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Abstract. Motivated by the recent results of Andreis-Iyer-Magnanini [2], we provide a short
proof, revisiting the one of Escobedo-Mischler-Perthame [6], that for a large class of coagulation

kernels, any weak solution to the Smoluchowski equation looses mass in finite time. The class
of kernels we consider is essentially the same as the one of [2]: homogeneous kernels of degree

γ > 1 not vanishing on the diagonal, or homogeneous kernels of degree γ = 1 not vanishing on

the diagonal with some additional logarithmic factor. We also show that when γ = 1, the power
of the logarithmic factor ensuring gelation may depend on the shape of the kernel.

1. Introduction

The Smoluchowski coagulation equation [16] describes the time-evolution of the concentration
ft(x) of particles with mass x ∈ (0,∞) at time t ≥ 0, in an infinite particle system. Assuming that
two particles with masses x and y coalesce at rate K(x, y) to produce a single particle with mass
x+ y, it naturally writes

(1) ∂tft(x) =
1

2

∫ x

0

K(y, x− y)ft(y)ft(x− y)dy − ft(x)

∫ ∞

0

K(x, y)ft(y)dy.

We refer to the review papers of Aldous [1] and Laurençot [11] and to the books of Banasiak-
Lamb-Laurençot [3, 4], which contain a lot of information on this equation and its discrete version.
We of course expect that (1) preserves mass, i.e that

∫∞
0
xft(x)dx =

∫∞
0
xf0(x)dx for all t ≥ 0.

However, this is not true if the kernel K increases sufficiently quickly for large masses. Some mass
may be lost in finite time, due to the appearance of clusters with infinite mass. This phenomenon
is called gelation.

Gelation is easily established for the multiplicative kernel K(x, y) = xy, and physicists con-
jectured that gelation occurs for γ-homogeneous kernels (that is, K(λx, λy) = λγK(x, y)) with
γ > 1. See Ziff [18], Leyvraz-Tschudi [13] and Hendriks-Ernst-Ziff [8]. Leyvraz [12] and then
Buffet-Pulé [5] rigorously proved gelation when f0 = δ1 and K(x, y) = r(x)1{x=y} is a diagonal

kernel, with r(x) ≥ x log2+ε(e + x) for some ε > 0. Jeon [10] was the first to prove rigorously,
through probabilistic arguments, the existence of a gelling solution when K(x, y) ≥ (xy)γ/2 with
γ > 1. Escobedo-Mischler-Perthame [6] found a simpler deterministic argument, stronger since
they showed that any solution is gelling. They also proved many estimates on the rate of decay of
the mass and the profile of the solution. Laurençot [11, Proposition 36] showed that any solution
is gelling for a class of kernels including K(x, y) =

√
xy[log(e+ x) log(e+ y)]1+ε with ε > 0.

Using a probabilistic approach in the spirit of [10], Andreis-Iyer-Magnanini [2] recently proved
that gelling solutions exist for a wider class of kernels. They actually deal with the slightly more
general model introduced by Norris [15]. Concerning (1), they are able to show gelation for any
γ-homogeneous kernel non vanishing near the diagonal with γ > 1. They can also deal with e.g.
K(x, y) = (x ∧ y) log3+ε(e+ x ∧ y) with ε > 0 and others, see Example 5 below and the two lines
after. Such kernels were (really) not covered by [10, 6, 11].
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Our goal is to revisit the proof of [6] to try include the kernels treated in [2]. To this end,
we slightly simplify and refine the arguments of [6] and show, with a very short proof, that any
solution looses mass in finite time, for a class of kernels including K(x, y) = (x∧y) log2+ε(e+x∧y).

We also show that the optimality of the power 2 of the logarithmic term is debatable: we find
two 1-homogeneous kernels K0(x, y) = (x ∧ y)(x∧yx∨y − 1

2 )+ and K1(x, y) = x + y such that when

K(x, y) = K0(x, y) log
α(e + x ∧ y), weak solutions are gelling if and only if α > 2 for the mono-

disperse initial condition f0 = δ1, while when K(x, y) = K1(x, y) log
α(e + x ∧ y), weak solutions

are gelling if and only if α > 1.

