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∗Institut Télécom, Télécom ParisTech (CNRS LTCI) and CEA, LIST, rebafka@telecom-
paristech.fr
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Abstract

A fast and efficient estimation method is proposed that compensates the distortion in nonlinear
transformation models. A likelihood-based estimator is developed that can be computed by an EM-
type algorithm. The consistency of the estimator is shown and its limit distribution is provided.
The new estimator is particularly well suited for fluorescence lifetime measurements, where only
the shortest arrival time of a random number of emitted fluorescence photons can be detected and
where arrival times are often modeled by a mixture of exponential distributions. The method is
evaluated on real and synthetic data. Compared to currently used methods in fluorescence, the new
estimator should allow a reduction of the acquisition time of an order of magnitude.
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1 Introduction

In this paper we consider nonlinear transformation models where the ob-
served distribution is the result of a nonlinear distortion of some initial dis-
tribution (Tsodikov, 2003). A special case is the so-called pile-up model,
which will be of particular interest in this paper, and where an observation is
defined as the minimum of a random number of independent variables from
the target distribution. The goal is to estimate the parameters of the target
distribution from a sample of the distorted distribution. However, the non-
linear distortion generally makes estimation difficult even for simple target
distributions.

This work is motivated by an application in time-resolved fluorescence
where a specific pile-up model is encountered. Fluorescence is the emission
of photons by excited molecules and one of its characteristics is the duration
that a molecule stays in the excited state before emitting a fluorescence pho-
ton. This duration is called the fluorescence lifetime and it is well known
that these lifetimes have exponential distribution whose parameter depends
on the fluorescent molecule as well as on its microenvironment as pH, viscos-
ity or polarity (Lakowicz, 1999; Valeur, 2002). Due to the high sensitivity of
the exponential parameters on the microenvironment, fluorescence lifetimes
are a precious source of information on molecular processes and they are used
in many applications in biology, medicine or chemistry. For instance, in bio-
chemical applications of fluorescence imaging the effect of the environment
on the fluorescence lifetimes is used to map chemical or physical changes
within a sample (Crissman & Steinkamp, 2000). Further examples are the
measurement of molecular distances (Pin et al., 2007) or the measurement
of molecular rotation (Serdyuk et al., 2007) based on fluorescence lifetimes.

Measurements of fluorescence lifetimes are obtained by the technique
Time-Correlated Single Photon Counting (TCSPC) (O’Connor & Phillips,
1984). First molecules are excited with a short laser pulse and then a ran-
dom number of fluorescence photons is emitted and hit the detector. The
instrument measures the time between the laser pulse and the arrival of the
first fluorescence photon on the detector. For technical reasons the arrival
times of later arriving photons can not be measured. Indeed, the distribution
of the minimum arrival time is a distortion of the distribution of the arrival
times of all photons striking the detector referred to as the pile-up effect.

The extent of distortion depends on the laser intensity which determines
the average number λ of photons per excitation cycle. In fact, the higher
the laser intensity, the more fluorescence photons are emitted. It is stan-
dard practice to discard the pile-up effect by using a very low laser intensity.
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However, the study of the Fisher information as a function of λ in Rebafka
et al. (2008) has revealed that the information can be maximized if data
are collected at an intensity that causes a significant pile-up effect. That is,
this study suggests that a significant reduction of the variance of the esti-
mator compared to the standard practice can be obtained by using pile-up
affected observations. Due to the involved form of the pile-up density stan-
dard estimation procedures as the maximum likelihood estimator or moment
estimators are intractable. Hence the question about an estimator which is
numerically achievable and yet performs well in comparison with the infor-
mation bound arises in order to reduce the variance.

The very first method dealing with pile-up observations is a ‘correction’ of
a pile-up histogram that goes back to Coates (1968). This approach is refined
and generalized in Walker (2002) and Souloumiac (2007). Okano et al. (2005)
propose a least-squares fitting of the histogram. It is well known that least-
squares methods are large sample methods that are unbiased when applied
to small samples, as pointed out by Hall & Selinger (1981) for the particular
fluorescence context. This method is hence not appropriate to reduce the
variance. In Rebafka (2007) a Gibbs sampler is presented that is adapted to
pile-up models with multi-exponential target distributions. This algorithm
is rather time-consuming and hence it is not appropriate to analyze a large
number of data sets, which is often required in practice.

The pile-up model has also been used in carcinogenesis studies. The
model assumes that at the end of a cancer treatment there remains a ran-
dom number of cells that will propagate into a new detectable tumor. An
individual random time is associated to each cell representing the time it
takes for this cell to produce a detectable tumor. Then the time to tumor
recurrence is the minimum of those cell individual times. In a parametric set-
ting Yakovlev & Tsodikov (1996) compute the maximum likelihood estimator
by some random search algorithm.

The paper is organized as follows. The formal definition of the nonlin-
ear transformation model and the pile-up model is given in Section 2. In
Section 3 we develop a likelihood-based contrast, whose maximization com-
plexity is essentially the same as the likelihood associated with the target
distribution. In particular, if the EM algorithm applies to the likelihood of
the target distribution, then it applies similarly to the new contrast. The
asymptotic behavior of the new estimator is analyzed in Section 4. The
numerical performance is evaluated in Section 5, where an application on
TCSPC measurements is provided as well as a comparison to the informa-
tion bounds obtained in Rebafka et al. (2008). Appendix A contains the
technical arguments for the results presented in the previous sections, while
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Appendix B provides details on the derivation of the central limit theorem
for L-statistics that is used in Section 4.

2 General Setting and Notation

We first define the pile-up model, then we generalize the definition to the
nonlinear transformation model. Let {Yk, k ≥ 1} be a sequence of inde-
pendent positive random variables with distribution function F and survival
function F̄ = 1− F . Denote by N a random variable that is independent of
the sequence {Yk, k ≥ 1} taking its values in N∗ = {1, 2, . . . }. Each pile-up
observation Zi for i = 1, 2, . . . , n is distributed as the random variable Z
defined by

Z = min{Y1, . . . , YN} . (1)

By Rebafka et al. (2008), Lemma 1 the survival function Ḡ = 1−G of Z is
given by

Ḡ(z) = γ(F̄ (z)) , z ∈ R+ , (2)

where γ is the probability generating function associated with N , defined
as γ(u) = E[uN ] for all u ∈ [0, 1]. Moreover, if F admits a density f with
respect to the Lebesgue measure L+ defined on R+, then G admits a density
g. Denoting γ̇(u) = E[NuN−1] for all u ∈ [0, 1], the pile-up density g is given
by

g(z) = f(z)γ̇(F̄ (z)), z ∈ R+ . (3)

In survival analysis the class of models defined by (2), where γ is the prob-
ability generating function of any nonnegative random variable N , is the
family of proportional hazard mixture models, also called univariate frailty
models (Kosorok et al., 2004; Hougaard, 1984). Note that in this case the
hazard function µG of G given N can be written as

µG(t|N) = NµF (t) ,

where µF is the hazard function of F and N is the frailty. Univariate frailty
models are an important subclass of nonlinear transformation models defined
by (2) for any function γ such that γ ◦ F̄ is a survival function (Tsodikov,
2003).

We will estimate the target distribution F based on a sample of the dis-
torted distributionG in a parametric setting. Our approach applies to models
where γ is a known function that is sufficiently smooth. The most general
setting that will be considered is described in the following assumption that
is supposed to hold throughout the paper.
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Assumption 1. The target distribution F belongs to an identifiable para-
metric family dominated by L+ and is thus described by a collection of densi-
ties {fθ, θ ∈ Θ} with parameter set Θ ⊂ Rd. The function γ : [0, 1]→ [0, 1]
has range [0, 1] and is continuously differentiable with positive derivative
γ̇ > 0 on [0, 1].

Note that Assumption 1 is satisfied for the probability-generating function
γ of any nonnegative random variable N satisfying P(N = 1) > 0.

As we are especially interested in the fluorescence application, we define
formally the pile-up model as follows.

