METRIC ON DECORATED SPACES X ESCUELA DE VERANO DE PROBABILIDAD Y PROCESOS ESTOCÁSTICOS

Goal: To compare compact metric spaces with decorations.

1 Comparing embedded spaces.

Let (Y, δ) be a Polish space and *E* a subset of *Y*. We denote the ε -neighborhood of *E* by $E(\varepsilon)$, viz.

$$E(\varepsilon) := \{ y \in Y : \delta(y, E) \leq \varepsilon \}.$$

We start recalling the definition of the Hausdorff distance, which allows to compare compact subsets of *Y*.

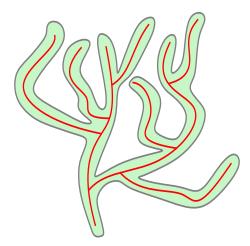


Figure 1: Illustration of a tree – in red – and its ε -neighbordhood in green.

For every *E*, *E*' compact subsets of *Y*, we set:

$$\delta^{Y}_{\mathrm{H}}(E,E') := \inf \big\{ \varepsilon > 0 : E' \subset E(\varepsilon) \text{ and } E \subset E'(\varepsilon) \big\},$$

and remark that equivalently, we can express $\delta_{\rm H}^{\rm Y}(E,E')$ as follows:

$$\delta_{\mathrm{H}}^{Y}(E,E') = \max\Big(\sup\big\{\delta(x,E'): x \in E\big\}, \sup\big\{\delta(y,E): y \in E'\big\}\Big).$$

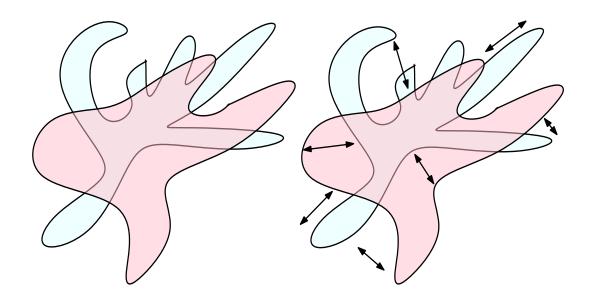


Figure 2: Illustration of $\delta_{\rm H}$.

Exercice 1. Hausdorff distance.

Let $\mathcal{K}(Y)$ be the set of all compact subsets of Y.

1. Show that $(\mathcal{K}(Y), \delta_{H}^{Y})$ is a Polish space. The distance δ_{H}^{Y} is known as the Hausdorff distance.

2. In general, can we extend $\delta_{\rm H}^{\rm Y}$ into a distance on all the subsets of Y?

3. Let $(E_n : n \ge 0)$ be a sequence of compact subsets of *Y* converging to some compact subset E_{∞} as $n \to \infty$, and assume that for every $n \ge 1$ the subset E_n is homeomorphic to E_0 . Do we have always that E_0 and E_{∞} are homeomorphic ?

Decoration. In our case of interest, the spaces are decorated. Specially, we consider quadruplets $(\mathbf{E}, g) := (E, \rho, \mu, g)$ where:

E is a compact subset of *Y*, ρ is a point of *E*, μ is a finite measure supported on *E* and $g : E \to \mathbb{R}_+$.

Remark. If we were only interested in comparing two elements (E, ρ, μ) and (E', ρ', μ') we could take:

$$\delta^{Y}_{\mathrm{H}}(E, E') \vee \delta(\rho, \rho') \vee \delta^{Y}_{\mathrm{P}}(\mu, \mu')$$

where δ_P^{γ} for the Prokhorov distance on the space of finite measures on γ . However, we need to take into account the decoration *g*.

Encoding the labels *g* with an hypograph. For technical reasons, we shall always impose that the function *g* is *upper semi-continuous* (abbreviated usc in the sequel), where we recall that a function $g: E \to \mathbb{R}_+$ is usc if and only if the set $\{x \in E : g(x) \ge r\}$ is closed for every $r \ge 0$. We say

that (**E**, *g*) is an usc-decorated compact subset of *Y* and we denote the set of all (**E**, *g*) by $\mathcal{H}(Y)$. We need now to compare elements of $\mathcal{H}(Y)$. In this direction, we introduce the notion of hypograph. If (**E**, *g*) is an element of $\mathcal{H}(Y)$, the associated hypograph is the set:

$$\operatorname{Hyp}_{\sigma}(E) := \{(x, r) : x \in E \text{ and } 0 \leq r \leq g(x)\} \subset E \times \mathbb{R}_+.$$

