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Chapter 1

Introduction

This manuscript gives an overview of my research since my doctoral thesis and it is written
in view of the obtention of the Habilitation à diriger des recherches. It is a presentation of
the main ideas of my work and of the importance of the obtained results with respect to the
existing literature. The manuscript is not meant to be exhaustive. For technical details and a
more rigorous presentation of the methods and the results we refer the reader to the published
articles.

Generally speaking, my research is driven by practical applications and by problems that
motivate me to seek concrete mathematical solutions. In general, one important aspect of my
work is modelling. A model is “good” when it reflects reality, is relatively simple, interpretable
and as flexible as possible to cover a wide range of cases. The other important part of my
work is the development of statistical methods as inference algorithms and testing procedures.
It is clear that algorithms should be fast and reliable, but this is challenging to achieve when
models are complex, or when available data sets become huge. In short, I enjoy developing new
statistical models, that have a practical use, as well as efficient methods and algorithms, that
have a theoretical foundation if possible.

Concerning my research fields, my Ph.D. was concerned with latent variable models and
inverse problems for a specific problem in physics. Later, I worked on nonparametric estimation
problems with automatic model selection as well as on statistical learning problems in signal
processing such as regularization methods and dimension reduction. Then, I discovered random
graph models, in which I am still interested. For network data, I study questions related to mod-
elling and algorithmic development. Globally, my research activity after my doctoral thesis can
be organized into three fields, which correspond to Chapters 2, 3 and 4 of this manuscript: sta-
tistical learning on networks, nonparametric density estimation in inverse problems and various
topics in machine learning.

My research results are published in journals and conferences, and most of my code is publicly
available. My very first research paper [RCF07] dates back to my Master thesis that I did at
INRA in 2006. The papers [RRS10, RRS11] and the patent [RRS09] cover my Ph.D. at Télécom
ParisTech and CEA Saclay from 2006 to 2009. The papers [RLLC11a, RLLC11b] correspond
to my Postdoc at Télécom ParisTech the year after my doctoral thesis. And all the other work
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Chapter 1. Introduction

[CR12, RR15, CR16, CR17, MRV18, KRS18, KMR20, RRV22, RDR22, MRRS22, Reb22] was
done during my stay at Sorbonne University, formerly Université Pierre et Marie Curie, since
2010.

This chapter provides a resumé of my scientific accomplishments and publications of the last
years, which are presented in more detail in the rest of the manuscript.

1.1 Statistical learning on networks

All my contributions to the field of statistical network analysis are related to the popular stochas-
tic block model (SBM). Defining a very rich family of probability distributions, this random
graph model accommodates most heterogeneous network topologies encountered in practice.
Moreover, model parameters are highly interpretable, and as such of much interest for applica-
tions.

In a first work, which is detailed in Section 2.1, we propose the very first time-continuous
extension of the SBM for dynamic temporal networks by introducing inhomogeneous Poisson
processes with intensities depending on the latent block structure of the SBM. For the infer-
ence, a semiparametric variational Expectation-Maximization algorithm is proposed including
a nonparametric M-step in form of adaptive estimators of the Poisson process intensities.

Section 2.2 describes how to use mini-batch sampling to speed up the Monte Carlo Markov
Chain Stochastic Approximation Expectation Maximization (MCMC-SAEM) algorithm for in-
ference in the SBM and in other general latent variable models. Theoretical results on the
convergence of the proposed procedure are provided. We also illustrate that the choice of the
mini-batch size can be optimized under the constraint of a limited computing time budget.

In Section 2.3 we use a random graph model to build a powerful multiple testing procedure for
paired null hypotheses, when tests have to be performed for all pairs of entities in a population.
The true/false null constellation is assumed to be structured according to an unobserved graph
and we improve the power of the testing procedure by learning the graph structure modelled by
a SBM. The procedure is shown to be nearly optimal and the results hold in the finite-sample
setting, which is a novelty in the domain.

Section 2.4 is devoted to the clustering of a set of networks. A model-based clustering
approach based on a finite mixture of stochastic block models is proposed together with an
efficiently implemented hierarchical agglomerative algorithm. The algorithm is shown to out-
perform classical distance-based graph clustering methods. As a byproduct of the hierarchical
algorithm, we propose a new tool to match node labels of two stochastic block models to over-
come the label-switching problem of the SBM.

1.2 Nonparametric density estimation in inverse problems

Part of my research is devoted to density estimation in specific inverse problems and this work
is presented in Chapter 3. In Section 3.1, we consider continuous mixture models and the
problem of estimating the mixing density. We propose an orthogonal series estimator based on

2



1.3. Topics in machine learning

polynomial approximations and show that in case of an exponential mixture it is optimal in the
sense that it achieves the minimax rate over a specific collection of smoothness classes.

Motivated by fluorescence lifetime measurements, we investigate density estimation in statis-
tical models characterized by some nonlinear distortion. An adaptive nonparametric estimator
for the so-called pile-up model is proposed and oracle-type risk bounds for the mean integrated
squared error are provided. In a follow-up work, we propose and compare several kernel and
projection estimation strategies for biased data models, that come with different data-driven
model and bandwidth selection methods. It is shown that the estimators perform an automatic
finite-sample bias-variance tradeoff and a numerical study provides a comparison of the esti-
mators and reveals an interesting gap between theory and practice. This work is presented in
Section 3.2.

1.3 Topics in machine learning

There are various topics in machine learning and signal processing to which I have contributed.
First, to recover the waveform of an intercepted radar signal and estimate its direction of ar-
rival, we propose a regularized orthogonal matching pursuit algorithm with structured sparsity
patterns. The method is suitable for very low signal-to-noise ratios (Section 4.1).

Second, building on results from random matrix theory, a novel estimator of the dimension
of the subspace, where an observed noisy signal lives in, is proposed and shown to be consistent.
Applications to biomedical data sets illustrate the improvements compared to the state of the
art (Section 4.2).

Third, for self-organizing maps we propose an extension that handles missing data. The
approach is based on a new objective function so that missing values are learned at the same
time as the map. The method is used to analyze production data of aircraft engines (Section
4.3).

Fourth, when clustering individuals, misclassifications may be very costly in practical ap-
plications. We propose a model-based clustering approach with an abstention option such that
only a part of the sample is clustered. The goal is to keep the misclustering rate below some
nominal level. Our procedure, developed in the finite mixture model framework, is shown to
have nearly optimal power and bootstrap even improves the performance (Section 4.4).

3



Chapter 2

Statistical learning on networks

Statistical network analysis is an active field of research, with increasing importance over the last
years due to the emergence of network-structured data in a large variety of fields of application [1,
2]. Networks provide powerful descriptions of relations and interactions among a given set of
entities, but they are complex mathematical objects, which are hard to analyze due to their
involved dependance structures. In this chapter a presentation of my four main contributions to
the field is provided. They are all related to the popular stochastic block model (SBM) which
is an easily interpretable model that accommodates most heterogeneous networks observed in
practice. We start by recalling the definition of this model and fixing notations.

Consider a network with n vertices. The stochastic block model (SBM) can be defined for
both directed and undirected interactions. Denote R the set of all dyads in the network, that
is, if the graph is directed, R = {(i, j) : i 6= j} ⊂ JnK2, and R = {(i, j) : i < j} ⊂ JnK2 if it is
undirected, where JnK denotes the set of integers {1, . . . , n}. We do not consider self-loops, as
most applications do not contain self-interactions, but there is no hindrance to include them in
the SBM if needed.

Denote (π,γ) the parameters of a SBM with K blocks, where π = (π1, . . . , πK) ∈ (0, 1)K

are the block proportions with
∑
k∈JKK πk = 1 and γ = (γk,l)k,l ∈ (0, 1)K×K is the connectivity

matrix. If the network is undirected, γ must be symmetric. Let Z = (Z1, . . . , Zn) ∈ JKKn be a
vector of independent discrete latent variables for the nodes, with P(Zi = k) = πk for all k ∈ JKK
and i ∈ JnK. When convient, we use the one-hot encoding Zi = (Zi,1, . . . , Zi,K) ∈ {0, 1}K , where
Zi has multinomial distribution M(1,π). Conditionally on the node labels Z, the observed
adjacency matrix A = (Ai,j)1≤i,j≤n ∈ {0, 1}n×n verifies

A|Z =
⊗

(i,j)∈R
Ai,j |Zi, Zj =

⊗
(i,j)∈R

Ber
(
γZi,Zj

)
,

where Ber(γ) is the Bernoulli distribution. We then say that A has the distribution of a (binary)
stochastic block model and denote A ∼ SBMn (π,γ).

4



2.1. Dynamic stochastic block model

2.1 Dynamic stochastic block model

A recent branch of research is the statistical analysis of dynamic networks, as more and more
data with recurrent interactions are available. We propose the first time-continuous extension of
the popular stochastic block model for longitudinal networks by incorporating inhomogeneous
Poisson processes that model the interaction events between pairs of nodes. The node clustering
defined by the stochastic block model is used to reduce the number of unknown model parameters
related to the Poisson processes. For the inference, a semiparametric variational Expectation-
Maximization (EM) algorithm is developed, where the intensities of the Poisson processes are
estimated in a nonparametric way, including adaptive model selection. This work is the fruit of
a collaboration with Catherine Matias and Fanny Villers, published in [MRV18]. An implemen-
tation of the alogrithm is available via the R package ppsbm [GMRV18] and additional code is
provided in [MRV18].

2.1.1 State of the art

The past years have seen a large increase in the interest for modelling dynamic interactions
between individuals, as continuous-time information on interactions is now often available [3, 4].
However, most existing models are developed for a sequence of networks as the latent space joint
model in [5]. In general, sequences of network snapshots are obtained by data aggregation over
predefined time intervals (see [6] for a review). Discretization induces a loss of information, and
so developing continuous-time models is an important issue.

The analysis of event data is an old area in statistics (see e.g. [7]). Generally, the number of
interactions of all pairs (i, j) of individuals up to time t are modelled by a multivariate counting
process N(t) = (Ni,j(t))(i,j). Various models use a set of statistics, that is chosen by the user, to
modulate the interactions [8, 9, 10]. The choice of these statistics raises some issues: increasing
their number may lead to a high-dimensional problem, and interpretation of the results might be
blurred by their possible correlations. Other approaches aim at clustering time series or deriving
a network that explains their coupling [11].

In statistical network analysis stochastic block models are widely used for several reasons.
They easily accommodate any heterogeneous graph topology and parameters are interpretable
which is important in applications. Furthermore, the SBM can be viewed as a dimension reduc-
tion technique, as nodes are clustered into groups of nodes with similar connecting behaviour
(see the review [12]). For discrete-time sequences of graphs, recently several generalizations of
the SBM to a dynamic context have been proposed [13, 14, 15, 16].

In our work we develop the first semiparametric SBM for continuous-time interaction events,
where interactions are modelled by conditional inhomogeneous Poisson processes. In contrast to
other approaches, our model does not use any predefined network statistics that modulate inter-
actions, but intensities are modelled and estimated in a nonparametric way. Our estimation and
clustering approach is a semiparametric version of the variational Expectation-Maximization
(EM) algorithm based on nonparametric estimators of the intensities. Semiparametric general-
izations of the classical EM algorithm have been proposed in other contexts, e.g. [17, 18, 19, 20].

5



Chapter 2. Statistical learning on networks

However, we are not aware of other attempts to incorporate nonparametric estimates in a vari-
ational approximation algorithm.

2.1.2 Poisson-process stochastic block model

We observe the pairwise interactions of n individuals during the time interval [0, T ] given by

O = {(tm, im, jm),m ∈ JMK} ,

where (tm, im, jm) corresponds to the event that an interaction from individual im ∈ JnK to
individual jm ∈ JnK occurs at time tm ∈ [0, T ].

As in the classical SBM, we assume that individuals belong to one out of K blocks according
to block probabilities π = (π1, . . . , πK), encoded by the latent variables Z = (Z1, . . . , Zn) ∈
JKKn. Moreover, the relation between two individuals i and j is driven by their node labels Zi
and Zj . That is, conditionally on Z, we suppose that the stochastic process Ni,j(·) of interactions
from i to j is an inhomogeneous Poisson process with intensity, say γ(k,l)(·), given that Zi =
k and Zj = l. In other words, in the Poisson-process stochastic block model (PPSBM) the
set of observations O is a realization of the multivariate counting process {Ni,j(·)}(i,j)∈R with
conditional intensity process {γ(Zi,Zj)(·)}(i,j)∈R. The process Ni,j is not a Poisson process, but
a counting process with intensity

∑
(k,l)∈JKK2 πkπlγ

(k,l). We denote θ = (π,γ) the infinite-
dimensional parameter of the PPSBM.

We also propose a zero-inflated version of the PPSBM, by introducing null intensities with
positive probability. This model accommodates sparse networks as often encountered in appli-
cations. The adaptation of the inference algorithm to the sparse setting is straightforward.

Under very reasonable assumptions, the PPSBM and the sparse PPSBM are shown to be
identifiable.

2.1.3 Semi-parametric variational EM-algorithm

As a latent variable model inference in the SBM is involved. Since the work of Daudin et al. [21]
EM algorithms using a variational approximation [22] in the E-step have been frequently used
to approximate the maximum likelihood estimator. We follow this approach for the PPSBM.

Variational E-step

The E-step of the EM-algorithm requires the knowledge of the posterior distribution of the latent
variables Pθ(Z | O), which is not tractable because the Zi are not conditionally independent.
Thus, we perform a variational approximation of Pθ(Z | O) as in [21] by a simpler distribution,
namely by a factorized distribution Pτ of the form

Pτ (Z = (k1, . . . , kn) | O) =
∏
i∈JnK

Pτ (Zi = ki | O) =
∏
i∈JnK

τ i,ki , (k1, . . . , kn) ∈ JKKn,

6



2.1. Dynamic stochastic block model

for parameters τ i,k. More precisely, we search the distribution Pτ minimizing the Kullback-
Leibler divergence, that is, τ̂ = arg minτ KL(Pτ (· | O),Pθ(· | O)). In the PPSBM this minimiza-
tion amounts to solve a fixed point equation, which can be done numerically in very short time.
The variational parameters τ i,k are estimates of the posterior probabilities of the node labels
Pθ(Zi = k|O), and as such, they define a soft clustering of the nodes.

Nonparametric M-step

Roughly, in the M-step the problem consists in estimating the intensity γk,l of the weighted
cumulative process N (k,l)

Z =
∑

(i,j)∈R Zi,kZj,lNi,j for every (k, l) ∈ JKK2. However, this process
is unobserved, as it depends on the latent variables Z. The idea is to use the current variational
parameters τ i,k to construct an empirical counterpart of N (k,l)

Z defined by

N (k,l)(E) =
∫
E

dN (k,l)(s) =
∑

m∈JMK

τ im,kτ jm,l1E(tm), for any interval E, (2.1)

and to estimate the intensity of this process N (k,l). Alternatively to N (k,l), one could define a
simpler approximative process based on a hard clustering of the nodes. That is, replacing the
variational parameters τ i,k in (2.1) with the MAP-estimators Ẑi,k = 1{Ẑi = arg maxl∈JKK{τ i,l} =
k} reduces the number of terms in the sum, but also yields a coarser estimate than the one
obtained with our approach. Similar to the difference of the EM- and the classification EM
(CEM) algorithm, we shall achieve more accurate results by using N (k,l) as defined above, while
the additional computational cost is not prohibitive here.

We develop two nonparametric approaches for the estimation of the intensity of N (k,l). The
first is a nonparametric kernel method, which is suited to estimate smooth functions, but may
suffer from boundary effects that deteriorate the estimation accuracy. The second approach is
based on piecewise constant functions to estimate the intensity γ(k,l). Such a histogram ap-
proach has some advantages compared to the kernel method as we will see below. Concretely,
we adapt the adaptive intensity estimator for the Aalen multiplicative intensity model proposed
by [23] to the PPSBM. To choose an appropriate partition of the time interval [0, T ] for the
histogram estimator, a penalized least-squares criterion is used, that measures the fit of a candi-
date histogram estimator and the process N (k,l). It is conceived in a classical way such that fine
partitions are penalized and a bias-variance trade-off is achieved. For reasons of computational
efficiency we focus on nested regular dyadic partitions denoted by Ed with 2d intervals of length
T2−d for d > 1. The final adaptive intensity estimator has the simple form

γ̂
(k,l)
hist (t) = 2d̂(k,l)

TY (k,l)

∑
E∈E

d̂(k,l)

N (k,l)(E)1E(t),

where Y (k,l) =
∑

(i,j)∈R τ
i,kτ j,l is the estimated number of dyads (i, j) with latent groups (k, l)

and the parameter d̂(k,l) designates the optimal partition for the estimation of γ(k,l). We highlight
that at every M-step, that is, at every iteration of the EM-algorithm, and for every pair (k, l),
we apply the device for the optimal choice of the partition, that is of d̂(k,l).
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Figure 2.1: London bike stations and clustering into two clusters (represented by different colors)
obtained with the sparse PPSBM. (Figure produced with OpenStreetMap project).

