
Contemporary Mathematics

Some remarks on the connectivity of Julia sets for
2-dimensional diffeomorphisms.

Romain Dujardin

Abstract. We explore the connected/disconnected dichotomy for the Julia

set of polynomial automorphisms of C2. We develop several aspects of the
question, which was first studied by E. Bedford and J. Smillie [BS6, BS7].

We introduce a new sufficient condition for the connectivity of the Julia set,

that carries over for certain Hénon-like and birational maps. We study the
structure of disconnected Julia sets and the associated invariant currents. This

provides a simple approach to some results of Bedford-Smillie, as well as some

new corollaries –the connectedness locus is closed, construction of external rays
in the general case, etc.

We also prove the following theorem: a hyperbolic polynomial diffeomor-

phism of C2 with connected Julia set must have attracting or repelling orbits.
This is an analogue of a well known result in one dimensional dynamics.

Introduction

If p : C → C is a polynomial map, there exists a well known necessary and
sufficient condition for the Julia set Jp (or equivalently the filled in Julia set Kp) to
be connected. Namely Jp is connected iff all critical points have bounded orbits. In
case p is hyperbolic, this is equivalent to saying that all critical points are attracted
to periodic sinks (see [CG] for a general account).

If now f : C2 → C2 is a polynomial diffeomorphism, the Julia set has several
analogues. Let K+ (resp. K−) be the set of points with bounded forward (resp.
backward) orbit. Let J± = ∂K±. It is known that J+ is the Julia set of f in the
usual sense, for forward iteration. Let also J = J+ ∩ J− and J∗ be the closure of
the set of saddle orbits (J∗ ⊂ J).

The sets J± are always connected. Indeed there exist invariant (1,1) currents
T± with Supp(T±) = J±, and with the additional property of being extremal as
positive closed currents. Extremality easily implies that the sets J± = Supp(T±)
are connected. On the other hand, the sets J± are not locally connected in general,
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even if f is hyperbolic on J . Indeed J± have laminar structure and, for instance
if f(z, w) = (aw + z2 + c, az), with small a and large c, J+ has totally discon-
nected transversals. We shall see later on that the connectivity properties of these
transversals has to do with the connectivity of J itself.

Eric Bedford and John Smillie gave in [BS6] a necessary and sufficient condi-
tion for J to be connected. Replacing f by f−1 if necessary we may assume the
(constant) Jacobian determinant |Jac f | is not larger than 1.

Definition 0.1. f is unstably connected if for some saddle point p, Wu(p)∩K+

has no compact component (for the topology induced by the isomorphism Wu(p) '
C).

An important issue in [BS6] is that this condition is independent of p.

Theorem 0.2 ([BS6]). If f is a polynomial diffeomorphism with |Jac f | ≤ 1,
then

J is connected ⇔ f is unstably connected.

A corollary, which was not realized there is that the connectedness locus is
closed in parameter space (corollary 2.2).

There is also a notion of unstable critical point, which plays the role of an
escaping critical point in one dimensional dynamics. Another result in [BS6] is

J is connected ⇔ f has no unstable critical points.

A salient feature in that paper is that if f is unstably connected, then J− \K+

has the structure of a Riemann surface lamination. This allows to define external
rays and study how landing of these influence the structure of J .

In this article, we give a sufficient condition for the connectedness of the Julia
set of a polynomial diffeomorphism of C2. This condition, which is not directly
related to unstable connectedness, was considered in the context of hyperbolic maps
in [BS7].

We say K+ is transversely connected if there exists a holomorphic disk V , with
∂V ∩K+ = ∅ and V ∩K+ 6= ∅ (a transversal to K+) such that V ∩K+ is connected.
We prove (§1) that transversal connectedness implies J is connected. One interest
of this result is that it also provides a simpler approach to the lamination struc-
ture of J− \K+ and clarifies somehow the analogy between unstable and escaping
critical points. Also the result is valid for certain Hénon-like and birational maps.
Notice that images of C cannot be used in the context of Hénon-like maps, so the
approach of [BS6] has to be modified.

In §2 we study the structure of the set J− for an unstably disconnected poly-
nomial diffeomorphism. We prove that the unstable current T− is an integral of
closed submanifolds in a large bidisk B containing K. This is strictly stronger than
just being a laminar current in the sense of [BLS], but does not imply uniform
laminarity. The obstruction to uniform laminarity is the phenomenon of folding, as
considered in [BS8].

As a consequence, we can define external rays in this case. We prove that
almost every ray lands and the landing measure is the maximal entropy measure.
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Another corollary (Proposition 1.10 and corollary 2.5) is that if B is a sufficiently
large bidisk,

f is unstably connected ⇔ T−|B is an extremal current.

We study the expansion/contraction of the Poincaré metric along the leaves in
this case, and derive some corollaries. This paragraph may also be seen as a gentle
introduction to the notion of quasi-expansion [BS8].

In §3 we turn to hyperbolic polynomial diffeomorphisms. It is known that if
f is hyperbolic on J then Int(K+) is the union of finitely many sink basins. We
prove that if f is hyperbolic and unstably connected (or equivalently J is connected
and |Jacf | ≤ 1) then Int(K+) is non empty, i.e. f does have attracting periodic
orbits. This is analogous to the one dimensional case. This provides an alternate
proof of the following fact [BS7, Corollary A.3]: the Julia set of a conservative and
hyperbolic polynomial diffeomorphism cannot be connected.

1. Maps with connected Julia sets

1.1. Preliminaries on Hénon-like mappings. Our treatment of connectiv-
ity for polynomial diffeomorphisms was partly motivated by extending the results of
[BS6] to the Hénon-like context. In particular we will use the Hénon-like formalism,
even when considering Hénon maps.

We begin with some notation: let B be a bounded open set in C2 biholomorphic
to a bidisk. We fix an isomorphism with the unit bidisk, and let ∂vB (resp. ∂hB) be
the “vertical” (resp. “horizontal”) part of the boundary, ∂vB = {|z| = 1, |w| < 1}
(resp. ∂hB = {|z| < 1, |w| = 1}).

Definition 1.1. A Hénon-like mapping in B is an injective holomorphic map
f : N(B) → C2 (where N(B) is a neighborhood of B) such that f(B) ∩ B 6= ∅, and
satisfying:

i. f(∂vB) ∩ B = ∅;
ii. f(B) ∩ ∂B ⊂ ∂vB.

Notice that the source and target bidisks may differ; this was the case in the
original definition of J. Hubbard and R. Oberste-Vorth [HO2]. A fundamental
example of Hénon-like map is any polynomial automorphism of C2, while considered
in a suitable large bidisk B. Indeed it is known that there exists a system of
coordinates (z, w) so that f is a composition of Hénon maps fj(z, w) = (aw +
pj(z), z), and for every large enough R, the restriction of f to the bidisk B =
D(0, R)2 is Hénon-like. Moreover the nonwandering set is contained in B because
as it is well known V + =

{
(z, w) ∈ C2, |z| ≥ |w| , |z| ≥ R

}
lies inside the basin

of attraction of a superattracting point at infinity for f . Respectively there is a
corresponding V − attracted to infinity by f−1. Here f is naturally extended to a
rational map of the projective plane.

Example 1.2. Perturbing such a map provides many examples of Hénon-like
maps. For instance consider the polynomial birational map of C2 defined by

g(z, w) = ((a+ b(z))w + p(z), az)

where |a| ≤ 1, and b(z) is a polynomial with deg(b(z)) ≤ deg(p(z)) − 2. If the
norm of b as a polynomial is small enough, g is a small perturbation of the Hénon
map (aw + p(z), az), so the restriction of g to B is Hénon-like . We will sketch a
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proof of the fact that nonwandering dynamics occurs only in B. For ease of reading
we restrict to the case where a = 1 (see Guedj [?] for similar computations with
deg(p) = 2 and deg(b) = 1).

