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The content of this thesis, written under the supervision of Jean Bertoin and Armand Riera

from September 2020 to June 2023 at the University of Zürich, is composed by two indepen-

dent and non-related parts. The first one is titled From step reinforced random walks to noise

reinforced Lévy processes and falls into the broader setting of reinforcement of stochastic pro-

cesses. It is composed by the two works [16, 84], the first one written in collaboration with Marco

Bertenghi. The first work [16] has been published in Journal of Statistical Physics, while [84] has

been accepted with revisions pending in Electronic Journal of Probability. The second part of this

thesis is titled Excursion theory for Markov processes indexed by Lévy trees, and belongs to the

broader framework of stochastic geometry. It is composed by the papers [82, 83], both written in

collaboration with Armand Riera. The first work [82] has been accepted with revisions pending

in Probability Theory and Related Fields, while [83] is still work in progress at an advanced stage.
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2.1 Lévy trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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Chapter 1

Introduction to Part I

Reinforcement of stochastic processes has been a topic of active research for decades. Roughly

speaking, one is interested in studying N or R`-indexed stochastic processes with memory, or in

how introducing memory in a Markovian process affects its long range behaviour. This description

is vague, and for instance memory can be introduced in multiple forms. Let us start by discussing

some examples. Probably, the oldest family of process with reinforcement appearing in the

literature are Pólya-Urn type processes. In short, one starts with an urn with a (possibly random)

number of balls of different colours. Then, at each discrete time-step, one ball is drawn unifromly

at random from the urn, and is replaced by a (possibly empty) collection of new balls. The

composition of the balls that are added to the urn depend on the colour of the ball that was

drawn, the replacement rule being fixed from the start. The evolution of the number of balls

of each colour in the urn can be interpreted as a reinforcement process - note that despite the

inherent memory of the model, it is a Markov chain. Next, we have the edge or vertex reinforced

random walks on graphs [41, 78], where a discrete walk travels through the vertices of a graph and

the probability of moving to an adjacent vertex depends on the number of visits by the walk to the

latter, or to the connecting edge. In continuous time, we have for example the vertex-reinforced

jump process [38], which consists in a continuous time process defined in a graph, which jumps

from any state x to a neighbouring edge y at time t at a rate proportional to the occupation

measure of state y up to time t. For a thorough overview of various reinforcement models we refer

to the survey [79]. It is important to mention that a process modelling a dynamic where memory

is involved might a priori still be Markovian, as it is the case in most of the examples we just

mentioned. In this work, we shall be interested in yet another type of reinforcement called step

reinforcement. Let us be more precise. We consider a N-indexed process on the real numbers; at

each time step and with some fixed probability p, the process chooses one of the preceding steps

at random and repeats it, after applying a possibly random transformation to it. On the opposite

case, the motion performs an independent step with some fixed law. The parameter p is often

referred to as the memory or reinforcement parameter, and note that when p “ 0, we simply have

a random walk. In contrast, in general a step reinforced process is not a Markov process. We

stress that in our setting, a past step is chosen uniformly at random, but other distributions -

giving for instance higher probability to steps that have been recently performed or to the most

ancient ones - have been addressed in related settings, see e.g. [49, 50]. Despite the fact that this

reinforcement procedure is inherently discrete, we shall see how one can introduce these dynamics

in the continuum through limit approximations. Let us mention that in contrast with the discrete

setting, research on reinforcement of R`-indexed processes is, to this day, rather sparse. Let us

now give a more precise overview on how this introduction is structured as well as the objects we

shall be working with.

13
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In this introduction, we shall give an overview of the main results of the works [16, 84] in the

topic of reinforcement of stochastic processes, obtained under the supervision of Jean Bertoin and

Armand Riera, and the first one in collaboration with Marco Bertenghi. In short, step reinforced

random walks are a family of processes indexed by N “ t0, 1, 2, . . . u that are obtained from

random walks by preforming a reinforcement on its steps. At each fixed time, the step-reinforced

random walk either, repeats with probability p one of the preceding steps chosen uniformly at

random - after applying some possibly random transformation on the chosen step - or performs

an independent step with fixed law µ with complementary probability 1 ´ p. In this work, we

shall start by investigating two classes of such processes, namely the so-called noise reinforced

random walk and counterbalanced random walk. In [16], we obtain strong laws of large numbers

and investigate the scaling limits of this two families of processes. In particular, we recover the

results previously obtained in [21] for the noise-reinforced random walk by different methods. The

reinforcement procedure is inherently discrete, and it is natural to wonder if in the continuum

one can make sense of this notion. In this direction, in the work of Bertoin [19], it was established

that the reinforced version of skeletons of Lévy processes converge, as the partition mesh tends

to 0, towards a family of processes in the continuum baptised noise reinforced Lévy processes.

