{t ≥ 0 : Dt = 4},

• (Ut)t≥0, a QSKS(θ,N) -process starting from u, with life-time ξ = inf{t ≥ 0 : Ut = 4}.

We introduce At =
∫ t∧τD

0
D−1
s ds, and its generalized inverse ρt = inf{s > 0 : As > t}. We

define Yt = Ψ(Mt, Dt, UAt), where we recall from (9) that Ψ(z, r, u) = γ(z) +
√
ru ∈ EN when

(z, r, u) ∈ R2 × (0,∞) × S and where we set Ψ(z, r, u) = 4 when r = 4 or u = 4. Observe that
the life-time of Y equals ζ ′ = ρξ ∧ τD.

Consider also a QKS(θ,N)-process X = (ΩX ,MX , (Xt)t≥0, (PXx )x∈X4), with life-time ζ, and

X∗ = (ΩX ,MX , (X∗t )t≥0, (PXx )x∈(X∩EN )∪{4}), where X∗t = Xt1I{t<τ} +41I{t≥τ} and where τ =
inf{t ≥ 0 : R[[1,N ]](Xt) /∈ (0,∞)}. In other words, X∗ is the version of X killed when it gets out of
EN . The life-time of X∗ is τ .

The law of (Yt)t≥0 is the same as that of (X∗t )t≥0 under PXx , quasi-everywhere in X ∩ EN .

We take the convention that R[[1,N ]](4) = 0, so that τ ∈ [0, ζ]. Since R[[1,N ]](Yt) = Dt and
S[[1,N ]](Yt) = Mt for all t ∈ [0, ζ ′), Proposition 10 in particular implies that (R[[1,N ]](Xt))t≥0 and
(S[[1,N ]](Xt))t≥0 are some independent squared Bessel process and Brownian motion until the first
time (R[[1,N ]](Xt))t≥0 vanishes. This actually holds true until explosion, as shown in Lemma 11
below. The quasi-everywhere notion refers to the Hunt process X. Observe that when θ ≥ 2, we
have k0 ≤ N , so that X ∩ EN = X and X = X∗.
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Proof. We slice the proof in several steps. The two first steps are more or less classical, even if we
give all the details: we determine the Dirichlet spaces of the three processes (Mt)t≥0, (Dt)t≥0 and
(Ut)t≥0 involved in the construction of (Yt)t≥0; then we compute the Dirichlet space of (Dρt)t≥0;
we next identify the Dirichlet space of (Dρt , Ut)t≥0, which allows us to find the one of (Dt, UAt)t≥0

by a second time-change; by concatenation, we deduce the Dirichlet space of (Mt, Dt, UAt)t≥0.
The main computations are handled in Steps 3 and 4, where we find the Dirichlet space of (Yt)t≥0,
which allows us to conclude in Step 5 by uniqueness.

Step 1. First, take U = (ΩU ,MU , (Ut)t≥0, (PUu )u∈U4) as in Proposition 6-(ii).

Second, consider a 2-dimensional Brownian motion M = (ΩM ,MM , (Mt)t≥0, (PMz )z∈R2) with

diffusion constant N−1/2. We know from [11, Example 4.2.1 page 167] that M is a dz-symmetric
(here dz is the Lebesgue measure on R2) diffusion with regular Dirichlet space (EM ,FM ) on
L2(R2,dz) with core C∞c (R2) and for all ϕ ∈ C∞c (R2),

(24) EM (ϕ,ϕ) =
1

2N

∫
R2

‖∇zϕ(z)‖2dz.

Finally, let D = (ΩD,MD, (Dt)t≥0, (PDr )r∈R∗+∪{4}) be a squared Bessel process of dimension

dθ,N (N) killed when it gets out of R∗+ = (0,∞) and set ν = dθ,N (N)/2 − 1, see Revuz-Yor [21,
page 443]. Fukushima [10, Theorem 3.3] tells us that D is a rνdr-symmetric diffusion (here dr is
the Lebesgue measure on R∗+) with regular Dirichlet space (ED,FD) on L2(R+, r

νdr) with core
C∞c (R∗+) where for all ϕ ∈ C∞c (R∗+),

(25) ED(ϕ,ϕ) = 2

∫
R+

|ϕ′(r)|2rν+1dr.

Together with [10, Theorem 3.3], this uses that the scale function and the speed measure of (Dt)t≥0

are respectively r 7→ r−ν and −[rν/(2ν)]dr. Actually, we don’t take the speed measure as reference
measure but rνdr which is the same up to a constant.

Step 2. We apply Lemma B.3 to D with g(r) = 1/r, i.e. with At =
∫ t

0
D−1
s ds =

∫ t∧τD
0

D−1
s ds

thanks to the convention 4−1 = 0 and recall that ρ is its generalized inverse: we find that setting
Dρt = Dρt1I{ρt<∞} +41I{ρt=∞},

Dρ = (ΩD,MD, (Dρt)t≥0, (PDr )r∈R∗+)

is a rν−1dr-symmetric (R∗+ ∪ {4})-valued diffusion with regular Dirichlet space (EDρ ,FDρ) on
L2(R+, r

ν−1dr) with core C∞c (R∗+) such that for all ϕ ∈ C∞c (R∗+),

(26) EDρ(ϕ,ϕ) = ED(ϕ,ϕ) = 2

∫
R+

|ϕ′(r)|2rν+1dr = 2

∫
R+

|rϕ′(r)|2rν−1dr.

We use Lemma B.5 and the notation therein: recalling thatM(D,U) = σ((Dρt , Ut) : t ≥ 0), with

the convention that (r,4) = (4, u) = (4,4) = 4, and that P(D,U)
(r,u) = PDr ⊗ PUu if (r, u) ∈ R∗+ × U

and P(D,U)
4 = PD4 ⊗ PU4, it holds that

(Dρ,U) =
(

ΩD × ΩU ,M(D,U), (Dρt , Ut)t≥0, (P(D,U)
(r,u) )(r,u)∈(R∗+×U)∪{4}

)



20 NICOLAS FOURNIER AND YOAN TARDY

is a rν−1drβ(du)-symmetric (R∗+×U)∪{4}-valued diffusion with regular Dirichlet space given by

(E(Dρ,U),F (Dρ,U)) on L2(R+×S, rν−1drβ(du)) with core C∞c (R∗+×U), and for all ϕ ∈ C∞c (R∗+×U),

E(Dρ,U)(ϕ,ϕ) =

∫
R+

EU (ϕ(r, ·), ϕ(r, ·))rν−1dr +

∫
S
EDρ(ϕ(·, u), ϕ(·, u))β(du).

We now apply Lemma B.3 to (Dρ,U) with g(r, u) = r for all r ∈ R∗+ and all u ∈ U . We consider

the time-change αt =
∫ t

0
g(Dρs , Us)ds, with the convention that g(r, u) = 0 as soon as (r, u) = 4.

We also set Bt = inf{s > 0 : αs > t}. As we will see in a few lines, it holds that

(27) (DρBt
, UBt) = (Dt, UAt) for all t ≥ 0.

Hence Lemma B.3 tells us that

(D,UA) =
(

ΩD × ΩU ,M(D,U), (Dt, UAt)t≥0, (P(D,U)
(r,u) )(r,u)∈(R∗+×U)∪{4}

)
is a rνdrβ(du)-symmetric (R∗+×U)∪{4}-valued diffusion with Dirichlet space (E(D,UA),F (D,UA))
on L2(R+ × S, rνdrβ(du)), regular with core C∞c (R∗+ × U) and for all ϕ ∈ C∞c (R∗+ × U),

E(D,UA)(ϕ,ϕ) = E(Dρ,U)(ϕ,ϕ) =

∫
R+

EU (ϕ(r, ·), ϕ(r, ·))rν−1dr +

∫
S
EDρ(ϕ(·, u), ϕ(·, u))β(du).(28)

We now check the claim (27). Recall that D explodes at time τD, that At =
∫ t∧τD

0
D−1
s ds and

that ρ is the generalized inverse of A. Hence (ρt)t∈[0,AτD ) is the true inverse of (At)t∈[0,τD) and

we have ρ′t = Dρt , whence ρt =
∫ t

0
Dρsds for t ∈ [0, AτD ). We also have ρt = ∞ for t ≥ AτD .

Next, αt =
∫ t

0
Dρsds = ρt for t ∈ [0, AτD ∧ ξ), because g(Dρs , Us) = Dρs if (Dρs , Us) 6= 4, i.e. if

s < AτD ∧ ξ. Hence B, the generalized inverse of α, equals A during [0, τD ∧ ρξ), thus in particular
ρBt = t for t ∈ [0, AτD ∧ ξ). As conclusion, (27) holds true for t ∈ [0, AτD ∧ ξ). If now t ≥ τD ∧ ρξ,
then Bt =∞, because B is the generalized inverse of α and because for all t ≥ 0,

αt ≤ αAτD∧ξ = ρAτD∧ξ = τD ∧ ρξ.

Hence, still if t ≥ τD ∧ ρξ, we have (DρBt
, UBt) = 4, while (Dt, UAt) = 4 because either t ≥ τD

and thus Dt = 4 or t ≥ ρξ and thus At ≥ ξ so that UAt = 4. We have proved (27).

We finally conclude, thanks to Lemma B.5 again, setting M(M,D,U) = σ((Mt, Dt, UAt) : t ≥ 0)

with the convention that (z,4) = 4 and setting P(M,D,U)
(z,r,u) = PMz ⊗ P(D,U)

(r,u) in the case where

(z, r, u) ∈ R2 × R∗+ × U and P(M,D,U)
4 = PM4 ⊗ P(D,U)

4 , that

(M,D,UA) =
(

ΩM × ΩD × ΩU ,M(M,D,U), (Mt, Dt, UAt)t≥0, (P(M,D,U)
(z,r,u) )(z,r,u)∈(R2×R∗+×U)∪{4}

)
is a dzrνdrβ(du)-symmetric (R2 × R∗+ × U) ∪ {4}-valued diffusion with regular Dirichlet space

(E(M,D,UA),F (M,D,UA)) on L2(R2×R+×S,dzrνdrβ(du)), with core C∞c (R2×R∗+×U). Moreover,
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for all ϕ ∈ C∞c (R2 × R∗+ × U),

E(M,D,UA)(ϕ,ϕ) =

∫
R+×S
EM (ϕ(·, r, u), ϕ(·, r, u))rνdrβ(du) +

∫
R2

E(D,UA)(ϕ(z, ·, ·), ϕ(z, ·, ·))dz

=

∫
R+×S
EM (ϕ(·, r, u), ϕ(·, r, u))rνdrβ(du) +

∫
R2×S
EDρ(ϕ(z, ·, u), ϕ(z, ·, u))dzβ(du)

+

∫
R2×R+

EU (ϕ(z, r, ·), ϕ(z, r, ·))dzrν−1dr

=

∫
R2×R+×S

[ 1

2N
||∇zϕ(z, r, u)||2 + 2r|∂rϕ(z, r, u)|2 +

1

2r
||∇Sϕ(z, r, u)||2

]
dzrνdrβ(du).(29)

For the second line, we used (28). For the last line, we used (24), (26) and the expression of EU ,
see Proposition 6-(ii).

Step 3. We recall that Yt = Ψ(Mt, Dt, UAt), where Ψ(z, r, u) = γ(z) +
√
ru for (z, r, u) ∈

R2 × R∗+ × U and Ψ(z, r, u) = 4 for (z, r, u) = 4. One easily checks that Ψ is a bijection from
(R2 × R∗+ × U) ∪ {4} to (X ∩ EN ) ∪ {4}, recall that X = Ek0 and U = Ek0 ∩ S.

We now study

Y = (ΩY ,MY , (Yt)t≥0, (PYy )y∈(X∩EN )∪{4}),

where ΩY = ΩM × ΩD × ΩU , MY =M(M,D,U) and PYy = P(M,D,U)
(z,r,u) for (z, r, u) = Ψ−1(y).

First, Y is a (X ∩EN )∪{4}-valued diffusion, because the bijection Ψ from (R2×R∗+×U)∪{4}
to (X ∩ EN ) ∪ {4} is continuous, both sets being endowed with the one-point compactification
topology, see Subsection B.1.

Next, we prove that Y is µ-symmetric: if ϕ,ψ are nonnegative measurable functions on X ∩EN
and t ≥ 0, we have, thanks to Lemma A.2 (recall that ν = dθ,N (N)/2− 1),∫

(R2)N
[PYt ϕ(y)]ψ(y)µ(dy) =

1

2

∫
R2×R+×S

[(PYt ϕ)(Ψ(z, r, u))]ψ(Ψ(z, r, u))rνdzdrβ(du).

But (PYt ϕ)(Ψ(z, r, u)) = E(z,r,u)[ϕ(Ψ(Mt, Dt, UAt))] = P
(M,D,UA)
t (ϕ ◦Ψ)(z, r, u), so that∫

(R2)N
[PYt ϕ(y)]ψ(y)µ(dy) =

1

2

∫
R2×R+×S

[P
(M,D,UA)
t (ϕ ◦Ψ)(z, r, u)][(ψ ◦Ψ)(z, r, u)]rνdzdrβ(du).

Using that (M,D,UA) is dzrνdrβ(du)-symmetric and then the same computation in reverse order,
one concludes that

∫
(R2)N

[PYt ϕ]ψdµ =
∫

(R2)N
ϕ[PYt ψ]dµ as desired.

Thus Y has a Dirichlet space (EY ,FY ) on L2((R2)N , µ) that we now determine. For ϕ ∈
L2((R2)N , µ), using as above Lemma A.2 and that (PYt ϕ)(Ψ(z, r, u)) = P

(M,D,UA)
t (ϕ ◦Ψ)(z, r, u),

1

t

∫
(R2)N

(PYt ϕ− ϕ)ϕdµ

=
1

2t

∫
R2×R∗+×S

[P
(M,D,UA)
t (ϕ ◦Ψ)(z, r, u)− (ϕ ◦Ψ)(z, r, u)][ϕ ◦Ψ(z, r, u)]rνdzdrβ(du).
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Since Ψ is bijective, we deduce, see [11, Lemma 1.3.4 page 23], that

FY =
{
ϕ ∈ L2((R2)N , µ) : ϕ ◦Ψ ∈ F (M,D,UA)

}
(30)

and for ϕ ∈ FY , EY (ϕ,ϕ) =
1

2
E(M,D,UA)(ϕ ◦Ψ, ϕ ◦Ψ).(31)

Step 4. We now compute EY (ϕ,ϕ) for ϕ ∈ C∞c (X ∩ EN ), so that ϕ ◦ Ψ ∈ C∞c (R2 × R∗+ × U).
Thanks to (29) and (31), we have

EY (ϕ,ϕ) =
1

2

∫
R2×R+×S

I(z, r, u)dzrνdrβ(du),(32)

where

I(z, r, u) =
1

2N
||∇z(ϕ ◦Ψ)(z, r, u)||2 + 2r|∂r(ϕ ◦Ψ)(z, r, u)|2 +

1

2r
||∇S(ϕ ◦Ψ)(z, r, u)||2.

We recall that for ϕ : (R2)N → R, we call ∇ϕ(x) = ((∇ϕ(x))1, . . . , (∇ϕ(x))N ) ∈ (R2)N the total
gradient of ϕ at x ∈ (R2)N , and we have (∇ϕ(x))i ∈ R2 for each i ∈ [[1, N ]]. And for φ : O → Rp,
where O is open in Rn, we denote by dzφ the differential of φ at z ∈ O.

We start with the study of Ψ(z, r, u) = γ(z) +
√
ru, where we recall that γ was introduced in

Section 2 and that ΦS(x) = πHx/||πHx|| is defined on a neighborhood of S in (R2)N , see (10). It
holds that for all (z, r, u) ∈ R2 × R∗+ × S and all h ∈ R2, k ∈ R and ` ∈ (R2)N ,

dzΨ(·, r, u)(h) = γ(h), drΨ(z, ·, u)(k) =
k

2
√
r
u, du[Ψ(z, r,ΦS(·))](`) =

√
rπu⊥(πH(`)),

For the first equality, it suffices to use that γ is linear, so that dzΨ(·, r, u)(h) = dzγ(h) = γ(h).
The second equality is obvious. For the third equality, which is the differential at u ∈ S of the
function F (x) = γ(z) +

√
rΦS(x) defined for x ∈ EN (which is open in (R2)N and contains S), we

write duF =
√
rduΦS. But ΦS = G ◦ πH , where G(x) = x/||x||, and we have duπH = πH and

dπH(u)G = duG = πu⊥ for u ∈ S. All in all, duF =
√
rπu⊥ ◦ πH .

First, we have ∇z(ϕ ◦Ψ)(z, r, u) =
∑N
i=1[∇ϕ(Ψ(z, r, u))]i. Indeed, for all h ∈ R2, it holds that

dz(ϕ ◦Ψ(·, r, u))(h) = (dΨ(z,r,u)ϕ)[(dzΨ(·, r, u))(h)] = (dΨ(z,r,u)ϕ)(γ(h)) = ∇ϕ(Ψ(z, r, u)) · γ(h),

which, by definition of γ, equals h ·
∑N
i=1[∇ϕ(Ψ(z, r, u))]i.

This implies that

(33)
1

2N
‖∇z(ϕ ◦Ψ(z, r, u))‖2 =

1

2N

∥∥∥ N∑
i=1

[∇ϕ(Ψ(z, r, u))]i
∥∥∥2

=
1

2
‖πH⊥(∇ϕ(Ψ(z, r, u)))‖2.

Indeed, recalling the expression of πH , see Section 2, it suffices to note that for all x ∈ (R2)N ,

‖πH⊥(x)‖2 = ‖γ(S[[1,N ]](x))‖2 = N‖S[[1,N ]](x)‖2 = N−1‖
∑N
i=1 x

i‖2.

Next, ∂r(ϕ ◦Ψ)(z, r, u) = (∇ϕ)(Ψ(z, r, u)) · u/(2
√
r). Indeed, for k ∈ R,

dr(ϕ ◦Ψ(z, ·, u))(k) = (dΨ(z,r,u)ϕ)[(drΨ(z, ·, u))(k)] = (dΨ(z,r,u)ϕ)(u)× k

2
√
r
,

which is nothing but (∇ϕ)(Ψ(z, r, u)) · u× k/(2
√
r).
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This implies, recalling that πu is the orthogonal projection on Span(u) ⊂ (R2)N , that

(34) 2r|∂r(ϕ ◦Ψ)(z, r, u)|2 =
1

2
‖πu((∇ϕ)(Ψ(z, r, u)))‖2 =

1

2
‖πH(πu((∇ϕ)(Ψ(z, r, u))))‖2

since u ∈ S, so that ||u|| = 1 and u ∈ H.

Finally, ∇S(ϕ ◦Ψ)(z, r, u) =
√
rπH(πu⊥(∇ϕ(Ψ(z, r, u)))). Indeed, for all ` ∈ (R2)N ,

du((ϕ ◦Ψ)(z, r,ΦS(·)))(`) =(dΨ(z,r,u)ϕ)(du[Ψ(z, r,ΦS(·))](`))
=
√
r(dΨ(z,r,u)ϕ)(πu⊥(πH(`)))

=
√
r∇ϕ(Ψ(z, r, u)) · πu⊥(πH(`))

=
√
rπH(πu⊥(∇ϕ(Ψ(z, r, u)))) · `,

and we conclude since ∇S(ϕ ◦Ψ)(z, r, u) = ∇x((ϕ ◦Ψ)(z, r,ΦS(·)))(u) by definition of ∇S, see (12).

This implies that

(35)
1

2r
||∇S(ϕ ◦Ψ)(z, r, u)||2 =

1

2
‖πH(πu⊥(∇ϕ(Ψ(z, r, u))))‖2.

Gathering (33), (34) and (35), we see that I(z, r, u) = 1
2‖∇ϕ(Ψ(z, r, u))‖2, since for x ∈ (R2)N ,

‖πH⊥(x)‖2 + ‖πH(πu(x))‖2 + ‖πH(πu⊥(x))‖2 = ‖x‖2

because u ∈ S ⊂ H.

Injecting the value of I in (32) and using Lemma A.2, we obtain

EY (ϕ,ϕ) =
1

4

∫
R2×R∗+×S

‖∇ϕ(Ψ(z, r, u))‖2dzrνdrβ(du) =
1

2

∫
(R2)N

‖∇ϕ‖2dµ.

Step 5. As a last technical step, we verify that (EY ,FY ) is a regular Dirichlet space on
L2((R2)N , µ) with core C∞c (X ∩ EN ), i.e. that for all ϕ ∈ FY , there is ϕn ∈ C∞c (X ∩ EN )
such that limn ||ϕn − ϕ||L2((R2)N ,µ) + EY (ϕn − ϕ,ϕn − ϕ) = 0.

Recalling (30) and using that (E(M,D,UA),F (M,D,UA)) on L2(R2×R+×S,dzrνdrβ(du)) is regular
with core C∞c (R2 × R∗+ × U), there is gn ∈ C∞c (R2 × R∗+ × U) such that

||gn − ϕ ◦Ψ||L2(R2×R+×S,dzrνdrβ(du)) + E(M,D,UA)(gn − ϕ ◦Ψ, gn − ϕ ◦Ψ)→ 0.

Setting ϕn = gn ◦Ψ−1, it holds that ϕn ∈ C∞c (X ∩ EN ) and we have, by (31),

EY (ϕn − ϕ,ϕn − ϕ) =
1

2
E(M,D,UA)(gn − ϕ ◦Ψ, gn − ϕ ◦Ψ)→ 0,

as well as, by Lemma A.2,

||ϕn − ϕ||L2((R2)N ,µ) =
1

2
||gn − ϕ ◦Ψ||L2(R2×R+×S,dzrνdrβ(du)) → 0.