We consider g as a birational self-mapping of the projective plane P2 (where
we use the homogeneous coordinates [z : w : t]). Simple explicit computations show
that:

- The indeterminacy locus of g is I+ = [0 : 1 : 0] and the indeterminacy
locus of g−1 is

I− = {[1 : 0 : 0]} ∪ {[ui : vi : 1]}

where the complex numbers vi are the roots of b(z) + 1 and ui = p(vi).
Notive that [ui : vi : 1] ∈ V + if b(z) has small norm.

- The point I− is superattracting for g.
- If deg(b) ≤ deg(p) − 3, the point [1 : 0 : 0] is superattracting for g−1. If

deg(b) = deg(p) − 2 it is attracting if the leading coefficient of b is less
than 1 in modulus.

In particular if b has small norm, V + is contained in the basin of attraction of
[1 : 0 : 0]. Indeed as a rational map on P2, g is a small perturbation of f , and I+ is
far from V +. Similarly, V − is in the basin of I+ for g−1. We conclude that every
point outside B is wandering.

We call horizontal an object (form, current, subvariety) whose support stays
(uniformly) away from the horizontal boundary ∂hB. Vertical currents, as well
as horizontal and vertical submanifolds, are defined analogously. The degree of a
horizontal subvariety V is by definition the number of intersection points of V with
a generic vertical line. By definition, if L is a horizontal line, d = deg(f(L)) is
the degree of f . More generally if V is a horizontal submanifold of degree deg(V ),
f(V ) ∩ B is a horizontal submanifold of degree d deg(V ).

There is a corresponding notion of degree for a horizontal positive closed cur-
rents T . The degree is defined as the mass of the intersection (wedge product) of
T with a generic vertical line. A normalized current is a current of degree 1.

We now list some dynamical properties of Hénon-like mappings [Du1]:
Invariant currents: f acts by push forward on horizontal positive closed

currents. Let L = 1B
1
df∗ be the associated graph transform operator. If

T is any horizontal normalized positive closed current, the sequence LnT
converges to the unique normalized L invariant current T−. Moreover T−

has laminar structure and continuous potential. Similar results hold for
pull backs of vertical currents.

Invariant measure: µ = T+ ∧ T− is the unique measure of maximal en-
tropy log d. It is mixing, hyperbolic, and describes the asymptotic distri-
bution of periodic orbits.

If we let K± = {x ∈ B, ∀n ≥ 0 f±n(x) ∈ B} =
⋂

n≥0 f
∓n(B) and J± = ∂K±,

an interesting open question is whether Supp(T±) = J±. Equality holds for poly-
nomial diffeomorphisms of C2.

For the birational perturbations of Hénon maps considered above, the equality
J+ = Supp(T+) is true. This is an easy consequence of the existence of the rate of
escape function g+, which is psh, nonnegative, continuous, and such that ddcg+ =
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T+ and K+ = {g+ = 0}. Here K+ is the set of points with bounded orbits, and
agrees inside B with the previously defined K+ (see the discussion in example ??).

1.2. A result on the intersection of positive closed currents. We begin
with a result on the support of wedge product of positive closed currents, which has
some independent interest. It is a very flexible generalization of [BS3, Proposition
2.3] and [BS6, Lemma 5.4].

Theorem 1.3. Let Ω ⊂ C2 be a bounded open set, and T1 = ddcu1, T2 = ddcu2

be positive closed currents in Ω such that the wedge product T1 ∧ T2 is admissible.
We moreover assume that

(1) ∅ 6= Supp(T1) ∩ Supp(T2) ⊂⊂ Ω.

Then
∫

Ω

T1 ∧ T2 > 0.

Remark that if Ω is exhausted by pseudoconvex open sets, hypothesis (1) im-
plies that the wedge product T1∧T2 is well defined (see Sibony [Sib]). The theorem
has the following corollary.

Corollary 1.4. If f is a Hénon-like map, Supp(µ) intersects every connected
component of Supp(T+) ∩ Supp(T−).

Proof. We may assume Ω is connected. Let χ be a test function with χ = 1 in
a neighborhood of Supp(T1)∩ Supp(T2) and Supp(dχ)∩ Supp(T1)∩ Supp(T2) = ∅.
Then

(2)
∫

Ω

T1 ∧ T2 =
∫
χddcu1 ∧ ddcu2 =

∫
u1dd

cχ ∧ ddcu2 <∞

since u1 is pluriharmonic near Supp(ddcχ) ∩ Supp(T2). Let T ε
1 = ddcuε

1 be the
standard regularization of T1. uε

1 is obtained by the convolution of u1 with a radial
approximation of δ0, with support in B(0, ε). Reducing Ω slightly if necessary we
may assume T ε

1 is well defined on Ω.
Now u1 − uε

1 = 0 in the set {p ∈ Ω, d(p,Supp(T1)) > ε}. In particular if ε
is small enough,u1 − uε

1 = 0 on Supp(ddcχ) ∩ Supp(T2) and by (2) we get that∫
T1 ∧ T2 =

∫
T ε

1 ∧ T2. We do the same for T2, hence
∫
T1 ∧ T2 =

∫
T ε

1 ∧ T ε
2 .

The next step is to prove that for small ε > 0, Supp(T ε
1 ) ∩ Supp(T ε

2 ) 6= ∅
(of course Supp(T ε

1 ) ∩ Supp(T ε
2 ) ⊂⊂ Ω). Once again it is enough to show that

Supp(T ε
1 ) ∩ Supp(T2) 6= ∅. First, it is classical that there exists a nonnegative

plurisubharmonic function v in Ω\Supp(T2) tending to +∞ on Supp(T2). Indeed
for every ε > 0, the function uε

2 − u2 is psh, nonnegative on Ω \ Supp(T2), and
positive in the neighborhood of Supp(T2). Pick a decreasing sequence εk → 0 and
just take

v =
∞∑

k=0

Ck(uεk
2 − u2),

where the constants Ck are adjusted so that v → +∞ on Supp(T2) (the sum is
locally finite in Ω\Supp(T2)).

Assume next that for every ε > 0, Supp(T ε
1 ) ∩ Supp(T2) = ∅. We will use a

Kontinuätzsatz-type argument. There exists a constant c such that in a neighbor-
hood N of ∂Ω, Supp(T1) ∩ N ⊂ {v ≤ c}. This also holds for T ε

1 for small ε, with



6 ROMAIN DUJARDIN

a fixed c. Now if Supp(T ε
1 ) ∩ Supp(T2) = ∅, v is well defined on Supp(T ε

1 ) and by
the maximum principle (see below), Supp(T ε

1 ) ⊂ {v ≤ c}. Letting ε→ 0, we get a
contradiction.

The maximum principle on a positive closed current is classical. The proof goes
as follows: assume w is a smooth strictly psh function in U , such that w < 0 on
∂U ∩ Supp(T ), and w > 0 at some point p ∈ Supp(T ) ∩ U . Then w+ = max(w, 0)
vanishes near Supp(T ) ∩ ∂U and w+ = w near p. Then

0 <
∫

U

ddcw+ ∧ T =
∫
w+ ∧ ddcT = 0;

a contradiction.

So from now on we may assume that we are in the conditions of the theorem,
with smooth T1 and T2. Smoothness is not enough to ensure

∫
T1 ∧ T2 > 0, since

T1 and T2 might be only semipositive on Supp(T1) ∩ Supp(T2). So assume T1 and
T2 are smooth, and pick p ∈ Supp(T1) ∩ Supp(T2). Consider a small connected
neighborhood N of id in the group SU2 of rotations around p, and the current

T ′1 =
∫

N

θ∗T1dθ

where dθ is the normalized Haar measure in N . Elementary linear algebra shows
that T ′1 is strictly positive at p, so

∫
T ′1 ∧ T2 > 0.