In the second work [84] we investigate this family of time-indexed processes and strengthen the

convergence results obtained in [19]. We shall see that noise reinforced Lévy processes share

striking similarities with Lévy processes and notably, satisfy reinforced versions of the celebrated

Lévy-Itô decomposition and Itô synthesis. Moreover, their jump measure is a point process that

can be constructed from the jump measure of a Lévy process by a continuum analogue of the

reinforcement algorithm we described for step-reinforced random walks. For this reason, we shall

refer to this family of point measures as noise reinforced Poisson point processes. As we shall see,

they play a central role in the development of [84].

The introduction of this first part is organised as follows: We start in Section 1.1 by introducing

the family of N-indexed processes that we shall be working with for the rest of this survey. Much

of our analysis in both works [16, 84] relies on a remarkable martingale, and we include a brief

discussion in order to give some background and general remarks on this process. We then present

in Section 1.2 the results obtained in [16]. Sections 1.3 - 1.6 are devoted to the second work [84].

We start in Section 1.3 with some preliminary results on Yule-Simon processes and noise reinforced

Lévy processes. We then introduce in Section 1.4 noise reinforced Poisson point processes and

present the reinforced version of Lévy-Itô decomposition and Itô synthesis. In Section 1.5 we

strengthen the convergence result obtain in [19, Theorem 3.1] and conclude in Section 1.6 with

some applications.

1.1 Step reinforced random walks

Let us start by introducing the family of discrete processes that we shall be working with for the

rest of this work.

The elephant random walk

The story begins with a process indexed by the non-negative integers, with memory and unitary

increments known as the elephant random walk with memory parameter q P r0, 1s. The elephant

starts at time 1 in t´1,`1u according to some fixed distribution and performs steps according
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to the following dynamics. At each n ě 2 the elephant chooses a past step uniformly at random;

with probability q this step is repeated in the n-th step, and with complementary probability

1 ´ q the increment is repeated after changing its sign. In particular, when q “ 1{2 the elephant

follows a simple symmetric random walk. The name stems from the fact that, as the saying

goes, elephants never forget. The study of this process has spiked the interest of probabilists in

recent years, see e.g. [9, 11, 34, 33, 59] and references therein for general background, [13, 15] for

results in multiple dimensions and [8, 12, 47, 60] for variations. One of the crucial features of the

elephant random walk is that it presents a phase transition on the asymptotic of its fluctuations

as n Ò 8 at the critical parameter q “ 3{4. Notably, when q ă 3{4 the elephant random walk

is diffusive, while for q ą 3{4 it is super-diffusive. More precisely, for q ă 3{4 when scaled by
?
n, the elephant random walk converges as n Ò 8 in distribution to a centred Gaussian random

variable. On the other hand for q ą 3{4, when scaled by a factor of n2q´1, the almost sure limit

exists as n Ò 8, the limit being a non-degenerate random variable. We refer to [9] for a detailed

account. As we shall see, the scaling at the critical parameter q “ 3{4 is of more complicated

nature. In the first part of this work, we shall be interested in two natural processes generalising

the dynamics of the elephant random walk. Namely, in the so-called noise-reinforced random

walk and the counterbalanced random walk. Let us start by briefly introducing the former.

The noise reinforced random walk

Let pXnqnPN be a collection of identically distributed random variables with same law as some

fixed (non-degenerate) random variable X P L2pPq. We write m :“ ErXs and denote the variance

of X by σ2. We define the noise-reinforced version of the random walk Sn “ X1 ` ¨ ¨ ¨ `Xn, n ě 1

with S0 :“ 0 by performing the following reinforcement procedure on its steps: first, we consider

independent families of independent random variables pU rnsqnPN and pεnqnPN where for every n,

U rns is uniformly distributed in t1, . . . , nu while εn is distributed Bernoulli with parameter p. We

define a family of random variables pX̂nqnPN by letting X̂1 “ X1 and for n ě 1 we set recursively

X̂n`1 “

#

Xn`1 if εn`1 “ 0,

X̂U rns if εn`1 “ 1.