Definition 1. Under Assumption 1, where γ denotes the probability gen-
erating function of some random variable N with values in N∗, we denote
by {gθ, θ ∈ Θ} the corresponding collection of densities obtained by Rela-
tion (3). This model, that is dominated by L+, is called the pile-up model
associated with the target model {fθ, θ ∈ Θ} and the distribution of N .

Let us verify Assumption 1 for the pile-up model in the fluorescence ap-
plication. In general the number of photons per excitation cycle has Poisson
distribution. It is clear that only those cycles provide information on the un-
known parameter θ where a photon is detected. Hence, we suppose that N
in (1) follows a Poisson distribution restricted on N∗ with parameter λ > 0,
namely

P(N = k) =
λke−λ

k!(1− e−λ)
, k ∈ N∗ . (4)

It follows that the probability generating function in this case is given by

γ(u) = E[uN ] =
eλu − 1

eλ − 1
, (5)

and thus Assumption 1 is verified. Obviously, γ depends on λ. A natural
estimator of λ is based on the proportion of excitation cycles where no photon
is detected, more precisely

λ̂ = log

(
number of excitation cycles

number of cycles where no photon is detected

)
.

Hence for simplicity we consider γ as a known function.
Widely used target models in the fluorescence application include the ex-

ponential distribution or finite mixtures of exponential distributions, possibly
polluted by some additive instrument noise (see Ware et al., 1973; O’Connor
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& Phillips, 1984). Often the exponential parameters permit a physical inter-
pretation.

In the remainder of the paper we adopt the following notation: under the
expectation sign Eθ, (Y, Yi, i ≥ 1) are i.i.d. with density fθ and (Z,Zi, i ≥ 1)
are i.i.d. with the corresponding distorted density gθ defined by (3). Moreover
we denote by Fθ and Gθ the associated distribution functions.

3 Estimation Method

To construct a parameter estimate, we propose a modification of the max-
imum likelihood approach that results in an estimator that is often com-
putable by an EM-type algorithm.

3.1 Corrected Likelihood

Consider the log-likelihood associated with an i.i.d. sample (Y1, . . . , Yn) from
the target distribution Fθ0 , namely

Ln(θ) =
1

n

n∑
i=1

log fθ(Yi) . (6)

Recall that the rationale in using the log-likelihood as a contrast function is
that, by the strong law of large numbers, as n→∞, Ln(θ)−Ln(θ0) converges
to the negated Kullback-Leibler divergence Eθ0 [log(fθ(Y )/fθ0(Y ))] and thus
is asymptotically maximized at θ = θ0. Now, from Equation (3), we have for
any real-valued integrable function h defined on R+,

Eθ0 [h(Y )] = Eθ0
[

h(Z)

γ̇(F̄θ0(Z))

]
. (7)

By Assumption 1, γ is bijective. We denote by γ−1 its inverse on [0, 1]. Then
Equation (2) gives F̄θ0 = γ−1 ◦ Ḡθ0 . Define

w(u) =
1

γ̇ ◦ γ−1(1− u)
, u ∈ [0, 1] , (8)

with the convention that 1/∞ = 0. Under Assumption 1, w is well defined
since γ̇ > 0. Note that (7) can be rewritten as

Eθ0 [h(Y )] = Eθ0 [w ◦Gθ0(Z) h(Z)] . (9)
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Taking h = log fθ, we get that

L̃n(θ) =
1

n

n∑
i=1

w ◦Gθ0(Zi) log fθ(Zi) (10)

has the same property as the one pointed out before for the likelihood Ln.
However, (10) involves θ0, so it cannot be used for parameter estimation. We
propose to modify (10) by replacing Gθ0 with the empirical distribution func-
tion Ĝn(z) = 1

n

∑n
i=1 1{Zi ≤ z}. Then a corrected log-likelihood function

which reasonably estimates Ln(θ) in (6), but is obtained from the sample
(Z1, . . . , Zn) instead of the unobserved (Y1, . . . , Yn) is given by

L̂n(θ) =
1

n

n∑
i=1

w ◦ Ĝn(Zi) log fθ(Zi) =
1

n

n∑
i=1

w(i/n) log fθ(Z(i,n)) , (11)

where Z(i,n) denotes the i-th order statistic of the sample (Z1, . . . , Zn) satis-
fying Z(1,n) ≤ Z(2,n) ≤ . . . ≤ Z(n,n). We define a new parameter estimate of
θ0 by

θ̂n = arg max
θ∈Θ

L̂n(θ) = arg max
θ∈Θ

n∑
i=1

w(i/n) log fθ(Z(i,n)) , (12)

to which we will refer as the corrected maximum likelihood estimator (cor-
rected MLE). The weights w(i/n) appearing in L̂n(θ) are aimed to correct
the distortion, namely, the fact that (Z1, . . . , Zn) is a sample of gθ0 instead
of fθ0 .

Relation (9) can be used more widely for correcting any statistical method
based on moments of the target distribution that one wishes to apply with
distorted observations. More precisely, denote by P̂ c

n the corrected empiri-
cal distribution from distorted observations Z1, . . . , Zn such that, for every
function h,

P̂ c
n(h) =

1

n

∑
i

w(i/n)h(Z(i,n)) ,

where w is given by (8). It is different from the standard empirical distribu-
tions

P̂n(h) =
1

n

∑
i

h(Yi) and P̃n(h) =
1

n

∑
i

h(Zi) . (13)

The following result, which justifies the above approach, relies on the fact
that P̂ c

n(h), P̃n(w ◦G× h) and P̂n(h) have the same limits. It is obtained by
applying Lemma 4 in Appendix A.
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Theorem 1. Suppose that Assumption 1 holds. Let Y have distribution F
and (Zi)i≥1 be an i.i.d. sequence with distribution G defined in (2). Then,
for any real valued function h defined on R+ satisfying E[|h(Z)|] < ∞, we
have P̂ c

n(h)→ E[h(Y )] almost surely as n→∞.

Theorem 1 implies that any consistent moment estimator based on a sam-
ple of the target distribution remains consistent when the corrected empirical
distribution P̂ c

n is used. It also gives that the corrected log-likelihood L̂n(θ) is
such that L̂n(θ)− L̂n(θ0) converges to the Kullback-Leibler divergence of fθ0
with fθ almost surely. This is the basic argument for proving the consistency
of the corrected MLE, see Section 4.1.

3.2 Maximization by an EM-type Algorithm

In general it is much easier to maximize the corrected likelihood L̂n(θ) in (11)
than the likelihood function associated with the nonlinear transformation
model, which has the form

n∑
i=1

log fθ(Zi) +
n∑
i=1

log γ̇(1− Fθ(Zi)) . (14)

Note that the main difference with L̂n(θ) is the appearance of a second term
in (14) which highly complicates the maximization. In the special case of
a pile-up model with an exponential target distribution, i.e. fθ(y) = θe−θy,
θ > 0, and where N follows the restricted Poisson distribution given in (4),
it turns out that the corrected MLE is given explicitly by

θ̂n =

∑n
i=1 w(i/n)∑n

i=1w(i/n)Z(i,n)

, with w(i/n) =
1− e−λ

λ[ i
n
(e−λ − 1) + 1]

. (15)

This is in sharp contrast with the classical maximum likelihood estimator
associated with the pile-up model, where the maximization of

arg max
θ

n∑
i=1

log

(
∞∑
k=1

p(k)kθe−kθZi

)
(16)

= arg max
θ

{
n log θ − θ

n∑
i=1

Zi + λ
n∑
i=1

e−θZi

}
(17)

has no explicit solution. Note that the log-argument in (16) is an infinite
discrete mixture of exponential densities E(kθ). The numerical cost for com-
puting the maximizer of the corrected likelihood is in this case thus obviously
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lower than for the pile-up likelihood. This feature remains true in a large
variety of situations. Indeed, the only difference of the maximization prob-
lem given by (12) compared to maximizing the target likelihood (6) are the
nonnegative weights w(i/n). This makes the two maximization problems
of equivalent cost, while the maximization of the likelihood in the nonlin-
ear transformation model is in general much more costly, if tractable at all.
Namely, the EM algorithm cannot be used to maximize the log-likelihood
(14), since to our knowledge there is no structure of missing variables that
gives rise to a sufficiently simple complete likelihood. Furthermore, we re-
mark that the Gibbs sampler for the pile-up model proposed in Rebafka et al.
(2008) which approximates the MLE has a long computation time.