It remains to prove that
∫
T ′1 ∧ T2 =

∫
T1 ∧ T2. For every rotation θ in N ,

θ is connected to the identity by a path in N , so θ∗T1 is homotopic to T1. The
homotopy formula (see e.g. Simon [Sim]) asserts that

θ∗T1 − T1 = dh∗(T1 ⊗ [0, 1]) + h∗(dT1 ⊗ [0, 1]),

where h(·, t) is the homotopy connecting id and θ, and T1 = T11Ω is viewed as a
current with boundary in the neighborhood of Ω. We infer that∫

χ(θ∗T1 − T1) ∧ T2 =
∫
χdh∗(T ⊗ [0, 1]) ∧ T2 +

∫
χh∗(dT1 ⊗ [0, 1]) ∧ T2.

The first integral on the right hand side vanishes because dχ = 0 near the support of
(h∗(T1 ⊗ [0, 1]) ∧ T2) and the second because χ = 0 near Supp (h∗(dT1 ⊗ [0, 1])). �

1.3. Polynomial automorphisms. We begin the discussion on connectivity
by considering transverse connectivity for polynomial automorphisms of C2. Fix a
polynomial diffeomorphism f of degree d in C2 with non trivial dynamics. We will
prove transversal connectedness of K+ implies J is connected. We also directly
recover the lamination structure of J−\K+, and its ergodicity.

Definition 1.5. A transversal to K+ is a holomorphic disk V such that ∂V ∩
K+ = ∅ and V ∩K+ 6= ∅. K+ is said to be transversely connected if there exists a
transversal V such that K+ ∩ V is connected.

Notice that if K+ ∩ V has an isolated connected component (e.g. if K+ ∩ V
has finitely many components) then K+ is transversely connected. In [BS7] it was
proved that if f is uniformly hyperbolic then K+ is transversely connected iff J is
connected. Here we extend the “only if” statement to the general case.

Theorem 1.6. Let f be a polynomial diffeomorphism of C2 and assume K+

is transversely connected. Then the Julia set J is connected. Moreover J− \ K+

supports a unique Riemann surface lamination which is uniquely ergodic.



CONNECTIVITY OF JULIA SETS IN DIMENSION 2 7

The proof will proceed in several steps. Let B = D(0, R)2 be a large bidisk; f |B
is a Hénon-like map. Recall the open subset V + =

{
(z, w) ∈ C2, |z| > |w| , |z| > R

}
.

It is classical that f(B) ⊂ B ∪ V + and f(V +) ⊂ V +.

Proof. We fix a transversal V such that V ∩K+ is connected. Since ∂V ∩K+ =
∅, ∂V escapes under iteration. So there exists n0 ≥ 1 such that fn0(V ) ∩ B is a
horizontal submanifold in B. Since fn(V ∩ K+) = fn(V ) ∩ K+ is connected, by
replacing V by fn(V ) ∩ B, we may assume V is a horizontal submanifold in B (i.e.
∂V ⊂ ∂vB), of degree deg(V ). Here “submanifold” means a complex submanifold
without boundary.

Step 1. If V is as above, then for every n ≥ 1, fn(V ) ∩ B is connected.

Let B−n = B ∩ f−1(B) ∩ · · · ∩ f−n(B); from the fact that f(V +) ⊂ V + we
deduce that fn(V ) ∩ B = fn(V ∩ B−n). It then suffices to prove that for every n,
V ∩B−n is connected. For this, we just remark that K+ intersects every connected
component of V ∩B−n. Indeed, if U is such a component, then U is a (boundaryless)
submanifold of B−n. So fn(U) is a non trivial horizontal submanifold in B. It then
follows from the Stokes theorem and degree considerations that

∫
T+∧ [fn(U)] > 0

(see e.g. [Du1, Prop. 2.7] or theorem 1.2), so fn(U) intersects K+.

Step 2. The laminar structure of J− \K+.

Recall first the Riemann-Hurwitz formula. Let ∆ is a simply connected hori-
zontal submanifold in B of degree δ (so ∆ is a union of k holomorphic disks), and
π denote the first projection (z, w) 7→ z. Then the number of critical points of π|∆
(vertical tangencies), counted with multiplicity, equals δ − k.

Consider the transversal V as before; we have seen that that for n ≥ 1, fn(V )∩
B is a connected horizontal submanifold. Thus fn(V ) ∩ B = fn(V ∩ B−n) is a
planar surface, and the maximum principle actually implies it is a disk. So by the
Riemann-Hurwitz formula the number of vertical tangencies on fn(V ) ∩ B equals
dn deg(V )− 1.

Now increase R to get a larger bidisk B′. For large enough n, fn(V ) ∩ B′ is
also a horizontal disk in B′, of the same degree dn deg(V ), and the same number
of vertical tangencies. Thus all vertical tangencies of fn(V ) ∩ B′ are inside B, or
equivalently, the projection

π : fn(V ) ∩ (B′ \ B) −→ D(0, R′) \D(0, R)

is a covering. Hence for every simply connected open subset Q ⊂ D(0, R′)\D(0, R),
fn(V ) ∩ π−1(Q) is the union of dn deg(V ) graphs. Recall that the sequence of
currents

1
dn deg(V )

[fn(V ) ∩ B′]

converges to the unstable current T−. It then follows (see e.g. [BS5]) that
T−|π−1(Q) is a uniformly laminar current, made up of integration currents over
the limiting graphs.

We have thus proved that in B′ \ B, J− = SuppT− supports a lamination L−.
Now if B′ is so large that (B′ \ B) ∩ J− contains a fundamental domain for the
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action of f on J−\K+, we obtain that J− \K+ is laminated. The uniqueness of
the lamination is obvious since J− has empty interior.

Step 3. Unique ergodicity of the transverse measure.

The lamination L− constructed above carries a foliation cycle T−, so it has an
invariant transverse measure. We prove it is uniquely ergodic, that is, the positive
invariant transverse measure is unique. It implies of course ergodicity, i.e. any two
transversals of positive measure are connected by holonomy. The lamination will
actually be (uniquely) ergodic in each B′ \ B.

We use here [BS6, Prop. 2.13], which is itself a slight extension of a result of
J.E. Fornæss and N. Sibony [FS]. The claim is that any positive closed current
S supported in K− \ B is a multiple of T−. In particular, T−|C2\B is extremal in
C2 \B. Since any invariant transverse measure induces a foliation cycle, which is a
positive closed current supported in K− \B, we get that the unique (up to a scalar
multiple) invariant transverse measure is the one induced by T−.

Now if ν is an invariant transverse measure for the lamination L−|B′\B, we prove
it can be extended to a transverse measure on L−|C2\B, hence it is again induced by
T−. Recall that for every simply connected open subset Q in C\D(0, R), the leaves
of the lamination in π−1(Q) are graphs over Q. Hence the vertical lines π−1(p),
p ∈ C\D(0, R) are global transversals. Given any two points p ∈ D(0, R′)\D(0, R)
and q ∈ C \ D(0, R), we may thus transport the transverse measure from π−1(p)
to π−1(q) by using a simply connected Q ⊂ C \ D(0, R) containing p and q. So
the transverse measure ν extends from L−|B′\B to L−|C2\B and we get the desired
conclusion.

Remark that since T− has full support in J−, the lamination is also minimal.

Step 4. Connectivity of J .

By corollary 1.3, every connected component of J contains a point of J∗ =
Supp(µ), where µ = T+ ∧T− is the maximal entropy measure. Similarly to [BS6],
the connectivity of J will follow from the following fact “for every ε > 0, any two
points p and q in J∗ are joined by a path lying in the ε-neighborhood Jε of J”.