2.1.4 Model selection

In any SBM and its variants, the selection of the adequate number of blocks K is an issue. In
[21], the integrated classification likelihood (ICL) criterion, which was first introduced in the
mixture context in [24], has been adapted for model selection in the binary SBM. Roughly, in
the context of model selection, the ICL is the complete-data variational log-likelihood penalized
by the number of parameters. As in the PPSBM the parameter contains a nonparametric, that
is, a infinite-dimensional part. So we need a trick to make the ICL work here. In fact, in the
histogram approach, once the partitions Ed̂(k,l) are selected, there are only a finite number of
parameters, namely 2d̂(k,l) for every (k, l), to estimate. This yields the ICL criterion

ICL(K) = logPθ̂(K)(O, τ̂ (K))− 1
2(K − 1) logn− 1

2 log(|R|)
∑

(k,l)∈JKK2

2d̂(k,l)
,

where θ̂(K) and τ̂ (K) are the parameter estimates and variational parameters provided at the
end of the algorithm when run with K blocks. The best number of blocks K̂ is the one that
maximizes the ICL, that is, K̂ = arg maxK∈JKmaxK ICL(K) for some predefined upper bound
Kmax. As kernel estimators cannot be parametrized by a finite-dimensional parameter, the ICL
criterion is not defined and so this model selection device is available only in the histogram
approach.

2.1.5 London bike sharing data

We illustrate the PPSBM on cycle hire usage data from the bike sharing system of the city of
London [25]. Data consist in pairs of stations associated with a single hiring/journey (departure
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Figure 2.2: London bike sharing system: estimated intensities in the sparse PPSBM (time on
the x-axis is in seconds).

station, ending station) and corresponding time stamp (hire time). For a randomly chosen day
(1st February 2012) the dataset contains n = 415 stations and M = 17, 631 hire events.

Our algorithm provides a PPSBM with K̂ = 6 latent blocks. An inspection of the clusters
reveals that the blocks are indeed geographic clusters. This makes sense, as interacting stations
are expected to be geographically close. Indeed, the dataset does not contain a single journey
from one end of London to the other. Several of the estimated intensities are quite similar, so
that we conclude that the clustering is mainly driven by the geographic locations of the bike
stations.

Now, data are very sparse, as only a very small fraction (7%) of the processes Ni,j are non
null, that is contain at least one hiring event. So it makes sense to apply the sparse version of
the PPSBM to the same data and interestingly only K̂ = 2 clusters are selected. The clustering
is represented on a map in Figure 2.1. One group contains the central part of the city (red),
while the remaining stations form a large peripheral cluster (black). According to the estimated
intensities in Figure 2.2, the central group (group 2) has large intra-group intensity with three
modes: one in the morning, at lunch and at the end of the day. The peripheral cluster (group 1)
mostly consists in ‘leaving’ stations in the morning (with a mode in the morning in the intensity
for (k, l) = (1, 2)) and in ‘arriving’ stations at the end of the day (with a mode in the intensity
for (k, l) = (2, 1)). We conclude that, on the contrary to the first PPSBM, this clustering is
driven by the different interaction behaviours and not by geographic locations. Both models,
PPSBM and its sparse version, provide interesting results and are complementary as they shed
different lights on the data.
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Chapter 2. Statistical learning on networks

2.2 Mini-batch sampling for scalable EM algorithms

Most standard EM-type algorithms are limited in the sample size they can deal with. This is also
the case of the Monte Carlo Markov Chain Stochastic Approximation Expectation-Maximization
(MCMC-SAEM) algorithm, an inference algorithm for general latent variable models including
the SBM. We show how to scale the algorithm to large datasets by using mini-batch sampling.
This is joint work with Estelle Kuhn and Catherine Matias. We published a paper [KMR20]
and provide the code [MKR20].

2.2.1 State of the art

To speed up computing in the classical Expectation-Maximization (EM) algorithm [26] and
its variants, various mini-batch [27, 28, 29, 30] and online versions [31, 32, 33, 34] have been
proposed. They all consist in using only a part of the data during one iteration in order to shorten
computing time and accelerate convergence. While online algorithms process a single observation
per iteration handled in the order of arrival, mini-batch algorithms use larger, randomly chosen
subsets of observations. The size of these subsets of data is generally called the mini-batch
size. Choosing large mini-batch sizes entails long computing times, while very small mini-batch
sizes and online algorithms may result in a loss of accuracy of the algorithm. This raises the
question about the optimal mini-batch size that would achieve a compromise between accuracy
and computing time. However this issue is generally overlooked.

2.2.2 Latent variable models and algorithm

We consider a common latent variable model with incomplete (observed) data Y ∈ Rm and latent
(unobserved) variable Z. Denote n the dimension of the latent variable Z = (Z1 . . . , Zn) ∈ Rn.
In many models, n also corresponds to the number of observations m, but this is e.g. not the
case in the SBM, which is covered by our framework. Let θ ∈ Θ ⊂ Rd be the model parameter.
We assume a general exponential model, that is, the complete-data likelihood function has the
form f(Y,Z;θ) = exp {−ψ(θ) + 〈S(Y,Z), φ(θ)〉} c(Y,Z), where S(Y,Z) ∈ S is a vector of
sufficient statistics. As the data Y are considered to be fixed realizations, we lighten notations
by omitting all dependencies in Y. That is, we write, for instance, S(Z) instead of S(Y,Z).

Mini-batch MCMC-SAEM algorithm

The E-step of the traditional EM-algorithm consists in computing the conditional expectation
Eθk−1 [S(Z)] of the sufficient statistic under the current parameter value θk−1. When this ex-
pectation has no closed-form expression, it can be estimated by a stochastic approximation
algorithm as done in the original MCMC-SAEM algorithm [35]. This means that the E-step
is replaced with a simulation step using a MCMC procedure, namely a Metropolis-Hastings-
within-Gibbs algorithm [36], combined with a stochastic approximation step.

When the dimension n of the latent variable Z is large, the simulation step can be very
time-consuming as all latent components Zi are simulated at every iteration. Thus, according

10



2.2. Mini-batch sampling for scalable EM algorithms

Algorithm 1 Mini-batch MCMC-SAEM
Input: Data Y, mini-batch proportion α, step sizes (γk)k≥1.
Initialization: Choose initial values θ0, S0, Z0 for the model parameter, the sufficient statis-
tic and the latent variable.
Set k = 1.
while not converged do

Sample the number of latent components to be updated: rk ∼ Bin(n, α).
Sample rk indices from JnK, denoted by Ik.
Set Zk = Zk−1
for i ∈ Ik do

Sample from the Metropolis kernel that acts only on the i-th coordinate:
Z ∼ Πi(Zk, ·|θk−1).

Update latent variables: Zk = Z.
end for
Evaluate the sufficient statistics S(Zk) by a clever update of its previous value S(Zk−1).
Perform the stochastic approximation step: Sk = (1− γk)Sk−1 + γkS(Zk).
Update the model parameter by a classical M-step: θk = θ̂(Sk).
Increment k.

end while

to the spirit of other mini-batch algorithms, updating only a part of the latent components may
speed up the computing time and also the convergence of the algorithm. Denote α ∈ (0, 1) the
average proportion of components of the latent variable Z that are updated during one iteration.
Then in the E-step, we first randomly choose α100% of the latent components Zi, which are
then updated by sampling from the associated Metropolis kernel.

The naive evaluation of the sufficient statistic S(Zk) on large datasets is too time-consuming.
Though, in most models it is computationally much more efficient to derive the value of S(Zk)
from its previous value S(Zk−1) by correcting only for the terms that involve recently updated
latent components. In general, this amounts to using only a small part of the data Y and thus
speeds up computing. Algorithm 1 gives a complete description of the algorithm.

2.2.3 Convergence result

In the classical MCMC-SAEM algorithm (also called batch algorithm), the transition kernel
describing the simulation step is a composition of n kernels of the form Π = Πn ◦ · · · ◦Π1, where
Πi only acts on the i-th coordinate. Now, for the mini-batch algorithm we introduce the kernel
Πα,i defined as a mixture of the original kernel Πi and the identity kernel Id given by

Πα,i(Z,Z′|θ) = αΠi(Z, (Z1, . . . , Z
′
i, . . . , Zn)|θ) + (1− α)Id(Z,Z′).

Then, the mini-batch simulation step corresponds to generating a latent vector Z according to
the Markov kernel Πα = Πα,n ◦ · · · ◦Πα,1. With this kernel at hand, it can be seen that the mini-
batch MCMC-SAEM algorithm formally belongs to the family of MCMC-SAEM algorithms with
a particular choice of the transition kernel. Moreover, under assumptions that basically ensure
convergence of the batch MCMC-SAEM algorithm, one can show the following convergence
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Figure 2.3: Evolution of the parameter estimates of π1 = 0.6 (a) and the ARI (b) with respect
to the number of epochs. Limit distribution of the estimate of γ2,2 = 0.2 after 10 000 iterations
for the mini-batch algorithm for mini-batch proportions α ∈ {0.01, 0.05, 0.1, 0.3, 0.5, 0.8, 1}.

result.

Theorem 1. Let 0 < α ≤ 1 and (θk)k≥1 be a sequence generated by the mini-batch MCMC-
SAEM algorithm. Under appropriate model assumptions, almost surely,

lim
k→∞

θk ∈ {θ : ∇`(θ) = 0} ,

that is, (θk)k≥1 converges to the set of critical points of the observed likelihood `(θ) as the number
of iterations increases.

2.2.4 Speed up and accuracy

We conduct numerical experiments to assess the performance of the minibatch MCMC-SAEM
algorithm in the stochastic block model. Figure 2.3 shows the typical evolution the parameter
estimates (in (a)) and of the adjusted Rand index (ARI) (in (b)) along the algorithm for different
mini-batch proportions. Estimates are compared in terms of epoch, where an epoch is the average
number of iterations required to update n latent components. So Figure 2.3 (a) and (b) compare
estimates for different mini-batch proportions at comparable computing time. We can see that
the smaller the mini-batch proportion α, the faster the convergence, namely at the beginning
of the algorithm. The fastest convergence is obtained with the smallest mini-batch proportion,
which is characteristic for mini-batch sampling in any EM-type algorithm.

Let us give an intuitive explanation of this phenomenon. In general, the initial value θ0 of
the algorithm is far away from the target. So, during the first iteration of the batch algorithm,
many time-consuming computations are done using the very bad value θ0. Only at the very end
of the first iteration, the parameter estimate is updated to a little better value θ1. During the
same time, a mini-batch algorithm with small α performs some computations with the same bad
value θ0, but reaches the M-step after a short time for the first update of θ0. The new value
θ1 may be only a slight correction of θ0, but, nevertheless, it is a move into the right direction
and the next iteration is performed using a slightly better value than before. Metaphorically
speaking, the batch algorithm makes long and time-consuming steps, but these steps are not
necessarily directed into the best direction, whereas the mini-batch version makes plenty small
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2.2. Mini-batch sampling for scalable EM algorithms

Figure 2.4: Synthetic images sampled from the model for digit 5 using the parameter estimates
obtained with the batch version on 20 images (top) and with the mini-batch version with α = 0.2
on 100 images (bottom).

and quick steps, correcting its direction after every step. As a whole, the mini-batch strategy
results in a faster convergence of the algorithm as illustrated in Figure 2.3 (a) and (b).

Figure 2.3 (c) displays the histograms of the final estimates of parameter γ2,2 obtained
with the different mini-batch sizes for repeated runs of the algorithms. Contrary to the first
simulations, here the comparison is done after 10 000 iterations (and not epochs), when all
algorithms have attained convergence. We see that the histograms are approximately Gaussian,
and interestingly, the variance increases when the mini-batch size α decreases. This is indeed
coherent with the fact that in 10 000 iterations the batch version processes much more data than
the mini-batch algorithms leading to more accurate estimation results. This raises the question
on an optimal choice of the minibatch proportion α. It would be reasonable to seek a value of
α that performs a trade-off between speeding up convergence and estimation accuracy.

2.2.5 Computing time constraints

To illustrate how to take advantage of the speed up of convergence in practice, consider the dense
deformation template model [37], where observed images are assumed to be deformations of a
common reference image. We use images of handwritten digits from the popular United States
Postal Service database [38]. Suppose that we find the computing time acceptable when running
the batch algorithm on n = 20 images during 1000 iterations, that is, until convergence. Can we
do something better by using mini-batch sampling, say with α = 0.2, within the same computing
time? When applying the mini-batch algorithm on the same 20 images, convergence is attained
much faster and there is a gain in computing time, but probably also some loss in accuracy.
This is not what we are interested in, as we want to make use of the entire allotted computing
time. Instead, we may increase the number of images in the input. As in the batch version 20
images are processed per iteration, the mini-batch algorithm with α = 0.2 can be applied to a
dataset with n = 100 images, since in average only 20 images are visited per iteration. Hence,
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running the mini-batch algorithm with α = 0.2 and n = 100 and the batch version with n = 20
over the same number of iterations takes roughly the same time. To assess the accuracy of the
two procedures, we generate new samples from the learned models displayed in Figure 2.4. We
see that the synthetic images generated with the mini-batch version (bottom row of the figure)
resemble usual handwritten digits 5 more than the others. We conclude that, given a constraint
on the computing time, more accuracy can be obtained by using the mini-batch MCMC-SAEM
instead of the original algorithm.

2.3 Multiple testing related to graph inference

Jointly with my colleagues Etienne Roquain and Fanny Villers we use random graphs to address
a multiple testing problem. For a set of entities, the goal is to test a null hypothesis for every
pair of entities. By modelling the constellation of true and false null hypotheses by a stochastic
block model and the observations as a noisy version of this graph, we recast the problem as a
graph inference problem and successfully adapt the testing procedure of Sun and Cai [39]. The
work is published in [RRV22], the accompanying R package is called noisySBM [RV20] and the
code for the reproducibility of the results is available [RRV20].

2.3.1 State of the art

Paired null hypotheses occur in a large variety of domains such as social, biological or information
sciences [40, 41, 42], typically in the form of scores describing interactions or similarity of pairs of
entities. Thus, data have matrix form, potentially with large dimension. While the case of vector-
based multiple testing inference is ubiquitous, matrix-based datasets are far less understood in
the statistical literature. To the best of our knowledge, it has only been studied when the matrix
is built upon pairwise comparisons between coordinates of the same observed vector, as it is the
case with marginal or partial correlations, see [43, 44, 45] among others.

Our data are assumed to be directly collected in a matrix-wise fashion and the goal is to
improve testing by incorporating structural information in the inference. For this, we follow
the line of research based on the classical two-group mixture model introduced in [46]. The
seminal works [47, 48] show how to control the false discovery rate while improving on Benjamini-
Hochberg by consistently estimating the signal proportion, the null and alternative distributions.
Further significant power enhancement can be obtained by incorporating some latent structure
in the model, see [39] for group structure and [49, 50] for Markov structure.

We propose a random graph model that considers the observed matrice as a perturbation or
a noisy version of an underlying binary graph. In existing models as in [51, 52, 53, 54, 55, 56]
the uncertainty comes from a binary blurring mechanism of the underlying true network, that
erroneously removes or adds edges according to some probabilities. On the contrary, we mainly
work with Gaussian noise on the edges resulting in real-valued observations.
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2.3. Multiple testing related to graph inference

2.3.2 Noisy stochastic block model

Let n be the number of entities and X = (Xi,j)(i,j)∈A be a real-valued observed data matrix,
where Xi,j ∈ R corresponds to a score, measurement or test statistic for the pair (i, j). We
assume that a null hypothesis and an alternative is given for each pair and record the true-
ness/falseness of these null hypotheses in an unobserved binary matrix A = (Ai,j)(i,j)∈A, for
which Ai,j = 0 if and only if the null hypothesis for (i, j) is true. Specifically, this corresponds
to the multiple testing setting where we test simultaneously for all (i, j) ∈ A,

H0,i,j : Ai,j = 0 versus H1,i,j : Ai,j = 1.

The point of our work is to consider the binary matrix A as the adjacency matrix of a network,
where edges correspond to false null hypotheses. Concretely, we model the distribution of A
by a SBM, say A ∼ SBMn(π,γ) with K blocks, block proportions π, connectivity parameter
γ and node labels Z. The observation Xi,j is obtained by replacing missing edges (Ai,j = 0)
by pure random noise, that is, a realization of some null density g0,ν0 with unknown parameter
ν0, whereas in place of present edges (Ai,j = 1) a signal is observed, modeled by an alternative
density gνk,` with parameters νk,` given that Zi = k and Zj = `. The latter density depends on
the block labels of the interacting nodes in the underlying SBM, such that the signal strength
can be modulated locally. In short, conditionally on Z and A, in the noisy stochastic block model
(NSBM) all Xi,j are drawn independently as

Xi,j |Z, A ∼ (1−Ai,j)g0,ν0 +Ai,jgνZi,Zj , (i, j) ∈ A.