A situation of particular interest is when the EM algorithm applies to the
target model {fθ, θ ∈ Θ}, as this is the case for a finite mixture of exponential
distributions polluted by additive noise with known distribution, which is a
broadly used model in fluorescence. Then an EM-type algorithm resolves the
maximization (12), which has the particularityto use the same missing data
as in the target model, and not as the structure of the pile-up observations
may suggests the number of emitted photons N and the component labels of
all emitted photons. Indeed, this EM-algorithm treats pile-up observations
as observations from the target model, while the pile-up effect is taking into
account by appropriate weighting of the terms. To be more precise, we make
the assumption that the target model is an incomplete data model.

Assumption 2. Suppose that Assumption 1 holds. Let µ be a measure on
a state space X . Suppose that {πθ, θ ∈ Θ} is a collection of densities with
respect to L+ ⊗ µ, such that fθ =

∫
πθ(·, s)µ(ds) for all θ ∈ Θ.

The second component of the distribution πθ corresponds to the missing
or latent variable, say X. When fθ is an exponential mixture, then the
missing variable X is the label of the mixture component that generated an
observation Y from the mixture fθ. Let qθ,θ′(y, x) denote the conditional
expectation of the log-density of (Y,X) at parameter θ given that Y = y at
parameter θ′, namely

qθ,θ′(y) = Eθ′ [log πθ(Y,X) | Y = y] =

∫
x∈X

log πθ(y, x)
πθ′(y, x)

fθ′(y)
µ(dx) .

In analogy to the standard EM algorithm but using the approach with the
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corrected likelihood, we define, for all θ, θ′ ∈ Θ,

Q(θ, θ′;Z1, . . . , Zn) =
n∑
i=1

w(i/n) qθ,θ′(Z(i,n)) , and (18)

H(θ, θ′;Z1, . . . , Zn) =
n∑
i=1

w(i/n)Eθ′
[
log

πθ(Y,X)

fθ(Y )
| Y = Z(i,n)

]
.

Note that the correted likelihood verifies, for all θ, θ′ ∈ Θ,

L̂n(θ) = Q(θ, θ′;Z1, . . . , Zn)−H(θ, θ′;Z1, . . . , Zn) .

Now, as for the standard EM algorithm, we define the sequence (θ(t))t≥0 for
any starting value θ(0) ∈ Θ in the following recurrent way, for all t ∈ N,

θ(t+1) = arg max
θ∈Θ

Q(θ, θ(t);Z1, . . . , Zn) . (19)

The sequence (θ(t))t≥0 has the same properties as a sequence obtained by
the standard EM algorithm. Namely, at each iteration the value of the log-
likelihood L̂n(θ(t)) increases and the sequence (θ(t))t≥0 tends to a critical point

of the corrected log-likelihood function L̂n(θ).

Theorem 2. The sequence (θ(t))t≥0 defined by (19) satisfies L̂n(θ(t+1)) ≥
L̂n(θ(t)), for all t ≥ 0. Moreover, if (θ(t))t≥0 converges to some θ∗ in the
closure of Θ and if

∇θQ(θ, θ(t);Z1, . . . , Zn)|θ=θ(t+1) = 0 , for all t ,

then θ∗ is a critical point of L̂n(θ), i.e. ∇θL̂n(θ)|θ=θ∗ = 0.

Theorem 1 and 4 in Dempster et al. (1977) correspond to the case where
w(i/n) ≡ 1. Using that w(i/n) are non negative numbers, the arguments
provided in Dempster et al. (1977) continue to hold.

4 Asymptotic Behavior

In this section we study the asymptotic behavior of the corrected MLE θ̂n
defined in (12). We show its consistency and determine its limit distribution.
To this end we make use of the fact that the corrected likelihood function
L̂n(θ) is an L-statistic, that is a linear combination of order statistics.
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4.1 Consistency

Although the process L̃n defined by (10) cannot be used in practice for es-
timation because it depends on the unknown parameter θ0, it is a standard
empirical mean of the i.i.d. observations Z1, . . . , Zn and thus the standard
theory for proving the consistency of M -estimators (see e.g. van der Vaart
(1998)) can be applied. This theory says that, under standard conditions,
the following assumption holds.

Assumption 3. Any random sequence (tn)n valued in Θ satisfies tn
P→ θ0,

if
L̃n(tn) ≥ sup

t
L̃n(t) + oP (1) . (20)

For instance, by van der Vaart (1998), Theorem 5.7, this is true, if both

(3-i) the collection of functions F = {w ◦Gθ0 log(fθ/fθ0), θ ∈ Θ} is a Gθ0-
Glivenko-Cantelli class;

(3-ii) for all ε > 0, inf
|θ−θ0|>ε

KL(fθ0‖fθ) > 0, where KL(f‖g) =
∫

log f(x)
g(x)

f(x)dx

denotes the Kullback-Leibler divergence of two densities f and g.

The Kullback-Leibler divergence KL(fθ0‖fθ) appears here as a consequence
of (9).

Theorem 3. Suppose that Assumptions 1 and 3 hold and that

sup
θ∈Θ

1

n

n∑
i=1

∣∣∣∣log
fθ(Zi)

fθ0(Zi)

∣∣∣∣ = OP (1) . (21)

Then any random sequence (θ̂n) is consistent for θ0, i.e. θ̂n
P−→ θ0, if it

satisfies
L̂n(θ̂n) ≥ sup

θ∈Θ
L̂n(θ) + oP (1) .

The following corollary provides a simple condition implying the general
ones of Theorem 3.

Corollary 1. Suppose that Assumption 1 holds. Let Θ be a compact subset
of Rd. If there exists a function K : R+ → R+ such that Eθ0 [K(Z)] <∞ and

|log fθ(z)− log fθ′(z)| ≤ K(z) ‖θ − θ′‖, θ, θ′ ∈ Θ, z ∈ R+ , (22)

then the conclusion of Theorem 3 is true.
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4.1.1 Example

In all specific cases that are relevant in the fluorescence application the cor-
rected MLE is consistent. Consider a multi-exponential target density defined
as

fθ(y) =
K∑
k=1

αkνke
−νky , y ∈ R+ , (23)

and let γ be the probability generating function of the restricted Poisson
distribution given in (5). For K = 1 we have the single-exponential case. We
can use a parsimonious parametrization where αK is given by 1−

∑K−1
k=1 αk.

Let the parameter space Θ be defined as{
θ = (α1, . . . , αK−1, ν1, . . . , νK)T : νk ∈ (a, b), αk ∈ (δ, 1),

K−1∑
k=1

αk < 1− δ

}
where 0 < a < b <∞ and δ > 0. The identifiability of exponential mixtures
is assured by the results of Teicher (1961). Now for all θ1 < θ2 ∈ Θ

| log fθ1(z)− log fθ2(z)| = |ḟθ̃(z)|
fθ̃(z)

|θ2 − θ1| ,

for some θ̃ ∈ [θ1, θ2] and where ḟθ̃(z) denotes the gradient of θ 7→ fθ(z) at θ̃.
Furthermore, since αk > δ and νk ∈ (a, b) for all k, we obtain∣∣∣∣∣

∂fθ
∂αj

(z)

fθ(z)

∣∣∣∣∣ =
|νje−νjz − νKe−νKz|

fθ(z)
=
|νje−νjz − νKe−νKz|∑K

k=1 αkνke
−νkz

≤ 1

αj
+

1

αK
≤ 2

δ
,∣∣∣∣∣

∂fθ
∂νj

(z)

fθ(z)

∣∣∣∣∣ =
|αj(1− νjz)e−νjz|

fθ(z)
≤ αj|1− νjz|e−νjz∑K

k=1 αkνke
−νkz

≤ |1− νjz|
νj

≤ 1 + bz

a
.