Step 6. By Steps 3, 4 and 5, we know that Y is a µ-symmetric (X ∩ EN ) ∪ {4}-valued
diffusion with regular Dirichlet space (EY ,FY ) with core C∞c (X ∩ EN ) and with EY (ϕ,ϕ) =
1
2

∫
(R2)N

||∇ϕ||2dµ for ϕ ∈ C∞c (X ∩ EN ).

Now, applying Lemma B.6 to X defined in Proposition 6-(i) with the open set X ∩ EN , we
see that X∗, i.e. X killed when getting outside X ∩ EN , is a µ-symmetric (X ∩ EN ) ∪ {4}-
valued diffusion process with regular Dirichlet space (EX∗ ,FX∗) with core C∞c (X ∩EN ) and with
EX∗(ϕ,ϕ) = 1

2

∫
(R2)N

||∇ϕ||2dµ for ϕ ∈ C∞c (X ∩ EN ).
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This implies, as recalled in Subsection B.1, that (EX∗ ,FX∗) = (EY ,FY ). The conclusion follows
by uniqueness, see [11, Theorem 4.2.8 p 167]. �

Actually, (R[[1,N ]](Xt))t≥0 and (S[[1,N ]](Xt))t≥0 are some independent squared Bessel process and
Brownian motion until explosion (and not only until the first time where R[[1,N ]](Xt) = 0, as shown
in Proposition 10), a fact that we shall often use.

Lemma 11. We fix N ≥ 2 and θ > 0 such that N > θ and we consider a QKS(θ,N)-process
X = (ΩX ,MX , (Xt)t≥0, (PXx )x∈X4). Quasi-everywhere, there are a 2D-Brownian motion (Mt)t≥0

with diffusion constant N−1/2 issued from S[[1,N ]](x) and a squared Bessel process (Dt)t≥0 with
dimension dθ,N (N) issued from R[[1,N ]](x) (killed when it gets out of (0,∞) if dθ,N (N) ≤ 0) inde-

pendent of (Mt)t≥0 such that PXx -a.s., S[[1,N ]](Xt) = Mt and R[[1,N ]](Xt) = Dt for all t ∈ [0, ζ).

Proof. If θ ≥ 2, this follows from Proposition 10: setting τ = inf{t > 0 : R[[1,N ]](Xt) /∈ (0,∞)}, we
have τ = ζ. Indeed, on {τ < ζ}, we have Xτ /∈ EN , whence Xτ /∈ X since X = Ek0 with k0 ≤ N
(because θ ≥ 2), which contradicts the fact that τ < ζ.

We now suppose that θ < 2, so that k0 > N and thus X = (R2)N . We introduce the shortened
notation R(x) = R[[1,N ]](x), S(x) = S[[1,N ]](x) and split the proof in three parts.

Step 1. First, one can show similarly (but much more easily) as in the proof of Proposition 10
that there exists a 2D-Brownian motion (Mt)t≥0 independent of (Xt − γ(S(Xt)))t≥0, such that
S(Xt) = Mt for all t ∈ [0, ζ). This moreover shows that (Mt)t≥0 is independent of (R(Xt))t≥0,
because R(Xt) = ‖Xt − γ(S(Xt))‖2.

Step 2. We consider some function gm ∈ C∞c ((R2)N ) such that gm = 1 on B(0,m) and
supα∈(0,1] supx∈(R2)N |LXα gm(x)| <∞. Such a function exists by Remark 14. For ϕ ∈ C∞c (R+), we

set ψ(x) = ϕ(R(x)) and show that ψgm ∈ DAX and that for all x ∈ B(0,m),

AX(ψgm)(x) =2R(x)ϕ′′(R(x)) + dθ,N (N)ϕ′(R(x)).(36)

To this end, we apply Remark 8. Since ψgm ∈ C∞c ((R2)N ) and since X = (R2)N , we have
to show that supα∈(0,1] supx∈(R2)N |LXα (ψgm)(x)| < ∞, and we will deduce that AX(ψgm) =

LX(ψgm). By (22), we have LXα (ψgm) = gmLXα ψ + ψLXα gm + ∇ψ · ∇gm. The only difficulty
consists in showing that supα∈(0,1] supx∈(R2)N |LXα ψ(x)| <∞. Using that ∇xiR(x) = 2(xi−S(x)),

we find ∇xiψ(x) = 2(xi − S(x))ϕ′(R(x)). Hence by symmetry,

θ

N

∑
1≤i 6=j≤N

xi − xj

‖xi − xj‖2 + α
· ∇xiψ(x) =

2θ

N
ϕ′(R(x))

∑
1≤i 6=j≤N

xi − xj

‖xi − xj‖2 + α
· xi

=
θ

N
ϕ′(R(x))

∑
1≤i 6=j≤N

‖xi − xj‖2

‖xi − xj‖2 + α
.(37)

Besides, ∆xiψ(x) = 4(1− 1/N)ϕ′(R(x)) + 4‖xi − S(x)‖2ϕ′′(R(x)), whence

∆ψ(x) =4(N − 1)ϕ′(R(x)) + 4R(x)ϕ′′(R(x)).(38)

We conclude by combining (37) and (38) that

LXα ψ(x) =2R(x)ϕ′′(R(x)) +
(

2(N − 1)− θ

N

∑
1≤i 6=j≤N

‖xi − xj‖2

‖xi − xj‖2 + α

)
ϕ′(R(x)).
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We immediately deduce, since ϕ is compactly supported, that supα∈(0,1] supx∈(R2)N |LXα ψ(x)| <∞,

whence supα∈(0,1] supx∈(R2)N |LXα (ψgm)(x)| < ∞. Hence ψgm ∈ DAX and AX(ψgm) = LX(ψgm).

Moreover, recalling that LXψ = LXα ψ with α = 0 and that gm = 1 on B(0,m), we conclude that
AX(ψgm)(x) = LX0 ψ(x) for x ∈ B(0,m), whence (36), because 2(N − 1)− θ(N − 1) = dθ,N (N).

Step 3. We define ζm = inf{t > 0 : Xt /∈ B(0,m)}. By Lemma B.2 and Step 1, for all

ϕ ∈ C∞c (R+), quasi-everywhere in B(0,m), ϕ(R(Xt∧ζm)) − ϕ(R(x)) −
∫ t∧ζm

0
LXϕ(R(Xs))ds is a

PXx -martingale. Recalling (36), we classically conclude that there is a Brownian motion W such

that R(Xt) = R(x) + 2
∫ t

0

√
R(Xs)dWs + dθ,N (N)t during [0, ζn]. We recognize the S.D.E. of a

squared Bessel process with dimension dθ,N (N), see Revuz-Yor [21, Chapter XI]. Since we know
from Remark 7 that ζ = limm ζm, the proof is complete. �

6. Some cutoff functions

We will need several times to approximate some indicator functions by some smooth functions,
on which the generator LX (or LU ) is bounded. This does not seem obvious, due to the singularity
of LX . We recall that LXα and LUα were defined in (21) and (23).

Lemma 12. Fix N ≥ 2, θ > 0, recall that k0 = d2N/θe and that X = Ek0 . Consider a partition
K = (Kp)p∈[[1,`]] and define, for ε ∈ [0, 1], (with the convention that B(0, 1/0) = (R2)N ),

GK,ε =
{
x ∈ X : min

1≤p 6=q≤`
min

i∈Kp,j∈Kq
||xi − xj ||2 > ε

}
∩B

(
0,

1

ε

)
.

(i) For all ε ∈ (0, 1], there is a family of open relatively compact subsets GnK,ε of GK,0 such that⋃
n≥1

GnK,ε ⊃ GK,ε and for each n ≥ 1, GnK,ε ⊂ Gn+1
K,ε ,

and some of [0, 1]-valued functions ΓnK,ε ∈ C∞c (GK,0) such that for some η ∈ (0, 1], for all n ≥ 1,

Supp ΓnK,ε ⊂ GK,η, ΓnK,ε = 1 on GnK,ε and sup
α∈(0,1]

sup
x∈(R2)N

∣∣∣LXα ΓnK,ε(x)
∣∣∣ <∞.

(ii) With the same sets GnK,ε as in (i), there is a family of functions ΓS,n
K,ε ∈ C∞c (S∩GK,0) with

values in [0, 1] such that for all n ≥ 1,

ΓS,n
K,ε = 1 on S ∩GnK,ε and sup

α∈(0,1]

sup
u∈S

∣∣∣LUαΓS,n
K,ε(u)

∣∣∣ <∞.
The section is devoted to the proof of this lemma. We start with the following technical result.

Lemma 13. We define the family (c`)`∈[[1,N ]] by c0 = 1 and for all ` ∈ [[1, N−1]], c`+1 = (2+4`)c`.

For all K ( [[1, N ]], all ε ∈ (0, 1], all x ∈ (R2)N such that

RK(x) ≤ 2c|K|ε and min
j /∈K

RK∪{j}(x) ≥ c|K|+1ε,

it holds that ‖xi − xj‖2 ≥ c|K|ε for all i ∈ K, all j /∈ K.

Proof. We fixK ( [[1, N ]], ε ∈ (0, 1] and x ∈ (R2)N as in the statement and assume by contradiction
that there are i0 ∈ K, j0 /∈ K such that ‖xi0 − xj0‖2 < c|K|ε. Then for all i ∈ K,

‖xj0 − xi‖2 ≤ 2‖xi0 − xj0‖2 + 2‖xi0 − xi‖2 ≤ 2‖xi0 − xj0‖2 + 2|K|RK(x) < (2 + 4|K|)c|K|ε.
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This implies that

RK∪{j0}(x) =
1

2(|K|+ 1)

(
2|K|RK(x) + 2

∑
i∈K
‖xj0 − xi‖2

)
≤ RK(x) +

1

|K|+ 1

∑
i∈K
‖xj0 − xi‖2,

whence

RK∪{j0}(x) < 2c|K|ε+
2 + 4|K|
|K|+ 1

|K|c|K|ε < (2 + 4|K|)c|K|ε = c|K|+1ε,

which is a contradiction. �

We are now ready to give the

Proof of Lemma 12. We introduce some nondecreasing C∞ function % : R+ → [0, 1] such that
% = 0 on [0, 1/2] and % = 1 on [1,∞). We divide the proof in three steps.

Step 1. We fix n ≥ 1 and define, for K ⊂ [[1, N ]], using the family (c`)`∈[[1,N ]] of Lemma 13,

ẼK,n =
{
x ∈ (R2)N : ∀ L ⊃ K, RL(x) >

c|L|

n

}
and Γ̃K,n(x) =

∏
L⊃K

%
(nRL(x)

c|L|

)
,

where {L ⊃ K} = {L ⊂ [[1, N ]] : K ⊂ L}. We have

(39) Γ̃K,n ∈ C∞((R2)N ), Supp Γ̃K,n ⊂ ẼK,2n and Γ̃K,n = 1 on ẼK,n.

Since RK(x) > 0 implies that RL(x) > 0 for all L ⊃ K, we also have

(40) ∪n≥1ẼK,n = ẼK , where ẼK = {x ∈ (R2)N : RK(x) > 0}.

We now show, and this is the main difficulty of the step, that for all A > 0, all K ⊂ [[1, N ]] with

|K| ≥ 2, we have supα∈(0,1] supx∈B(0,A) |LXα Γ̃K,n(x)| <∞. Since supx∈B(0,A) |∆Γ̃K,n(x)| <∞, we

only have to verify that supα∈(0,1] supx∈B(0,A) |IK,n,α(x)| <∞, where

IK,n,α(x) =
∑

1≤i 6=j≤N

xi − xj

‖xi − xj‖2
· ∇xi Γ̃K,n(x) =

∑
L⊃K

fK,L,n(x)
∑

1≤i6=j≤N

xi − xj

‖xi − xj‖2
· ∇xiRL(x),

with

fK,L,n(x) =
n

c|L|
%′
(nRL(x)

c|L|

) ∏
M⊃K,M 6=L

%
(nRM (x)

c|M |

)
.

Using that ∇xiRL(x) = 2(xi − SL(x))1I{i∈L}, we now write

IK,n,α(x) = 2
∑
L⊃K

fK,L,n(x)(AL,α(x) +BL,α(x)),

where,

AL,α(x) =
∑

i,j∈L,i6=j

(xi − xj) · (xi − SL(x))

‖xi − xj‖2 + α
and BL,α(x) =

∑
i∈L,j∈Lc

(xi − xj) · (xi − SL(x))

‖xi − xj‖2 + α
.

We have supα∈(0,1] supx∈B(0,A) |fK,L,n(x)AL,α(x)| <∞ because fK,L,n is bounded and because

AL,α(x) =
∑

i,j∈L,i6=j

(xi − xj) · xi

‖xi − xj‖2 + α
=

1

2

∑
i,j∈L,i 6=j

‖xi − xj‖2

‖xi − xj‖2 + α
∈
[
0,
|L|(|L| − 1)

2

]
.

Next, we assume that L ( [[1, N ]] (else BL,α(x) = 0) and observe that fK,L,n(x) 6= 0 implies that
RL(x) < c|L|/n (because %′ = 0 on [1,∞)) and that mini/∈LRL∪{i}(x) > c|L|+1/(2n) (because % = 0
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on [0, 1/2]). By Lemma 13, this implies that mini∈L,j∈Lc ||xi − xj ||2 ≥ c|L|/(2n). We immediately
conclude that supα∈(0,1] supx∈B(0,A) |fK,L,n(x)BL,α(x)| <∞.

Step 2. We can now prove (i). We fix ε ∈ (0, 1] and a partition K = (Kp)p∈[[1,`]] of [[1, N ]]. For
some m ≥ 1 to be chosen later (as a function of ε), for each n ≥ 1, we set

GnK,ε = B(0,m) ∩
( ⋂
K⊂[[1,N ]]:|K|=k0

ẼK,n

)
∩
( ⋂

1≤p 6=q≤`

⋂
i∈Kp,j∈Kq

Ẽ{i,j},m

)
,

ΓnK,ε(x) = gm(x)
( ∏
K⊂[[1,N ]]:|K|=k0

Γ̃K,n(x)
)( ∏

1≤p 6=q≤`

∏
i∈Kp,j∈Kq

Γ̃{i,j},m(x)
)
,

where gm(x) = %(m/‖x‖) with the extension gm(0) = 1.

First, GnK,ε is clearly included in Gn+1
K,ε and relatively compact in GK,0. We deduce from (40)

that, setting HK,m = B(0,m) ∩ (∩1≤p 6=q≤` ∩i∈Kp,j∈Kq Ẽ{i,j},m),⋃
n≥1

GnK,ε =
( ⋂
K⊂[[1,N ]]:|K|=k0

ẼK

)
∩HK,m = Ek0 ∩HK,m = X ∩HK,m.

By (40) again, we can choose m large enough so that HK,m contains GK,ε. Next, by (39), it holds
that ΓnK,ε ∈ C∞((R2)N ), that ΓnK,ε = 1 on GnK,ε and that

Supp ΓnK,ε ⊂ B(0, 2m) ∩
( ⋂
K⊂[[1,N ]]:|K|=k0

ẼK,2n

)
∩
( ⋂

1≤p 6=q≤`

⋂
i∈Kp,j∈Kq

Ẽ{i,j},2m

)
,

which is compact in GK,0. Moreover, Supp ΓnK,ε ⊂ HK,2m. Since there exists η ∈ (0, 1] such that
HK,2m ⊂ GK,η, we conclude that Supp ΓnK,ε ⊂ GK,η.

It remains to show that supα∈(0,1] supx∈(R2)N |LXα ΓnK,ε(x)| <∞. Introducing

χnK,ε(x) =
( ∏
K⊂[[1,N ]]:|K|=k0

Γ̃K,n(x)
)( ∏

1≤p 6=q≤`

∏
i∈Kp,j∈Kq

Γ̃{i,j},m(x)
)
,

which belongs to C∞((R2)N ) by Step 1, we have ΓnK,ε = gmχ
n
K,ε(x) (with the chosen value of m)

and thus by (22)

LXα ΓnK,ε(x) = gm(x)LXα χnK,ε(x) + χnK,εLXα gm(x) +∇gm(x) · ∇χnK,ε(x).

The first term is uniformly bounded because gm is bounded and supported in B(0, 2m) and because
supα∈(0,1] supx∈B(0,2m) |LXχnK,ε(x)| < ∞ by Step 1 and (22). The third term is also uniformly

bounded, since χnK,ε ∈ C∞((R2)N ) and since ∇gm is bounded and supported in B(0, 2m). Finally,

the middle term is bounded because χnK,ε is bounded by 1 and because LXα gm is uniformly bounded,

as we now show: ∆gm is obviously bounded since gm ∈ C∞c ((R2)N ) and, since ∇xigm(x) =
−m%′(m/||x||)xi/‖x‖3,∑

1≤i,j≤N

xi − xj

‖xi − xj‖2 + α
· ∇xigm(x) =− m%′(m/||x||)

‖x‖3
∑

1≤i,j≤N

xi − xj

‖xi − xj‖2 + α
· xi

=− m%′(m/||x||)
2‖x‖3

∑
1≤i,j≤N

‖xi − xj‖2

‖xi − xj‖2 + α
.

This last quantity is uniformly bounded, since %′ is bounded and vanishes on [1,∞).
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Step 3. We now prove (ii), by showing that the restriction ΓS,n
K,ε = ΓnK,ε|S satisfies the required

conditions. We obviously have ΓS,n
K,ε ∈ C∞c (S ∩ GK,0) and ΓS,n

K,ε = 1 on S ∩ GnK,ε. It remains to

show that supα∈(0,1] supu∈S |LUαΓS,n
K,ε| < ∞, recall (23). Since ΓS,n

K,ε ∈ C∞(S), ∆SΓS,n
K,ε is bounded.

We thus only have to verify that supα∈(0,1] supu∈S |Tα(u)| <∞, where

Tα(u) = − θ

N

∑
1≤i,j≤N

ui − uj

‖ui − uj‖2 + α
· (∇SΓS,n

K,ε(u))i

Setting biα(u) = − θ
N

∑N
j=1

ui−uj
‖ui−uj‖2+α and using (14),

Tα(u) = bα(u) · ∇SΓS,n
K,ε(u) = bα(u) · πH(πu⊥(∇ΓS,n

K,ε(u))).

Since now b(u) ∈ H and since πH and πu⊥ are self-adjoint, as every orthogonal projection, we get

Tα(u) = πu⊥(bα(u)) · ∇ΓS,n
K,ε(u) = bα(u) · ∇ΓS,n

K,ε(u)− (bα(u) · u)(u · ∇ΓS,n
K,ε(u)).

But bα(u) · ∇ΓS,n
K,ε(u) = LXα ΓS,n

K,ε(u) − 1
2∆ΓS,n

K,ε(u) is uniformly bounded by point (i) and since

∆ΓS,n
K,ε(u) is bounded on S. Next, u · ∇ΓS,n

K,ε(u) is smooth and thus bounded on S. Finally,

bα(u) · u = − θ

N

∑
1≤i,j≤N

(ui − uj) · ui

‖ui − uj‖2 + α
= − θ

2N

∑
1≤i,j≤N

‖ui − uj‖2

‖ui − uj‖2 + α

is also uniformly bounded. �

Remark 14. We have proved in Step 2 that for each m > 0, gm ∈ C∞c ((R2)N ) satisfies gm = 1
on B(0,m) and supα∈(0,1] supx∈(R2)N |LXα gm(x)| <∞.

7. A Girsanov theorem for the Keller-Segel particle system.

In this section, we prove a rigorous version of the intuitive argument presented in Subsection 3.4.

For x ∈ (R2)N , all K ⊂ [[1, N ]], we denote by x|K = (xi)i∈K . For K = (Kp)p∈[[1,`]] a partition

of [[1, N ]], for y1 ∈ (R2)|K1|, . . . , y` ∈ (R2)|K`|, we abusively denote by (yp)p∈[[1,`]] the element y of

(R2)N such that for all i ∈ [[1, `]], y|Ki = yi.

We adopt the convention that for any θ > 0, a QKS(θ, 1)-process is a 2-dimensional Brownian
motion. This is natural in view of (1).

Proposition 15. Let N ≥ 2, θ > 0 such that N > θ and set k0 = d2N/θe. Fix some partition
K = (Kp)p∈[[1,`]] of [[1, N ]] with ` ≥ 2. Consider the state spaces X = Ek0 and, for each p ∈ [[1, `]],

Yp =
{
y ∈ (R2)|Kp| : ∀K ⊂ [[1, |Kp|]] with |K| ≥ k0,

|Kp|∑
i,j=1

||yi − yj ||2 > 0
}
.

Consider

• X = (ΩX ,MX , (Xt)t≥0, (PXx )x∈X4) a QKS(θ,N)-process,

• For all p ∈ [[1, `]], Yp = (Ωp,Mp, (Yp,t)t≥0, (Ppy)y∈Yp4) a QKS(θ|Kp|/N, |Kp|)-process.

We set ΩY =
∏`
p=1 Ωp and Yt = (Yp,t)p∈[[1,`]], with the convention that Yt = 4 as soon as

Yp,t = 4 for some p ∈ [[1, `]]. We also introduce MY = σ(Yt : t ≥ 0), as well as PYy = ⊗`p=1Ppyp for

all y = (yp)p∈[[1,`]] ∈ (R2)N .
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We fix ε ∈ (0, 1], recall that

GK,ε =
{
x ∈ X : min

1≤p 6=q≤`
min

i∈Kp,j∈Kq
‖xi − xj‖2 > ε

}
∩B

(
0,

1

ε

)
,

and set

τK,ε =
{
t ≥ 0 : Xt /∈ GK,ε} and τ̃K,ε =

{
t ≥ 0 : Yt /∈ GK,ε}.

Fix T > 0. Quasi-everywhere in GK,ε, there is a probability measure QT,ε,Kx on (ΩX ,MX),
equivalent to PXx , such that the law of the process (Xt∧T∧τK,ε)t≥0 under QT,ε,Kx is the same as that

of (Yt∧T∧τ̃K,ε)t≥0 on (ΩY ,MY ) under PYx .