Our main example is the Gaussian case, where {g0,u, u ∈ V0} = {N (0, σ2
0), σ0 > 0} and {gu, u ∈

V} = {N (µ, σ2), µ ∈ R, σ > 0}, which is particularly suitable when the observations Xi,j

correspond to test statistics that are known to be approximately Gaussian.
We state conditions under which the NSBM is identifiable. Furthermore, we propose a

variational EM-algorithm for the inference. The algorithm provides an estimate θ̂ of all model
parameters as well as estimates Ẑ of the node labels. The inference algorithm is implemented
in the R packages noisySBM and it allows different types of distributions for the densities g0,u

and gu, namely Gaussian, exponential and Gamma distributions.

2.3.3 Multiple testing with structured `-values

A multiple testing procedure is a measurable function ϕ(X) ∈ {0, 1}R with ϕi,j(X) = 1 if and
only if the null hypothesis on (i, j) is rejected. The associated false discovery rate (FDR) and
true discovery rate (TDR) are defined by

FDR(ϕ) = Eθ

[∑
(i,j)∈R(1−Ai,j)ϕi,j(X)∑

(i,j)∈R ϕi,j(X)

]
, TDR(ϕ) =

Eθ
[∑

(i,j)∈RAi,jϕi,j(X)
]

Eθ
[∑

(i,j)∈RAi,j
] .
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(a) Observation X. (b) Adjacency matrix
A.

(c) BH procedure. (d) New procedure.

Figure 2.5: (a) Real-valued observation matrix X with block structure. (b) Adjacency matrix
A encoding the true (white) and false (black) null hypotheses. (c) Rejections of the Benjamini-
Hochberg procedure. (d) Rejections of our new procedure based on a latent graph.

A multiple testing procedure is considered to be optimal when its FDR, that is, the average
proportion of errors among the discoveries, is lower or equal some nominal level α, while its
power, that is, the TDR, is as large as possible.

In the toy example in Figure 2.5, the observed matrix X in (a) comes from the Gaussian
NSBM with underlying binary matrix A displayed in (b). Nodes are ordered according to the
block labels of the nodes in the SBM revealing a strong underlying structure of the data. True
null hypotheses give rise to pure noise in X (light-green points in (a)) and false null hypotheses
result in signal (normal to dark-green points). As the signal strength depends on the node labels,
here intermediate signal (normal green) is observed for intra-group edges, whereas the strongest
signals occur for the few inter-group edges. The classical Benjamini-Hochberg (BH) procedure
[57] is of the form ϕBH(Xi,j) = 1{|Xi,j | > c} for some threshold c. It is overly conservative as it
only recovers a small part of the signal, see (c). The lack of power is due to the application of
the same threshold c to all observations, failing to account for differences in the signal strength.
A better strategy consists in choosing local thresholds that adapt to the data structure. In
latent variable models, this can be achieved by considering the posterior probabilities, also
called structured `-values, given by `i,j(X, z, θ) = Pθ(Ai,j = 0|X,Z = z) instead of |Xi,j |. That
is, the test procedure has the form

ϕi,j = 1{`i,j(X,Z, θ) ≤ t}, (2.2)

for some threshold t, yielding much richer rejection regions than those of the form {|Xi,j | ≥ c}
for c > 0. Rejection regions based on `-values can be one-sided, two-sided with unbalanced sides
and more. This results in a large gain of power, as one can see from Figure 2.5 (d), where the
signal is almost perfectly recovered.

The threshold t can be chosen such that the so-called marginal FDR, given by MFDRθ(ϕ) =
Eθ
[∑

(i,j)∈R(1−Ai,j)ϕi,j(X)
]
/Eθ

[∑
(i,j)∈R ϕi,j(X)

]
, is controlled at level α. That is, threshold

t is chosen such that MFDRθ(ϕ) = α. The MFDR is an approximation of the FDR and has the
advantage to be handier and much easier to analyze than the FDR. The explicit computation
of threshold t can then be circumvented by considering the the associated q-values.
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2.3.4 Quasi-optimality of the procedure

We denote by ϕ∗ the oracle procedure, which is the test procedure defined in (2.2) based on
the true model parameter θ∗, the true node labels Z and the threshold t chosen as described
above. A data-driven procedure denoted by ϕ̂ is obtained by plug-in, when the estimates θ̂ and
Ẑ provided by the variational EM-algorithm are used in (2.2).

The oracle procedure ϕ∗ is nearly optimal as stated in the following theorem. In particular,
under mild model assumptions, the FDR is asymptotically controlled at level α. Moreover,
among all procedures that control the MFDR, the oracle ϕ∗ is the most powerful one.

Theorem 2 (Optimality of the oracle ϕ∗). Under appropriate assumptions,

1. MFDR(ϕ∗) = α,

2. for any procedure ϕ such that MFDR(ϕ) ≤ α, it holds TDR(ϕ∗) ≥ TDR(ϕ),

3. lim sup
n

FDR (ϕ∗) ≤ α.

Now our main result is that the data-driven procedure ϕ̂ mimics the behavior of the oracle
ϕ∗, both in terms of FDR and TDR, up to remainder terms. It is obvious that the performance
of ϕ̂ heavily depends on the quality of the estimator θ̂ and the clustering Ẑ. To state our results
on ϕ̂, we introduce the following risk probability defined for any ε > 0 by

η(θ∗, ε) = P(Ẑ 6= Z or ‖θ̂ − θ∗‖∞ > ε),

which corresponds to the probability that, either the clustering makes at least one mistake, or
the estimator θ̂ is more than ε away from the true parameter θ∗. Since the pioneer paper [58],
several studies have suggested that in various SBM-type models, under appropriate restrictions
on the parameter set Θ, the order of the risk probability η(θ∗, ε) becomes small when n increases
[59, 60]. This is proved for the maximum likelihood estimator and alternatively for its variational
approximation, and for a clustering based upon a maximum a posteriori approach, as used in
our algorithm. We suppose that η(θ∗, ε) tends to 0 for any ε > 0 in the NSBM, but it is not
proven explicitly.

Theorem 3 (Consistency of ϕ̂). Under appropriate regularity assumptions, if η(θ∗, ε) tends to
0 for any ε > 0, then

lim sup
n

FDR (ϕ̂) ≤ α, lim inf
n
{TDR (ϕ̂)− TDR (ϕ∗)} ≥ 0.

Theorem 3 is in line with the state-of-the-art consistency results for the FDR and TDR in
structured latent variable models, see [48, 49, 39, 61]. Now, the following theorem provides
insights on the rate of convergence of the procedure ϕ̂. We underline that these theoretical
results are non-asymptotic with respect to the number of tests, which is new to our knowledge
compared to the existing multiple testing literature for mixture models.
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Figure 2.6: Plot of (FDRα,TDRα) for BH, ABH, SC and the new procedure ϕ̂. Dashed lines
represent the nominal levels α.

Theorem 4 (Convergence rate of ϕ̂). Under appropriate assumptions, there exist constant C
such that for any n large enough and any sequence εn ≥

√
logn
n ,

FDR (ϕ̂) ≤ α+ Cεn + η(θ∗, εn), TDR (ϕ∗) ≤ TDR (ϕ̂) + Cεn + η(θ∗, εn).

2.3.5 Numerical performance

Simulation results, as those presented in Figure 2.6, illustrate that the new data-driven testing
procedure ϕ̂ controls the FDR at the nominal level. Furthermore, ϕ̂ largely outperforms state-
of-the-art methods like BH, an adaptive BH procedure (ABH) based on [62, 63] and a Sun
and Cai procedure (SC), which is based on thresholding cumulative means of `-values, which
are computed by estimating the alternative density by a mixture distribution [48]. Generally
speaking, numerical experiments support the validity of our approach and also demonstrate its
robustness with respect to model assumptions.

2.4 Model-based graph clustering

Today, entire collections of networks emerge in many fields of application [64, 65, 66, 67]. When
analyzing multiple networks, most questions are related to graph comparison. The focus of the
present work is on clustering of networks that do not share the same set of vertices and may
vary in size. The goal is a method that partitions the networks according to their topology.
Note that here the term graph clustering refers to the clustering of entire networks and not to
the clustering of nodes of a single network as often considered in the literature. We propose a
model-based clustering approach and an agglomerative algorithm for the inference. The method
is described in [Reb22] and the algorithm is available via the R package graphclust [Reb23]).
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2.4. Model-based graph clustering

2.4.1 State of the art

Networks have complex structure and thus graph comparison is not trivial. Graph similarity or
graph distances can be defined in many ways [68, 69, 70, 71, 72, 73, 74]. Comparison can also be
performed by hypothesis tests as in [75]. A widespread approach is based on graph embeddings.
A graph embedding is a low-dimensional vector representation encoding structural information
of the network. When networks share the same nodes, it makes sense to use node embeddings
as for the task to cluster nodes of a single network as done in [76]. With a vector-valued graph
embedding at hand, graph clustering is easily performed using off-the-shelf machine learning
algorithms. However, such approaches do not account for the estimation uncertainty, since all
graph embeddings are exactly treated in the same way regardless of the size of the network.

To overcome this problem a model-based clustering approach may be used that models the
uncertainty associated with the observations (see [77] for a review). A statistical model also
has the advantage to provide a natural framework for model selection, that is, the automated
choice of the best number of clusters. In [78, 79] mixture models for the graph clustering are
developed, the first for networks with node correspondence, the second for networks that do
not share the same nodes. To the best of our knowledge, our model is the first that applies
to collections of networks that do not share the same vertices and can be both directed or
undirected. Furthermore, our model is much easier to interpret than models based on graphon
estimates [80, 79] .

2.4.2 Mixture of stochastic block models

To perform model-based clustering, we follow the long-standing tradition of using a mixture
model. To that end, a model for the mixture components has to be chosen. Here it is important
to distinguish two cases, namely whether the node set is the same for all observed networks or
whether there is no correspondence between the vertices of one network and another. For the
first case, some approaches have been explored, namely by modeling mixture components by a
stochastic block model [78] or a generalized linear models [81], or by measurement error models,
where networks are considered to be perturbations of some ground-truth graph [82, 83]. In our
work we focus on the second case, where networks have different sets of vertices and we propose
a new mixture model. As we desire an interpretable model, we opt to use the stochastic block
model for the mixture components.

Formally, letA = {A(m)),m ∈ JMK} be a collection ofM networks, whereA(m) = (A(m)
i,j )1≤i,j≤n(m)

∈ {0, 1}n(m)×n(m) denotes the adjacency matrix of the m-th network. Networks may have
different numbers n(m) of vertices. We introduce independent discrete latent variables U =
(U (1), . . . , U (M)) ∈ JCKM defining a partitioning of the M networks into C ≥ 1 clusters. Denote
pc = P(U (m) = c), c ∈ JCK the cluster proportions and p = (p1, . . . , pC) ∈ (0, 1)C . Now, let
(π(c),γ(c)), c ∈ JCK be parameters of C different SBMs. The associated numbers of blocks, say
Kc, are not constrained to be equal. We assume that all networks in cluster c are independent
realizations of the SBM with parameter (π(c),γ(c)). That is, in the mixture model of SBMs,
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conditionally on U ,

A|U =
⊗

m∈JMK

A(m)|U (m) =
⊗

m∈JMK

SBMn(m)

(
π(U(m)),γ(U(m))

)
.

Denote θ =
(
p, {(π(c),γ(c)), c ∈ JCK}

)
the parameters of the mixture model, and note that θ

is identifiable only up to label switching. That is, switching cluster labels always results in
the same probability distribution of A. In addition, in every SBM, the node labels are also
identifiable only up to label switching.

2.4.3 Hierarchical agglomerative algorithm

In a mixture model the clustering task becomes an inference problem, since cluster labels cor-
respond to the latent variables of the model. In general model-based clustering, EM-type algo-
rithms [84], MCMC [85] and hierarchical algorithms [86] are traditionally used to jointly infer
cluster labels and model parameters. In the case of graph clustering, for mixtures of networks
with a constant node set, EM algorithms are developed [78, 81] as well as Gibbs samplers [82, 83].
They all have the disadvantage that the number of clusters must be set by the user.

For our model we develop a hierarchical agglomerative algorithm that starts from an over-
segmented clustering with singleton clusters. That is, we initialize the algorithm by a mixture
of M SBMs and set U (m) = m for m ∈ JMK, that is, every network forms a cluster on its
own. Then clusters are successively merged to larger clusters while optimizing some criterion.
Following the line of research initiated by [87], we choose the integrated classification likelihood
(ICL) as the objective defined as

ICL(A,U ,Z) = log(p(A,U ,Z)) = log
(∫

p(A,U ,Z|θ)p(θ)dθ
)
,

where p(θ) is a prior on the model parameters. The values (Û , Ẑ) that maximize the ICL, that
is, (Û , Ẑ) = arg maxU ,Z ICL(A,U ,Z), are convenient estimates of the graph clustering and the
node labels. At every iteration, we choose the pair of clusters that yield the largest increase of
the ICL when merging them. Obviously, for an efficient implementation of the algorithm, it is
crucial that the evaluation of the increase of the ICL of merging any two clusters is fast. We
show that this is in fact the case when choosing an appropriate prior distribution p(θ) and we
provide a number of details and hints for speeding up computation.

Interestingly, the algorithm provides a whole cluster hierarchy that can be visualized by
a dendrogram and intermediate clusterings are easily inspected. As the criterion includes a
penalization of the number of clusters, the algorithm automatically stops when any further
cluster aggregation results in a deterioration of the objective. Thus, model selection is performed
automatically.

Furthermore, merging two clusters raises an issue related to the non-identifiability of the
block labels in the SBM. In fact, node labels in the two clusters may not refer to the same
type of blocks, but in our algorithm, for a given cluster, node labels must designate the same
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2.4. Model-based graph clustering

Figure 2.7: ARI for both our hierarchical algorithm and GCS for varying number of networks
M and varying network sizes n(m). ARI computed over 100 datasets in each of the four settings.

SBM block in every network. If this is not the case, it is necessary to relabel the nodes when
merging the clusters. A naive strategy consists in ordering one part of the SBM parameters, for
instance, the block proportions π1, . . . , πK or the diagonal elements of the connectivity matrix
γ in a monotone order. However, as none of the parts of the parameter contains all relevant
information, there are always cases where such an approach fails. To take into account both
parts of the parameter (π,γ), we propose to use the graphon of the SBM.

The graphon, introduced by [88], is a function g : [0, 1]2 → [0, 1] that can be used as a gen-
erative model for exchangeable random graphs including the SBM. First, generate independent
random variables Ui ∼ U [0, 1] for the vertices i ∈ JnK. Then, conditionally on Ui and Uj , draw
an edge Ai,j ∼ Ber(g(Ui, Uj)). The graphon of the model SBMn(π,γ) is given by

g(π,γ)(u, v) = γk,l for every (u, v) ∈ Rk,l = (qk−1, qk]× (ql−1, ql] , (2.3)

where qk =
∑
s∈JkK πs, k ∈ JKK, q0 = 0. Indeed, when Ui ∈ (qk−1, qk], then Zi = k. The graphon

g(π,γ) is a piecewise constant function depending on the entire SBM parameter. Clearly, it also
depends on the order of the block labels. Changing the block labels implies the permutation of
the piecewise constant parts of the graphon.

To compare SBMs with parameters (π(c),γ(c)) and (π(c′),γ(c′)), consider the L2-distance of
their graphons. By the piecewise constant character, the squared distance is a finite sum given
by

‖g(π(c),γ(c)) − g(π(c′),γ(c′))‖
2
2 =

∫
[0,1]2

(g(π(c),γ(c))(u, v)− g(π(c′),γ(c′))(u, v))2d(u, v)

=
∑

k,l,k′,l′

(
γ

(c)
k,l − γ

(c′)
k′,l′

)2
|Rk,l,k′,l′ |, (2.4)
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Figure 2.8: Geographical representation of the clustering of the foodwebs.

where |Rk,l,k′,l′ | denotes the area of Rk,l,k′,l′ defined as

Rk,l,k′,l′ =
{(
π

(c)
k−1, π

(c)
k

]
∩
(
π

(c′)
k′−1, π

(c′)
k′

]}
×
{(
π

(c)
l−1, π

(c)
l

]
∩
(
π

(c′)
l′−1, π

(c′)
l′

]}
.

Roughly, our tool to match block labels of two SBM parameters consists in finding the permuta-
tions of the block labels yielding the smallest graphon distance. One can avoid the exploration
of the set of all possible permutations by reordering the blocks of the graphon according to its
marginals [89], rendering the evaluation of the graphon distance computationally fast. Note that
the graphon distance in (2.4) is well-defined even when the number of blocks of the two models
differ, that is, our tool can be used to compare two SBMs with different numbers of blocks.
This tool may have an interest beyond the here considered clustering task and may be useful
whenever SBMs have to be compared.

