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Reflection principle in one dimension

The reflection principle in one dimension

o (W) : standard Brownian motion in one dimension
o (X¢) : reflection of (W;) with respect to 0
o T > 0 : finite horizon

Then :

PX(Wr € dy, 10 > T) = PX(Wr € dy, Wr > 0) (1 - e*X(XT”)) ,

x(x+y)
PX(XT € dy) = P*(Wr € dy, Wr > 0) (1 L ) .

o We can directly simulate Wr1,,~ 7 and Xt
@ Symmetry in the formula between killed and reflected cases

o Interpretation : We substract (resp. add) the trajectories such that Wy =y
(resp. X7 = y) but such that o < T.
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Reflection principle in one dimension

Interpretation : We substract (resp. add) the trajectories such that Wy =y (resp.
X1 =y) but such that 9 < T.

Trajectoire
a "supprimer"
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A two dimensional reflection principle

Setting of the problem

Two dimensional wedge D of angle o € (0, )

(W) : two dimensional Brownian motion starting at xo € D
T =inf{t >0, W, ¢ D}

(X¢) : the reflection of (W;) on the wedge D.

Remarks :
e Up to a rotation, we can assume that (W;) is non-correlated

o Varadhan, Williams, Brownian motion in a wedge with oblique reflection, 1985
= Existence of the reflected process
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A two dimensional reflection principle
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Figure — Example of wedge
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A two dimensional reflection principle

A two dimensional reflection principle

o lyengar, Hitting lines with two-dimensional Brownian motion, 1985
@ Assume that o = 7 for some m € N*, and define T, for k =0,...,.2m—1:
Ti((rcos@,rsin@)) :=(rcos(0), rsin(6x))

0, — (k+1)a—6; kodd,
k= ko + 0; k even.
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A two dimensional reflection principle

Figure — Partition of R? using {Di}«
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A two dimensional reflection principle

Density formulas for a

1 x—Tyy|?
VE>0, x,y €D, PX(Xe €dy) = — > e 2 dy. 1)
27t =
1 2m—1 |X7Tky|2
Vt>0, x,y €D, PX(W: €dy, 7 >t)= — Z (—1)ke= =2 —dy (lyengar)
2rt =
(2)
v
Proof : let f : D — R be a test function, and let
u(t,x) :=E[f(X:)]-
Then u satisfies the partial differential equation with boundary conditions :
Oru(t, x) = %Au(t,x)7 (t,x) eRT x D
u(0,x) = £(), x€eD (3)

Vu(t,x)-n(x) =0, x € OD.
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A two dimensional reflection principle

Density formulas for general «

With x = (ro cos(6a), ro sin(6o)) and y = (rcos(6), rsin(@)), we have :

P(Xe € dy) 2r (2122t ll (rro) +§:I (rro) (mr@) (n7r00> )
= —e b [ — L — ) cos [ — ) cos rd@.
! 4 ta 20 t = /e t e [l

#)

2 = 0 0,
P(W; €dy, 7> t) = ief(rzwg)/z: Zl,m/a <ﬂ> sin (i) sin (mr o) drdf. (5)
ta «@

n=1 8

<

Bessel function : /, is the modified Bessel function of order n, solution of the
equation :
le,g'(x) + xl(x) — (x2 + nz)l(x) =0.
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A two dimensional reflection principle

Proof : We write the formula for a = % in polar coordinates :

2m—1

P (X € dy) = e (P B)/20 S oo/ eost0a—00) g g
27t
k=0
And use the formulas
e’ ) +2 Z To(7)In(z

n=1

where T, is the Tchebychev polynomial of order n, and

2m—1 . . .
2m cos(nf) cos(nb if nis a multiple of m
E cos(n(fo — 0¢)) = 0 (nf)) cos(nfl) herwi P
=0 otherwise.

More rigorously, one need to check that with u(t,x) = E[f(X¢)], u satisfies :

Oru(t,x) = 2Au(t,x), (t,x) ER* xD
o(0,5) = F(3), xeD (6)
Vu(t x) - n(x) = x € 0D.
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Simulation algorithm

Simulation algorithm

o We use the box method, where the box is a wedge of angle © =
centered on yp.

