A NOTE ON THE RANK OF POSITIVE CLOSED CURRENTS

ROMAIN DUJARDIN

The purpose of this note is to prove the following theorem, which was stated without proof in [Du].

Theorem 1. Let T be a strongly positive closed current of bidimension (p, p) on \mathbb{P}^{k}, and assume that its trace measure has dimension $\operatorname{dim}\left(\sigma_{T}\right)<4 p$. Then $\sigma_{T^{-}}$a.e. we have that

$$
\begin{equation*}
p \leq \operatorname{rank}(T) \leq \frac{1}{2} \operatorname{dim}\left(\sigma_{T}\right) \tag{1}
\end{equation*}
$$

We refer to $[\mathrm{Le}, \mathrm{De}]$ or $[\mathrm{Du}, \S 1,2]$ for detailed basics on positive exterior algebra and positive currents. Here we just recall that a positive current T of bidimension (p, p) admits an integral representation in the sense that there exists a measurable field t_{T} of positive (p, p) vectors such that for any test (p, p)-form φ

$$
\langle T, \varphi\rangle=\int\left\langle t_{T}, \varphi\right\rangle \sigma_{T}
$$

where σ_{T} is the trace measure. If $t_{T}(x)$ is well-defined (which happens σ_{T}-a.e.), the rank of T at x is the rank of t_{T}, that is the dimension of the smallest sub-vector space W of $T_{x} \mathbb{P}^{k}$ such that $t_{T}(x) \in \bigwedge^{p, p}(W)$. A positive (p, p) vector is decomposable if and only if its rank equals p.

Before starting the proof, we also recall the following result [Du, Corollary 2.5].
Theorem 2. Let T be a strongly positive current of bidegree (q, q) in $\Omega \subset \mathbb{C}^{k}$. Assume that the family $\left(T_{\varepsilon}^{2}\right)_{\varepsilon>0}$ has locally uniformly bounded mass as $\varepsilon \rightarrow 0$.

Then if $T_{\mathrm{ac}}^{2}=0, T$ has rank $<k$ a.e.
We refer to $[\mathrm{Du}]$ for the precise definition of T_{ac}^{2} for a positive current T.
Proof of Theorem 1. By definition $\operatorname{rank}(T) \geq p$ so only the inequality $\operatorname{rank}(T) \leq \frac{1}{2} \operatorname{dim}\left(\sigma_{T}\right)$ needs to be established. Let $\ell=\left\lfloor\frac{1}{2} \operatorname{dim}\left(\sigma_{T}\right)\right\rfloor+1$. Let $q=k-p$.

If $I($ resp. $L)$ is a linear subspace of dimension $k-\ell-1$ (resp. ℓ), such that $I \cap L=\emptyset$, we can consider the linear projection of center $I, \pi_{I}: \mathbb{P}^{k} \backslash I \rightarrow L$. If I is fixed, changing L amounts to post-composing π_{I} with a linear automorphism, so we may simply think of π_{I} as mapping $\mathbb{P}^{k} \backslash I$ onto \mathbb{P}^{ℓ}.

For generic I the projection $\left(\pi_{I}\right)_{*} T$ is a well-defined positive current of bidimension (p, p) in $L \simeq \mathbb{P}^{\ell}$, in the sense that it satisfies the property $\left\langle\left(\pi_{I}\right)_{*} T, \varphi\right\rangle=\left\langle T, \pi_{I}^{*} \varphi\right\rangle$ for every test (p, p) form, and it has the same mass as T. Indeed for this it is enough to resove π_{I} by writing it as $\beta \circ \alpha^{-1}$, where α and β are holomorphic, and define $\left(\pi_{I}\right)_{*}=\beta_{*} \alpha^{*}$. The operator α^{*} is always well-defined on compact Kähler manifolds, even if it is not always continuous (see [DS] for

[^0]details). Shortly we'll see that $\left(\pi_{I}\right)_{*} T$ is strongly positive. Notice that $\ell-p \leq \ell / 2$, as follows from our assumption on $\operatorname{dim}\left(\sigma_{T}\right)$.

So from now on we consider I such that $\left(\pi_{I}\right)_{*} T$ is well-defined and $\sigma_{T}(I)=0$, and we simply write π for π_{I}. We also denote by ω_{L} the restriction of ω to L. Fix a Borel set E such that $\sigma_{T}(E)=1$ and $t_{T}(y)$ exists at every $y \in E$.

The first claim is that $\sigma_{\pi_{*} T} \ll \pi_{*} \sigma_{T}$. Indeed observe first that $\pi^{*}\left(\omega_{L}^{p}\right) \ll \omega^{p}$, thus $T \wedge$ $\pi^{*}\left(\omega_{L}^{p}\right) \ll T \wedge \omega^{p}$. Next, we have the formulas $\sigma_{\pi_{*} T}=\pi_{*}\left(T\left\llcorner\pi^{*} \omega_{L}^{p}\right)\right.$ and $\pi_{*} \sigma_{T}=\pi_{*}\left(T\left\llcorner\omega^{p}\right)\right.$ and the result easily follows.