2.4.4 Properties of the clustering procedure

A numerical study highlights numerous properties of our algorithm. First, concerning estimation
accuracy, it is well known that in the single network setting parameter estimates converge to
the true SBM parameter when the number of nodes increases. Now, in the multiple network
framework a different question is the accuracy of the estimators as a function of the number M
of networks, when the network size n(m) is bounded. Fitting a standard SBM to a single small
network yields SBM estimates with less blocks than in the true underlying model, since data do
not provide enough evidence to estimate the parameters of a more complex model. However, we
show that our approach that jointly analyzes all networks, allows to discover the true number
of blocks and provides a better parameter estimate, even when all networks in the collection are
small.
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2.4. Model-based graph clustering

Figure 2.9: Graphon of SBM parameter of the dominant cluster with in-coming and out-coming
probabilities on the sidebars.

Second, Figure 2.7 shows that increasing the number of vertices n(m) per network has not the
same effect on the quality of the clustering as increasing the number of networksM . Collections
that contain large networks provide better clustering results than those composed of small
networks only.

Third, we compare our clustering algorithm to alternative methods. Most graph cluster-
ing procedures in the literature are based on a graph distance and apply spectral clustering to
derive a clustering. Here we consider the (minimal) graphon distance defined in (2.3) to com-
pare networks pairwisely and refer to this approach as the graphon spectral clustering (GSC)
method. Figure 2.7 illustrates that in the four settings GSC is largely outperformed by our
graph clustering approach although the correct number of clusters was provided to the GCS
method. Moreover, no substantial improvement of GSC is observed when more data are avail-
able. This is in accordance with our understanding of such approaches, where the estimation
uncertainty is not taken into account and networks are only analyzed separately. We conclude
that model-based approaches as ours, where a common descriptor of each cluster is computed
using all data associated with the cluster have a real advantage over graph distance methods.

Fourth, our cluster algorithm is robust to model misspecifications. In particular, the algo-
rithm is able to make a distinction between data from the mixture model and outliers.

2.4.5 Application to ecological networks

Finally, an application to ecological networks, the mangal data base provided by [67], highlights
the interpretability of the model and its usefulness for ecology. Our algorithm clusters 187
foodwebs from all over the world into 17 clusters, see Figure 2.8, revealing a dominant structure
shared by about two third of the species. The SBM parameter of this universal ogranization of a
foodweb, represented in Figure 2.9, indicates that in this organization about 43% of the species
are vegetarians, 18% are predators and the rest of the species is somewhere in the middle of the
food pyramid with both good chances to be eaten and to eat others. The foodwebs in the other
clusters have significantly different graph topology and a comparison of their SBM parameters
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allows to appreciate the differences between the different foodweb structures.
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Chapter 3

Nonparametric density estimation in
inverse problems

Inverse problems are often motivated by applications, where the distribution of interest may not
be observed directly but only through noise or with some nonlinear distortion. In this chapter,
two specific inverse problems are considered: continuous mixture models, namely mixtures of
exponential densities, and biased data models, where a known nonlinear transformation deforms
the target distribution. We propose nonparametric density estimates that come with a sound
theoretical foundation. Our methods rely on modern statistical techniques. In the first work we
provide minimax bounds, in the second we derive oracle-type risk bounds for adaptive estimators
and compare the numerical performance of different estimates for the same task.

3.1 Minimax estimation of a mixing density

In contrast to finite mixture models, in a continuous mixture every observation is generated
with an individual parameter. That is, the distribution of the latent parameter is not discrete,
but continuous, taking its values in an entire interval. We investigate the problem of estimating
the mixing density from observations of such a continuous mixture. We have a special interest
in scale mixtures like mixtures of exponential distributions, which are regularly encountered in
physics, but rarely studied in the statistical literature. We also address the problem of estimating
the support of the mixing density. This is joint work with François Roueff, that we started at
the end of my PhD. It is published in [RR15].

3.1.1 State of the art

Continuous mixtures immerge naturally in many fields of application, whenever an individual
parameter is associated with each observation. The mixture density πf is defined as

πf (x) =
∫

Θ
f(t)πθ(x)dθ,
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where {πθ, θ ∈ Θ} is a collection of densities and f the so-called mixing density. When θ is
a scale parameter the model is called a scale mixture. Scale mixtures of uniforms are related
to multiplicative censoring introduced in [90] and length-biased data, see [91]. Exponential
mixtures play a significant role in natural science phenomena of discharge or disexcitation.
From a mathematical point of view, scale mixtures are particularly interesting as they define
classes of densities that verify some monotonicity constraints: mixture of Beta distributions
B(1, k) are k-monotone densities, and any completely monotone function can be written as an
exponential mixture [92].

To estimate the mixing density different estimation strategies have been explored. Kernel
estimators were considered [93, 94, 95] in particular when θ is a location parameter [96]. For
mixtures of discrete distributions, orthogonal series estimators have been developed and studied
in [97] and [98] and shown to have similar or better rates of convergence than the kernel estimator
in [99]. Other projection estimators are based on Laguerre functions [100] or the Mellin transform
[101].

3.1.2 Orthogonal series estimator

Our goal is to identify the mixing density f when a sample X1, . . . , Xn of the continuous mixture
πf is observed. The mixing density f is assumed to be square integrable, that is, f ∈ L2[a, b].
Let (ψk)k≥1 be a complete orthonormal basis of L2[a, b], so that f can be written as the orthog-
onal series f(θ) =

∑
k≥1 ckψk(θ) with ck = 〈f, ψk〉. So estimating the coefficients ck yields an

estimator of f . This can be achieved by using the following property that holds in any mixture
model. The moments of the mixture distribution correspond to the inner product of the mixing
density f with some function ϕ. More precisely, for any nonnegative integrable function g,

Eπf [g(X)] =
∫
g(x)πf (x)dx =

∫
f(θ)

∫
g(x)πθ(x)dx︸ ︷︷ ︸

=ϕ(θ)

dθ = 〈f, ϕ〉.

It follows that, if we find functions (gk)k≥1 such that (ϕk)k≥1 defined as ϕk(θ) = Eπθ [gk(X)] are
linearly independent functions in L2[a, b], then a sequence of orthonormal functions ψ1, ψ2, . . .

can be easily constructed. That is, the functions ψk can be written as linear combinations∑
j∈JkKQk,jϕj with known coefficients (Qk,j)j∈JkK. This yields explicit moment estimates, say

ĉn,k, of the coefficients ck. Finally, choosing an approximation parameter m, an estimator of the
mixing density f is given by f̂m,n = 1

n

∑
k∈JmK ĉn,kψk. We refer to f̂m,n as the orthogonal series

estimator or the projection estimator of approximation order m, as it is an approximation of
the projection of f on the subspace Vm = span(ϕ1, . . . , ϕm).

Those functions gk depend on the mixture model, that is, on the collection {πθ, θ ∈ Θ}. For
exponential distributions, that is, when πθ(x) = θe−θx, one can choose gk(x) = 1

{
x > k − 1

2

}
for k ≥ 1, yielding ϕk(θ) = e−(k− 1

2 )θ.
Now, in many examples, there exists an operator T that transforms every function ϕk into

a polynomial of degree k − 1. In the example above on exponential mixtures, such an operator
is Tf(t) = f(− log t)/

√
t for t ∈ [e−b, e−a]. By this trick, our estimator can be considered as a
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polynomial approximation of Tf in some auxiliary space L2[a′, b′]. In the following study of the
estimator we suppose that the coefficients Qk,j are those of normalized Legendre polynomials in
the space L2[a′, b′].

3.1.3 Rates of convergence and minimax risk

We provide an analysis of the orthogonal series estimator. First, we analyze the mean integrated
squared error, then in the exponential mixture case, the estimator is shown to achieve the optimal
minimax rate.

Mean integrated squared error

The mean integrated squared error (MISE) of our estimator has the classical bias-variance
decomposition.

Proposition 1. The orthogonal series estimator f̂m,n satisfies

E
∥∥∥f̂m,n − f∥∥∥2

= ‖PVmf − f‖2 + 1
n

tr
(
QΣQT

)
,

where PVm is the projection operator on Vm = span(ϕ1, . . . , ϕm), Σ is the covariance matrix of
(g1(X1), . . . , gm(X1)) and Q is the matrix containing all coefficients Qk,j.

From the squared bias ‖PVmf−f‖2 we see that the performance of the estimator depends on
how well f can be approximated by functions in Vm. To be more precise, for any approximation
rate index α and radius C, define the approximation class

C(α,C) = {f ∈ L2[a, b] : ‖f‖ ≤ C and ‖PVmf − f‖ ≤ Cm−α for all m ≥ 1}.

So if the mixing density f belongs to C(α,C), then the bias is well controlled, namely it decreases
at the rate m−α as m increases. Now using properties of the Legendre polynomials, one obtains
the following convergence rates of the MISE.

Theorem 5. Suppose that f ∈ C(α,C). Let f̂m,n be the orthogonal series estimator with Leg-
endre polynomials coefficients. Then

E
∥∥∥f̂mn,n − f∥∥∥2

≤ C2m−2α
n (1 + o(1)),

in either of the following two cases:

(i) with mn = A logn with appropriate constant A and if there are constants B,C0 such that
Var(gk(X)) < C0B

2k.

(ii) with mn = A logn/ log logn with appropriate constant A and if there are constants C0, η

such that Var(gk(X)) < C0k
ηk.

Consequently, according to the considered case, the estimator f̂mn,n achieves the MISE rates
(logn)−2α and (log(n)/ log logn)−2α uniformly on the set of densities in C(α,C). Concerning
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the estimator of our example in the exponential mixture, one can show that condition (i) is
satisfied and thus the convergence rate is of order (logn)−2α. Below we will show that this is
the optimal rate, that is, our estimator is minimax.

Approximation classes

Although the approximation classes C(α,C) appear naturally in our study, they are not very
intuitive and depend on the chosen functions gk. Therefore, we show that the classes C(α,C)
are equivalent to more common smoothness classes. To that end, consider the weighted moduli
of smoothness, denoted by ωrϕ(f, t)p, that were introduced by [102] for the study of the rate of
polynomial approximations. For constants α > 0 and C > 0, we define the following class of
functions in L2[a, b]

C̃(α,C) = {f ∈ L2[a, b] : ‖f‖ ≤ C and ωrϕ(f, t)2 ≤ Ctα for all t > 0},

where ϕ(x) =
√

(x− a)(b− x) and r = [α] + 1. The following theorem states the equivalence of
the classes C(α,C) and C̃(α,C).

Theorem 6. Let α > 0. Suppose that the opereator T has the form Tg = σ × g ◦ τ with
sufficiently smooth functions σ and τ . Then there are constants C1 and C2 such that for all
C > 0

C(α,C1C) ⊂ C̃(α,C) ⊂ C(α,C2C).

This means that the classes C(α,C) are equivalent to classes defined using weighted moduli
of smoothness. This, in turn, relates them to Sobolev and Hölder classes.

Minimax rates

We study the question of the best possible convergence rate. In other words, we search a lower
bound of the minimax risk defined as

inf
f̂∈Sn

sup
f∈C

Eπf ‖f̂ − f‖
2,

where Sn is the set of all Borel functions from Rn to L2[a, b], and C denotes a subset of densities
in L2[a, b]. In [RR15] we first provide a rather general lower bound of the minimax risk that
covers a large spectrum of mixture models. However, to exhibit convergence rates for a specific
mixture, (much) more work is required. In our paper the specific cases of exponential mixtures,
Gamma shape mixtures and mixtures of compactly supported scale families are investigated in
more detail. Our main result concerns exponential mixtures and we prove the following minimax
lower bound.

Theorem 7. In the exponential mixture model, there exists a constant C∗ such that

inf
f̂∈Sn

sup
f∈C̃(α,C)

Eπf ‖f̂ − f‖
2 ≥ C∗(logn)−2α(1 + o(1)).
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This yields that the orthogonal series estimator with the functions gk as chosen above in the
example and mn = O(logn) is optimal in the sens that it achieves the minimax rate. Moreover,
in the case of Gamma shape mixtures we show that our orthogonal series estimator achieves the
minimax rate up to a log logn multiplicative term.

3.1.4 Support estimation

A basic assumption of our estimation approach is that the mixing density f belongs to L2[a, b].
However, in practice the exact interval [a, b] is generally unknown. To compass this problem,
we propose an estimator of the support of the mixing density f . Again we take advantage of
polynomial approximations. Note that the problem of having to deal with an unknown support
also occurs in classical density estimation, see [103, 104, 105].

Our support estimator is more precisely an estimator of the support of Tf denoted by [a0, b0]
and the idea is to consider as estimates the smallest and largest value where the estimator T f̂n,mn
exceeds some threshold εn/2, by disregarding side-effects of size ηn. More precisely,

ân = inf
{
u ∈ [a′, b′] : T f̂n,mn(v) > εn

2 for all v ∈ [u, u+ ηn]
}

b̂n = sup
{
u ∈ [a′, b′] : T f̂n,mn(v) > εn

2 for all v ∈ [u− ηn, u]
}
.

If Tf decrease fast enough to zero on the borders of the interval [a0, b0], then we can show that
our support estimator is consistent for a convenient choice of the sequences (εn)n and (ηn)n.

Proposition 2. For sequences mn → ∞, εn → 0 and ηn → 0 such that E
∥∥∥f̂n,mn − f∥∥∥2

H
=

O
(
m−2α
n

)
, ε−1

n = o
(
m

(2α−1)/(2+1/α′)
n

)
and ηn = O

(
ε

1/α′
n m−1

n

)
, the estimators ân and b̂n are

consistent for the support bounds a0 and b0. More precisely, as n→∞,

(ân − a0)+ = OP
(
ε1/α′
n

)
and (ân − a0)− = OP

(
ε1/α′
n m−1

n

)
,

(b̂n − b0)+ = OP
(
ε1/α′
n m−1

n

)
and (b̂n − b0)− = OP

(
ε1/α′
n

)
.

3.2 Adaptive estimation in biased data models

In various applications, observations are not directly available from the target distribution due
to noise, missing data, censored or truncated observations. Those nonlinear distortions yield
specific inverse problems and make functional estimation difficult. My interest for such models
goes back to my doctoral thesis that was concerned with the so-called pile-up model and for
which I proposed new methods in a parametric setting [RRS10, RRS11].

With Fabienne Comte we have then taken up the challenge of developing new nonparametric
density estimators that best address the constraints encountered in practice. Based on modern
techniques of nonparametric estimation we explore different strategies to correct nonlinear defor-
mations in different contexts. We also provide oracle-type risk bounds for the mean integrated
squared error (MISE) of the proposed adaptive estimators. Extensive numerical experiments
complete the study. The work is published in [CR12] and [CR16].
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3.2.1 The pile-up model and a general biased data model

Two models are studied, where the first, the so-called pile-up model, is a special case of the more
general biased data model.

Pile-up model

The pile-up model is encountered in time-resolved fluorescence, where the fluorescence lifetime
is the duration that a molecule stays in an excited state before emitting a photon [106, 107]. The
distribution of the fluorescence lifetimes associated with a sample of molecules provides precious
information on the underlying molecular processes. They are used by chemists to determine, for
instance, the speed of rotating molecules or molecular distances.

Measurements are obtained by a technique called Time-Correlated Single-Photon Counting
(TCSPC) [108]. After exciting a random number of molecules by a laser pulse, only the arrival
time of the fastest photon striking the detector is observed. In other words, in the pile-up model
an observation is defined as the minimum of a random number of independent and identically
distributed (iid) variables following the target distribution. That is, observations Z1, . . . , Zn are
given by

Zi = min{Xi,1, . . . , Xi,Ni}, i ∈ JnK, (3.1)

where (Xi,k)i,k≥1 are iid random variables with density f and cumulative distribution function
(cdf) F , and the random variables (Ni)i≥1 are iid with Poisson distribution P(θ) restricted on
{1, 2, . . . } and independent from (Xi,k)i,k≥1. The aim is to recover the density f of the variables
Xi,k from the observations Z1, . . . , Zn without knowledge of the numbers (Ni)i≥1 over which the
minimum is taken.

In TCSPC, the Poisson parameter θ is a tuning parameter chosen by the user. Recent
studies have made it clear that from a statistical information viewpoint, it is preferable to
operate TCSPC in a mode with considerable pile-up effect [RRS11]. Consequently, estimation
procedures are required that take the pile-up effect into account.

In one of our works we consider the specific case, where (Xi,k)i,k≥1 are supposed to be
independent copies of X defined as

X = Y + η, with Y ∼ f, η ∼ fη, Y ⊥⊥ η. (3.2)

Here, η represents some additional measurement error or noise attributed to the measuring
instrument. Then we want to recover the density f of Y from observations Z1, . . . , Zn given
by (3.1).