We shall refer to the process Ŝn :“ X̂1 ` ¨ ¨ ¨ ` X̂n for n ě 1, Ŝ0 :“ 0 as the noise reinforced

version of pSnq with reinforcement parameter p P r0, 1s. In other terms, for every n ě 2 and

with probability 1 ´ p, the step X̂n`1 is made of an independent copy with law X, and therefore

shares the same increment as pSnq, while with complementary probability p one of the previous

increments is chosen uniformly at random and repeated by the motion pŜnq. In particular, if

p “ 0 we recover the random walk pSnq.

The connection with the elephant random walk is the following: as was noted by Kürsten [60],

when X is distributed Rademacher, viz. PpX “ 1q “ PpX “ ´1q “ 1{2, then pŜnq is a version of

the elephant random walk with parameter q “ pp` 1q{2, with first step distributed Rademacher.

Observe that since p P r0, 1s, we can only cover the spectrum q P r1{2, 1s.

The noise reinforced random walk has been subject of active research in recent years, see e.g.

[21, 31, 18] to name a few, and its fluctuations present a phase transition at the critical parameter

p “ 1{2. Let us briefly give a non-exhaustive overview of some of its main properties. First,

from the recursive reinforcement algorithm we infer that for any bounded measurable function
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Figure 1.1: Sketch of a sample path of ppSnq. Steps marked in blue are innovations while in
red are marked those issued from a reinforcement. The reinforced step is linked to the later
by an arrow.

f : R ÞÑ R we have the recursion

ErfpX̂n`1qs “ p1 ´ pqErfpXn`1qs `
p

n

n
ÿ

j“1

ErfpX̂jqs.

Inductively, this gives that each X̂n has same law as X and in particular we have that ErŜns “

nErXs for n ě 0. Beware however that the sequence pX̂nq is not stationary. In [16] we establish

that for any p P r0, 1s the noise reinforced random walk is ballistic, and more precisely fulfils the

following strong law of large numbers:

Theorem 1.1. (Law of large numbers) Recalling the notation m “ ErXs, for any p P r0, 1q we

have the L2pPq and almost sure convergence:

lim
nÑ8

Ŝn
n

“ m.

Note that when p “ 1 the latter result can not hold, since for every n ě 1 we have plainly

Ŝn “ nX1. As we already mentioned, the fluctuations however do present a phase transition at

the critical parameter p “ 1{2. Let us be more precise.

˝Super-diffusive regime: It was established in [21, Theorem 3.2] that when p ą 1{2, the following

limit holds in L2pPq

lim
nÑ8

Ŝn ´ nm

np
“ L

where L is a non-degenerate random variable defined in terms of a martingale limit. The con-

vergence was later proved to hold a.s. as well in [16]. Note that because of the strong nature of

the convergence (and in contrast with the diffusive regime discussed below) it is of no interest to

state a functional version of this convergence.

˝Diffusive regime: On the other hand, when p P p0, 1{2q the fluctuations are always Gaussian

and the scaling no longer depends on p. Namely, in [21] it was proved that for p P p0, 1{2q the

sequence of time-indexed processes pŜtntuqtPR`
satisfies the following weak invariable principle:

Ŝtntu ´ tntum

σ2
?
n

L
Ñ pB̂tqtPR`

(1.1)
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the convergence holding weakly with respect to the Skorokhod topology, and where B̂ :“ pB̂tqtPR`

is a continuous centred Gaussian process with covariance structure

ErB̂tB̂ss “
tps1´p

1 ´ 2p
for 0 ď s ď t and p P p0, 1{2q.

We stress that the law of B̂ does depend on the choice of p, and the dependence on the notation

was dropped for sake of clarity.

The process B̂ was baptised the noise reinforced Brownian motion with reinforcement param-

eter p. Observe that the law of B̂ does not depend on the choice of X and therefore, the weak

convergence result in (1.1) should be interpreted as the reinforced version of the classic Donsker

invariance principle in our noise-reinforced setting. It readily follows from the identity in the last

display that B̂ admits the following representation in terms of a stochastic integral,

B̂t “ tp
ż t

0
s´pdBr

s , t ě 0,

where Br is a standard Brownian motion. For a more detailed account on noise reinforced Brow-

nian motion we refer to [21]. In the critical case p “ 1{2 the fluctuations turn out to still be

Gaussian, but do require of a different scaling. We shall come back to it in the sequel. The

noise reinforced Brownian motion had already appeared as the scaling limit for diffusive regimes

of the elephant random walk and other Polya urn related processes, see [9, 34], [15] for higher

dimensional generalisations, as well as [7].