From this we deduce that $\operatorname{dim}\left(\left(\pi_{I}\right)_{*} T\right) \leq \operatorname{dim}\left(\sigma_{T}\right)<2 \ell$. Indeed, since π is locally Lipschitz outside $I, \operatorname{HD}\left(\pi_{I}(E)\right) \leq \operatorname{HD}(E)$, and $\pi_{I}(E)$ is a set of full mass for $\sigma_{\left(\pi_{I}\right) * T}$.

Conversely for generic $I, \pi_{*} \sigma_{T} \ll \sigma_{\pi_{*} T}$. Indeed, if not, there is a set A of positive σ_{T} mass such that if $x \in A$

$$
t_{T}(x)\left\llcorner\pi^{*}\left(\omega_{L}^{p}\right)=\left\langle t_{T}(x), \pi^{*}\left(\omega_{L}^{p}\right)\right\rangle=\left\langle\pi_{*}\left(t_{T}(x)\right), \omega_{L}^{p}\right\rangle=0,\right.
$$

thus $\pi_{*}\left(t_{T}(x)\right)=0$. This means that the decomposable vectors making up $t_{T}(x)$ are not in general position with respect to the fibers of π_{L}. More precisely, if t is such a vector, $\operatorname{Span}(t)$ will not be transverse to the fiber, which has dimension $k-\ell<k-p$. This can only happen for a set of projections of zero measure (see Lemma 3 below). We conclude that the existence of such a A is not possible for generic I. From now on we assume that I is chosen so that $\pi_{*} \sigma_{T} \ll \sigma_{\pi_{*} T}$, and we let $h \in L_{\mathrm{loc}}^{1}\left(\sigma_{\pi_{*} T}\right)$ such that $\pi_{*} \sigma_{T}=h \sigma_{\pi_{*} T}$.

We can now describe the tangent vectors to $\pi_{*} T$. Recall that the measure σ_{T} can be disintegrated along the fibers of the projection π as follows. If f is a measurable function we have that

$$
\int f(x) \sigma_{T}(x)=\int_{L}\left(\int_{\pi^{-1}(z)} f(x) \sigma_{T}\left(x \mid \pi^{-1}(z)\right)\right)\left(\pi_{*} \sigma_{T}\right)(z)
$$

with the usual notation $\sigma_{T}\left(\cdot \mid \pi^{-1}(z)\right)$ for the conditional measure of σ_{T} on the fiber.
If now φ is a test (p, p) form on L, we have

$$
\begin{aligned}
\left\langle\pi_{*} T, \varphi\right\rangle & =\left\langle T, \pi^{*} \varphi\right\rangle=\int\left\langle t_{T}(x),\left(\pi^{*} \varphi\right)(x)\right\rangle \sigma_{T}(x) \\
& =\int_{L}\left(\int_{\pi^{-1}(z)}\left\langle t_{T}(x),\left(\pi^{*} \varphi\right)(x)\right\rangle \sigma_{T}\left(x \mid \pi^{-1}(z)\right)\right)\left(\pi_{*} \sigma_{T}\right)(z) \\
& =\int_{L}\left(\int_{\pi^{-1}(z)}\left\langle\pi_{*}\left(t_{T}(x)\right), \varphi(\pi(x))\right\rangle \sigma_{T}\left(x \mid \pi^{-1}(z)\right)\right)\left(\pi_{*} \sigma_{T}\right)(z) \\
& =\int_{L}\langle\widetilde{t}(z), \varphi(z)\rangle\left(\pi_{*} \sigma_{T}\right)(z) \text { where } \widetilde{t}(z)=\int_{\pi^{-1}(z)} \pi_{*}\left(t_{T}(x)\right) \sigma_{T}\left(x \mid \pi^{-1}(z)\right) \\
& =\int_{L}\langle h(z) \widetilde{t}(z), \varphi(z)\rangle \sigma_{\pi_{*} T}(z)
\end{aligned}
$$

We see that the last integral is actually the integral representation of $\pi_{*} T$, so for $\sigma_{\pi_{*} T}$ a.e. z,

$$
\begin{equation*}
t_{\pi_{*} T}(z)=h(z) \widetilde{t}(z)=h(z) \int_{\pi^{-1}(z)} \pi_{*}\left(t_{T}(x)\right) \sigma_{T}\left(x \mid \pi^{-1}(z)\right) \tag{2}
\end{equation*}
$$

This implies in particular that $\pi_{*} T$ is strongly positive, since $t_{\pi_{*} T}$ is a.s. an average of strongly positive (p, p) vectors.