Since K0(x, y) = 0 if x/y ≤ 1/2, the support of the solution ft starting from f0 = δ1 is
naturally included in 2N, and we have K0(2

n, 2m) = 0 if n ̸= m. Thus everything happens as if
K0(x, y) = (x/2)1{x=y}. Hence gelation when K(x, y) = K0(x, y) log

α(e + x ∧ y) with α > 2 and
f0 = δ1 was already known [5], but they showed non-gelation only when α ≤ 1.

The complexity of 1-homogeneous kernel is not new: van Dongen-Ernst [17, Section 6] and
Hermann-Niethammer-Velázquez [9] showed, via rigorous and heuristic results, that the large-time
behavior of (non-gelling) solutions depends on the precise shape of the kernel.

2. Main result and proof

We always assume at least that K : (0,∞)2 → R+ is measurable and symmetric, i.e. K(x, y) =
K(y, x). The following definition is more or less classical, see e.g. Laurençot [11, Theorem 24].

Definition 1. A measurable family (ft)t≥0 of nonnegative measures on (0,∞) is said to be a weak
solution to (1) if for all t ≥ 0,

(2)

∫ t

0

∫ ∞

0

∫ ∞

0

K(x, y)fs(dy)fs(dx)ds <∞,

and if for all bounded measurable ψ : (0,∞) → R+, all t ≥ 0,

(3)

∫ ∞

0

ψ(x)ft(dx) =

∫ ∞

0

ψ(x)f0(dx) +
1

2

∫ t

0

∫ ∞

0

∫ ∞

0

∆ψ(x, y)K(x, y)fs(dy)fs(dx)ds,

where ∆ψ(x, y) = ψ(x+ y)− ψ(x)− ψ(y).

All the terms make sense in (3): the first and second one belong to [0,∞)∪{+∞} and the last one
is finite by (2) and since |∆ψ| is bounded. Moreover, for any bounded measurable ψ : (0,∞) → R+

for which
∫∞
0
ψ(x)f0(dx) <∞, the map t→

∫∞
0
ψ(x)ft(dx) is continuous from [0,∞) to R+.

Norris [14, Theorem 4.1] found a very general existence result: it suffices that K is con-
tinuous on (0,∞)2 and that there exists a continuous function θ : (0,∞) → (0,∞), sublin-
ear (that is θ(λx) ≤ λθ(x) if λ ≥ 1) such that

∫∞
0
θ(x)f0(dx) < ∞, K(x, y) ≤ θ(x)θ(y) and

lim(x,y)→∞[θ(x)θ(y)]−1K(x, y) = 0. This applies to many physical kernels, possibly diverging for
small and large masses.

For f a nonnegative measure on (0,∞) and k ∈ R, we set Mk(f) =
∫∞
0
xkf(dx). If applying

(3) with ψ(x) = x, we would find that M1(ft) =M1(f0) for all t ≥ 0, because ∆ψ = 0. But this is
not licit, since ψ(x) = x is not bounded. However, the following observation is very classical.

Remark 2. For any weak solution (ft)t≥0 to (1), we have M1(ft) ≤M1(f0) for all t ≥ 0.

Proof. Fix t ≥ 0. For a > 0, we set ψa(x) = x ∧ a and observe that ∆ψa
(x, y) ≤ 0 for all

x, y ∈ (0,∞). By (3), this implies that
∫∞
0

(x ∧ a)ft(dx) ≤
∫∞
0

(x ∧ a)f0(dx) ≤ M1(f0). The
conclusion follows, by monotone convergence. □

Here is our main result. See Remark 4 and Example 5 below for applications.
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Theorem 3. Assume that

there exist x0 > 0 and r > 1 such that κ :=

∫ ∞

x0

[H(a)]−1/2da <∞,(4)

where H(a) = a inf{K(x, y) : x, y ∈ [a, ra]}.

For any weak solution (ft)t≥0 to (1) with M1(f0) <∞ and f0((x0,∞)) > 0, we have

Tgel := inf{t ≥ 0 :M1(ft) < M1(f0)} ≤ 2κ2
( r

r − 1

)2 M1(f0)

[
∫∞
x0

(x− x0)f0(dx)]2
.

