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Introduction

Let (fλ)λ∈Λ be a holomorphic family of dynamical systems acting on the Riemann sphere
P1, parameterized by a complex manifold Λ. The “dynamical systems” in consideration here
can be polynomial or rational mappings on P1, as well as groups of Möbius transformations.

It is a very basic idea that the product dynamics f̂ acting on Λ× P1 by f̂(λ, z) = (λ, fλ(z))
is an important source of information on the bifurcation theory of the family. The input of
techniques from higher dimensional holomorphic dynamics into this problem recently led to
a number of interesting new results in this area, especially when the parameter space Λ is
multidimensional. Our purpose in this paper is to review these recent developments.

The main new idea that has arisen from this interaction is the use of positive closed currents.

We will see that the consideration of the dynamics of f̂ gives rise to a number of interesting
currents on Λ × P1 and Λ. Positive currents have an underlying measurable structure, so
it would be fair to say that we are studying these parameter spaces at a measurable level,
somehow in the spirit of the ergodic theoretic approach to dynamics1.

A basic way in general to construct and study dynamical currents is to view them as limits
of sequences of dynamically defined subvarieties. This will be another major theme in this
paper.

We will try as much as possible to emphasize the similarities between methods of higher
dimensional dynamics, of the study of families of rational maps and that of Möbius subgroups.
We will also state a number of open questions, to foster further developments of this theory.

An interesting outcome of these methods is the possibility of studying “higher codimen-
sional” phenomena –like the property for a rational map of having several periodic critical
points. These phenomena are difficult to grasp using elementary complex analysis techniques
because of the failure of Montel’s theorem in higher dimension. In the same vein, we will see
that when dim(Λ) > 1, the bifurcation locus of a family of rational maps possesses a hier-
archical structure, which may conveniently be formalized using bifurcation currents. When
(fλ)λ∈Λ is the family of polynomials of degree d ≥ 3, the smaller of these successive bifurca-
tion loci is the right analogue of the Mandelbrot set in higher degree, with whom it shares
many important properties.

⋄

Contents. Let us now outline the contents of this article. Section 1 is of general nature. We
explain how the non-normality of a sequence of holomorphic mappings fn : Λ → X between
complex manifolds is related to certain closed positive currents of bidegree (1,1) on Λ. We also
show that the preimages under fn of hypersurfaces of X tend to be equidistributed. This will
provide –at least at the conceptual level– a uniform framework for many of the subsequent
results.

Since these facts are not so easy to extract from the literature, we explain them in full
detail, therefore the presentation is a bit technical. The reader who wants to dive directly
into holomorphic dynamics is advised to skip this section on a first reading.

Sections 2 and 3 are devoted to the study of bifurcation currents for polynomials and
rational maps on P1, which is the most developed part of the theory. In Section 2 we present

1In this respect it is instructive to compare this with the more topological point of view of Branner and
Hubbard, which was summarized 20 years ago by Branner in [Bra].
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two (related) constructions of bifurcation currents of bidegree (1,1): the “absolute” bifurcation
current Tbif and the bifurcation current associated to a marked critical point. In both cases,
the support of the bifurcation current is equal to the corresponding bifurcation locus. We
also show that these currents describe the asymptotic distribution of families of dynamically
defined codimension 1 subsets of parameter space. More precisely we will be interested in
the families of hypersurfaces PerCrit(n, k) (resp. Per(n,w)) defined by the condition that a
critical point satisfies fn(c) = fk(c) (resp. f possesses a periodic n-cycle of multiplier w).

In Section 3, we study “higher” bifurcation currents, which are obtained by taking exterior
products of the previous ones. We will develop the idea that the supports of these currents de-
fine a dynamically meaningful filtration of the bifurcation locus, and try to characterize them
precisely. We also explain why bifurcation currents should display some laminar structure in
parts of parameter space, and give some results in this direction.

Many of the proofs will be sketched, the reader being referred to the original papers for
complete arguments. Let us also mention a recent set of lectures notes by Berteloot [Bt2]
which covers most of this material with greater detail (and complete proofs).

In Section 4 we introduce currents associated to bifurcations of holomorphic families of sub-
groups of PSL(2,C), which is in a sense the counterpart of Section 2 in the Kleinian groups
setting. The existence of such a counterpart is in accordance with the so-called Sullivan
dictionary between rational and Kleinian group dynamics, nevertheless its practical imple-
mentation requires a number of new ideas. To be specific, let (ρλ) be a holomorphic family of
representations of a given finitely generated group into PSL(2,C) (satisfying certain natural
assumptions). We construct a bifurcation current on Λ associated to a random walk on G.
As before, this current is supported precisely on the “bifurcation locus” of the family, and it
describes the asymptotic distribution of natural codimension 1 subsets of parameter space.
We will see that the key technical ingredient here is the ergodic theory of random products
of matrices.

In Section 5 we outline some possible extensions of the theory. An obvious generalization
would be to consider rational mappings in higher dimension. A basic difficulty is that in that
setting the understanding of bifurcation phenomena is still rather poor.

We do not include a general discussion about plurisubharmonic (psh for short) functions
and positive currents. Good reference sources for this are the books by Demailly [De, Chap. I
and III] and Hörmander [Hö, Chap. 4]. See also [Ca2] in this volume for a short presentation.
We do not require much knowledge in holomorphic dynamics, except for the basic properties
of the maximal entropy measure [Ly1, FLM].

⋄

Bibliographical overview. Let us briefly review the main references that we will be consid-
ering in the paper. Bifurcation currents were introduced by DeMarco in [DeM1]. In this paper
she constructs a current Tbif on any holomorphic family of rational maps, whose support is
the bifurcation locus. This current is defined in terms of the critical points. In [DeM2], she
proves a formula for the Lyapunov exponent of a rational map on P1 (relative to its maxi-
mal entropy measure), and deduces from this that Tbif is the dd

c of the Lyapunov exponent
function.

In [BB1], Bassanelli and Berteloot generalize DeMarco’s formula to higher dimensional
rational maps, and initiate the study of the higher exterior powers of the bifurcation current



4 ROMAIN DUJARDIN

(associated to rational mappings on P1), by showing that Supp(T k
bif) is accumulated by pa-

rameters possessing k indifferent cycles. In [DF], Favre and the author study the asymptotic
distribution of the family of hypersurfaces PerCrit(n, k). The structure of the space of poly-
nomials of degree d is also investigated, with emphasis on the higher dimensional analogue
of the boundary of the Mandelbrot set. A finer description is given in the particular case of
cubic polynomials in [Du2].

Several equidistribution theorems for the family of hypersurfaces Per(n,w) are obtained
by Bassanelli and Berteloot in [BB2, BB3]. [BB2] also discusses the laminarity properties of
bifurcation currents in the space of quadratic rational maps.

In [BE], Buff and Epstein develop a method based on transversality ideas to characterize the
supports of certain “higher” bifurcation currents. This was recently generalized by Gauthier
[Ga], leading in particular to Hausdorff dimension estimates for the supports of these currents,
which generalize Shishikura’s famous result that the boundary of the Mandelbrot set has
dimension 2.

Bifurcation currents for families of subgroups of PSL(2,C), satisfying properties similar to
the above, were designed by Deroin and the author in [DD1].

Related developments in higher dimensional holomorphic dynamics can be found in [DS1,
Ph].

⋄

We close this introduction with a few words on the connexions between these ideas and the
work of Milnor. Alone or with coauthors, he wrote a number of papers, most quite influential,
on parameter spaces of polynomials and rational functions [Mi1, Mi2, Mi3, Mi4, Mi5, BKM].
Common features among these articles include the emphasis on multidimensional issues, and
the role played by subvarieties of parameter space, like the PerCrit(n, k) and the Per(n,w).
I hope he will appreciate the way in which these ideas reappear here.

Many thanks to Serge Cantat, Charles Favre, and Thomas Gauthier for their useful com-
ments.

1. Prologue: normal families, currents and equidistribution

Let Λ be a complex manifold of dimension d, and X be a compact Kähler manifold of
dimension k, endowed with Kähler form ω. Let (fn) be a sequence of holomorphic mappings
from Λ to X. In this section we explain a basic construction relating the non normality of the
sequence (fn) and certain positive (1,1) currents on Λ. When applied to particular situations
it will give rise to various bifurcation currents. This construction is also related to higher
dimensional holomorphic dynamics since we may take Λ = X and fn be the family of iterates
of a given self-map on X.

The problems we consider are local on Λ so without loss of generality we assume that Λ is
an open ball in Cd. We say that the family (fn) is quasi-normal if for every subsequence of
(fn) (still denoted by (fn)) there exists a further subsequence (fnj

) and an analytic subvariety
E ⊂ Λ such that (fnj

) is a normal family on Λ \E (see [IN] for a discussion of this and other
related notions).

1.1. A normality criterion. The following result is a variation on well-known ideas, but it
is apparently new.
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Theorem 1.1. Let Λ and X be as above, and (fn) be a sequence of holomorphic mappings
from Λ to X. If the sequence of bidegree (1,1) currents f∗nω has locally uniformly bounded
mass on Λ, then the family (fn) is quasi-normal on Λ.

Recall that the mass of a positive current of bidegree (1,1) in an open set Ω ⊂ Cd is defined
by MΩ(T ) = sup |〈T, ϕ〉|, where ϕ ranges among test (d − 1, d − 1) forms

∑
ϕI,JdzI ∧ dzJ

with ‖ϕI,J‖L∞ ≤ 1.
A few comments are in order here. First; if d = 1, the result is a well-known consequence

of Bishop’s criterion for the normality of a sequence of analytic sets [Ch, §15.5] (see Lemma
1.2 below for the proof). The point here is that if d > 1 our assumption does not imply that
the volumes of the graphs of the fn are locally bounded (see [IN, Example 5.1]). Secondly, it
is clear that the converse of Theorem 1.1 is false, i.e. there exist quasi-normal families such
that f∗nω has unbounded mass. For this, take any sequence of holomorphic mappings D → P1,
converging on compact subsets of D∗ to z 7→ exp(1/z).

Lemma 1.2. Theorem 1.1 holds when dim(Λ) = 1.

Proof. Let Γ(fn) ⊂ Λ×X be the graph of fn. Let π1, π2 be the first and second projections
on Λ × X. Let β be the standard Kähler form on Λ ⊂ C. Then if U ⋐ Λ, the volume of
Γ(fn) ∩ π

−1
1 (U) relative to the product Hermitian structure equals

∫

Γ(fn)∩π
−1

1
(U)

π∗1β + π∗2ω = volΛ(U) +

∫

U

(
π2 ◦

(
π1|

−1
Γ(fn)

))∗
ω = volΛ(U) +

∫

U
f∗nω.

Therefore our assumption implies that the volumes of the analytic sets Γ(fn) ∩ π
−1
1 (U) are

uniformly bounded2. By Bishop’s theorem one can extract a subsequence nj such that the

Γ(fnj
) ∩ π−1

1 (U) converge in the Hausdorff topology to a one-dimensional analytic set Γ of

π−1
1 (U).
We claim that Γ is the union of a graph and finitely many vertical curves. Here vertical

means that it projects to a point on Λ. Indeed, first note that by Lelong’s lower bound on
the volume of an analytic set [Ch, §15.3], the volume of any analytic subset of X is uniformly
bounded below. Since volΛ×X(Γ) ≤ lim inf volΛ×X(Γ(fnj

)), this implies that Γ contains only
finitely many vertical components. Let E ⊂ Λ be the projection of these components. We
claim that the fnj

converge locally uniformly outside E. Indeed let V ⊂ Λ be a connected
open subset disjoint from E. Since the Γ(fnj

) converge in the Hausdorff topology, we see that

Γ ∩ π−1
1 (V ) is non empty. Now since π1 is proper we infer that π1|Γ∩π−1

1
(V ) is a branched

covering, which must be of degree 1 (for if not, generic fibers of π1 would intersect Γ(fnj
) in

several points for large j). We conclude that Γ is a graph over V , of some f : V → X, and
that the fnj

converge uniformly to f there. �

The possibility of vertical components of Γ over a locally finite set is known as the bubbling
phenomenon. An important consequence of the proof is that there exists a constant δ0 (any
number smaller than the infimum of the volumes of 1-dimensional subvarieties of X will
do) such that if lim sup

∫
V f

∗
nω ≤ δ0, then no bubbling occurs in V . An easy compactness

argument yields the following:

2This is where we use the assumption that dim(Λ) = 1. In higher dimension, to estimate this volume one
needs to integrate the exterior power (π∗

1β + π∗

2ω)
d where d = dim(Λ).
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Corollary 1.3. Let V be a one dimensional disk and let δ0 > 0 be as above. For every
K ⋐ V , there exists a constant C(V,K, δ0) so that if f : V → X is a holomorphic mapping
satisfying

∫
V f

∗ω ≤ δ0, then ‖df‖L∞(K) ≤ C.

We now prove the theorem. The idea, based on an argument from [DS1] (see also [Du3,
Prop. 5.7]), is to use a slicing argument together with a theorem due to Sibony and Wong
[SW]. For convenience let us state this result first.

Theorem 1.4 (Sibony-Wong). let g be a holomorphic function defined in the neighborhood
of the origin in Cd, which admits a holomorphic continuation to a neighborhood of

⋃
L∈E L∩

B(0, R), where E ⊂ Pd−1 is a set of lines through the origin, of measure ≥ 1/2 (relative to
the Fubini-Study volume on Pd−1).

Then there exists a constant CSW > 0 such that g extends to a holomorphic function of
B(0, CSWR), and furthermore

(1) supB(0,CSWR) |g| ≤ sup⋃
L∈E L∩B(0,R) |g| .

Proof of Theorem 1.1. Recall that Λ was supposed to be an open subset in Cd. Denote by
β the standard Kähler form on Cd. Let Tn = f∗nω and consider a subsequence (still denoted
by n) such that Tn converges to a current T on Λ. Let σT = T ∧ βd−1 be the trace measure
of T . For every p ∈ Λ, 1

c2d−2r2d−2σT (B(p, r)) converges as r → 0 to the Lelong number of

T at p, denoted by ν(T, p) (here c2d−2 is the volume of the unit ball in C2d−2). By Siu’s
semi-continuity theorem [De], for each c > 0, Ec(T ) = {p, ν(T, c) ≥ c} is a proper analytic
subvariety of Λ. Fix c = δ0/4, where δ0 is as above. We show that (fn) is a normal family on
Λ \ Ec(T ).

Indeed, let p /∈ Ec(T ). Then for r < r(δ0) (which will be fixed from now on),

1

c2d−2r2d−2

∫

B(p,r)
T ∧ βd−1 ≤

δ0
3
,

hence for large n,
1

c2d−2r2d−2

∫

B(p,r)
Tn ∧ βd−1 ≤

δ0
2
.

Let now αp = ddc log ‖z − p‖. By Crofton’s formula [De, Cor. III.7.11], αd−1
p =

∫
Pd−1 [L]dL

is the average of the currents of integrations along the complex lines through p (w.r.t. the
unitary invariant probability measure on Pd−1). By a well-known formula due to Lelong [Ch,
§15.1], for every r1 < r,

1

c2d−2r2d−2
σTn(B(p, r))−

1

c2d−2r
2d−2
1

σTn(B(p, r1)) =

∫

r1<‖z−p‖<r
Tn ∧ αd−1

p .

Since Tn is a smooth form it has zero Lelong number at p and we can let r1 tend to zero. We
conclude that for every large enough n,

∫
B(p,r) Tn ∧ αd−1

p ≤ δ0
2 . Applying Crofton’s formula

we see that ∫

Pd−1

(∫

L∩B(p,r)
f∗nω

)
≤
δ0
2
,

therefore there exists a set En of lines of measure at least 1/2 such that if L ∈ En then∫
L∩B(p,r) f

∗
nω < δ0. By Corollary 1.3 above, for each such line L ∈ En, the derivative of

fn|L∩B(p,r) is locally uniformly bounded. Extract a further subsequence so that fn(p) con-
verges to some x ∈ X. Thus, reducing r if necessary, we can assume that for L ∈ En,
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fn|L∩B(p,r) takes its values in a fixed coordinate patch containing x, which may be identified

to a ball in Ck. By Theorem 1.4, there exists a constant CSW such that fn|B(p,CSW r) takes
its values in the chart, with the same bound on the derivative. This implies that (fn) is a
normal family in B(p,CSW r), thereby concluding the proof. �

Remark 1.5. The proof shows that if it can be shown that the Lelong numbers of the cluster
values of (fn)

∗ω are smaller than δ0 (for instance if the potentials are uniformly bounded),
then the family is actually normal.

