Dynamic programming: Gobet and Munos (2005); Han and E (2016); Bachouch et al. (2020). The resolution of SOCs by neural networks scales to the high dimension, contrary to Hamilton-Jacobi-Bellman (HJB) optimality conditions, stochastic dynamic programming.

In the literature:

\[\theta \]

Euler-Maruyama

The corresponding random noise that affects the evolution of the system.

\[X_t \]

to optimize a functional of a trajectory of a SDE

Stochastic Differential Equation

We consider the following that Langevin and Layer-Langevin algorithms improve the training on various stochastic problems like hedging and resource management, and for different choices of gradient descent methods.

Stochastic Optimal Control through Gradient Descent

We consider the following Stochastic Optimal Control (SOC) problem associated with a Stochastic Differential Equation (SDE):

\[
\min_{u} J(u) = \mathbb{E} \left[\int_{0}^{T} G(X_t) dt + F(X_T) \right].
\]

(1)

\[
dX_t = b(X_t, u_t)dt + \sigma(X_t)dw_t, \quad t \in [0, T]
\]

(2)

where \(X_t \) is the trajectory vector, \(u_t \) is the control vector, \(b(X_t, u_t) \) is the controlled drift vector, \(\sigma(X_t) \) is the controlled diffusion matrix and \(W_t \) is a Brownian motion. We aim to optimize a functional of a trajectory of a SDE \(X_t \) through the control \(u_t \), including a random noise that affects the evolution of the system.

The corresponding Euler-Maruyama numerical scheme is given by:

\[
\min_{\theta} J(\theta) = \mathbb{E} \left[\sum_{k=0}^{N} r_k G(X_{t_k}) + F(X_T) \right] + \frac{1}{2} \sum_{k=0}^{N} \sigma_k^2 \mathbb{E} \left[\left(\frac{dX_{t_k}}{dt} \right)^2 \right].
\]

(3)

\[
X_{t_k} = X_{t_{k-1}} + (t_k - t_{k-1})b(X_{t_{k-1}}, u_{t_{k-1}}) + \sigma(X_{t_{k-1}}, u_{t_{k-1}}) \sqrt{t_k - t_{k-1}} + \epsilon_{t_k}
\]

(4)

\[\epsilon_t \sim \mathcal{N}(0, \sigma^2). \]

- Time discretization of \([0, T]; \quad t_k = kT/N, \; k \in \{0, \ldots, N\}; \quad T = RN\).
- Control \(u \) with parameter \(\theta \) using either one time-dependent neural network either \(N \) distinct neural networks: \(u_{t_k} = u_{\theta}(X_{t_{k-1}}) \) or \(u_{t_k} = u_{\theta}(X_{t_{k-1}}) \).
- Since the process is Markovian, we assume the control depends only on the running position \(X_t \) (instead of the whole previous trajectory \(X_{[0,t]} \)).

The parameter \(\theta \) is optimized by gradient descent:

- Simulate batches of trajectories \(\tilde{X}_t \) depending on the Brownian motion.
- Compute \(\nabla \theta J(\theta) = \sum_{i=1}^{N} \left(\frac{d}{dt} G(X_i(t)) + \frac{d}{dt} F(X_T) \right) \)

The gradient is computed by automatic differentiation as the gradient w.r.t. to \(\theta \) is tracked all along the trajectory of the numerical scheme Giles and Glasserman (2005); Giles (2007).

In the literature: SOCs are solved using specific techniques: Forward-Backward SDEs, Hamilton-Jacobi-Bellman (HJB) optimality conditions, stochastic dynamic programming. The resolution of SOCs by neural networks scales to the high dimension, contrary to dynamic programming. Gobet and Munos (2005); Han and E (2016); Bachouch et al. (2020); Lauroir et al. (2023).

Training very deep neural networks

- If the control is applied at many discretization times, then the Markovian Neural Network becomes a very deep neural network, difficult to train directly.
- Adding noise during training is known to improve the learning procedure. Neelakantan et al. (2015); Anirudh Bhardwaj (2019). For some choice of Preconditioner rule \(F \) (Adam, RMSProp...), the preconditioned Gradient Langevin algorithm reads:

\[
a_{t_k} = a_{t_{k-1}} - \eta \nabla_{u_t} J(\theta_t) + \sigma(\tilde{u}_{t_k}) \sigma(\bar{u}_{t_k}) \mathcal{N}(0, \sigma^2).
\]

(5)

- Bras (2022): the deeper the network, the greater are the gains provided by Langevin algorithms; introduces the Layer Langevin algorithm, consisting in adding Langevin noise only to the deepest layers.

The analysis was conducted especially for deep architectures in image classification.

Objectives:

- Side-by-side comparison of non-Langevin/Langevin optimizers on different SOC problems: fishing quotas, financial hedging, energy management.
- If using multiple control networks, we explore the benefits of Layer-Langevin.

Simulations on three different SOC models

Fishing quotas Lauroir et al. (2023): A fish biomass \(X_t \in \mathbb{R}^d \) evolves with inter-species interaction \(X_t \) and with controlled fishing \(u_t \). The objective is to keep \(X_t \) close to some ideal state \(X^* \) reading:

\[
dX_t = X_t \left(\left(r - u_t - \kappa X_t \right) dt + \sigma dW_t \right).
\]

\[
J(\theta) = \mathbb{E} \left[\int_{0}^{T} \left(r X_t^2 - (\kappa u_t + \sigma^2) \right) dt \right] + \frac{1}{2} \sum_{k=1}^{N} \left(u_{t_k} - u_{t_{k-1}} \right)^2.
\]

Deep financial hedging Bucher et al. (2019): We aim to replicate some payoff \(Z \) defined on a portfolio \(S_t \), by trading some of the assets with transaction costs; the control \(u_t \) is the amount of held assets. The objective is:

\[
J(\theta) = \mathbb{E} \left[\left(-Z + \sum_{k=1}^{N} (u_{t_k} - S_{t_k}) + \sum_{k=1}^{N} (u_{t_k} - S_{t_k}) \right)^2 \right]
\]

(6)

where \(Z \) is a convex risk measure. We consider the assets \(S_t \) to follow a Heston model and are tradable along with variance swap options.

**Resource Management and Oil Drilling Gouette et al. (2018); Galí et al. (2021): An oil driller has to balance the costs of extraction \(E_t \), storage \(S_t \) in a volatile energy market with oil price \(P_t \).

\[
dP_t = \mu dt + \sigma dW_t,
\]

\[
E_t = \int_{0}^{T} (q_t^s + q_t^d) dt,
\]

\[
S_t = \int_{0}^{T} (q_t^s - q_t^d) dt.
\]

(7)

where \(E(t) \) is the utility function and \(q_t = (q_t^s, q_t^d) \) is the control (extracted, stored, sold from storage).