Proof. For a > 0, we set ψa(x) = x∧a. We have ∆ψa(x, y) ≤ 0 for all x, y > 0 and ∆ψa(x, y) = −a
when x, y ≥ a. Hence

∆ψa(x, y)K(x, y) ≤ −aK(x, y)1{x,y≥a} ≤ −aK(x, y)1{x,y∈[a,ra]} ≤ −H(a)1{x,y∈[a,ra]}.

Applying (3) with ψa, we find that for all t ≥ 0,

(5)

∫ ∞

0

(x ∧ a)(ft(dx)− f0(dx)) ≤ −H(a)

2

∫ t

0

∫ ra

a

∫ ra

a

fs(dy)fs(dx)ds = −H(a)

2

∫ t

0

[Fs(a)]
2ds,

where Fs(a) = fs([a, ra]). Since ft is nonnegative, we conclude that∫ t

0

H(a)[Fs(a)]
2ds ≤ 2

∫ ∞

0

(x ∧ a)f0(dx) ≤ 2M1(f0).

Multiplying this inequality by [H(a)]−1/2 and integrating in a ∈ [x0,∞), using (4), we find

(6)

∫ t

0

∫ ∞

x0

[H(a)]1/2[Fs(a)]
2dads ≤ 2κM1(f0).

We next write M1(fs) = As +Bs, where

As =

∫ ∞

0

(x ∧ x0)fs(dx) and Bs =

∫ ∞

x0

(x− x0)fs(dx).

We have As ≤ A0 by (5) (with a = x0). Morover, since for all x ≥ x0,∫ ∞

x0

1{x∈[a,ra]}da = x−max
{
x0,

x

r

}
= min

{
x− x0,

r − 1

r
x
}
≥ r − 1

r
(x− x0),

we have ∫ ∞

x0

Fs(a)da =

∫ ∞

x0

∫ ra

a

fs(dx)da =

∫ ∞

x0

∫ ∞

x0

1{x∈[a,ra]}dafs(dx) ≥
r − 1

r
Bs.

Using the Cauchy-Schwarz inequality and (4), we get

B2
s ≤

( r

r − 1

)2[ ∫ ∞

x0

[H(a)]−1/4[H(a)]1/4Fs(a)da
]2

≤
( r

r − 1

)2

κ

∫ ∞

x0

[H(a)]1/2[Fs(a)]
2da.

Integrating this inequality in s ∈ [0, t] and using (6), we conclude that for all t ≥ 0,

(7)

∫ t

0

B2
sds ≤ 2

( r

r − 1

)2

κ2M1(f0).

We have shown that M1(fs) ≤ A0+Bs, with A0 =
∫∞
0

(x∧x0)f0(dx). For all s ∈ [0, Tgel), we have

M1(fs) = M1(f0) and thus Bs ≥ M1(f0)− A0 =
∫∞
x0

(x− x0)f0(dx) > 0, since f0((x0,∞)) > 0 by

assumption. Inserted in (7) (with t = Tgel), this gives

Tgel

[ ∫ ∞

x0

(x− x0)f0(dx)
]2

≤ 2
( r

r − 1

)2

κ2M1(f0). □
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Remark 4. Assume that K : (0,∞)2 → R+ is continuous, γ-homogeneous (i.e. K(λx, λy) =
λγK(x, y) for all λ, x, y > 0) with γ > 1, and that K(1, 1) > 0. Then (4) is met for any x0 > 0.

Proof. By continuity, there is ε > 0 such that

ρ = inf{K(x, y) : x, y ∈ [1, 1 + ε]} > 0.

Choosing r = 1 + ε and using the homogeneity of K, one can check that

H(a) = a inf{K(x, y) : x, y ∈ [a, ra]} = a1+γ inf{K(x, y) : x, y ∈ [1, r]} ≥ ρa1+γ .

Since γ > 1, the conclusion follows. □

Example 5. Fix γ > 1, ε > 0 and θ ≥ 0. If K(x, y) ≥ K0(x, y), with (here u+ = max{u, 0})

K0(x, y) = (x ∧ y)γ
(x ∧ y
x ∨ y

)θ
or K0(x, y) = (x ∧ y)

(x ∧ y
x ∨ y

)θ
log2+ε(1 + x ∧ y),

K0(x, y) = (x ∧ y)γ
(x ∧ y
x ∨ y

− 1

2

)θ
+

or K0(x, y) = (x ∧ y)
(x ∧ y
x ∨ y

− 1

2

)θ
+
log2+ε(1 + x ∧ y),

then (4) is met: any choice of x0 > 0 and r > 1 is suitable for the two first kernels, and any choice
of x0 > 0 and r ∈ (1, 2) is convenient for the two last ones.