The counterbalanced random walk

We maintain the same notations as before and still assume that X P L2pPq. We stress that

we shall use the same sequences of random variables pXn, εn, U rnsqnPN we used in the previous

section to construct the noise reinforced version of pSnq. In the same vein as before, we define a

sequence of random variables pX̌nq as follows: we set X̌1 “ X1, and recursively for n ě 1 we let

X̌n`1 “

#

Xn`1 for εn`1 “ 0,

´X̌U rns for εn`1 “ 1.

The process Šn :“ X̌1 ` ¨ ¨ ¨ ` X̌n for n ě 1, Šn :“ 0, shall be referred to as the counterbalanced

random walk with reinforcement parameter p. This process was recently introduced and studied

by Bertoin in [22]. The name stems from the fact that in contrast with the noise reinforced random

walk, when a past increment is repeated, its sign is changed and therefore compensates the chosen

step. One of the motivations behind the definition of this process comes from the fact that if X

is distributed Rademacher, the counterbalanced random walk with reinforcement parameter p is

a version of the elephant random walk with memory parameter q “ p1´ pq{2 P r0, 1{2s, with first

step distributed Rademacher.

In contrast with the noise reinforced case, it no longer holds that the sequence pX̂nqnPN is

identically distributed. However, since for n ě 1 we have the recursion

ErŠn`1s “ p1 ´ pqm ` p1 ´ p{nqErŠns, n ě 1
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Figure 1.2: Sketch of a sample path of pŠnq. Steps marked in blue are innovations while in
green are marked those issued from a counterbalanced. The counterbalanced step is linked to
the later by an arrow. The same sample of random variables used in Figure 1.1 to construct
pŜnq was used to construct pŠnq.

with initial condition ErŠ1s “ ErX̌1s “ m, it readily follows that pErŠns : n ě 1q is still ballistic

as n Ò 8 and more precisely

ErŠns „
1 ´ p

1 ` p
mn, as n Ò 8.

It was established in [22, Proposition 1.1] that pŠnq, under the weaker assumption thatX P L1pPq,

satisfies a weak law of large numbers. We later proved in [16] by different methods that under

our standing assumption X P L2pPq, the result can be strengthened:

Theorem 1.2. (Law of large numbers) For any p P r0, 1s, we have the L2pPq and almost sure

convergences:

lim
nÑ8

Šn
n

“
1 ´ p

1 ` p
m.

In contrast with the noise-reinforced case, for every p P r0, 1q the fluctuations are always

Gaussian. Namely, if we let m2 :“ ErX2s, it was established in [22, Theorem 1.2] that the

following weak convergence holds towards a centred Gaussian random variable:

lim
nÑ8

Šn ´
1´p
1`pmn

?
n

L
Ñ N

˜

0,
m2 ´

´

1´p
1`pm

¯2

1 ` 2p

¸

.

Observe that when p “ 1, we have plainly Šn “ X1Š
1
n for n ě 1 where pŠ1

nq is a counterbalanced

random walk with typical step distributed δ1. If we further assume that the law of X is δ1, [22,

Corollary 2.4] yields that the convergence in the previous display still holds.

In the same spirit as before, for every p P r0, 1q we let B̌ “ pB̌tqtPR`
be the continuous centred

Gaussian process with covariance structure given by

ErB̌tB̌ss “
1

2p ` 1

s1`p

tp
, for 0 ď s ď t. (1.2)
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We shall refer to B̌ as the counterbalanced Brownian motion with reinforcement parameter p P

r0, 1q. Our terminology will be justified by the result of Section 1.2. It readily follows from (1.2)

that the law of B̌ admits as well the following integral representation

B̌t “ t´p
ż t

0
spdBc

s, t ě 0

in terms of a standard Brownian motion Bc “ pBc
sqsě0.

On a remarkable martingale

The results of both works [16, 84] rely on a martingale present both in the discrete setting and

in the continuum. We think therefore worthwhile to explain its origins, its connections with

branching processes and recall some of its basic properties for later use.