1.2. Equidistribution in codimension 1. We now turn to the case where the mass of
f∗nω tends to infinity, and show that the preimages of hypersurfaces under fn of X tend to
equidistribute in the sense of currents. This idea goes back to the work of Russakovskii,
Shiffmann and Sodin [RSo, RSh]. Dinh and Sibony later gave in [DS2] a wide generalization
of these results. Here we present a simple instance of this phenomenon, which is inspired by
(and can be deduced from) [DS2].

Let Λ, X and (fn) be as above and set dn =
∫
Λ f

∗
nω ∧ βd−1, so that d−1

n f∗nω is a sequence
of currents of bounded mass on Λ. A first remark is that if ω′ is another Kähler form, there
exists a constant C ≥ 1 such that C−1ω ≤ ω′ ≤ Cω, hence dn

−1f∗nω
′ also has bounded mass.

By definition, a holomorphic family of subvarieties (Ha)a∈A of dimension l parameterized
by a complex manifold A is the data of a subvariety H in A×X, of dimension dim(A)+l, such
that for every a ∈ A, π−1

1 (a) ∩H =: Ha has dimension l. Of course here we are identifying

every fiber π−1
1 (a) with X, using the second projection. We will only need to consider the

case l = k − 1.
We need a notion of a “sufficiently mobile” family of hypersurfaces. For this, let us assume

for simplicity that X is a projective manifold. We say that (Ha)a∈A is a substantial family
of hypersurfaces on X if the hypersurfaces (Ha) are hyperplane sections relative to some
embedding ι : X →֒ PN and there exists a positive measure ν on A such that the current∫
[Ha]dν(a) has locally bounded potentials.
Notice that the family of all hyperplane sections relative to some projective embedding of

X is substantial. Indeed by Crofton’s formula there exists a natural smooth measure dL on
the dual projective space P̌N (i.e. the space of hyperplanes) such that the average current
of integration is the Fubini-Study form, i.e.

∫
[L]dL = ωFS. Therefore on X we get that∫

[ι−1(L)]dL = ι∗ωFS, and the family is substantial. From this it follows for instance that the

family of hypersurfaces of given degree in Pk is substantial.

Here is the equidistribution statement. We do not strive for maximal generality here and it
is likely that some of the assumptions could be relaxed. For instance, in view of applications
to random walks on groups it is of interest to obtain similar results for non compact X (to deal
with examples like X = SL(n,C), etc). One might also obtain equidistribution statements in
higher codimension, by introducing appropriate dynamical degrees.

Theorem 1.6. Let Λ be a complex manifold of dimension d and X be a projective manifold.
Let fn : Λ → X be a family of holomorphic mappings such that dn =

∫
Λ f

∗
nω ∧ βd−1 tends to

infinity. Let (Ha)a∈A be an substantial holomorphic family of hypersurfaces in X.
Let E be the set of a ∈ A such that

1

dn
(f∗n[Ha]− f∗nω) does not converge to zero in the sense of currents.

Then:
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i. if the series
∑
d−1
n converges, then E is pluripolar;

ii. if for every t > 0 the series
∑

exp(−tdn) converges, then E has zero Lebesgue measure.

As the proof easily shows, in case ii. Lebesgue measure can actually be replaced by any
moderate measure, that is a measure satisfying an inequality of the form m({u < −t}) ≤
Ce−αt on any compact class of psh functions. This is wide class of measures which contains
for instance the area measure on totally real submanifolds of maximal dimension. We refer
to [DS2] for details.

Corollary 1.7. Under the assumptions of the theorem, if the sequence 1
dn
f∗nω converges to

some current T , then for a /∈ E, 1
dn
f∗n[Ha] converges to T .

Proof of Theorem 1.6. Without loss of generality, assume that A is an open ball in Cdim(A).

Lemma 1.8. Under the assumptions of the theorem, there exists a Kähler form ω on X and
a negative function (a, x) 7→ u(a, x) on A×X such that

i. for every a ∈ A, ddcxu(a, ·) = [Ha]− ω;
ii. the L1 norm ‖u(a, ·)‖L1(X) is locally uniformly bounded with respect to a ∈ A;

iii. for every x, u(·, x) is psh on A.

Assuming this result for the moment, let us continue with the proof of the theorem. Suppose
first that the series

∑
d−1
n converges. Let m be a positive measure with compact support on

A such that psh functions are m-integrable. We claim that for m-a.e. a, 1
dn
(f∗n[Ha] − f∗nω)

converges to zero. By Lemma 1.8.i. for this it is enough to prove that 1
dn

∫
ua ◦ fn tends to

zero in L1
loc(Λ) (here and in what follows we denote u(a, ·) by ua).

Let us admit the following lemma for the moment.

Lemma 1.9. The function defined by x 7→
∫
ua(x)dm(a) is ω-psh, that is,

ddc
∫
ua(x)dm(a) ≥ −ω

and it is bounded on X.

Fix Λ′ ⋐ Λ. By Fubini’s theorem and Lemma 1.9, setting ũ(x) =
∫
ua(x)dm(a) we have

that ∫ (
1

dn

∫

Λ′

(−ua ◦ fn(λ))dλ

)
dm(a) =

1

dn

∫

Λ′

(−ũ ◦ fn(λ))dλ ≤
C

dn
,

so

m

({
a,

1

dn

∫

Λ′

|ua ◦ fn(λ)| dλ ≥ ε

})
≤

C

εdn
,

and the result follows from the Borel-Cantelli Lemma.

To conclude the proof of case i. in the theorem, we argue that if the exceptional E set
was not pluripolar, then it would contain a non-pluripolar compact set K. By the work of
Bedford and Taylor [BT] there exists a Monge-Ampère measure m = (ddcv)N supported on
K, with v bounded. It is well known that for such a measure psh functions are integrable
(see [BT] or [De, Prop. III.3.11]), so we are in contradiction with the previous claim.

Assume now that
∑

exp(−tdn) converges for all t. By Lemma 1.9 applied tom the Lebesgue
measure (cut-off to any compact subset of A) the family of negative psh functions

{
a 7→

∫

Λ′

ua ◦ fn(λ)dλ

}

n≥1
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is bounded in L1
loc(A). Let A

′ ⋐ A′′ ⋐ A. It follows from an inequality due to Hörmander [Hö,
Prop 4.2.9] that there exists constants (C0, α0) such that if ϕ is any negative psh function on
A such that ‖ϕ‖L1(A′′) ≤ 1, then

vol
({
a ∈ A′, ϕ(a) < −t

})
≤ C0 exp(−α0t).

It follows that there exist constants (C,α) independent of n such that

vol

({
a ∈ A′,

1

dn

∫

Λ′

|ua ◦ fn(λ)| dλ > ε

})
≤ C exp(−εαdn),

and again the Borel-Cantelli implies that for (Lebesgue) a.e. a, 1
dn
ua ◦ fn converges to zero

in L1
loc(A). �

Proof of Lemma 1.8. By definition there is an embedding ι : X →֒ PN and a holomorphic
family (La)a∈A of hyperplanes such that Ha = ι−1(La). There exists a holomorphic family of
linear forms (ℓa)a∈A on CN+1 such that {ℓa = 0} is an equation of La. We normalize so that
|ℓa| ≤ 1 on the unit ball. Now define ϕ(a, ·) on PN by

ϕ(a, z) =
log |ℓa(Z)|

log ‖Z‖
,

where Z is any lift of z and ‖·‖ is the Hermitian norm. Then ϕ satisfies i.-iii. relative to the
family La on PN , i.e. ddczϕ(a, ·) = [La]− ωFS, etc.

We now put u(a, x) = ϕ(a, ι(x)) and claim that it satisfies the desired requirements (with
ω = ι∗ωFS). Properties i. and iii. are immediate. If by contradiction ii. did not hold, then
by the Hartogs Lemma [Hö, pp. 149-151] we would get a sequence an → a0 ∈ A such that
uan diverges uniformly to −∞. But if x0 /∈ Ha0 it is clear that u is locally uniformly bounded
near (a0, x0), hence the contradiction. �

Proof of Lemma 1.9. Let A′ ⋐ A be an open set containing Supp(m). According to [DS1,
Prop. 3.9.2] there exists a constant C such that for every psh function ϕ on A, ‖ϕ‖L1(m) ≤

C ‖ϕ‖L1(A′). From this we infer that for every x in X,
∫
|u(a, x)| dm(a) ≤ C

∫
A′ |u(a, x)| da,

where da denotes the Lebesgue measure.
Now we claim that there exists a constant C ′ such that for any negative psh function on

A, ‖ϕ‖L1(A′) ≤ C ′ ‖ϕ‖L1(ν), where ν is the measure from the definition of substantial families.

Indeed, by the Hartogs lemma (see [Hö, pp.149-151]) the set
{
ϕ negative psh s.t.

∫
|ϕ| dν ≤ 1

}

is relatively compact in L1
loc, hence bounded.

From these two facts we infer that for every x,
∫

|u(a, x)| dm(a) ≤ CC ′

∫
|u(a, x)| dν(a).

We now show that x 7→
∫
ua(x)dν(a) is uniformly bounded. For this, note first that this

function is integrable, because by Lemma 1.8, ‖u(a, ·)‖L1(X) is locally uniformly bounded. So

we can take the ddc in x and we obtain that

ddcx

(∫
ua(·)dν(a)

)
=

∫
[Ha]dν(a)− ω,
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and we conclude by using our assumption that the local potentials of
∫
[Ha]dν(a) are bounded.

Finally, the same argument shows that x 7→
∫
ua(x)dm(a) is ω-psh, since by uniform bound-

edness of ‖u(a, ·)‖L1(X), we can permute the ddc in x and integration with respect to m. �

We close this section by highlighting the following direct consequence of Theorem 1.1, which
appears as a key step in the characterization of the supports of certain bifurcation currents.

It can also be used to obtain a coordinate-free proof of the fact that the support of the Green
current of a holomorphic self-map of Pk coincides with the Julia set (a result originally due
to Fornæss-Sibony [FS2] and Ueda [U], and generalized to other contexts in e.g. [Gue, Dil]).
More precisely, it implies that if Ω ⊂ Pk is an open set disjoint from the support of the Green
current T , then the sequence of iterates fn is normal in Ω (see Remark 1.5 for an explanation
how to obtain normality rather than quasi-normality, which applies in this case).

Proposition 1.10. Let Λ be a complex manifold of dimension d and X be a compact Kähler
manifold of dimension k, endowed with a Kähler form ω. Let (fn) be a sequence of holomor-
phic mappings Λ → X, and assume that the sequence 1

dn
f∗nω converges to a current T .

Assume furthermore that every test function ϕ one has the following estimate

(2)

〈
1

dn
f∗nω − T, ϕ

〉
= O

(
1

dn

)
.

Then the sequence (fn) is quasi-normal outside Supp(T ).

Proof. If U is an open set disjoint where T ≡ 0, then (2) implies that the sequence (f∗nω)
has locally uniformly bounded mass on U . It then follows from Theorem 1.1 that (fn) is
quasi-normal on U . �

Notice that in the context of endomorphisms of Pk, the converse inclusion Supp(T ) ⊂ J is
an easy consequence of the definitions.

Conversely, if dn → ∞, and U is an open set such that U ∩ Supp(T ) 6= ∅, then the
sequence (fn) is not normal on U . Indeed it follows from the explicit expression of f∗nω in
local coordinates that the L2 norm of the derivative of fn tend to infinity in U .

2. Bifurcation currents for families of rational mappings on P1

2.1. Generalities on bifurcations. Let us first review a number well-known facts on holo-
morphic families of rational maps. Let (fλ)λ∈Λ be a holomorphic family of rational maps
fλ : P1 → P1 of degree d ≥ 2 parameterized by a connected complex manifold Λ. By defini-
tion, a marked critical point is a holomorphic map c : Λ → P1 such that f ′λ(c(λ)) = 0 for all
λ ∈ Λ.

Given any family (fλ) if c0 is a given critical point at parameter λ0, there exists a branched

cover π : Λ̃ → Λ such that the family of rational mappings (f̃
λ̃
)
λ̃∈Λ̃

defined for λ̃ ∈ Λ̃ by

f̃
λ̃
= f

π(λ̃)
has a marked critical point c̃(λ̃) with c̃(λ̃0) = c0. Specifically, it is enough to

parameterize the family by Λ̃ = Ĉ =
{
(λ, z) ∈ Λ× P1, f ′λ(z) = 0

}
(or its desingularization if

Ĉ is not smooth). Then the first projection π1 : Ĉ → Λ makes it a branched cover over Λ, and

for any λ̃ = (λ, z) ∈ Ĉ, we set c̃(λ̃) = z which is a critical point for f̃
λ̃
:= f

π1(λ̃)
.

Therefore, taking a branched cover of Λ if necessary, it is always possible to assume that
all critical points are marked.

We always denote with a subscript λ the dynamical objects associated to fλ: Julia set,
maximal entropy measure, etc.
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In a celebrated paper, Mañé, Sad and Sullivan [MSS], and independently Lyubich [Ly2],
showed the existence of a decomposition

Λ = Bif ∪ Stab

of the parameter space Λ into a (closed) bifurcation locus and a (open) stability locus, which
is similar to the Fatou-Julia decomposition of dynamical space.

Stability is defined by a number of equivalent properties, according to the following theorem
[MSS, Ly2].

Theorem 2.1 (Mañé-Sad-Sullivan, Lyubich). Let (fλ)λ∈Λ be a holomorphic family of rational
maps of degree d ≥ 2 on P1. Let Ω ⊂ Λ be a connected open subset. The following conditions
are equivalent:

i. the periodic points of (fλ) do not change nature (attracting, repelling, indifferent) in Ω;
ii. the Julia set Jλ moves under a holomorphic motion for λ ∈ Ω;
iii. λ 7→ Jλ is continuous for the Hausdorff topology;
iv. for any two parameters λ, λ′ in Ω, fλ|Jλ is conjugate to fλ′ |Jλ′ .

If in addition, the critical points {c1, . . . , c2d−2} are marked, these conditions are equivalent
to

v. for any 1 ≤ i ≤ 2d − 2 the family of meromorphic functions (fnλ (ci(λ)))n≥0 : Λ → P1 is
normal

If these conditions are satisfied, we say that (fλ) is J-stable in Ω (which we simply abbre-
viate as stable in this paper). The stability locus is the union of all such Ω, and Bif is by
definition its complement.

Another famous result is the following [MSS, Ly2].

Theorem 2.2. Let (fλ)λ∈Λ be as above. The stability locus Stab is dense in Λ.

If (fλ) is the family of all polynomials or all rational functions of degree d, it is conjectured
that λ ∈ Stab if and only if all critical points converge to attracting cycles (the hyperbolicity
conjecture). More generally, the work of McMullen and Sullivan [McMS] leads to a conjectural
description of the components of the stability locus in any holomorphic family of rational maps
(relying on the the so-called no invariant line fields conjecture).

We now explain how the bifurcation locus can be seen in a number of ways as the limit set
(in the topological sense) of countable families of analytic subsets of codimension 1. This is a
basic motivation for a description of the bifurcation locus in terms of positive closed currents
of bidegree (1,1).

A marked critical point c is said to be passive in Ω if the family (fnλ (c(λ)))n≥0 is normal,
and active at λ0 if for every neighborhood V ∋ λ0, c is not passive in V (this convenient
terminology is due to McMullen). The characterization v. of stability in Theorem 2.1 then
rephrases as “a critically marked family is stable iff all critical points are passive in Ω”.

A typical example of a passive critical point is that of a critical point converging to an
attracting cycle, for this property is robust under perturbations. If Λ is the family of all
polynomials or all rational functions of degree d, according to the hyperbolicity conjecture,
all passive critical points should be of this type. Indeed, any component of passivity would
intersect the hyperbolicity locus. On the other hand, in a family of rational mappings with
a persistent parabolic point (resp. a persistent Siegel disk), a critical point attracted by this
parabolic point (resp. eventually falling in this Siegel disk) is passive.
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Let (fλ) be the space of all polynomials or rational mappings of degree d with a marked
critical point c. It seems to be an interesting problem to study the geometry of hyperbolic
passivity components, that is, components of the passivity locus associated to c, where c
converges to an attracting cycle. Does there exist a “center” in this component, that is a
subvariety where c is periodic? How does the topology of the component related to that of
its center?

The following result is an easy consequence of Montel’s theorem (see e.g. [Lev1] or [DF]
for the proof).

Theorem 2.3. Let (fλ)λ∈Λ be a holomorphic family of rational maps of degree d on P1, with
a marked critical point c. If c is active at λ0 then λ0 = limn λn where for every n, c(λn) is
periodic (resp. falls onto a repelling cycle).

Combined with Theorem 2.1 this implies that in any (not necessarily critically marked)
holomorphic family, the family of hypersurfaces, defined by the condition that a critical point
is periodic (resp. preperiodic) cluster on the bifurcation locus.