None of these four kernels are not covered by [10, 6, 11]. The first and third ones are covered
by [2], and they are able to treat the second and fourth ones, with a power 3 + ε instead of 2 + ε
for the logarithmic term. Hence the improvement of the present work is not huge when compared
to [2]. However, we can show that any weak solution is gelling for those kernels, and the proof is
very short. Let us mention that we are far from being able to deal with kernels vanishing on the
diagonal, such as K(x, y) = (x1/3 + y1/3)2|x2/3 − y2/3| mentioned in [1, Table 1].

3. About criticality

By [11, Propositions 33 and 36], the kernel K(x, y) = (xy)1/2 logα/2(e+ x) logα/2(e+ y) is non-
gelling if α ≤ 1, but gelling if α > 2. However, we cannot decide what happens when α ∈ (1, 2].
The same applies to K(x, y) = (x ∧ y) logα(e+ x ∧ y).

All this concerns kernels that are 1-homogeneous, that is K(λx, λy) = λK(x, y), up to some
logarithmic factor. In Propositions 6 and 7 below, we find two 1-homogeneous kernels K0 and K1

such that K(x, y) = K0(x, y) log
α(e+ x ∧ y) is gelling if and only if α > 2 (only when f0 = δ1),

while K(x, y) = K1(x, y) log
α(e+x∧ y) is gelling if and only if α > 1. Hence the critical exponent

of the logarithmic factor may depend on the precise shape of the kernel.

Proposition 6. Consider

K(x, y) = (x ∧ y)
(x ∧ y
x ∨ y

− 1

2

)
+
logα(e+ x ∧ y).

(i) If α > 2, any weak solution to (1) such that M1(f0) ∈ (0,∞) is gelling.

(ii) If α ∈ (0, 2], then any weak solution (ft)t≥0 to (1) starting from f0 = δ1 is non-gelling.

Proof. Point (i) follows from Theorem 3: with the choice r = 3/2, we have H(a) = 1
6a

2 logα(e+a).

Hence if α > 2,
∫∞
x0

[H(a)]−1/2da <∞ for all x0 > 0. For (ii), we fix α ∈ (0, 2] and a weak solution

(ft)t≥0 issued from f0 = δ1 and show in several steps the absence of gelation

Step 1. Here we prove that for any t ≥ 0, ft((0,∞) \ 2N) = 0, where 2N = {2n : n ∈ N}.
To this end, we define A0 = (0, 1) and, for n ≥ 0, An+1 = An ∪ (2n, 2n+1) and we show by

induction that ft(An) = 0 for all t ≥ 0.
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When n = 0, we apply (3) with ψ = 1(0,1). Since ∆ψ(x, y) ≤ 0 for all x > 0, y > 0, we conclude
that ft((0, 1)) ≤ f0((0, 1)) = 0 for all t ≥ 0.

We next fix n ∈ N and assume that ft(An) = 0, so that ft(dx) =
∑n
k=0 ft({2k})δ2k(dx) +

1{x≥2n}ft(dx), for all t ≥ 0. We want to show that ft((2
n, 2n+1)) = 0 for all t ≥ 0. We apply (3)

with ψ = 1(2n,2n+1). Using that f0((2
n, 2n+1)) = 0 and ignoring the nonpositive terms, this gives

ft((2
n, 2n+1)) ≤1

2

∫ t

0

∫ ∞

0

∫ ∞

0

1{x+y∈(2n,2n+1)}K(x, y)fs(dy)fs(dx)ds = Int + 2Jnt +Kn
t ,

where

Int =
1

2

n∑
k,ℓ=0

∫ t

0

1{2k+2ℓ∈(2n,2n+1)}K(2k, 2ℓ)fs({k})fs({ℓ})ds,

Jnt =
1

2

n∑
k=0

∫ t

0

∫
y≥2n

1{2k+y∈(2n,2n+1)}K(2k, y)fs(dy)fs({k})ds,

Kn
t =

1

2

∫ t

0

∫
x≥2n

∫
y≥2n

1{x+y∈(2n,2n+1)}K(x, y)fs(dy)fs(dx)ds.

