
Statistics with R Tabea Rebafka

1 First R Session

R is a software for statistical analysis and computing. It is used a lot in academic re-
search but it’s is also more and more used in companies, industry, banks etc. It is both a
programming language and a working environment. R can be used for handling datasets,
data visualisation, statistical analysis and the development of statistical algorithms. R is
opensource and works with UNIX, Windows and Macintosh. It is a free software and you
can be downloaded and install it on your personal computer.

This document relies on the books Le logiciel R by Lafaye de Micheaux et al. and
Statistiques avec R by Cornillon et al.. Both provide more complete introductions to R.

1.1 Different interfaces

There are several interfaces to use R. First of all, there is the standard interface of R, which
contains only very basic features. This minimalisme may be inconvenient for beginners.
However, to obtain R you have to start by installing this interface. You obtain it from the
plateform CRAN (Comprehensive R Archive Network). A much more appealing interface
with plenty additional features is the RStudio.

1.1.1 Installation

To install R on your computer follow these instructions. Note that everything is freely
available.

1. Install R from the plateform CRAN at the adress
http://cran.r-project.org
Install the latest version.

2. Install RStudio from the website
https://www.rstudio.com/products/rstudio/download2/

3. Install Jupyter Notebook. There are several ways to install Jupyter. Some
instructions are available here:
http://jupyter.readthedocs.io/en/latest/install.html
The easiest way consists in installing Anaconda from the website
https://www.continuum.io/downloads
The choice of the Python version (Python 2.7 or Python 3.5) has no importance for
us.

4. Install the R kernel for Jupyter Notebook. For informations please see here
https://github.com/IRkernel/IRkernel/blob/master/README.md

For Windows you mainly have to open R and execute the following instructions:

install.packages(c('pbdZMQ', 'repr', 'devtools'))
devtools::install_github('IRkernel/IRkernel')
IRkernel::installspec()

For Mac, it is the same procedure, but you have to start R form the terminal. Just
do

1

http://cran. r-project.org
https://www.rstudio.com/products/rstudio/download2/
http://jupyter.readthedocs.io/en/latest/install.html
https://www.continuum.io/downloads
https://github.com/IRkernel/IRkernel/blob/master/README.md

Statistics with R Tabea Rebafka

R

in the terminal. Then execute the same commands as for Windows. To shut down
R do

q()

Then, you can start Jupyter from the terminal by the command

jupyter notebook

For Ubuntu, type the following command in the terminal (and use your password)

sudo apt-get install libcurl4-openssl-dev libssl-dev libzmq3-dev

Then start R from the terminal by the instruction

R

Next do

install.packages(c(`crayon`, `pbdZMQ`, `devtools`))
devtools::install_github(paste0(`IRkernel/`, c(`repr`, `IRdisplay`,

`IRkernel`)))
IRkernel::installspec()

Finally quit R by the instruction

q()

Then, you can start Jupyter from the terminal by the command

jupyter notebook

1.2 My first session with R

Start RStudio on your computer.
Three windows appear. The most important is the one on the left: the (console). The

console allows to execute instructions and code. At the end of the displayed text in the
console the character > invites you to type your first R instruction.

>

This is the prompt symbol that tells you that the computer is ready to execute your
code.

1.2.1 R as a calculator

First of all, you may use R as a classical calculator. Let’s try to compute 2 + 3:

2

Statistics with R Tabea Rebafka

> 2+3

[1] 5

R has understood what we want and displays the right answer. Let’s try something
slightly more difficult:

> 3+8^2*(1-3)

[1] -125

We observe that R knows the priority of operations! When R does not understand an
instruction, because it is erroneous, an error message is displayed:

2+*2

Error: <text>:1:3: ’*’ inattendu(e)
1: 2+*
^

If an instruction is incomplete, R returns the character + instead of the prompt symbol
>. You may either complete the instruction or quit the situation by typing Ctrl + c or
Echap :

> 2*(3+1
+)

[1] 8

There are numerous mathematical functions that are predefined in R. For example:

> exp(1)

[1] 2.718282

> sqrt(2)

[1] 1.414214

> abs(-5.7)

[1] 5.7

> round(-5.7)

[1] -6

When you perform some forbidden operation, R returns the valeu NaN (for not a number)
and shows a warning:

3

Statistics with R Tabea Rebafka

> sqrt(-2)

