
Statistics with R Tabea Rebafka

1 Programming in R

There is a huge corpus of predefined functions in R, but it is also possible to write your
own R functions. In this way you may execute the same commands as often as you want
while changing parameter values. Functions are R objects as any other object.

1.1 Writing your own R functions

An R function is a sequence of instructions involving parameters and returning an R object
at the end. In general, functions are always developed in an R script (or in Jupyter) and
not directly in the console.

To declare a function, we use the function function. The general syntax is the follow-
ing:

NameOfTheFunction <- function(arg1,...,argk){
sequence of instructions
output <- ...
return(output)

}

Here arg1, ..., argk are the names of the arguments (or parameters) of the function.
You can use as many arguments as you want, all separated by a comma. The instruction
return(output) at the end of the instructions returns the object output. Notice that you
can use several arguments, but only a single object is returned at the end.

To indicate the beginning and the end of the body of instructions, delimit them by
curly braces { and }. You can omit the curly braces only if the body of the function
consists of a single instruction.

When executing the function in the console (or in Jupyter), the function function
creates an object that is assigned to the variable NameOfTheFunction. Now you can use
this function NameOfTheFunction by calling its name and adding arguments in paratheses.

Here comes a little example:

BMI <- function(weight,height) {
res <- weight/height^2
return(res)

}

The function’s name is BMI. The function takes two arguments, height and weight,
and it returns the corresponding body mass index.

To be able to use the function BMI in the console, we have to submit the function to R,
that is we have to execute it once in the console (or in Jupyter).

Now we can use the function BMI in the current session like any other function in R:

BMI(90,1.85)

[1] 26.29657

1

Statistics with R Tabea Rebafka

You may assign default values to the arguments of the function. This is very simple as
you can see from the example:

BMI <- function(weight=60,height=1.75) {
res <- weight/height^2
return(res)

}

As we have changed the definition of the function BMI, we have to submit it again
to the console. Now, when we call the function without any arguments, i.e. with empty
parentheses, the default values are used:

BMI()

[1] 19.59184

If you want to use a different value for the height, you may just type:

BMI(height=1.88)

[1] 16.97601

Or you use the less economic writing:

BMI(60,1.88)

[1] 16.97601

1.2 Object list

A list is a collection of objects that are not necessarily of the same type. This is useful
for functions that return a single object only. Indeed, most R functions return lists.

A list can be created by using the function list(). Example: Create a list called
useless:

v <- 10:1
x <- pi
word <- "Wow!"
useless <- list(vec = v, nombr = x, fn_BMI = BMI, mot = word)
useless

$vec
[1] 10 9 8 7 6 5 4 3 2 1

$nombr
[1] 3.141593

2

Statistics with R Tabea Rebafka

$fn_BMI
function (weight = 60, height = 1.75)
{

res <- weight/height^2
return(res)

}

$mot
[1] "Wow!"

Let’s check the type of the object useless:

typeof(useless)

[1] "list"

The elements of a list typically have names, that are defined when creating the list
within the call of list. We use the function names() to get the names of an existing list
and also to modify them:

names(useless)

[1] "vec" "nombr" "fn_BMI" "mot"

To access the elements of a list use the symbol $:

useless$mot

[1] "Wow!"

To access the third element of the vector useless$vec do:

useless$vec[3]

[1] 8

To use the function useless$fn do:

useless$fn_BMI(100,1.5)

[1] 44.44444

1.3 Control structures

In general, any more involved computations require the control of the flow of the program,
that is the control of the direction to go within a program. Very often, different values of

3

Statistics with R Tabea Rebafka

parameters or variables require different actions. It is also frequent that some instructions
may be executed several times. For all this, we have to use control structures in the
program. As in any other programming languages, R integrates in its language the structure
if else, and the loops for and while.

1.3.1 The structure if else

The structure if else is used to treat different cases differently. Depending on a logical
condition that can be verified or not, either the instructions action1 are performed or
the instructions action2. The general syntax of the structure if else is

if (condition) {action1} else {action2}

or in the particular case where action2 consists in doing nothing, the instruction simplifies
to

if (condition) {action1}

Here is another elementary example:

age <- 17
if (age < 18) {x <- ’minor’} else {x <- ’adult’}
x

[1] "minor"

In practice, the condition condition is often the result of logical operations using the
logical operators. The syntax of the elementary logical conditions is the following:

age < 18 # age strictly lower than 18

[1] TRUE

age <= 18 # age lower than or equal to 18

[1] TRUE

age == 18 # Attention: age = 18 is not a condition but an assignement

[1] FALSE

age != 18 # age not equal to 18

[1] TRUE

Certainly, conditions can be more complex by combining elementary conditions:

4

Statistics with R Tabea Rebafka

cond1 && cond2 # is TRUE if both cond1 AND cond2 are TRUE.
cond1 || cond2 # is TRUE if at least cond1 is TRUE OR cond2 is TRUE.
!cond1 # Is TRUE if cond1 is FALSE.