Biased data model

In the pile-up model, the observed distribution G is the result of a nonlinear distortion of the
target distribution F . More precisely, G(z) = 1 − Mθ ◦ (1 − F )(z) with Mθ(u) = E(uN ) =
(eθu − 1)/(eθ − 1). This can be generalized by introducing a general known link function H :
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3.2. Adaptive estimation in biased data models

[0, 1]→ [0, 1] and assuming that

G(z) = H ◦ F (z), z ∈ R. (3.3)

We refer to this model as the biased data model. It holds that

f(z) = w ◦G(z) g(z), z ∈ R with w(u) = 1
H ′ ◦H−1(u) , u ∈ [0, 1]. (3.4)

It follows the fundamental property that, for any measurable bounded function ψ, we have

EX∼F [ψ(X)] = EZ∼G [ψ(Z) w ◦G(Z)] . (3.5)

This relation is the basis for the construction of moment estimators of E[ψ(X)] based on a
sample Z1, . . . , Zn from the distorted distribution G. Replacing the cdf G by its empirical
version Ĝn(z) = 1

n

∑
i∈JnK 1{Zi ≤ z} yields a natural estimator of E[ψ(X)] by

L̂ = 1
n

∑
i∈JnK

ψ(Zi) w ◦ Ĝn(Zi) = 1
n

∑
i∈JnK

ψ(Z(i)) w
(
i

n

)
. (3.6)

where Z(i) denotes the i-th order statistic associated with (Z1, . . . , Zn) satisfying Z(1) ≤ · · · ≤
Z(n). We see that L̂ is a linear combination of order statistics, also called an L-statistics in the
literature.

3.2.2 State of the art

The pile-up and the biased data model are related to survival analysis. The former models some
random right-censoring, while the latter is similarly defined as the nonlinear transformation
model in [109], and it can also be viewed as a biased data problem with known bias as in [110].

The first problem that we studied concerns the pile-up model, where we consider additional
measurement errors as defined in (3.2) to stick closely to the nature of fluorescence lifetime
measurements. Combining nonlinear distortions with additive noise is new in the literature and
real technical difficulties have to be faced in order to preserve standard deconvolution rates. We
show that deconvolution methods in the spirit of [111], [112], [113] or [114], whose use in survival
analysis is unusual, can be adapted to the pile-up model to derive oracle-type risk bounds.

Our second work adresses the problem of nonparametric density estimation in the general
biased data model. It is noteworthy that the model can be related to other biased data contexts,
which have been studied from various points of view by several authors: strategies for estimating
cumulative distribution functions are proposed by [115], [116], [117], [118], [119]. Adaptive
projection estimators correspond to methods originally described by [120] and applied to survival
analysis and biased data by [121, 118] and [110]. We explore different strategies to invert the
nonlinear relation of the target distribution and propose both kernel and projection estimators.
For all estimators the question of adaptive model selection or bandwidth selection is addressed.
Concerning the kernel estimators we follow the recent promising approach of Goldenshluger and
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Figure 3.1: (a) Estimation with pile-up correction and deconvolution. (b) No pile-up correction.
(c) No deconvolution.

Lepski [122]. An extensive simulation study compares all estimators and provides new insights
on their performances.

3.2.3 Estimator in the pile-up model with measurement errors

In [CR12] we consider the pile-up model defined in Section 3.2.1 with additional noise, that is,
where the (Xi,k)i,k≥1 have the form (3.2) and the density of X is assumed to be the convolution
of densities f and fη, i.e. fY+η = f ?fη, it is natural to consider deconvolution techniques based
on Fourier transforms. Recall that f∗ = f∗Y+η/f

∗
η , and by the Fourier inverse formula

f(z) = 1
2π

∫
eizt

f∗Y+η(t)
f∗η (t) dt. (3.7)

To construct an estimate of f , first consider the estimation of f∗Y+η(t) = E(e−it(Y+η)). According
to (3.6), a moment estimator is given by

f̂∗Y+η(t) = 1
n

∑
k∈JnK

wθ(k/n)e−itZ(k) ,

with weight function wθ(u) = (1 − e−θ)/(θ(1 − u(1 − e−θ))) that depends here on the Poisson
parameter θ and defined more generally in (3.4). By plugging f̂∗Y+η into (3.7), and if the noise
distribution fη is known, we finally get an estimator of f by

f̂m(z) = 1
2πn

∑
k∈JnK

wθ(k/n)
∫ πm

−πm

eit(z−Z(k))

f∗η (t) dt, (3.8)

where a cut-off in the integral, here at −πm and πm, is required, since the Fourier transform
f∗η (t) tends to 0 when |t| → ∞. Figure 3.1 displays simulation results to demonstrate that both
corrections, the pile-up correction via the weights wθ(k/n), and the noise correction, via the
deconvolution, are necessary to recover the target density.

Alternatively, f̂m can be written as a weighted kernel deconvolution estimator. This allows
to make a link with many other works in the kernel deconvolution setting, see [113], [111], [123].
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3.2. Adaptive estimation in biased data models

Furthermore, the alternative expression of f̂m as a kernel estimator is an L-statistics, and thus
the central limit theorem for L-statistics proved in [RRS10] (see Appendix B therein) could be
applied to obtain asymptotic normality of

√
n(f̂m(z)− fm(z)) with computable limit variance.

From a theoretical point of view, we obtain the following bound of the mean integrated
squared error (MISE) of f̂m.

Proposition 3. Let fm denote the function verifying f∗m = f∗1[−πm,πm]. Then, under some
regularity assumptions, there is a constant C such that

E(‖f̂m − f‖2) ≤ ‖f − fm‖2 + C
∆η(m)
n

where ∆η(m) = 1
2π

∫ πm

−πm

du
|f∗η (u)|2 .

There is an explicit expression of the constant C, which depends on the Poisson parameter
θ. Indeed, when θ increases, the minimum in (3.1) is taken over more and more variables and so
the pile-up distortion is getting stronger and the estimation problem more difficult. Intuitively,
this goes in hand with a larger constant C and so with a larger risk bound.

The above risk bound has a classical bias-variance decomposition. The bias ‖f − fm‖2 =
(2π)−1 ∫

|u|≥πm |f∗(u)|2du is clearly decreasing when m increases. On the contrary, the variance
term ∆η(m)/n is increasing withm. Hence, a good choice ofm operates a bias-variance trade-off.

To determine the rate of convergence of the MISE, it is necessary to specify the type of the
noise distribution, namely the rate of decrease to 0 of f∗η near infinity, as the variance depends
crucially on it. In the fluorescence setting, one can show that it is appropriate to consider
noise that is ordinary smooth of order γ, denoted by η ∼ OS(γ). This means that the Fourier
transform f∗η satisfies

c0(1 + u2)−γ ≤ |f∗η (u)|2 ≤ C0(1 + u2)−γ .

In classical deconvolution the regularity spaces used for the functions to estimate are Sobolev
spaces defined by

C(a, L) =
{
g ∈ (L1 ∩ L2)(R),

∫
(1 + u2)a|g∗(u)|2du ≤ L

}
.

The optimization of the upper bound of the MISE provides the optimal choice of m and we
obtain the following optimal rate of convergence for the MISE.

Proposition 4. If f ∈ C(a, L) and η ∼ OS(γ), then for mopt = O(n1/(2a+2γ+1)) it holds

E(‖f̂mopt − f‖2) = O(n−2a/(2a+2γ+1)).

Obviously, in practice the optimal choicemopt is not feasible since a and part of the constants
involved in the order are unknown. Therefore, a data-driven model selection device is required
to choose a relevant f̂m in the collection. Another issue in practice is that the noise distribution
fη and the Poisson parameter θ are usually unknown. They may be estimated, but the question
is how plug-in estimates of fη and θ affect the performance. We address these three issues in
the following.
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3.2.4 Automatic cut-off selection

Data-driven model selection can be performed following the classical penalization approach by
Barron et al. [120]. To this end a different view of the estimator, namely as a minimizer of a
contrast, is useful. Indeed, a good estimator of f is the function h that minimizes the difference
‖h − f‖2 over a given set of functions. An empirical approximation (up to a constant) of the
difference ‖h− f‖2 = ‖h‖2 − 2〈h, f〉+ ‖f‖2 is given by the contrast γn defined by

γn(h) = ‖h‖2 − 1
π

∫
h∗(−u)

f̂∗Y+η(u)
f∗η (u) du.

Here it is natural to consider the set of functions Sm = {h, support(h∗) ⊂ [−πm, πm]}.
Then one can show that f̂m defined in (3.8) minimizes the contrast γn over Sm, that is, f̂m =
arg minh∈Sm γn(h). This also means that f̂m is indeed a projection estimator, which is, by the
way, also an advantage for its numerical evaluation, as it can be written as a sum.

The general method to select the cut-off parameter or model m consists in finding a data-
driven penalty pen(.) such that the model m̂ defined as

m̂ = arg min
m∈Mn

{γn(f̂m) + pen(m)} (3.9)

achieves a bias-variance trade-off, where Mn is the collection of considered models. As γn is
an approximation of the squared bias, the penalty is usually chosen to have the same order as
the variance term. It is difficult to derive the optimal constants for the penalty, so numerical
constants κ and κ′ are introduced, which have to be calibrated by simulation. Here, we propose
two penalties that are proven to be convenient in different contexts.

Theorem 8. Let

pen1(m) = κ1
(
aθ + κ′1bθ log(n)

) ∆η(m)
n

, pen2(m) = κ2
(
aθ + κ′2cθ

) ∆η(m)
n

,

where aθ, bθ, cθ are known constants and κj, κ′j , j = 1, 2 are numerical constants to be calibrated
via simulations. Let f̂m̂ be the estimate defined in (3.8) with m̂ chosen according to (3.9) with
one of the penalties pen1 or pen2. Then there are constants C,C ′ such that

E
(
‖f̂m̂ − f‖2

)
≤ C inf

m∈Mn

(
‖f − fm‖2 + pen(m)

)
+ C ′

log(n)
n

. (3.10)

Risk bounds of the form (3.10) are called oracle inequality, since the data driven estimator
f̂m̂ achieves the bias-variance compromise, up to the multiplicative constant C and the residual
C ′ log(n)

n . Compared to classical deconvolution results, the penalty pen1 contains an additional
log(n)-term and thus induces a loss with respect to the expected rate. That is, when considering
Sobolev spaces, the MISE is of the order O

(
(n/ log(n))−2a/(2a+2γ+1)

)
. This loss is certainly due

to the complexity of the problem under consideration, which involves several sources of error,
namely a nonlinear distortion, additional noise and the estimation of the cdf G used in the
weights.
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3.2. Adaptive estimation in biased data models

To improve the bound and avoid the log-loss, we can use the second penalty pen2. How-
ever, to prove the bound, we found it necessary to split the data sample into two parts, say
(Z−i)i∈JnK and (Zi)i∈JnK to separate the estimation of the cdf G from the rest. That is, an
independent estimate G̃n(t) = 1

n

∑
i∈JnK 1{Z−i ≤ t} of G is computed and used in the weights

wθ(G̃n(Zi)) evaluated at the observations (Zi)i∈JnK of the second sample. More precisely, the
weights wθ(k/n) = wθ(Ĝn(Z(k))) in (3.8) are replaced with wθ(G̃n(Zi)). Then the optimal rate
of convergence is obtained, that is, the risk bound is of order O

(
n−2a/(2a+2γ+1)

)
according to

the above theorem.

3.2.5 Practice-oriented setting

In time-resolved fluorescence, the Poisson parameter θ of the number N of photons hitting the
detector is unknown, but easily estimated. As there are excitations that are not followed by the
emission of any photon, N has indeed not a restricted, but a classical Poisson distribution with
values in {0, 1, . . . }. So we can use the proportion P0 of excitations that are not followed by the
observation of a photon to estimate θ. As P(N = 0) = e−θ, a natural estimate of θ is given by

θ̂ = − log(P0).

For the case where the estimate θ̂ is used instead of θ in the definition of f̂m in (3.8), we
propose to use a new penalty, which is now a random quantity, inducing new difficulties in the
proof. The penalty is conceived such that the above risk bound still holds (with a slight loss in
the constants) and the bound has the same order of magnitude as before. This means that the
estimation procedure is robust with respect to this additional estimation step.

Theorem 9. Let
p̂en(m, θ̂) = κ3

(
aθ̂ + κ′3(bθ̂ + d) log(n)

) ∆η(m)
n

.

Let f̂m̂ be the estimate defined in (3.8) using θ̂ instead of θ and with m̂ chosen according to (3.9)
with the penalty p̂en(m, θ̂). Then the risk bound given in (3.10) holds with appropriate constants
C,C ′.

Another issue in practice concerns the noise distribution fη, which may not be the known
and may be of nonparametric form. In the fluorescence set-up, a large independent sample of
pure noise, say (η−k)k∈JmK, may be available, which can be used to estimate f∗η by f̂∗η (u) =
1
m

∑
k∈JmK e−iuη−k and replaced in our procedure. In [124] the same substitution is considered

for deconvolution methods and it is shown that for ordinary smooth noise and large sample sizes
this leads to a risk bound exactly analogous to the one given in (3.10). In a numerical study
we showed that there is nearly no loss when using an estimated f̂∗η instead of the exact f∗η .
A rigorous theoretical justification would clearly require a considerable amount of work due to
measurement errors and the nonlinear distortion.
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3.2.6 Nonparametric weighted estimators for biased data

Now in our second study in [CR16] we consider the general biased data model defined in (3.3)
and the problem of constructing a nonparametric estimate of the underlying target density f .
Indeed, the two standard approaches in nonparametric estimation, namely kernel and projection
estimation, can be applied here. Furthermore, there are two ways to correct the bias: either a
classical density estimate is computed directly on the data and then a correction is applied, as in
[125], or weights are directly associated with the data so that a direct estimator of the quantity
of interest is obtained, as in [RRS10] and in the previous pile-up model with measurement errors.
In both cases, adaptive devices for the selection of the kernel bandwidth or the model can be
established. It is most interesting to compare all these estimators, which is done in this work.

To start with, let K be a kernel, h a bandwidth and Kh(u) = K(u/h)/h. The standard
kernel estimator of g based on observations Z1, . . . , Zn from the distribution G is given by

ĝker
h (x) = 1

n

∑
i∈JnK

Kh(x− Zi), x ∈ R.

Then, using to (3.4), a plug-in estimator of f is given by

f̂ker-P
h (x) = w(Ĝn(x))ĝker

h (x), x ∈ R.

Alternatively, taking ψ(z) = Kh(x− z) in (3.5), according to (3.6) another estimator is given by

f̂ker-W
h (x) = 1

n

∑
i∈JnK

w(Ĝn(Zi))Kh(x− Zi).

Concerning projection estimators, the general idea is to approximate g (or f) by its orthogo-
nal projection onto some function space. Let A be an interval and (ϕj)j≥1 an orthonormal basis
of L2(A). Denote the subspaces Sm = Span(ϕj , j ∈ JdmK) of dimension dm. The orthogonal pro-
jection of g on Sm is given by gm =

∑
j∈JdmK ajϕj with coefficients aj = 〈g, ϕj〉 = EZ∼G[ϕj(Z)],

which can be estimated by âj = n−1∑
i∈JnK ϕj(Zi). Hence, an estimate of g is given by

ĝproj
m =

∑
j∈JdmK âjϕj , and finally, an estimator of f is obtained by

f̂proj-P
m (x) = w(Ĝn(x)) ĝproj

m (x), x ∈ R.

To apply the second bias-correction method, the orthogonal projection of f on Sm is given
by fm =

∑
j∈JdmK bjϕj with coefficients bj = 〈f, ϕj〉 = EY∼F [ϕj(Y )]. With ψ = ϕj in (3.5), the

coefficient bj is approximated by b̂j = n−1∑
i∈JnKw(i/n)ϕj(Z(i)). Hence, a second projection-

type estimator of f is given by

f̂proj-W
m (x) =

∑
j∈JdmK

b̂jϕj(x), x ∈ R.

In the following (ϕj)j≥0 is the trigonometric basis and we consider subspaces Sm of dimension
dm = 2m + 1. This basis has the advantage of simplicity and provides nested models allowing
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for fast computation.
For the four density estimators risk bounds of very similar form are obtained. One can

consider both, the pointwise and the integrated risk. For instance, for the estimator f̂ker-W
h we

prove the following bounds.

Proposition 5. Under appropriate smoothness assumptions,
(i) for any x0, there is a constant C1 such that

E
[
(f̂ker−W
h (x0)− f(x0))2

]
≤ 3(Kh ∗ f(x0)− f(x0))2 + C1‖f‖∞

nh
. (3.11)

(ii) there exists a constant C2 such that satisfies

E
[
‖f̂ker−W
h − f‖22

]
≤ 3‖Kh ∗ f − f‖2 + C2

nh
.

As usual, the risk bounds are composed of a squared bias term and a variance term. The
first one decreases when h → 0, whereas the second increases. Hence, automatic bandwidth
selection aims at finding a compromise between these two antagonist terms.

