
METRIC ON DECORATED SPACES

X ESCUELA DE VERANO DE PROBABILIDAD Y PROCESOS

ESTOCÁSTICOS

Goal: To compare compact metric spaces with decorations.

1 Comparing embedded spaces.

Let (Y, δ) be a Polish space and E a subset of Y. We denote the ε–neighborhood of E by E(ε), viz.

E(ε) := {y ∈ Y : δ(y, E) 6 ε}.

We start recalling the definition of the Hausdorff distance, which allows to compare compact sub-
sets of Y.

Figure 1: Illustration of a tree – in red – and its ε-neighbordhood in green.

For every E, E′ compact subsets of Y, we set:

δY
H(E, E′) := inf

{
ε > 0 : E′ ⊂ E(ε) and E ⊂ E′(ε)

}
,

and remark that equivalently, we can express δY
H(E, E′) as follows:

δY
H(E, E′) = max

(
sup

{
δ(x, E′) : x ∈ E

}
, sup

{
δ(y, E) : y ∈ E′

})
.
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Figure 2: Illustration of δH.

Exercice 1. Hausdorff distance.
Let K(Y) be the set of all compact subsets of Y.
1. Show that (K(Y), δY

H) is a Polish space. The distance δY
H is known as the Hausdorff distance.

2. In general, can we extend δY
H into a distance on all the subsets of Y?

3. Let (En : n > 0) be a sequence of compact subsets of Y converging to some compact subset E∞

as n → ∞, and assume that for every n > 1 the subset En is homeomorphic to E0 . Do we have
always that E0 and E∞ are homeomorphic ?

Decoration. In our case of interest, the spaces are decorated. Specially, we consider quadruplets
(E, g) := (E, ρ, µ, g) where:

E is a compact subset of Y, ρ is a point of E,
µ is a finite measure supported on E and g : E→ R+.

Remark. If we were only interested in comparing two elements (E, ρ, µ) and (E′, ρ′, µ′) we could
take:

δY
H
(
E, E′

)
∨ δ
(
ρ, ρ′

)
∨ δY

P
(
µ, µ′

)
.

where δY
P for the Prokhorov distance on the space of finite measures on Y. However, we need to

take into account the decoration g.

Encoding the labels g with an hypograph. For technical reasons, we shall always impose that
the function g is upper semi-continuous (abbreviated usc in the sequel), where we recall that a func-
tion g : E → R+ is usc if and only if the set {x ∈ E : g(x) > r} is closed for every r > 0. We say
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that (E, g) is an usc-decorated compact subset of Y and we denote the set of all (E, g) byH(Y). We
need now to compare elements of H(Y). In this direction, we introduce the notion of hypograph.
If (E, g) is an element ofH(Y), the associated hypograph is the set:

Hypg(E) :=
{
(x, r) : x ∈ E and 0 6 r 6 g(x)

}
⊂ E×R+.

The hypograph Hypg(E) is naturally equipped with the distance:

dHypg(E)
(
(x, r), (x′, r′)

)
:= dE(x, x′) + |r− r′|, for (x, r), (x, r′) ∈ Hypg(E). (1)

We stress that Hypg(E) is a compact subset of Y ×R+ – equipped with the product metric. The
hypograph Hypg(E) entirely determines (E, g), since E is identified with E × {0}, while g(x) =

max{r > 0 : (x, r) ∈ Hypg(E)} for every x ∈ E.

Figure 3: Representation of hypograph ontop of a tree.

Exercice 2. Hypograph distance onH(Y).
For every (E, g) and (E′, g′) two usc-decorated compact subset of Y, we set:

dH(Y)
(
(E, g), (E′, g′)

)
:= δY×R+

H

(
Hypg(E), Hypg′(E′)

)
∨ δ
(
ρ, ρ′

)
∨ δY

P
(
µ, µ′

)
. (2)

Show that (H(Y), dH(Y)) is a Polish space.

2 Comparing non-embedded spaces.

We are more interested in the decorated space (E, g) by itself than in its particular embedding. For
this reason, we introduce the equivalence relation:

(E, g) ∼ (E′, g′) ⇐⇒ ∃ an isometry φ : E→ E′ such that
(
φ(ρ), φ#µ, g ◦ φ−1) = (ρ′, µ′, g′

)
.

We shall abuse notion and when no ambiguity is possible we still speak of usc-decorated mea-
sured rooted compact metric spaces instead of their equivalence classes, and we denote the set of
all isometry classes of such spaces by H. To simplify notation, we write Φ(E) = (Φ(E), Φ(ρ), Φ#µ)
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and Φ(E, g) = (Φ(E), g ◦ Φ−1). Our goal now is to introduce a convenient distance making H a
Polish space. We set:

dH

(
(E, g), (E′, g′)

)
:= inf

Φ:E→Y
Φ′ :E′→Y

dH(Y)
(
Φ(E, g), Φ′(E′, g′)

)
,

where the infimum is over all the Polish spaces (Y, δ) and all the isometry embeddings Φ : E→ Y
and Φ′ : E′ → Y. We stress that when g and g′ are identically zero, the quantity dH

(
(E, g), (E′, g′)

)
is the classical Gromov-Hausdorff-Prokhorov distance between E and E′.

Theorem 1. The map dH : H×H→ R+ is a distance on H and the space (H, dH) is Polish.

Examples of large combinatorial random structures
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The proof of the theorem relies on the following intermediate result:

Lemma 1. Fix (εn)n>1 a sequence in R+ and (En, gn) a sequence in H such that

dH((En, gn), (En+1, gn+1)) < εn.

Then there exists a Polish space (Z, δ) and isometric embeddings φ1, φ2, ... respectively from E1, E2... into Z
such that:

dH(Y)
(
φn(En, gn), φn+1(En+1, gn+1)

)
< εn.

This result is an adaptation of [2, Lemma 5.7].

Exercice 3. Proof of the theorem.
Deduce the theorem from Lemma 1.

Exercice 4. Proof of the technical lemma.
We use the notation of the statement of the lemma. First, remark that by definition, for every
n > 1, we can find a Polish space (Yn, δn), and two isometric embeddings Φn : En → Yn and
Φ′n : En+1 → Yn such that:

ε̄n := dH(Y)
(
Φn(En, gn), Φ′n(En+1, g′n+1)

)
< εn.

Next, we introduce the disjoint union Z :=
⊔

n>1 En, and we endow Z with the metric δ defined as
the biggest distance verifying δ(x, y) = dEn(x, y) if (x, y) ∈ E2

n and δ(x, y) := δn
(
Φn(x), Φ′n(y)

)
+

(εn − ε̄n)/2 for x, y ∈ En × En+1, the term (εn − ε̄n)/2 ensures that δ does not identify two points
(x, y) ∈ En × En+1.

1. Show that (Z, δ) is separable.

For simplicity with slightly abuse of notation we still write (Z, δ) for its completion. Now we
let φn : En → Z be the canonical embedding.

2. Prove that for every n > 1, we have:

dH(Y)
(
φn(En, gn), φn+1(En+1, gn+1)

)
< εn.
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