We start by defining two sequences ppan, n ě 1q, pqan, n ě 1q of real numbers as follows: Let

pa1 “ qa1 “ 1 and for every n P t2, 3, . . . u, we set

pan “
Γpnq

Γpn ` pq
, and qan “

Γpnq

Γpn ´ pq

where the notation Γ stands for the standard Gamma function. It readily follows from our

definitions that if X is centred or p “ 1, the pair of processes M̂ “ ppanŜn : n P N˚q and

M̌ “ pqanŠn : n P N˚q are square-integrable martingales. Further their respective predictable

quadratic variation processes xM̂y, xM̌y are defined for all n ě 1 by the relations

xM̂yn “ σ2 `

n
ÿ

k“2

pa2k

¨

˝p1 ´ pqσ2 ´ p2

˜

Ŝk´1

k ´ 1

¸2

` p
V̂k´1

k ´ 1

˛

‚ (1.3)

and

xM̌yn “ σ2 `

n
ÿ

k“2

qa2k

˜

p1 ´ pqσ2 ´ p2
ˆ

Šk´1

k ´ 1

˙2

` p
V̂k´1

k ´ 1

¸

, (1.4)

where pV̂nqně1 is the process defined for every n ě 1 as V̂n “ X̂2
1 ` ¨ ¨ ¨ ` X̂2

n. This martingale had

already made its appearance in the literature in different forms. In the setting of the elephant

random walk, it was already at the heart of the analysis performed by Bercu in [11] and it was

exploited as well in latter related works, see e.g. [13, 14]. Further, both M̂ and M̌ have continuous

time analogues that can be conjectured from the asymptotic behaviours pan „ n´p, qan „ np and

the invariance principle (1.1). Namely, the processes N̂ :“ pt´pB̂tqtą0, Ň :“ ptpB̌tqtě0 are still

martingales. Let us now briefly discuss the origins of pM̂, M̌q.

The following remark is from Bertoin [21] and our definitions are taken from [24]. We write

MppRq for the space of finite atomic measures in R. We consider Z “ pZtpdxqqtPR`
a MppR`q-

valued particle system governed by the following dynamics: Z starts at time t “ 0 with a collection

of static particles px1, . . . xkq P Rk for some k ě 1. Then, every particle dies at rate 1 and is

replaced by a copy of itself and, either with an independent random variable with law X with

probability 1 ´ p, or with a second copy of itself with probability p. In particular, the process

keeping track of the number of particles alive at every time t, that we denote by pxZt, 1y : t ě 0q,

is a standard Yule process.



Chapter 1. Introduction to Part I 20

Figure 1.3: Every horizontal line represent the lifetime of a particle. At death, each particle
is replaced by a copy of itself (in red) and, a second copy of itself is added (in red) with
probability p while with probability 1 ´ p an innovation is introduced (in blue).

Formally, Z is the time-continuous Feller process with infinitesimal generator defined at every

x “
řk
i“1 δxi by the relation:

Afpxq “

k
ÿ

j“1

ż

MppR`q

`

φpx˚
j ` yq ´ φpxq

˘

pΠpxj , dyq, (1.5)

where x˚
j :“

ř

i‰j δxi , while
pΠpx, dyq is the law of the random measure in MppR`q defined as

p1` 1tε1“1uqδx ` 1tε1“0uδX . In particular Z is a so-called Uchiyama’s process [24, Lemma 2.1]. If

we write Id : R Ñ R for the identity function and for n ě 1 we set Tn :“ inftt ě 0 : xZt, 1y “ nu,

the key relation with our setting is that the process pxZTn
, Idy : n ě 0q started from a single

particle with law X, is a version of the noise reinforced random walk pŜn : n ě 1q with parameter

p and typical step distributed as X. Further, we have the identity in distribution

pxZt, Idy : t ě 0q
pdq
“ pŜZt

: t ě 0q

where Z “ pZt : t ě 0q is an independent standard Yule process. When X is centred or p “ 1,

it readily follows that the function µ ÞÑ xµ, Idy is an eigenfunction for the generator A with

eigenvalue p, as can be checked from (1.5). It now follows from classic theory of Feller processes

that the process

ŜZt
´ p

ż t

0
ŜZs

ds, for t ě 0,

is a martingale, and an integration by parts gives that Mt “ e´ptŜZt
for t ě 0 is on its turn a

martingale. More precisely, recalling that Zt „ et as t Ò 8 as well as the asymptotic behaviour

pan „ n´p as n Ò 8, the discrete martingale M̂ can be thought as M observed at a logarithmic

time-scale. If one wishes to perform the analogous analysis for the counterbalanced random walk,

it suffices to consider in (1.5) instead of pΠpx, dyq, the kernel qΠpx, dyq defined for every x P R as

the law of δx ` 1tε1“1uδ´x ` 1tε1“0uδX .
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1.2 The invariance principles