Warning in sqrt(-2): production de NaN

[1] NaN

The value Inf represent infinity. For example:

> 1/0

[1] Inf

> -exp(exp(100))

[1] -Inf

You should always keep in mind that numerical calculs is not necessarily exact due
to the discretisation of numbers on a machine. Compare the outputs of the following
commands:

> sin(0)

[1] 0

> sin(pi)

[1] 1.224647e-16

> sin(2*pi)

[1] -2.449294e-16

The precision of a computer is of the order of 10−16. This seems very small, put in
some cases, theses error may reinforced and lead to dramatic errors. For example:

> sin(pi*10^16)

[1] -0.3752129

1.2.2 Help in R

R has a very efficient help system. It is quite complete and you may access it by the
function help() or the command ? followed by the name of the function on which you
are looking for help. For example, you open the help page of the function abs() in the
following way:

4

Statistics with R Tabea Rebafka

> help(abs)

or equivalently by

> ?abs

We observe that both of these commands open the associated help page in the window
on the bottom on the right in RStudio. It contains a description of the function, the list of
arguments and their default value (if defined) and the list of outputs of the function. At
the bottom of the page, there may be one or several examples. You may copy-paste them
into the console for a better understanding of the usage of the function.

It is a good habit to use the help system extensively. You may progress quickly!

1.2.3 Scripts

Instead of working directly in the command line, you can write a script. A script is a text
document that contains multiple commands. You can save a script and reuse it in a later
session. To develop code, you absolutely have to use scripts.

To create a new script and save it, use the menu. The filename of an R script always
ends with .R

To execute a portion of the commands from an script, select the corresponding lines
and hit the bottom Run in the toolbar or do Ctrl + R (Cmd + Enter for Mac). To
execute a single line, the one where the curser is blinking, do Ctrl + R . To execute all
instruction of the entire script, press the bottom Source .

To insert comments in the script, that is text that should not be executed, write # at
the beginning of the comment:

> 'ce qui suit' # ne s'affiche pas

[1] "ce qui suit"

All text following the symbol # until the end of the line will not be interpreted by R.
It is extremely important to comment your code if you wish other people to use it. Or

even if you intend to use it again.

1.2.4 Working directory

The working directory) is the default directory. This means that this is the directory where
your script files are registered or where datasets are expected to be when you upload data
to the console.

To know your current working directory write

> getwd()

[1] "/Users/tabea/Teaching"

5

Statistics with R Tabea Rebafka

To change the working directory, go to Session → Set Working Directory → Choose
Directory and select the directory that you need for this session.

It is important to set the working directory at the beginning of every session before
doing anything else. Moreover, for a good file management, you do well to create a new
directory for every new project that you work on.

1.2.5 Creating R objects

The strength of R (as of any other programming language) consists in the possibility to go
much farther than using R just as a simple calculator. We have noticed, that R responds
to our commands by displaying the result after the evaluation of an instruction. The result
is displayed in the console and then gets lost. This may be okay for simple computations,
however it is extremely annoying for more involved problems that cannot be solved by
a single instruction. In this case, it is convenient to store the output in some variable.
Indeed, to develop programs, that is a set of commands, we have to create variables or
objects that save information, can be modified and can be used in other instructions for
computing.

Creating R objects is very simple. By assigning a value to a name of variable, the object
is created (if it does not yet exist) and it takes the value that we assigned to it. Thus,
an assignement evaluates an expression and instead of displaying the result the output is
redirected to the variable. Example: We create a variable named x that takes the value
74:

> x <- 70 + 4

Executing the command does not produce any output, but the object x is created. To
display the value of an object, just type its name in the console:

> x

[1] 74

Now we can use the variable x for further computation:

> 3*x

[1] 222

To change the value of x, we just assign a new value to x:

> x <- x+6

Let’s check that the value of x has really changed:

> x

[1] 80

6

Statistics with R Tabea Rebafka

The symbol for assignments is either <- or = Example:

> y = 17
> y

[1] 17

Concerning the names of objects be creative! Indeed, the names x, y, z are very bad
examples. It is better to use more informative names. A good choice for the names of
variables may render code “readable” and may reduce the amount of comment of a code
necessary to understand the program. Let’s see with a simple example:

> weight <- 52
> height <- 1.65
> BMI <- weight/height^2
> BMI

[1] 19.10009

In R variable names must start with a letter. It may contain numbers or the characters
. and _