Furthermore, the Radon-Nikodym density
dQT,ε,Kx

dPXx
isMX

T∧τK,ε-measurable, where as usualMX
t =

σ(Xs, s ≤ t), and there is a deterministic constant CT,ε,K > 0 such that quasi-everywhere in GK,ε,

C−1
T,ε,K ≤

dQT,ε,Kx

dPXx
≤ CT,ε,K.

The quasi-everywhere notion refers to the process X. Let us mention that for ζ the life-time of
X, we have τK,ε ∈ [0, ζ] when ζ < ∞ because 4 /∈ GK,ε. Although this is not clear at this point
of the paper, the event {τK,ε = ζ} has a positive probability if maxp=1,...,` |Kp| ≥ k0.

Proof. We only consider the case where ` = 2. The general case is heavier in terms of notation
but contains no additional difficulty. We fix K = (K1,K2) a non-trivial partition of [[1, N ]]. The
main idea is to apply Lemma B.7 to X with the function

(41) %(x) = exp(u(x)), where u(x) =
θ

N

∑
i∈K1,j∈K2

log(‖xi − xj‖).

Unfortunately, this is not licit because u /∈ FX .

Step 1. Set Y = (ΩY ,MY , (Yt)t≥0, (PYy )y∈(Y1×Y2)∪{4}) and fix ε ∈ (0, 1] and n ≥ 1. We first
compute the Dirichlet space of Y killed when it gets outside of GnK,ε, recall Lemma 12. Consider
the measures

µ1(dy) =
∏

i,j∈K1,i6=j

||yi − yj ||−θ/Ndy and µ2(dy) =
∏

i,j∈K2,i6=j

||yi − yj ||−θ/Ndy

on (R2)|K1| and (R2)|K2|, with µi(dy) = dy if |Ki| = 1. Recall that µ(dx) = m(x)dx, see (4) and
that by definition, see (41), %(x) =

∏
i∈K1,j∈K2

‖xi − xj‖θ/N : we deduce that

µ1 ⊗ µ2 = %2µ.

By Proposition 6, for p = 1, 2, Yp is a Yp4-valued µp-symmetric (since (θ|Kp|/N)/|Kp| = θ/N)

diffusion with regular Dirichlet space (Ep,Fp) with core C∞c (Yp) and, for ϕ ∈ C∞c (Yp), Ep(ϕ,ϕ) =
1
2

∫
(R2)|Kp|

||∇ϕ||2dµp. This also holds true if e.g. |K1| = 1, see [11, Example 4.2.1 page 167], since

then µ1 is nothing but the Lebesgue measure on R2. Since now µ1⊗µ2 = %2µ, by Lemma B.5, Y is
a %2µ-symmetric X4-valued diffusion with regular Dirichlet space (EY ,FY ) on L2(Y1 ×Y2, %

2dµ)
with core C∞c (Y1 × Y2) and, for ϕ ∈ C∞c (Y1 × Y2),

EY (ϕ,ϕ) =

∫
(R2)|K1|

E2(ϕ(y, ·), ϕ(y, ·))µ1(dy) +

∫
(R2)|K2|

E1(ϕ(·, z), ϕ(·, z))µ2(dz) =
1

2

∫
(R2)N
‖∇ϕ‖2%2dµ.



30 NICOLAS FOURNIER AND YOAN TARDY

Finally, we apply Lemma B.6 to Y with the open set GnK,ε ⊂ X ⊂ Y1×Y2, to find that the resulting
killed process

Yn,ε =
(

ΩY ,MY , (Y n,εt )t≥0, (PYy )y∈GnK,ε∪{4}

)
is a %2µ|GnK,ε -symmetric GnK,ε ∪ {4}-valued diffusion with regular Dirichlet space (EY,n,ε,FY,n,ε)
with core C∞c (GnK,ε) such that for all ϕ ∈ C∞c (GnK,ε),

EY,n,ε(ϕ,ϕ) =
1

2

∫
GnK,ε

||∇ϕ||2%2dµ.

Step 2. We now fix ε ∈ (0, 1] and introduce, for each n ≥ 1, un,ε(x) = u(x)ΓnK,ε(x), recall (41)

and Lemma 12, and %n,ε = exp(un,ε). We check here that the functions un,ε and %n,ε satisfy the
assumptions of Lemma B.7 (to be applied to X), that AX [%n,ε − 1] = LX%n,ε and that

(42) sup
n≥1

sup
x∈X
|un,ε(x)| <∞ and sup

n≥1
sup

x∈GnK,ε
|LX%n,ε(x)| <∞.

First, un,ε ∈ FX because un,ε ∈ C∞c (X ), and |un,ε| is bounded, uniformly in n ≥ 1, because ΓnK,ε
is bounded by 1 and vanishes outside GK,η (see Lemma 12), while u is smooth on GK,η. To show
that AX [%n,ε − 1] = LX%n,ε, it suffices by Remark 8 to verify that %n,ε − 1 ∈ C∞c (X ), which is
clear, and that supα∈(0,1] supx∈(R2)N |LXα %n,ε(x)| <∞. We have

LXα %n,ε(x) = eun,ε(x)LXα un,ε(x) +
1

2
eun,ε(x)‖∇un,ε(x)‖2.

Since un,ε ∈ C∞c ((R2)N ), the only difficulty is to check that supα∈(0,1] supx∈(R2)N |LXα un,ε(x)| <∞.

By (22),

LXα un,ε(x) = ΓnK,ε(x)LXα u(x) + u(x)LXα ΓnK,ε(x) +∇ΓnK,ε(x) · ∇u(x).

Again, the only difficulty consists of the first term, because LXα ΓnK,ε is uniformly bounded by
Lemma 12 and vanishes outside GK,η, while u is smooth on GK,η. Since Supp ΓnK,ε ⊂ GK,η, we

are reduced to show that supα∈(0,1] supx∈GK,η
|LXα u(x)| <∞. But

LXα u =
1

2
∆u− θ

N
Sα, where Sα(x) =

∑
1≤i,j≤N

xi − xj

‖xi − xj‖2 + α
· ∇xiu(x),

and we only have to verify that supα∈(0,1] supx∈GK,η
|Sα(x)| <∞.

For k ∈ K1 and ` ∈ K2, we have

∇xku(x) =
∑
j∈K2

θ

N

xk − xj

‖xk − xj‖2
and ∇x`u(x) =

∑
i∈K1

θ

N

x` − xi

‖x` − xi‖2
.

Hence Sα = S1,α + S2,α + S3,α + S4,α, where

S1,α(x) =
θ

N

∑
i,j∈K1

xi − xj

‖xi − xj‖2 + α
·
∑
k∈K2

xi − xk

‖xi − xk‖2
,

S2,α(x) =
θ

N

∑
i∈K2,j∈K1

xi − xj

‖xi − xj‖2 + α
·
∑
k∈K1

xi − xk

‖xi − xk‖2
,
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and S3,α (resp. S4,α) is defined as S1,α (resp. S2,α) exchanging the roles of K1 and K2. First, S2,α

(and S4,α) is obviously uniformly bounded on GK,η. Next, by symmetry,

S1,α(x) =
θ

2N

∑
i,j∈K1

xi − xj

‖xi − xj‖2 + α

∑
k∈K2

( xi − xk

‖xi − xk‖2
− xj − xk

‖xj − xk‖2
)
.

Moreover, there is Cη > 0 such that for all x ∈ GK,η, all i, j ∈ K1 such that i 6= j, all k ∈ K2,∥∥∥ xi − xk

‖xi − xk‖2
− xj − xk

‖xj − xk‖2
∥∥∥ ≤ Cη‖xi − xj‖,

so that S1,α (and S3,α) is bounded on GK,η, uniformly in α ∈ (0, 1], as desired.

Finally, the above computations, together with the facts that ΓnK,ε = 1 on GnK,ε, also show that
for x ∈ GnK,ε,

LX%n,ε(x) = eu(x)
(1

2
∆u(x)− θ

N
Sα(x)

)
+

1

2
eu(x)||∇u(x)||2,

which is bounded on GK,η. Since GnK,ε ⊂ GK,η, this implies that supn≥1 supx∈GnK,ε |L
X%n,ε(x)|

and completes the step.

Step 3. We apply Lemma B.7 to the process X with un,ε and %n,ε defined in Step 2. Recalling
that AX [%n,ε − 1] = LX%n,ε and using the conventions %n,ε(4) = 1 and LX%n,ε(4) = 0, we set

(43) Ln,εt =
%n,ε(Xt)

%n,ε(X0)
exp

(
−
∫ t

0

LX%n,ε(Xs)

%n,ε(Xs)
ds
)
.

SetMX
t = σ({Xs, s ≤ t}). By Lemma B.7, there is a family of probability measures (Qn,εx )x∈X∪{4}

such that

Qn,εx = Ln,εt · PXx on MX
t

for all t ≥ 0 and quasi-everywhere in X ∪ {4}, and such that

Xn,ε =
(

ΩX ,MX , (Xt)t≥0, (Qn,εx )x∈X4

)
is a %2

n,εµ-symmetric X ∪ {4}-valued diffusion with regular Dirichlet space (En,ε,Fn,ε) with core
C∞c (X ) such that for all ϕ ∈ C∞c (X ),

En,ε(ϕ,ϕ) =
1

2

∫
(R2)N

||∇ϕ||2%2
n,εdµ.

Next, we apply Lemma B.6 to Xn,ε with the open set GnK,ε: the resulting killed process

X∗,n,ε =
(

ΩX ,MX , (X∗,n,εt )t≥0, (Qn,εx )x∈GnK,ε∪{4}

)
is a %2

n,εµ|GnK,ε -symmetric GnK,ε ∪ {4}-valued diffusion with regular Dirichlet space (E∗,n,ε,F∗,n,ε)
with core C∞c (GnK,ε) such that for all ϕ ∈ C∞c (GnK,ε),

E∗,n,ε(ϕ,ϕ) =
1

2

∫
GnK,ε

||∇ϕ||2%2
n,εdµ.

Comparing this Dirichlet space with the one found in Step 1, using that %n,ε = % on GnK,ε and a

uniqueness argument, see [11, Theorem 4.2.8 p 167], we conclude that quasi-everywhere in GnK,ε,

the law of X∗,n,ε under Qn,εx equals the law of Y n,ε under PYx .
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Step 4. We fix T > 0 and ε ∈ (0, 1] and complete the proof. Since Qn,εx = Ln,εT · PXx on MX
T ,

we know from Step 3 that for all n ≥ 1, quasi-everywhere in GnK,ε, for all continuous bounded

Φ : C([0, T ],X4)→ R, (observe that ḠnK,ε ⊂ X ⊂ X4)

EXx [Φ(X·∧τK,n,ε∧T )Ln,εT ] = EYx [Φ(Y·∧τ̃K,n,ε∧T )],

where τK,n,ε = inf{t > 0 : Xt /∈ GnK,ε} ∧ τK,ε and τ̃K,n,ε = inf{t > 0 : Yt /∈ GnK,ε} ∧ τ̃K,ε. Since

(Ln,εt )t≥0 is a PXx -martingale by Lemma B.7, we deduce that quasi-everywhere in GnK,ε,

(44) EXx [Φ(X·∧τK,n,ε∧T )Ln,ετK,n,ε∧T ] = EYx [Φ(Y·∧τ̃K,n,ε∧T )].

Recall that GK,ε ⊂ ∪n≥1G
n
K,ε, see Lemma 12. Hence limn τK,n,ε = τK,ε, limn τ̃K,n,ε = τ̃K,ε,

and for each x ∈ GK,ε, there is nx ≥ 1 such that x ∈ GnK,ε for all n ≥ nx. We deduce from

(44) that quasi-everywhere in GK,ε, the process (Ln,ετK,n,ε∧T )n≥nx is a (MX
τK,n,ε∧T )n≥nx -martingale

under PXx . Moreover, recalling the expression (43) of Ln,ε, that %n,ε = exp(un,ε) and the bound
(42), we conclude that there is a constant CT,ε,K > 0 such that quasi-everywhere in GK,ε,

PXx -a.s., for all n ≥ nx, C−1
T,ε,K ≤ L

n,ε
τK,n,ε∧T ≤ CT,ε,K.

Hence the martingale (Ln,ετK,n,ε∧T )n≥nx is closed by some MτK,ε∧T -measurable random variable

JT,ε,K that satisfies C−1
T,ε,K ≤ JT,ε,K ≤ CT,ε,K, and (44) implies that for all n ≥ nx,

EXx [Φ(X·∧τK,n,ε∧T )JT,ε,K] = EYx [Φ(Y·∧τ̃K,n,ε∧T )].

Letting n→∞, we find that quasi-everywhere in GK,ε, for Φ ∈ Cb(C([0, T ],X4),R),

EXx [Φ(X·∧τK,ε∧T )JT,ε,K] = EYx [Φ(Y·∧τ̃K,ε∧T )].

Setting QT,ε,Kx = JT,ε,K · PXx completes the proof. �

8. Explosion and continuity at explosion

In this section we consider a QKS(θ,N)-process X with life-time ζ. We show that ζ =∞ when
θ ∈ (0, 2) and that ζ <∞ when θ ≥ 2. In the latter case, we also prove that limt→ζ−Xt a.s. exists,
for the usual topology of (R2)N : the Keller-Segel process is continuous at explosion. This is not
clear at all at first sight: we know that limt→ζ−Xt = 4 a.s. for the one-point compactification
topology, which means that the process escapes from every compact of X , but it could either go to
infinity, which is not difficult to exclude, or it could tend to the boundary of X without converging,
e.g. because it could alternate very fast between having its particles labeled in [[1, k0]] very close
and having its particles labeled in [[2, k0 + 1]] very close. The goal of the section is to prove the
following result.

Proposition 16. Fix θ > 0 and N ≥ 2 such that N > θ, set k0 = d2N/θe and X = Ek0 and
consider a QKS(θ,N)-process X = (ΩX ,MX , (Xt)t≥0, (PXx )x∈X∪{4}) with life-time ζ.

(i) If θ < 2, then quasi-everywhere, PXx (ζ =∞) = 1.

(ii) If θ ≥ 2, then quasi-everywhere, PXx -a.s., ζ <∞ and Xζ− = limt→ζ Xt exists for the usual
topology of (R2)N and does not belong to Ek0 .

We first show that the process does not explode in the subcritical case and cannot go to infinity
at explosion in the supercritical case.
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Lemma 17. (i) If θ < 2 and N ≥ 2, then quasi-everywhere, PXx (ζ =∞) = 1.

(ii) If θ ≥ 2 and N > θ, then quasi-everywhere,

PXx
(
ζ <∞ and sup

t∈[0,ζ)

‖Xt‖ <∞
)

= 1.

Proof. The arguments below only apply quasi-everywhere, since we use Proposition 10. In both
cases, we have for all i ∈ [[1, N ]] and all t ∈ [0, ζ),

||Xt||2 ≤ 2

N∑
i=1

(‖Xi
t − S[[1,N ]](Xt)‖2 + ‖S[[1,N ]](Xt)‖2) = 2R[[1,N ]](Xt) + 2N‖S[[1,N ]](Xt)‖2.

By Lemma 11, there are a Brownian motion (Mt)t≥0 and a squared Bessel process (Dt)t≥0 with
dimension dθ,N (N) (killed when it gets out of (0,∞) if dθ,N (N) ≤ 0), such that S[[1,N ]](Xt) = Mt

and R[[1,N ]](Xt) = Dt for all t ∈ [0, ζ). These processes being locally bounded, we conclude that

a.s., for all T > 0, sup
t∈[0,ζ∧T )

‖Xt‖ <∞.(45)

(i) When θ < 2 and N ≥ 2, we have k0 = d2N/θe > N , so that X = (R2)N . Hence on the
event {ζ < ∞}, we necessarily have lim supt→ζ− ||Xt|| = ∞, and this is incompatible with (45)
with T = ζ.

(ii) When N > θ ≥ 2, we have dθ,N (N) ≤ 0, so that (Dt)t≥0 is killed at some finite time τ . It
holds that ζ ≤ τ . Indeed, on the event where τ < ζ, we have R[[1,N ]](Xτ ) = limt→τ−R[[1,N ]](Xt) =
limt→τ−Dt = 0, so that Xτ /∈ Ek0 (since k0 ≤ N), which is not possible since τ < ζ. Hence ζ is
also a.s. finite and it holds that supt∈[0,ζ) ‖Xt‖ <∞ a.s. by (45) with the choice T = ζ. �

To show the continuity at explosion in the supercritical case, we need to prove the following
delicate lemma.

Lemma 18. Assume that N > θ ≥ 2. Quasi-everywhere, for all K ⊂ [[1, N ]] with |K| ≥ 2,

PXx -a.s., lim
t→ζ−

RK(Xt) = 0 or lim inf
t→ζ−

RK(Xt) > 0.

Proof. We proceed by reverse induction on the cardinal of K. If first K = [[1, N ]], the result is
clear because (R[[1,N ]](Xt))t∈[0,ζ) is a (killed) squared Bessel process on [0, ζ) by Lemma 11 (and
since ζ ≤ τ exactly as in the proof of Lemma 17-(ii)), hence it has a limit in R+ as t → ζ.
Then, we assume that the property is proved if |K| ≥ n where n ∈ [[3, N ]], we take K ⊂ [[1, N ]]
such that |K| = n − 1 and we show in several steps that a.s., either limt→ζ−RK(Xt) = 0 or
lim inft→ζ−RK(Xt) > 0.

Step 1. We fix ε ∈ (0, 1] and introduce σ̃ε0 = 0 and, for k ≥ 1,

σεk = inf{t ∈ (σ̃εk−1, ζ) : RK(Xt) ≤ ε} and σ̃εk = inf{t ∈ (σεk, ζ) : RK(Xt) ≥ 2ε},

with the convention that inf ∅ = ζ. We show in this step that for all deterministic A > 0, there
exists a constant pA,ε > 0 such that for all k ≥ 1, quasi-everywhere, on {σεk < ζ},

PXx
(
{σ̃εk ≥ (σεk +A) ∧ ζ} ∪Bk,ε

∣∣∣MX
σεk

)
≥ pA,ε,
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where MX
t = σ(Xs : s ∈ [0, t]), and where, setting aε = c|K|+1ε/c|K| (recall Lemma 13),

Bk,ε =
{

sup
t∈[σεk,σ̃

ε
k)

||Xt|| ≥ 1/ε or inf
t∈[σεk,σ̃

ε
k)

min
i/∈K

RK∪{i}(Xt) ≤ aε
}
.

By the strong Markov property of X, on {σεk < ζ},

PXx
(
{σ̃εk ≥ (σεk +A) ∧ ζ} ∪Bk,ε

∣∣∣MX
σεk

)
= g(Xσεk

),

where

g(y) = PXy
(
{σ̃ε1 ≥ (σε1 +A) ∧ ζ} ∪B1,ε

)
= PXy

(
{σ̃ε1 ≥ A ∧ ζ} ∪ C1,ε

)
and

C1,ε =
{

sup
t∈[0,σ̃ε1)

||Xt|| ≥ 1/ε or inf
t∈[0,σ̃ε1)

min
i/∈K

RK∪{i}(Xt) ≤ aε
}
.

We used that RK(Xσεk
) ≤ ε on {σεk < ζ} by definition of σεk, so that σε1 = 0 under PXXσε

k

. Using

again that RK(Xσεk
) ≤ ε on {σεk < ζ}, it suffices to show that there is a constant pA,ε > 0 such

that g(y) ≥ pA,ε quasi-everywhere in {y ∈ X : RK(y) ≤ ε}.

If first ||y|| ≥ 1/ε or mini/∈K RK∪{i}(y) ≤ aε, then clearly, g(y) = 1.

Otherwise, y ∈ GK,ε, where

GK,ε = {x ∈ X : for all i ∈ K, all j /∈ K, ‖xi − xj‖2 > ε} ∩B(0, 1/ε)

as in Proposition 15 with K = (K,Kc), because ||y|| < 1/ε and because RK(y) ≤ ε < 2ε and
mini/∈K RK∪{i}(y) > aε = c|K|+1ε/c|K| imply that ||xi − xk||2 > ε for all i ∈ K, j /∈ K by
Lemma 13. For the very same reasons and by definition of σ̃ε1, it holds that

(46) Cc1,ε ⊂ {for all t ∈ [0, σ̃ε1), Xt ∈ GK,ε}.
We now apply Proposition 15 with T = A (and ε) and we find that quasi-everywhere in GK,ε,

g(y) ≥C−1
A,ε,KQA,ε,Ky ({σ̃ε1 ≥ A ∧ ζ} ∪ C1,ε)

=C−1
A,ε,KQA,ε,Ky ({σ̃ε1 ≥ A ∧ ζ} ∩ Cc1,ε) + C−1

A,ε,KQA,ε,Ky (C1,ε).(47)

But we know from Proposition 15 and Lemma 11 that under QA,ε,Ky , (RK(Xt))t∈[0,τK,ε∧A] is a
squared Bessel process with dimension dθ|K|/N,|K|(|K|) = dθ,N (|K|), issued from RK(y) ≤ ε,
stopped at time τK,ε ∧ A, where τK,ε = inf{t > 0 : Xt /∈ GK,ε}. Hence there exists, under
QA,ε,Ky , a squared Bessel process (St)t≥0 with dimension dθ,N (|K|) such that St = RK(Xt) for all
t ∈ [0, τK,ε ∧A]. We introduce κε = inf{t > 0 : St ≥ 2ε} and we observe that

{κε ≥ A ∧ ζ} ∩ Cc1,ε = {σ̃ε1 ≥ A} ∩ Cc1,ε.

Indeed, we used that on Cc1,ε, we have τK,ε ≥ σ̃ε1 by (46) so that RK(Xt) = St for all t ∈ [0, σ̃ε1∧A),
from which we conclude that κε ≥ A ∧ ζ if and only σ̃ε1 ≥ A ∧ ζ. Coming back to (47), we get

g(y) ≥C−1
A,ε,KQA,ε,Ky ({κε ≥ A ∧ ζ} ∩ Cc1,ε) + C−1

A,ε,KQA,ε,Ky (C1,ε) = C−1
A,ε,KQA,ε,Ky (κε ≥ A ∧ ζ).