Hence, (22) holds with K(z) = 2
δ
∧ 1+bz

a
and the corrected MLE is consistent.

Similar arguments apply to the case of a multi-exponential target dis-
tribution polluted by additive noise, where we denote by η the probability
density of the instrument noise. Consider the convolution of η and the
multi-exponential density given by (23). The target density is then given
by

fθ(z) = η ?

K∑
k=1

αkνke
−νk· (z) =

K∑
k=1

αkνke
−νkz

∫ z

0

η(u)eνkudu . (24)

Corollary 1 can be used to derive the consistency of the corrected MLE in
this case.
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4.2 Limit Distribution

We show that a theorem, similar to the central limit theorem forM -estimators
of Pollard (1985), holds for M -estimators maximizing an L-statistic. The
theorem applies to the corrected MLE θ̂n.

For an i.i.d. sample (Z1, . . . , Zn) from the distorted distribution G defined
by (2) and weight function w defined by (8), we consider a contrast process
defined as the L-statistic

Mn(t) = P̂ c
nh(·, t) =

1

n

n∑
i=1

w(i/n)h(Z(i,n), t) ,

with h(z, t) defined on R+ × Θ. If h(·, t) = log ft (or, equivalently h(·, t) =
log(ft/fθ0)), then Mn(t) is the corrected likelihood (11). Denote

M(t) = Eθ0 [h(Y, t)] ,

where θ0 is the true parameter. Furthermore, the corrected empirical process
corresponding to P̂ c

n is defined, for a function k on R+, as

νcnk =
√
n
(
P̂ c
n(k)− Eθ0 [k(Y )]

)
.

We have νcnh(·, t) =
√
n(Mn(t)−M(t)). Adapting Pollard (1985), the follow-

ing result holds.

Theorem 4. Suppose that the following assertions are true.

(i) θ0 is an interior point of Θ ⊂ Rd;
(ii) t 7→ M(t) has a nonsingular second derivative −J ≡ ∇2

tM(θ0) at its
maximizing value θ0;

(iii) Let θn be a maximizer of Mn for every n ≥ 1 and suppose that (θn)n
converges in probability to θ0;

Furthermore, suppose that the following expansion holds for all z ∈ R+ and
t ∈ Θ,

h(z, t) = h(z, θ0) + (t− θ0)T∆(z) + |t− θ0|r(z, t) , (25)

with functions r : R+ ×Θ→ R and ∆ : R+ → Rd satisfying

(iv) there exists a covariance matrix Σ such that νcn∆
d−→ N (0,Σ) ;

(v) for any sequence of balls Un that shrinks to θ0 as n→∞, we have

sup
t∈Un

|νcnr(·, t)|
1 +
√
n|t− θ0|

P−→ 0 .
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Then, it follows that

√
n(θn − θ0)

d−→ N
(
0, J−1ΣJ−1

)
.

The proof of this result is omitted as it is easily obtained by adapting the
proof of the theorem in Pollard (1985) in the following way.

1. The standard empirical process νn defined by νnk =
√
n (
∑
k(Yi)−

Eθ0 [k(Y )]) is replaced by the corrected empirical process νcn defined
above.

2. The conditions Eθ0 [|∆(Y )|2] < ∞ and Eθ0 [∆(Y )] = 0 are replaced
by (iv).

These adaptations yield the two unusual conditions (iv) and (v). Con-
dition (v) is similar to the so called stochastic differentiability condition in
Pollard (1985) except that the empirical process νn is replaced by νcn which
is based on an L-statistic. However the following lemma shows that one can
use a standard empirical process to verify this condition. Recall that P̃n is
defined in (13). Then denote by ν̃n the standard empirical process associated
with the i.i.d. sequence (Zi),

ν̃nk =
√
n
(
P̃n(k)− Eθ0 [k(Z)]

)
.

Lemma 1. Suppose that w defined in (8) is Lipschitz on [0, 1], that is, there
exists L > 0 such that |w(u) − w(v)| ≤ L |u − v|, for all u, v ∈ [0, 1]. Then
Condition (v) holds, if for any sequence of balls Un that shrinks to θ0 as
n→∞, we have

sup
t∈Un

P̃n |r(·, t)|
P−→ 0 and sup

t∈Un

|ν̃n (w ◦G× r(·, t)) |
1 +
√
n|t− θ0|

P−→ 0 . (26)

In most cases, a smoothness condition on t 7→ h(z, t) holds with some
uniformity in z, which implies Condition (v), as described by the following
lemma.

Lemma 2. Suppose that w is Lipschitz on [0, 1] and that for all z ∈ R+,
h(z, ·) is continuously differentiable in Θ with gradient denoted by ḣ(z, ·).
Assume moreover that there exists K defined on R+ and a neighborhood U
of θ0 such that∣∣∣ḣ(z, t)− ḣ(z, θ0)

∣∣∣ ≤ K(z) |t− θ0|, for all t ∈ U, and E
[
K2(Z)

]
<∞.

(27)

Then Condition (v) holds for r given by (25) with ∆(z) = ḣ(z, θ0).
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To verify Condition (iv) the following result for L-statistics can be used.
It is an immediate application of Theorem 5 and Proposition 1 in Appendix
B to the nonlinear transformation model.

Lemma 3. Suppose that Assumption 1 holds. Let k be a continuous function
of bounded variation on bounded intervals and assume that the weight func-
tion w is continuously differentiable. If furthermore Eθ0 [|k(Z)|] < ∞ and
Eθ0 [(w ◦G(Z)k(Z))2] <∞, then

νcnk
d−→ N

(
0, σ2(k)

)
,

with limit variance σ2(k) given by

σ2(k) = Eθ0 [(w ◦Gθ0(Z))2 k2(Z)]

+ 2Eθ0 [ẇ1 ◦Gθ0(Z1)ẇ2 ◦Gθ0(Z2)k(Z1)k(Z2)1{Z1 > Z2}] ,

with w1(x) = (1− x)w(x) and w2(x) = xw(x) and ẇ1 and ẇ2 are the deriva-
tives of w1 and w2.

Using the Cramér-Wold device and the linearity of νcnk, a multidimen-
sional version of the central limit theorem holds. Namely, if the above condi-
tions hold for every function k1, . . . , km and denoting k = [k1, . . . , km]T , then

νcn(k)
d−→ N (0,Σ(k)) where Σ(k) = (σ2(ki, kj))i,j and

σ2(ki, kj) = Eθ0 [(w ◦Gθ0(Z))2 ki(Z)kj(Z)]

+ 2Eθ0 [ẇ1 ◦Gθ0(Z1)ẇ′2 ◦Gθ0(Z2)ki(Z1)kj(Z2)1{Z1 > Z2}] .

4.2.1 Example

Theorem 4 applies to the corrected MLE defined in (12). In this case M(θ) =
Eθ0 [log fθ(Y )]. Hence J in Condition (ii) is the Fisher information matrix of
the target model, but Σ is not. This is why the asymptotic variance J−1ΣJ−1

does not equal to the Fisher information, see further discussion in Subsection
6.2.

In the exponential case, when Θ = (a, b) with 0 < a < b < ∞, the con-
ditions of Theorem 4 are easily verified using Lemma 2 and 3. As M(θ) =
log θ − θ

θ0
, we have J = θ−2

0 . According to Theorem 4 and some straightfor-

ward computation,
√
n(θ̂n − θ0)

d−→ N (0, θ2
0τ), where

τ =
2

λ2

∞∑
n=1

(−λ)n

n!n2
− eλ

∞∑
n=1

(−λ)n

n!n

∞∑
m=0

(−λ)m

m!(m+ n)
. (28)
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See Subsection 6.2 for a visualization of the limit variance and a comparison
with the Cramér-Rao bound computed in Rebafka et al. (2008).