1.2.6 Deleting objects

The work space is some kind of space where all R objects are stored that have been created
during a session. That is, it is the list of objects currently known to R. To see all objects
that have been created since the beginning of the session, write

> ls()

[1] "BMI" "height" "weight" "x" "y"

or use the window on the upper right.
To delete for instance the variable x from the work space, type

> rm(x)

and check that x has indeed disappeared:

> ls()

[1] "BMI" "height" "weight" "y"

To clean the whole work space, that is to delete all objects at once, we write

7

Statistics with R Tabea Rebafka

> rm(list=ls())
> ls()

character(0)

1.2.7 Leaving RStudio

When closing RStudio, you are asked whether you want to save an image of the current
work space, that is all objects from the work space from the current session, so that they
can be uploaded in a later session.

2 Vectors

We have seen how to define a variable to store a single numerical value. However, in
statistics, in general we need vectors of numerical values. In R a vector is created by the
function c() (c for concatenate):

vec1 <- c(5,8,3)
vec1

[1] 5 8 3

You can also concatenate vectors:

vec2 <- c(vec1,0,vec1)
vec2

[1] 5 8 3 0 5 8 3

Here some examples for computing with vectors:

vec1+2

[1] 7 10 5

5*vec1

[1] 25 40 15

vec1+vec1

[1] 10 16 6

8

Statistics with R Tabea Rebafka

vec1*vec1

[1] 25 64 9

vec1^2

[1] 25 64 9

You can see that it’s quite simple and intuitive. However, you always have to be careful
with vector dimensions:

vec1+vec2

Warning in vec1 + vec2: la taille d’un objet plus long n’est pas multiple de
la taille d’un objet plus court

[1] 10 16 6 5 13 11 8

We observe that despite the error message (read them!!), R returns a result. Here,
R repeats the vector vec1 two times to create a vector of the same size as vector vec2.
In R it is a common method when dimensions do not correspond, the smaller object is
repeated as often as necessary to obtain some computation that makes sense. (However,
make sure that this corresponds exactly to what you wish to do!).

2.1 Mathematical functions for vectors

In R there are a huge amount of very useful, predefined mathematical functions. Here’s a
list of functions that apply to vectors:

• sum()

• prod()

• length()

• min()

• max()

• which.min()

• which.max()

• sort()

• order()

• mean()

• var()

9

Statistics with R Tabea Rebafka

• sd()

• median()

Exercice 1. Find out what the above functions do. More precisely, start RStudio,
define some toy vectors, apply the above functions and try to understand the
output. If you do not understand a function, use the help function help() or the
command ? followed by the function’s name.

2.2 Generate pseudo-random variables

In R there are functions to generate realisations from random variables with a given prob-
ability distribution. For instance, the following command generates 10 realisations of the
standard uniform distribution U [0, 1]:

runif(10)

[1] 0.28882472 0.06704419 0.72498083 0.74772676 0.93207037 0.84667471
[7] 0.36957618 0.26681129 0.94650848 0.05227033

Execute the command for a second to observe that the output values change:

runif(10)

[1] 0.40777739 0.44542213 0.02337936 0.81132470 0.70175204 0.02875725
[7] 0.97466179 0.20489910 0.12958125 0.94587459

Indeed, the function runif() is a generator of pseudo-random variables. We say
pseudo, since they seem to be realisations of a veritable random variable. (The construction
of pseudo-random variables is a whole research field that is the development of algorithms
that imitate randomness.)

Likewise, there is a generator of (pseudo-)realisations of the standard normal distribu-
tion:

rnorm(5)

[1] 0.83728215 -0.21270838 0.47703402 0.08815319 0.48344911

You may have noticed that the argument of the functions runif and rnorm is the
number of realisations (also called the sample size).

To generate realisations of the normal distribution N (µ, σ2) with mean µ and variance
σ2, we still use the function rnorm() with two additional arguments to indicate the
parameter values of the normal distribution. Notice that in R these are the mean µ and
the standard deviation σ (instead of the variance σ2). Hence, two obtain 20 realisations of
the normal distribution N (−5, 2) we use the instruction:

10

Statistics with R Tabea Rebafka

n <- 20
mu <- -5
sig <- sqrt(2)
rnorm(n,mu,sig)

[1] -6.318289 -4.270383 -7.167644 -6.776132 -4.970636 -5.121694 -5.722180
[8] -6.357610 -7.339206 -4.405400 -5.091744 -4.468014 -5.383254 -6.367177

[15] -3.285406 -5.705408 -5.304806 -5.521791 -4.868823 -6.676552

Exercice 2. Starting from the next exercise on, we will write all code in R scripts.
To do this in a proper way, let’s do some preparatory work.