The step is complete, since QA,ε,Ky (κε ≥ A) is the probability that a squared Bessel process with
dimension dθ,N (|K|) issued from RK(y) ≤ ε remains below 2ε during [0, A] and is thus strictly
positive, uniformly in y (such that y ∈ GK,ε and RK(y) ≤ ε).

Step 2. We prove here that for all ε ∈ (0, 1], all A > 0, quasi-everywhere,

PXx
(

lim sup
t→ζ−

||Xt|| ≥ 1/ε or lim inf
t→ζ−

min
i/∈K

RK∪{i}(Xt) ≤ aε or ∃ k ≥ 1, σεk ≥ ζ ∧A
)

= 1.
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All the arguments below only hold quasi-everywhere, even if we do not mention it explicitly during
this step. For k ≥ 1, we introduce, with Bk,ε defined in Step 1,

Ωk+1 = {σεk+1 < ζ ∧A} ∩Bck,ε
and we first show that PXx (lim infk Ωk) = 0. To this end, it suffices to check that for all ` ≥ 1,
PXx (∩∞k=`Ωk) = 0. Since Ωk is Mσεk

-measurable, for all m ≥ ` ≥ 1,

PXx (∩m+1
k=` Ωk) = EXx [1I∩mk=`ΩkP

X
x (Ωm+1|Mσεm

)].

Since moreover ∩mk=`Ωk ⊂ {σεm < ζ} and since σεm+1 ≥ σ̃εm ≥ σ̃εm−σεm, we deduce that on ∩mk=`Ωk,

PXx (Ωm+1|Mσεm
) =1− PXx ({σεm+1 ≥ ζ ∧A} ∪Bm,ε|Mσεm

)

≤1− PXx ({σ̃εm ≥ (σεm +A) ∧ ζ} ∪Bm,ε|Mσεm
),

so that PXx (Ωm+1|Mσεm
) ≤ 1− pA,ε by Step 1. Hence we conclude that

PXx (∩m+1
k=` Ωk) ≤ (1− pA,ε)PXx (∩mk=`Ωk)

for all m ≥ ` ≥ 1, so that PXx (∩∞k=`Ωk) = 0 as desired.

Hence PXx (lim infk Ωk) = 0, so that a.s., an infinite number of Ωck are realized. Recalling that

Ωck+1 =
{
σεk+1 ≥ ζ ∧A or inf

t∈[σεk,σ̃
ε
k)

min
i/∈K

RK∪{i}(Xt) ≤ aε or sup
t∈[σεk,σ̃

ε
k)

||Xt|| ≥ 1/ε
}
,

we find the following alternative:

• either there is k ≥ 1 such that σεk ≥ ζ ∧A;

• or for all k ≥ 1, σεk < ζ and inft∈[σεk,σ̃
ε
k) mini/∈K RK∪{i}(Xt) ≤ aε for infinitely many k’s, which

implies that lim inft→ζ−mini/∈K RK∪{i}(Xt) ≤ aε because necessarily, lim∞ σεk = ζ by definition
of the sequence (σεk)k≥1 and by continuity of t→ RK(Xt) on [0, ζ);

• or for all k ≥ 1, σεk < ζ and there are infinitely many k’s for which supt∈[σεk,σ̃
ε
k) ||Xt|| ≥ 1/ε and

this implies that lim supt→ζ− ||Xt|| ≥ 1/ε, because lim∞ σεk = ζ as previously.

Step 3. We conclude. Applying Step 2, we find that quasi-everywhere, PXx -a.s., for all A ∈ N
and all ε ∈ Q ∩ (0, 1],

lim sup
t→ζ−

||Xt|| ≥ 1/ε or lim inf
t→ζ−

min
i/∈K

RK∪{i}(Xt) ≤ aε or ∃ k ≥ 1, σεk ≥ ζ ∧A.

By Lemma 17-(ii), we know that ζ < ∞, so that choosing A = dζe, we conclude that quasi-
everywhere, PXx -a.s., for all ε ∈ Q ∩ (0, 1]

(48) lim sup
t→ζ−

||Xt|| ≥ 1/ε or lim inf
t→ζ−

min
i/∈K

RK∪{i}(Xt) ≤ aε or ∃ k ≥ 1, σεk = ζ.

And by Lemma 17-(ii) again, lim supt→ζ− ||Xt|| ≤ 1/ε0 for some (random) ε0 ∈ (0, 1].

On the event where lim inft→ζ−mini/∈K RK∪{i}(Xt) = 0, there exists some (random) i0 /∈ K such
that lim inft→ζ−RK∪{i0}(Xt) = 0, whence limt→ζ−RK∪{i0}(Xt) = 0 by induction assumption, and
this obviously implies that limt→ζ−RK(Xt) = 0.

On the complementary event, we fix ε1 ∈ (0, ε0] such that lim inft→ζ−mini/∈K RK∪{i}(Xt) > aε1
and we conclude from (48) and the fact that lim supt→ζ− ||Xt|| ≤ 1/ε0 that for all ε ∈ Q ∩ (0, ε1],
there exists kε ≥ 1 such that σεkε = ζ. Recalling the definition of (σεk)k≥1, we deduce that for all
ε ∈ Q ∩ (0, ε1], RK(Xt) upcrosses the segment [ε, 2ε] a finite number of times during [0, ζ). Hence
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for all ε ∈ (0, ε1] ∩ Q, there exists tε ∈ [0, ζ) such that either RK(Xt) > ε for all t ∈ [tε, ζ) or
RK(Xt) < 2ε for all t ∈ [tε, ζ). If there is ε ∈ Q ∩ (0, ε1] such that RK(Xt) > ε for all t ∈ [tε, ζ),
then lim inft→ζ−RK(Xt) ≥ ε > 0. If next for all ε ∈ Q ∩ (0, ε1], we have RK(Xt) < 2ε for all
t ∈ [tε, ζ), then limt→ζ−RK(Xt) = 0.

Hence in any case, we have either limt→ζ−RK(Xt) = 0 or lim inft→ζ−RK(Xt) > 0. �

We finally give the

Proof of Proposition 16. Point (i), which concerns the subcritical case, has already been checked
in Lemma 17-(i). Concerning point (ii), which concerns the supercritical case θ ≥ 2, we already
know that quasi-everywhere, PXx (ζ < ∞) = 1 by Lemma 17-(ii), and it remains to prove that
PXx -a.s., limt→ζ−Xt exists and does not belong to Ek0 . We divide the proof in four steps.

Step 1. For K = (Kp)p∈[[1,`]] a partition of [[1, N ]] and ε ∈ (0, 1], we consider as in Proposition 15

GK,ε =
{
x ∈ X : min

1≤p 6=q≤`
min

i∈Kp,j∈Kq
‖xi − xj‖2 > ε

}
∩B

(
0,

1

ε

)
and τK,ε = inf{t ≥ 0 : Xt /∈ GK,ε} ∈ [0, ζ]. We show here for each T > 0, quasi-everywhere in
GK,ε, PXx -a.s., for all T > 0, all p ∈ [[1, `]], SKp(Xt) has a limit in R2 as t→ (τK,ε ∧ T )−.

If ` = 1, the result is obvious since S[[1,N ]](Xt) is a Brownian motion during [0, ζ) by Lemma 11.

If next ` ≥ 2, Proposition 15 and Lemma 11 tell us that under QT,ε,Kx , which is equivalent to PXx ,
the processes SKp(Xt) are some Brownian motions on [0, τK,ε ∧ T ), and thus have some limits as
t→ (τK,ε ∧ T )−.

Step 2. For ε ∈ (0, 1] and K = (Kp)p∈[[1,`]] a partition of [[1, N ]], we set η̃K,ε0 = 0 and, for k ≥ 0,

ηK,εk+1 = inf{t ≥ η̃K,εk : Xt ∈ GK,2ε} and η̃K,εk+1 = inf{t ≥ ηK,εk+1 : Xt /∈ GK,ε},

with the convention that inf ∅ = ζ. Using Step 1 and the strong Markov property, we conclude

that quasi-everywhere, PXx -a.s., for all ε ∈ (0, 1] ∩Q, all k ≥ 1, all T ∈ N+, on {ηK,εk < ζ}, for all

p ∈ [[1, `]], SKp(Xt) admits a limit in R2 as t goes to (η̃K,εk ∧ T )−. Choosing T = dζe, we conclude

that quasi-everywhere, PXx -a.s., on {ηK,εk < ζ}, for all ε ∈ (0, 1] ∩Q, all k ≥ 1, all p ∈ [[1, `]],

SKp(Xt) admits a limit in R2 as t goes to η̃K,εk − .

Step 3. We now check that quasi-everywhere, PXx -a.s., there is a partition K = (Kp)p∈[[1,`]] of

[[1, N ]], some ε ∈ (0, 1] ∩ Q and some k ≥ 1 such that (i) ηK,εk < ζ and η̃K,εk = ζ and (ii) for all
p ∈ [[1, `]], limt→ζ−RKp(Xt) = 0.

By Lemma 18, we know that for all K ⊂ [[1, N ]], we have the alternative limt→ζ−RK(Xt) = 0
or lim inft→ζ−RK(Xt) > 0. Hence the partition K = (Kp)p∈[[1,`]] of [[1, N ]] consisting of the classes
of the equivalence relation defined by i ∼ j if and only if limt→ζ R{i,j}(Xt) = 0 satisfies that for
all p ∈ [[1, `]], limt→ζ−RKp(Xt) = 0 and lim inft→ζ−mini/∈Kp RKp∪{i}(Xt) > 0.

Using moreover that lim supt→ζ− ||Xt|| < ∞ according to Lemma 17, we deduce that there is
α ∈ (0, ζ) and ε ∈ (0, 1] ∩Q such that for all t ∈ [α, ζ), Xt belongs to GK,2ε. Finally, we consider
k = max{m ≥ 1 : ηK,εm ≤ α}, which is finite by continuity of t 7→ Xt on [0, α], and it holds that

ηK,εk ≤ α < ζ and that η̃K,εk = ζ.

Step 4. We consider the (random) partition K = (Kp)p∈[[1,`]] introduced in Step 3. By Step 2

and since ηK,εk < ζ and η̃K,εk = ζ, we know that quasi-everywhere, PXx -a.s., for all p ∈ [[1, `]], Mp =
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limt→ζ− SKp(Xt) exists in R2. By Step 3, we know that for all p ∈ [[1, `]], limt→ζ RKp(Xt) = 0.

We easily conclude that quasi-everywhere, PXx -a.s., for all p ∈ [[1, `]], all i ∈ Kp, limt→ζ−X
i
t = Mp.

This shows that quasi-everywhere, PXx -a.s., Xζ− = limt→ζ−Xt exists in (R2)N . Moreover, Xζ−
cannot belong to X = Ek0 , because limt→ζ−Xt = 4 when Ek0∪{4} is endowed with the one-point
compactification topology, see Subsection B.1. �

9. Some special cases

During a K-collision, the particles labeled in K are isolated from the other ones. Thanks to
Proposition 15, it will thus be possible to describe what happens in a neighborhood of the instant
of this K-collision, by studying a QKS(θ|K|/N, |K|)-process. In other words, we may assume that
|K| = N , so that the following special cases, which are the purpose of this section, will be crucial.

Proposition 19. Let N ≥ 4 and θ > 0 such that N > θ. Consider a QKS(θ,N)-process X as in
Proposition 6. Recall that ζ = inf{t ≥ 0 : Xt = 4} and set τ = inf{t ≥ 0 : R[[1,N ]](Xt) /∈ (0,∞)}
with the convention that RK(4) = 0, so that τ ∈ [0, ζ].

(i) If dθ,N (N − 1) ≤ 0 and dθ,N (N) < 2, then quasi-everywhere,

PXx
(

inf
t∈[0,ζ)

R[[1,N ]](Xt) > 0
)

= 1.

(ii) If dθ,N (N − 1) ∈ (0, 2) and dθ,N (N) < 2, then quasi-everywhere, PXx -a.s, for all K ⊂ [[1, N ]]
with cardinal |K| = N − 1, there is t ∈ [0, τ) such that RK(Xt) = 0.

(iii) If 0 < dθ,N (N) < 2 ≤ dθ,N (N − 1), then quasi-everywhere, PXx -a.s, for all K ⊂ [[1, N ]] with
cardinal |K| = 2, there is t ∈ [0, τ) such that RK(Xt) = 0.

The proof of this proposition is very long. First, we recall some notation about the decomposition
of X obtained in Proposition 10 and we study the involved time-change. We then derive a formula
describing RK(Ut), valid on certain time intervals, for any K ⊂ [[1, N ]]. This formula is of course
not closed, but it allows us to compare RK(Ut), when it is close to 0, to some process resembling
a squared Bessel process, of which one easily studies the behavior near 0. Finally, we prove
Proposition 19, unifying a little points (i) and (ii) and treating separately point (iii).

9.1. Notation and preliminaries. We recall the decomposition of Proposition 10, which holds
true quasi-everywhere in X ∩ EN . Consider a Brownian motion (Mt)t≥0 with diffusion coefficient

N−1/2 starting from S[[1,N ]](x), a squared Bessel process (Dt)t≥0 starting from R[[1,N ]](x) > 0 killed
when leaving (0,∞) with life-time τD = inf{t ≥ 0 : Dt = 4} and a QSKS(θ,N) -process (Ut)t≥0

starting from ΦS(x) with life-time ξ = inf{t ≥ 0 : Ut = 4}, all these processes being independent.

For t ∈ [0, τD), we put At =
∫ t

0
ds
Ds

. We also consider the inverse ρ : [0, AτD )→ [0, τD) of A.

Lemma 20. If dθ,N (N) < 2, then τD <∞ and AτD =∞ a.s.

Proof. Since (Dt)t≥0 is a (killed) squared Bessel process with dimension dθ,N (N) < 2, we have
τD <∞ a.s according to Revuz-Yor [21, Chapter XI]. Moreover, there is a Brownian motion (Bt)t≥0

such that Dt = r+ 2
∫ t

0

√
DsdBs + dθ,N (N)t for all t ∈ [0, τD), where r = R[[1,N ]](x) > 0. A simple

computation shows the existence of a Brownian motion (Wt)t≥0 such that for all t ∈ [0, AτD ),

Dρt = r + 2

∫ t

0

DρsdWs + dθ,N (N)

∫ t

0

Dρsds.

Hence for all t ∈ [0, AτD ), Dρt = r exp(2Wt + (dθ,N (N)− 2)t). On the event where AτD <∞, we
have 0 = DτD− = limt→AτD Dρt = exp(2WAτD

+ (dθ,N (N)− 2)AτD ) > 0. Hence AτD =∞ a.s. �
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From now on, we assume that dθ,N (N) < 2. Hence A : [0, τD) → [0,∞) is an increasing
bijection, as well as ρ : [0,∞)→ [0, τD). By Proposition 10, quasi-everywhere in X ∩EN , we can
find a triple (Mt, Dt, Ut)t≥0 as above such that for X our QKS(θ,N) process starting from x, for
all t ∈ [0, τD ∧ ρξ), and actually for all t ∈ [0, ρξ) because ρξ ≤ τD since ρ is [0, τD)-valued,

Xt = Ψ(Mt, Dt, UAt), i.e. Mt = S[[1,N ]](Xt), Dt = R[[1,N ]](Xt) and UAt = ΦS(Xt).

We recall that Ψ(m, r, u) = γ(m) +
√
ru if (m, r, u) ∈ R2 × (0,∞) × U and Ψ(m, r, u) = 4 if

(m, r, u) = 4. Observe that τ = τD ∧ ρξ = ρξ, where τ = inf{t ≥ 0 : R[[1,N ]](Xt) /∈ (0,∞)} ∈ [0, ζ].

We note that if ξ < ∞, then ρξ < τD, because ρ is an increasing bijection from [0,∞) into
[0, τD). Hence, still if ξ <∞, then X explodes at time ρξ strictly before τD, whence

(49) {ξ <∞} ⊂
{

inf
t∈[0,ζ)

R[[1,N ]](Xt) > 0
}
.

Finally note that since U is S-valued, it cannot have a [[1, N ]]-collision. But for any K ⊂ [[1, N ]]
with cardinal |K| ≤ N − 1, it holds that

U has a K-collision at t ∈ [0, ξ) if and only if X has a K-collision at ρt ∈ [0, τ),(50)

which follows from the facts that

• for all (m, r, u) ∈ R2 × (0,∞)× U , RK(Ψ(m, r, u)) = 0 if and only if RK(u) = 0;

• ρ is an increasing bijection from [0, ξ) into [0, τ), because ρξ = τ .

We conclude this subsection with a remark about the quasi-everywhere notions of X and U, in
the case where they are related as above. See Subsection B.1 for a short reminder on this notion.

Remark 21. Fix B ∈ MU such that PUu (B) = 1 quasi-everywhere (here quasi-everywhere refers
to the Hunt process U). Then PUΦS(x)(B) = 1 quasi-everywhere (here quasi-everywhere refers to the

Hunt process X∗, which is X killed when it gets outside EN ).

Proof. By definition, there exists NU a properly exceptional set relative to U such that for all
u ∈ U \ NU , PUu (B) = 1. Thus for all x ∈ Φ−1

S (U \ NU ), PUΦS(x)(B) = 1.

By Proposition 10, there exists NX a properly exceptional set relative to X∗, such that for all
x ∈ (X∩EN )\NX , the law of (Xt)t≥0 under PXx is equal to the the law of (Yt = Ψ(Mt, Dt, UAt))t≥0

under QYx = PMπ
H⊥ (x) ⊗ PD‖πH(x)‖2 ⊗ PUΦS(x), with some obvious notation.

Hence we only have to prove that N = Φ−1
S (NU ) ∪NX is properly exceptional for X∗.

• First, we have PXx (X∗t /∈ N for all t ≥ 0) = 1 for all x ∈ X \ N . Indeed, since x ∈ X \ N , the
law of (X∗t )t≥0 under PXx equals the law of (Yt)t≥0 under QYx . Since PUu (Ut /∈ NU for all t ≥ 0) = 1

for all u ∈ U \ NU and since ΦS(Yt) = UAt , we have QYx (Yt /∈ Φ−1
S (NU ) for all t ≥ 0) = 1 for all

x ∈ X \ Φ−1
S (NU ). Hence PXx (X∗t /∈ Φ−1

S (NU ) for all t ≥ 0) = 1 for all x ∈ X \ (Φ−1
S (NU ) ∪NX).

Finally, PXx (X∗t /∈ Φ−1
S (NU )∪NX for all t ≥ 0) = 1 for all x ∈ X \ (Φ−1

S (NU )∪NX) because NX

is properly exceptional for X∗.

• We have µ(N ) = 0. Indeed, µ(NX) = 0 by definition and, using Lemma A.2,

µ(Φ−1
S (NU )) =

1

2

∫
R2×R∗+×S

1I{Ψ(z,r,u)∈Φ−1
S (NU )}r

νdzdrβ(du) =
1

2

∫
R2×R∗+

β(NU )rνdzdr = 0,

because β(NU ) = 0. We used that Ψ(z, r, u) ∈ Φ−1
S (NU )⇔ u ∈ NU , since ΦS(Ψ(z, r, u)) = u. �
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9.2. An expression of dispersion processes on the sphere. We now study the dispersion pro-
cess (RK(Ut))t≥0 , for K ⊂ [[1, N ]]. The equation below can be informally established if assuming
that (1) rigorously holds true, after a time-change and several Itô computations.

Lemma 22. Fix N ≥ 2 and θ > 0 such that N > θ and recall that k0 = d2N/θe. Consider a
QSKS(θ,N) -process U with life-time ξ, fix K ⊂ [[1, N ]] such that |K| ≥ 2, and set K = (K,Kc).
Recall that GK,ε was introduced in Lemma 12, and observe that

GK,0 ∩ S =
{
u ∈ U : min

i∈K,j /∈K
||ui − uj || > 0

}
.

Quasi-everywhere in GK,0 ∩ S, enlarging the filtered probability space (ΩU ,MU , (MU
t )t≥0,PUu ) if

necessary, there exists a 1-dimensional (MU
t )t≥0-Brownian motion (Wt)t≥0 under PUu such that

RK(Ut) =RK(u) + 2

∫ t

0

√
RK(Us)(1−RK(Us))dWs + dθ,N (|K|)t(51)

− dθ,N (N)

∫ t

0

RK(Us)ds−
2θ

N

∑
i∈K,j /∈K

∫ t

0

U is − U js
‖U is − U

j
s ‖2
· (U is − SK(Us))ds

for all t ∈ [0, κK), where κK = inf{t ≥ 0 : Ut /∈ GK,0}.

As usual, κK ≤ ξ because 4 /∈ GK,0. Note also that if K = [[1, N ]], then RK(Ut) = 1 for all
t ∈ [0, ξ), and that the constant process 1 indeed solves (51).

Proof. We divide the proof in several steps. The main idea is to compute LURK and LU (RK)2

and to use that RK(Ut) = RK(u) +
∫ t

0
LURK(Us)ds+Mt, for some martingale (Mt)t≥0 of which

we can compute the bracket. However, we need to regularize RK and to localize space in a zone
where the last term of (51) is bounded.