The hypograph $\operatorname{Hyp}_{g}(E)$ is naturally equipped with the distance:

$$d_{\operatorname{Hyp}_{g}(E)}((x,r),(x',r')) := d_{E}(x,x') + |r-r'|, \quad \text{for } (x,r),(x,r') \in \operatorname{Hyp}_{g}(E).$$
(1)

We stress that $\operatorname{Hyp}_g(E)$ is a compact subset of $Y \times \mathbb{R}_+$ – equipped with the product metric. The hypograph $\operatorname{Hyp}_g(E)$ entirely determines (E, g), since E is identified with $E \times \{0\}$, while $g(x) = \max\{r \ge 0 : (x, r) \in \operatorname{Hyp}_g(E)\}$ for every $x \in E$.

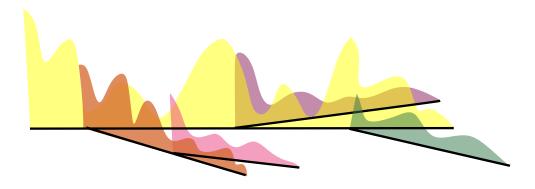


Figure 3: Representation of hypograph ontop of a tree.

Exercice 2. *Hypograph distance on* $\mathcal{H}(Y)$. For every (**E**, *g*) and (**E**', *g*') two usc-decorated compact subset of *Y*, we set:

$$d_{\mathcal{H}(Y)}((\mathbf{E},g),(\mathbf{E}',g')) := \delta_{\mathrm{H}}^{Y \times \mathbb{R}_{+}} \left(\mathrm{Hyp}_{g}(E), \mathrm{Hyp}_{g'}(E') \right) \vee \delta(\rho,\rho') \vee \delta_{\mathrm{P}}^{Y}(\mu,\mu').$$
(2)

Show that $(\mathcal{H}(Y), d_{\mathcal{H}(Y)})$ is a Polish space.

2 Comparing non-embedded spaces.

We are more interested in the decorated space (\mathbf{E}, g) by itself than in its particular embedding. For this reason, we introduce the equivalence relation:

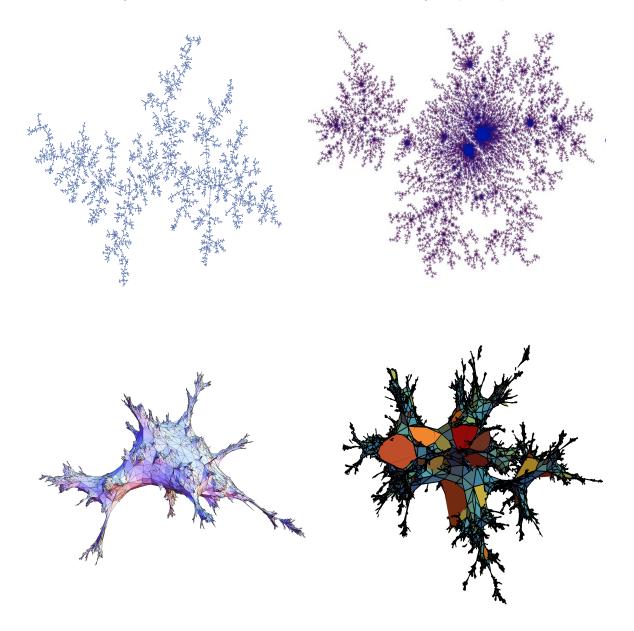
$$(\mathbf{E}, g) \sim (\mathbf{E}', g') \iff \exists$$
 an isometry $\phi : E \to E'$ such that $(\phi(\rho), \phi_{\#}\mu, g \circ \phi^{-1}) = (\rho', \mu', g')$.