In the multi-exponential case of Subsection 4.1.1, the same conditions

hold, yielding
√
n(θ̂n − θ0)

d→ N (0, J−1ΣJ−1), where J is the Fisher infor-
mation matrix of the multi-exponential distribution and

Σ =
1− e−λ

λ

∫ ∞
0

eλFθ0 (y) ḟ
T
θ0

(y)ḟθ0(y)

fθ0(y)
dy

− 2e−λ
∫ ∞

0

∫ ∞
y2

eλFθ0 (y1)+λFθ0 (y2)ḟTθ0(y1)ḟθ0(y2)dy1dy2 .

4.2.2 Confidence Intervals

Based on the corrected MLE θ̂n defined by (12), confidence intervals are easily
constructed. For simplicity consider the one-dimensional case, i.e. θ ∈ R.
Theorem 4 suggests the following asymptotic confidence interval of θ with
confidence level 1− α

ICn =

[
θ̂n + qα/2

√
V̂n/n, θ̂n − qα/2

√
V̂n/n

]
,

where qα/2 is the α/2–quantile of the standard gaussian distribution N (0, 1)

and V̂n is an estimator of the limit variance V = J−1ΣJ−1 of Theorem 4.
Note that here J is the Fisher information of the target model {fθ, θ ∈ Θ}
evaluated at θ0, that is

J = −E
[
∂2 log fθ0(Y )

∂2θ0

]
.

A natural estimator of J is hence given by

Ĵn = − 1

n

n∑
i=1

w(i/n)
∂2 log fθ̂n(Z(i,n))

∂2θ̂n
.

Then, with the estimator σ̂2
n of Σ given in Appendix B by (42) with X

replaced by Z, we obtain an estimator of the limit variance V by

V̂n = σ̂2
n/(Ĵn)2 . (29)
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5 Application to Fluorescence Measurements

When using the TCSPC fluorescence technique, the arrival time Yi of a pho-
ton on the detector is the fluorescence lifetime, say Ỹi, plus some noise Ei,
which is due to the measuring instrument. That is, Yi = Ỹi +Ei for indepen-
dent variables Ỹi and Ei. The noise, which is mainly due to the lamp, is called
the instrumental response function. It is individual for every measuring in-
strument and does not belong to a common parametric family. However, as
the probability density function η of the instrumental response function can
easily be measured, η is assumed known in the following. The target density
fθ is given by (24).

For an observation Y = Ỹ + E let (S,E) be the latent variables, where
S is the label of the exponential component that has generated Ỹ , and E is
the noise with density η. The joint density of (Y, S,E) is given by

πθ(y, s, x) = η(x)αsνse
−νs(y−x), 0 < x < y, s = 1, . . . , K .

The maximization (19) of Q(θ, θ′;Z1, . . . , Zn) defined by (18) has the solu-
tions

α
(t+1)
l =

∑n
i=1 w(i/n) p(l | Z(i,n), θ

(t))∑n
i=1 w(i/n)

,

ν
(t+1)
l =

∑n
i=1w(i/n) p(l | Z(i,n), θ

(t))∑n
i=1w(i/n) p(l | Z(i,n), θ(t))

{
Z(i,n) − Eθ(t) [E | Y = Z(i,n), S = l]

}
where p(l | z, θ) = Pθ(t)(S = l | Y = Z) . It remains to evaluate

p(l | z, θ) =
αlνle

−νlz
∫ z

0
η(x)eνlxdx∑K

k=1 αkνke
−νkz

∫ z
0
η(x)eνkxdx

, (30)

Eθ[E | Y = z, S = l] =

∫ z
0
xη(x)eνlxdx∫ z

0
η(x)eνlxdx

. (31)

In the TCSPC-set up the instrumental response function is approximated by
a histogram, so that the integrals in (30) and (31) are Riemann sums.

We apply the corrected MLE to real TCSPC measurements. Figure 1
shows the histogram of photon arrival times and the instrument response
function η of the measuring instrument. Data were obtained at a laser in-
tensity corresponding to λ = 0.166. Hence, about 8% of the arrival times are
the minimum of two or more photons. Consequently, the pile-up effect is not
negligible. The sample size is n = 1, 743, 811 and there is a single-exponential
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Figure 1: Histogram of TCSPC measurements and instrumental response function
η of a single exponential component with Poisson parameter λ = 0.166.

component, K = 1. In this experiment the lifetime constant of the molecule
is known to be τ = 1/ν = 2.54 ns. For more details on the data we refer to
Patting et al. (2007).

A traditional estimator of the exponential parameter that does not take
into account the pile-up effect yields the value τ̃ = 2.40 ns which is sig-
nificantly shorter than the expected value. Applying the corrected MLE of
the preceding paragraph provides the estimated value τ̂ = 1/ν̂ = 2.5393 ns.
Moreover, using an estimator of the Fisher information and the variance es-
timator given in (29), the following confidence intervals with confidence level
0.95 are obtained: ICtraditional = [2.3997, 2.4003] (interval length 6.75 10−4)
for the traditional estimator and ICpile-up = [2.5397, 2.5403] (interval length
6.89 10−4) for the corrected MLE. As both confidence intervals are very short
(due to the large number of observations), it is clear that the corrected MLE
is unbiased, while the traditional estimator is not. It is hence undispensable
to take the pile-up effect into account in the estimation procedure. We draw
the conclusion that the corrected MLE is well suited for the pile-up model
and handles additive noise correctly.
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6 Numerical Study

The numerical performance of the corrected MLE in the pile-up model is
evaluated in a twofold study. First we show that the acquisition time can
be reduced by increasing the Poisson parameter λ. Second we compare the
variance of the estimator to the Cramér-Rao bound of the pile-up model.
Several single and multi-exponential target models are considered, but, for
simplicity, no additive noise.

6.1 Reduction of Acquisition Time

In the fluorescence set-up the acquisition time consists of all excitation cycles,
including those where no photon is detected. Hence, in the following N is
assumed to have classical Poisson distribution on N with parameter λ (and
not restricted on N∗ as in (4)). If N = 0 put the pile-up observation Z =∞.
Then Z admits a density gθ with respect to L̄+, defined as the measure on
R+ ∪ {+∞} which puts mass 1 at +∞ and whose restriction on R+ is the
Lebesgue measure L+. As shown in Rebafka et al. (2008), Lemma 1 the
pile-up density is given by

gθ(z) =

{
λfθ(z)e−λFθ(z), if x ∈ R+

e−λ, if x =∞ .
(32)

Obviously, only observations where a photon is detected (Z < ∞) contain
information on θ0. The average number λ of fluorescence photons per light
pulse depends on the laser intensity which is tuned by the user. It increases,
when λ does.

The current practice in fluorescence is to avoid pile-up by collecting data
at a very low intensity λ, such that it is unlikely to have more than one photon
per laser pulse, e.g. P(N > 1) = 0.0012 if λ = 0.05. Observed photon arrival
times may then be considered as realizations of the target distribution fθ0
and not of the pile-up distribution gθ0 . Thus, if fθ is the multi-exponential
density, standard estimators for exponential mixtures apply as the classical
EM algorithm, which we consider in the following simulations.