T <o
m S

© and
the border of D.

@ Starting from y,, we simulate the exit point of the wedge of angle
o If the simulated point is outside the domain D, then we reflect it with respect to
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Simulation algorithm

o We need to simulate the stopping point and the stopping time.
o We first simulate on which barrier + we arrive

o Metzler, Multivariate First-Passage Models in Credit Risk, 2008 : We simulate the
radius rr as :

in(mo m _
ro (cos(mOo) - %) if Wr eV,

r- =
T in(m6g) 1/m .
1o (— cos (mflo) — omime) .} if W, € Vt,

(7

where U ~ U([0,1]).
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Simulation algorithm

o Metzler, On the first passage problem for correlated Brownian motion, 2010

Formula for the stopping time and the final point

1 0
S P(Wredy, 7> 1)

PX(r € dt, W, € dyT) =

(7 T ly=) = 2 9nt
242 m—1

0 - - Zsin <'yki> JlCOS(A’k )drdt

= 2
27t =

with 7*:04—&-2‘(7”—90 and’yfzeo—%.

@ This gives a formula to simulate according to the joint law of (W;, 7).
o Problem : This is not a true mixture, as sin(y¥) can be negative. We use
acceptance-rejection method.
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Complexity of the algorithm

Complexity of the algorithm

@ The number of iterations is the number of times the angle of a Brownian motion

in R? goes from {= to Uil) e

~ . ™
Fiai=inf {¢>0, 0(Beys,) — 0(B5)| > ﬂ}

N ~inf{n € N*, # + ...+ 7, > T}
o We want to study the process 0(Bt):, but it is not Markovian.
o We use the skew-product representation :

Skew-product representation

dR: = dB: + 3 % (Bessel)
Bt = ReUp(r), with ¢ F(t) =[5 ;.;;
(Ut) is a Brownian motion on S!
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Complexity of the algorithm

Proposition : We have E[N] = 0.

Proof : Denote s; the successive stopping times that (0(U):) goes from % to %
Then s; are iiid. and S, 5 = F (/7). Then
oS eS) K
E[N] =Y P(N > K) = ZP(Z%,»S T)
K=1 k=1 \i=1
o) K o] oo K
=p <Zs,- < F(T)> = Z/ P <Zs,- <y> P(F(T) € dy)
K=1 \i=1 Kk=1"0 i=1

But E[F(T)] = E [ ;T %] = 00, 50 E[N] = 0.
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Complexity of the algorithm

Approximation algorithm

2
n

o If, during the simulation algorithm, 2= < ¢, then we approximate the
distribution by taking only the first term, and immediately terminates the
algorithm :

ro_ 2 rn
P (X7 € dy) &~ —e 20— Tn) | 4 drdé.
( T }’) tae 0 (T T ) r

- n
o Proposition : For all p € (1,2), we have

C(p, T, m)

B[N < <25

o Proposition : We have dry (X7, X7) = O(e).
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Algorithms for general processes

Algorithms for general processes

o We consider a diffusion process (Y;:) reflected in a wedge D.

o We approximate (Y;:) by its Euler-Maruyama scheme, giving a reflected Brownian
motion with drift :

Ve = Yo +tb(Ye,, ti) + 0( Ve, te) - Be for t € [t tiga]-

o We apply the algorithm to simulate ?tk+1 ; the drift can be dealt using a Girsanov
change of measure.
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e Parameters : o = 0.9, ro = 1, 8o = 0.3, and f(rcos(f), rsin(6)) = r2.

E[f(W;)] | 95 % interval | Time (s) | MC iterations
Metzler'algorithm 1.515 + 0.074 4.40 10000
This paper 1.783 + 0.074 5.12 20000

Table — Estimation of E[f(W;)]

e With T =0.5:

E[f(W-A7)] | 95 % interval | Time(s) | MC iterations
This paper 1.409 + 0.057 1.69 2000

Table — Estimation of E[f(W,A7)]

E[f(X7)] | 95 % interval | Time (s) | MC iterations
Reflected algorithm 1.950 + 0.323 3.55 100
Approximation with € = 0.02 2.135 + 0.082 6.63 2000

Table — Estimation of E[f(X7)]
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