Making use of the martingales introduced in the previous section, we shall now investigate the

fluctuations of pŜnq when p P r0, 1{2s and of pŠnq for p P r0, 1s. This will be achieved by

establishing respective invariance principles. Recall that the processes pSn, Ŝn, Šnq are coupled

by construction, and therefore it is natural to investigate the joint scaling limit of the triplet. In

this direction, we have the following result:

Theorem 1.3. Fix p P r0, 1{2q and consider the triplet pSn, Ŝn, Šnq consisting of the random walk

pSnq with its reinforced version and its counterbalanced version of parameter p. Assume further

that X is centred. Then, the following weak convergence holds in the sense of Skorokhod as n

tends to infinity,
ˆ

1

σ
?
n
Stntu,

1

σ
?
n
Ŝtntu,

1

σ
?
n
Štntu

˙

tPR`

L
Ñ

`

Bt, B̂t, B̌t
˘

tPR`
(1.6)

where
`

B, B̂, B̌
˘

is a Gaussian process and B, B̂, B̌ denote respectively a standard BM, a noise

reinforced BM and a counterbalanced BM with covariances, EpBsB̌tq “ t´ppt^sqp`1p1´pq{p1`pq,

EpBsB̂tq “ tppt ^ sq1´p, EpB̂tB̌sq “ tps´ppt ^ sqp1 ´ pq{p1 ` pq.

The restriction p P r0, 1{2q stems from the fact that as we already mentioned, the fluctuations

of pŜnq are no longer Gaussian for p P p1{2, 1s, while the scaling at the critical parameter p “ 1{2

changes drastically - see Theorem 1.5 below. In contrast, the ones of pŠnq are still Gaussian in

those regimes and in [16] we established as well the corresponding scaling limits. To keep this

presentation concise we skip the precise statement. The idea behind the proof of Theorem 1.6 is

to establish instead the convergence of the martingales

´ 1

σ
?
n
Stntu,

patntu

σ
?
n
Štntu,

qatntu

σ
?
n
Ŝtntu

¯

for t ě 0,

towards the triple pBt, t
´pB̂t, t

pB̌tq for t ě 0, by exploiting the explicit form of the quadratic

variations (1.3), (1.4) in conjunction with the following martingale functional limit theorem taken

from [54].

Theorem 1.4. [54, VIII-Theorem 3.11] Assume M “ pM1, . . . ,Mdq is d-dimensional con-

tinuous Gaussian martingale with independent increments, and predicable covariance process

pxM i,M jyqi,jPt1,...,du. For each n, let M
n

“ pMn,1, . . . ,Mn,dq be a d-dimentional local martingale

with uniformly bounded jumps |∆Mn
| ď K for some constant K. The following conditions are

equivalent:

(i) Mn L
Ñ M in the sense of Skorokhod,

(ii) There exists some dense set D Ă R` such that for each t P D and i, j P t1, . . . , du,

as n Ò 8,

xMn,i,Mn,j
yt Ñ xM i,M j

yt in probability,

and

sup
sďt

|∆Mn
s | Ñ 0 in probability.
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The boundedness hypothesis on the jumps can be circumvented by a truncation argument.

Observe that in Theorem 1.3 we assumed that X is centred. In the noise-reinforced case, this can

be assumed without loss of generality since Ŝn´nEpXq for n ě 0 is still a noise reinforced random

walk with typical step distributed X´EpXq, but this is no longer the case for the counterbalanced

random walk. However, one can expect that this restriction can be lifted by working with the

martingale qanpŠn ´ EpŠnqq for n ě 0 and by performing a straightforward adaptation of our

arguments.