Indeed, fix p, q ∈ J∗, and ε > 0. For every x ∈ J−\K+, f−n(x) converges to J ,
so by compactness there exists an integer n such that f−n((J−∩B)\K+) ⊂ Jε. By
Pesin Theory, µ almost every point has a local unstable manifold Wu

loc, subordinate
to a piece of unstable lamination with positive measure. Moving p and q slightly
is necessary, we may assume this is true for p and q. Moreover, since the laminar
structure of T− is subordinate to the decomposition in unstable manifolds [BLS],
for every local unstable manifold Wu

loc, W
u
loc ∩ (J−\K+), which is non empty, is

subordinate to the lamination L− constructed above.
Let M = supB ‖df‖. Since the lamination L− is uniquely ergodic in a small

neighborhood of ∂vB, its restriction to B\K+ is ergodic, so we can find a path γ sub-
ordinate to a leaf of L−|B\K+ , and joining two points p1 and q1, with d(fn(p), p1) <
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ε
Mn and. d(fn(q), q1) < ε

Mn . Hence f−n(γ) is a path contained in Jε and joining
f−n(p1) and f−n(q1), which are respectively ε-close to p and q. �

Remark 1.7. There is a strong analogy between our condition and the condi-
tion of non escaping critical points in one variable dynamics. The role of “critical
point” is played here by vertical tangencies. We indeed proved in step 2 that verti-
cal tangencies do not escape a certain bidisk. See also the analysis in example 1.11
below.

A more precise notion of escaping critical point is developed in [BS5, BS6].
Escaping critical points are the critical points of G+ restricted to unstable mani-
folds. Using the fact that the critical points of G+|V are the vertical tangencies for
the invariant projection ϕ+ (the “Böttcher coordinate”) it is not difficult to prove
that if V is a transversal to K+, then ∂V is compact and disjoint from K+, so

V ∩K+ is connected ⇔ G+|V has no critical points.

In the next proposition we relate transverse connectivity to unstable connec-
tivity. It does not follow from Theorem 0.2 because of the assumption on the
Jacobian.

Proposition 1.8. If K+ is transversely connected, then f is unstably con-
nected.

From [BS6, Corollary 7.4] we deduce:

Corollary 1.9. If K+ is transversely connected, then |Jac(f)| ≤ 1.

Proof. Assume f is unstably disconnected. So for some saddle periodic point
p, Wu(p)∩K+ has a compact component C. The action of f on Wu(p) ' C (where
0 stands for p) is a nontrivial dilatation. So 0 /∈ C, and

⋃
n≥1 f

−n(C) consists of
infinitely many compact components of Wu(p) ∩K+, close to 0.

On the other hand [V ] ∧ T+ > 0, so we claim that the stable manifold W s(p)
has a transverse intersection point with V . A proof goes as follows (we use ideas
from [BLS, §9]): 1

dn f
n
∗ [V ] → cT−, where c =

∫
[V ] ∧ T+. Consider a Pesin box P

of positive measure; the local stable manifolds associated to points form a piece of
stable lamination of positive transverse measure, hence a uniformly laminar current
[BLS, §8] S+ ≤ T+, such that T− ∧ S+ > 0, because G− cannot be harmonic on
W s

loc(p). It is classical that S+ then has continuous potential. Thus
1
dn
fn
∗ [V ] ∧ S+ → T− ∧ S+ > 0,

and we get that for large n, fn(V ) has intersection points with a set of positive
measure of disks in S+ and most of them are transverse [BLS, Lemma 6.4].

So assume that fn(V ) intersects W s
loc(x), for some x ∈ P , not necessarily

periodic. By Poincaré recurrence, we may suppose that for infinitely many nj ,
fn

j (x) ∈ P , so by using the stable manifold theorem, we get that for large j,
fn+nj (V ) contains a disk arbitrarily close to Wu

loc(f
njx). Now if p is any saddle

point, W s(p) has transverse intersection points with any set of positive measure
of unstable disks [BLS, Lemma 9.1]. We conclude that W s(p) must intersect
fn+nj (V ), hence V , transversely.

For N � 1, consider a set C1, . . . CN of open and closed subsets of Wu(p)∩K+

close to p. For each Ci, consider a simple curve γi enclosing Ci, and such that
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γi ∩ K+ = ∅. Choose local coordinates (x, y) so that Wu
loc(p) ⊂ (y = 0), and

extend γi to a piece of 3-submanifold γ̃i, transverse to Wu
loc(p), by adding vertical

holomorphic disks. We assume the vertical disks are so small that γ̃i ∩K+ = ∅
By the Lambda lemma, for large n, fn(V ) contains a graph over Wu

loc(p), and
very close to it. So the curves γ̃i ∩ fn(V ) cut out N disks ∆1 . . .∆N in fn(V ).
Of course as n → ∞ the disks ∆i converge to Int(γi). This forces ∆i ∩K+ to be
non empty for large n: for instance use the fact that [Int(γi)] ∧ T+ > 0 (see step 1
above) and the continuity of the potential G+.

We have proved that in any neighborhood of any transverse intersection point of
W s(p)∩V , K+∩V has at least N connected components, which clearly contradicts
transverse connectivity. �

Remark 1.10. The proof of the proposition provides another approach to the
fact that unstable connectivity is independent of the chosen unstable manifold.

In the next proposition we use the fact that if f is unstably connected, J− \K+

has the structure described in Theorem 1.5 above (a uniquely ergodic lamination
with foliation cycle T−).

Proposition 1.11. If f is unstably connected then T−|B is an extremal current.

Proof. We have seen that the unstable current T− is uniformly laminar in
C2 \K+, and moreover if R and R′ are sufficiently large the transverse measure in
L−|π−1(A(R,R′)) is ergodic, where A(R,R′) denotes the annulus D(0, R′) \D(0, R),
and π is the first projection. Any positive closed current S ≤ T−|π−1(A(R,R′)) is
uniformly laminar and subordinate to T− (this is a result about analysis on lami-
nations, see [Du3]). By ergodicity, we conclude that T−|π−1(A(R,R′)) is extremal.

Let now S be a positive closed current in B, with S ≤ T . In particular S = cT−

(c ≤ 1) in the neighborhood of ∂vB. Consider the positive closed current S̃ on C2

defined by S̃ = S in B, and S̃ = cT− outside B. Since T− is extremal in C2,
S̃ = cT− everywhere, and we conclude that T−|B is extremal. �

Example 1.12. If p is a hyperbolic polynomial with connected Julia set, then
for small |a|, the Hénon map fa(z, w) = (aw+ p(z), az) is transversely connected.

We now proceed to give the proof, which is inspired by [HO2], from which the
result may actually be extracted.

Let R be so large that |z| = R implies |p(z)| > 2R, and let B = D(0, R)2.
First, if |a| ≤ 1, f is a Hénon-like map of degree d in B (see lemma 1.12 below).
We will show that if L is any horizontal line in B, and a is small enough, L ∩K+

is connected. Since for such a L

L ∩K+ =
⋂
L ∩ B−n =

⋂
L ∩ B−n,

and every component of L∩B−n intersects K+, this is equivalent to saying that for
every n, L∩B−n is connected. By the Riemann-Hurwitz formula (see step 2 above)
this is in turn equivalent to the fact that fn(L) ∩ B has dn − 1 vertical tangencies:
“critical points do not escape B”.

We begin with a useful lemma.

Lemma 1.13. Let U1 and U2 be two topological disks such that Ui ⊂ D(0, R).
Assume that



CONNECTIVITY OF JULIA SETS IN DIMENSION 2 11

- p : p−1(U2) → U2 is a branched cover of some degree k.
- dist(p(∂U1), U2) > δ.

Then fa : U1 ×D(0, R) → U2 ×D(0, R) is a Hénon-like (crossed) map of degree k
as soon as |a| ≤ min( δ

R , 1).

Proof. Items i. and ii. of definition 1.1 easily hold. We check that fa :
U1 × D(0, R) → U2 × D(0, R) has degree k: if u2 ∈ U2, we need to prove that
f−1({u2} ×D(0, R)), which is a vertical submanifold in U1 ×D(0, R), has degree
k. It is defined by the equation

{(z, w), aw + p(z) = u2} ,

and clearly its intersection with (w = 0) has k points counted with multiplicity. �

Assume now that p is a hyperbolic polynomial with connected Julia set. Fix a
neighborhood N of J such that p−1(N) ⊂⊂ N , and p : p−1(N) → N is a covering
of degree d. p is a strict expansion for the Poincaré metric of N . We denote by
U(z, ε) the ball of radius ε around z for the Poincaré metric of N . Fix ε small
enough, so that for every z ∈ J , U(z, ε) is a topological disk, and p is univalent on
U(z, ε). In particular,

p : p−1(U(p(z), ε)) ∩ U(z, ε) → U(p(z), ε)

is a biholomorphism. Reducing ε once again, we may further assume that

dist
(
p(∂U(z, ε)), U(p(z), ε)

)
> δ,

for some constant δ independent of z. By the preceding lemma, for |a| ≤ δ
R ,

fa : U(z, ε)×D(0, R) → U(p(z), ε)×D(0, R)

is a Hénon-like map of degree 1. Let U =
⋃

z∈J U(z, ε).