Corollary 2.4. Let (fλ)λ∈Λ be a holomorphic family of rational maps of degree d on P1.
Then

Bif ⊂ {λ, ∃ c(λ) (pre)periodic critical point}

and more precisely,

Bif = {λ, ∃ c(λ) critical point falling non-persistently on a repelling cycle}.

At this point a natural question arises: assume that several marked critical points are
active at λ0. Is it possible to perturb λ0 so that these critical points become simultaneously
(pre)periodic? It turns out that the answer to the question is “no”, which is a manifestation
of the failure of Montel’s theorem in higher dimension (see Example 3.3 below). An important
idea in higher dimensional holomorphic dynamics is that the use of currents and pluripotential
theory is a way to get around this difficulty. As it turns out, the theory of bifurcation currents
will indeed provide a reasonable understanding of this problem.

The following simple consequence of item i. of Theorem 2.1, provides yet another dense
codimension 1 phenomenon in the bifurcation locus.

Corollary 2.5. Let (fλ)λ∈Λ be a holomorphic family of rational maps of degree d on P1.
Then for every θ ∈ R/2πZ,

Bif = {λ, fλ admits a non-persistent periodic point of multiplier eiθ}.

Again one might ask: what is the set of parameters possessing several non-persistent
indifferent periodic points?

2.2. The bifurcation current. It is a classical observation that in a holomorphic family of
dynamical systems, Lyapunov exponents often depend subharmonically on parameters (this
idea plays for instance a key role in [He]). Also, since the 1980’s, potential theoretic methods
appear to play an important role in the study the quadratic family and the Mandelbrot set
(see e.g. [DH, Sib]).

DeMarco made this idea more systematic by putting forward the following definition
[DeM2].
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Proposition-Definition 2.6. Let (fλ)λ∈Λ be a holomorphic family of rational maps of degree
d ≥ 2. For each λ ∈ Λ, let µλ be the unique measure of maximal entropy of fλ. Then

χ : λ 7−→ χ(fλ) =

∫
log
∥∥f ′λ
∥∥ dµλ

is a continuous psh function on Λ (here the norm of the differential is relative to any Rie-
mannian metric on P1).

The bifurcation current of the family (fλ) is by definition Tbif = ddcχ.

The continuity of χ was originally proven by Mañé [Mñ]. Actually χ is Hölder continuous,
as can easily be seen from DeMarco’s formula for χ (see below), and the joint Hölder continuity
in (λ, z) of the dynamical Green’s function (see also [DS3, §2.5] for another approach).

The significance of this definition is justified by the following result [DeM1, DeM2].

Theorem 2.7 (DeMarco). The support of Tbif is equal to Bif.

Proof (sketch). The easier inclusion is the fact that Supp(Tbif) ⊂ Bif, or equivalently, that
χ is pluriharmonic on the stability locus. A neat way to see this is to use the following
approximation formula, showing that the Lyapunov exponent of fλ can be read on periodic
orbits: for every rational map f of degree d,

(3) χ(f) = lim
n→∞

1

dn

∑

p repelling of period n

1

n
log+

∣∣(fn)′(p)
∣∣

(see Berteloot [Bt1] for the proof). It thus follows from the characterization i. of Theorem
2.1 that if (fλ) is stable on some open set Ω, then χ is pluriharmonic there (notice that by
the Hartogs Lemma the pointwise limit of a uniformly bounded sequence of pluriharmonic
functions is pluriharmonic).

Let us sketch DeMarco’s argument for the converse inclusion. It is no loss of generality
to assume that all critical points are marked. The main ingredient is a formula relating χ
and the value of the Green’s function at critical points (see also Proposition 2.10 below). We
do not state this formula precisily here3, and only note that it generalizes the well-known
formula due to Przytycki [Pr] (see also Manning [Mn]) for the Lyapunov exponent of a monic
polynomial P :

(4) χ(P ) = log d+
∑

c critical

GP (c).

Here GP denotes the dynamical Green’s function of P in C, defined by

GP (z) = lim
n→∞

d−n log+ |Pn(z)| .

From this one deduces that if χ is pluriharmonic in some open set Ω, then all critical points
are passive in Ω, hence the family is stable by Theorem 2.1. �

A first consequence of this result, which was a source of motivation in [DeM1], is that if Λ
is a Stein manifold (e.g. an affine algebraic manifold), then the components of the stability
locus are also Stein.

3The expression of DeMarco’s formula for a rational map f is of the form χ(f) =
∑

2d−2

i=1
GF (cj) + H(f),

where GF is the dynamical Green’s function of a homogeneous lift F : C2 → C2 of f , the cj are certain lifts of
the critical points, and H(f) depends pluriharmonically on f
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In the most studied quadratic family (Pλ(z)) = (z2 + λ)λ∈C, we see from (4) that the
bifurcation “current” (which is simply a measure in this case) is defined by the formula
µbif = ddcGPλ

(0), where GPλ
is the Green function. As expected, we recover the usual

parameter space measure, that is the harmonic measure of the Mandelbrot set.

2.3. Marked critical points. In this paragraph we present a construction due to Favre
and the author [DF] of a current associated to the bifurcations of a marked critical point. It
would also be possible to define this current by lifting the dynamics to C2\{0} and evaluating
appropriate dynamical Green’s function at the lifted critical points, in the spirit of [DeM1].
However our construction is more instrinsic, and generalizes to other situations.

Let (fλ, c(λ)) be a holomorphic family of rational maps of degree d ≥ 2 with a marked
critical point. Let fn : Λ → P1 be defined by fn(λ) = fnλ (c(λ)). Let ω be a Fubini-Study form
on P1.

In the spirit of Section 1 we have the following result.

Theorem 2.8. Let as above (f, c) be a holomorphic family of rational maps of degree d ≥ 2
with a marked critical point, and set fn : λ 7→ fnλ (c(λ)). Then the sequence of currents
(d−nf∗nω) converges to a current Tc on Λ. The support of Tc is the activity locus of c.

By definition, Tc is the bifurcation current (also referred to as the activity current) associ-
ated to (f, c).

Proof (sketch). The convergence of the sequence of currents (d−nf∗nω) does not follow from
the general formalism of Section 1. The proof relies on equidistribution results for preimages
of points under fn instead. For this, it is convenient to consider the product dynamics on

Λ× P1. Let Λ̂ = Λ× P1. The family fλ lifts to a holomorphic map f̂ : Λ̂ → Λ̂ mapping (λ, z)

to (λ, fλ(z)). We denote by π1 : Λ̂ → Λ and π2 : Λ̂ → P1 the natural projections, and let
ω̂ = π∗2ω.

The following proposition follows from classical techniques in higher dimensional holomor-
phic dynamics.

Proposition 2.9. Let (fλ) be a holomorphic family of rational maps of degree d ≥ 2, and f̂

be its lift to Λ× P1 as above. Then the sequence of currents d−nf̂n∗ω̂ converges to a limit T̂
in Λ× P1.

The current T̂ should be understood as “interpolating” the family of maximal measures
µλ.

Let ĉ = {(λ, c(λ)), λ ∈ Λ} ⊂ Λ̂ (resp. f̂n(ĉ)) be the graph of c (resp. fn(c)). As observed

in Lemma 1.2, d−nf∗nω = (π1)∗

(
d−nω̂|

f̂n(ĉ)

)
. Now f̂n induces a biholomorphism ĉ → f̂n(ĉ),

so d−nω̂|
f̂n(ĉ)

= d−n
(
(f̂n)∗ω̂

)
|ĉ. Thus we see that the bifurcation current Tc is obtained by

slicing T̂ by the hypersurface ĉ and projecting down to Λ: Tc = (π1)∗

(
T̂ |ĉ

)
.

Making this precise actually requires a precise control on the convergence of the sequence

(d−n(f̂n)∗ω̂) to T̂ . This follows from the following classical computation: write d−1f̂∗ω̂− ω̂ =

ddcg1. Then d
−n(f̂n)∗ω̂ − ω̂ = ddcgn, where gn =

∑n−1
j=0 d

−jg0 ◦ f̂
j. Therefore (gn) converges

uniformly to g∞, with ω̂ + ddcg∞ = T̂ .
In particular we have that |gn − g∞| = O(d−n), which implies that the assumption (2) in

Proposition 1.10 is satisfied. Hence the family (fnλ (c(λ)) is quasi-normal outside Tc. To see
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that it is actually normal, we notice that the uniform control on the potentials allows to apply
Remark 1.5.

Conversely, Supp(Tc) is contained in the activity locus. Indeed it follows from the explicit
expression of d−nf∗nω in local coordinates on Λ that if U ⊂ Λ is an open set intersecting
Supp(Tc), the L

2 norm of the derivative of fn (relative to the spherical metric on P1) grows
exponentially in U . The result follows. �

Observe that the fact that c is a critical point does not play any role here. We might as
well associate activity/passivity loci and a bifurcation current to any holomorphically moving
point (a(λ)), and Theorem 2.8 holds in this case (this type of considerations appear e.g. in
[BaDeM]).

For the quadratic family (Pλ(z)) = (z2 + λ)λ∈C, which has a marked critical point at 0,

one easily checks that the current T̂ is defined in C × C by the formula T̂ = ddc(λ,z)GPλ
(z),

and that the bifurcation current associated to the critical point is again ddcλGλ(0) = µbif .

More generally, DeMarco’s formula for the Lyapunov exponent of a rational map gives the
relationship between these currents and the bifurcation current Tbif defined in §2.2.

Proposition 2.10. Let (fλ) be a family of rational maps with all critical points marked
{c1, . . . , c2d−2}, then Tbif =

∑
Ti, where Ti is the bifurcation current associated to ci.

2.4. Equidistribution of critically preperiodic parameters. We keep hypotheses as
before, that is we work with a family of rational maps with a marked critical point (f, c).
Our goal is to show that the bifurcation current Tc is the limit in the sense of currents of
sequences of dynamically defined codimension 1 subvarieties.

The first result follows directly from Theorem 1.6. It is a quantitative version of the fact
that near an activity point, fnλ (c(λ)) assumes almost every value in P1.

Theorem 2.11. Let (fλ, c(λ))λ∈Λ be a holomorphic family of rational maps of degree d ≥ 2
with a marked critical point, and Tc be the associated bifurcation current. There exists a
pluripolar exceptional set E ⊂ P1 such that if a /∈ E, then

lim
n→∞

1

dn
[Hn,a] → Tc, where Hn,a = {λ, fnλ (c(λ)) = a} .

Note that Hn,a is defined not only as a set, but as an analytic subvariety, with a possible
multiplicity. It is likely that the size of the exceptional set can be estimated more precisely.

Question 2.12. Is the exceptional set in Theorem 2.11 finite, as in the case of a single
mapping?

It is dynamically more significant to study the distribution of parameters for which c
becomes periodic (resp. preperiodic), that is, to try to make Theorem 2.3 an equidistribution
result. This is expected to be more difficult because in this case the set of targets that fnλ (c(λ))
is supposed to hit (the set of periodic points, say) is both countable and moving with λ.

Let e ∈ {0, 1} be the cardinality of the exceptional set of fλ for generic λ. If e = 2, then
the family is trivial. If e = 1, it is conjugate to a family of polynomials. Given two integers
n > m ≥ 0 denote by PerCrit(n,m) the subvariety of Λ defined by the (non necessarily
reduced) equation fnλ (c(λ)) = fmλ (c(λ)).

It is convenient to adopt the convention that [Λ] = 0. This means that if some subvariety
V like PerCrit(n, k) turns out to be equal to Λ, then we declare that [V ] = 0.
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The following equidistribution theorem was obtained in [DF].

Theorem 2.13 (Dujardin-Favre). Let (f, c) be a non-trivial holomorphic family of rational
maps on P1 of degree d ≥ 2, with a marked critical point, and denote by e the generic
cardinality of the exceptional set. Assume furthermore that the following technical assumption
is satisfied:

(H) for every λ ∈ Λ, there exists an immersed curve Γ ⊂ Λ through λ such that the
complement of the set {λ, c(λ)is attracted by a periodic cycle} is relatively compact
in Γ.

Then for every sequence 0 ≤ k(n) < n, we have that

lim
n→∞

[PerCrit(n, k(n))]

dn + d(1−e)k(n)
= Tc

Notice that with our convention, if c(λ) is periodic throughout the family, then both sides
of the equidistribution equation vanish.

Question 2.14. Is assumption (H) really necessary?

One might at least try to replace it by a more tractable condition like Λ being an algebraic
family –compare with Theorem 4.12. It is easy to see that (H) holds e.g. in the space of all
polynomial or rational maps of degree d (see [DF]).

In the 1-parameter family (zd + λ)λ∈C of unicritical polynomials of degree d, the theorem
implies the equidistribution of the centers of components of the degree d Mandelbrot set

(5) lim
n→∞

1

dn
[PerCrit(n, 0)] = lim

n→∞

1

dn

∑

fn
c (0)=0

δc = µbif .

This result had previously been proven by Levin [Lev2] (see also McMullen [McM1]).
Another interesting approach to this type of equidistribution statements is to use arithmetic

methods based on height theory (following work of Zhang, Autissier, Chambert-Loir, Thuillier,
Baker-Rumely, and others). In particular a proof of (5) along these lines was obtained, prior
to [DF], by Baker and Hsia in [BaH, Theorem 8.15]).

Since the varieties PerCrit(n, 0) and PerCrit(n, k) have generally many irreducible compo-
nents, (e.g. PerCrit(n−k, 0) ⊂ PerCrit(n, k)), and since it is difficult to control multiplicities,
the theorem does not directly imply that Tc is approximated by parameters where c is gen-
uinely preperiodic. To ensure this, we use a little trick based on the fact that Tc gives no
mass to subvarieties (since it has local continuous potentials).

Denote by PreperCrit(n, k) ⊂ PerCrit(n, k) be the union of irreducible components of
PerCrit(n, k) (with their multiplicities) along which c is strictly preperiodic at generic param-
eters. As sets we have that

PreperCrit(n, k) = PerCrit(n, k) \ PerCrit(n− k, 0).

Corollary 2.15. Under the assumptions of the theorem, if k is fixed, then

1

dn + d(1−e)(n−k)
[PreperCrit(n, n − k)] → Tc .

Proof. [PerCrit(n, n− k)] − [PreperCrit(n, n− k)] = [Dn] is a sequence of effective divisors
supported on PerCrit(k, 0). Assume by contradiction that the conclusion of the corollary does
not hold. Then Tc would give positive mass to PerCrit(k, 0), which cannot happen. �
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Here is a heuristic geometric argument justifying the validity of Theorem 2.13. For each
λ, (pre)periodic points equidistribute towards the maximal measure µλ [Ly1]. For this one
“deduces” that in Λ× P1, the sequence of integration currents on the hypersurfaces{

(λ, z) ∈ Λ× P1, fnλ (z) = f
k(n)
λ (z)

}
,

conveniently normalized, converge to T̂ . By “restricting” this convergence to the graph ĉ, one
gets the desired result. The trouble here is that there is no general result showing that that

the slices T̂n|ĉ converge to T̂ |ĉ.

Proof of Theorem 2.13 (sketch). Assume for simplicity that (fλ) is a family of polynomials of

degree d. A psh potential of d−nPerCrit(n, k(n)) is given by d−n log
∣∣∣fnλ (c(λ)) − f

k(n)
λ (c(λ))

∣∣∣.
We need to show that this sequence converges to Gλ(c(λ)), or equivalently that

(6)
1

dn
log
∣∣∣fnλ (c(λ)) − f

k(n)
λ (c(λ))

∣∣∣ − 1

dn
log+ |fnλ (c(λ))| −→

n→∞
0 in L1

loc(Λ)

converges to zero. We argue by case by case analysis depending on the behavior of c. For
instance it is clear that (6) holds when c escapes to infinity, or is attracted to an attracting
cycle. On the other hand there are parts of parameter space where the convergence is delicate
to obtain directly. So instead we apply some potential-theoretic ideas (slightly reminiscent
of the proof of Brolin’s theorem [Bro]). One of these arguments is based on the maximum
principle, and requires a certain compactness property leading to assumption (H). �

The speed of convergence in Theorem 2.13 is unknown in general. Furthermore the proof
is ultimately based on compactness properties of the space of psh functions, so it is not well
suited to obtain such an estimate. The only positive result in this direction is due to Favre
and Rivera-Letelier [FRL], based on the method of [BaH], and concerns the unicritical family.

Theorem 2.16 (Favre-Rivera Letelier). Consider the unicritical family of polynomials (zd +
λ)λ∈C. Then for any any compactly supported C1 function ϕ, if 0 ≤ k(n) < n is any sequence,
as n→ ∞ we have

|〈PerCrit(n, k(n)) − Tbif , ϕ〉| ≤ C
( n
dn

)1/2
‖ϕ‖C1 .