Step 1. We fix n ≥ 1 and ε ∈ (0, 1] and recall ΓS,n
K,ε ∈ C∞(S), compactly supported in GK,0 ∩ S,

was defined in Lemma 12. We want to apply Remark 8 to RKΓS,n
K,ε and (RKΓS,n

K,ε)
2. We thus have

to show that RKΓS,n
K,ε and (RKΓS,n

K,ε)
2 belong to C∞c (U) for all n ≥ 1, which is clear, and that

sup
α∈(0,1]

sup
u∈S

(
|LUα [RKΓS,n

K,ε](u)|+ |LUα [(RKΓS,n
K,ε)

2](u)|
)
<∞

for all n ≥ 1. Since

LUα (fg) = fLUα g + gLUα f +∇Sf · ∇Sg(52)

for all f, g ∈ C∞(S) and recalling that supα∈(0,1] supu∈S |LUαΓS,n
K,ε(u)| <∞ by Lemma 12 and that

ΓS,n
K,ε is compactly supported in GK,0∩S, the only issue is to verify that, for A compact in GK,0∩S,

(53) sup
α∈(0,1]

sup
u∈A
|LUαRK(u)| <∞.

Step 2. Here we prove that

LUαRK(u) =2(|K| − 1)− 2(N − 1)RK(u) +
θ

N
RK(u)

∑
1≤i,j≤N

‖ui − uj‖2

‖ui − uj‖2 + α
(54)

− θ

N

∑
i∈K,j∈K

‖ui − uj‖2

‖ui − uj‖2 + α
− 2θ

N

∑
i∈K,j /∈K

ui − uj

‖ui − uj‖2 + α
· (ui − SK(u)),
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and this will imply (53): the first four terms are obviously uniformly bounded on S, and the last
one is uniformly bounded on A (because A is compact in GK,0 ∩ S).

This will also imply, taking α = 0 and observing that 2(|K| − 1)− θ
N |K|(|K| − 1) = dθ,N (|K|)

and 2(N − 1)− θ
NN(N − 1) = dθ,N (N), that for all u ∈ S ∩ E2,

LURK(u) = dθ,N (|K|)− dθ,N (N)RK(u)− 2θ

N

∑
i∈K,j /∈K

ui − uj

‖ui − uj‖2
· (ui − SK(u)).(55)

Step 2.1. We first verify that for all u ∈ S,

(∇SRK(u))i = 2(ui − SK(u))1I{i∈K} − 2RK(u)ui, i ∈ [[1, N ]],(56)

∆SRK(u) = 4(|K| − 1)− 4(N − 1)RK(u).(57)

First, a simple computation shows that for x ∈ (R2)N , for i ∈ [[1, N ]],

∇xiRK(x) = 2(xi − SK(x))1I{i∈K} and ∆xiRK(x) =
4(|K| − 1)

|K|
1I{i∈K},(58)

so that in particular ∇RK(x) ∈ H and

∇RK(x) · x = 2
∑
i∈K

(xi − SK(x)) · xi = 2
∑
i∈K

(xi − SK(x)) · (xi − SK(x)) = 2RK(x).(59)

Next, proceeding as in (14), we get ∇[RK ◦ ΦS](x) = ||πH(x)||−1πH(π(πH(x))⊥(∇RK(ΦS(x))))
for all x ∈ EN , so that

∇[RK ◦ ΦS](x) =
πH

(
∇RK(ΦS(x))− πH(x)·∇RK(ΦS(x))

||πH(x)||2 πH(x)
)

||πH(x)||
=
∇RK(x)− 2RK(x) πH(x)

||πH(x)||2

||πH(x)||2
.

We used that ∇RK(ΦS(x)) = ∇RK(x)/‖πH(x)‖ thanks to (58), that ∇RK(x) ∈ H by (58) and
that πH(x) · ∇RK(x) = x · ∇RK(x) = 2RK(x) by (59).

We first conclude that for u ∈ S, since πH(u) = u and ||u|| = 1,

(60) ∇SRK(u) = ∇[RK ◦ ΦS](u) = ∇RK(u)− 2RK(u)u,

which implies (56) by (58).

Second, we deduce that for x ∈ EN ,

∆[RK ◦ ΦS](x) =
1

||πH(x)||2
(

∆RK(x)− 2∇RK(x) · πH(x)

||πH(x)||2
− 2RK(x)

divπH(x)

||πH(x)||2
+

4RK(x)

||πH(x)||2
)

− 2πH(x)

||πH(x)||4
·
(
∇RK(x)− 2RK(x)

πH(x)

||πH(x)||2
)
.

Using that div πH(x) = 2(N − 1), we conclude that for u ∈ S, since πH(u) = u, ||u|| = 1 and
u · ∇RK(u) = 2RK(u) by (59),

∆SRK(u) = ∆[RK ◦ ΦS](u) = ∆RK(u)− 4RK(u)− 4(N − 1)RK(u) + 4RK(u).

Since finally ∆RK(u) = 4(|K| − 1) by (58), this leads to (57).
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Step 2.2. We fix u ∈ S and show that setting Iα(u) = − θ
N

∑
1≤i,j≤N

ui−uj
‖ui−uj‖2+α · (∇SRK(u))i,

it holds that

Iα(u) =− θ

N

∑
i∈K,j∈K

‖ui − uj‖2

‖ui − uj‖2 + α
+

θ

N
RK(u)

∑
1≤i,j≤N

‖ui − uj‖2

‖ui − uj‖2 + α
(61)

− 2θ

N

∑
i∈K,j /∈K

ui − uj

‖ui − uj‖2 + α
· (ui − SK(u)).

By (56), we may write Iα = I1,α + I2,α, where

I1,α(u) = −2θ

N

∑
i∈K,j∈[[1,N ]]

ui − uj

‖ui − uj‖2 + α
· (ui − SK(u)),

I2,α(u) =
2θ

N
RK(u)

∑
1≤i,j≤N

ui − uj

‖ui − uj‖2 + α
· ui.

First, by symmetry,

I1,α(u) =− 2θ

N

∑
i∈K,j∈K

ui − uj

‖ui − uj‖2 + α
· (ui − SK(u))− 2θ

N

∑
i∈K,j /∈K

ui − uj

‖ui − uj‖2 + α
· (ui − SK(u))

=− 2θ

N

∑
i∈K,j∈K

ui − uj

‖ui − uj‖2 + α
· ui − 2θ

N

∑
i∈K,j /∈K

ui − uj

‖ui − uj‖2 + α
· (ui − SK(u))

=− θ

N

∑
i∈K,j∈K

‖ui − uj‖2

‖ui − uj‖2 + α
− 2θ

N

∑
i∈K,j /∈K

ui − uj

‖ui − uj‖2 + α
· (ui − SK(u)).

Second, by symmetry,

I2,α(u) =
θ

N
RK(u)

∑
1≤i,j≤N

‖ui − uj‖2

‖ui − uj‖2 + α
.

Step 2.3. Since LUαRK(u) = 1
2∆SRK(u) + Iα(u), (54) follows from (57) and (61).

Step 3. By Steps 1 and 2, we can apply Remark 8 and Lemma B.2: quasi-everywhere, for all
n ≥ 1, there exist two (MU

t )t≥0-martingales (M1,n,ε
t )t≥0 and (M2,n,ε

t )t≥0 under PUu , such that

(RKΓS,n
K,ε)(Ut) = (RKΓS,n

K,ε)(u) +M1,n,ε
t +

∫ t

0

LU (RKΓS,n
K,ε)(Us)ds,

(RKΓS,n
K,ε)

2(Ut) = (RKΓS,n
K,ε)

2(u) +M2,n,ε
t +

∫ t

0

LU (RKΓS,n
K,ε)

2(Us)ds

for all t ≥ 0. We recall that κK = inf{t ≥ 0 : Ut /∈ GnK,0} and introduce

κK,n,ε = inf{t ≥ 0 : Ut /∈ GnK,ε} ∧ κK .
Since ∪n≥1G

n
K,ε ⊃ GK,ε and since GK,ε increases to GK,0 as ε → 0, see Lemma 12, we conclude

that limε→0 limn→∞ κK,n,ε = κK . Next, since ΓS,n
K,ε = 1 on GnK,ε∩S, we have, for all t ∈ [0, κK,n,ε],

RK(Ut) = RK(u) +M1,n,ε
t +

∫ t

0

LURK(Us)ds,(62)

(RK(Ut))
2 = (RK(u))2 +M2,n,ε

t +

∫ t

0

LU (R2
K)(Us)ds.(63)
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Applying the Itô formula to compute (RK(Ut))
2 from (62), recalling from (52) that LU (R2

K) =
2RKLURK + ||∇SRK ||2 and comparing to (63), we obtain that for t ∈ [0, κK,n,ε],

〈M1,n,ε〉t =

∫ t

0

‖∇SRK(Us)‖2ds.

Hence, enlarging the probability space if necessary, we can find a Brownian motion (Wt)t≥0, which

is defined by Wt =
∫ t

0
‖∇SRK(Us)‖−1dM1,n,ε

s for t ∈ [0, κK,n,ε] and which is then extended to R+,

such that M1,n,ε
t =

∫ t
0
‖∇SRK(Us)‖dWs during [0, κK,n,ε]. Hence, still for t ∈ [0, κK,n,ε],

(64) RK(Ut) = RK(u) +

∫ t

0

‖∇SRK(Us)‖dWs +

∫ t

0

LURK(Us)ds.

But ∇SRK(u) = ∇RK(u)− 2RK(u)u by (60), whence

‖∇SRK(u)‖2 = ‖∇RK(u)‖2 − 4RK(u)∇RK(u) · u+ 4(RK(u))2.

Since ||∇RK(u)||2 = 4RK(u) by (58) and ∇RK(u) · u = 2RK(u) by (59),

‖∇SRK(u)‖2 = 4RK(u)− 4(RK(u))2 = 4RK(u)(1−RK(u)).

Inserting this, as well as the expression (55) of LURK , in (64), shows that RK(Ut) satisfies the
desired equation on [0, κK,n,ε]. Since limε→0 limn→∞ κK,n,ε = κK a.s., the proof is complete. �

9.3. A squared Bessel-like process. The equation obtained in the previous lemma will be
studied by comparison with the process we now introduce. This process behaves, near 0, like a
squared Bessel processes.

Lemma 23. Fix δ ∈ R, a > 0 and b > 0 such that δ + a
√
b < 2. For (Wt)t≥0 a 1-dimensional

Brownian motion and for x ∈ [0, 1), consider the unique solution (St)t≥0 of

St = x+

∫ t

0

2
√
|Ss(1− Ss)|dWs + δt+ a

∫ t

0

√
b+ |Ss|ds.(65)

For z ∈ R, set τz = inf{t > 0 : St = z}. For all y ∈ (x, 1), it holds that P(τ0 < τy) > 0.

Proof. This equation is classically well-posed, since the diffusion coefficient is 1/2-Hölder contin-
uous and the drift coefficient is Lipschitz continuous, see Revuz-Yor [21, Theorem 3.5 page 390].
As in Karatzas-Shreve [15, (5.42) page 339], we introduce the scale function

f(z) =

∫ z

1/2

exp
(
−
∫ u

1/2

δ + a
√
b+ |v|

2|v(1− v)|
dv
)

du.

This function is obviously continuous on (0, 1) and one gets convinced, for example approximating

(δ+a
√
b+ |v|)/(2|v(1−v)|) by (δ+a

√
b)/(2|v|), that it is also continuous at 0 because δ+a

√
b < 2.

By [15, (5.61) page 344], we have

(66) P(τ0 < τy) =
f(y)− f(x)

f(y)− f(0)
.

for all y ∈ (x, 1). This last quantity is nonzero (which would not be the case if δ + a
√
b ≥ 2, since

then f(0) = −∞). �
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9.4. Collisions of large clusters. We are now ready to give the

Proof of Proposition 19-(i)-(ii). We fix N ≥ 4, θ > 0 such that N > θ. We always assume that
dθ,N (N) < 2 and we use the notation of Subsection 9.1.

Step 1. We consider ε ∈ (0, 1] and K ⊂ [[1, N ]] such that |K| ∈ [[2, N − 1]] and dθ,N (|K|) < 2.
We introduce the constant aK = c|K|+1/(2c|K|) with (c`)`∈[[1,N ]] defined in Lemma 13. We prove
in this step that there are some constants pK,ε > 0 and TK,ε > 0 such that, setting

σ̃K,ε = inf
{
t > 0 : RK(Ut) ≥ ε or min

i/∈K
RK∪{i}(Ut) ≤ aKε

}
∧ TK,ε,

with the convention that inf ∅ = ξ, it holds that quasi-everywhere on {u ∈ U : RK(u) ≤ ε/2},

PUu
(
σ̃K,ε = ξ or inf

t∈[0,σ̃K,ε)
min
i/∈K

RK∪{i}(Ut) ≤ 2aKε or RK(Ut) = 0 for some t ∈ [0, σ̃K,ε)
)
≥ pK,ε.

We introduce ZK,ε = inft∈[0,σ̃K,ε) mini/∈K RK∪{i}(Ut). We note that for all t ∈ [0, σ̃K,ε),

RK(Ut) ≤ ε and ZK,ε ≥ aKε so that mini∈K,j /∈K ‖U it − U
j
t ‖ ≥ ε/2 thanks to the definition of aK

and to Lemma 13. This implies that σ̃K,ε ≤ κK , where we recall that κK = inf{t ≥ 0 : Ut /∈ GK,0}
was defined in Lemma 22, and that GK,0 ∩ S = {u ∈ U : mini∈K,j /∈K ||ui − uj || > 0}.

By the Cauchy-Schwarz inequality, and since RK is bounded on U , there is a deterministic
constant CK,ε > 0, allowed to change from line to line, such that for all t ∈ [0, σ̃K,ε), we have

− dθ,N (N)RK(Ut)−
2θ

N

∑
i∈K,j /∈K

U it − U
j
t

‖U it − U
j
t ‖2
· (U it − SK(Ut))

≤CK,ε
√
RK(Ut) + CK,ε

(∑
i∈K
‖U it − SK(Ut)‖2

)1/2

≤CK,ε
√
RK(Ut)

≤CK,ε
√
b+RK(Ut)

where b > 0 is chosen small enough so that dθ,N (|K|) +CK,ε
√
b < 2. Actually, b is only introduced

to make the drift coefficient of (65) Lipschitz continuous.

Recalling that RK(U0) ≤ ε/2, the formula describing RK(Ut) ∈ [0, 1] for t ∈ [0, κK) ⊃ [0, σ̃K,ε),
see Lemma 22, considering the process (St)t≥0 solution to (65) with x = ε/2, δ = dθ,N (|K|),
a = CK,ε and with b introduced a few lines above, driven by the same Brownian motion (Wt)t≥0,
and using the comparison theorem, we conclude that RK(Ut) ≤ St for all t ∈ [0, σ̃K,ε).

Setting τz = inf{t ≥ 0 : St = z} for z ∈ R and recalling the definition of σ̃K,ε, we conclude that
{ZK,ε > 2aKε} ⊂ {σ̃K,ε ≥ τε ∧TK,ε}. Indeed, on {inft∈[0,σ̃K,ε) mini/∈K RK∪{i}(Ut) > 2aKε}, either

σ̃K,ε = TK,ε, or (RK(Ut))t≥0 reaches ε at time σ̃K,ε and we then have τε ≤ σ̃K,ε. In both cases,
σ̃K,ε ≥ τε ∧ TK,ε. Hence, using again that RK(Ut) ≤ St for all t ∈ [0, σ̃K,ε),{

σ̃K,ε < ξ and ZK,ε > 2aKε and St = 0 for some t ∈ [0, τε ∧ TK,ε]
}

⊂
{
σ̃K,ε < ξ and ZK,ε > 2aKε and RK(Ut) = 0 for some t ∈ [0, σ̃K,ε)

}
.
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But Ac∩B′ ⊂ Ac∩B gives P(A∪B) = P(A)+P(Ac∩B) ≥ P(A)+P(Ac∩B′) = P(A∪B′). Hence

PUu
(
σ̃K,ε = ξ or ZK,ε ≤ 2aKε or RK(Ut) = 0 for some t ∈ [0, σ̃K,ε)

)
≥PUu

(
σ̃K,ε = ξ or ZK,ε ≤ 2aKε or St = 0 for some t ∈ [0, τε ∧ TK,ε)

)
≥PUu

(
St = 0 for some t ∈ [0, τε ∧ TK,ε)

)
.

This last quantity equals P(τ0 < τε ∧TK,ε) and does not depend on u such that RK(u) ≤ ε/2. But

P(τ0 < τε) > 0 by Lemma 23 and since dθ,N (|K|) + CK,ε
√
b < 2. Hence there exists TK,ε > 0 so

that P(τ0 < τε ∧ TK,ε) > 0 and this completes the step.

Step 2. We prove (ii), i.e. that when dθ,N (N − 1) ∈ (0, 2), for any K ⊂ [[1, N ]] with cardinal
|K| = N−1, quasi-everywhere, PXx -a.s., RK(Xt) vanishes during [0, ζ). By (50) and Remark 21, and
since PUu (ξ =∞) = 1 quasi-everywhere by Lemma 9-(ii), it suffices to check that quasi-everywhere,
PUu -a.s., (RK(Ut))t≥0 vanishes at least once during [0,∞).

We fix K ⊂ [[1, N ]] with |K| = N − 1, set ε0 = 1/(4aK) and introduce τ̃K0 = 0 and for all k ≥ 0,

τKk+1 = inf{t ≥ τ̃Kk : RK(Ut) ≤ ε0/2},
τ̃Kk+1 = inf{t ≥ τKk+1 : RK(Ut) ≥ ε0} ∧ (τKk+1 + TK,ε0).

with TK,ε0 defined in Step 1. All these stopping times are finite since (EU ,FU ) is recurrent by
Lemma 9-(ii). We also put, for k ≥ 1,

ΩKk = {RK(Ut) = 0 for some t ∈ [τKk , τ̃
K
k ]}.

We now prove that PUu (∩k≥1(ΩKk )c) = 0 quasi-everywhere, and this will complete the proof of (ii).

For ` ≥ 1, since ∩`k=1(ΩKk )c is MU
τK`+1

-measurable, the strong Markov property tells us that

PUu
(
∩`+1
k=1 (ΩKk )c

)
= EUu

[( ∏̀
k=1

1I(ΩKk )c

)
PUU

τK
`+1

((ΩK1 )c)
]
.

We now prove that PUu (ΩK1 ) ≥ pK,ε0 quasi-everywhere on {u ∈ U : RK(u) ≤ ε0/2}. For such a
u, we have τK1 = 0. Moreover, for all i /∈ K, we have RK∪{i}(u) = R[[1,N ]](u) = 1 > 2aKε0 thanks

to our choice of ε0. Hence τ̃K1 = σ̃K,ε0 , recall Step 1. Since finally σ̃K,ε0 < ∞ = ξ and since
RK∪{i}(Ut) = R[[1,N ]](Ut) = 1 > 2aKε0 for all t ≥ 0 and all i /∈ K,

ΩK1 =
{
RK(Ut) = 0 for some t ∈ [0, σ̃K,ε0 ]

}
=
{
σ̃K,ε0 = ξ or inf

t∈[0,σ̃K,ε0 )
min
i/∈K

RK∪{i}(Ut) ≤ 2aKε0 or RK(Ut) = 0 for some t ∈ [0, σ̃K,ε0 ]
}
.

Hence Step 1 tells us that PUu (ΩK1 ) ≥ pK,ε0 quasi-everywhere on {u ∈ U : RK(u) ≤ ε0/2}.

Since RK(UτK`+1
) ≤ ε0/2, we have proved that for all ` ≥ 1,

PUu
(
∩`+1
k=1 (ΩKk )c

)
≤ (1− pK,ε0)PUu

(
∩`k=1 (ΩKk )c

)
.

This allows us to conclude that indeed, PUu (∩∞k=1(ΩKk )c) = 0.

Step 3. We prove (i), i.e. that if dθ,N (N − 1) ≤ 0, then PXx (inf [0,ζ)R[[1,N ]](Xt) > 0) = 1 quasi-

everywhere. By Remark 21 and (49), it suffices to show that quasi-everywhere, PUu (ξ <∞) = 1.
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For all K ⊂ [[1, N ]], all ε ∈ (0, 1], we introduce σ̃K,ε0 = 0 and for all k ≥ 0,

σK,εk+1 = inf
{
t ≥ σ̃K,εk : RK(Ut) ≤ ε/2 and min

i/∈K
RK∪{i}(Ut) ≥ 2aKε

}
,

σ̃K,εk+1 = inf
{
t ≥ σK,εk+1 : RK(Ut) ≥ ε or min

i/∈K
RK∪{i}(Ut) ≤ aKε

}
∧ (σK,εk+1 + TK,ε),

with TK,ε defined in Step 1 and with the convention that inf ∅ = ξ.

Step 3.1. We fix ε ∈ (0, 1] and assume that |K| ≥ k0, so that dθ,N (|K|) ≤ 0 by Lemma 1. We
prove here that quasi-everywhere, PUu -a.s., either there is t ∈ [0, ξ) such that RK(Ut) = 0 or there

is k ≥ 1 such that σK,εk+1 = ξ or there is k ≥ 1 such that inft∈[σK,εk ,σ̃K,εk ) mini/∈K RK∪{i}(Ut) ≤ 2aKε.

It suffices to prove that PUu (∩k≥1(ΩK,εk )c) = 0, where

ΩK,εk =
{
σK,εk+1 = ξ or inf

t∈[σK,εk ,σ̃K,εk )
min
i/∈K

RK∪{i}(Ut) ≤ 2aKε

or RK(Ut) = 0 for some t ∈ [σK,εk , σ̃K,εk )
}
.

But for all ` ≥ 1, ∩`k=1(ΩK,εk )c is MU
σK,ε`+1

-measurable, whence, by the strong Markov property,

PUu
(
∩`+1
k=1 (ΩK,εk )c

)
= EUu

[( ∏̀
k=1

1I(ΩK,εk )c

)
PUU

σ
K,ε
`+1

(
(ΩK,ε1 )c

)]
≤ (1− pK,ε)PUu

(
∩`k=1 (ΩK,εk )c

)
.

We used Step 1, that RK(UσK,ε`+1
) ≤ ε/2 on the event (ΩK,ε` )c ⊂ {σK,ε`+1 < ξ}, as well as the inclusion

{σ̃K,εk = ξ} ⊂ {σK,εk+1 = ξ}. One easily concludes.