Here a last example for the structure if else:

BMI <- function(weight,height) {
val <- weight/height^2
if (val>=18.5 && val<=25){

say <- "You have a healthy weight. Everything’s fine!"
}
else{

say <- "Take care of your health!"
}
return(list(BMI=val, comment=say))

}

BMI(58,1.70)

$BMI
[1] 20.0692

$comment
[1] "You have a healthy weight. Everything’s fine!"

BMI(48,1.70)

$BMI
[1] 16.609

$comment
[1] "Take care of your health!"

1.3.2 The for loop

To repeat the same instructions by varying the value of a parameter, we use the for
loop. More precisely, in the for loop the instructions are repeated consecutively for all
elements v of the vector vecteur. The general syntax is

for (v in vecteur) {instructions}

Here are two basic examples using the for loop:

for (i in 1:3){print(i)}

[1] 1
[1] 2
[1] 3

5

Statistics with R Tabea Rebafka

vec <- 2:5
for (k in 1:length(vec)){

vec[k] <- vec[k]^k
}

vec

[1] 2 9 64 625

Whenever possible, avoid loops in R as they are expensive in terms of computing time.
In general it is much faster to use vectorized operations. In this sens, the last example is
a very bad example for the for loop, since the same computation is done much faster by
the following instruction

vec <- 2:5
vec^(1:length(vec))

[1] 2 9 64 625

An example where the for loop is indispensable is the Fibonacci sequence, which is the
sequence of integers where each term is the sum of the two preceding terms. The initial
terms are 0 and 1. Here is an R function to compute the first m terms of the Fibonacci
sequence:

fibonacci <- function(m){
for the for loop we need m>=3 :
if (m<3) {m=3}

create a vector of length m whose 2 first elements are
the values of the first 2 terms of the Fibonacci sequence:
Fib_seq <- 0:(m-1)
for (k in 3:m){

compute the k-th term of the sequence:
Fib_seq[k] <- Fib_seq[k-1]+Fib_seq[k-2]

}
return(Fib_seq)

}

fibonacci(25)

[1] 0 1 1 2 3 5 8 13 21 34 55
[12] 89 144 233 377 610 987 1597 2584 4181 6765 10946
[23] 17711 28657 46368

1.3.3 The while loop

Iterative mathematical methods often require the execution of the same instructions until
convergence. In this case, the number of iterations is not known in advance. Thus, the for

6

Statistics with R Tabea Rebafka

loop is inappropriate and we rather use the while loop that relies on a logical condition
condition that is evaluated at each iteration and the instructions are executed as long
as the condition is verified. The general syntax is

while (condition) {instructions}

Here is a simple example:

a <- 2
while (a < 100)

{a <- a^2 }
a

[1] 256

Let’s consider again the Fibonacci sequence. We can write a function to compute the
minimal number of terms to exceed a given value:

howmany_fibonacci <- function(M){
if (M<=1) {howmany <- ’Call the function for a value > 1’}
else{

initialisation of the first 2 terms of the sequence:
term_kmoins1 <- 0
term_k <- 1
current length of the sequence:
k <- 2

repeat the following instructions while the last term
is lower than the threshold M:
while (term_k < M){

compute the next term of the sequence:
term_kplus1 <- term_k+term_kmoins1
update the length of the sequence:
k <- k+1
update the last 2 terms of the sequence:
term_kmoins1 <- term_k
term_k <- term_kplus1

}
howmany <- k

}

return(howmany)
}

howmany_fibonacci(10)

[1] 8

7

Statistics with R Tabea Rebafka

howmany_fibonacci(10^6)

[1] 32

When using the while loop, make sure that the condition will be verified at a moment.
Otherwise, the program will run indefinitely.

8

	Programming in R
	Writing your own R functions
	Object list
	Control structures
	The structure if else
	The for loop
	The while loop