Let us now consider a horizontal line L in B. By the above argument, for
every |a| ≤ δ

R , and every n ≥ 1, all iterates fn
a (L) are graphs over U : indeed since

p : p−1(N) → N has degree d, the only contribution to fn
a (L) over U comes from

U×D(0, R). Now for fixed n, if a→ 0, the vertical tangencies of fn
a (L) converge to

the dn−1 (with multiplicities) critical values of pn, located in K. Since the vertical
tangencies cannot cross U×D(0, R), we conclude that in B fn

a (L) has dn−1 vertical
tangencies in K ×D(0, R), hence fn

a (L) ∩ B is connected. �

Remark 1.14. It can be proved that under these assumptions J+ ∩ B is lam-
inated by vertical holomorphic disks, moving holomorphically with a. Moreover
when a → 0, the lamination converges to the trivial lamination of J × D(0, R).
From this we conclude that any slice J+(fa)∩L is the image of J(p) by a holomor-
phic motion.

1.4. Hénon-like mappings. We present some connectedness results in the
Hénon-like setting1. The picture is much less precise than in the case of polynomial
automorphisms, in particular we cannot prove that points in J are connected by
paths subordinate to unstable manifolds.

1The main idea in the proof of the next theorem originates from a remark made to me by N.
Sibony.
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Let f be a Hénon-like map in B. Notice first that if f is dissipative or con-
servative (i.e. |Jac(f)| ≤ 1), then K− has measure zero, hence J− = K−. Indeed
f−1K− ⊂⊂ K−, so if f contracts volumes K− cannot have positive measure.

If f is a birational perturbation of a dissipative Hénon map, as considered in
§1.1, the equality J+ = SuppT+ still holds.

Theorem 1.15. Let f be a Hénon-like map of degree d > 1 in B, and assume
that J− = K−.

(1) If J+ = Supp(T+) and if K+ is transversely connected, then J = J+∩J−
is connected.

(2) If J− = Supp(T−) and if there exists a transversal V to Supp(T+) such
that SuppT+ ∩ V is connected, then Supp(T+) ∩ Supp(T−) is connected.

Proof. (1) If V is a transversal to K+, then for n large enough, Ln[V ] is a
non trivial horizontal positive closed current in B (where L is the graph transform
operator for currents, see §1.1). It follows that the sequence of currents (Ln[V ])
converges to cT−, with c > 0. Let µn = Ln[V ] ∧ T+ = (fn)∗([V ] ∧ T+); since T+

has continuous potential, µn → cµ as n→∞.
Since K+ is holomorphically convex and V is a holomorphic disk, V \ K+

has no compact components. It follows that if K+ is transversely connected then
J+ ∩ V = SuppT+ ∩ V is connected, and so does fn(J+ ∩ V ).

On the other hand if Jε is the ε-neighborhood of J , for large n we have

Suppµn ⊂ Supp(T+) ∩ fn(V ) = fn(J+ ∩ V ) ⊂ J+ ∩K−
ε ⊂ Jε.

We will conclude that J = J+ ∩ J− is connected by showing that every connected
component of J+ ∩ J− contains a point of Supp(µ).

So let J1 be an open and closed subset of J , J1 = J ∩Ω, with ∂Ω ∩ J = ∅. We
prove that µ(Ω) > 0. Since J− = K−, the points in J+ ∩ ∂Ω = Supp(T+|Ω) ∩ ∂Ω
escape under backwards iteration. So if tL denotes the pull back graph trans-
form operator, tLn(T+|Ω) is closed and vertical for large n, and non trivial since
Supp(tLn(T+|Ω))∩J− 6= ∅. In particular tLn(T+|Ω)∧T− > 0, hence (T+|Ω)∧T− >
0.

(2) The reasoning is similar. Let ψ be a nonnegative test function in V , with
ψ = 1 near Supp(T+), so that ψ[V ]∧T+ = [V ]∧T+. We claim that Lnψ[V ] → cT−,
with c > 0. Then, assuming the claim, µn = Lnψ[V ] ∧ T+ converges to cµ, and
since Supp(T−) = J− = K−, for every ε > 0

Suppµn ⊂ Supp(T+) ∩ fn(V ) = fn(Supp(T+) ∩ V ) ⊂ (Supp(T+) ∩ Supp(T−))ε

for large n. We conclude by using corollary 1.3.
It remains to prove our claim. The difficulty is that we can not assume Ln[V ]

is closed after a few iterations. Nevertheless c =
∫
T+ ∧ [V ] > 0 by theorem 1.2,

and it will be a consequence of [Du1] and [DDS] that Ln(ψ[V ]) → cT−.
An easy adaptation of proposition 4.8, and theorem 4.10 in [Du1] shows that if

the mass of the sequence of currents Ln(ψ[V ]) is bounded, then Ln(ψ[V ]) → cT−.
Let Θ be a smooth vertical positive closed current. From [DDS, Proposition 4.13],
we may write tLnΘ = ddcun, where (un) is a uniformly bounded sequence of psh
functions. Then the sequence∫

Ln(ψ[V ]) ∧Θ =
∫

V

ψddcun =
∫

V

undd
cψ
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is uniformly bounded, and since in the neighborhood of K+, masses may be evalu-
ated by using vertical closed positive currents we get the result. �

Remark 1.16.
- If f is a polynomial diffeomorphism, by corollary 1.8, the assumption
J− = K− is a consequence of transversal connectedness.

- In case (1), one may reproduce steps 1 and 2 in the proof of theorem 1.5,
and infer that J− is a lamination near ∂vB.

2. Maps with disconnected Julia sets

2.1. The connectedness locus is closed. Throughout this section we as-
sume f is a polynomial automorphism of C2 of degree d, and we fix as before a
bidisk B such that f |B is Hénon-like of degree d.

Recall that f is said to be unstably disconnected if for some saddle point p,
Wu(p) ∩ K+ has a compact component (for the “leafwise” topology induced by
the isomorphism Wu(p) ' C). We saw in proposition 1.7 that this is independent
of the saddle point p. Recall also that if |Jac(f)| ≤ 1, J is disconnected iff f is
unstably disconnected. Moreover, if |Jac(f)| < 1, f is always stably disconnected,
and if |Jac(f)| = 1, f is stably disconnected iff f is unstably disconnected [BS6,
Corollary 7.4].

Lemma 2.1. If p is any saddle point, Wu(p) ∩K+ has a compact component
iff Wu(p) ∩ B has a relatively compact component (for the leafwise topology).

Proof. Without loss of generality assume p is fixed. Let first C be a compact
component of Wu(p) ∩K+, and γ be a Jordan curve in Wu(p) \K+ surrounding
C, i.e. C ⊂ Int(γ). Then γ escapes under iteration, and for some n, fn(Int(γ))∩B
is a horizontal disk in B, which is relatively compact in Wu(p).

Conversely assume C is a relatively compact component ofWu(p)∩B. Then C is
a non trivial horizontal submanifold in B. Thus C intersects K+, and C∩K+ ⊂⊂ C
is a compact component of Wu(p) ∩K+. �

We obtain as a corollary that the connectedness locus is closed in parameter
space2. Because the parameter space of polynomial diffeomorphisms is not well
understood, we state the result in terms of 1-parameter families.