First, Int = 0, sinceK(2k, 2ℓ) = 0 for all k ̸= ℓ and and since 2k+2k /∈ (2n, 2n+1) for all k = 0, . . . , n.
Next, Jnt = 0, because y ≥ 2n and 2k + y < 2n+1 imply that k ≤ n− 1, so that 2k ≤ y/2 and thus
K(2k, y) = 0. Finally, Kn

t = 0 since x ≥ 2n and y ≥ 2n imply that x+ y ≥ 2n+1.

Step 2. By Step 1, we may write ft =
∑
n≥0 ft({2n})δ2n . We show here that for each n ∈ N,

t 7→ ft({2n}) is C1 on [0,∞) and

d

dt
ft({2n}) = −K(2n, 2n)[ft({2n})]2 +

1

2
K(2n−1, 2n−1)[ft({2n−1})]21{n≥1}.

If first n ≥ 1, we apply (3) with ψ(x) = 1{x=2n} and get, since f0({2n}) = 0,

ft({2n}) =
1

2

∫ t

0

∑
k,ℓ∈N

[1{2k+2ℓ=2n} − 1{2k=2n} − 1{2ℓ=2n}]K(2k, 2ℓ)fs({2k})fs({2ℓ})ds.

Since K(2k, 2ℓ) = 0 for k ̸= ℓ, we conclude that

ft({2n}) =
1

2

∫ t

0

K(2n−1, 2n−1)[fs({2n−1})]2ds−
∫ t

0

K(2n, 2n)[fs({2n})]2ds.

Since t 7→ ft({2k}) is continuous for all k ∈ N by Definition 1, the conclusion follows. If next
n = 0, we apply (3) with ψ(x) = 1{x=1} and get, since f0({1}) = 1,

ft({1}) =1 +
1

2

∫ t

0

∑
k,ℓ∈N

[1{2k+2ℓ=1} − 1{2k=1} − 1{2ℓ=1}]K(2k, 2ℓ)fs({2k})fs({2ℓ})ds

=1−
∫ t

0

K(1, 1)[fs({1})]2ds

as desired. We used that K(1, 2k) = 0 for all k ≥ 1.

Step 3. We now prove that for any n ∈ N,

bn := sup
t≥0

ft({2n}) ≤
logα/2(e+ 1)

2n logα/2(e+ 2n)
.
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We proceed by induction. If n = 0, we know from Step 2 that t 7→ ft({20}) is non-increasing,
whence b0 = f0({20}) = 1. Fix n ≥ 1 and assume that bn−1 satisfies the desired estimate. Then

d

dt
ft({2n}) ≤ −K(2n, 2n)[ft({2n})]2 +

1

2
K(2n−1, 2n−1)b2n−1

by Step 2. Since f0({2n}) = 0, we classically conclude that

bn ≤
(K(2n−1, 2n−1)

2K(2n, 2n)

)1/2

bn−1 =
1

2

logα/2(e+ 2n−1)

logα/2(e+ 2n)
bn−1 ≤ logα/2(e+ 1)

2n logα/2(e+ 2n)
.

Step 4. We show that there are A,B > 0 such that for any t > 0,
∫∞
0
x log(e+x)ft(dx) ≤ AeBt.

We fix a > 1 and apply (3) with ψa(x) = x log(e+x)1{x≤a}. By Step 1 and since K(2k, 2n) = 0
if k ̸= n, we find, introducing A = log(e+ 1),∫ a

0

x log(1 + x)ft(dx) =A+
1

2

∑
n≥0

∫ t

0

∆ψa(2
n, 2n)K(2n, 2n)fs({2n})fs({2n})ds.

But

∆ψa
(x, x) = ψa(2x)− 2ψa(x) ≤ 1{x≤a/2}2x log

(e+ 2x

e+ x

)
≤ 1{x≤a}2x log 2,

whence, ∫ a

0

x log(e+ x)ft(dx) ≤A+ log 2
∑
n≥0

∫ t

0

2n1{2n≤a}K(2n, 2n)fs({2n})fs({2n})ds.