Synthetic data are drawn from the pile-up density gθ0 in (32). For the
classical EM data are generated at λ = 0.05, while we use higher intensities
for the corrected MLE (λ = 1.32, 1.5, 2). Let m denote the sample size, or
better, the total number of excitation cycles. We stress that the observations
where no photon event occurs (Z =∞) are discarded from the samples, such
that the effective number of observations used in the algorithms is much
smaller than m. For λ = 0.05 we have P(N = 0) = 0.951 compared to only
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K = 1, ν1 = 2
sample size m 100 500 1,000
classical EM ν1 0.8095 (3.1687) 0.1321 (0.4728) 0.0769 (0.3096)
λ = 0.05
corr. MLE ν1 0.0511 (0.3061) 0.0083 (0.1238) 0.0033 (0.0884)
λ = 1.32

K = 2, α1 = 0.25, ν1 = 0.2, ν2 = 2
sample size m 500 1,000 5,000
classical EM α1 0.0611 (0.1702) 0.0171 (0.1122) 0.0037 (0.0441)
λ = 0.05 ν1 0.1023 (0.2742) 0.0295 (0.1233) 0.0039 (0.0352)

ν2 0.9297 (6.3295) 0.2686 (1.0485) 0.0558 (0.2293)
corrected α1 0.0040 (0.0489) 0.0020 (0.0335) 0.0003 (0.0151)
MLE ν1 0.0065 (0.0429) 0.0024 (0.0280) 0.0001 (0.0122)
λ = 2 ν2 0.0226 (0.2061) 0.0107 (0.1394) 0.0018 (0.0641)

K = 3, α1 = 0.4, α2 = 0.3, ν1 = 0.1, ν2 = 0.5, ν3 = 2
sample size m 1,000 5,000 10,000
classical EM α1 0.0218 (0.1589) 0.0171 (0.1110) 0.0210 (0.0883)
λ = 0.05 α2 0.0850 (0.1381) 0.0803 (0.1031) 0.0593 (0.0965)

α3 0.1068 (0.1060) 0.0632 (0.1245) 0.0383 (0.1171)
ν1 0.0095 (0.0398) 0.0011 (0.0204) 0.0014 (0.0150)
ν2 0.5903 (0.7436) 0.1939 (0.3714) 0.0926 (0.2717)
ν3 8.7287 (91.414) 2.6270 (13.257) 1.5467 (7.9115)

corrected α1 0.0173 (0.1019) 0.0086 (0.0462) 0.0037 (0.0286)
MLE α2 0.0542 (0.0927) 0.0168 (0.0485) 0.0093 (0.0338)
λ = 1.5 α3 0.0369 (0.1109) 0.0083 (0.0617) 0.0056 (0.0429)

ν1 0.0018 (0.0179) 0.0011 (0.0074) 0.0006 (0.0049)
ν2 0.0872 (0.2851) 0.0096 (0.1314) 0.0069 (0.0909)
ν3 0.7603 (4.0176) 0.0839 (0.3452) 0.0429 (0.2178)

Table 1: Empirical bias and standard deviation (in parentheses) of classical EM
estimator and corrected MLE for different choices of parameters.
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Figure 2: Limit variance of the corrected MLE versus Cramér-Rao bound in the
exponential case with ν1 = 1.

P(N = 0) = 0.368 when λ = 1. The empirical bias and standard deviations
of both estimators are evaluated for different sample sizes m, each based on
1,000 repetitions, see Table 1.

The results in Table 1 show that the estimation quality, measured in terms
of bias and standard deviation, obtained by the classical EM is achieved with
only 10% of the observations with the corrected MLE. Thus a significant re-
duction of 90% of the acquisition time can be obtained by using data collected
at a higher intensity and by applying the new corrected MLE.

6.2 Comparison to Cramér-Rao Bound

A comparison of the variance of the corrected MLE to the Cramér-Rao bound
provides an explanation of the significant reduction of the acquisition time
in the TCSPC application. In Rebafka et al. (2008) the Cramér-Rao bound,
which is a lower bound of the variance of non biased estimators of θ0, is
studied for the pile-up model defined in (32), where the no-photon events
are taken into consideration. In the single-exponential case with known λ,
the Cramér-Rao bound of the exponential parameter θ0 decreases when λ
increases, see Figure 2. Hence, for small λ, any estimator has large variance
and many data are necessary for reliable estimation of θ0. In the exponential
case the limit variance of the corrected MLE is given by

s2 =
θ2

0τ

P(N > 0)
=

θ2
0τ

1− e−λ
,
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corrected MLE classical MLE
m bias std length cov. bias std length cov.
100 0.0511 0.3061 1.0641 0.927 0.0335 0.2800 0.9328 0.9140
500 0.0083 0.1238 0.4812 0.947 0.0051 0.1206 0.4109 0.9120
1,000 0.0033 0.0884 0.3417 0.944 0.0027 0.0828 0.2901 0.9210

Table 2: Comparison of the corrected MLE and the classical MLE associated
with the pile-up model for synthetic data in the case of a single-exponential target
distribution with exponential parameter ν1 = 2 and Poisson parameter λ = 1.32.
Comparison of estimates of the bias, standard deviation, length and coverage of
confidence interval with confidence level 0.95 for different sample sizes m.

where τ is defined in (28). Figure 2 shows that the limit variance s2 at-
tains the Cramér-Rao bound when λ ≤ 0.7. The minimum is attained at
λmin ≈ 1.329, where the variance is ten times smaller than at λ = 0.05. This
difference coincides with the reduction of the acquisition time of a factor
ten by using the corrected MLE observed in Subsection 6.1. The point of
minimum λmin is independent of θ0.

From the comparison with the Cramér-Rao bound, we see that the cor-
rected MLE is not efficient at λmin. Table 2 provides more details on the
loss by comparing the corrected MLE to the classical MLE associated with
the pile-up model. Note that in the special one-dimensional case of a single-
exponential target distribution the classical MLE defined in (17) can be com-
puted numerically. The classical MLE is evaluated on the same synthetic
datasets as in Table 1 and bias, standard deviation and length and cover-
age of confidence intervals are estimated. We observe that in terms of bias
and standard deviation the classical MLE performs slightly better than the
corrected MLE, while the confidence intervals based on the corrected MLE
have a better coverage. The latter difference may be related to the different
estimates of the variance, where the one of the corrected MLE seems to be
more appropriate to finite samples.

In the multi-exponential case the Cramér-Rao bound in not explicitly
known, but it can be estimated by the inverse of an approximation of the
Fisher information matrix obtained by Monte-Carlo. For the two-component
model used in Table 1, that is θ0 = (α1, ν1, ν2) = (0.25, 0.2, 2) and λ = 2, the
Cramér-Rao bound CRB and the covariance matrix Cov, both obtained by
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Monte-Carlo, are approximately

CRB =

 1.151 0.483 2.943
0.483 0.832 1.388
2.943 1.388 17.494

 and Cov =

 1.310 0.576 3.453
0.576 0.944 1.794
3.453 1.794 20.517


From the relative closeness of the two matrices we conclude that the corrected
MLE almost attains the Cramér-Rao bound and is nearly optimal in this
sense. For completeness the covariance matrix can be compared to the limit
variance obtained by Theorem 4 which is 1.193 0.471 2.794

0.471 0.804 1.535
2.794 1.535 19.113

 .

We close the section with a heuristic explanation of the bad performance
of the estimator for large λ. The corrected MLE is based on weighting
the ordered observations. When a rather long arrival time is observed, it
is very likely that there is no other photon and hence that we observe the
‘true’ distribution fθ0 . That is why we associate higher weights with large
observations. From (15) we note that the weights for large observations
grow exponentially with λ while the weights for short observations decrease
even more. It follows that if λ is large enough, the estimator relies almost
entirely on the largest observations. It is as if the sample size diminishes.
This movement is contrary to the augmentation of the proportion of events
where a photon is detected when λ increases. Obviously, for small λ the
latter augmentation is dominant, but for large λ the effect of large weights
becomes predominant and increases the variance of the estimator.