Step 3.2. For all K ⊂ [[1, N ]] such that |K| ≥ k0, quasi-everywhere, PUu -a.s., there is no t ∈ [0, ξ)
such that RK(Ut) = 0. Indeed, on the contrary event, there is t ∈ [0, ξ) such that Ut /∈ Ek0 , whence
Ut /∈ U , which contradicts the fact that t ∈ [0, ξ).

Step 3.3. We show by decreasing induction that

P(n) : quasi-everywhere, PUu -a.s. on the event {ξ =∞}, bn = min{|K|=n} inft≥0RK(Ut) > 0

holds true for every n ∈ [[k0, N ]].

The result is clear when n = N , because for all t ∈ [0, ξ), R[[1,N ]](Ut) = 1.

We next assume P(n) for some n ∈ [[k0 + 1, N ]] and we show that P(n − 1) is true. We fix
K ⊂ [[1, N ]] with cardinal |K| = n−1 and we apply Step 3.1 withK and with some ε ∈ (0, bn/(4aK))
(bn is random but we may apply Step 3.1 simultaneously for all ε ∈ Q∗+ ∩ (0, 1]) and Step 3.2, we

find that on the event {ξ =∞}, there either exists k ≥ 1 such that σK,εk+1 =∞ or k ≥ 1 such that
inft∈[σK,εk ,σ̃K,εk ) mini/∈K RK∪{i}(Ut) ≤ 2aKε. This second choice is not possible, since by induction

assumption, RK∪{i}(Ut) ≥ bn for all t > 0 and all i /∈ K. Hence there is k ≥ 1 such that σK,εk+1 =∞.

By definition of σK,εk+1, this implies that, still on the event where ξ =∞, there exists t0 ≥ 0 such
that for all t ≥ t0, either RK(Ut) ≥ ε/2 or mini∈K RK∪{i}(Ut) ≤ 2aKε. Using again the induction
assumption, we get that the second choice is never possible, so that actually, RK(Ut) ≥ ε/2 for all
t ≥ t0. Since (RK(Ut))t≥0 is continuous and positive on [0, t0] according to Step 3.2, this completes
the step.
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Step 3.4. We conclude from Step 3.3 that quasi-everywhere, PUu -a.s. on the event {ξ = ∞},
Ut ∈ K for all t ≥ 0, where

K = {u ∈ U : for all n ∈ [[k0, N ]], all K ⊂ [[1, N ]] with |K| = n, RK(u) ≥ bn}.
This (random) set is compact in U , so that Lemma 9-(i) tells us, both in the case where (EU ,FU )
is recurrent and in the case where (EU ,FU ) is transient, that this happens with probability 0.
Hence quasi-everywhere, PUu (ξ =∞) = 0 as desired. �

9.5. Binary collisions. We finally give the

Proof of Proposition 19-(iii). We assume that N ≥ 4, that 0 < dθ,N (N) < 2 ≤ dθ,N (N − 1) and
observe that θ < 2 and k0 > N , so that X = (R2)N and U = S. The QKS(θ,N)-process X is
non-exploding by Proposition 16-(i), and the QSKS(θ,N)-process U is irreducible recurrent by
Lemma 9-(ii). In particular, ζ = ξ = ∞ a.s. We divide the proof in 4 steps. First, we prove that
X may have some binary collisions with positive probability. Then we check that this implies that
U also may have some binary collisions with positive probability. Since U is recurrent, it will then
necessarily be a.s. subjected to (infinitely many) binary collisions. Finally, we conclude using (50).

Step 1. We set K = ({1, 2}, {3}, . . . , {N}) and

K =
{
x ∈ B(0, C) : ‖x1 − x2‖ < 1 and min

i∈[[1,N ]],j∈[[3,N ]],i6=j
‖xi − xj‖ > 10

}
,

with C large enough so that µ(K) > 0. We show in this step that PXx (A) > 0 quasi-everywhere in
K, where

A =
{
X1
t = X2

t for some t ∈ [0, 1] and min
t∈[0,1]

R[[1,N ]](Xt) > 0
}
.

To this end, we fix x ∈ K and introduce the set

O =
{
y ∈ (R2)2 : R{1,2}(y) < 2,

∥∥∥y1 + y2

2
− x1 + x2

2

∥∥∥ < 1
}
,

and Bi = {y ∈ R2 : ||y − xi||2 < 1} for i ∈ [[3, N ]]. Clearly, there is some ε ∈ (0, 1] such that

L =
{
y ∈ (R2)N : (y1, y2) ∈ O and yi ∈ Bi for all i ∈ [[3, N ]]

}
⊂ GK,ε,

where as usual GK,ε = {y ∈ B(0, 1/ε) : ∀ i ∈ [[1, N ]], ∀ j ∈ [[3, N ]] \ {i}, ||yi − yj ||2 > ε}, recall
that X = (R2)N because k0 > N .

Since GK,ε is obviously included in {y ∈ (R2)N : R[[1,N ]](y) > 0}, we conclude that

PXx (A) ≥PXx
(
X1
t = X2

t for some t ∈ [0, 1] and Xt ∈ L for all t ∈ [0, 1]
)

≥C−1
1,ε,KQ1,ε,K

x

(
X1
t = X2

t for some t ∈ [0, 1] and Xt ∈ L for all t ∈ [0, 1]
)

by Proposition 15 with T = 1. We now set τK,ε = inf{t > 0 : Xt /∈ GK,ε}. Proposition 15 tells us
that, quasi-everywhere in K ⊂ GK,ε, the law of (Xt)t∈[0,τK,ε] under Q1,ε,K

x equals the law of Yt =

(Y 1
t , . . . , Y

N
t )t∈[0,τ̃K,ε] where (Y 1

t , Y
2
t )t≥0 is a QKS(2θ/N, 2)-process issued from (x1, x2), where

for all i ∈ [[3, N ]], (Y it )t≥0 is a QKS(θ/N, 1)-process, i.e. a 2-dimensional Brownian motion, issued
from xi, and where all these processes are independent. We have set τ̃K,ε = inf{t > 0 : Yt /∈ GK,ε}.
This implies, together with the fact that {Xt ∈ L for all t ∈ [0, 1]} ⊂ {τK,ε > 1}, that

PXx (A) ≥ C−1
1,ε,K p

N∏
i=3

qi
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quasi-everywhere in K, where

p = P
(

min
s∈[0,1]

R{1,2}((Y
1
s , Y

2
s )) = 0 and (Y 1

t , Y
2
t ) ∈ O for all t ∈ [0, 1]

)
,

and where qi = P(Y it ∈ Bi for all t ∈ [0, 1]). Of course, qi > 0 for all i ∈ [[3, N ]], since (Y it )t≥0 is a
Brownian motion issued from xi. Moreover, we know from Lemma 11 that (Mt = (Y 1

t +Y 2
t )/2)t≥0 is

a 2-dimensional Brownian motion with diffusion coefficient 2−1/2 issued from m = (x1+x2)/2, that
(Rt = R{1,2}((Y

1
t , Y

2
t )))t≥0 is a squared Bessel process of dimension d2θ/N,2(2) = dθ,N (2) issued

from r = ||x1 − x2||2/2 ∈ (0, 1/2), and that these processes are independent. Hence, recalling the
definition of O,

p = P
(

min
s∈[0,1]

Rs = 0 and max
s∈[0,1]

Rs < 2
)
P
(

max
s∈[0,1]

||Mt −m|| < 1
)
.

This last quantity is clearly positive, because a squared Bessel process with dimension dθ,N (2) ∈
(0, 2), see Lemma 1, does hit zero, see Revuz-Yor [21, Chapter XI].

Step 2. We now deduce from Step 1 that the set F = {u ∈ U : u1 = u2} is not exceptional
for U. Indeed, if it was exceptional, we would have PUu (∃ t ≥ 0 : Ut ∈ F ) = 0 quasi-everywhere.
By (50) and Remark 21, this would imply that quasi-everywhere, PXx (∃ t ∈ [0, τ) : Xt ∈ G) = 0,
where G = {x ∈ X : x1 = x2} and τ = inf{t > 0 : R[[1,N ]](Xt) = 0}. But on the event A
defined in Step 1, there is t ∈ [0, 1] such that Xt ∈ G and it holds that τ > 1. As a conclusion,
PXx (∃ t ∈ [0, τ) : Xt ∈ G) > 0 quasi-everywhere in K, whence a contradiction, since µ(K) > 0.

Step 3. Since (EU ,FU ) is irreducible-recurrent and since F is not exceptional, we know from
Fukushima-Oshima-Takeda [11, Theorem 4.7.1-(iii) page 202] that quasi-everywhere,

PUu (∀ r > 0,∃ t ≥ r : Ut ∈ F ) = 1.

Step 4. Using again (50) and Remark 21 and recalling that ξ = ∞ and that ρ is an increasing
bijection from [0,∞) to [0, τ), we conclude that quasi-everywhere, PXx -a.s., Xt visits F (an infinite
number of times) during [0, τ). Of course, the same arguments apply when replacing {1, 2} by any
subset of [[1, N ]] with cardinal 2, and the proof is complete. �

10. Quasi-everywhere conclusion

Here we prove that the conclusions of Theorem 5 hold quasi-everywhere.

Partial proof of Theorem 5. We assume that θ ≥ 2 and N > 3θ, so that k0 = d2N/θe ∈ [[7, N ]], and
consider a X4-valued QKS(θ,N)-process X with life-time ζ as in Proposition 6, where X = Ek0 .

Preliminaries. For K ⊂ [[1, N ]] and ε ∈ (0, 1], we write τK,ε = inf{t > 0 : Xt /∈ GK,ε} ∈ [0, ζ]
and GK,ε = {x ∈ X : mini∈K,j /∈K ||xi − xj ||2 > ε} ∩ B(0, 1/ε) instead of τK,ε and GK,ε with

K = (K,Kc) as in Proposition 15. We also write QT,ε,Kx instead of QT,ε,K and recall that it is
equivalent to PXx on MX

T = σ(Xs : s ∈ [0, T ]).

Setting XK
t = (Xi

t)i∈K and XKc

t = (Xi
t)i∈Kc , we know that quasi-everywhere in GK,ε, the law

of (XK
t , X

Kc

t )t∈[0,τK,ε∧T ] under QT,ε,Kx is the same as the law of (Yt, Zt)t∈[0,τ̃K,ε∧T ], where (Yt)t≥0 is
a QKS(|K|θ/N, |K|)-process issued from x|K and (Zt)t≥0 is a QKS(|Kc|θ/N, |Kc|)-process issued
from x|Kc , these two processes being independent, and where τ̃K,ε = inf{t > 0 : (Yt, Zt) /∈ GK,ε}.
We denote by ζY and ζZ the life-times of (Yt)t≥0 and (Zt)t≥0. The life-time of (Yt, Zt)t≥0 is given
by ζ ′ = ζY ∧ ζZ and it holds that τ̃K,ε ∈ [0, ζ ′].
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No isolated points. Here we prove that for all K ⊂ [[1, N ]] with dθ,N (|K|) ∈ (0, 2), quasi-
everywhere, we have PXx (AK) = 0, where AK = {ZK has an isolated point} and

ZK = {t ∈ (0, ζ) : there is a K-collision in the configuration Xt}.

On AK , we can find u, v ∈ Q+ such that u < v < ζ and such that there is a unique t ∈ (u, v)
with RK(Xt) = 0 and mini/∈K RK∪{i}(Xt) > 0. By continuity, we deduce that on AK , there exist
r, s ∈ Q+ and ε ∈ Q ∩ (0, 1] such that r < s < ζ, Xt ∈ GK,ε for all t ∈ [r, s] and such that
{t ∈ (r, s) : RK(Xt) = 0} has an isolated point. It thus suffices that for all r < s and all ε ∈ (0, 1],
that we all fix from now on, quasi-everywhere, PXx (AK,r,s,ε) = 0, where

AK,r,s,ε =
{
Xt ∈ GK,ε for all t ∈ (r, s) and {t ∈ (r, s) : RK(Xt) = 0} has an isolated point

}
.

By the Markov property, it suffices that PXx (AK,0,s,ε) = 0 quasi-everywhere in GK,ε and, by equiv-
alence, that Qs,ε,Kx (AK,0,s,ε) = 0 quasi-everywhere in GK,ε. We write, recalling the preliminaries,

Qs,ε,Kx (AK,0,s,ε) =Qs,ε,Kx

(
τK,ε ≥ s and {t ∈ (0, s) : RK(Xt) = 0} has an isolated point

)
=P
(
τ̃K,ε ≥ s and {t ∈ (0, s) : RK(Yt) = 0} has an isolated point

)
≤P
(
{t ∈ (0, s) : RK(Yt) = 0} has an isolated point

)
.

But (Yt)t≥0 is a QKS(|K|θ/N, |K|)-process, so that we know from Lemma 11 that (RK(Yt))t≥0 is
a squared Bessel process with dimension d|K|θ/N,|K|(|K|) = dθ,N (|K|) ∈ (0, 2). Such a process has
no isolated zero, see Revuz-Yor [21, Chapter XI].

Point (i). We have already seen in Proposition 16-(ii) that quasi-everywhere, PXx -a.s., ζ < ∞
and Xζ− = limt→ζ−Xt exists in (R2)N and does not belong to Ek0 .

Point (ii). We want to show that quasi-everywhere, PXx -a.s., there is K0 ⊂ [[1, N ]] with |K0| = k0

such that there is a K0-collision and no K-collision with |K| > k0 in the configuration Xζ−. We
already know that Xζ− /∈ Ek0 , so that there is K ⊂ [[1, N ]] with |K| ≥ k0 such that there is a
K-collision in the configuration Xζ−. Hence the goal is to verify that quasi-everywhere, for all
K ⊂ [[1, N ]] with |K| > k0, PXx (BK) = 0, where

BK = {There is a K-collision in the configuration Xζ−}.

On BK , there is ε ∈ Q ∩ (0, 1] such that Xζ− ∈ GK,2ε. By continuity, there also exists, still on
BK , some r ∈ Q+ ∩ [0, ζ) such that Xt ∈ GK,ε for all t ∈ [r, ζ). Hence we only have to prove that
for all ε ∈ Q ∩ (0, 1], all t ∈ Q+, all T ∈ Q+ such that T > r, quasi-everywhere, PXx (BK,r,T,ε) = 0,
where

BK,r,T,ε = {ζ ∈ (r, T ], Xt ∈ GK,ε for all t ∈ [r, ζ) and RK(Xζ−) = 0}.
By the Markov property, it suffices that PXx (BK,0,T,ε) = 0 quasi-everywhere in GK,ε, for all ε ∈
Q ∩ (0, 1] and all T ∈ Q∗+. We now fix ε ∈ Q ∩ (0, 1] and T ∈ Q∗+. By equivalence, it suffices to

prove that QT,ε,Kx (BK,0,T,ε) = 0. Using the notation introduced in the preliminaries, we write

QT,ε,Kx (BK,0,T,ε) =QT,ε,Kx

(
ζ ≤ T, τK,ε = ζ and RK(Xζ−) = 0

)
=P
(
ζ ′ ≤ T, τ̃K,ε = ζ ′ and RK(Yζ′−) = 0

)
≤P
(

inf
t∈[0,ζY )

RK(Yt) = 0
)
.
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But (Yt)t≥0 is a QKS(|K|θ/N, |K|)-process with |K| > k0 ≥ 7 and with d|K|θ/N,|K|(|K| − 1) =
dθ,N (|K|−1) ≤ 0 by Lemma 1 because |K|−1 ≥ k0. We also have d|K|θ/N,|K|(|K|) = dθ,N (|K|) ≤ 0.
Hence Proposition 19-(i) tells us that P(inft∈[0,ζY )RK(Yt) = 0) = 0.

Point (iii). We recall that k1 = k0 − 1 and we fix L ⊂ K ⊂ [[1, N ]] with |K| = k0 and |L| = k1.
We want to prove that quasi-everywhere, PXx -a.s., if RK(Xζ−) = 0, then for all t ∈ [0, ζ), the set
ZL ∩ (t, ζ) is infinite and has no isolated point. But since dθ,N (k1) ∈ (0, 2), see Lemma 1, we
already know that ZL has no isolated point. It thus suffices to check that quasi-everywhere, for
all r ∈ Q+, we have PXx (CK,L,r) = 0, where

CK,L,r = {ζ > r, RK(Xζ−) = 0, and RL(Xt) > 0 for all t ∈ (r, ζ)}.

We used that since |L| = k1 = k0−1, for all x ∈ X = Ek0 , there is a L collision in the configuration
x if and only if RL(x) = 0.

On CK,L,r, thanks to point (ii) , there are ε ∈ Q ∩ (0, 1], T ∈ Q+ and s ∈ Q∗+ ∩ [r, ζ) such that
ζ ∈ (s, T ] and Xt ∈ GK,ε for all t ∈ [s, ζ). Thus it suffices to prove that for all s < T and all
ε ∈ (0, 1], that we now fix, quasi-everywhere, PXx (CK,L,s,T,ε) = 0, where

CK,L,s,T,ε = {ζ ∈ (s, T ], RK(Xζ−) = 0, Xt ∈ GK,ε and RL(Xt) > 0 for all t ∈ [s, ζ)}.

By the Markov property, it suffices that PXx (CK,L,0,T,ε) = 0 quasi-everywhere in GK,ε and, by
equivalence, that QT,ε,Kx (CK,L,0,T,ε) = 0. Recalling the preliminaries, we write

QT,ε,Kx (CK,L,0,T,ε) =QT,ε,Kx

(
ζ ≤ T, RK(Xζ−) = 0, τK,ε = ζ and RL(Xt) > 0 for all t ∈ [0, ζ)

)
=P
(
ζ ′ ≤ T, RK(Yζ′−) = 0, τ̃K,ε = ζ ′ and RL(Yt) > 0 for all t ∈ [0, ζ ′)

)
.

Setting σK = inf{t > 0 : RK(Yt) = 0}, we observe that σK = ζY . Indeed, |K| = k0 and
(Yt)t≥0 is a QKS(|K|θ/N, |K|)-process, of which the state space is given by Y4 = Y ∪{4}, where

Y = {y ∈ (R2)|K| : RM (y) > 0 for allM ⊂ [[1, N ]] such that |M | ≥ k0}, because d2|K|/(|K|θ/N)e =
d2N/θe = k0. Hence {RK(Yζ′−) = 0} ⊂ {ζ ′ = σK}, so that

QT,ε,Kx (CK,L,0,T,ε) ≤ P(RL(Yt) > 0 for all t ∈ [0, σK)).

This last quantity equals zero by Proposition 19-(ii), since d|K|θ/N,|K|(|K| − 1) = dθ,N (|K| − 1) =
dθ,N (k0 − 1) ∈ (0, 2) by Lemma 1 and since |L| = k1 = |K| − 1 and since d|K|θ/N,|K|(|K|) =
dθ,N (|K|) = dθ,N (k0) ≤ 0 < 2.

Point (iv). We assume that k2 = k0 − 2, i.e. that dθ,N (k0 − 2) ∈ (0, 2). We fix L ⊂ K ⊂ [[1, N ]]
with |K| = k1 and |L| = k2. We want to prove that quasi-everywhere, PXx -a.s., for all t ∈ [0, ζ), if
there is a K-collision in the configuration Xt, then for all r ∈ [0, t), the set ZL ∩ (r, t) is infinite
and has no isolated point. We already know that ZL has no isolated point. It thus suffices to check
that quasi-everywhere, for all r ∈ Q+, we have PXx (DK,L,r) = 0, where

DK,L,r = {ζ > r and there is t ∈ (r, ζ) such that there is a K-collision at time t

but no L-collision during (r, t)}.

We set σK,r = inf{t > r : there is a K-collision in the configuration Xt}. It holds that

DK,L,r = {ζ > r, σK,r < ζ and there is no L-collision during u ∈ [r, σK,r)}.

On DK,L,r, there exists ε ∈ Q ∩ (0, 1] such that XσK,r ∈ GK,2ε, so that by continuity, there exists
v ∈ Q+∩ [r, σK,r) such that Xu ∈ GK,ε for all u ∈ [v, σK,r]. Observe that σK,v = σK,r and that for
all t ∈ [v, σK,v), there is a L-collision at time t if and only if RL(Xt) = 0, by definition of σK,v and
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since Xt ∈ GK,ε. All in all, it suffices to prove that for all v ∈ Q+, all ε ∈ Q ∩ (0, 1], all T ∈ Q∗+,

PXx (DK,L,v,T,ε) = 0 quasi-everywhere, where

DK,L,v,T,ε = {ζ ∈ (v, T ], σK,v < ζ, Xu ∈ GK,ε and RL(Xu) > 0 for all u ∈ [v, σK,v)}.

By the Markov property, it suffices to prove that PXx (DK,L,0,T,ε) = 0 quasi-everywhere in GK,ε
and, by equivalence, we may use QT,ε,Kx instead of PXx . But recalling the preliminaries,

QT,ε,Kx (DK,L,0,T,ε) =QT,ε,Kx

(
ζ ≤ T, σK,0 < ζ, τK,ε ≥ σK,0 and RL(Xt) > 0 for all t ∈ [0, σK,0)

)
=P
(
ζ ′ ≤ T, σ̃K,0 < ζ ′, τ̃K,ε ≥ σ̃K,0 and RL(Yt) > 0 for all t ∈ [0, σ̃K,0)

)
≤P
(
RL(Yt) > 0 for all t ∈ [0, σ̃K,0)

)
,

where we have set σ̃K,0 = inf{t > 0 : RK(Yt) = 0}. Finally, P(RL(Yt) > 0 for all t ∈ [0, σ̃K,0)) = 0
by Proposition 19-(ii), because (Yt)t≥0 is a QKS(|K|θ/N, |K|)-process, because |L| = k2 = |K|−1,
because d|K|θ/N,|K|(|K| − 1) = dθ,N (|K| − 1) = dθ,N (k2) ∈ (0, 2) and because d|K|θ/N,|K|(|K|) =
dθ,N (|K|) = dθ,N (k1) ∈ (0, 2).