Using the expression of K(2n, 2n) and Step 3, we find

K(2n, 2n)fs({2n}) ≤ 2n logα(e+ 2n)bn ≤ logα/2(e+ 1) logα/2(e+ 2n) ≤ logα−1(e+ 1) log(e+ 2n),

since α ∈ (0, 2] (so that 0 < u < v implies uα/2vα/2 ≤ uα−1v). Setting B = (log 2)(logα−1(e+ 1)),∫ a

0

x log(e+ x)ft(dx) ≤A+B
∑
n≥0

∫ t

0

1{2n≤a}2
n log(e+ 2n)fs({2n})ds

=A+B

∫ t

0

∫ a

0

x log(e+ x)fs(dx)ds

by Step 1 again. Thus
∫ a
0
x log(e+ x)ft(dx) ≤ AeBt by the Gronwall lemma, whence the result.

Step 5. We finally conclude that M1(ft) =M1(f0) for all t ≥ 0. By (3) with ψa(x) = x ∧ a,∫ ∞

0

(x ∧ a)ft(dx) =
∫ ∞

0

(x ∧ a)f0(dx) + Ia(t),

where

Ia(t) =

∫ t

0

∫ ∞

0

∫ ∞

0

∆ψa(x,y)K(x, y)fs(dy)fs(dx)ds.

By monotone convergence, lima→∞
∫∞
0

(x ∧ a)ft(dx) = M1(ft). It thus suffices to check that
lima→∞ Ia(t) = 0 for each t ≥ 0. For this we use dominated convergence: since lima→∞ ∆ψa

(x, y) =
0 for all x, y ∈ (0,∞), and since

sup
a>0

|∆ψa(x,y)| = sup
a>0

(x ∧ a+ y ∧ a− (x+ y) ∧ a) ≤ sup
a>0

([x ∧ a] ∧ [y ∧ a]) = x ∧ y,

we only need that for all t ≥ 0,

(8)

∫ t

0

∫ ∞

0

∫ ∞

0

(x ∧ y)K(x, y)fs(dy)fs(dx)ds <∞.
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But

(x ∧ y)K(x, y) ≤ (x ∧ y)2 logα(e+ x ∧ y) ≤ (x ∧ y)2 log2(e+ x ∧ y) ≤ x log(e+ x) y log(e+ y).

Thus (8) follows from Step 4. □

Proposition 7. (i) If K(x, y) ≤ (x+ y) log(e+ x∧ y), then any weak solution (ft)t≥0 to (1) such
that M1(f0) +M2(f0) <∞ is non-gelling.

(ii) If K(x, y) ≥ (x + y) logα(e + x ∧ y) with some α > 1, then any weak solution to (1) such

that M1(f0) ∈ (0,∞) and
∫ 1

0
x| log x|1{x<1}f0(dx) <∞ is gelling.

Proof. We first prove point (i) in three steps.

Step 1. For any nonnegative measure f on (0,∞), any a > 0, any A ≥M1(f),∫ a

0

y log(e+ y)f(dy) ≤ A log
(
e+

1

A

∫ a

0

y2f(dy)
)
.

Indeed, the Jensen inequality applied to the probability measure µa(dy) = Z−1
a y1{y∈(0,a]}f(dy),

with Za =
∫ a
0
yf(dy), and the concave function log(e+ y), directly gives∫ a

0

y log(e+ y)f(dy) ≤ Za log
(
e+

1

Za

∫ a

0

y2f(dy)
)
.

It then suffices to observe that Za ≤ M1(f) ≤ A and that for b > 0 fixed, the function φ(z) =

z log(e+ z−1b) is nondecreasing on [0,∞), because φ′′(z) = −b2
z(b+ez)2 ≤ 0 and limz→∞ φ′(z) = 0.

Step 2. We next show that sup[0,T ]M2(ft) < ∞ for all T > 0. We apply (3) with ψa(x) =

x21{x≤a}. Observing that ∆ψa
(x, y) ≤ 1{x+y≤a}2xy ≤ 21{x≤a,y≤a}xy, we find∫ a

0

x2ft(dx) ≤
∫ a

0

x2f0(dx) +

∫ t

0

∫ a

0

∫ a

0

xy(x+ y) log(e+ x ∧ y)fs(dy)fs(dx)ds

≤M2(f0) + 2

∫ t

0

∫ a

0

∫ a

0

x2y log(e+ y)fs(dy)fs(dx)ds

by symmetry. Using Step 1 with A =M1(f0) ≥M1(fs), recall Remark 2, we find∫ a

0

x2ft(dx) ≤M2(f0) + 2M1(f0)

∫ t

0

(∫ a

0

x2fs(dx)
)
log

(
e+

1

M1(f0)

∫ a

0

y2fs(dy)
)
ds.