7 Discussion

In this paper we proposed a new estimator for the pile-up model and, more
generally, for nonlinear transformation models of the form Ḡ = γ ◦ F̄ . The
specific working assumption for the corrected MLE is that the function γ is
known or can be estimated beforehand. This may often be the case in so-
called cure models encountered in many clinical settings (see e.g. Tsodikov
et al. (2003)) whereG is an impropre distrubtion function (i.e. limt→∞G(t) <
1). More precisely, G denotes the distribution of the recurrence duration of
some disease (or more generally the duration until the experience of the event
of interest). However, there may be cured patients for whom no recurrence
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duration is observed. In this case one may set the observation to some default
value as +∞. Obviously, cured patients do not provide any information on
the the target distribution F . However, the proportion of cured patients may
be used to determine the function γ, if we suppose a parametric setting where
γ ∈ {γα, α ∈ A ⊂ R}. Indeed, this is the case in the TCSPC application,
where the number of photons follows a Poisson distribution with values in
{0, 1, . . . }, and when N = 0, then no photon arrival time is measured. In
practice, the proportion of excitations where no photon arrival is detected
is used to estimate the Poisson parameter which determines the function
γ. Then these observations are discarded from the sample to compute the
corrected MLE. In the same way the corrected MLE may be used in other
settings like cure models.

A Technical Arguments

A.1 Preliminary Results

Lemma 4. Under Assumpion 1, the weight function w defined in (8) is uni-
formly continuous on [0, 1] taking its values in [1/ max

u∈[0,1]
γ̇(u), 1/ min

u∈[0,1]
γ̇(u)].

In addition, as n→∞,

sup
u≥0

∣∣∣w ◦ Ĝn(u)− w ◦Gθ0(u)
∣∣∣→ 0, a.s. (33)

Proof. The first assertions are clear. The Glivenko-Cantelli theorem gives

that supu>0

∣∣∣Ĝn(u)−Gθ0(u)
∣∣∣→ 0 a.s. and the uniform continuity of w yields

(33).

A.2 Proof of Theorem 3

It suffices to show that θ̂n verifies (20). Denote for all t

L̃n(t, θ0) = L̃n(t)− L̃n(θ0) and L̂n(t, θ0) = L̂n(t)− L̂n(θ0) .

Lemma 4 and Condition (21) imply that
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∣∣∣L̃n(θ̂n, θ0)− L̂n(θ̂n, θ0)
∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

{
w ◦ Ĝn(Zi)− w ◦Gθ0(Zi)

}
log

fθ̂n(Z(i))

fθ0(Z(i))

∣∣∣∣∣
≤ sup

z
|w ◦ Ĝn(z)− w ◦Gθ0(z)| sup

θ∈Θ

1

n

n∑
i=1

∣∣∣∣log
fθ(Zi)

fθ0(Zi)

∣∣∣∣
= op(1) . (34)

It follows together with the fact that θ̂n is a maximizer of θ 7→ L̂n(θ, θ0) that

L̃n(θ̂n, θ0) = L̃n(θ̂n, θ0)− L̂n(θ̂n, θ0) + L̂n(θ̂n, θ0)

≥ sup
t
L̂n(t, θ0) + op(1) (35)

≥ sup
t
L̃n(t, θ0) + op(1) ,

where the last inequality is obtained by (34). Finally (35) is equivalent to
(20).

A.3 Proof of Corollary 1

Using that minu γ̇(u) > 0, we have supuw(u) ≤ 1/minu γ̇(u) < ∞ and
Condition (22) gives that, for any θ, θ′ ∈ Θ and z ∈ R+,∣∣∣∣w ◦Gθ0(z) log

fθ(z)

fθ0(z)
− w ◦Gθ0(z) log

fθ′(z)

fθ0(z)

∣∣∣∣ ≤ 1

minu γ̇(u)
K(z) ‖θ − θ′‖ .

This and the compactness of Θ imply (3-i). By the identifiability condition
of Assumption 1, we know that θ 7→ KL(fθ0‖fθ) has a unique minimum at
θ = θ0. Moreover, observing that

KL(fθ0‖fθ)−KL(fθ0‖fθ′) = Eθ0 [log fθ′(Y )− log fθ(Y )] ,

we see that (22) and Eθ0 [K(Y )] ≤ Eθ0 [K(Z)]/minu γ̇(u) <∞ imply the con-
tinuity of θ 7→ KL(fθ0‖fθ) over the compact Θ, so that (3-ii) holds. Thus
Assumption 3 holds. To apply Theorem 3, we now need to verify Condi-
tion (21), which follows from (22), the compactness of Θ and the fact that
1
n

∑n
i=1K(Zi) has finite mean Eθ0 [K(Z)].
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A.4 Proof of Lemma 1

By P̂ c
n(h) = P̃n(w ◦ Ĝn × h) and by (9), we observe that,

νcnr(·, t)− ν̃n (w ◦G× r(·, t)) =
√
nP̃n

{(
w ◦ Ĝn − w ◦G

)
× r(·, t)

}
.

Hence

|νcnr(·, t)− ν̃n (w ◦G× r(·, t))| ≤
√
n‖w ◦ Ĝn − w ◦G‖∞ P̃n|r(·, t)| .

By (Kallenberg, 2002, Theorem 14.15), we have
√
n‖Ĝn−G‖∞ = OP (1) and

by assumption on w,
√
n‖w ◦ Ĝn − w ◦G‖∞ = OP (1). Hence Condition (v)

follows from (26).

A.5 Proof of Lemma 2

Since ḣ(z, ·) denotes the gradient of h(z, ·) in U , we have, for all s, t ∈ U ,

h(z, t) = h(z, s) +

∫ 1

u=0

(t− s)tḣ(z, tu+ s(1− u)) du .

By definition of r in (25) with ∆ = ḣ(·, θ0), we obtain

r(z, t) = |t− θ0|−1
(
h(z, t)− h(z, θ0)− (t− θ0)T ḣ(z, θ0)

)
=

(t− θ0)T

|t− θ0|

∫ 1

u=0

(
ḣ(z, tu+ θ0(1− u))− ḣ(z, θ0)

)
du . (36)

It also follows that

r(z, t)−r(z, s) =

(
(t− θ0)T

|t− θ0|
− (s− θ0)T

|s− θ0|

)∫ 1

0

ḣ(z, tu+θ0(1−u))−ḣ(z, θ0) du

+
(s− θ0)T

|s− θ0|

∫ 1

0

ḣ(z, tu+ θ0(1− u))− ḣ(z, su+ θ0(1− u)) du . (37)

We apply Lemma 1 so that it is sufficient to verify that (26) holds. Condi-
tion (26) holds because, by (27) and (36),

|r(z, t)| ≤ K(z)|t− θ0| , (38)

ν̃n(K) = OP (1). We now prove the second part of Condition (26) as an
application of (Pollard, 1985, Lemma 4). Using (27), (37) and∣∣∣∣(t− θ0)T

|t− θ0|
− (s− θ0)T

|s− θ0|

∣∣∣∣ ≤ 2
|t− s|
|t− θ0|

,
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we have
|r(z, t)− r(z, s)| ≤ 3K(z)|t− s| .

Thus, since E [|w ◦G(Z)K(Z)|] is bounded by (27) and the assumption on
w, the class of functions F = {w ◦G× r(·, t), t ∈ U} satisfies the bracketing
condition of Pollard (1985). The other condition for applying (Pollard, 1985,
Lemma 4) is

E

[
sup

|t−θ0|≤R
|w ◦G(Z) r(Z, t)|2

]
→ 0 as R→ 0 .

This follows from (38) and (27). This concludes the proof.

B A New CLT for L-statistics

To verify Condition (iv) of Theorem 4 a central limit theorem for linear com-
binations of (transformed) order statistics, so-called L-statistics, is required.
The existing theorems can be divided into two groups. One approach con-
sists in approximating the L-statistic by a sum of i.i.d. random variables
such that the classical central limit theorem can be applied. This can be
accomplished by using Hájek projection (van der Vaart, 1998, p. 318), defin-
ing pseudo-random variables (Shorack, 2000) or using the influence function
(Serfling, 1984). All these theorems require that the L-statistic has the form
Ln =

∑n
i=1 ci,nh(X(i,n)), where h is a monotone function or even the identity.