Corollary 2.2. Let {fλ, λ ∈ Λ} be a holomorphic 1-parameter family of poly-
nomial diffeomorphisms. Then the connectedness locus

{λ ∈ Λ, J(fλ) is connected}
is closed in Λ.

Proof. We prove the disconnectedness locus is open. So suppose that at
0 ∈ Λ, J(f0) is disconnected. Reducing Λ slightly if necessary, we may assume all
fλ are Hénon-like in B.

f0 is both stably and unstably disconnected. We prove stable disconnectedness
persists under perturbation. By the preceding lemma, there is a saddle point p0,
such that Wu(p0)∩B has a compact component. Saddle points and their unstable
manifolds vary continuously (holomorphically) under perturbation, so for λ close
to 0, there is a holomorphic family pλ of saddle points corresponding to p0, and

2This result stemmed out during a conversation with Eric Bedford and Misha Lyubich at the
Snowbird conference in June 2004.
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every relatively compact part of Wu(p) can be followed holomorphically. So for λ
close to 0, Wu(pλ) ∩ B has a compact component and we are done. �

2.2. Structure of T−. The currents T± have laminar structure in general.
We will show that if f is unstably disconnected, T−|B is an integral of horizontal
submanifolds of B. In other words, almost every leaf of T−|B is a finite branched
cover over the basis D for the natural vertical projection.

Recall that f is always stably or unstably disconnected, so the result always
apply to at least one of T+ or T−.

If T is a laminar current, we say that a disk ∆ is subordinate to T if there exists
a non trivial uniformly laminar current S ≤ T such that ∆ lies inside a leaf of S.
See [Du2] for definitions and related results. We begin with a useful proposition.

Proposition 2.3. If p is a saddle point, any relatively compact disk ∆ ⊂Wu(p)
is subordinate to T−.

Proof. If Wu
loc(p) denotes any neighborhood of p in Wu(p), pulling back ∆

by f if necessary, it is enough to prove Wu
loc(p) is subordinate to T−.

We saw in the course of the proof of proposition 1.7 that if Q is a Pesin box,
the local unstable lamination Lu(Q) supports a non trivial uniformly laminar cur-
rent subordinate to T−. Moreover if p is any saddle point, W s(p) has transverse
intersection points with Lu(Q). Thus there exists a uniformly laminar current

S0 =
∫

[∆α]dν0(α) ≤ T−

where the ∆α are small disks intersecting W s(p) transversely at one point.
By the Lambda lemma for every α, fn(∆α) contains graphs over Wu

loc(p),
arbitrary close to p when n is large. So there exists a uniformly laminar current Sj

subordinate to d−j(f j)∗S0 ≤ T−, and made up of graphs over Wu
loc(p), close to p.

Extracting a subsequence if necessary we may assume the Sj have disjoint supports.
Define a uniformly laminar current S in the neighborhood of p as S =

∑
cjSj ,

where the constants cj ≤ 1 are adjusted so that the series converges. Wu
loc(p) is

subordinate to S, and S ≤ T− so this solves the problem. �

The structure theorem for the current T−|B follows easily. It is stated in B,
however the bidisk may be arbitrary large. A consequence is that J− is locally the
limit of the union of an increasing sequence of laminations.

Theorem 2.4. If f is unstably disconnected, then there exists a family of uni-
formly laminar currents T−k in B, respectively made up of horizontal disks of degree
k, such that

T−|B =
∞∑

k=1

T−k .

Proof. Lemma 2.1 asserts that for any unstable manifold Wu(p), Wu(p) ∩ B
has a relatively compact component. Such a component is a horizontal submanifold
of some degree k in B. By proposition 2.3 this horizontal submanifold is subordinate
to T−, so there exists a uniformly laminar T0 made up of submanifolds of degree k
in B, with 0 ≤ T0 ≤ T−|B. Notice that by the maximum principle, all submanifolds
involved here are holomorphic disks.
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The sequence of cut-off iterates 1
dn (fn)∗(T0)|B ≤ T− converges to T−|B, and

each of these currents is uniformly laminar and made up of global submanifolds of
bounded degree. Any uniformly laminar current subordinate to T is of the form
hT , where 0 ≤ h ≤ 1 is a measurable function, locally constant along the leaves.
So we can write 1

dn (fn)∗(T0)|B as hnT
−|B, where 0 ≤ hn ≤ 1, and the convergence

result says that hn → 1, T−-a.e. Hence the sequence of currents

Tn = max
(
T0, . . . , d

−n(fn)∗(T0)|B
)

= max(h0, . . . , hn)T−|B
increases to T−|B. It is clear that each Tn is uniformly laminar, and made of
submanifolds of bounded degree, so T− has the desired structure. �

Since none of the T−k can be extremal we get the following corollary.

Corollary 2.5. If f is unstably disconnected, then T−|B is not an extremal
current.

Remark 2.6. The decomposition of T− into an integral of extremal compo-
nents can easily be deduced from the structure theorem. It appears that the ex-
tremal components of T−|B are irreducible horizontal submanifolds.

In case f(B) ∩ B is disconnected, a similar corollary already appears in [DDS,
§5.2]. More specifically, if f(B)∩B = U1∪· · ·∪Um (m > 1) each point in K+ (resp.
K−) can be assigned an itinerary α ∈ {1, . . . ,m}N. This induces decompositions of
the currents T±|B in terms of itinerary sequences.

Each open set Ui comes equipped with a multiplicity di = deg f(L)∩Ui, where
L is a horizontal line in B. If at least one partial degree di is larger than one, then,
with respect to a natural measure on {1, . . . ,m}N related to the di, for almost every
symbolic sequence α, dα(0) · · · dα(n) → ∞. From this it follows that in general the
decomposition of T−|B given in [DDS] is not the extremal decomposition of T−.

Another corollary is the construction of external rays in the unstably discon-
nected case. External rays for unstably connected maps were constructed in [BS6]
using the lamination structure of J− \K+.

Corollary 2.7. There exists a measured family (E , ν) of external rays, defined
as gradient lines of G+ restricted to unstable manifolds. Almost every ray lands and
if e denotes the endpoint mapping, then e∗ν equals the maximal entropy measure µ.

Proof. Pick a generic leaf M of T−|B, so M is a horizontal disk in B of finite
degree. Reducing M a little if necessary, it has finite area, and we may assume ∂M
if of the form {G+ = r} for some r > 0, and does not intersect the critical set of
G+|M .

On M \K+, G+|M is a positive harmonic function, so outside the critical points
of G+|M , one may flow along the gradient lines (in the sense of decreasing G+). If
{G+ = s} is conveniently oriented, the 1-form dc(G+|M )|{G+=s} defines a positive
measure onM∩{G+ = s} which is invariant by the flow. If s < r, only finitely many
gradient lines issued from {G+ = r} hit a critical point of G+|M before attaining
{G+ = s}. This defines a measurable map er,s : {G+ = r} → {G+ = s} such that

(er,s)∗dc(G+)|{G+=r}∩M = dc(G+)|{G+=s}∩M .

That almost every ray lands is a consequence of the fact that M has finite area,
see Bedford-Jonsson [BJ, §7] for a proof.
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At the level of the whole unstable lamination, we get a map er,s : {G+ = r} →
{G+ = s}, defined almost everywhere with respect to the measure dcG+|{G+=r} ∧
ddcG−. Indeed, notice that dcG+|{G+=r} ∧ ddcG− is the integral of the family of
measures dcG+|{G+=r}∩M with respect to the transverse measure induced by T−.
Moreover, the maps er,s preserve the transverse measure

(er,s)∗dcG+|{G+=r} ∧ ddcG− = dcG+|{G+=s} ∧ ddcG−.

On the other hand [BS6]

dcG+|{G+=r} ∧ ddcG− = ddc max(G+, r) ∧ ddcG− −→
r→0

µ = ddcG+ ∧ ddcG−,

so the landing measure is the maximal entropy measure. �

2.3. The Poincaré metric along the leaves. We are interested in the ex-
pansion properties of f with respect to the Poincaré metric along the leaves of T−|B.
We will use the structure of T−|B to derive (rough) estimates on the Poincaré met-
ric.