Point (v). We fix K ⊂ [[1, N ]] with cardinal |K| ∈ [[3, k2−1]], so that dθ,N (|K|) ≥ 2. We want to
prove that quasi-everywhere, PXx -a.s., for all t ∈ [0, ζ), there is no K-collision in the configuration
Xt. We introduce σK = inf{t > 0 : there is a K-collision in the configuration Xt}, with the
convention that inf ∅ = ζ, and we have to verify that quasi-everywhere, PXx (σK < ζ) = 0.

On the event {σK < ζ}, there exist ε ∈ Q∩(0, 1] and r ∈ Q∗+∩[0, σK) such that Xt ∈ GK,ε for all
t ∈ [r, σK ]. Hence it suffices to check that for all ε ∈ Q∩ (0, 1], all r ∈ Q∗+ and all T ∈ Q∗+ ∩ (r,∞),

which we now fix, quasi-everywhere, PXx (FK,r,T,ε) = 0, where

FK,r,T,ε = {σK ∈ (r, ζ ∧ T ) and Xt ∈ GK,ε for all t ∈ [r, σK ]}.

By the Markov property, it suffices that PXx (FK,0,T,ε) = 0 quasi-everywhere in GK,ε and, by
equivalence, that QT,ε,Kx (FK,0,T,ε) = 0. Recalling the preliminaries, we write

QT,ε,Kx (FK,0,T,ε) =QT,ε,Kx

(
σK ∈ (0, ζ ∧ T ) and τK,ε ≥ σK

)
=P
(
σ̃K ∈ (0, ζ ′ ∧ T ) and τ̃K,ε ≥ σ̃K

)
≤P
(

inf
t∈[0,T ]

RK(Yt) = 0
)
,

where we have set σ̃K = inf{t > 0 : there is a K-collision in the configuration (Yt, Zt)}. Since
(Yt)t≥0 is a QKS(|K|θ/N, |K|)-process, we know from Lemma 11 that (RK(Yt))t≥0 is a squared
Bessel process with dimension d|K|θ/N,|K|(|K|) = dθ,N (|K|) ≥ 2. Such a process does a.s. never
reach 0.

Point (vi). The proof is exactly the same as that of (iv), replacing everywhere k1 by k2

and k2 by 2, and using Proposition 19-(iii) instead of Proposition 19-(ii), which is licit because
0 < dk2θ/N,k2(k2) < 2 ≤ dk2θ/N,k2(k2 − 1), since dk2θ/N,k2(k2) = dθ,N (k2) and dk2θ/N,k2(k2 − 1) =
dθ,N (k2 − 1) and by Lemma 1. �
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11. Extension to all initial conditions in E2

We first prove Proposition 2: we can build a KS(θ,N)-process, i.e. a QKS(θ,N)-process such
that PXx ◦X−1

t is absolutely continuous for all x ∈ E2 and all t > 0. We next conclude the proofs
of Proposition 3 and of Theorem 5.

11.1. Construction of a KS(θ,N)-process. We fix θ > 0 and N ≥ 2 such that N > θ during
the whole subsection. For each n ∈ N∗, we introduce φn ∈ C∞(R+,R∗+) such that φn(r) = r for

all r ≥ 1/n and we set, for x ∈ (R2)N ,

mn(x) =
∏

1≤i 6=j≤N

[φn(‖xi − xj‖2)]−θ/N and µn(dx) = mn(x)dx.

We then consider the (R2)N -valued S.D.E

Xn
t = x+Bt +

∫ t

0

∇mn(Xn
s )

2mn(Xn
s )

ds,(67)

which is strongly well-posed, for every initial condition, since the drift coefficient is smooth and
bounded. We denote by Xn = (Ωn,Mn, (Xn

t )t≥0, (Pnx)x∈(R2)N ) the corresponding Markov process.

Lemma 24. For all n ≥ 1, Xn is a µn-symmetric (R2)N -valued diffusion with regular Dirichlet
space (En,Fn) with core C∞c ((R2)N ) such that for all ϕ ∈ C∞c ((R2)N ),

En(ϕ,ϕ) =
1

2

∫
(R2)N

‖∇ϕ‖2dµn.

Moreover Pnx ◦ (Xn
t )−1 has a density with respect to the Lebesgue measure on (R2)N for all t > 0

and all x ∈ (R2)N .

Proof. Classically, Xn is a µn-symmetric diffusion and its (strong) generator Ln satisfies that for all

ϕ ∈ C∞c ((R2)N ), all x ∈ (R2)N , Lnϕ(x) = 1
2∆ϕ(x) + ∇mn(x)

2mn(x) · ∇ϕ(x). Hence, see Subsection B.1,

one easily shows that for (En,Fn) the Dirichlet space of Xn, we have C∞c ((R2)N ) ⊂ Fn and, for
ϕ ∈ C∞c ((R2)N ), En(ϕ,ϕ) = 1

2

∫
(R2)N

‖∇ϕ‖2dµn. Since (En,Fn) is closed, we deduce that

C∞c ((R2)N )
En1 ⊂ Fn,

where En1 (·, ·) = En(·, ·) + ‖ · ‖2L2((R2)N ,µn). But thanks to [11, Lemma 3.3.5 page 136],

Fn ⊂ {ϕ ∈ L2((R2)N , µn) : ∇ϕ ∈ L2((R2)N , µn)},

where ∇ is understood in the sense of distributions. Since finally

C∞c ((R2)N )
En1

= {ϕ ∈ L2((R2)N , µn) : ∇ϕ ∈ L2((R2)N , µn)},

Xn has the announced Dirichlet space. Finally, the absolute continuity of Pnx◦(Xn
t )−1, for t > 0 and

x ∈ (R2)N , immediately follows from the (standard) Girsanov theorem, since the drift coefficient
is bounded. �

For all x ∈ E2 we set dx = mini 6=j ‖xi − xj‖2. For n ≥ 1, we introduce the open set

(68) En2 =
{
x ∈ (R2)N : dx >

1

n
and ||x|| < n

}
.

We also fix a QKS(θ,N)-process X = (ΩX ,MX , (Xt)t≥0, (PXx )x∈X4) for the whole subsection.
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Lemma 25. There exists an exceptional set N0 ⊂ E2 with respect to X such that for all n ≥ 1,
for all x ∈ En2 \N0, the law of (Xn

t∧τn)t≥0 under Pnx equals the law of (Xt∧σn)t≥0 under PXx , where

τn = inf{t > 0 : Xn
t /∈ En2 } and σn = inf{t > 0 : Xt /∈ En2 }.

Proof. We fix n ≥ 1. Applying Lemma B.6 to Xn and X with the open set En2 , using that mn = m
on En2 and Lemma 24, we find that the processes Xn and X killed when leaving En2 have the same
Dirichlet space. By uniqueness, see [11, Theorem 4.2.8 page 167], there exists an exceptional set
Nn such that for all x ∈ En2 \ Nn, the law of (Xn

t )t≥0 killed when leaving En2 under Pnx equals the
law of (Xt)t≥0 killed when leaving En2 under PXx . We conclude setting N0 = ∪n≥1Nn. �

Lemma 26. For all exceptional set N with respect to X, all n ≥ 1 and all x ∈ En2 , we have
Pnx(Xn

τn /∈ N ) = 1.

Proof. We fix N an exceptional set with respect to X, n ≥ 1 and x ∈ En2 . For ε ∈ (0, 1], we write

Pnx(Xn
τn ∈ N ) ≤ Pnx(τn ≤ ε) + Pnx(τn > ε,Xn

τn ∈ N ) = Pnx(τn ≤ ε) + Enx [1I{τn>ε}P
n
Xnε

(Xn
τn ∈ N )]

by the Markov property. But by Lemma 25, for all y ∈ En2 \ N0, the law of (Xn
t∧τn)t≥0 under

Pny is equal to the law of (Xt∧σn)t≥0 under PXy . Since N0 ∪ N is exceptional for X, we can find
N ′ ⊃ N0 ∪N properly exceptional for X (see Subsection B.1). Hence for all y ∈ En2 \ N ′,

Pny (Xn
τn ∈ N ) ≤ Pny (Xn

τn ∈ N
′) = PXy (Xσn ∈ N ′) = 0.

Since Pnx ◦ (Xn
ε )−1 has a density by Lemma 25, we conclude that Pnx(Xn

ε ∈ N ′) = 0 and thus that
Pnx-a.s., we have PnXnε (Xn

τn ∈ N ) = 0. All in all, we have proved that Pnx(Xn
τn ∈ N ) ≤ Pnx(τn ≤ ε),

and it suffices to let ε→ 0, since Pnx(τn > 0) = 1 by continuity and since x ∈ En2 . �

Using Lemmas 25 and 26, it is slightly technical but not difficult to build from X and the family
(Xn)n≥1 a X4-valued diffusion X̃ = (Ω̃X ,M̃X , (X̃t)t≥0, (P̃Xx )x∈X4) such that

• for all x ∈ X4 \ N0, the law of (X̃t)t≥0 under P̃Xx equals the law of (Xt)t≥0 under PXx ,

• for all x ∈ N0, setting n = 1+bmax(1/dx, ||x||)c (so that x ∈ En2 ), the law of (X̃t∧σ̃n)t≥0 under

P̃Xx is the same as that of (Xn
t∧τn)t≥0 under Pnx and the law of (X̃σ̃n+t)t≥0 under P̃Xx conditionally on

M̃X
σ̃n

equals the law of (Xt)t≥0 under PX
X̃σn

. We have used the notation σ̃n = inf{t > 0 : X̃t /∈ En2 }
and M̃X

t = σ(X̃s : s ∈ [0, t]).

Remark 27. For all x ∈ E2, setting n = 1 + bmax(1/dx, ||x||)c, the law of (X̃t∧σ̃n)t≥0 under P̃Xx
is the same as that of (Xn

t∧τn)t≥0 under Pnx.

Proof. This follows from Lemma 25 when x ∈ E2 \N0 and from the definition of X̃ otherwise. �

We can finally give the

Proof of Proposition 2. We fix N ≥ 2 and θ > 0 such that N > θ and we prove that X̃ defined
above is a KS(θ,N)-process. First, it is clear that X̃ is a QKS(θ,N)-process because X̃ is a

X4-valued diffusion and since for all x ∈ X4 \ N0, the law of (X̃t)t≥0 under P̃Xx equals the law of
(Xt)t≥0 under PXx , with N0 exceptional for X. It remains to prove that for all x ∈ E2, all t > 0

and all Lebesgue-null A ⊂ (R2)N , we have P̃Xx (X̃t ∈ A) = 0. We set n = 1 + bmax(1/dx, ||x||)c
and write, for any ε ∈ (0, t),

P̃Xx (X̃t ∈ A) ≤ P̃Xx (σ̃n > ε, X̃t ∈ A) + P̃Xx (σ̃n ≤ ε) = ẼXx [1I{σ̃n>ε}P̃
X
X̃ε

(X̃t−ε ∈ A)] + P̃Xx (σ̃n ≤ ε).
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Since X̃ is µ-symmetric (because it is a QKS(θ,N)-process), since P̃t−ε1 ≤ 1, where P̃t is the

semi-group of X̃ and since A is Lebesgue-null,∫
(R2)N

P̃y(X̃t−ε ∈ A)µ(dy) ≤ µ(A) = 0.

Hence there is a Lebesgue-null subset B of (R2)N (depending on t−ε) such that P̃y(X̃t−ε ∈ A) = 0
for every y ∈ (R2)N \B. We conclude that

P̃Xx (X̃t ∈ A) ≤ P̃Xx (σ̃n > ε, X̃ε ∈ B) + P̃Xx (σ̃n ≤ ε) = Pnx(τn > ε,Xn
ε ∈ B) + P̃Xx (σ̃n ≤ ε),

where we finally used Remark 27. Since B is Lebesgue-null, we deduce from Lemma 24 that
Pnx(τn > ε,Xn

ε ∈ B) = 0. Thus P̃Xx (X̃t ∈ A) ≤ P̃Xx (σ̃n ≤ ε), which tends to 0 as ε → 0 because

P̃Xx (σ̃n > 0) = 1 by continuity. �

11.2. Final proofs. We fix θ > 0, N ≥ 2 such that N > θ and a KS(θ,N)-process X, which exists
thanks to Subsection 11.1. We recall that En2 was introduced in (68) and define, for all n ≥ 1,
σn = inf{t ≥ 0 : Xt /∈ En2 }, as well as the σ-field

G = ∩n≥1σ(Xσn+t, t ≥ 0).

Lemma 28. Fix A ∈ G. If PXx (A) = 0 quasi-everywhere, then PXx (A) = 0 for all x ∈ E2.

Proof. We fix A ∈ G such that PXx (A) = 0 quasi-everywhere. There is an exceptional set N such
that for all x ∈ E2 \ N , PXx (A) = 0. We now fix x ∈ E2 and set n = 1 + bmax(1/dx, ||x||)c. For
any ε ∈ (0, 1],

PXx (A) ≤ PXx (σn ≤ ε) + PXx [σn > ε,A].

By the Markov property and since A ∈ G ⊂ σ(Xσn+t, t ≥ 0), we get

PXx [σn > ε,A] = EXx [1I{σn>ε}P
X
Xε(A)].

But the law of Xε under PXx has a density, so that PXx (Xε ∈ N ) = 0, whence PXx (PXXε(A) = 0) = 1.

Hence PXx [σn > ε,A] = 0 and we end with PXx (A) ≤ PXx (τn ≤ ε). As usual, we conclude that
PXx (A) = 0 by letting ε→ 0. �

We are now ready to give the

Proof of Proposition 3. Let θ ∈ (0, 2) and N ≥ 2. Since our KS(θ,N)-process X is a QKS(θ,N)-
process, we know from Proposition 16-(i) that PXx (ζ = ∞) = 1 quasi-everywhere. We want to
prove that PXx (ζ = ∞) = 1 for all x ∈ E2. By Lemma 28, it thus suffices to check that {ζ = ∞}
belongs to G, which is not hard since for each n ≥ 1,

{ζ =∞} = {Xt ∈ X for all t ≥ 0} = {Xt ∈ X for all t ≥ σn} ∈ σ(Xσn+t, t ≥ 0).

For the second equality, we used that Xt ∈ Ēn2 ⊂ X for all t ∈ [0, σn] by definition. �

Proof of Theorem 5. Let θ ≥ 2 and N > 3θ. Since our KS(θ,N)-process X is a QKS(θ,N)-
process, we know from Section 10 that all the conclusions of Theorem 5 hold quasi-everywhere.
In other words, PXx (A) = 1 quasi-everywhere, where A is the event on which we have ζ < ∞,
Xζ− = limt→ζ−Xt ∈ (R2)N , there is K0 ∈ [[1, N ]] with cardinal |K0| = k0 such that there is a
K0-collision in the configuration Xζ−, etc. We want to prove that PXx (A) = 1 for all x ∈ E2. By
Lemma 28, it thus suffices to check that A belongs to G. But for each n ≥ 1, A indeed belongs to
σ(Xσn+t, t ≥ 0), because no collision (nor explosion) may happen before getting out of En2 . �
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We end this section with the following remark (that we will not use anywhere).

Remark 29. Fix θ ≥ 0 and N ≥ 2 such that N > θ. Consider a KS(θ,N) process X and
define σ = inf{t ≥ 0 : Xt /∈ E2}. For all x ∈ E2, there is some (MX

t )t≥0-Brownian motion
((Bit)t≥0)i∈[[1,N ]] (of dimension 2N) under PXx such that for all t ∈ [0, σ), all i ∈ [[1, N ]],

(69) Xi
t = xi +Bit −

θ

N

∑
j 6=i

∫ t

0

Xi
s −Xj

s

||Xi
s −X

j
s ||2

ds.

Proof. It of course suffices to prove the result during [0, σn), where σn = inf{t ≥ 0 : Xt /∈ En2 }. For
any x ∈ En2 and for a given Brownian motion, the solutions to (69) and (67) classically coincide
while they remain En2 , because their drift coefficients coincide and are smooth inside En2 . Hence,
recalling the notation of Subsection 11.1, it suffices to prove that the semi-groups Pt(x, ·) and
Pnt (x, ·) of the Markov processes X and Xn killed when getting out of En2 coincide for all x ∈ En2 .

By Lemma 25, there is an exceptional set N0 such that Pt(x, ·) = Pnt (x, ·) for all x ∈ En2 \ N0.
We next fix x ∈ En2 . For any ε ∈ (0, t), using that Pε(x, ·) has a density and that N0 is Lebesgue-
null, we easily deduce that Pt(x, ·) = (PεPt−ε)(x, ·) = (PεP

n
t−ε)(x, ·). It is then not difficult, using

that Pnt is Feller, to let ε→ 0 and conclude that indeed, Pt(x, ·) = Pnt (x, ·). �

Appendix A. A few elementary computations

We recall that dθ,N (k) = (k − 1)(2− θk/N) for k ≥ 2 and give the

Proof of Lemma 1. First, (3), which says that dθ,N (k) > 0 if and only if k < k0 = d2N/θe, is clear.
We next fix N > 3θ ≥ 6, so that k0 ∈ [[7, N ]] and dθ,N (2) = 2− 2θ/N ∈ (4/3, 2). By concavity of
x → (x − 1)(2 − θx/N), it only remains to check that (i) dθ,N (3) ≥ 2, (ii) dθ,N (k0 − 3) ≥ 2, and
(iii) dθ,N (k0 − 1) < 2. We introduce a = 2N/θ > 6 and observe that dθ,N (k) = 2a−1(k− 1)(a− k)
and that k0 = dae.

For (i), we write dθ,N (3) = 4a−1(a− 3) = 4− 12a−1 > 2 since a > 6.

For (ii), we have dθ,N (k0−3) = 2a−1(dae−4)(a−dae+3) and we need (dae−4)(a−dae+3) ≥ a.
Writing a = n+ α with an integer n ≥ 6 and α ∈ (0, 1], we need that (n− 3)(2 + α) ≥ n+ α, and
this holds true because 2(n− 3) ≥ n and (n− 3)α ≥ α.

For (iii), we write dθ,N (k0 − 1) = 2a−1(dae − 2)(a− dae+ 1) ≤ 2a−1(dae − 2) < 2. �

We next study the reference measure of the Keller-Segel particle system.

Proposition A.1. Let N ≥ 2 and θ > 0 be such that N > θ. Recall that k0 = d2N/θe and the
definition (4) of µ(dx) = m(x)dx.

(i) The measure µ is Radon on Ek0 .

(ii) If k0 ≤ N , then µ is not Radon on Ek0+1.

Proof. (i) To show that µ is radon on Ek0 , we have to check that for all x = (x1, . . . , xN ) ∈ Ek0 ,
which we now fix, there is an open set Ox ⊂ Ek0 such that x ∈ Ox and µ(Ox) < ∞. We choose

Ox =
∏N
i=1B(xi, dx), where the balls are subsets of R2 and where

dx = 1 ∧min
{‖xi − xj‖

3
: i, j ∈ [[1, N ]] such that xi 6= xj

}
> 0.
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We consider the partition K1, . . . ,K` of [[1, N ]] such that for all p 6= q in [[1, `]], for all i, j ∈ Kp

and all k ∈ Kq, x
i = xj and xi 6= xk. Since x ∈ Ek0 , it holds that maxp∈[[1,`]] |Kp| ≤ k0 − 1. By

definition of Ox and dx, we see that for all y ∈ Ox, for all p 6= q in [[1, `]], for all i ∈ Kp, all j ∈ Kq,

‖yi − yj‖ ≥ ‖xi − xj‖ − ‖xi − yi‖ − ‖xj − yj‖ ≥ ‖xi − xj‖ − 2dx ≥ dx.

This implies that for some finite constant C depending on x, for all y ∈ Ox,

m(y) =
∏

1≤i 6=j≤N

||yi − yj ||−θ/N ≤ C
∏̀
p=1

( ∏
i,j∈Kp,i6=j

||yi − yj ||−θ/N
)
.

Recall now that µ(dy) = m(y)dy and that we want to show that µ(Ox) < ∞. Since xi = xj for
all i, j ∈ Kp and all p ∈ [[1, `]], since |Kp| ≤ k0 − 1, dx ≤ 1 and by a translation argument, we are
reduced to show that for any n ∈ [[2, k0 − 1]], (when k0 > N , one could study only n ∈ [[2, N ]])

In =

∫
(B(0,1))n

( ∏
1≤i 6=j≤n

‖yi − yj‖−θ/N
)

dy1 . . . dyn <∞.

We fix n ∈ [[2, k0 − 1]] and show that In < ∞. Since ‖u‖2 ≥ |u1u2| for all u = (u1, u2) ∈ R2, we
have In ≤ J2

n, where

Jn =

∫
[−1,1]n

( ∏
1≤i6=j≤n

|ti − tj |−θ/(2N)
)

dt1 . . . dtn.

But for all t1, . . . , tn ∈ R,∏
1≤i 6=j≤n

|ti − tj |−θ/(2N) =

n∏
i=1

( n∏
j=1,j 6=i

|ti − tj |−θ/(2N)
)
≤ 1

n

n∑
i=1

n∏
j=1,j 6=i

|ti − tj |−θn/(2N)

by the inequality of arithmetic and geometric means. Thus by symmetry,

Jn ≤
∫

[−1,1]n

( n∏
j=2

|t1 − tj |−θn/(2N)
)

dt1 . . . dtn =

∫ 1

−1

(∫ 1

−1

|t1 − t2|−θn/(2N)dt2
)n−1

dt1.

Consequently,

Jn ≤
∫ 1

−1

(∫ 2

−2

|s|−θn/(2N)ds
)n−1

dt1.

Since n ≤ k0 − 1 = d2N/θe − 1 < 2N/θ, we have θn/(2N) < 1, so that Jn <∞, whence In <∞.