• First of all, create a new directory (named StatisticsLecture, for instance)
where you will save all files associated with this lecture.

• Next, choose this new directory to be your working directory for this session.

• Then open a new script file: go to File → New File → R Script

• Start your script with a comment of the type
Working Sheet: My first R session, date

• Finally, save your script file to the directory StatisticsLecture. Choose an
informative filename, something like FirstRSessionExercises.

11

Statistics with R Tabea Rebafka

Exercice 3. The sample mean is an estimator of the theoretical mean of a distri-
bution. Let’s check empirically the quality of this estimator by using simulations.

• Consider the normal distribution N (10, 1). Generate a sample of size 20 and
compute the associated sample mean. Compare the result to the theoretical
mean. Repeat the operations several times in order to check the stability of
the value of the sample mean over different datasets.

• Perform the same analysis for the normal distribution N (10, 10) and sample
size 20. What do you observe?

• The normal distribution is a symmetric distribution. Hence, its theoretical
skewness equals 0. Check whether the empirical skewness αx is close to 0 for
datasets from the normal distribution. Try out normal distributions with
different parameter values and different sample sizes. Recall the definition
of the empirical skewness αx associated with the sample (x1, . . . , xn):

αx =
1
n

∑n
i=1(xi − x̄n)3

s3x
, où sx =

√√√√ 1

n

n∑
i=1

(xi − x̄n)2.

• Same question for the empirical kurtosis βx of a dataset from the normal
distribution that is supposed to be close to 0. Recall the definition:

βx =
1
n

∑n
i=1(xi − x̄n)4

s4x
− 3.

• Add comments to your script with your observations and conclusions.

12

Statistics with R Tabea Rebafka

Exercice 4. Let X1, X2, . . . be independent random variable with standard nor-
mal distribution. Set Yk =

∑k
i=1X

2
i . It is well known that the distribution of Yk

is the chi-square distribution χ2
k with k degrees of freedom.

According to the central limit theorem, we have√
k

2

(
1

k

k∑
i=1

X2
i − 1

)
=

1√
2k

(Yk − k)
d−→ N (0, 1), k →∞.

This implies that the distribution of Yk is approximately the normal distribution
N (k, 2k) for k sufficiently large:

χ2
k ≈ N (k, 2k).

The aim of the exercise consists in an empirical study to determine the order of k
for which the approximation is good. More precisely, we will compare summary
statistics of the distribution of Yk to the corresponding theoretical values of the
normal distribution N (k, 2k).
In R to generate n realisations of the chi-square distribution χ2

d with d degrees of
freedom we use the command rchisq(n,d).

• For every k in {1, 10, 100, 1000} generate a dataset of size 1000 from the χ2
k

distribution, and compare the associated sample mean to the mean of the
normal distribution N (k, 2k). What do you observe?

• Same question for the sample variance s2x: For every k in {1, 10, 100, 1000}
generate a dataset of size 1000 from the χ2

k distribution, and compare
the sample variance to the theoretical variance of the normal distribution
N (k, 2k). Comment the results.

• Same question for the skewness.

• Same question for the kurtosis.

• Include comments in your script with answers to the above questions and
detailed conclusions.

3 Different data types

R is not limited to variables of the numerical type. The instruction typeof(x) returns the
type of the object x. Let’s enumerate the different data types.

3.1 Numerical type (numeric)

Among objects of numerical type, we distinguish integer values (integer) and real numbers
(real or double). Let’s define two variables and check their type:

var.a <- 1.7
typeof(var.a)

13

Statistics with R Tabea Rebafka

[1] "double"

var.b <- -3
typeof(var.b)

[1] "double"

The variables var.a and var.b are both of type double. To obtain a variable of integer
type, we apply the function as.integer. The interest of the integer type is that it is more
economic with respect to memory for storing the value.

var.c <- as.integer(var.b)
typeof(var.c)

[1] "integer"

3.2 Boolean or logical type (logical)

R is able to give answers to simple questions. Not in terms of “yes” and “no”, but in terms
of TRUE and FALSE. Here are some examples:

equality of values of var.a and var.b ?
var.a==var.b

[1] FALSE

var.a is larger than var.b ?
var.a>var.b

[1] TRUE

Theses responses are of the boolean type. For the boolean type no other values than
TRUE and FALSE are possible (there is no value for answers of the type “I don’t know” or
“I don’t care about”). The “questions” in the above examples are called logical conditions,
since the result of logical type.