We shall abuse notion and when no ambiguity is possible we still speak of usc-decorated measured rooted compact metric spaces instead of their equivalence classes, and we denote the set of all isometry classes of such spaces by \mathbb{H} . To simplify notation, we write $\Phi(\mathbf{E}) = (\Phi(E), \Phi(\rho), \Phi_{\#}\mu)$ and $\Phi(\mathbf{E}, g) = (\Phi(E), g \circ \Phi^{-1})$. Our goal now is to introduce a convenient distance making \mathbb{H} a Polish space. We set:

$$d_{\mathbb{H}}((\mathbf{E},g),(\mathbf{E}',g')) := \inf_{\substack{\Phi:E \to Y\\ \Phi':E' \to Y}} d_{\mathcal{H}(Y)}(\Phi(\mathbf{E},g),\Phi'(\mathbf{E}',g')),$$

where the infimum is over all the Polish spaces (Y, δ) and all the isometry embeddings $\Phi : E \to Y$ and $\Phi' : E' \to Y$. We stress that when g and g' are identically zero, the quantity $d_{\mathbb{H}}((E, g), (E', g'))$ is the classical Gromov-Hausdorff-Prokhorov distance between E and E'.

Theorem 1. The map $d_{\mathbb{H}} : \mathbb{H} \times \mathbb{H} \to \mathbb{R}_+$ is a distance on \mathbb{H} and the space $(\mathbb{H}, d_{\mathbb{H}})$ is Polish.



Examples of large combinatorial random structures

The proof of the theorem relies on the following intermediate result:

Lemma 1. Fix $(\varepsilon_n)_{n \ge 1}$ a sequence in \mathbb{R}_+ and (\mathbb{E}_n, g_n) a sequence in \mathbb{H} such that

$$\mathbf{d}_{\mathbb{H}}((\mathbf{E}_n,g_n),(\mathbf{E}_{n+1},g_{n+1}))<\varepsilon_n.$$

Then there exists a Polish space (Z, δ) *and isometric embeddings* $\phi_1, \phi_2, ...$ *respectively from* $E_1, E_2...$ *into* Z *such that:*

$$\mathbf{d}_{\mathcal{H}(\mathbf{Y})}(\phi_n(\mathbf{E}_n,g_n),\phi_{n+1}(\mathbf{E}_{n+1},g_{n+1})) < \varepsilon_n.$$

This result is an adaptation of [2, Lemma 5.7].

Exercice 3. *Proof of the theorem.* Deduce the theorem from Lemma 1.

Exercice 4. *Proof of the technical lemma.*

We use the notation of the statement of the lemma. First, remark that by definition, for every $n \ge 1$, we can find a Polish space (Y_n, δ_n) , and two isometric embeddings $\Phi_n : E_n \to Y_n$ and $\Phi'_n : E_{n+1} \to Y_n$ such that:

$$\bar{\varepsilon}_n := \mathrm{d}_{\mathcal{H}(Y)} \big(\Phi_n(\mathbf{E}_n, g_n), \Phi'_n(\mathbf{E}_{n+1}, g'_{n+1}) \big) < \varepsilon_n.$$

Next, we introduce the disjoint union $Z := \bigsqcup_{n \ge 1} E_n$, and we endow Z with the metric δ defined as the biggest distance verifying $\delta(x, y) = d_{E_n}(x, y)$ if $(x, y) \in E_n^2$ and $\delta(x, y) := \delta_n(\Phi_n(x), \Phi'_n(y)) + (\varepsilon_n - \overline{\varepsilon}_n)/2$ for $x, y \in E_n \times E_{n+1}$, the term $(\varepsilon_n - \overline{\varepsilon}_n)/2$ ensures that δ does not identify two points $(x, y) \in E_n \times E_{n+1}$.

1. Show that (Z, δ) is separable.

For simplicity with slightly abuse of notation we still write (Z, δ) for its completion. Now we let $\phi_n : E_n \to Z$ be the canonical embedding.

2. Prove that for every $n \ge 1$, we have:

$$\mathbf{d}_{\mathcal{H}(Y)}\big(\phi_n(\mathbf{E}_n,g_n),\phi_{n+1}(\mathbf{E}_{n+1},g_{n+1})\big) < \varepsilon_n.$$

References

- [1] D. Burago, Y. Burago, and S. Ivanov. *A course in metric geometry,* volume 33 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, 2001.
- [2] A. Greven, P. Pfaffelhuber, A. Winter. Convergence in distribution of random metric measure spaces (-coalescent measure trees). *Probab. Theory Related Fields*, 145(1-2):285–322, 2009