2.5. Equidistribution of parameters with periodic orbits of a given multiplier.

Bassanelli and Berteloot studied in [BB2, BB3] the distribution of parameters for which there
exists a periodic cycle of a given multiplier. For this, given any holomorphic family of rational
maps (fλ), we need to define the subvariety Per(n,w) of parameter space defined by the
condition that fλ admits a cycle of exact period n and multiplier w. Doing this consistently
as w crosses the value 1 requires a little bit of care. The following result, borrowed from
[BB2], originates from the work of Milnor [Mi2] and Silverman [Sil].

Theorem 2.17. Let (fλ) be a holomorphic family of rational maps of degree d ≥ 2. Then
for every integer n there exists a holomorphic function pn on Λ× C, which is polynomial on
C, such that

i. For any w ∈ C \ {1}, pn(λ,w) = 0 if and only if fλ admits a cycle of exact period n
and of multiplier w;

ii. For w = 1, pn(λ, 1) = 0 if and only if f admits a cycle of exact period n and of
multiplier 1 or a cycle of exact period m whose multiplier is a primitive rth root of
unity, and n = mr.
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We now put Per(n,w) = {λ, pn(λ,w) = 0}. The equidistribution result is the following
[BB2, BB3] (recall our convention that [Λ] = 0).

Theorem 2.18 (Bassanelli-Berteloot). Let (fλ)λ∈Λ be a holomorphic family of rational maps
of degree d ≥ 2. Then

i. for any w ∈ C such that |w| < 1,
1

dn
[Per(n,w)] → Tbif .

ii. Let dθ denote the normalized Lebesgue measure on R/2πZ. Then for every r > 0,

1

dn

∫

R/2πZ

[
Per(n, reiθ)

]
dθ → Tbif ;

If moreover (fλ)λ∈Λ is the family of all polynomials of degree d, then

iii. for any w such that |w| ≤ 1,
1

dn
[Per(n,w)] → Tbif .

Proof (excerpt). For fixed λ, the polynomial w 7→ pn(λ,w) can be decomposed into

pn(λ,w) =

Nd(n)∏

i=1

(w − wj(λ)),

where the degree Nd(n) satisfies Nd(n) ∼
dn

n and the wj(λ) are the multipliers of the periodic
cycles of period n of fλ. For simplicity, in i. let us only discuss the case where the multiplier
w equals 0. We can write

1

dn
[Per(n, 0)] =

1

dn
ddc log |pn(λ, 0)| = ddc


 1

dn

Nd(n)∑

i=1

log |wj(λ)|


 .

We see that the potential of 1
dn [Per(n, 0)] is just the average value of the logarithms of the

multipliers of repelling orbits. Now for n large enough, all cycles of exact period n are repelling
so from (3) we see4 that the sequence of potentials converges pointwise to χ(fλ). Furthermore
it is easy to see that this sequence is locally uniformly bounded from above so by the Hartogs
lemma it converges in L1

loc. By taking ddc we see that 1
dn [Per(n, 0)] converges to Tbif .

The argument for ii. is similar. For simplicity assume that r = 1. We write

1

dn

∫ [
Per(n, eiθ)

]
dθ =

1

dn
ddc

(∫
log
∣∣∣pn(λ, eiθ)

∣∣∣ dθ
)

= ddc


 1

dn

Nd(n)∑

i=1

∫
log
∣∣∣eiθ − wj(λ)

∣∣∣ dθ


 = ddc


 1

dn

Nd(n)∑

i=1

log+ |wj(λ)|


 ,

where the last equality follows from the well-known formula log+ |z| =
∫
log
∣∣z − eiθ

∣∣ dθ. As
before for each λ, when n is large enough all points of period n are repelling, so the potentials
converge pointwise to χ. We conclude as before.

The proof of iii. is more involved since for |w| = 1, in the estimation of the potentials
we have to deal with the possibility of cycles of large period with multipliers close to w. To
overcome this difficulty, the authors use a global argument (somewhat in the spirit of the

4The additional 1

n
in that formula follows from the fact that in (3) the sum is over periodic points while

here we sum over periodic cycles.
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use of (H) in Theorem 2.13), requiring the additional assumption that (fλ) is the family of
polynomials. �

It is a useful fact that in assertions i. and ii. of Theorem 2.18, no global assumption
on Λ is required (see below Theorem 3.2). On the other hand in iii, it is expected that
the convergence of d−n[Per(n,w)] to Tbif (even for |w| > 1) holds in any family of rational
mappings. Note that by using techniques similar to those of Theorem 1.6, it can be shown
that in any family of rational maps, the set of w ∈ C violating the convergence in iii is polar.

3. Higher bifurcation currents and the bifurcation measure

A crucial difference between one and higher dimensional families of rational mappings is
the presence of a hierarchy of bifurcations according to the number of bifurcating critical
points. These “higher bifurcation loci” are rather delicate to define precisely and the main
thesis in this section is that the formalism of bifurcation currents is well suited to deal with
these questions.

In this respect, let us start by suggesting a certain “dictionary” of analogies between these
issues and the dynamics of holomorphic endomorphisms of projective space Pk, which turns
out to be a very instructive guide for the intuition. Let f be a holomorphic self map of degree
d on Pk. There exists a natural invariant positive closed current T of bidegree (1,1) satisfying
f∗T = dT (the Green’s current), whose support is the Julia set of f [FS2]. In dimension
1, the dynamics of f is generically expanding along the Julia set. In higher dimension, the
situation is more subtle in that that “the number of directions” along which the iterates are
not equicontinuous can vary from 1 to k. One then introduces the following filtration of the
Julia set

J1 = J = Supp(T ) ⊃ · · · ⊃ Jq = Supp(T q) ⊃ · · · ⊃ Jk = Supp(T k) = Supp(µ),

where µ is the unique measure of maximal entropy. The dynamics on Jk is “repelling in
all directions” according to the work of Briend and Duval [BD]. On the other hand for
q < k, the dynamics along Jq \ Jq+1 is expected to be “Fatou in codimension q”. It is not
completely obvious how to formalise this precisely (see [Du3] for an account). A popular way
to understand this is to conjecture that Jq \ Jq+1 = Supp(T q) \ Supp(T q+1) is filled (in a
measure theoretic sense) with holomorphic disks of codimension q along which the dynamics
of (fn) is equicontinuous.

In this section we will try to develop a similar picture for parameter spaces of polynomial
and rational maps, with deformation disks playing the role of Fatou disks, and Misiurewicz
parameters replacing repelling periodic points.

For cubic polynomials with marked critical points, it is also possible to draw a rather
complete dictionary with the dynamics of polynomial automorphisms of C2 (see [Du2]).

3.1. Some general results. In this paragraph, (fλ) is a general holomorphic family of
rational maps of degree d ≥ 2. Our purpose here is to introduce the higher bifurcation
currents T k

bif and study some of their properties. We will try to demonstrate that their

successive supports Supp(T k
bif), 1 ≤ k ≤ dim(Λ) define a dynamically meaningful filtration of

the bifurcation locus.

We first observe that it is harmless to assume that all critical points are marked. Indeed,

let us take a branched cover π : Λ̃ → Λ such that the new family f̃(λ̃) has all critical points
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marked. We claim that for every 1 ≤ k ≤ dim(Λ), (with obvious notation)

π−1 Supp(T k
bif) = Supp(T̃ k

bif).

Indeed the Lyapunov exponent function in Λ̃ is λ̃ 7→ χ(π(λ̃)). In particular in any open

subset U ⊂ Λ̃ where π is a biholomorphism, for every k, we have that λ̃ ∈ Supp(T̃ k
bif) iff

λ = π(λ̃) ∈ Supp(T k
bif). Let now B̃ denotes the branching locus of π. Since χ is continuous,

T k
bif (resp. T̃

k
bif) gives no mass to analytic subsets, so we infer that

Supp(T̃ k
bif) = Supp(T̃ k

bif) \ B̃ (resp. Supp(T k
bif) = Supp(T k

bif) \ π(B̃) ).

Thus our claim follows.

Therefore we assume that critical points are marked as (c1(λ), . . . , c2d−2(λ)), and denote
by T1, . . . , T2d−2 the respective bifurcation currents. Recall that Supp(Ti) is the activity locus
of ci and Tbif equals

∑
Ti by Proposition 2.10.

Since the Ti are (1,1) positive closed currents with local continuous potentials, it is possible
to wedge them (see [De]). Here is a first observation.

Proposition 3.1. For every 1 ≤ i ≤ 2d− 2, Ti ∧ Ti = 0.

Proof. Assume that the convergence theorem 2.13 holds in Λ (e.g. if (H) holds). Then
Ti = limn→∞ d−n[PerCriti(n, 0)] where of course PerCriti(n, k) is the subvariety of parameters
such that fnλ (ci(λ)) = fkλ (ci(λ)). Since Ti has continuous potentials, we infer that Ti ∧ Ti =
limn→∞ d−n[PerCriti(n, 0)]∧Ti. Now for every n, [PerCriti(n, 0)]∧Ti = Ti|PerCriti(n,0) vanishes
since ci is passive on PerCriti(n, 0), and we conclude that Ti ∧ Ti = 0.

Without assuming Theorem 2.13, the proof is more involved and due to Gauthier [Ga]. �

As a consequence of this proposition, we infer that for every 1 ≤ k ≤ dim(Λ)

(7) T k
bif = k!

∑

1≤i1<···<ik≤2d−2

Ti1 ∧ · · · ∧ Tik .

In particular

(8) Supp(T k
bif) ⊂ {λ, k critical points are active at λ} .

As we will see in a moment (Example 3.3 below), this inclusion is in general not an equality.
It thus becomes an interesting problem, still open in general, to characterize Supp(T k

bif). We

will try to develop the idea that Supp(T k
bif) is the set of parameters where k critical points

are active and “behave independently”.
The following result follows from Theorem 2.18.

Theorem 3.2. Let (fλ)λ∈Λ be a holomorphic family of rational maps of degree d ≥ 2. Then
for every k ≤ dim(Λ),

Supp(T k
bif) ⊂ {λ, fλ admits k periodic critical points}.

Proof. We argue by decreasing induction on k, by using the following principle: if V ⊂ Λ is a
smooth analytic hypersurface and T a positive closed (1,1) current with continuous potential,
then T k ∧ [V ] = (T |V )

k. Here as usual the current T |V is defined by restricting the potential
of T to V and taking ddc.
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Under the assumptions of the theorem, let λ0 ∈ Supp(T k
bif). Since

Tbif = lim
n→∞

1

dn
[Per(n, 0)]

and Tbif has continuous potential, we infer that

T k
bif = lim

n→∞

1

dn
[Per(n, 0)] ∧ T k−1

bif .

In particular, λ0 is approximated by parameters belonging to
(
Tbif |Per(n,0)

)k−1
(moving slightly

if necessary we can always assume that these belong to the smooth part of Per(n, 0)).
We can now put Λ1 = Per(n, 0) and repeat the argument to find a nearby parameter

belonging to Supp[Per(n1, 0)] ∧ T
k−2
bif ⊂ Λ1 for some (possibly much larger) n1, etc. �

We see that it is important in this argument that no special assumption on Λ is needed
in Theorem 2.18. For instance if one were to replace “periodic” by “strictly preperiodic” in
this theorem, and try to use Theorem 2.13, one would have to check the validity of (H) in the
restricted submanifolds, which needn’t be satisfied (see however Theorem 3.8 below).

We can now explain how the inclusion in (8) can be strict.

Example 3.3 (Douady). In the two dimensional space of cubic polynomials with marked

critical points, let P0(z) = z+ z2

2 + z3. We claim that the two critical points are active at P0,

but P0 does not belong to Supp(T 2
bif).

Indeed since P0 is real and the critical points are not real, by symmetry, both critical points
are attracted to the parabolic fixed point at the origin. Since the fixed point can be perturbed
to become repelling (hence does not attract any critical point), Theorem 2.1v. implies that
at least one critical point must be active. Hence by symmetry again, both critical points are
active. On the other hand it can be proven (see [DF, Example 6.13] for details) that any
nearby parameter admits an attracting (and not superattracting) fixed point. In particular
P0 cannot be perturbed to make both critical points periodic, therefore P0 /∈ Supp(T 2

bif).
Denote by (Pλ)λ∈Λ≃C2 the family of cubic polynomials with marked critical points c1

and c2. We see that if N is a small neighborhood of the above parameter 0, the values
of (Pn

λ (c1(λ)), P
n
λ (c2(λ))) for λ ∈ N avoid an open set in C2. Indeed for λ ∈ N , either c1 or c2

must be attracted by an attracting cycle, so for large n, Pn
λ (c1(λ)) and P

n
λ (c2(λ)) cannot be

simultaneously large. This is a manifestation of the Fatou-Bieberbach phenomenon (failure
of Montel’s theorem in higher dimension). �

One can also approximate Supp(T k
bif) by parameters possessing k indifferent periodic cycles.

For Nk = (n1, . . . nk) ∈ Nk and Θk = (θ1, · · · , θk) ∈ (R/Z)k, we denote by Perk(Nk, e
iΘk) the

union of codimension k irreducible components of

Per(n1, e
iθ1) ∩ Per(n2, e

iθ2) ∩ · · · ∩ Per(nk, e
iθk),

and if E ⊂ R/Z, we let

Zk(E) =
⋃

Nk∈Nk ,Θk∈Ek

Perk(Nk, e
iΘk),

which is the (codimension p part of the) set of parameters possessing k neutral cycles with
respective multipliers in E.

The following result is due to Bassanelli and Berteloot [BB1].
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Theorem 3.4 (Bassanelli-Berteloot). Let (fλ)λ∈Λ be a holomorphic family of rational maps
of degree d ≥ 2. If E ⊂ R/Z is any dense subset, then for every k ≤ dim(Λ),

Supp(T k
bif) ⊂ Zk(E).

Proof (sketch). We argue by induction on k. For k = 1, the result follows from Theorem
2.1. The main idea of the induction step is as follows: assume λ0 ∈ Supp(T k

bif). Then by

the induction hypothesis, λ ∈ Zk−1(E), so there are plenty of (k − 1)-dimensional disks
near λ0 along which fλ possesses (k − 1) neutral cycles with multipliers in E. Assume
that the dynamics is J-stable along these disks. Then the Lyapunov exponent function χ is
pluriharmonic there and it follows from a general pluripotential theoretic lemma (see [FS2,
Lemma 6.10]) that (ddcχ)k = 0 in the neighborhood of λ0, a contradiction. So the dynamics
is not J-stable along the disks of Zk−1(E), hence Theorem 2.1 produces one more neutral
cycle, thereby proving the result. �

We see that in Example 3.3, the two critical points are related in a rather subtle way. On the
other hand, under a certain transversality assumption, a clever argument of similarity between
parameter and dynamical spaces, due to Buff and Epstein, shows that certain parameters
belong to Supp(T k

bif) [BE].
Let λ0 ∈ Λ be a parameter where c1(λ0), . . . , ck(λ0) fall onto repelling cycles. More precisely

we assume that there exist repelling periodic points p1(λ0), . . . pk(λ0) and integers n1, . . . , nk
such that for 1 ≤ j ≤ k, f

nj

λ0
(cj(λ0)) = pj(λ0). The repelling orbits pj(λ0) can be uniquely

continued to repelling periodic orbits pj(λ) for λ in some neighborhood of λ0. Fix for each
j a coordinate chart on P1 containing pj(λ0), so that for nearby λ, the function χj : λ 7→
f
nj

λ0
(cj(λ))− pj(λ) is well defined. We say that the critical points cj(λ0) fall transversely onto

the respective repelling points pj(λ0) if the mapping χ : Λ → Ck defined in the neighborhood
of λ0 by χ = (χ1, . . . , χk) has rank k at λ0. Of course this notion does not depend on the
choice of coordinate charts.

Theorem 3.5 (Buff-Epstein). Let (fλ)λ∈Λ be a holomorphic family of rational maps of degree
d ≥ 2 with marked critical points c1, . . . , ck, and associated bifurcation currents T1, . . . , Tk.
Let λ0 be a parameter at which c1(λ0), . . . , ck(λ0) fall transversely onto repelling cycles. Then
λ0 ∈ Supp(T1 ∧ · · · ∧ Tk).

Notice that this theorem does not appear in this form in [BE]. Our presentation borrows
from [Bt2]. The validity of the transversality assumption will be discussed in various situations
in §3.2 and 3.3 below.

Proof (sketch). First, a slicing argument shows that it is enough to prove that for a generic
k-dimensional subspace Λ′ ∋ λ0 (relative to some coordinate chart in Λ), the result holds by
restricting to Λ′. Thus we can assume that dim(Λ) = k and that χ is a local biholomorphism
on Λ. To simplify notation, we will assume that the fj are polynomials, k = 2, nj = 1 and
that the pj are fixed points.