Notice that we cannot rule out the possibility of singular leaves on a set of zero
transverse measure (the disks constructed in theorem 2.4 are smooth). This does
not affect the treatment of the Poincaré metric, since if Γ is a singular irreducible
holomorphic disk of degree k, there exists a parametrization φ : D ∼→ Γ such that
π ◦ φ is a branched cover of degree k. Indeed just consider the uniformization
D → Γ̂ of the desingularization of Γ. Pushing forward by φ defines unambiguously
the Poincaré metric on Γ. Here we shall treat horizontal holomorphic disks regard-
less of their regular or singular nature; this actually has to be considered only in
proposition 2.14.

Assume M is a horizontal disk of degree k in B. Let B0 and B1 be “vertical
sub-bidisks” of the form Bi = B ∩ {|z| < Ri}, with R0 < R1. It is classical that
there exists a constant C such that

kπR2
1 ≤ Vol(M ∩ B1) ≤ CkπR2

1.

The following nice result is [BS8, Theorem 3.1].

Theorem 2.8. Let M be a horizontal disk of degree k as above. Assume M0 ⊂
M1 are respective connected components of M ∩ B0 and M ∩ B1. Then M1 \M0 is
an annulus and there exists a constant C depending only on R0 and R1 such that

Modulus(M1 \M0) ≥
C

k

We denote by ρM the Poincaré (Kobayashi) metric of the submanifold M in B.

Corollary 2.9. There exist constants C and λ > 1, depending on (k,R0, R1)
such that the hyperbolic diameter of M0 in M1 is bounded by C and ρM0 ≥ λρM1 ≥
ρM .

Proof. We may think of M1 as being the unit disk D. If E ⊂⊂ D define (see
McMullen [McM, §2.3])

Mod(E,D) = sup {Modulus(A), A ⊂ D is an annulus enclosing E} .
Then the hyperbolic diameter of E and Mod(E,D) are related by

(diamD(E) →∞) ⇔ (Mod(E,D) → 0).
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So by the previous theorem there exists a constant C(k,R0, R1) such that

diamD(M0) ≤ C.

Moving M0 by an isometry of D if necessary, we may assume that 0 ∈ M0. The
last estimate then implies the existence of a radius r(k,R0, R1) < 1 such that
M0 ⊂ D(0, r), and the result follows.

We may actually give an explicit estimate: when the diameter is large the
following holds

C
1

diamD(E)
≥ Mod(E,D) ≥ Ce− diamD(E),

so if k is large diamD(E) ≤ Ck. Since

ρ(0, z) =
1
2

log
1 + |z|
1− |z|

we get r ≤ 1− e−Ck, hence the estimate

ρM0 ≥
1

1− e−Ck
ρM1 ≥ ρM

on the Poincaré metric. �

Using non uniform expansion along the leaves for the Poincaré metric allows
to recover the following result from [BS6]. Notice that the current T+ induces by
restriction a measure on every unstable leaf. These measures are equivalent to the
“unstable conditionals” of µ [BLS, Prop 3.1].

Theorem 2.10. If f is unstably disconnected, then for µ-a.e. p, almost every
component of K+ ∩Wu(p) is a point, that is, for T+|W u(p)-a.e. x, the connected
component of x in K+ ∩Wu(p) is {x}.

Proof. For a µ-generic point p, let K+,u(p) be the connected component of
K+ ∩Wu(p) containing p. Since the unstable conditionals of µ are induced by T+

it is enough to prove that for µ-a.e. p, K+,u(p) = {p}.
Theorem 2.4 provides us with a decomposition T−|B =

∑
T−k . Fix an integer

K so that T−≤K =
∑

k≤K T−k is nontrivial. The measure µK = T−≤K ∧ T+ ≤ µ has
positive mass, and there exists a set E of total µK mass, such that if p ∈ E, the
connected component Γu(p) of Wu(p)∩B containing p is a horizontal disk of degree
k ≤ K. since K is arbitrary it suffices to show that for p ∈ E, K+,u(p) = {p}.

There exists a radius R1 such that f−1(B) ∩ B ⊂ B ∩ {|z| < R1}. So by the
previous corollary, if p ∈ E, the hyperbolic diameter of K+ ∩ Γu(p) is uniformly
bounded by a constant D, and if p, fk(p) ∈ E, f−k : Γu(fk(p)) → Γu(p) is a
contraction of factor a least λ. Moreover for almost every p ∈ E there are infinitely
many n such that fn(p) ∈ E. Label these values as nj , j ≥ 1. For such a nj ,
f−nj : Γu(fnj (p)) → Γu(f(p)) is a contraction of factor λj for the Poincaré metric.
Of course f(K+,u(p)) = K+,u(f(p)). Thus the hyperbolic diameter of K+,u(p) is
bounded by D/λj and the result follows. �

Remark 2.11. The proof incidentally shows that in the unstably disconnected
case, f always has positive Lyapounov exponent with respect to the Poincaré metric.

If J is disconnected, f is both stably and unstably disconnected. The previous
result suggests the following:
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Question 2.12. If f is a polynomial diffeomorphism with disconnected Julia
set, is it true that almost every connected component of J is a point?

We have no general answer to this question, except in the case of hyperbolic
maps.

Corollary 2.13. If J is disconnected and f is hyperbolic on J , then almost
every component of J is a point.

Proof. if f is hyperbolic on J , it has local product structure. So locally near
p, J is homeomorphic to (J+ ∩Wu

loc(p)) × (J− ∩W s
loc(p)); also the measure µ is

the product of its stable and unstable conditionals. The previous theorem applied
in the stable and unstable directions implies the corollary. �

In the next two propositions, we examine the very special situation where the
submanifolds involved in the decomposition of T−|B have bounded degree. In this
case we say T−|B has no degree growth. We do not know whether there are examples
exhibiting such a phenomenon, besides perturbations of polynomials with totally
disconnected Julia sets (horseshoes). It seems very likely to us that real mappings
on the boundary of the horseshoe locus indeed satisfy this assumption (see [BS10,
Prop. 3.3]). We also believe that the condition should hold when f is hyperbolic
and has no attracting orbits.

Proposition 2.14. If T−|B has no degree growth, then
(1) f is uniformly expanding with respect to the Poincaré metric along the

leaves of T−|B.
(2) For every unstable manifold Wu(p), K+ ∩Wu(p) is totally disconnected.

As a consequence no component of Int(K+) intersects J−. In particular
f has no attracting orbits, and no attracting rotation sets.

(3) J = J∗ (:= Suppµ).

It is proved in [BS8, §4] that the first item of the proposition implies “quasi-
expansion”. Quasi-expansion means f is uniformly expanding with respect to a
metric related to subsets of the form Wu(p)∩{G+ ≤ 1} in unstable manifolds; this
is 2-dimensional analogue of semi-hyperbolicity in the sense of Carleson, Jones and
Yoccoz [CJY].

Proof. Assume T−|B has no degree growth, i.e. all the disks occurring in
the decomposition of T−|B have degree ≤ K. The set of horizontal subvarieties
of degree ≤ K is compact for the Hausdorff topology. Moreover if a sequence of
horizontal holomorphic disks ∆n converges to ∆ in the Hausdorff topology, con-
sider a sequence of parametrizations φn : D → ∆n, normalized for instance by
π ◦ φn(0) = 0. The cluster values of the sequence (φn) are finite branched cover-
ings φ : D → ∆ (use for instance the fact that π ◦ φn is a Blaschke product; see
also [CJY, Lemma 2.2]). In particular, consideration of the Euler characteristic
shows ∆ is a disk. Since SuppT− = J−, J− ∩ B is then the union of a family of
(possibly singular) horizontal disks of degree ≤ K, namely all cluster values of the
disks of the decomposition of T−|B. Moreover, unstable manifolds being disjoint,
by the Hurwitz Theorem any two limiting disks ∆1 and ∆2 are disjoint or equal.
So through p ∈ J− there is a unique disk Γu(p), of degree ≤ K.
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As in the proof of the previous theorem, by corollary 2.9, f−1 : Γu(f(p)) →
f−1Γu(f(p)) ⊂⊂ Γu(p) is a strict contraction for the Poincaré metric, with factor
λ independent of p. Moreover K+ ∩ Γu(p) has uniformly bounded diameter. Since
f(K+,u(p)) = K+,u(f(p)) it follows that every connected component of K+∩Γu(p)
is point. In particular, no component of Int(K+) can intersect J−. The corollaries
in (2) are straightforward.