More precise orders for the bias term may be obtained under stronger assumptions on the
regularity of the kernel and when the density f belongs to a Hölder or the Nikol’ski space. If the
bandwidth h is chosen of order n−1/(2β+1), where β is the Hölder (or the Nikol’ski) regularity
index, then the resulting rate of the MISE is of order n−2β/(2β+1). But as β is unknown, this
choice cannot be done in that naive way and thus data-driven methods for bandwidth selection
are required.

Similar results are obtained for the projection estimators, as, for instance, for f̂proj-W
m .

Proposition 6. There is a constant C3 such that

E
[
‖f̂proj−W
m − f1A‖22

]
≤ ‖f1A − fm‖22 + C3

dm
n
.

One can show that on Besov spaces Bα,2,∞(A), choosing dm∗ = O(n1/(2α+1)) yields that
E(‖f̂m∗ − fA‖22) = O(n−2α/(2α+1)). This rate is known to be optimal in the minimax sense for
density estimation for direct observations [126].

3.2.7 Data-driven bandwidth selection

To develop devices for a data-driven selection of the bandwidth h, we follow the recent approach
of Goldenshluger and Lepski [122] that relies on empirical processes and powerful deviation
inequalities and offers convenient and rigorous control of the estimators. Part of the results
obtained by this approach are nonasymptotic, contrary to many kernel studies. Applying this
method in the case of biased data is a novelty, in theory and in practice.

We illustrate the construction of the selector of the best bandwidth for the estimator f̂ker-W
h (x0)

of f(x0) at some fixed point x0. Let H be a finite collection of bandwidths. Essentially, Gold-
enshluger and Lepski propose an improved estimation of the squared bias in the upper bound
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of the MISE in (3.11). To this end, we first introduce new estimators f̂ker-W
h,h′ of f depending on

two bandwidths h, h′ defined as

f̂ker-W
h,h′ (x) = Kh′ ∗ f̂ker-W

h (x), x ∈ R.

The specific idea here is that Kh′ ∗ (Kh ∗ f − f) is approximately Kh ∗ f − f , and so for small h′,(
f̂ker-W
h,h′ (x0)− f̂ker-W

h′ (x0)
)2

is a good approximation of the squared bias. Unfortunately, this
estimate has a bias itself, which is of the same order as the variance. Hence, the new estimator
of the squared bias is defined by

B(h, x0) = sup
h′∈H

[(
f̂ker-W
h,h′ (x0)− f̂ker-W

h′ (x0)
)2
− V (h′)

]
+

with V (h) = κD‖f‖∞
logn
nh

,

where D is a known constant. The term V (h) can be interpreted as a variance estimate, aug-
mented by a log(n) factor. Consequently, the optimal bandwidth hker-W(x0) is given by

hker-W(x0) = arg min
h∈H
{B(h, x0) + V (h)} .

Here, the existence of a minimal value for the constant κ in the variance term V (h) has been
studied only very recently in [127], and the calibration procedures are not yet well understood.
This is probably due to the fact that the variance estimate V (h) plays two different roles,
namely as a variance estimate and and as bias correction. This is why our numerical study of
Section 3.2.8 is of interest.

Now the following result holds for the estimator f̂ker-W
ĥker-W(x0)(x0).

Theorem 10. Under some regularity assumptions, there are constants C and C̄ such that for
all κ ≥ κmin,

E
[(
f̂ker−W
ĥker−W(x0)(x0)− f(x0)

)2
]
≤ C∗ inf

h∈H

(
‖Kh ∗ f − f‖2∞ + V (h)

)
+ C̄

logn
n

.

If f belongs to the Hölder class Σ(β, L) and if H is large enough, the upper bound is of
order (n/ log(n))−2β/(2β+1). Moreover, in classical density estimation (without any nonlinear
distortion), the log(n)-loss is known to be unavoidable and thus adaptive minimax (see [128]).

Concerning the plug-in kernel estimator f̂ker-P
h (x0), one can proceed in the same way, namely

by adapting the new bias estimator. This results in an optimal bandwidth of the form hker-P(x0) =
arg minh∈H

{
B̃(h, x0) + Ṽ (h)

}
and a similar oracle inequality is derived. Under appropriate reg-

ularity assumptions, the risk bound on f̂ker-P
hker-P(x0)(x0) is an automatic compromise related to the

regularity of g and provides the best possible rate if f and g belong to the same Hölder space.
Global bandwidth selection for both kernel estimators follows the same lines, essentially by

replacing squared differences by squared norms. Oracle bounds are of the same flavor.
Concerning model selection for the projection estimators the approach used in Section 3.2.4

can be adapted. That is why it is not presented in detail here.
From a theoretic point of view, all the procedures are proved to deliver the best possible
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tradeoff when selecting the model or the bandwidth and have (nearly-)optimal rates. Now it is
intrinsically interesting to assess their numerical performances.

3.2.8 Experimental study

In an extensive numerical study all adaptive estimators are compared on synthetic data from the
pile-up model. Recall that there are two bias correction strategies both applicable to projection
and kernel estimators. Furthermore, for each kernel estimator with a given bias correction both
pointwise and global bandwidth selection can be used, resulting in a total of six estimators to
be compared one to another. All numerical constants κ are calibrated via simulation. The
projection estimators are rather robust to the choice of the value of κ, while for the kernel
estimators calibration is much less evident. In the experimental study we make the following
observations.

Bias-correction approach: weighted estimators or plug-in strategy? Often both strate-
gies provide very similar results. But in cases of a strong pile-up effect, the weighted estimators
are slightly doing better and are more robust than their plug-in counterparts.

Estimation approach: Global kernel, pointwise kernel or projection strategy? Pro-
jection and global kernel estimators give the best overall results. For some types of densities
projection estimators are clearly the best. Interestingly, the pointwise kernel estimators are
mostly far behind all other estimators. This is surprising as the pointwise method conceptually
outplays the global one, since it is conceived to capture peaks like in the exponential or Laplace
distribution. An analysis of the oracle (see next paragraph) sheds more light on this issue.

Comparison to the oracle Here the oracle is the MISE of the best estimator that could have
been chosen and that can be evaluated numerically in simulations. More precisely, for instance,
for the weighted kernel estimator f̂ker-W

ĥker-W with global bandwidth selection ĥker-W, the oracle for
a given dataset is minh∈H ‖f̂ker-W

h − f‖2.
Our numerous simulations make clear that the pointwise kernel methods perform much better

than their global counterparts, often a factor 4 between the different oracles (depending on the
type of the underlying target distribution f). This is coherent with our understanding of the
pointwise selection approach, where the optimal bandwidth is chosen at every point x0, while
the global method selects a single bandwidth that is used for the entire estimation interval.
As our projection estimators also rely on a global selection method for the entire interval, it is
natural that their oracles are much worse than those of the pointwise kernel methods.

Now it is interesting to analyze the difference of the oracle with the actually achieved MISE by
the adaptive estimators. Obviously, the kernel pointwise estimator is not able to take advantage
of its very small oracles, as there is a factor 10 to 20 between the oracles and the corresponding
MISE values. It is evident that the pointwise bandwidth selection fails completely. For the
global kernel estimators the loss between the oracle and the realized MISE by the estimator is
only about a factor 2, and projection estimators do even better.
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Topics in machine learning

This chapter provides a collection of works on various topics in signal processing and machine
learning. While they are not really connected one to another, they all aim at improving some
statistical method to provide more relevant results in practice. We improve the estimation of
radar signals by taking into account the complex data structure (Section 4.1), we reduce the
dimension of high-dimensional data using recent results on random matrices (Section 4.2), we
handle missing data in self-organizing maps (Section 4.3) and show how to avoid mistakes when
clustering data points (Section 4.4).

4.1 Estimation of multipath radar signals

A transmitted, unknown radar signal is intercepted. Due to propagation and reflexion on ob-
stacles, the signal arrives via more than one pathway with different time delays on the receiver,
which composed of several sensors. The aim in signal intelligence (SIGINT) is to recover not
only the waveform of the signal, but also the direction of arrival. Exploiting the parsimonious
time-frequency representation of the signal, we write the model as a linear model with structured
sparsity pattern and propose a new orthogonal matching pursuit algorithm for the inference that
is suitable for large dimensions. Our method performs well even when the signal-to-noise ratio
is low.

This work is the result of my postdoc at Télécom ParisTech on a project with Direction
générale de l’Armement (DGA). It is joint work with Maurice Charbit and Céline Lévy-Leduc
available in [RLLC11a, RLLC11b].

4.1.1 State of the art

Several subspace methods and maximum likelihood approaches have been proposed to deal with
coherent sources, see [129, 130, 131, 132]. However, all of them are parametric approaches and to
the best of our knowledge, estimating the waveform, which is an infinite-dimensional parameter,
in a nonparametric way has not yet been considered for multipath signals.

Our approach consists in a linearization of the model yielding a high-dimensional linear model
with sparse coefficients. For dealing with the estimation in sparse linear regression models, the
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4.1. Estimation of multipath radar signals

Lasso [133] and the greedy orthogonal matching pursuit (OMP) ([134], [135]) have become very
popular tools. In our case, an inspection of the model shows that the parameter vector is not
sparse in an arbitrary way, but sparsity is subject to a number of constraints so that the allowed
sparsity patterns have specific structure. In order to include prior information on the sparsity
structure, different approaches have been proposed in the literature. On the one hand, there are
methods based on composed `1/`2-penalties (elastic nets [136]; fused Lasso [137]; group Lasso
[138]; composite absolute penalty [139]; overlapping groups [140, 141]). On the other hand, an
extension of the orthogonal matching pursuit for structured solutions has been proposed in [142]
that applies to non-overlapping groups. Compared to Lasso methods, OMP algorithms have the
advantage to be more easily scalable to high dimension, which is of most interest in our case. We
follow the line of research for OMPs and propose an extension to consider more sophisticated
sparsity structures, namely overlapping and nested groups.

4.1.2 Modelling multipath radar signals

Let {s0(t)}t≥0 ⊂ C be the original radar signal emitted by the source, where t is the time. The
number U of propagation pathways is unknown. Every pathway is characterized by a direction
of arrival du, a time-delay tu and an attenuation constant au. The signal is detected by an
antenna with C sensors and its array response is a known function r taking values in RC . The
signal arriving at the sensor array is given by

s(t) =
∑
u∈JUK

aus0(t− tu)r(du).

As the time lags tu are much shorter than the length of the emitted signal s0, the arriving s is
the superposition of several delayed replicates. The signal is observed at time steps of length ∆,
so that observations are of the form ym = s(m∆) + εm, m ∈ JMK, where εm denotes additive
Gaussian noise.

4.1.3 Sparse linear model with structured sparsity pattern

As the relationships between the parameters are very complex, we propose a reformulation by
linearizing the model. On the one hand, we represent the waveform in an overcomplete basis
and, on the other hand, we discretize the other parameter spaces. This leads to a linear model
with a high-dimensional model parameter and nonlinear constraints. More precisely, using a
dictionary D = {ϕj , j ∈ JJK} of waveforms, we assume that there are coefficients βj such that
the signal verifies

s0 =
∑
j∈JJK

βjϕj .

Using grids {τ1, . . . , τP } and {θ1, . . . , θQ} of potential values for the delay times tu and the angles
of arrival du, and denoting αp,q =

∑
u∈JUK au1{tu = τp, du = θq}, the observation ym reads

ym =
∑
j∈JJK

∑
p∈JP K

∑
q∈JQK

αp,qβjr(θq)ϕj(m∆− τp) + εm, m ∈ JMK,
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where most of the coefficients αp,q and βj are zero. Now, by storing all known quantities
r(θq)ϕj(m∆− τp) in a matrix X and all model parameters αp,qβj in a vector w, the model can
be written as a linear regression of the form

Y = Xw + ε, with w ∈ W =
{
w = β ⊗ α ∈ CJPQ : α ∈ CPQ, β ∈ CJ

}
,

where w = β⊗α denotes the Kronecker product. The set W is not the entire space CJPQ but a
smaller, nonconvex subset and the sparsity pattern S = {(j, p, q) : wj,p,q = 0} of w is subject to
a number of constraints. In fact, αp′,q′ = 0 implies that wj,p′,q′ = 0 for all j. Likewise, if βj′ = 0
then wj′,p,q = 0 for all p and q. Thus, the sparsity pattern of w has a specifique structure.

4.1.4 Constraint relaxation

Clearly, for this model a method is required that works for high-dimensional feature spaces, as
there are much more parameters than observations (PQJ � MC). Furthermore, the method
has to account for the sparsity and the specific structure of the sparsity pattern of the model
parameter. We propose a procedure in two steps, where the first step is based on a relaxation
of the constraints on the model parameter, such that a regularization method can be applied,
which has a penalty that induces structured sparsity similar to [139]. More precisely, solve the
penalized minimization problem given by

min
w∈CJPQ

{
‖Y −Xw‖2 + Ω(w)

}
, (4.1)

where Ω(w) is a structured `1/`2-penalty encoding the sparsity pattern of w of the form

Ω(w) = λ1
∑
p∈JP K

∑
q∈JQK

‖wGαp,q‖2 + λ2
∑
j∈JJK

‖w
Gβj
‖2,

where λ1, λ2 > 0 are regularization parameters and Gαp,q and G
β
j are the sets of indices indicating

zero entries in w coming from αp,q = 0 or βj = 0, respectively. The solution w̃ is a vector with
admissible sparsity structure. However, there may not exist any vectors α and β such that
w̃ equals the Kronecker product α ⊗ β. That is, this step only serves to estimate the sparsity
pattern. Then, from the sparsity pattern one can derive the set of indices Iα and Iβ of coefficients
α̃p,q and β̃j that must be nonzero.

Then, in the second step of our procedure, the goal is to compute the best nonzero entries of
such vectors α̃ and β̃. To achieve this, the matrix X is reduced by keeping only the predictors
xj,p,q such (p, q) ∈ Iα and j ∈ Iβ. This reduces the dimension largely, and when β̃ is fixed,
the model is linear in α̃ with explicit ordinary least squares estimator. Thus, the Nelder-Mead
simplex method can be used to compute the least squares estimator in the model

Y = Xreduced(β̃reduced ⊗ α̃reduced) + ε,

where no constraints are put on α̃reduced and β̃reduced.
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4.2. Dimension reduction with random matrix theory

4.1.5 Scalability by orthogonal matching pursuit

To obtain a good representation of the waveform, a large dictionary shall be used. Likewise, to
avoid biased estimators of angles and time delays, we may use fine grids. However, this results
in a huge design matrix X (in our simulations we easily achieve more than 109 columns). This
raises computational difficulties, namely concerning the storage of the design matrix X. These
considerations have motivated us to use an orthogonal matching pursuit algorithm to solve (4.1),
resulting in a scalable algorithm.

Orthogonal matching pursuit (OMP) consists in adding iteratively the predictor to the cur-
rent solution w(t) which is the most correlated with the current residual r(t) = Y −Xw(t). In [142]
OMP is extended to selecting non-overlapping groups of variables, where G is a set of pairwise
disjoint sets Gg and one adds all variables of group Gg∗ if ‖XT

Gg∗
r(t)‖22 = maxg∈I ‖XT

Gg
r(t)‖22.

Proceeding in this way guarantees that at every step of the algorithm, the current solution
respects the required sparsity structure. As our sparsity patterns are more involved with over-
lapping groups, the selection of the components to be activated in the current solution must be
chosen more carefully. In [RLLC11a] we provide full technical details on this adapted choice of
components.

The regularized problem (4.1) is similar to the active set algorithm described in [141], but our
algorithm is faster and scalable to very large dimension. Indeed, where the active set algorithm
solves the penalized problem of reduced dimension by a second-order cone programming, our
updates of w(t) are performed by the ordinary least squares estimator, which is known explicitly.

Furthermore, in view of scalability it is important to note that the OMP-type algorithm does
not perform any computations involving the entire design matrix. Essentially, only correlations
of the current residual r(t) and the predictors XG associated with a group of variables G are
computed. That is, only a part of the matrix X is required. In short, the storage of X can be
avoided by recomputing the required predictors at every iteration. Thus, there are almost no
limits on the size of the regression matrix, and almost arbitrarily large dictionaries and grids
may be used.

A simulation study illustrates the good performance of the new method and exhibits a
considerable improvement with respect to some elementary method. Even when the signal to
noise ratio is low, very accurate results are achieved.

4.2 Dimension reduction with random matrix theory

High-dimensional noisy data often live in a subsapce of low dimension. Dimensionality reduction
aims at separating signal from noise in order to preserve significant properties of the data in
a low-dimensional space before analyzing them by further statistical methods. We address the
challenge of estimating the dimension of the subspace where the signal lives in and propose
a novel estimator that relies on recent results from random matrix theory. Consistency of
the estimator is proved in the modern asymptotic regime, where the number of features grows
proportionally with the sample size. Experimental results show that the novel estimator is robust
to noise and, moreover, it gives highly accurate results in settings where alternative methods
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fail. This is joint work with Malika Kharouf and Nataliya Sokolovska, which is published in
[KRS18].