Taking adapted coordinates (λ1, λ2) in Λ (in which the initial parameter λ0 is 0) we can
assume that χ1(λ) = λ1+h.o.t. and χ2(λ) = λ2+h.o.t. The proof, based on a renormalization
argument, consists in estimating the mass, relative to the measure T1 ∧ T2, of small bidisks
about 0 of carefully chosed size. Specifically, we will show that

lim inf dn(T1 ∧ T2)

(
D

(
0,

δ

mn
1

)
×D

(
0,

δ

mn
2

))
> 0,
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where the mj are the respective multipliers of the pj. Let δn be the scaling map defined by

δn(λ) =

(
λ1
mn

1

,
λ2
mn

2

)
.

An easy computation based on transversality and the fact that fλ is linearizable near pj(λ)

shows that for j = 1, 2, fn+1
δn(λ)

(cj(δn(λ))) converges as n → ∞ to a non-constant map ψj

depending only on λj, on some disk D(0, δ), with ψj(0) = pj. Hence, since Gλ depends

continuously on λ we get that Gδn(λ)(f
n+1
δn(λ)

(cj(δn(λ)))) converges to G0 ◦ ψj(λj). Using the

invariance relation for the Green’s function, we conclude that

(9) dn+1Gδn(λ)(cj(δn(λ))) = Gδn(λ)

(
fn+1
δn(λ)

(cj(δn(λ)))
)

−→
n→∞

G0(ψj(λj)),

hence

(T1 ∧ T2)(δn(D(0, δ)2)) ≃ d−2(n+1)

∫

D(0,δ)2
ddc (G0 ◦ ψ1(λ1)) ∧ dd

c (G0 ◦ ψ2(λ2))

= d−2(n+1)

(∫

D(0,δ)
ddc (G0 ◦ ψ1(λ1))

)(∫

D(0,δ)
ddc (G0 ◦ ψ2(λ2))

)
by Fubini’s theorem.

Note that the first line of this equation is justified by the local uniform convergence in (9).
Finally, the integrals on the second line are positive since G0 is not harmonic near pj , so
G0 ◦ ψj is not harmonic near the origin. �

Building on similar ideas, Gauthier [Ga] relaxed the transversality assumption in Theo-
rem 3.5 as follows. Assume as before that λ0 ∈ Λ is a parameter where c1(λ0), . . . , ck(λ0)
fall onto respective repelling periodic points p1(λ0), . . . pk(λ0). Define χ : Λ → Ck as be-
fore Theorem 3.5. We say that the critical points cj(λ0) fall properly onto the respective
repelling points pj(λ0) if χ−1(0) has codimension k at λ0. To say it differently, we are

requesting that in Λ × (P1)k the graphs of the two mappings λ 7→ (p1(λ), . . . pk(λ)) and
λ 7→ (fn1

λ (c1(λ)), . . . , f
nk

λ (ck(λ))) intersect properly
5 at (λ0, p1(λ0), . . . pk(λ0)).

Theorem 3.6 (Gauthier). Let (fλ)λ∈Λ be a holomorphic family of rational maps of degree
d ≥ 2 with marked critical points c1, . . . , ck, and associated bifurcation currents T1, . . . , Tk.
Let λ0 be a parameter at which c1(λ0), . . . , ck(λ0) fall properly onto repelling cycles. Then
λ0 ∈ Supp(T1 ∧ · · · ∧ Tk).

Actually, it is enough that c1(λ0), . . . , ck(λ0) fall properly into an arbitrary hyperbolic set.
We refer to [Ga] for details.

The results in this section show that for 1 ≤ k ≤ dim(Λ), Supp(T k
bif) is a reasonable

candidate for the locus of “bifurcations of order k”. We will see in the next sections that
when Λ is the space of all polynomials or rational maps and k is maximal, Supp(T k

bif) can
be characterized precisely. The picture is not yet complete in intermediate codimensions. In
this respect let us state a few open questions.

Question 3.7. Let (fλ)λ∈Λ be a holomorphic family of rational maps on P1 of degree d ≥ 2,
with marked critical points c1, . . . , ck.

5This is the usual terminology in intersection theory, see [Ful, Ch].
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1. Is it true that

Supp(T1 ∧ · · · ∧ Tk) = {λ0, c1(λ0), · · · , ck(λ0) fall transversely onto repelling cycles}

(by Theorem 3.5 only the inclusion ⊂ needs to be established).
2. More generally, do the codimension k subvarieties

PerCrit1(n, k(n)) ∩ · · · ∩ PerCritk(n, k(n))

equidistribute towards T1 ∧ · · · ∧ Tk? Arithmetic methods could help here, especially when
Λ is the space of polynomials and k is maximal (see the next paragraph).

3. Is the following characterization of Supp(T1 ∧ · · · ∧ Tk) true: λ0 ∈ Supp(T1 ∧ · · · ∧ Tk) iff
for every neighborhood U of λ0, there exists a pluripolar subset E ⊂ (P1)k such that the
values of fnλ (cj(λ)) for n ∈ N and λ ∈ U cover (P1)k \ E?

Work in progress of the author indicates that the answer to Question 3.7.1. should be
“yes”.

3.2. The space of polynomials. In this paragraph we specialize the discussion to the case
where Λ is the space of polynomials of degree d, and will mostly concentrate on the maximal
exterior power of the bifurcation current (the bifurcation measure). Our purpose is to show
that it is in many respected the right analogue in higher degree of the harmonic measure of
the Mandelbrot set. All results except Theorem 3.11 come from [DF].

The space Pd of polynomials of degree d with marked critical points is a singular affine
algebraic variety. To work on this space, in practice we use an “orbifold parameterization”
(not injective) π : Cd−1 → Pd, defined as follows: π maps (c1, · · · , cd−2, a) ∈ Cd−1 to the

primitive of z
∏d−2

1 (z− ci) whose value at 0 is ad. In coordinates, denoting c = (c1, . . . , cd−2),
we get

(10) π(c, a) = Pc,a(z) =
1

d
zd +

d−1∑

j=2

(−1)d−j σd−j(c)
zj

j
+ ad ,

where σi(c) is the elementary symmetric polynomial in the {cj}
d−2
1 of degree i. The critical

points of Pc,a are {0, c1, · · · , cd−2}. We put c0 = 0.
The choice of this parameterization (inspired from that used by Branner and Hubbard in

[BH1]) is motivated by the fact that the bifurcation currents Ti associated to the ci have
the same projective mass. Furthermore, it is well suited in order to understand the behavior
at infinity of certain parameter space subsets (this will be used to check condition (H) of
Theorem 2.13).

We let C be the connectedness locus, which is compact in Cd−1 by [BH1]. For 1 ≤ i ≤ d−2
we also define the closed subsets Ci by

Ci = {(c, a), ci has bounded orbit} .

It is clear that C =
⋂

i Ci and that ∂Ci is the activity locus of ci.
We also let gc,a be the Green’s function of the polynomial Pc,a. Then Ti = ddcgi, where

gi = gc,a(ci). Recall that the Manning-Przytycki formula asserts that χ = log d +
∑d−2

i=0 gi,

hence Tbif =
∑d−2

i=0 Ti.

In this specific situation we are able to solve the problem raised after Theorem 3.2.
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Theorem 3.8. In Pd, for every 1 ≤ k ≤ d− 1,

Supp(T k
bif) ⊂ {λ, fλ admits k strictly preperiodic critical points}.

More precisely, for any collection of integers i1, · · · , ik ∈ {0, · · · , d−2}, the analytic subset

Wn1,...,nk
=
⋂k

j=1 PreperCritij (nj, nj − 1) is of pure codimension k and

(11) lim
nk→∞

· · · lim
n1→∞

1

dnk+···+n1
[Wn1,...,nk

] = Ti1 ∧ · · · ∧ Tik .

Of course in (11) we can replace PreperCrit(n, n− 1) by PerCrit(n, k(n)) for any sequence
k(n). As already observed, to prove this theorem one cannot simply take wedge products in
Corollary 2.15 (resp. Theorem 2.13). The proof goes by induction on ℓ ≤ k, by successively
applying this corollary to the parameter space Λ =Wn1,··· ,nℓ

. It is not obvious to check that
assumption (H) is satisfied, and at this point the particular choice of the parameterization
is useful (see also [Bt2] for neat computations). It is unknown whether in (11) one can take
n1 = · · · = nk = n (see Question 3.7.2.)

Let us now focus on the maximal codimension case k = d−1. We set µbif = T0∧· · ·∧Td−2 =
1

(d−1)!T
d−1
bif , which is a probability measure supported on the boundary of the connectedness

locus.

Proposition 3.9. The bifurcation measure is the pluripotential equilibrium measure of the
connectedness locus. In particular Supp(µbif) is the Shiloff boundary of C.

It is important to understand that when d ≥ 3, Supp(µbif) is a proper subset of ∂C. To
get a (crude but instructive!) mental picture of the situation, think about the boundary
of a polydisk in Cd−1. This boundary can be decomposed into foliated pieces of varying
dimension between 1 and d − 2, together with the unit torus, the unit torus Td−1 being the
Shiloff boundary. The structure of ∂C should be somehow similar to this, with foliated pieces
of dimension j corresponding to parts of ∂C where j critical points are passive. The precise
picture is far from being understood, except for cubic polynomials (see below §3.4).

It is a well-known open question whether in higher dimension the connectedness locus
is the closure of its interior. Theorem 3.2 provides a partial answer to this question: if

λ0 ∈ ∂C ∩ Supp(T j
bif) and j critical points are active at λ0, then λ0 ∈ Int(C). Indeed, there

exists a neighborhood U ∋ λ0 where d − 1 − j critical points are passive, hence persistently
do not escape, and by Theorem 3.2 there is a sequence of parameters λn → λ0 for which the
j remaining critical points are periodic. Hence λn ∈ Int(C) and we are done.

We see that the answer to the problem lies in the set of parameters in ∂C ∩Supp(T j
bif) with

more than j active critical points (like in Example 3.3). So far there does not seem to be any
reasonable (even conjectural) understanding of the structure of this set of parameters.

We can give a satisfactory dynamical characterization of Supp(µbif). A polynomial is said
to be Misiurewicz if all critical points fall onto repelling cycles.

Theorem 3.10. Supp(µbif) is the closure of the set of Misiurewicz parameters.

The fact that Supp(µbif) is contained in the closure of Misiurewicz polynomials follows from
Theorem 3.8, since a strictly postcritically finite polynomial is automatically Misiurewicz. So
the point here is to prove the converse. There are actually several proofs of this. The original
one in [DF] uses landing of external rays (see below). Another proof goes by observing
that the properness assumption of Theorem 3.6 is satisfied at every Misiurewicz parameter.
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Indeed, as already observed in Theorem 3.8, for every (nj)j=1,...,d−1 and (nj)j=1,...,d−1 with

kj < nj,
⋂d−1

j=1 PreperCritj(nj , kj) is of dimension 0. Indeed, otherwise, this intersection would
contain an analytic set contained in the connectedness locus, contradicting its compactness.
Therefore, at a Misiurewicz point, critical points fall properly on the corresponding repelling
points, and Theorem 3.6 applies.

Notice that the work of Buff and Epstein [BE] implies that these intersections are actually
transverse.

Theorem 3.6 in its general form [Ga] shows that one can alternately characterize the support
of µbif as being the closure of generalized Misiurewicz polynomials, where generalized here
means that critical points fall into a hyperbolic set disjoint from the critical set. These
considerations lead to a generalization in higher degree the well-known theorem of Shishikura
on the Hausdorff dimension of the boundary of the Mandelbrot set [Sh]. Notice that Tan
Lei [T] extended Shishikura’s theorem by showing that the bifurcation locus has maximal
Hausdorff dimension in any family of rational maps.

Theorem 3.11 (Gauthier). If U is any open set such that U∩Supp(µbif) 6= ∅, then Supp(µbif)∩
U has maximal Hausdorff dimension 2(d− 1).

We now discuss external rays, following [DF]. Let P ∈ Pd be a polynomial for which the
Green’s function takes the same value r > 0 at all critical points (J(P ) is then a Cantor
set). The set Θ of external arguments of external rays landing at the critical points enables
to describe in a natural fashion the combinatorics of P . This set of angles is known as the
critical portrait of P . Now we can deform P by keeping Θ constant and let r vary in R∗

+ (this
is the “stretching” operation of [BH1]). This defines a ray in parameter space corresponding
to the critical portrait Θ.

The set Cb of combinatorics/critical portraits is endowed with a natural Lebesgue measure
µCb coming from R/Z. It is easy to show that µCb-a.e. ray lands as r → 0 (this follows from
Fatou’s theorem on the existence of radial limits of bounded holomorphic functions). We
thus obtain a measurable landing map e : Cb → C. The measures µCb and µbif are related as
follows:

Theorem 3.12. µbif is the landing measure, i.e. e∗µCb = µbif .

The proof of Theorem 3.10 given in [DF] relies on a more precise landing theorem for
“Misiurewicz combinatorics”. A critical portrait Θ ∈ Cb is said to be of Misiurewicz type if the
external angles it contains are strictly preperiodic under multiplication by d. A combination
of results due to Bielefeld, Fisher and Hubbard [BFH] and Kiwi [Ki1] asserts that the landing
map e is continuous at Misiurewicz combinatorics and that the landing point is a Misiurewicz
point. It then follows from Theorem 3.12 that Misiurewicz points belong to Supp(µbif).

The description of µbif in terms of external rays allows to generalize to higher dimensions
a result of Graczyk-Świa̧tek [GŚ] and Smirnov [Sm].

Theorem 3.13. The Topological Collet-Eckmann property holds for µbif-almost every poly-
nomial P .

In particular for a µbif-a.e. P , we have that:

- all cycles are repelling;
- the orbit of each critical point is dense in the Julia set;
- KP = JP is locally connected and its Hausdorff dimension is smaller than 2.
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Notice that Gauthier [Ga] shows that for a topologically generic polynomial P ∈ Supp(µbif),
HD(JP ) = 2. So the topologically and metrically generic pictures differ.

The connectedness of Cb naturally suggests the following generalization of the connected-
ness of the boundary of the Mandelbrot set.

Question 3.14. Is Supp(µbif) connected?

3.3. The space of rational maps. The space Ratd of rational maps of degree d is a smooth
complex manifold of dimension 2d + 1, actually a Zariski open set of P2d+1. For d = 2 it
is isomorphic to C2 [Mi2], and it was recently proven to be rational for all d by Levy [Lvy].
Automorphisms of P1 act by conjugation of rational maps, and the moduli space Md is the
quotient Ratd/PSL(2,C). Even if the action is not free it can be shown that Md is a normal
quasiprojective variety of dimension 2(d−1) [Sil]. Exactly as we did for polynomials, to work
on this space, it is usually convenient to work on a smooth family Λ which is transverse to
the fibers of the projection Ratd → Md. Through every point of Ratd there exists such a
family. Working in such a family, we can consider elements of Md as rational maps rather
than conjugacy classes.

In this paragraph we briefly give some properties of the bifurcation measure µbif = T
2(d−1)
bif

on Md. The first basic result was obtained in [BB1].

Proposition 3.15. The bifurcation measure has positive and finite mass on Md.

These authors also give a nice argument showing that all isolated Lattès examples belong
to Supp(µbif): it is known that a rational map is a Lattès example if and only if its Lyapunov
exponent is minimal, that is, equal to log d/2 [Led, Zd]. On the other hand if u is a continuous
psh function on a complex manifold of dimension k with a local minimum at x0, then x0 ∈
Supp((ddcu)k) (this follows from the so-called comparison principle [BT]). The result follows.

The precise characterization of Supp(µbif) is due to Buff and Epstein [BE] and Buff and
Gauthier [BG]. Let

- SPCFd be the set of (conjugacy classes of) strictly post-critically finite rational maps;
- Zd be the set of rational maps possessing 2d − 2 indifferent cycles, without counting
multiplicities (this is the maximal possible number).

Theorem 3.16 (Buff-Epstein, -Gauthier). In Md, Supp(µbif) = SPCFd = Zd.

Idea of proof. It is no loss of generality to assume that all critical points are marked as
{c1, . . . , c2d−2}. Let SPCF∗

d be the set of (conjugacy classes of) strictly post-critically finite
rational maps, which are not flexible Lattès examples6. We already know from Theorem 3.4
that Supp(µbif) ⊂ Zd. It should be possible to prove that Supp(µbif) ⊂ SPCFd in the spirit
of Theorem 3.8, but again it is not easy to check assumption (H). Instead Buff and Epstein

prove directly that SPCF∗
d = Zd using the Mañé-Sad-Sullivan theorem.