For (3), let ∆ be a disk in B subordinate to some Γu(p), such that ∆∩J+ 6= ∅.
Assume all forward iterates fn(∆) remain in some vertical sub-bidisk B′ ⊂ B. Then
fn(∆) ⊂ Γu(fn(p)) ∩ B′, which contradicts the strict expansion.

We deduce that if p ∈ J = J+ ∩ J−, the function G+ is not harmonic in any
neighborhood of p in Γu(p). The function G+ being continuous, if Γn converges to
Γu(p) with multiplicity k in the sense of currents (k ≤ K), [Γn]∧ ddcG+ is positive
in the neighborhood of p, thus T− ∧ ddcG+ > 0 in the neighborhood of p and
p ∈ J∗. �

If moreover T+|B has no degree growth, we obtain stronger results.

Proposition 2.15. Assume further T−|B and T+|B have no degree growth.
Then:

(1) The connected components of J+ ∩ B (resp. J− ∩ B) are horizontal disks
of bounded degree.

(2) If M is any piece of complex curve, not included in J+, then J+ ∩M is
totally disconnected. The same holds for J−.

(3) Int(K+) = Int(K−) = ∅.
(4) J = K is totally disconnected.

Proof. Let p ∈ J . We showed in the preceding proposition that K+,u(p) =
{p}, so let γ be a small loop in Γu(p) surrounding p and avoiding K+, so that
Int(γ)∩K+ is open and closed in K+∩Γu(p) (Here Int(γ) is the bounded connected
component of γc).

Since T+|B has no degree growth, J+ ∩ B is the disjoint union of a family of
vertical disks Γs with bounded degree. The disks Γs move continuously in the
Hausdorff topology. From this we deduce that the union⋃

q∈Int γ

Γs(q)

is both open and closed in J+ ∩ B. As γ shrinks to p, these graphs converge to
Γs(p). Hence Γs(p) is the connected component of p in J+ ∩ B.

Item (2) is then obvious. Similarly, if Int(K+) 6= ∅, let L be a horizon-
tal line intersecting Int(K+). Then Int(K+) ∩ L is a bounded open set, and
∂(Int(K+) ∩ L) ⊂ J+ ∩ L which is totally disconnected, a contradiction.

For (4), let J(p) be the connected component of J containing p. Then J(p) ⊂
Γs(p) ∩ Γu(p) which is a finite set. We conclude that J(p) = {p}. �
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3. Hyperbolic maps with connected J

In this last section we give an analogue to the familiar result in one dimensional
dynamics, that for hyperbolic maps connectedness is related to the existence of at-
tracting orbits. Here the Jacobian determinant tells whether attracting or repelling
orbits must arise.

Theorem 3.1. Let f be a hyperbolic polynomial diffeomorphism of C2, with
|Jac(f)| ≤ 1. Assume J is connected. Then Int(K+) is not empty, that is, f has
attracting periodic orbits.

Corollary 3.2 ([BS7] Corollary A.3). If f is hyperbolic with connected Julia
set, then f is not conservative, i.e. |Jac(f)| 6= 1.

We actually do believe the analogy with one dimensional dynamics is more
complete.

Question 3.3. If f is a hyperbolic polynomial diffeomorphism with |Jac(f)| ≤ 1
and no attracting orbits, does it follow that J is totally disconnected?

Our opinion is that the answer is yes. More precisely we think that for such
a f , the currents T±|B should have no degree growth, in the sense of propositions
2.14 and 2.15 above.

Before embarking to the proof we recall some results of [BS7]. As before, let

V + = {(z, w), |z| > |w| , |z| > R} .
It is proved in [HO1] that for large enough R, and for an appropriate choice of
(dn)th-root, the sequence (fn)

1
dn converges in V + to a holomorphic function ϕ+

(the “Böttcher coordinate”) such that ϕ+ ◦ f = ϕd and

(3) ϕ+(z, w) = z +O(1) as V + 3 z →∞.

Hence ϕ+ may serve as an invariant first projection at infinity. We saw in section
1 that when f is unstably connected, the unstable leaves are graphs over the first
coordinate near ∂vB for large R. By (3), Rouché’s Theorem implies these are also
graphs for the invariant projection ϕ+ –this is the exact meaning of having no
unstable critical points.

The level lines of ϕ+ define a holomorphic foliation in V +, and pulling back
by f , we get an invariant holomorphic foliation F+ in U+ = C2 \ K+. If f is
uniformly hyperbolic and unstably connected, the leaves of the unstable foliation
are transverse to those of F+ in V +. By using the Lambda lemma, we get the
following result.

Proposition 3.4 ([BS7] Prop. 2.7). If f is unstably connected and hyperbolic,
the stable lamination Ls of J+ and the holomorphic foliation F+ fit together into
a lamination of J+ ∪ U+.

We study the extension of this foliation to P2.

Lemma 3.5. F+ extends as a holomorphic foliation of V + ⊂ P2 by adding the
line at infinity as a leaf.

Proof. The proof is a simple change of coordinates. Let [Z : W : T ] be
the homogeneous coordinates in P2 such that z = Z

T and w = W
T . In V + we
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put u = w
z = W

Z and v = 1
z = T

Z . In coordinates (u, v), V + becomes a bidisk
Bu,v = {|u| < 1, |v| < 1/R}, with the line at infinity as (v = 0). By (3) we get
(with an obvious abuse of notation)

ϕ+(u, v) =
1
v

+ δ(u, v),

where δ is a bounded holomorphic function. By Riemann extension, δ extends as
a holomorphic function through the line (v = 0).

Consider the level line
{
ϕ+ = 1

c

}
for small c. This equation rewrites as v(1 −

cvδ(u, v)) = c. For fixed u, the equation has only one solution in v for small c,
depending holomorphically on c. This means that in Bu,v the level line

{
ϕ+ = 1

c

}
is a graph, tending to (v = 0) as c→ 0, which is the desired result. �

We can now proceed to the proof3 of theorem 3.1. Under the hypotheses of the
theorem, f is unstably connected. Assume Int(K+) = ∅. Then Ls ∪F+ becomes a
lamination of C2, holomorphic outside J+. We prove it is globally holomorphic.

For this, we may adapt a result of E. Ghys [G], or use the following direct
argument. A theorem of R. Bowen and D. Ruelle [BR] asserts that J+ = W s(J)
has Lebesgue measure zero. Fix a flow box for the lamination F+∪Ls, intersecting
J+. Then for almost every transverse holomorphic disk T , J+∩T has zero measure.
We take two such transversals T1 and T2. The holonomy map h : T1 → T2 is
holomorphic in the full measure subset T1 \ J+, and globally quasiconformal, so it
has L2

loc derivatives. By Weyl’s lemma, h is holomorphic.
We conclude that F+ ∪ Ls defines a holomorphic foliation in C2. This folia-

tion further extends to V + ⊂ P2 by adding the line at infinity, by the preceding
lemma. Pulling back by f (viewed as a birational map on P2), allows to extend it to
P2 \ I(f) = P2 \ [0 : 1 : 0]. We have thus obtained a singular holomorphic foliation
of P2, preserved by the dynamics. This is a contradiction due to a theorem of M.
Brunella [Bru]. �
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UFR de mathématiques, Université Paris 7, Case 7012, 2 place Jussieu, 75251 Paris

cedex 05, France
E-mail address: dujardin@math.jussieu.fr