4.2.1 State of the art

In many applications as speech recognition [143], wireless communications [144], hyperspectral
imaging [145], chemometrics [146], medical imaging [147], genomics [148] or mathematical finance
[149], the signal space dimension is much lower than the number of observed features. A challenge
is to determine the low-dimensional signal space, in order to perform dimension reduction by
projecting the data onto a the smaller subspace. A major difficulty in real data sets is the
presence of noise, making the estimation of the signal space involved. Here we address the
fundamental question of determining the optimal dimension of a high-dimensional problem.

An overview of methods to estimate the dimension of the signal space is provided in [150].
The most prominent method is based on the number of principal components that is necessary
to explain a given part of the total variance [151]. The scree graph, which is the plot of ordered
sample eigenvalues, is also widely used in practice. These selection methods are rather heuristic.
A recent approach based on eigengaps, that is the distance between consecutive sample eigenval-
ues (for both white [152] and colored [153] noise), comes with theoretical guarantees stemming
from results in random matrix theory. However, in practice, the eigengap method may provide
erroneous results when the signal eigenvalues are not well separated.

The purpose of this work is to improve on the eigengap method to obtain robustness in the
presence of rather close signal eigenvalues, while preserving the strong theoretical properties of
the initial approach. This is achieved by a more global look on the sample eigenvalues.

4.2.2 Spiked population model

In the additive noise model the observed vector Y ∈ Rp equals a signal vector S corrupted by
additive white noise E, that is,

Y = S + E,

where S and E are independent, and E is centered with covariance σ2Ip. The covariance of Y
verifies Cov(Y ) = Cov(S) + σ2Ip.

Often the signal S is a linear combination of a relatively small number of predictors, that is,
S = Bx for some (p×r)-matrix B with r < p. In other words, the signal lives in a proper subspace
of Rp of dimension r. To separate signal from noise, data may be compressed to this smaller
subspace. This model is also referred to as the spiked population model, and the eigenvalues of
the covariance matrix of the observed vector Cov(Y ) denoted by λ1 ≥ · · · ≥ λp > 0 verify

λ` =
{
α` + σ2, l ∈ JrK
σ2, l > r

,

where α1 > · · · > αr > 0 are the non zero eigenvalues of the signal’s covariance Cov(S).
The first r eigenvalues λ1, . . . , λr are called spikes and they yield important information on the
signal dimension r. Now consider a data set (Y1, . . . Yn) of n independent realizations of Y and
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4.2. Dimension reduction with random matrix theory

denote by λ̂1 ≥ · · · ≥ λ̂p ≥ 0 the eigenvalues associated with the sample covariance matrix of
(Y1, . . . , Yn).

4.2.3 Eigenrange method

We propose an estimator that relies on asymptotic results on the eigenvalues. In the pure noise
case, where Y = E and Cov(Y ) = σ2Ip, the seminal work of Marchenko and Pastur [154]
shows that, when p/n → c, the limits of all sample eigenvalues λ̂` lie in the interval [a, b] with
a = σ2(1 −

√
c)2 and b = σ2(1 +

√
c)2. In the additive noise model, the nonspiked sample

eigenvalues still tend to lie in the Marchenko-Pastur interval [a, b], while the limits of the spikes
are outside [155]. More formally,

λ̂` −→ α` + σ2
(

1 + c+ cσ2

α`

)
a.s, as p/n→ c, for ` ∈ JrK.

We see that sample eigenvalues are asymptotically biased. Furthermore, the first and last pure
noise eigenvalues tend to the limits of the interval [a, b]. As a consequence, the range of the pure
noise sample eigenvalues, that is, λ̂r+1 − λ̂m with m = min(n, p), tends to b − a, whereas the
distance λ̂l − λ̂m for any ` ∈ JrK is significantly larger.

From this viewpoint, a natural estimator of the signal dimension r is derived from the number
of sample eigenvalues contained in an interval of approximate length b−a. For a threshold εn > 0,
an estimator of the signal space dimension, called the eigenrange method, is defined by

r̂range = min{` : λ̂`+1 − λ̂m − (b− a) < εn}.

4.2.4 Consistency result

We establish consistency of r̂range in the modern asymptotic regime, when both the sample size
and the number of features tend to infinity. This is most relevant for applications where the
number of features p is of the order of the sample size n or larger. Generally, results in this
regime provide better approximations of the finite sample situation than those obtained in the
traditional regime, where the number of features p is fixed.

Theorem 11. Let (εn)n≥1 be such that εn → 0 and n2/3εn → ∞ as n → ∞. Then, under
appropriate model assumptions,

r̂range
n −→ r a.s. as p/n→ c.

It is noteworthy that consistency is obtained without strong distributional assumptions like
normality as it is the case of maximum-likelihood approaches and others.

The Marchenko-Pastur interval [a, b] depends on the unknown variance σ. As σ can be
estimated from the pure noise sample eigenvalues, we propose to alternate the estimation of r
and the estimation of σ. In general, convergence is attained in very short time.
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Table 4.1: Success rates of eigenrange (ER), eigengap (EG), kink (K) and PCA for explaining
80% of the variance on 1000 simulated datasets.

(a) distinct spikes, r = 3, c = 3

n eigenrange eigengap kink PCA
10 0.48 0.42 0.49 0.53
100 1.00 1.00 1.00 0.00
1000 1.00 1.00 1.00 0.00

(b) close spikes, r = 5, c = 0.5

n eigenrange eigengap kink PCA
50 0.62 0.00 0.51 0.00
500 1.00 0.14 0.77 0.00
5000 1.00 0.48 0.48 0.00

4.2.5 Robustness of the eigenrange method

In a numerical study that compares different methods to select the dimension, the method
based on the number of principal components to explain a given part of the total variance fails
completely. In contrast, the heuristic kink method that searches an elbow in the scree graph,
the eigengap method and our eigenrange method give excellent results in settings, where spiked
eigenvalues are well separated (Table 4.1 (a)). However, when the setting contains rather close
spiked eigenvalues, then the eigenrange method clearly outperforms the alternative methods
(Table 4.1 (b)). Indeed, methods that focus on local features of the scree graph underestimate
the dimension r, while the global approach of the eigenrange method works correctly. In this
sense the eigenrange method is robust to the presence of very close spiked eigenvalues, whereas
alternative methods fail.

4.2.6 Application to classification

To illustrate the importance of the accurate estimation of the signal space dimension, we consider
the classification task. We use data from the UCI machine learning repository, namely four life
science data sets. First, we apply alternatively the kink, eigengap and eigenrange methods
to estimate the dimension of the data, then several PCA variants are applied to reduce the
dimension of the data. Finally, classification is performed by a support vector machine. The
PCA variants considered here for projecting the data are the structured sparse PCA method
by Jenattion et al. [156], a sparse PCA approach by Zou et al. [157], and the inverse power
method applied to sparse PCA by Hein et al. [158]. A different approach by Mestre et al. [159]
relies on new consistent estimators of the eigenvectors when p/n → c < 1. Figure 4.1 displays
the 10-fold cross validation test accuracy, and we see that the eigenrange method achieves the
optimal performance on all tested data sets and generally provides better results than the kink
or eigengap approaches.
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Figure 4.1: Classification accuracy on four life science data sets. Accuracy as a function of
the estimated data dimension r̂ (K – kink, ER – eigenrange, EG – eigengap) and different
dimensionality reduction methods.

4.3 Self-organizing maps for incomplete data

A self-organizing map (SOM) is an unsupervised neural network which is widely used as a data
exploration tool for data visualisation and clustering. The standard method is suitable only for
complete data without any missing values. However, in many applications, partially observed
data are the norm. With my student Sara Rejeb and in collaboration with Catherine Duveau at
Safran Aircraft Engines, we propose an extension of SOM for incomplete data that incorporates
the estimation of missing values. There is a published paper [RDR22] and an R package named
missSOM [RDR22].

4.3.1 State of the art

Among the main tasks of data exploration are visualization and clustering of the data. While
there is plethora of methods addressing one of the two tasks, self-organizing maps, introduced
by [160], provide both a low-dimensional visual representation of the data in form of a map and
a clustering of the observations. Self-organizing maps have become very popular in many fields
of application, since they provide easily interpretable results with a global view of the data.

In practice, a common issue with datasets are missing entries, as they have a serious impact
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on statistical results. They may lead to biased estimates and less accuracy. A first attempt
to adapt SOM to partially observed presented in [161] consists in simply restricting all vector
calculations to the observed entries. As such, there is no loss of information, since all observed
data entries are taken into account in the algorithm. However, the method is not an imputation
method.

In our work we propose a method that combines the learning of the map with the task of
imputing missing values by a principled approach. Our motivation is the fact that any non trivial
imputation method is based on some data model, and so it is natural to use the self-organizing
map for imputation. Conversely, a better map may be learned when data are complete. Thus,
treating both tasks simultaneously may be beneficial for the two of them.

4.3.2 The missSOM algorithm

To present our self-organizing map (SOM) for partially observed data, we first recall the stan-
dard method for complete data. A self-organizing map is a nonlinear projection of the high-
dimensional data set, say x1, . . . , xn ∈ Rp, onto a two-dimensional map represented by a regular
grid composed of K fixed neurons. The fixed spatial arrangement of the neurons on the map
is the key for the preservation of the topology of the input data when projected onto the map.
Every neuron k is associated with a p-dimensional prototype vector wk, also called code vector,
that is to be learned. The prototype vectors define a discretization of the data space, and each
observation xi is assigned to its closest prototype.

The Kohonen algorithm for standard SOM is an iterative procedure treating one randomly
picked observation xi per iteration. First, determine the neuron `xi which is closest to xi, that
is, `xi = arg mink∈JKK ‖x − wk‖2. Then, all code vectors wk are updated by attracting them
towards the measurement xi. The attraction is the strongest for the winning neuron and weaker
for distant neurons. More precisely, let Vλ : JKK2 7→ R+ be a neighborhood function defining
the arrangement of the neurons on the map. Then, the update of the codes vectors is given by

w
(t+1)
k = w

(t)
k + εtVλ(k, `xi)(xi − w

(t)
k ), k ∈ JKK, (4.2)

for a sequence of learning steps (εt)t≥0. Those updates eventually result in an ordered map,
where neighboring neurons have similar prototype vectors.

Now, in the presence of missing entries, we propose to modfiy the Kohonen algorithm such
that both the map and missing entries are learned simultaneously. With some abuse of no-
tation, for a vector xi, we denote its observed and missing parts by xcomplete

i = (xobs
i , xmiss

i ).
At iteration t, the current code vectors and imputed missing values obtained at the previous
iteration are denoted by w(t−1)

k and x̂miss(t−1)
i , respectively. In our algorithm, the winning neu-

ron is computed by restricting the Euclidean distance to the observed entries xobs
i , that is,

`
(t)
xobs
i

= arg mink∈JKK ‖xobs
i − w

obs(t−1)
k ‖2. The update of the code vectors is done according

to (4.2), where missing values are imputed by the current values x̂miss(t−1)
i . Finally, we add a

new step to update the imputed values x̂miss(t)
i using a weighted mean of the code vectors given
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4.3. Self-organizing maps for incomplete data

Algorithm 2 Accelerated missSOM algorithm
Input: Data x1, . . . , xn.
Initialization: Choose imputed values x̂miss(0) and code vectors w(0).
Set t = 1.
while not converged do

Set w̃i = w
(t−1)
i for i ∈ JnK.

for i ∈ JnK do
Compute winning neuron `(t)

xobs
i

= arg mink∈JKK ‖xobs
i − wobs(t)

k ‖2.
Update code vectors:
for k = JKK do

w
(t)
k = w̃k + εtVλt(k, `

(t)
xobs
i

)
(
(xobs
i , x̂

miss(t−1)
i )− w̃k

)
.

end for
end for
Update imputed values according to (4.3).
Set t = t+ 1.

end while
Output: Final code vectors w(t) and imputed data x̂miss(t).

by

x̂
miss(t)
i,j =

∑
k∈JKK Vλt(k, `

(t)
xobs
i

)w(t)
k,j∑

k∈JKK Vλt(k, `
(t)
xobs
i

)
. (4.3)

The algorithm is summarized in Algorithm 2. Interestingly, the computing time of missSOM
is comparable to the computing time of the Kohonen algorithm for complete data, as only the
update of the imputed values is added, which is fast.

4.3.3 Loss function including imputed values

One can show that our approach has some theoretical foundation in the sense that the algorithm
tends to minimize a new loss criterion. It is known from [162] that the classical Kohonen
algorithm for complete data is a stochastic approximation algorithm for the minimization of the
loss given by

L(w) = 1
n

∑
i∈JnK

∑
k∈JKK

Vλ(k, `xi)‖xi − wk‖22, (4.4)

where w = (w1, . . . , wK) are the code vectors. Now, for incomplete data, define a new loss by

Lmissom(w, x̂miss) = 1
n

∑
i∈JnK

∑
k∈JKK

Vλ
(
k, `xobs

i

) ∥∥∥(xobs
i , x̂miss

i )− wk
∥∥∥2

2
,

where (xobs
i , x̂miss

i ) denotes the i-th observation completed with x̂miss
i and x̂miss = (x̂miss

1 , . . . , x̂miss
n ).

The criterion Lmissom can be decomposed into two parts as

Lmissom(w, x̂miss) = Lobs(w) + Lmiss(w, x̂miss),
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where Lobs is the counterpart of L in (4.4) in the presence of missing data and Lmiss(w, x̂miss)
is given by

Lmiss(w, x̂miss) = 1
n

∑
i∈JnK

∑
k∈JKK

Vλ
(
k, `xobs

i
)
) ∥∥∥x̂miss

i − wmiss
k

∥∥∥2
.

A natural algorithm to minimize Lmissom(w, x̂miss) consists in alternating (i) the minimization
of w 7→ Lobs(w), and (ii) the minimization of x̂miss 7→ Lmiss(w, x̂miss) with fixed w. Here, (i) is
roughly the classical Kohonen algorithm with the suitable way to determine the winning neuron,
and the solution of (ii) has closed-form expression given by (4.3).

4.3.4 Numerical performance

In a numerical study we compare missSOM to other methods. The simplest approach to deal
with missing data consists in simply deleting the observations that have missing values and
applying the standard Kohonen algorithm for complete data to the remaining data. In the
simulations this approach is shown to be far from optimal and all error rates are the worst.

The approach proposed by Cottrell et al. [161] is suited for incomplete observations, but does
not incorporate any estimation of missing values within the algorithm. However, imputation is
easily performed once the map is learned by imputing the values of the winning prototypes. The
quality of the map obtained with Cottrell’s method is very close to that obtained by missSOM.
However, missSOM achieves a significantly better imputation error. This highlights that it is
beneficial to learn missing values simultaneously with the map, and not separately afterwards.

In comparison with other imputation methods, missSOM is doing fine. While its imputation
error is slightly worse than that of missForest by [163], which uses random forests, it is better
than other imputation methods like k-nearest neighbor (kNN) (see [164]), amelia, a model-based
approach based on Gaussian mixtures model [165], or just imputing by the mean value. This
is illustrated in Figure 4.2 (a) on the wines dataset from the UCI machine learning repository
[166], where we generated missing entries randomly with various proportions.

Now, with any imputation method at hand, we can first impute missing values and then
apply the standard Kohonen algorithm for complete data. The maps obtained that way are all
much worse than with missSOM, as can be seen by the topographic and the quantization errors
in Figure 4.2 (b) and (c). Again, this shows that our simultaneous learning approach yields
better results.
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(a) Imputation error

(b) Topographic error (c) Quantization error

Figure 4.2: Different errors of missSOM and classical imputation methods on the wines data
including missing entries.

4.4 Control of the false clustering rate

When clustering data, it often occurs that data sets include ambiguous individuals that are
intrinsically difficult to attribute to one cluster or another. This is the case of outliers or
data points the fall in the overlap of two clusters. In applications, misclassifying individuals is
potentially disastrous and should be avoided. To keep the misclassification rate small, one can
opt to cluster only a part of the data, namely the datapoints with low uncertainty. The purpose
of this work is the development of a method with an abstention option that comes with the
guarantee that the false clustering rate (FCR) does not exceed a predefined nominal level α.

This is a work with my student Ariane Marandon and my colleagues Etienne Roquain and
Nataliya Sokolovska [MRRS22].

4.4.1 State of the art

In a supervised setting, classification with an abstention option is a long-standing statistical
paradigm, see [167, 168, 169, 170] among others. In this line of research, rejection or the decision
not to classify an observation is accounted for by adding a term to the risk that penalizes any
rejection. Recently, still in the supervised setting, [171] and [172] propose a method that controls
an error among the classified items at prescribed level. These methods consist in thresholding
the estimated class probabilities in a data-driven manner.
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In [173] an approach similar to ours is presented, but the control of the false clustering rate
is only established in the case of known model parameters. Our work goes much further and
provides guarantees for the completely data-driven procedure.