This classically implies that for any T > 0, there is a constant CT depending only on T ,M2(f0) and
M1(f0), such that sup[0,T ]

∫ a
0
x2ft(dx) ≤ CT . The conclusion follows, letting a→ ∞ by monotone

convergence.

Step 3. Exactly as in Step 5 of the proof of Proposition 6, the only difficulty to show that
M1(ft) =M1(f0) for all t ≥ 0 is to show (8). But, since log(e+ u) ≤ 1 + u for all u ≥ 0,

(x ∧ y)K(x, y) ≤ 2xy log(e+ x ∧ y) ≤ 2xy(1 + x ∧ y) ≤ 2(x2 + x)y.

Hence for all t > 0,∫ t

0

∫ ∞

0

∫ ∞

0

(x ∧ y)K(x, y)fs(dy)fs(dx)ds ≤ 2

∫ t

0

(M2(fs) +M1(fs))M1(fs)ds <∞

by Step 2 and Remark 2.

Point (ii) does not follow from Theorem 3. The proof below, adapted from [7, Proposition
2.3], is completely different and generally less powerful, since it allows to prove gelation when
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K(x, y) = xyγ−1+xγ−1y with γ > 1, but not when K(x, y) = (xy)γ/2 with γ ∈ (1, 2) neither when
K(x, y) = xαyβ + xβyα with α, β ∈ (0, 1) and γ = α+ β > 1. We fix a > 0 and consider

ψa(x) = x1{x≤a}

∫ ∞

x

du
u
2 logα(e+ u

2 )
≥ 0.

Using that α > 1, one can check that ψa(x) ≤ κx(1 + | log x|1{x<1}), for some constant κ not
depending on a. We have ∆ψa

(x, y) ≤ 0 if x > a or y > a, so that for all x, y > 0,

∆ψa
(x, y) ≤1{x,y≤a}

(
(x+ y)

∫ ∞

x+y

du
u
2 logα(e+ u

2 )
− x

∫ ∞

x

du
u
2 logα(e+ u

2 )
− y

∫ ∞

y

du
u
2 logα(e+ u

2 )

)
=− 1{x,y≤a}

(
x

∫ x+y

x

du
u
2 logα(e+ u

2 )
+ y

∫ x+y

y

du
u
2 logα(e+ u

2 )

)
≤− 1{x,y≤a}(x ∧ y)

∫ x+y

x∧y

du
u
2 logα(e+ u

2 )

≤− 1{x,y≤a}(x ∧ y)
∫ 2(x∧y)

x∧y

du
u
2 logα(e+ u

2 )

≤− 1{x,y≤a}
x ∧ y

logα(e+ x ∧ y)
.

Thus K(x, y)∆ψa
(x, y) ≤ −1{x,y≤a}(x ∧ y)(x+ y) ≤ −1{x,y≤a}xy, so that (3) gives∫ ∞

0

ψa(x)ft(dx) ≤
∫ ∞

0

ψa(x)f0(dx)−
1

2

∫ t

0

∫ a

0

∫ a

0

xyfs(dy)fs(dx)ds.

Since the left hand side is nonnegative and ψa(x) ≤ κx(1 + | log x|1{x<1}), we conclude that∫ t

0

∫ a

0

∫ a

0

xyfs(dy)fs(dx)ds ≤ 2κ

∫ ∞

0

x(1 + | log x|1{x<1})f0(dx) =: C.

Letting a→ ∞, we end with
∫ t
0
[M1(fs)]

2ds ≤ C, which implies that Tgel ≤ C/[M1(f0)]
2. □

References

[1] D.J. Aldous, Deterministic and stochastic models for coalescence (aggregation, coagulation) : a review of the

mean-field theory for probabilists, Bernoulli 5 (1999), 3–48.
[2] L. Andreis, T. Iyer, E. Magnanini, Gelation in cluster coagulation processes, arXiv:2308.10232.
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