Let us show that SPCF∗
d ⊂ Supp(µbif). If f ∈ SPCF∗

d, it satisfies a relation of the form
fnj+pj(cj) = fnj(cj), j = 1, . . . , 2d − 2. Consider the subvariety of Md defined by these
algebraic equations. We claim that this subvariety is of dimension 0 at f . Indeed a theorem
of McMullen [McM2] asserts that any stable algebraic family of rational maps is a family of
flexible Lattès maps, hence the result. It then follows from Theorem 3.6 that f ∈ Supp(µbif).

6A flexible Lattès map is a rational mapping descending from an integer multiplication on elliptic curve.
These can be deformed with the elliptic curve, hence the terminology.



28 ROMAIN DUJARDIN

The original argument of [BE] was (under some mild restrictions on f) to check the transver-
sality assumption of Theorem 3.5, using Teichmüller-theoretic techniques. Another proof of
this fact was given by Van Strien [vS].

Finally, by using an explicit deformation, Buff and Gauthier [BG] recently proved that
every flexible Lattès map can be approximated by strictly post-critically finite rational maps
which are not Lattès examples. Therefore SPCF∗

d = SPCFd. �

As in the polynomial case, in the previous result one may relax the critical finiteness
assumption by only requiring that the critical points map to a hyperbolic set disjoint from
the critical set. Similarly to Theorem 3.11 one thus gets [Ga]:

Theorem 3.17 (Gauthier). The Hausdorff dimension of Supp(µbif) equals 2(2d − 2).

A famous theorem of Rees [Re] asserts that the set of rational maps that are ergodic with
respect to Lebesgue measure is of positive measure in parameter space. It is then natural to
ask: are these parameters inside Supp(µbif)?

3.4. Laminarity. A positive current T of bidegree (q, q) in a complex manifold M of dimen-
sion k is said to be locally uniformly laminar if in the neighborhood of every point of Supp(T )
there exists a lamination by q dimensional disks embedded in M such that T is an average of
integration currents over the leaves. More precisely, the restriction of T to a flow box of this
lamination is of the form

∫
τ [∆t]dm(t), where τ is a local transversal to the lamination, m is

a positive measure on τ , and ∆t is the plaque through t.
A current T of bidegree (q, q) in M is said to be laminar if there exists a sequence of

open subsets Ωi ⊂ M and a sequence of currents Ti, respectively locally uniformly laminar
in Ωi, such that Ti increases to T as i → ∞. Equivalently, T is laminar iff there exists a
measured family ((∆a)a∈A,m) of compatible holomorphic disks of dimension q in M such
that T =

∫
A[∆a]dm(a). Here compatible means that the intersection of two disks in the

family is relatively open (possibly empty) in each of the disks (i.e. the disks are analytic
continuations of each other). It is important to note that for laminar currents there is no
control on the geometry of the disks (even locally). These geometric currents appear rather
frequently in holomorphic dynamics. The reader is referred to [BLS1] for a general account
on this notion (see also [DG, Ca2]).

Why should we wonder about the laminarity of the bifurcation currents? We have been
emphasizing the fact that Supp(T k

bif) is in a sense the locus of “bifurcations of order k”. If true,

this would mean that on Supp(T k
bif) \Supp(T

k+1
bif ) we should see “stability in codimension k”,

that is, we should expect Supp(T k
bif)\Supp(T

k+1
bif ) to be filled with submanifolds of codimension

k where the dynamics is stable. There is a natural stratification of parameter space according
to the dimension of the space of deformations, and our purpose is to compare this stratification
with that of the supports of the successive bifurcation currents. Laminarity is the precise way
to formulate this problem.

Let us be more specific. Throughout this paragraph Λ is either the space of polynomials
or the space of rational maps of degree d, with marked critical points if needed. We let
D = dim(Λ). We say that two rational maps are deformations of each other if there is a
J-stable family connecting them7.

7Notice that this is weaker than the notion considered in [McMS] (stability over the whole Riemann sphere),
which introduces some distinctions which are not relevant from our point of view, like distinguishing the center
from the other parameters in a hyperbolic component.
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In [McMS] McMullen and Sullivan ask for a general description of the way the deforma-
tion space of a given rational map embeds in parameter space. Our thesis is that these
submanifolds tend to be organized into laminar currents8.

We start with a few general facts. The first easy proposition asserts that if T k
bif is laminar

on some set of positive measure outside Supp(T k+1
bif ), then the corresponding disks are indeed

disks of deformations.

Proposition 3.18. Assume that S is a laminar current of bidegree (k, k) such that S ≤ T k
bif

and Supp(S) ∩ Supp(T k+1
bif ) = ∅. Then the disks subordinate to S are disks of deformations.

Proof. By definition, a holomorphic disk of codimension k is said to be subordinate to S if
there exists a non zero locally uniformly laminar current U ≤ S such that ∆ is contained in a
leaf of U . Observe that since T k+1

bif gives no mass to analytic sets, there are no isolated leaves in

Supp(U). Since U ≤ T k
bif and Supp(U) is disjoint from Supp(T k+1

bif ), we see that U ∧Tbif = 0.
Now if χ was not pluriharmonic along ∆, then by continuity, it wouldn’t be harmonic on the
nearby leaves of U , implying that U ∧ Tbif would be non-zero, a contradiction. �

Proposition 3.19. For almost every parameter relative to the trace measure of T k
bif , the

dimension of the deformation space is at most D − k.
In particular a µbif generic parameter is rigid, that is it admits no deformations.

We should expect the codimension to be a.e. equal to k on Supp(T k
bif) \ Supp(T

k+1
bif ).

Proof. Similarly to Theorem 3.5, a slicing argument shows that is enough to consider the case
of maximal codimension, that is, to show that for TD

bif = µbif -a.e. parameter the deformation
space is zero dimensional.

If f0 ∈ Supp(µbif) possesses a disk ∆ of deformations, then χ|∆ is harmonic. An already
mentioned pluripotential theoretic lemma [FS2, Lemma 6.10] asserts that if E is a measurable
set with the property that through every point of E there exists a holomorphic disk along
which χ is harmonic, then (ddcχ)D(E) = µbif(E) = 0. The result follows. �

Let now λ0 ∈ Supp(T k
bif). There are at least k active critical points at fλ0

. Assume the
number is exactly k, say c1, . . . , ck, so the remaining D−k are passive ones. One might expect
each of these passive critical points to give rise to a modulus of deformations of fλ0

, but there
is no general construction for this.

If these D− k passive critical points lie in attracting basins, the existence of D− k moduli
of deformation for fλ0

should follow from classical quasi-conformal surgery techniques.
Observe that if the hyperbolicity conjecture holds, then ck+1, . . . , cD must be attracted by

cycles. Indeed let U be an open set where these points are passive. By Theorem 3.2, there
exists λ ∈ U such that c1(λ), . . . , ck(λ) are periodic. Hence there is an open set U ′ ⊂ U where
all critical points are passive. Assuming the hyperbolicity conjecture, in U ′ all critical points
lie in attracting basins. Thus this property persists for ck+1, . . . , cD throughout U .

When D = 2 and k = 1, one can indeed construct these deformations and relate them to
the geometry of Tbif . The following is a combination of results of Bassanelli-Berteloot [BB2]
and the author [Du2].

Theorem 3.20. If Λ = P3 or M2 and if U is an open set where one critical point is attracted
by a cycle, then Tbif is locally uniformly laminar in U .

8We do not address the problem of the global holonomy of these laminations, which gives rise to interesting
phenomena [Bra].
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In the general case one is led to the following picture.

Conjecture 3.21. If U ⊂ Λ is an open set where D − k critical points (counted with multi-
plicity) lie in attracting basins, then T k

bif is a laminar current in U , locally uniformly laminar
outside a closed analytic set.

The necessity of an analytic subset where the uniform laminar structure might have singu-
larities is due to the possibility of (exceptional) critical orbit relations

To address the question of laminarity of T k
bif outside Supp(T k+1

bif ), we also need to analyze

the structure of T k
bif in the neighborhood of the parameters lying outside Supp(T k+1

bif ) but
having more than k active critical points. As Example 3.3 shows, these parameters can admit
deformations. There does not seem to be any reasonable understanding of the bifurcation
current near these parameters, even for cubic polynomials. Another interesting situation is
that of cubic polynomials with a Siegel disk ∆, such that a critical point falls in ∆ after
iteration. Of course in P3 both critical points are active. These parameters can be deformed
by moving the critical point in the Siegel disk [Za]. We do not know whether these parameters
belong to Supp(µbif).

We also need to consider the possibility of “queer” passive critical points (whose existence
contradicts the hyperbolicity conjecture, as seen above). In this case we have a positive result
[Du2].

Theorem 3.22. If Λ = P3 and U is an open set where one critical point is passive, then Tbif
is laminar in U .

Perhaps unexpectedly, this result does not follow from the construction of some explicit
deformation for a cubic polynomial with one active and one (queer) passive critical point.
Instead we use a general laminarity criterion due to De Thélin [DeT]: if a closed positive
current T in U ⊂ C2 is the limit in the sense of currents of a sequence of integration currents
T = lim dn

−1[Cn] with genus(Cn) = O(dn), then T is laminar. We refer to [Du2] for the
construction of the curves Cn.

Thus in the space of cubic polynomials, Theorems 3.20 and 3.22 show that Tbif is laminar
outside the locus where two critical points are active (which is slightly larger than Supp(µbif)).
In the escape locus C2 \ C, where Tbif is uniformly laminar by Theorem 3.20, we can actually
give a rather precise description of Tbif , which nicely complements the topological description
given by Branner and Hubbard [BH1, BH2].

We are also able to show that this laminar structure really degenerates when approach-
ing Supp(µbif), in the sense that there cannot exist a set of positive transverse measure of
deformation disks “passing through” Supp(µbif)

9.
A consequence of this is that the genera of the curves PerCrit(n, k) must be asymptotically

larger than 3n near Supp(µbif). We refer to [Du2] for details. The geometry of these curves
was studied by Bonifant, Kiwi and Milnor [Mi5, BKM] in a series of papers (see also the
figures in [Mi1, §2] for some visual evidence of the complexity of the PerCrit(n, k) curves).

The results in this paragraph suggest the following alternate characterization of the support
of the bifurcation measure.

9Milnor discusses in [Mi1, §3] the possibility of so-called “product configurations” in the connectedness
locus of real cubic polynomials. Our result actually asserts that in the complex setting such configurations
cannot be of positive µbif measure.
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Question 3.23. If Λ is the moduli space of polynomials or rational maps of degree d ≥ 2, is
Supp(µbif) equal to the closure of the set of rigid parameters?

4. Bifurcation currents for families of Möbius subgroups

The famous Sullivan dictionary provides a deep and fruitful analogy between the dynamics
of rational maps on P1 and that of Kleinian groups [Su1]. In this section we explain that
bifurcation currents make also sense on the Kleinian group side, leading to interesting new
results. Unless otherwise stated, all results are due to Deroin and the author [DD1, DD2].

4.1. Holomorphic families of subgroups of PSL(2,C). Here we gather some preliminary
material and present the basic bifurcation theory of Möbius subgroups. We refer to the
monographs of Beardon [Bea] and Kapovich [Kap] for basics on the theory of Kleinian groups.
Throughout this section, G is a finitely generated group and Λ a connected complex manifold.
We consider a holomorphic family of representations of G into PSL(2,C), that is a mapping
ρ : Λ×G → PSL(2,C), such that for fixed λ ∈ Λ, ρ(λ, ·) is a group homomorphism, and for
fixed g ∈ G ρ(·, g) is holomorphic. The family will generally be denoted by (ρλ)λ∈Λ.

We make three standing assumptions:

(R1) the family is non-trivial, in the sense that there exists λ1, λ2 such that the represen-
tations ρλi

, i = 1, 2 are not conjugate in PSL(2,C);
(R2) there exists λ0 ∈ Λ such that ρλ0

is faithful;
(R3) for every λ ∈ Λ, ρλ is non-elementary.

Assumptions (R1) and (R2) do not really restrict our scope: this is obvious for (R1), and
for (R2) is suffices to take a quotient of G. Notice that under (R2), the representations ρλ
are generally faithful, that is, the set of of non faithful representations is a union of Zariski
closed sets.

Recall that a representation is said to be elementary when it admits a finite orbit on
H3∪P1(C) (H3 is the 3-dimensional hyperbolic space). Then, either Γ fixes a point in H3 and
is conjugate to a subgroup of PSU(2)10 and in particular it contains only elliptic elements,
or it has a finite orbit (with one or two elements) on P1. It can easily be proved that the
subset of elementary representations of a given family (ρλ) is a real analytic subvariety E of
Λ. Hence (R3) will be satisfied upon restriction to Λ \ E 11.

We identify PSL(2,C) with the group of transformations of the form γ(z) = az+b
cz+d , with(

a b
c d

)
∈ SL(2,C) and let

‖γ‖ = σ(A∗A)1/2 and tr2 γ = (trA)2,

where A =
(
a b
c d

)
is a lift of γ to SL(2,C), and σ(·) is the spectral radius. Of course these

quantities do not depend on the choice of the lift.
As it is well-known, Möbius transformations are classified into three types according to the

value of their trace:

- parabolic if tr2(γ) = 4 and γ 6= id; it is then conjugate to z 7→ z + 1;
- elliptic if tr2(γ) ∈ [0, 4), it is then conjugate to z 7→ eiθz for some real number θ, and
tr2 γ = 2 + 2 cos(θ).

10or SO(3,R) if we view H3 in its ball model.
11In order to study the space of all representations of G to PSL(2,C), it is nevertheless interesting to

understand which results remain true when allowing a proper subset of elementary representations. This issue
is considered in [DD1], but here for simplicity we only work with non-elementary representations.
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- loxodromic if tr2(γ) /∈ [0, 4], it is then conjugate to z 7→ kz, with |k| 6= 1.

There is a well-established notion of bifurcation for a family of Möbius subgroups, which
is the translation in the Sullivan dictionary of Theorem 2.1. It has its roots in the work of
Bers, Kra, Marden, Maskit, Thurston, and others on deformations of Kleinian groups.

Theorem 4.1 (Sullivan [Su2] (see also Bers [Bs])). Let (ρλ)λ∈Λ be a holomorphic family of
representations of G into PSL(2,C) satisfying (R1-3), and let Ω ⊂ Λ be a connected open set.
Then the following assertions are equivalent:

i. for every λ ∈ Ω, ρλ(G) is discrete;
ii. for every λ ∈ Ω, ρλ is faithful;
iii. for every g in G, if for some λ0 ∈ Ω, ρλ0

(g) is loxodromic (resp. parabolic, elliptic),
then ρλ(g) is loxodromic (resp. parabolic, elliptic) throughout Ω;

iv. for any λ0, λ1 in Ω the representations ρλ0
and ρλ1

are quasi-conformally conjugate on
P1.

If one of these conditions is satisfied, we say that the family is stable in Ω. We define Stab
to be the maximal such open set, and Bif to be its complement, so that Λ = Stab∪Bif.

Theorem 4.1 shows that Stab = Int(DF) is the interior of the set of discrete and faithful
representations. One main difference with rational dynamics is that, as a consequence of
the celebrated Jørgensen-Kazhdan-Margulis-Zassenhauss theorem, DF is a closed subset of
parameters space. This is also referred to as Chuckrow’s theorem, see [Kap, p. 170]. This
implies that, whenever non-empty, Bif has non-empty interior, which is in contrast with
Theorem 2.2.

The following corollary is immediate:

Corollary 4.2. For every t ∈ [0, 4], the set of such parameters λ0 at which there exists g ∈ G
such that tr2 ρλ0

(g) = t and λ 7→ tr2 ρλ(g) is not locally constant, is dense in Bif.

Again, a basic motivation for the introduction of bifurcation currents is the study of the
asymptotic distribution of such parameters. The most emblematic value of t is t = 4. In this
case one either gets “accidental” new relations or new parabolic elements. Notice that when
t = 4cos2(θ) with θ ∈ πQ (e.g. t = 0), then if tr2 ρλ0

(g) = t, g is of finite order, so these
parameters also correspond to accidental new relations in ρλ(G).

A famous result in this area of research is a theorem by McMullen [McM3] which asserts
that accidental parabolics are dense in the boundary of certain components of stability. One
might also wonder what happens of Corollary 4.2 when additional assumptions are imposed
on g. Here is a question (certainly well-known to the experts) which was communicated to
us by McMullen: if G = π1(S, ∗) is the fundamental group of a surface of finite type, does
Corollary 4.2 remain true when restricting to the elements g ∈ G corresponding to simple
closed curves on S?