(ii) We next assume that k0 ∈ [[2, N ]]. To prove that µ is not radon on Ek0+1, we show that
µ(K) =∞ for the compact subset

K =

k0∏
i=1

B(0, 1)×
N∏

k=k0+1

B((2k, 0), 1/2)

of Ek0+1. All the balls in the previous formula are balls of R2. For x = (x1, . . . , xN ) ∈ K, it
holds that xk0+1, . . . , xN are far from each other and far from x1, . . . , xk0 , which explains that K
is indeed compact in Ek0+1. There is a positive constant c > 0 such that for all x ∈ K,

m(x) =
∏

1≤i 6=j≤N

||xi − xj ||−θ/N ≥ c
∏

1≤i6=j≤k0

||xi − xj ||−θ/N ,
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whence, the value of c > 0 being allowed to vary,

µ(K) ≥ c
∫

(B(0,1))k0

( ∏
1≤i 6=j≤k0

‖xi − xj‖−θ/N
)

dx1 . . . dxk0 .

We now observe that

A = {x = (x1, . . . , xk0) : x1, x2 ∈ B(0, 1/3), ∀i /∈ {1, 2}, xi ∈ B(x1, ‖x1 − x2‖)} ⊂ (B(0, 1))k0

and that for x ∈ A, we have ||xi−xj || ≤ ||xi−x1||+ ||xj−x1|| ≤ 2||x1−x2|| for all i, j = 1, . . . , k0,
from which ∏

1≤i 6=j≤k0

‖xi − xj‖−θ/N ≥ c‖x1 − x2‖−k0(k0−1)θ/N .

As a conclusion,

µ(K) ≥c
∫

(B(0,1/3))2
‖x1 − x2‖−k0(k0−1)θ/Ndx1dx2

∫
(B(x1,‖x1−x2‖))k0−2

dx3 . . . dxk0

≥c
∫

(B(0,1/3))2
‖x1 − x2‖−k0(k0−1)θ/N+2(k0−2)dx1dx2

≥c
∫
B(0,1/3)

‖u‖−k0(k0−1)θ/N+2(k0−2)du,

where we finally used the change of variables u = x1 − x2 and v = x1 + x2. This last integral
diverges, because −k0(k0 − 1)θ/N + 2(k0 − 2) = dθ,N (k0) − 2 ≤ −2, recall that dθ,N (k0) =
(k0 − 1)(2− k0θ/N) ≤ 0 by definition of k0. �

We need a similar result on the sphere S defined in Section 2, where γ : R2 → (R2)N and
Ψ : R2 × R∗+ × S → EN ⊂ (R2)N were also introduced. First, we show an explicit link between
µ(dx) = m(x)dx and β(du) = m(u)σ(du) defined in (4) and (8), that we use several times.

Lemma A.2. We fix N ≥ 2, θ > 0 and set ν = dθ,N (N)/2− 1. For all Borel ϕ : (R2)N → R+,∫
(R2)N

ϕ(x)µ(dx) =
1

2

∫
R2×R∗+×S

ϕ(Ψ(z, r, u))rνdzdrβ(du).

Proof. Since H = {y = (y1, . . . , yN ) ∈ (R2)N :
∑N

1 yi = 0} and since m is translation invariant,∫
(R2)N

ϕ(x)µ(dx) =

∫
(R2)N

ϕ(x)m(x)dx =

∫
R2×H

ϕ(γ(z) + y)m(y)dzdy.

We next note that S is the (true) unit sphere of the (2N − 2)-dimensional Euclidean space H and
proceed to the substitution (`, u) = (‖y‖, y/||y||):∫

(R2)N
ϕ(x)µ(dx) =

∫
R2×R+×S

ϕ(γ(z) + `u)m(`u)`2N−3dzd`σ(du).

We finally substitute ` =
√
r and obtain∫

(R2)N
ϕ(x)µ(dx) =

1

2

∫
R2×R+×S

ϕ(γ(z) +
√
ru)m(

√
ru)rN−2dzdrσ(du).

But m(
√
ru)rN−2 = rN−2−θ(N−1)/2m(u) by (4) and β(du) = m(u)σ(du), whence∫

(R2)N
ϕ(x)µ(dx) =

1

2

∫
R2×R+×S

ϕ(Ψ(z, r, u))rN−2−θ(N−1)/2dzdrβ(du).

Since finally ν = dθ,N (N)/2− 1 = N − 2− θ(N − 1)/2, the conclusion follows. �
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We can now study the measure β on S.

Proposition A.3. Let N ≥ 2 and θ > 0 such that N > θ. Recall that k0 = d2N/θe.

(i) The measure β is Radon on S ∩ Ek0 .

(ii) If k0 ≥ N , then β(S) <∞ .

Proof. We start with (i). For ε ∈ (0, 1], we introduce

Kε = {x ∈ (R2)N : ∀K ⊂ [[1, N ]] such that |K| ≥ k0, we have RK(x) ≥ ε} and Lε = Kε ∩ S.

Since Kε ∩ B(0, 1) is compact in Ek0 , with here B(0, 1) the unit ball of (R2)N , we know from
Proposition A.1-(i) that µ(Kε ∩B(0, 1)) <∞. Now by Lemma A.2,

µ(Kε ∩B(0, 1)) =
1

2

∫
R2×R+×S

1I{γ(z)+
√
ru∈Kε∩B(0,1)}r

νdzdrβ(du).

But for (z, r, u) ∈ R2 × R+ × S,

γ(z) +
√
ru ∈ Kε ∩B(0, 1) if and only if u ∈ Lε/r and N ||z||2 + r < 1.

Indeed, RK(γ(z) +
√
ru) = rRK(u) for all K ⊂ [[1, N ]] and ||γ(z) +

√
ru||2 =

∑N
1 ||z +

√
rui||2 =

N ||z||2 + r because
∑N

1 ui = 0 and
∑N

1 ||ui||2 = 1. Thus

µ(Kε ∩B(0, 1)) =

∫
R2×R+

1I{N ||z||2+r<1}r
νβ(Lε/r)dzdr.

All this implies that for all ε ∈ (0, 1], for almost all r ∈ (0, 1), β(Lε/r) < ∞. Since ε → Lε is
monotone, we conclude that β(Lε) < ∞ for all ε ∈ (0, 1]. Since finally ∪ε∈(0,1]Lε = S ∩ Ek0 and
since Lε is compact in S∩Ek0 for each ε ∈ (0, 1], we conclude as desired that β is Radon on S∩Ek0 .

We next prove (ii). It holds that S ⊂ EN , because for u ∈ S, we have R[[1,N ]](u) = 1. Hence if
k0 ≥ N , then S ⊂ EN ⊂ Ek0 , whence S = S ∩ Ek0 and thus β is Radon on S by point (i). Since
finally S is compact, we conclude that β(S) <∞. �

Appendix B. Markov processes and Dirichlet spaces

In a first subsection, we recall some classical definitions and results about Hunt processes,
diffusions and Dirichlet spaces found in Fukushima-Oshima-Takeda [11]. In a second subsection,
we mention a few results about martingales, times-changes, concatenation, killing and Girsanov
transformation of Hunt processes found in [11] and elsewhere.

B.1. Main definitions and properties. Let E be a locally compact separable metrizable space
endowed with a Radon measure α such that Supp α = E. We set E4 = E∪{4}, where4 is a ceme-
tery point. See [11, Section A2] for the definition of a Hunt process Y = (Ω,M, (Yt)t≥0, (Py)y∈E4):
it is a strong Markov process in its canonical filtration, Py(Y0 = y) = 1 for all y ∈ E4, 4 is an
absorbing state, i.e. Yt = 4 for all t ≥ 0 under P4, and a few more technical properties are
satisfied. The life-time of Y is defined by ζ = inf{t ≥ 0 : Yt = 4}.

Let us denote by Pt(y,dz) its transition kernel. Our Hunt process is said to be α-symmetric if∫
E
ϕPtψdα =

∫
E
ψPtϕdα for all measurable ϕ,ψ : E → R+ and all t ≥ 0, see [11, page 30]. The
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Dirichlet space (E ,F) of our Hunt process on L2(E,α) is then defined, see [11, page 23], by

F =
{
ϕ ∈ L2(E,α) : lim

t→0

1

t

∫
E

ϕ(Ptϕ− ϕ)dα exists
}
,

E(ϕ,ψ) = − lim
t→0

1

t

∫
E

ϕ(Ptψ − ψ)dα for all ϕ,ψ ∈ F .

The generator (A,DA) of Y is defined as follows:

DA =
{
ϕ ∈ L2(E,α) : lim

t→0

1

t
(Ptϕ− ϕ) exists in L2(E,α)

}
,

and for ϕ ∈ DA, we denote by Aϕ ∈ L2(E,α) this limit. By [11, Pages 20-21], it holds that

(B.1) DA =
{
ϕ ∈ F : ∃ h ∈ L2(E,α) such that ∀ ψ ∈ F , we have E(ϕ,ψ) = −

∫
E

hψdα
}

and in such a case Aϕ = h.

The one-point compactification E4 = E ∪ {4} of E is endowed with the topology consisting of
all the open sets of E and of all the sets of the form Kc ∪{4} with K compact in E, see page [11,
page 69]. Observe that for a E4-valued sequence (xn)n≥0, we have limn xn = x if and only if

• either x ∈ E, xn ∈ E for all n large enough, and limn xn = x ∈ E in the usual sense;

• or x = 4 and for all compact subset K of E, there is nK ∈ N such that for all n ≥ nK , xn /∈ K.

We say that our Hunt process is continuous if t → Yt is continuous from R+ into E4, where
E4 is endowed with the one-point compactification topology. A continuous Hunt process is called
a diffusion.

A Dirichlet space (E ,F) on L2(E,α) is said to be regular if it has a core, see [11, page 6], i.e. a
subset C ⊂ Cc(E) ∩ F which is dense in F for the norm ||ϕ|| = [

∫
E
ϕ2dα + E(ϕ,ϕ)]1/2 and dense

in Cc(E) for the uniform norm.

Observe two regular Dirichlet spaces (E ,F) and (E ′,F ′) such that E(ϕ,ϕ) = E ′(ϕ,ϕ) for all ϕ
in a common core C are necessarily equal, i.e. F = F ′ and E = E ′. This follows from the fact that
by definition, see [11, page 5], a Dirichlet space is closed.

We say that a Borel set A of E is (Pt)t≥0-invariant if for all ϕ ∈ L2(E,α), all t > 0 we have
Pt(1IAϕ) = 1IAPtϕ α-a.e, see [11, page 53]. According to [11, page 55], we say that (E ,F) is
irreducible if for all (Pt)t≥0-invariant set A, we have either α(A) = 0 or α(E \A) = 0.

We say that (E ,F) is recurrent if for all nonnegative ϕ ∈ L1(E,α), for α-a.e. y ∈ E, we have
Ey[
∫∞

0
ϕ(Ys)ds] ∈ {0,∞}, see [11, page 55].

We finally say that (E ,F) is transient if for all nonnegative ϕ ∈ L1(E,α), for α-a.e. y ∈ E, we
have Ey[

∫∞
0
ϕ(Ys)ds] <∞, with the convention that ϕ(4) = 0, see [11, page 55].

By [11, Lemma 1.6.4 page 55], if (E ,F) is irreducible, then it is either recurrent or transient.

A Borel set N ⊂ E is properly exceptional if α(N ) = 0 and Py(∃t ≥ 0 : Yt ∈ N ) = 0 for all
y ∈ E \ N , see [11, page 153]. A property is said to hold true quasi-everywhere if it holds true
outside a properly exceptional set.

Remark B.1. Two Hunt processes with the same Dirichlet space share the same quasi-everywhere
notion, up to the restriction that the capacity of every compact set is finite, which is always the
case in the present work.
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Proof. We fix a Hunt process Y and explain why its quasi-everywhere notion depends only on its
Dirichlet space. A set N ⊂ E is exceptional, see [11, page 152], if there exists a Borel set Ñ
such that N ⊂ Ñ and Py(∃t ≥ 0 : Yt ∈ Ñ ) = 0 for α-a.e. y ∈ E. A properly exceptional set is
clearly exceptional and [11, Theorem 4.1.1 page 155] tells us that any exceptional set is included
in a properly exceptional set. Thus, a property is true quasi-everywhere if and only if it holds
true outside an exceptional set. Next, [11, Theorem 4.2.1-(ii) page 161] tells us that a set N is
exceptional if and only if its capacity is 0, where the capacity of N ⊂ E is entirely defined from the
Dirichlet space. And for [11, Theorem 4.2.1-(ii) page 161] to apply, one needs that the capacity of
all compact sets is finite. �

B.2. Toolbox. We start with martingales.

Lemma B.2. Let E be a locally compact separable metrizable space endowed with a Radon measure
α such that Supp α = E, and (Ω,M, (Zt)t≥0, (Pz)z∈E4) a α-symmetric E4-valued diffusion with

regular Dirichlet space (E ,F) on L2(E,α) and generator (A,DA). Assume that ϕ : E 7→ R belongs
to DA and that both ϕ and Aϕ are bounded. Define

Mϕ
t = ϕ(Zt)− ϕ(Z0)−

∫ t

0

Aϕ(Zs)ds,

with the convention that ϕ(4) = Aϕ(4) = 0. Quasi-everywhere, (Mϕ
t )t≥0 is a Pz-martingale in

the canonical filtration of (Zt)t≥0.

This can be found in [11, page 332]. There the assumption on ϕ is that there is f bounded
and measurable such that ϕ = R1f , i.e. ϕ = (I − A)−1f , which simply means that ϕ − Aϕ is
bounded. Also, the conclusion is that (Mϕ

t )t≥0 is a MAF, which indeed implies that (Mϕ
t )t≥0 is a

martingale, see [11, page 243].

Next, we deal with time-changes.

Lemma B.3. Let E be a C∞-manifold, α a Radon measure on E such that Supp(α) = E, and
(Ω,M, (Zt)t≥0, (Pz)z∈E4) a α-symmetric E4-valued diffusion with regular Dirichlet space (E ,F)

on L2(E,α) with core C∞c (E). We also fix g : E → (0,∞) continuous and take the convention

that g(4) = 0. We consider the time-change At =
∫ t

0
g(Zs)ds and its generalized inverse ρt =

inf{s > 0 : As > t}. We introduce Yt = Zρt1I{ρt<∞}+41I{ρt=∞}. Then (Ω,M, (Yt)t≥0, (Py)y∈E4)

is a gα-symmetric E4-valued diffusion with regular Dirichlet space (E ,F ′) on L2(E, gα) with core

C∞c (E), i.e. F ′ is the closure of C∞c (E) with respect to the norm [
∫
E
ϕ2gdα+ E(ϕ,ϕ)]1/2.

Remark B.4. If we apply the preceding result to the simple case where E is an open subset of Rd
and where E(ϕ,ϕ) =

∫
Rd ‖∇ϕ‖

2dα for all ϕ ∈ C∞c (E), then when E is seen as the Dirichlet form

of a gα-symmetric process, it may be better understood as E(ϕ,ϕ) =
∫
Rd ‖g

−1/2∇ϕ‖2gdα.

This lemma is nothing but a particular case of [11, Theorem 6.2.1 page 316], see also the few
pages before. We only have to check that the Revuz measure in our case is gα, i.e., see [11, (5.1.13)
page 229], that for all bounded nonnegative measurable functions ϕ,ψ on E, for all t > 0,∫

E

Ex
[ ∫ t

0

ϕ(Zs)g(Zs)ds
]
ψ(x)α(dx) =

∫ t

0

∫
E

(PZs ψ)ϕgdα,

where PZt is the semi-group of Z. The left hand side equals
∫ t

0

∫
E
PZs (ϕg)ψdα, so that the claim

is obvious since Z is α-symmetric.

The following concatenation result can be found in Li-Ying [17, Proposition 3.2].
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Lemma B.5. Let EV , EW be two C∞-manifolds, αV , αW be some Radon measures on EV and
EW such that Supp(αV ) = EV and Supp(αW ) = EW . Let (ΩV ,MV , (Vt)t≥0, (PVv )v∈EV ∪{4}) be a

αV -symmetric (EV ∪ {4})-valued diffusion with regular Dirichlet space
(
EV ,FV

)
on L2(EV , αV )

with core C∞c (EV ). Consider (ΩW ,MW , (Wt)t≥0, (PWw )w∈EW∪{4}), a αW -symmetric (EW ∪{4})-

valued diffusion with regular Dirichlet space
(
EW ,FW

)
on L2(EW , αW ) with core C∞c (EW ). Intro-

duce the measure α = αV ⊗αW on E = EV ×EW . We take the convention that (v,4) = (4, w) =
(4,4) = 4 for all v ∈ EV , all w ∈ EW . Moreover, we set M(V,W ) = σ({(Vt,Wt) : t ≥ 0}) and

we define P(V,W )
(v,w) = PVv ⊗ PWw if (v, w) ∈ EV × EW and P(V,W )

4 = PV4 ⊗ PW4 . The process(
ΩV × ΩW ,M(V,W ), (Vt,Wt)t≥0, (P(V,W )

(v,w) )(v,w)∈(EV ×EW )∪{4}

)
is a E4-valued α-symmetric diffusion , with regular Dirichlet space (E ,F) on L2(E,α) with core
C∞c (E) and, for ϕ ∈ C∞c (E),

E(ϕ,ϕ) =

∫
EV

EW (ϕ(v, ·), ϕ(v, ·))αV (dv) +

∫
EW

EV (ϕ(·, w), ϕ(·, w))αW (dw).

Observe that M(V,W ) may be strictly smaller than MV ⊗MW due to the identification of all
the cemetery points. Also, it actually holds true that PV4⊗PWw = PVv ⊗PW4 = PV4⊗PW4 onM(V,W )

so that the choice P(V,W )
4 = PV4 ⊗ PW4 is arbitrary but legitimate.

The following killing result is a summary, adapted to our context, of Theorems 4.4.2 page 173
and 4.4.3-(i) page 174 in [11, Section 4.4].

Lemma B.6. Let E be a C∞-manifold, let α be a Radon measure on E such that Supp(α) = E,
and let (Ω,M, (Zt)t≥0, (Pz)z∈E4) be a α-symmetric E4-valued diffusion with regular Dirichlet

space (E ,F) on L2(E,α) with core C∞c (E). Let O be an open subset of E and consider τO =
inf{t ≥ 0 : Xt /∈ O}, with the convention that inf ∅ =∞. Then, setting

ZOt = Zt1I{t<τO} +41I{t≥τO},

(Ω,M, (ZOt )t≥0, (Pz)z∈O∪{4}) is a α|O-symmetric O ∪ {4}-valued diffusion with regular Dirichlet

space (EO,FO) on L2(O,α|O) with core C∞c (O) and for ϕ ∈ FO,

EO(ϕ,ϕ) = E(ϕ,ϕ).

Note that since O is an open subset of the manifold E and since the Hunt process is continuous,
the regularity condition (4.4.6) of [11, Theorem 4.4.2 page 173] is obviously satisfied.

We finally give an adaptation of the Girsanov theorem in the context of Dirichlet spaces, which
is a particular case of Chen-Zhang [5, Theorem 3.4].

Lemma B.7. Let E be an open subset of Rd, with d ≥ 1, α be a Radon measure on E such that
Supp(α) = E and (Ω,M, (Zt)t≥0, (Pz)z∈E4) be a α-symmetric E4-valued diffusion with regular

Dirichlet space (E ,F) on L2(E,α) with core C∞c (E) such that for all ϕ ∈ C∞c (E),

E(ϕ,ϕ) =

∫
E

‖∇ϕ‖2dα.

Let (A,DA) stand for its generator. Let u ∈ F be bounded, such that for % = eu, we have %−1 ∈ DA
with A[%− 1] is bounded. Set

L%t =
%(Zt)

%(Z0)
exp

(
−
∫ t

0

A[%− 1](Zs)

%(Zs)
ds
)
,
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with the conventions that %(4) = 1 and A[%− 1](4) = 0.

Assume that % is continuous on E4. Then quasi-everywhere, (L%t )t≥0 is a bounded (Mt)t≥0-
martingale under Pz, where we have set Mt = σ({Zs : s ∈ [0, t]}), and there exists a probability

measure P̃z on (Ω,M), such that for all t > 0, P̃z = L%t · Pz on Mt.

Moreover (Ω,M,(Zt)t≥0,(P̃z)z∈E4) is a %2α-symmetric E4-valued diffusion with regular Dirich-

let space (Ẽ ,F) on L2(E, %2α) such that for all ϕ ∈ F ,

Ẽ(ϕ,ϕ) =
1

2

∫
E

‖∇ϕ‖2%2dα.

Actually, they speak of right processes in [5], but this is not an issue since we only consider
continuous Hunt processes. Also, they assume that L% is bounded from above and from below
by some deterministic constants, on each compact time interval, but this is obvious under our
assumptions on u and A%. Finally, their expression of L% is different, see [5, pages 485-486]: first,
they define M%

t as the martingale part of %(Xt). By Lemma B.2 (applied to %− 1), we see that

M%
t = %(Zt)− %(Z0)−

∫ t

0

A[%− 1](Zs)ds.

Then they put Mt =
∫ t

0
[%(Zs)]

−1dM%
s and define L% as

L%t = exp
(
Mt −

1

2
〈M〉t

)
.

But by Itô’s formula, log %(Zt) = log %(Z0) +
∫ t

0
[%(Zs)]

−1dM%
s +

∫ t
0
[%(Zs)]

−1A[% − 1](Zs)ds −
1
2

∫ t
0
[%(Zs)]

−2d〈M%〉s, whence log %(Zt) = log %(Z0) +Mt +
∫ t

0
[%(Zs)]

−1A[%− 1](Zs)ds− 1
2 〈M〉t, so

that L%t = exp(Mt − 1
2 〈M〉t) = [%(Z0)]−1%(Zt) exp(−

∫ t
0
%(Zs)

−1A[%− 1](Zs)ds) as desired.
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