Also the output of the functions that test the type of variable x (starting by is.) is
boolean:

is.numeric(var.b)

[1] TRUE

14

Statistics with R Tabea Rebafka

is.integer(var.b)

[1] FALSE

var.x <- FALSE
is.logical(var.x)

[1] TRUE

TRUE and FALSE can be written more briefly by T et F.
When necessary, boolean variables are converted: TRUE to 1 and FALSE to 0. This is

illustrated in the following example:

TRUE + FALSE

[1] 1

TRUE/2 - var.b

[1] 3.5

(TRUE + T)^2 + FALSE*F + T*FALSE + F

[1] 4

3.3 Character string (character)

Character string are created by using ’ or ").

string1 <- "I love maths"
string1

[1] "I love maths"

typeof(string1)

[1] "character"

string2 <- 'Moi aussi !'
string2

[1] "Moi aussi !"

15

Statistics with R Tabea Rebafka

is.character(string2)

[1] TRUE

3.4 Type conversion

Type conversions are possible thanks to functions whose names starts by as.
However, you may be very careful about the meaning of these conversions. The as.-

functions always return a result even if its complete nonsense. See the following examples:

Conversion to a character string
as.character(2.3)

[1] "2.3"

Conversion of a character string
string3 <- "2.3"
as.numeric(string3)

[1] 2.3

Conversion of a character string
as.integer(string3)

[1] 2

Conversion is impossible
as.integer(string1)

Warning: NAs introduits lors de la conversion automatique

[1] NA

4 Data structures

R offres the possibility to organise collections of objects of the same or of different type.
In statistics, vectors and dataframes are commonly used. Lists will be treated later.

4.1 Vectors

This data structure is the most simple. It is a sequence of data of the same type. We
have already seen vectors of numerical type, but there are also vectors of booleans or of
character strings.:

16

Statistics with R Tabea Rebafka

vec.num <- c(1,4,9,2,0)
vec.num

[1] 1 4 9 2 0

vec.char <- c("R","c'est","trop","facile","!")
vec.char

[1] "R" "c'est" "trop" "facile" "!"

A vector of booleans may be obtained by applying a logical condition on vectors.
Example:

vec.logique <- (vec.num>=4)
vec.logique

[1] FALSE TRUE TRUE FALSE FALSE

In this example, the elements of the vector vec.num are compared one by one to the
value 4 and the output is written to the vector vec.logique.

In the next example, we perform a comparison element by element of two vectors:

vec.char2 <- c("R","c'est pas","mon","truc","!")
vec.char2

[1] "R" "c'est pas" "mon" "truc" "!"

vec.logique2 <- (vec.char == vec.char2)
vec.logique2

[1] TRUE FALSE FALSE FALSE TRUE

4.1.1 Automatic conversion

By definition, all elements of a vector are of the same type. When mixing different types
during the creation of a vector, R automatically converts the type to the most general
type, as can be seen from the following example:

c(3,TRUE,7)

[1] 3 1 7

17

Statistics with R Tabea Rebafka

c(3,T,"7")

[1] "3" "TRUE" "7"

4.1.2 Regular sequences

To create vectors, on may use regular sequences.
Exercice 5. Execute the following commands and use the help to understand
their meaning.

• l’utilisation des deux-points :,

• la fonction seq() et ses arguments length et by,

• la fonction rep() et ses arguments times et each.

2:5

.5:4

12:-4

seq(2,6)

seq(2,6,by=.2)

seq(2,6,length=4)

rep(1,5)

rep(1:3,times=4)

rep(1:3,each=4)

18

	First R Session
	Different interfaces
	Installation

	My first session with R
	R as a calculator
	Help in R
	Scripts
	Working directory
	Creating R objects
	Deleting objects
	Leaving RStudio

	Vectors
	Mathematical functions for vectors
	Generate pseudo-random variables

	Different data types
	Numerical type (numeric)
	Boolean or logical type (logical)
	Character string (character)
	Type conversion

	Data structures
	Vectors
	Automatic conversion
	Regular sequences