Another important feature of the space of all representations of G into PSL(2,C) (resp.
modulo conjugacy) is that it admits a natural action of the automorphism group of Aut(G)
(resp. the outer automorphism group Out(G)). Despite recent advances, the dynamics of
this action is not well understood (see the expository papers of Goldman [Go] and Lubotzky
[Lu] for an account on this topic). There is a promising interplay between these issues and
holomorphic dynamics, which was recently illustrated by the work of Cantat [Ca1].

4.2. Products of random matrices. To define a bifurcation current we use a notion of
Lyapunov exponent of a representation, arising from a random walk on G. The properties
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of this Lyapunov exponent will be studied using the theory of random walks on groups and
random products of matrices (good references on these topics are [BL, Frm]).

Let us fix a probability measure µ on G, satisfying the following assumptions:

(A1) Supp(µ) generates G as a semi-group;
(A2) there exists s > 0 such that

∫
G exp(s length(g))dµ(g) <∞.

The length in (A2) is relative to the choice of any finite system of generators of G; of course
the validity of (A2) does not depend on this choice. A typical case where these assumptions
are satisfied is that of a finitely supported measure on a symmetric set of generators (like in
the case of the simple random walk on the associated Cayley graph).

Loosely speaking, the choice of such a measure a measure on G is somehow similar to the
choice of a time parameterization for a flow, or more generally of a Riemannian metric along
the leaves of a foliation.

We denote by µn the nth convolution power of µ, that is the image of µ⊗n under (g1, . . . , gn) 7→
g1 · · · gn. This is the law of the nth step of the (left- or right-) random walk on G with tran-
sition probabilites given by µ.

If g = (gn)n≥1 ∈ GN, we let ln(g) = gn · · · g1 be the product on the left of the gk (resp.
rn(g) = g1 · · · gn the product on the right). We denote by µN the product measure on GN so
that µn = (ln)∗µ

N = (rn)∗µ
N.

The Lyapunov exponent of a representation ρ : G→ PSL(2,C) is defined by the formula

(12) χ(ρ) := lim
n→∞

1

n

∫

G
log ‖ρ(g)‖ dµn(g) = lim

n→∞

1

n

∫
log ‖ρ(g1 · · · gn)‖ dµ(g1) · · · dµ(gn),

in which the limit exists by sub-addivity. It immediately follows from Kingman’s sub-additive
ergodic theorem that

(13) for µN-a.e. g, lim
n→∞

1

n
log ‖ρ(ln(g))‖ = χ(ρ)

(this was before Kingman a theorem due to Furstenberg and Kesten [FK]).
The following fundamental theorem is due to Furstenberg [Fur1]:

Theorem 4.3 (Furstenberg). Let G be a finitely generated group and µ a probability measure
on G satisfying (A1-2). Let ρ : G → PSL(2,C) be a non-elementary representation. Then
the Lyapunov exponent χ(ρ) is positive and depends continuously on ρ.

The next result we need is due to Guivarc’h [Gui]:

Theorem 4.4 (Guivarc’h). Let G be a finitely generated group and µ a probability measure
on G satisfying (A1-2). Let ρ : G→ PSL(2,C) be a non-elementary representation. Then for
µN-a.e g, we have that

(14)
1

n
log |tr(ρ(ln(g)))| =

1

n
log |tr(ρ(gn · · · g1))| −→

n→∞
χ(ρ).

A trivial remark which turns out to be a source of technical difficulties, is that, as opposite
to (13), one cannot in general integrate with respect to µN in (14). The reason of course is
that some words can have zero or very small trace. Conversely, if h is a function on PSL(2,C),
which is bounded below and equivalent to log |tr(·)| as the trace tends to infinity, then one
can integrate with respect to µN.
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An example of such a function is given by the spectral radius, and under the assumptions
of Theorem 4.4 we obtain that

(15) χ(ρ) = lim
n→∞

1

n

∫
log |σ(ρ(g))| dµn(g).

4.3. The bifurcation current. We are now ready for the introduction of the bifurcation
current, following [DD1]. Let G be a finitely generated group, and (ρλ)λ∈Λ be a holomorphic
family of representations satisfying (R1-3). Fix a probability measure µ on G satisfying (A1-
2). It follows immediately from (12) that χ : λ 7→ χ(ρλ) is a psh function on Λ. Motivated
by the analogy with rational dynamics, it is natural to suggest the following definition.

Definition 4.5. Let (G, ρ, µ) be as above. The bifurcation current associated to (G,µ, ρ) is
Tbif = ddcχ.

At this point it is still unclear whether this gives rise to a meaningful concept. This will
be justified by the following results.

First, it is easy to see that Supp(Tbif) is contained in the bifurcation locus. Indeed, if (ρλ)
is stable on Ω, then the Möbius transformations ρλ(g), g ∈ G, do not change type throughout
Ω. In particular for every g ∈ G, Ω ∋ λ 7→ log |σ(ρλ(g))| is pluriharmonic. We thus infer from
(15) that χ is pluriharmonic on Ω.

It is a remarkable fact that conversely, pluriharmonicity of χ characterizes stability:

Theorem 4.6. Let (G, ρ, µ) be a holomorphic family of representations of G, satisfying (R1-
3), endowed with a measure µ satisfying (A1-2). Then Supp(Tbif) is equal to the bifurcation
locus.

Here is a sketch of the proof, which consists in several steps, and involves already encoun-
tered arguments. It is no loss of generality to assume that dim(Λ) = 1. We need to show
that if Ω is an open set disjoint from Supp(Tbif), then (ρλ) is stable in Ω. The main idea is
to look for a geometric interpretation of Tbif , in the spirit of what we did in §2.3.

For this we need a substitute for the equilibrium measure of a rational map: this will be
the unique stationary measure under the action of ρλ(G) on P1. Let us be more specific. For
every representation, (G,µ) acts by convolution on the set of probability measures on P1 by
the assignment

ν 7−→

∫
ρ(g)∗ν dµ(g).

Any fixed point of this action is called a stationary measure. The following theorem is inti-
mately related to Theorem 4.3. It is in a sense the analogue of the Brolin-Lyubich theorem
in this context.

Theorem 4.7. Let G be a finitely generated group and µ a probability measure on G satisfying
(A1-2). Let ρ : G → PSL(2,C) be a non-elementary representation. Then there exists a
unique stationary probability measure ν on P1. Furthermore, for any z0 ∈ P1, the sequence∫
(ρλ0

(g))∗δz0dµ
n(g) converges to ν.

In analogy with §2.3, let us now work in Λ×P1, and consider the fibered action ĝ on Λ×P1

defined by ĝ : (λ, z) 7→ (λ, ρλ(g)(z)). We seek for a current T̂ on Λ × P1 “interpolating”
the stationary measures. Given z0 ∈ P1 , we then introduce the sequence of positive closed

currents T̂n defined by

(16) T̂n =
1

n

∫
[ĝ (Λ× {z0})] dµ

n(g).
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To understand why it is natural to have a linear normalization in (16), think of a polynomial
family of representations. Precisely, assume that Λ = C and that for a set of generators
g1, . . . , gk of G, the matrices ρλ(g

j) are polynomial in λ. Then if w is a word in n letters in
the generators, ρλ(w) has degree O(n) in λ, hence in C × P1 ⊂ P1 × P1, the degree of the
graph ŵ(Λ× {z0}) is O(n).

It turns out that this sequence does not converge to a current interpolating the stationary
measures (since e.g. it vanishes above the stability locus) nevertheless it gives another crucial
information.

Proposition 4.8. The sequence of currents T̂n converges to π∗1Tbif , where π1 : Λ × P1 → Λ
is the natural projection.

Figure 4.3 is a visual interpretation of this result.

Λ

P1

StabStab Bif

Λ× {z0}

̂g1 · · · gn(Λ× {z0})

Figure 1. Fibered action of g1 · · · gn

This proposition implies that if Ω is disjoint from Supp(Tbif), the average growth of the
area of the sequence of graphs

(
̂g1 · · · gn

)
(Λ× {z0}) over Ω is sublinear in n. The attentive

reader will have noticed that the situation is similar to that of Section 1, except that the
sequence of graphs over Λ is replaced by an average of graphs. The next result is in the spirit
of Proposition 1.10.

Proposition 4.9. If Ω is an open subset of Λ such that Ω is compact and disjoint from

Supp(Tbif), then the mass of T̂n in Ω is O
(
1
n

)
. In other words:

∫
Area

(
ĝ (Λ× {z0}) ∩ π

−1
1 (Ω)

)
dµn(g) = O(1).

To prove this estimate we give an analytic expression of this area:
∫

Area
(
ĝ (Λ× {z0}) ∩ π

−1
1 (Ω)

)
dµn(g) =

∫

π−1

1
(Ω)

[
ĝ (Λ× {z0})

]
∧ (π∗1ωΛ + π∗2ωP1)dµn(g)

= Area(Ω) +

∫

Ω
(π1)∗

(
π∗2ωP1 |ĝ(Λ×{z0})

)
dµn(g)

= Area(Ω) + n

∫

Ω
ddcχn , where χn =

1

n

∫
log

‖ρλ(g)(Z0)‖

‖Z0‖
dµn(g).
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Here Z0 is a lift of z0 to C
2, ‖·‖ is the Hermitian norm, and the ddc is taken w.r.t. λ. Therefore,

exactly as in Theorem 2.8 we are left to prove that χn − χ = O
(
1
n

)
. This estimate in turn

follows from ergodic theoretic properties of random matrix products –specifically, from the
“exponential convergence of the transition operator”, a result due to Le Page [LeP].

The next step is to combine this estimate on the average area of the graphs over Ω with
another result of Furstenberg which asserts that for each fixed λ, for µN-a.e. sequence g =
(gn), ρλ(g1 · · · gn)(z0) converges to a point zg (a consequence of the martingale convergence
theorem). From this, as in Lemma 1.2, we infer that for a.e. g = (gn), the sequence of graphs(
̂g1 · · · gn

)
(Λ× {z0}) converges to a limiting graph Γg, outside a finite set of vertical bubbles.

We then obtain a measurable and G-equivariant family of limiting graphs over Ω. Formally,
this family is parameterized by the Poisson boundary P (G,µ) of (G,µ).

To show that the family of representations is stable over Ω, we need to upgrade this family
of graphs into a holomorphic motion of the Poisson boundary, that is, we need to show that
two distinct graphs are disjoint. For this, we use the fact that the number of intersection
points between two graphs over some domain D ⊂ Ω is a function on P (G,µ) × P (G,µ)
satisfying certain invariance properties. By an ergodic theorem due to Kaimanovich [Kai],
this function is a.e. equal12 to a constant ιD on P (G,µ) × P (G,µ), depending only on D .
The assignement D 7→ ιD being integer valued, we infer that there exists a locally finite set
of points F such that if D ∩ F = ∅, then ιD = 0. On such a D, it follows that the family of
graphs is a holomorphic motion, and ultimately, that the family is stable. Finally, to show
that the exceptional set F is empty and conclude that the family is stable on all D, we use the
fact that the set of discrete faithful representations is closed, which implies that Bif cannot
have isolated points. �

4.4. Equidistribution of representations with an element of a given trace. Another
important aspect of the bifurcation currents is that they enable to obtain equidistribution
results in Corollary 4.2. This is the analogue in our context of the results of §2.5. For t ∈ C
denote by Z(g, t) the analytic subset of Λ defined by Z(g, t) =

{
λ, tr2(ρλ(g)) = t

}
. We study

the asymptotic properties of the integration currents [Z(g, t)]. Note that if tr2(ρλ(g)) ≡ t,
then Z(g, t) = Λ, and by convention, [Λ] = 0.

The first equidistribution result is the following.

Theorem 4.10 (Equidistribution for random sequences). Let (G, ρ, µ) be a holomorphic
family of representations of G, satisfying (R1-3), endowed with a measure µ satisfying (A1-
2). Fix t ∈ C. Then for µN a.e. sequence (gn), we have that

1

2n
[Z(gn · · · g1, t)] −→

n→∞
Tbif .

Notice that, if instead of considering a random sequence in the group, we take a word
obtained by applying to g ∈ G an iterated element of Aut(G), then similar equidistribution
results were obtained by Cantat in [Ca1]

The following “deterministic” corollary makes Corollary 4.2 more precise. It seems difficult
to prove it without using probabilistic methods.

12As stated here, the result is true only when µ is invariant under g 7→ g−1. The general case needs some
adaptations. Notice also that the Kaimanovich theorem can be viewed as a far reaching generalization of the
ergodicity of the geodesic flow for manifolds of constant negative curvature.
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Corollary 4.11. Under the assumptions of Theorem 4.10, let ε > 0 and Λ′ ⋐ Λ. Then there
exists g ∈ G such that λ 7→ tr2(ρλ(g)) is non-constant and

{
λ, tr2(ρλ(g)) = t

}
is ε-dense in

Bif ∩Λ′.

For the value t = 4, it is unclear which of accidental relations or parabolics prevail in
[Z(gn · · · g1, 4)].

Theorem 4.10 is actually a consequence of a more general theorem [DD1, Thm 4.1], which
gives rise to several other random equidistribution results.

As opposed to the case of rational maps, we are able to estimate the speed of convergence,
up to some averaging on g and a global assumption on Λ.

Theorem 4.12 (Speed in the equidistribution theorem). Let (G, ρ, µ) be a holomorphic family
of representations of G, satisfying (R1-3), endowed with a measure µ satisfying (A1-2). Fix
t ∈ C. Assume further that one of the following hypotheses is satisfied:

i. Λ is an algebraic family of representations defined over the algebraic closure Q of Q.
ii. There exists a geometrically finite representation in Λ.

Then there exists a constant C such that for every test form φ,〈
1

2n

∫
[Z(g, t)] dµn(g) − Tbif , φ

〉
≤ C

log n

n
‖φ‖C2 .

The meaning of the notion of an algebraic family of representations is the following: the
space Hom(G,PSL(2,C)) of representations of G in PSL(2,C) admits a natural structure
of an affine algebraic variety over Q, simply by describing it as a set of matrices satisfy-
ing certain polynomial relations13. Changing this set of generators amounts to perform-
ing algebraic changes of coordinates, so that this structure of algebraic variety is well-
defined. We say that an arbitrary family of representations, viewed as a holomorphic mapping
ρ : Λ → Hom(G,PSL(2,C)) is algebraic (resp. algebraic over K) if ρ|Λ is a dominating map
to some algebraic subvariety (resp. over K) of Hom(G,PSL(2,C)). To say it differently, there
exists an open subset Ω ⊂ Λ such that ρΩ is an open subset of an algebraic subvariety of
Hom(G,PSL(2,C)). .

These results parallel those of §2.5, and exactly as in Theorem 2.18, they become much
easier after some averaging with respect to the multiplier. Let us illustrate this by proving
the following result:

Proposition 4.13. Let m be the normalized Lebesgue measure on [0, 4]. Then under the
assumptions of Theorems 4.10, we have that

1

2n

∫
[Z(g, t)] dµn(g)dm(t) −→

n→∞
Tbif .

Proof. We prove the L1
loc convergence of the potentials. Let u(g, ·) be the psh function on Λ

defined by

u(g, λ) =

∫
log
∣∣tr2(ρλ(g)) − t

∣∣ dm(t) = v(tr2(ρλ(g))),

where v is the logarithmic potential of m in C. The function u is bounded below and u(g, λ) ∼
log
∣∣tr2(ρλ(g))

∣∣ as tr2(ρλ(g)) tends to infinity.

13To view PSL(2,C) as a set of matrices, observe that PSL(2,C) is isomorphic to SO(3,C) by the adjoint
representation.
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If λ is fixed, then by Theorem 4.4, for µN a.e. sequence (gn),
1
2nu(g1 · · · gn, λ) → χ(λ).

Since u is bounded below, we can apply the dominated convergence theorem and integrate
with respect to g1, . . . , gn. We conclude that

1

2n

∫
u(g, λ)dµn(g) −→

n→∞
χ(λ)

for all λ ∈ Λ, which, by taking the ddc in λ, implies the desired statement. �

Sketch of proof of Theorem 4.10. We need to show that for a.e. sequence (gn), the sequence
of psh functions 1

2n log
∣∣tr2(ρλ(g1 · · · gn))− t

∣∣ converges to χ. The point is to find a choice of
random sequence (gn) which does not depend on λ. For this, a kind of sub-additive ergodic
theorem with values in the space of psh functions shows that for a.e. (gn),

1
n log ‖ρλ(g1 · · · gn)‖

converges in L1
loc to χ. By Theorem 4.4, it is possible to choose the sequence (gn) so that

for λ belonging to a countable dense sequence of parameters, 1
2n log

∣∣tr2(ρλ(g1 · · · gn))− t
∣∣

converges to χ(λ). On the other hand,

1

2n
log
∣∣tr2(ρλ(g1 · · · gn))− t

∣∣ ≤ 1

n
log ‖ρλ(g1 · · · gn)‖+ o(1).