The false clustering rate is closely related to the false discovery rate (FDR) in multiple
testing. In fact, we can roughly view the problem of designing an abstention rule as testing
problem, where, for each item i, we test whether the proposed cluster label is reliable or not.
With this analogy, our selection rule is based on quantities similar to the local FDR values
[174], a key quantity to build optimal FDR controlling procedures in multiple testing mixture
models, see, e.g., [175, 176, 177] and [RRV22]. In particular, our final selection procedure shares
similarities with the procedure introduced in [176], also named cumulative `-value procedure
[178]. In addition, our theoretical analysis is related to the work of [RRV22], although the
nature of the algorithm developed therein is different.

4.4.2 Clustering procedures with abstention

We consider a classical finite mixture model for the sample X = (X1, . . . , Xn) with latent
variables Z = (Z1, . . . , Zn) ∈ JKKn and cluster probabilities π = (π1, . . . , πK), that is, P(Zi =
k) = πk. Conditionally on Z,

X|Z =
⊗
i∈JnK

Xi|Zi =
⊗
i∈JnK

fφZi ,

where the densities fφk ∈ {fu, u ∈ U} for k ∈ JKK belong to a parametric family of densities on
Rd with parameter φ = (φ1, . . . , φK). The number of clusters K is assumed to be known. The
goal is to recover the cluster labels Z from the data X.

Let Ẑ = (Ẑi)i∈JnK ∈ JKKn be any clustering rule obtained on the data X. In the unsupervised
setting only the partition of the observations is of interest, not the labels themselves. Switching
the labels of Ẑ does not change the corresponding partition. Let S ⊂ JnK be a selection rule, in-
dicating the indices of observations that are clustered. Now a clustering procedure as considered
in this work is defined by a clustering rule and a selection rule, say C = (Ẑ, S).

The classification error is defined by εS(Ẑ,Z) = 1
|S|
∑
i∈S 1{Zi 6= Ẑi}, which depends on the

order of the label. We define the label-switching invariant false clustering rate (FCR) as

FCR(C) = E
[

min
σ∈S(K)

E
[
εS(σ(Ẑ),Z)|X

]]
,

where S(K) denotes the set of permutations on JKK. The aim is to construct a procedure with
a control of the FCR at some nominal level α.

Oracle procedure

In model-based approaches, the clustering is naturally based on the posterior probabilities of
the labels given by

`k(Xi) = P(Zi = k|Xi) = πkfφk(Xi)∑
`∈JKK π`fφ`(Xi)

.
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When all observations are clustered, that is, S = JnK, the Bayes clustering, say Ẑ∗, defined by the
MAP estimators of the labels, that is Ẑ∗i = arg maxk∈JKK `k(Xi), has minimal FCR. However,
depending on the intrinsic difficulty of the clustering problem, the FCR of the Bayes clustering
can exceed the nominal level α.

The quantities T (Xi) = 1 − maxk∈JKK `k(Xi) indicate the uncertainty of the MAP cluster
labels, and one can show that the FCR of the Bayes clustering is given by

FCR((Ẑ∗, S)) = E
[

1
|S|
∑
i∈S

T (Xi)
]
.

Thus, to obtain the control of the FCR, the best way consists in not selecting the most ambiguous
observations that contribute the most to the FCR of the Bayes clustering, that is, those with the
largest values T (Xi). We consider a thresholding-based selection rule of the form S = {i ∈ JnK :
T (Xi) ≤ t}, where threshold t is chosen such that

∑
i∈S T (Xi) ≤ α|S| while maximizing |S|.

This gives rise to the oracle procedure, that can be easily implemented by ordering the values
T (Xi).

Plug-in and bootstrap procedures

The oracle procedure cannot be used in practice since it is based on the knowledge of the true
model parameter θ∗. A natural idea then is to replace θ∗ by an estimator θ̂ giving rise to the
plug-in procedure. Despite very favorable theoretical properties of the plug-in procedure, its
FCR can exceed α in particular when the estimator θ̂ is too rough. Indeed, the uncertainty of
θ̂ near θ∗ is ignored by the plug-in procedure.

To fix this issue, a bootstrap approximation of the FCR of the plug-in procedure can be used
and then threshold t is chosen such that bootstrapped FCR is controlled by α. Both paramet-
ric and nonparametric bootstrap can be used here. The parametric bootstrap provides good
results when the θ̂ is an accurate estimate. Otherwise the nonparametric bootstrap approach is
preferable.

4.4.3 Optimality results

We show that the plug-in procedure ĈPI
α has (almost) optimal behavior. More precisely, its FCR,

and the so-called marginal FCR, defined as a ratio of expectations instead of an expectation of
a ratio, are close to α, while the mean number of selected observations is nearly optimal. We
provides both consistency and convergence rates.

Theorem 12. Under appropriate assumptions, the plug-in procedure ĈPI
α satisfies

lim sup
n

FCR(ĈPI
α ) ≤ α, lim sup

n
MFCR(ĈPI

α ) ≤ α,

and for any procedure C = (Ẑ, S) that controls the marginal MFCR at level α, it holds

lim inf
n
{n−1Eθ∗(|ŜPI

α |)− n−1Eθ∗(|S|)} ≥ 0.
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(a) Ground truth labels (b) MAP clustering (c) MAP clustering

Figure 4.3: Comparison of clusterings of the variables radius and texture in the WDBC dataset.

Moreover, there exist constants C1 and C2 such that for any sequence εn = o(1) and any n large
enough,

max((FCR(ĈPI
α ),MFCR(ĈPI

α )) ≤ α+ C1

(
ε1/2
n +

√
(logn)/n+ η(εn, θ∗)

)
n−1Eθ∗(|ŜPI

α |)− n−1Eθ∗(|S|) ≥ −C2

(
ε1/2
n +

√
(logn)/n+ η(εn, θ∗)

)
,

for any procedure C = (Ẑ, S) that controls the marginal MFCR at level α (non asymptotically)
and η(ε, θ∗) = Pθ∗

(
minσ∈S(K) ‖θ̂σ − θ∗‖2 ≥ ε

)
, a quantity measuring the quality of the estima-

tor.

The proofs employ techniques similar to those used in [RRV22] for multiple testing of pairwise
hypotheses.

4.4.4 Numerical performance

In a simulation study, the parametric bootstrap procedure shows overall the more “stable”
behavior: it uniformly improves the plug-in procedure across all the explored parameter ranges.
In addition, it achieves an FCR and a selection frequency close to those of the oracle when the
sample size n is fairly large. For more challenging cases, where the sample size is small and a
strict FCR control is desired, the non-parametric bootstrap is a valuable alternative.

To conclude, we demonstrate our method on theWisconsin Breast Cancer Diagnosis (WDBC)
dataset from the UCI ML repository consisting of 30 features computed from a digitalized image
of a fine needle aspirate (FNA) of a breast mass, on a total of 569 patients, of which 212 are diag-
nosed as benign and 357 as malignant. A mixture of Student’s t-distributions is chosen to model
the data [179] to account for outliers leading to overlapping clusters. As the t-distribution is less
concentrated than the Gaussian, this may help with the estimation of the posterior probabilities
of the cluster labels, which are typically overestimated in Gaussian mixtures.

Figure 4.3 (a) displays the first two variables of the dataset, the radius and the texture of
the images, and the labels are the classes benign and malignant. For a nominal level α = 5%,
the MAP clustering without any selection (see (b)) achieves an FCR of 14%. Our parametric
bootstrap procedure in (c) controls the FCR by clustering only 70% of the data. Its FCR equals
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3%, which is below the target level.
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Chapter 5

Perspectives

This chapter provides perspectives and directions of research raising from the work presented
in this manuscript. I currently explore some of these open questions, others are left for future
investigations. Generally speaking, my current and future research shall be in line with my
past research. I plan to contribute to the development of new methods for general problems in
statistics and machine learning. Moreover, in collaboration with scientists from various fields,
I wish to design specific statistical solutions for application-specific problems. More precisely,
building on my expertise in statistical modelling and the development of efficient algorithms, I
plan to contribute to the following topics.

Multiple networks

For a long time, research has focused on the analysis of single networks. Today the interest turns
to the joint analysis of multiple networks, as collections of networks are available in more and
more fields of application. Naturally, questions emerge on graph comparison, graph embeddings,
modelling, inference, scalability of algorithms and many others. Our work on graph clustering
(Section 2.4) in particular raises a number of further questions.

Consistency in the mixture model of SBMs To start with, a theoretical study of the
mixture model of SBMs and its estimates is in order. In an asymptotic setting where both
the number of vertices per network n(m) and the number of observed networks M tend to
infinity, it is plausible that consistency of the maximum likelihood estimator is inherited from
the consistency of the estimate in a single SBM with increasing number of nodes. However,
when only the number of networks M tends to infinity, the situation is different as adding new
networks to the data set may improve parameter estimates, but not directly the node clusterings.
Especially in small networks, even with the knowledge of the true parameter value, there may
be nodes that are inherently difficult to attribute to a block. Thus, it is expected that node
clusterings are less accurate in that case and it would be interesting to quantify the extent of
that loss.
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Reliable graph clustering results In Section 4.4 we proposed a method for clustering vec-
tors with an abstention option and a control of the false clustering rate. This tool may be
adapted for graph clustering and used in association with the hierarchical clustering algorithm
proposed in Section 2.4. This requires to analyze the the posterior probabilities that a network
belongs to a given cluster in a mixture model of SBMs. The resulting procedure with a control
of the false clustering rate could be used to check whether there is evidence that a network really
belongs to the cluster it is assigned to or not. As such the final clustering may be improved
yielding more reliable clusters. A related question, that is also interesting to study, is outlier
detection, where the goal is to test if a network was generated by the fitted model or by a
different distribution.

Submodels In some settings where networks with different topologies are observed, the vari-
ability may not be due to the fact that data are sampled from independent mixture components,
but rather that they are subsampled from one huge network. This could be, for instance, the
case in ecology, where the observer chooses to focus on a specific set of species and reports
only interactions among the chosen species while others are ignored. In general, subsampling
of networks induces bias and thus can be the reason why different topologies are observed in
a collection of networks. Thus, to go further in the analysis of the graph clustering result of
the algorithm presented in Section 2.4, there would be an interest to develop a statistical test
to compare two clusters. More precisely, one would wish to test whether a cluster is just a
submodel of the SBM of another cluster or if there is a substantial difference in the topology.

This question is part of the research branch that deals with subsampling and resampling
of networks, which are involved and up-to-date problems frequently addressed in the literature
during the last years [180, 181, 182, 183]. Indeed, it would be helpful to have a statistical model
for networks subsampled from a huge network. There might be a number of identifiability issues
and the development of an inference method might be challenging but very useful for practice.

Gaussian graphical models Concerning the noisy stochastic block model (NSBM) that we
developed for a multiple testing task in Section 2.3, a different perspective consists in linking our
approach to the inference of Gaussian graphical models (GGM). Based on recent estimates of
the precision matrix [44, 184, 185], the NSBM may be adapted for modelling. This is related to
the approach in [186] where a SBM is introduced for the precision matrix. An adaptive multiple
testing procedure in the vein of the one for testing paired null hypotheses may be derived that
comes with a power enhancement for the inference in the GGM.

Network analysis for specific applications

Ecological networks Our study of clustering foodwebs in Section 2.4.5 has raised the interest
of ecologists and together we might deepen the analysis of the mangal database [67] to address
more specific questions in ecology. The graph clustering and the modelling by SBMs seem to be
fruitful for a better understanding of the organization and functioning of ecological networks,
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which is particularly important in the light of climate change. This work shall be done in tight
collaboration with environmental scientists.

Metabolic networks Since graph clustering is a relatively new research area, many specific
settings remain to be explored and may require different solutions. In the Ph.D. of Ariane
Marandon we study a database that contains hundreds of metabolic networks of bacteria. We
work on a model that considers observed networks as perturbations of an unknown underly-
ing network. By introducing a mixture model, we aim at performing graph clustering of the
metabolic networks. The obtained clustering may help to study the impact of environmental
factors on the metabolism of bacteria, such as the temperature of the environment where the
bacteria lives. Another question is, for instance, whether an automated clustering is capable of
uncovering the phylogeny of bacteria.

Networks in epidemiology In epidemiology of cattle diseases, a profound understanding
of the animal trade network is highly valuable to control pathogen spread. With researchers
at INRAE, we work on a scale-free percolation model (SFP) [187] and aim at developing a
scalable estimation algorithm. At this stage, a major hindrance to use the SFP model on the
French Database of Cattle Movements (FDCM), maintained by the Ministry of Agriculture, is
the sparsity of the observed network that renders estimates very unstable. To build estimators
that are consistent in the sparse setting, we may exploit the specific structure of the graph,
which is organized in communities due to the geography of the farms. Roughly, the idea consists
in considering relatively dense subgraphs, on which individual SFP models could be fitted with
high accuracy. Then the fitted model should be aggregated to a unique SFP model for the entire
network. The main questions here are how to perform subsampling of the graph, and how to
correctly aggregate models.

Computational statistics

Theoretical foundation of the ICL maximization A rather new inference algorithm for
discrete latent variable models is based on the integrated classification likelihood (ICL) intro-
duced by [87]. In several models, like the mixture of SBMs proposed in Section 2.4, the method
achieves good performances and the hierarchical clustering algorithm is very attractive as it
provides a nested sequence of clusterings and comes with an automatic selection of the num-
ber of clusters. Furthermore, the algorithm has computational advantages compared to other
algorithms as EM, for instance, and it is scalable to large data sets. In future work, theoretical
foundations of the ICL maximization approach might be worked out. Questions as the consis-
tency of the estimators and of the model selection should be addressed and also the limitations
of the ICL approach should be studied.

Study of variational EM algorithms In the work on multiple testing in Section 2.3, where
the problem is recast as a graph inference problem, we have seen that the convergence rates
of the false and true discovery rates depend on the quality of the parameter estimates. To go
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further in this study, a deeper understanding of the clustering obtained by the variational EM
algorithm in the noisy stochastic block model is required. This task meets several recent works
on various versions of the SBM, see [58, 59, 60], but the solutions proposed therein are still
incomplete to make our convergence rates explicit.

Mini-batch sampling The work on mini-batch sampling in the MCMC-SAEM algorithm
described in Section 2.2 raises (at least) two questions, which are also of interest in other
algorithms based on mini-batch sampling. First, there is the question of the optimal mini-batch
proportion α operating a trade-off between speeding up convergence and estimation accuracy.
To get closer to this goal, it would be valuable to determine the limit distribution of the estimates
and, in particular, to quantify the impact of the mini-batch proportion on the limit variance. In
our paper [KMR20] we present some heuristic arguments in favor of asymptotic normality of the
estimator and we conjecture a formula of the limit variance. These findings are supported by our
simulation study, but a formal proof is still missing. Second, when given a limited computing
time budget, which should be the case in most practical situations, it would be extremely useful
to have a strategy of how to choose the optimal mini-batch proportion and/or the best data set
as illustrated in the example on the model for handwritten digits (Section 2.2.5), to achieve the
best possible results in the given time limit.

Scalable EM-type algorithms Related to mini-batch approaches, another avenue of re-
search to speed up computation are variance reduction techniques. The works of [188] and
[189] propose extensions to the EM algorithm using Stochastic Variance-Reduced Gradient
(SVRG) [190] and the Stochastic Average Gradient Algorithm (SAGA) [191] techniques, re-
spectively. More recently, in [192] the EM algorithm is combined with the so-called Stochastic
Path-Integrated Differential EstimatoR (SPIDER) for smooth non-convex problems introduced
by [193]. In all these approaches the variance is reduced by introducing a control variate, and
they differ in the way to construct the control variate. Our ambition is to propose similar meth-
ods for various classes of EM algorithms and provide theoretical and numerical evidence for the
improvement. Moreover, motivated by research in plant improvement at INRAE, our goal is an
efficient implementation of such algorithms for statistical models with high-dimensional latent
variables.

Deep learning

Generative models for chemical structures A new trend in material science is to rely
on artificial intelligence to discover new valuable chemical compounds via generative models
[194]. For the purpose of hydrogen storage, there is a particular interest in new stable crystal
structures with specified properties. The most recent generative models that produce impressive
results on images rely on diffusion models and denoising score matching with Langevin dynamics
[195, 196]. The goal of the Ph.D. thesis of Arsen Sultanov is the adaptation of those models to
the problem of crystal generation by incorporating a large number of constraints like periodicity,
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rotation invariance of atomic positions and symmetry groups in the model. This is a work in
collaboration with the Institut de Chimie et des Matériaux Paris-Est.

Graph neural networks Graph neural networks is the umbrella term for various neural net-
works that operate on graph structured data. They have grown rapidly in scope and popularity
in recent years and are appropriate when some graph signal is observed, see the survey in [73].
However, in the absence of graph signal suitable methods are still lacking. This is contrary
to statistics, where the standard setting is the one where the only available information is the
graph itself. Using the statistical background, new deep learning models that solely analyze the
graph topology may be proposed.
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