We are now in position to conclude the proof of the theorem. We argue by contradiction, so let us assume that there exists a set A of positive trace mass such that $t_{T}(x)$ has rank $\geq \ell$ for $x \in A$. Let $S=\left.T\right|_{A}$, and consider the current $\pi_{*} S$ on L. Then $\pi_{*} S$ satisfies the assumptions of Theorem 2, since it is dominated by the positive closed current $\pi_{*} T$. Since $\operatorname{dim}\left(\sigma_{\pi_{*} S}\right)<2 \ell$, we infer that $\left(\pi_{*} S\right)_{\mathrm{ac}}=0$, therefore $\operatorname{rank}\left(\pi_{*} S\right)<\ell$ a.e.

Now by (2), for a.e. $z, t_{\pi_{*} S}(z)$ is an average of $\pi_{*}\left(t_{S}(x)\right)$ with $x \in \pi^{-1}(z)$. Thus by Lemma $3 i$. below, $\operatorname{rank}\left(\pi_{*}\left(t_{S}(x)\right)\right)<\ell$ for $\sigma_{S}\left(\cdot \mid \pi^{-1}(z)\right)$-a.e. x. On the other hand, by Lemma $3 i i$., if I is chosen generically, $\operatorname{rank}\left(\pi_{*}\left(t_{S}(x)\right)\right) \geq \ell, \sigma_{S}$-a.e. This contradiction finishes the proof.

Lemma 3. Let V be a Hermitian complex vector space with associated $(1,1)$ form β.
i. Let $\left(t_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be a measurable family of strongly positive (p, p) vectors of trace 1, and μ be a probability measure on \mathcal{A}. Let $t=\int_{\mathcal{A}} t_{\alpha} d \mu(\alpha)$. If $\operatorname{rank}(t)<\operatorname{dim} V$, then for a.e. $\alpha, \operatorname{rank}\left(t_{\alpha}\right)<\operatorname{dim} V$.
ii. Let $p<\ell$ and fix a complex subspace L of dimension ℓ. If K is a supplementary subspace to L, we denote by $\pi_{K, L}$ be the projection onto L with kernel K. Let t be a strongly positive (p, p) vector of rank $r \geq \ell$. Then there exists a set $\mathcal{E}(t)$ of zero Lebesgue measure in the corresponding Grassmannian such that, if $K \notin \mathcal{E}(t)$, $\operatorname{rank}\left(\left(\pi_{K, L}\right)_{*}(t)\right)=\ell$.

Proof of Lemma 3. i. Recall that $\operatorname{rank}(t)=\operatorname{rank}\left(t\left\llcorner\beta^{p-1}\right)\right.$ so it is enough to prove the result for positive $(1,1)$ vectors, that is, nonnegative Hermitian matrices. But in this context the result is obvious, as follows for instance from the concavity of $M \mapsto(\operatorname{det}(M))^{1 / k}$.
i. We use the following fact: if $p \leq \ell$ and W is a p-dimensional subspace, then the set of K 's such that $\left.\pi_{K, L}\right|_{W}: W \rightarrow L$ is injective is open and of full measure.

Fix a decomposition $t=\sum_{k=1}^{s} t_{k}$ of t as a sum of decomposable vectors. Since $p<\ell$, by the previous observation we can assume that for each $k,\left.\pi_{K, L}\right|_{\operatorname{Span}\left(t_{k}\right)}$ is injective Furthermore, let us choose ℓ linearly independent vectors e_{1}, \ldots, e_{ℓ} belonging to $\bigcup_{k=1}^{s} \operatorname{Span}\left(t_{k}\right)$. We may assume that $\left.\pi_{K, L}\right|_{V e c t}\left(e_{1}, \ldots, e_{\ell}\right)$ is injective as well. Thus, $\left(\pi_{K, L}\right)_{*}\left(t_{k}\right)$ is a non-trivial decomposable element of $\bigwedge^{p, p}(L)$, and by our second requirement $\operatorname{rank}\left(\sum\left(\pi_{K, L}\right)_{*}\left(t_{k}\right)\right) \geq \ell$, whence the result.

Remark 4. It is clear from the proof that a sharper condition for $\operatorname{rank}(T)<\ell$ a.e. is that for a generic linear projection π onto $\mathbb{P}^{\ell}, \pi_{*} \sigma_{T}$ is singular w.r.t. Lebesgue measure.

References

[De] Demailly, Jean-Pierre. Complex analytic and differential geometry, Chap. III. Book available online at http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf.
[DS] Dinh, Tien-Cuong; Sibony, Nessim. Pull-back currents by holomorphic maps. Manuscripta Math. 123 (2007), 357-371.
[Du] Dujardin, Romain Fatou directions along the Julia set for endomorphisms of $\mathbb{C P}^{k}$. J. Math. Pures Appl. to appear.
[Le] Lelong, Pierre. Fonctions plurisousharmoniques et formes différentielles positives. Gordon \& Breach, 1968.

CMLS, École Polytechnique, 91128 Palaiseau, France
E-mail address: dujardin@math.polytechnique.fr

[^0]: Date: March 26, 2012.
 Not intended for publication.