Using the continuity of χ and the Hartogs lemma, we conclude that 1
2n log

∣∣tr2(ρλ(g1 · · · gn))− t
∣∣

converges to χ in L1
loc. �

For Theorem 4.12, the main difficulty is that for a given parameter we cannot in general
integrate with respect to g1, · · · , gn in the almost sure convergence

1

2n
log
∣∣tr2(ρλ(g1 · · · gn))− t

∣∣→ χ(λ),

due to the possibility of elements with trace very close to t. This is exactly similar to the
difficulty encountered in Theorem 2.18.iii. We estimate the size of the set of parameters
where this exceptional phenomenon happens by using volume estimates for sub-level sets of
psh functions and the global assumption i. or ii. In both cases this global assumption is used
to show the existence of a parameter at which

∣∣tr2(ρλ(g1 · · · gn))− t
∣∣ is not super-exponentially

small in n. Under i., this follows from a nice number-theoretic lemma (a generalization of the
so-called Liouville inequality), which was communicated to us by P. Philippon. Another key
ingredient is a large deviations estimate in Theorem 4.4, which was obtained independently
by Aoun [Ao].

4.5. Canonical bifurcation currents. One might object that our definition of bifurcation
currents in spaces of representations lacks of naturality, for it depends on the choice of a
measure µ on G –recall however from Theorem 4.6 that the support of the bifurcation current
is independent of µ. In this paragraph, following [DD2], we briefly explain how a canonical
bifurcation current can be constructed under natural assumptions.

Let X be a compact Riemann surface of genus g ≥ 2, and G = π1(X, ∗) be its fundamental
group. Let (ρλ) be a holomorphic family of representations of G into PSL(2,C) satisfying
(R1-3). We claim that there is a Lyapunov exponent function on Λ which is canonically
associated to the Riemann surface structure of X (up to a multiplicative constant).

For this, let X̃ be the universal cover of X (i.e. the unit disk). G embeds naturally as a

subgroup of Aut(X̃). For any representation ρ ∈ Λ, consider its suspension Xρ, that is the

quotient of X̃ × P1 by the diagonal action of G. The suspension is a fiber bundle over X,
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with P1 fibers, and admits a holomorphic foliation transverse to the fibers whose holonomy
is given by ρ. If γ is any path on X, we denote by hγ its holonomy P1

γ(0) → P1
γ(1).

The Poincaré metric endows X with a natural Riemannian structure, so we can consider
the Brownian motion on X. It follows from the sub-additive ergodic theorem that for a.e.
Brownian path Ω (relative to the Wiener measure), the limit

χ(ω) = lim
t→∞

1

t
log
∥∥hω(0),ω(t)

∥∥

(where ‖·‖ is any smoothly varying spherical metric on the fibers) exists, and does not depend
on Ω.

We define χBrownian(ρ) to be this number, and introduce a natural bifurcation current on
Λ by putting Tbif = ddcχBrownian. We have the following theorem.

Theorem 4.14. Let as above (ρλ) be a holomorphic family of non-elementary representations
of the fundamental group of a compact Riemann surface, satisfying (R1-3).

Then the function χBrownian is psh on Λ and the support of Tbif = ddcχBrownian is the
bifurcation locus.

To prove this theorem, it is enough to exhibit a measure µ on G satisfying (A1-2) and
such that for every ρ, χµ(ρ) = χBrownian(ρ) (up to a multiplicative constant). Such a measure
actually exists and was constructed using a discretization procedure by Furstenberg [Fur2].
It is non-trivial to check that µ satisfies the exponential moment condition (A2) (for instance
this measure can never be of finite support).

There is another natural family of paths on X: the geodesic trajectories. An argument
similar to the previous one shows that if (x, v) ∈ S1(X) (unit tangent bundle) is generic
relative to the Liouville measure, and if γ(x,v) denotes the unit speed geodesic stemming

from (x, v), then the limit limt→∞
1
t log

∥∥hγ(0),γ(t)
∥∥ exists and does not depend on (generic)

(x, v). We denote by χgeodesic(ρ) this number. It follows from the elementary properties of
the Brownian motion on the hyperbolic disk that there exists a constant v depending only on
X such that χBrownian = vχgeodesic. Therefore the associated bifurcation current is the same.

Here is a situation where these ideas naturally apply: consider the set P(X) of com-
plex projective structures over a Riemann surface X, compatible with its complex structure
(see [Dum] for a nice introductory text on projective structures). This is a complex affine
space of dimension 3g − 3, admitting a distinguished point, the “standard Fuchsian struc-
ture”, namely the projective structure obtained by viewing X as a quotient of the unit disk.
A projective structure induces a holonomy representation (which is always non-elementary
and defined only up to conjugacy) so the above discussion applies. We conclude that the
space of projective structures on X admits a natural bifurcation current.

From the standard Fuchsian structure, one classically constructs an embedding of the
Teichmüller space of X as a bounded open subset of P(X), known as the Bers embedding (or
Bers slice). This open set can be defined for instance as the component of the distinguished
point in the stability locus.

In [McM4], McMullen suggests the Bers slice as the analogue of the Mandelbrot set through
the Sullivan dictionary. From this perspective, an interesting result in [DD2] is that the
canonical Lyapunov exponent function χBrownian is constant on the Bers embedding, so the
analogy also holds at the level of Lyapunov exponents.
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4.6. Open problems. There are many interesting open questions in this area, some of them
stated in [DD1, §5.2]. In the spirit of this survey, let us only state two problems related to
the exterior powers of Tbif .

As opposite to the case of rational maps, we believe that the supports of T k
bif for k ≥ 2 do

not give rise to “higher bifurcation loci”.

Conjecture 4.15. Let (G, ρ, µ) be a family of representations satisfying (R1-3) and (A1-2),
and assume further that two representations in Λ are never conjugate in PSL(2,C) (that is,
Λ is a subset of the character variety). Then for every k ≤ dim(Λ), Supp(T k

bif) = Bif.

Here is some evidence for this conjecture: let θ ∈ R\πQ, t = 4cos2(θ) and consider the vari-
eties Z(g, t). Since for λ ∈ Z(g, t), ρλ is not discrete, the bifurcation locus of {ρλ, λ ∈ Z(g, t)}
is equal to Z(g, t). Hence Supp(Tbif ∧ [Z(g, t)]) = Z(g, t), which by equidistribution of Z(g, t)
makes the equality Supp(T 2

bif) = Supp(Tbif) reasonable.

It is also natural to look for equidistribution in higher codimension. Here is a specific
question:

Question 4.16. Let (G, ρ, µ) be a family of representations satisfying (R1-3) and (A1-2).
Assume that dim(Λ) ≥ 3. Given a generic element h ∈ PSL(2,C), and a µN generic se-
quence (gn), do the solutions of the equation g1 · · · gn = h equidistribute (after convenient
normalization) towards T 3

bif?

5. Further settings, final remarks

In this section we gather some speculations about possible extensions of the results pre-
sented in the paper.

5.1. Holomorphic dynamics in higher dimension. It is likely that a substantial part
of the theory of bifurcation currents for rational maps on P1 should remain true in higher
dimension, nevertheless little has been done so far.

Let us first discuss the case of polynomial automorphisms of C2. A polynomial automor-
phism f of degree d of C2 with non-trivial dynamics admits a unique measure of maximal en-
tropy, which has two (complex) Lyapunov exponents of opposite sign χ+(f) > 0 > χ−(f) and
describes the asymptotic distribution of saddle periodic orbits [BLS1, BLS2]. See [Ca2] in this
volume for a presentation of these results for automorphisms of compact complex surfaces. No-
tice that a polynomial automorphism has constant jacobian, so χ+(f) +χ−(f) = log |Jac(f)|
is a pluriharmonic function on parameter space. It is not difficult to see that the function
f 7→ χ+(f) is psh (in particular upper semi-continuous), and it was shown in [Du1] that is
actually continuous (even for families degenerating to a one-dimensional map).

Since the Lyapunov exponents are well approximated by the multipliers of saddle orbits
[BLS2], it follows that near any point in parameter space where f 7→ χ+(f) is not plurihar-
monic, complicated bifurcations of saddle points occur. In the dissipative case they must
become attracting. The main idea of Theorem 2.18 seems robust enough to enable some
generalization to this setting.

On the other hand, a basic understanding of the phenomena responsible for the bifurcations
of a family of polynomial automorphisms of C2 –e.g. the role of homoclinic tangencies– is still
missing (see [BS] for some results in a particular case). In particular no reasonable analogue
of Theorem 2.1 is available for the moment. Therefore it seems a bit premature to hope for
a characterization of the support of the bifurcation current ddcχ+, let alone (ddcχ+)p.
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The situation is analogous in the case of families of holomorphic endomorphisms of Pk (and
more generally for families of polynomial-like mappings in higher dimension). The regularity
properties of the Lyapunov exponent(s) function(s) are rather well understood, due to the
work of Dinh-Sibony [DS1] and Pham [Ph] (a good account on this is in [DS3, §2.5]). In
particular it is known that the sum Lp(f) of the p largest Lyapunov exponents of the maximal
entropy measure is psh for 1 ≤ p ≤ k and the sum of all Lyapunov exponents is Hölder
continuous. It is also known [BDM] that Lp(f) is well approximated by the corresponding
quantity evaluated at repelling periodic cycles, so that any point in parameter space where
Lp is not pluriharmonic is accumulated by bifurcations of periodic points. Notice that the
relationship between the currents ddcLp is unclear.

Again, one may reasonably hope for equidistribution results in the spirit of Theorem 2.18.
Another interesting point is a formula, given in [BB1], for the sum Lk of Lyapunov expo-

nents of endomorphisms of Pk which generalizes Przytycki’s formula (4). From this formula
one may expect to reach some understanding on the role of the critical locus towards bifur-
cations.

5.2. Cocycles. Yoccoz suggests in [Y] to study the geography of the (finite dimensional)
space of locally constant SL(2,R) cocycles over a transitive subshift of finite type in the
same way as spaces of one-dimensional holomorphic dynamical systems, with some emphasis
on the description of hyperbolic components and their boundaries. For SL(2,C) cocycles
(and more generally for any cocycle with values in a complex Lie subgroup of GL(n,C)) we
have an explicit connection with holomorphic dynamics given by the bifurcation currents.
Indeed, locally constant cocycles over a subshift are generalizations of random products of
matrices, which correspond to cocycles over the full shift. In this situation we can define a
Lyapunov exponent function relative to a fixed measure on the base dynamical system (the
Parry measure is a natural candidate), and construct a bifurcation current by taking the ddc.

Notice that the subharmonicity properties of Lyapunov exponents are frequently used in
this area of research (an early example is [He]).

For a general holomorphic family of (say, locally constant) SL(2,C) cocycles over a fixed
subshift of finite type, one may ask the same questions as in Section 4: characterize the
support of the bifurcation current, prove equidistribution theorems. Another interest of con-
sidering this setting is that it is somehow a simplified model of the tangent dynamics of
2-dimensional diffeomorphisms, so it might provide some insight on the bifurcation theory of
those. In particular there is an analogue of heteroclinic tangencies in this setting (“hetero-
clinic connexions”), and it might be interesting to study the distribution of the corresponding
parameters.

5.3. Random walks on other groups. Another obvious possible generalization of Section
4 is the study of bifurcation currents associated to holomorphic families of finitely generated
subgroups of SL(n,C). Again, if (ρλ) is a holomorphic family of strongly irreducible rep-
resentations (see [Frm] for the definition) of a finitely generated group G endowed with a
probability measure satisfying (A1-2), then Definition 4.5 makes sense, with χ being the top
Lyapunov exponent. It is likely that equidistribution theorems for representations possessing
an element of given trace should follow as in §4.4. More generally, one may investigate the
distribution of representations with an element belonging to a given hypersurface of SL(n,C),
in the spirit of Section 1.
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On the other hand, for the same reasons as in §5.1, the characterization of the support of
the bifurcation current is certainly a more challenging problem.

5.4. Non-archimedian dynamics. It is a standard fact in algebraic geometry that studying
families (Xλ)λ∈Λ of complex algebraic varieties often amounts to studying varieties over a
field extension of C, that is a function field in the variable λ. The same idea applies in the
dynamical context and was explored by several authors. This fact was used notably by Culler,
Morgan and Shalen [CS, MS] to construct compactifications of spaces of representations into
PSL(2,C) and obtain new results on the geometry of 3-manifolds. In rational dynamics Kiwi
[Ki2, Ki3] used a similar construction to study the behaviour at infinity of families of cubic
polynomials or quadratic rational maps (see [DeMc] for a different approach to this problem).

It would be natural to explore the interaction of bifurcation currents with these compact-
ifications, as well as the general bifurcation theory of non-archimedian rational dynamical
systems.

References

[Ao] Aoun, Richard. Random subgroups of linear groups are free. Duke Math. J. 160 (2011), 117–173.
[BaH] Baker, Matthew; Hsia, Liang-Chung. Canonical heights, transfinite diameters, and polynomial dy-

namics. J. Reine Angew. Math. 585 (2005), 61–92.
[BaDeM] Baker, Matthew; DeMarco, Laura. Preperiodic points and unlikely intersections. Duke Math. J. 159

(2011), no. 1, 1–29.
[BB1] Bassanelli, Giovanni; Berteloot, François. Bifurcation currents in holomorphic dynamics on P

k. J.
Reine Angew. Math. 608 (2007), 201–235.

[BB2] Bassanelli, Giovanni; Berteloot, François. Bifurcation currents and holomorphic motions in bifurca-
tion loci. Math. Ann. 345 (2009), 1–23.

[BB3] Bassanelli, Giovanni; Berteloot, François. Distribution of polynomials with cycles of a given multi-
plier. Nagoya Math. J. 201 (2011), 23–43.

[Bea] Beardon, Alan F.The geometry of discrete groups. Graduate Texts in Mathematics, 91. Springer-
Verlag, New York, 1983.

[BLS1] Bedford, Eric; Lyubich, Mikhail; Smillie, John. Polynomial diffeomorphisms of C2. IV. The measure
of maximal entropy and laminar currents. Invent. Math. 112 (1993), 77-125.

[BLS2] Bedford, Eric; Lyubich, Mikhail; Smillie, John. Distribution of periodic points of polynomial diffeo-
morphisms of C2. Invent. Math. 114 (1993), 277-288.

[BS] Bedford, Eric; Smillie, John. Real polynomial diffeomorphisms with maximal entropy: Tangencies.
Ann. of Math. (2) 160 (2004), no. 1, 1–26.

[BT] Bedford, Eric; Taylor, B. Alan. A new capacity for plurisubharmonic functions. Acta Math. 149
(1982), no. 1-2, 1–40.

[Bs] Bers, Lipman. Holomorphic families of isomorphisms of Möbius groups. J. Math. Kyoto Univ. 26
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304–311.

[Dil] Diller, Jeffrey. Dynamics of birational maps of P2. Indiana Univ. Math. J. 45 (1996), 721-772.
[DS1] Dinh, Tien Cuong; Sibony, Nessim. Dynamique des applications d’allure polynomiale. J. Math.

Pures Appl. (9) 82 (2003), 367-423.
[DS2] Dinh, Tien Cuong; Sibony, Nessim. Distribution des valeurs de transformations méromorphes et
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[FLM] Freire, Alexandre; Lopes, Artur; Mañé, Ricardo An invariant measure for rational maps. Bol. Soc.
Brasil. Mat. 14 (1983), 45–62.

[Ful] Fulton, William, Intersection theory. Second edition. Ergebnisse der Mathematik und ihrer Gren-
zgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, 1998.

[Frm] Furman, Alex. Random walks on groups and random transformations. Handbook of dynamical sys-
tems, Vol. 1A, 931–1014, North-Holland, Amsterdam, 2002.

[Fur1] Furstenberg, Hillel Noncommuting random products. Trans. Amer. Math. Soc. 108 (1963) 377–428.
[Fur2] Furstenberg, Hillel. Random walks and discrete subgroups of Lie groups. 1971 Advances in Probability

and Related Topics, Vol. 1 pp. 1–63 Dekker, New York
[FK] Furstenberg, Hillel; Kesten, Harry. Products of random matrices. Ann. Math. Statist. 31 (1960),

457–469.
[Ga] Gauthier, Thomas. Strong-bifurcation loci of full Hausdorff dimension. Preprint, arxiv:1103.2656.
[Go] Goldman, William M. Mapping class group dynamics on surface group representations. Problems

on mapping class groups and related topics, 189–214, Proc. Sympos. Pure Math., 74, Amer. Math.
Soc., Providence, RI, 2006
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[Hö] Hörmander, Lars. Notions of convexity. Progress in Math 127. Birkhäuser, Boston, MA, 1994.
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