Alternatively the L-statistic can be represented as a functional ϕ evaluated at
the empirical distribution function F̂n, that is Ln = ϕ(F̂n). In van der Vaart
(1998), p.322, the functional delta method is used to derive the asymptotic

distribution, in the case where the weights have the form ci,n =
∫ i/n

(i−1)/n
J(t)dt

with some function J that vanishes at the borders of the interval [0, 1].
The L-statistic encountered in Condition (iv) of Theorem 4 is not covered

by the existing theorems. Notably, h is not necessarily monotone and the
weights do not vanish at the borders. In the following we consider L-statistics
of the form

Ln(h) ≡ 1

n

n∑
i=1

w(i/n)h(X(i,n)) =
1

n

n∑
i=1

w ◦ F̂n(Xi)h(Xi) ,

for functions h : R → R and w : [0, 1] → R and where F̂n denotes the
empirical distribution function associated with the sample (X1, . . . , Xn) with
distribution F .
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The following theorem gives conditions under which the empirical process

νn(h) =
√
n (Ln(h)− E[w ◦ F (X)h(X)]) (39)

is asymptotically normal.

Theorem 5. Supppose that

(i) h is of bounded variation on bounded intervals;
(ii) w is Lipschitz continuous on [0, 1];

(iii) F is a continuous distribution function;
(iv) E[|h(X)|] < ∞, E[w2 ◦ F (X)h2(X)] < ∞ and σ2(h) < ∞ where σ2(·)

is defined by (40).

Then νn(h)
d−→ N (0, σ2(h)) with limit variance given by

σ2(h) =

∫
R2

w ◦ F (x)w ◦ F (y)(F (x ∧ y)− F (x)F (y)) dh(x)dh(y) . (40)

Proof. Denote by S the set of all right-continuous functions f : R→ R with
finite left limit at all points endowed with the uniform norm. Let DF ⊂ S
be the set of all distribution functions defined on R. Define the functional ϕ
on DF by

ϕ(G) ≡
∫
hw ◦G dG =

∫
h ◦G−1(u)w ◦G ◦G−1(u)du ,

where G−1(u) ≡ inf{x ∈ R : G(x) ≥ u} denotes the quantile function
associated with G. Then νn(h) =

√
n(ϕ(F̂n) − ϕ(F )). We further define on

DF the functional

ψ(G) ≡
∫
h ◦G−1 dW =

∫
h ◦G−1(u)w(u)du ,

where W (t) =
∫ t

0
w(u)du. If G ∈ DF is continuous, then G ◦G−1 = Id, and

thus ϕ(G) = ψ(G) for all continuous G. Then for any continuous F ∈ DF
we have

νn(h) =
√
n(ϕ(F̂n)− ψ(F̂n)) +

√
n(ψ(F̂n)− ψ(F )) . (41)

Using supu∈(0,1) |F̂n ◦ F̂−1
n (u)− u| ≤ 1

n
, it follows that

√
n|ϕ(F̂n)− ψ(F̂n)| =

√
n

∣∣∣∣∫ (w ◦ F̂n ◦ F̂−1
n (u)− w(u))h ◦ F̂−1

n dt

∣∣∣∣
≤ 1√

n

∫
|h| dF̂n = n−3/2

n∑
i=1

|h(Xi)|
P−→ 0 ,
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since E|h(X)| <∞. Now we show that the second term of (41) converges in
distribution. To start with, suppose that h is of bounded variation and has
compact support. Then the conditions of Lemma 22.10, van der Vaart (1998)
are verified and hence ψ is Hadamard differentiable at F with Hadamard
derivative ψ′F defined on the tangent space of bounded continuous functions
by

ψ′F (G) ≡ −
∫
G× w ◦ F dh ,

when F is continuous. Furthermore, we know that
√
n(F̂n − F ) converges

weakly to an F -Brownian bridge, denoted by B, with covariance function
Cov(B(x), B(y)) = F (x ∧ y) − F (x)F (y). Hence, from the functional delta
method it follows that

√
n(ψ(F̂n)− ψ(F ))

d−→ −
∫
B × w ◦ F dh .

The random variable on the right-hand side is normally distributed with zero
mean and variance

σ2(h) = E

[(∫
w ◦ F (x)B(x) dh(x)

)2
]

=

∫ ∫
w ◦ F (x)w ◦ F (y)(F (x ∧ y)− F (x)F (y)) dh(x)dh(y) .

Thus, the theorem holds for h with compact support.
Now let h be a function with arbitrary support satisfying the assumptions

of the theorem. The assertion follows from an approximation of h by a
sequence of functions with compact support. More precisely, for a given
compact interval A and its complement Ac define the functions ζA = h1A
and ζAc = h− ζA. Note that

νn(h) = νn(ζA) + νn(ζAc) .

The first term on the right-hand side is asymptotically normal since ζA has
compact support and is of bounded variation. In addition, by a convenient
choice of A the second term can be made arbitrarily small. This yields the
asymptotic normality of νn(h). More formally, we have

νn(ζAc) =
√
n

(
1

n

n∑
i=1

{
w ◦ F̂n(Xi)− w ◦ F (Xi)

}
ζAc(Xi)

)

+
√
n

(
1

n

n∑
i=1

w ◦ F (Xi)ζAc(Xi)− E [w ◦ F (X)ζAc(X)]

)
.
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By (iv) the second term on the right side converges weakly to a normal dis-
tribution with zero mean and variance Var(w ◦ F (X)ζAc(X)). Furthermore,

√
n

∣∣∣∣∣ 1n
n∑
i=1

{
w ◦ F̂n(Xi)− w ◦ F (Xi)

}
ζAc(Xi)

∣∣∣∣∣
≤ L sup

z∈R

{√
n
∣∣∣F̂n(z)− F (z)

∣∣∣} 1

n

n∑
i=1

|ζAc(Xi)|

= Op(1)
1

n

n∑
i=1

|ζAc(Xi)| .

Since E[|h(X)|] <∞ and E[(w ◦F (X)h(X))2] <∞ by (iv), the set A can be
chosen such that E|ζAc(X)| and Var(w ◦ F (X)ζAc(X)) are arbitrarily small.
Hence, for every ε > 0, η > 0 there exists a compact interval A such that ζAc
satisfies

lim sup
n→∞

P (|νn(ζAc)| > η) < ε .

Now let (Am)m be a sequence of compact sets such that ζm ≡ h1Am tends to h.
By the dominated convergence theorem and (iv) we obtain that lim

m→∞
σ2(ζm) =

σ2(h). Then Billingsley (1999), Theorem 3.2, p.28, implies the weak conver-
gence of νn(h) to a centered normal distribution with variance σ2(h) given
by (40).

If w is continuously differentiable on [0, 1] and E[|h(X)|] < ∞, it can be
shown that

E[w ◦ F (X)h(X)] = E[Ln(h)] + o(n−1/2) .

Thus, in this case the centering constant E[w ◦ F (X)h(X)] in (39) can be
replaced by E[Ln(h)]. We finally provide an estimator of the limit variance,
which is useful for constructing asymptotic confidence intervals.

Proposition 1. If h is continuous and w is differentiable with derivative ẇ,
then Condition (iv) of Theorem 5 can be replaced by

(iv’) E[|h(X)|] <∞, E[w2◦F (X)h2(X)] <∞ and E[|ẇ◦F (X)h(X)|] <∞ ,

and the limit variance writes

σ2(h) = E
[
w2 ◦ F (X)h2(X)

]
+ 2E [ẇ1 ◦ F (X1)ẇ2 ◦ F (X2)h(X1)h(X2)1{X1 > X2}] ,
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where w1(t) = (1 − t)w(t) and w2(t) = tw(t) with derivatives ẇ1 and ẇ2. If
moreover E[w ◦ F (X)ẇ ◦ F (X)h2(X)] < ∞ and E[ẇ2 ◦ F (X)h2(X)] < ∞ ,

then σ̂2
n(h)

P−→ σ2(h) as n→∞, where

σ̂2
n(h) =

1

n

n∑
i=1

w2(i/n)h2(X(i,n)) (42)

+
2

n(n− 1)

∑
i>j

ẇ1(i/n)ẇ2(j/n)h(X(i,n))h(X(j,n)) .
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