Lastly, our method extends as well to the critical regime p “ 1{2, in which case we have the

following:

Theorem 1.5. Let p “ 1{2 and suppose that X P L2pPq. Then, we have the weak convergence of

the sequence of processes in the sense of Skorokhod as n tends to infinity
˜

Ŝtntu ´ ntEpXq

σ
a

logpnqnt{2

¸

tPR`

L
Ñ pBtqtPR`

where B “ pBtqtě0 denotes a standard Brownian motion.

1.3 Noise reinforcement for Lévy processes

In order to motivate the upcoming sections let us start with an informal discussion. In the

last section, we introduced the notion of a noise reinforced Brownian motion with reinforcement

parameter p. It is therefore natural to ask if more generally, one can make sense of the notion

of a noise reinforced Lévy process with reinforcement parameter p. In the following sections we

shall see that this is indeed the case as long as we impose some restriction on the reinforcement

parameter p - note that this was already the case for noise reinforced Brownian motion. Since

noise reinforcement is an inherently discrete procedure, one needs to define such a process by

a limiting procedure. More precisely, a noise reinforced Lévy processes is obtained by noise-

reinforcing the n-skeleton of a Lévy process for a mesh of size 1{n, and letting n Ò 8. In the rest

of this introduction we shall give an overview of the main results obtained in [84] concerning the

study of noise reinforced Lévy processes. To this end, we shall start by recalling the main results

of the seminal work [19] where this family of processes was introduced. We stress that in the

work [84] we did not addressed other types of reinforcement and for instance we shall no longer

work with the counterbalanced random walk.

The definition and study of noise reinforced Lévy processes is closely related to a family of

heavy tailed distributions on the positive integers called the Yule-Simon distribution. We shall

start by briefly introducing the later as well as its functional version.

From the Yule-Simon distribution to the Yule-Simon process

Imagine one writes a book recursively at random by iterating the following rule: we start by

introducing a word and then, recursively, at each step and with some fixed probability, we either

introduce a brand new word or we repeat one of the former ones. In the work [90], Simon was

interested in studying the asymptotic frequencies of the number of words that had appeared

exactly k times up to time n, say νkpnq, as n Ò 8. This model is of course closely related to

the reinforcement algorithm we have introduced. Namely, in the setting of the noise-reinforced
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random walk, for every 1 ď k ď n the variable νkpnq counts the number of steps among pXjqjPN
that have been repeated exactly k times up to time n. It was established in [22, Lemma 3.1] the

following convergence in probability of the asymptotic frequencies:

lim
nÑ8

νkpnq

n
“

p1 ´ pq

p
Bpk, 1 ` 1{pq (1.7)

where B stands for the Beta function. Now, the distribution on t1, 2, . . . u defined by

p´1Bpk, 1 ` 1{pq, for k ě 1

is the so-called Yule-Simon distribution of parameter 1{p. This result was greatly generalised

in [19, Proposition 3.3] by proving a functional version of this convergence towards a counting

process named the Yule-Simon process. Namely, if we consider a uniform random variable U in

r0, 1s and a standard Yule process Z “ pZptqqtPR`
, the Yule-Simon process Y “ pYt : t ě 0q of

parameter 1{p is the counting process defined by the relation:

Yt “ 1tUďtuZ
`

pplogptq ´ logpUqq
˘

, for t P r0, 1s.

Since the functional version established in [19, Proposition 3.3] will be key for the development of

our theory, we shall now present the general statement. In order to explain the intricate relation

between the Yule-Simon distribution, the Yule-Simon process and noise reinforced Lévy processes,

for later use we sketch the main ideas behind its proof.

In this direction, for every j ě 1 let us write Njpnq for the number of repetition up to time

n of the variable Xj by the reinforcement algorithm. In particular, if εj “ 1 we have plainly

Njpnq “ 0 for every n ě 1. Note that in particular, the noise reinforced random walk pŜnq can

now be written in terms of this family of counting processes as follows:

Ŝn “

n
ÿ

j“1

NjpnqXj , for n ě 1. (1.8)

Now, [19, Proposition 3.3] states that for every continuous functional F on the Skorokhod space

Dpr0, 1s,Rq vanishing on the identically 0 trajectory, the following convergence holds in L2pPq:

lim
nÑ8

1

n

n
ÿ

j“1

F
`

Njptn¨ uq
˘

“ p1 ´ pqErF pY qs (1.9)

where Y is a Yule Simon process of parameter 1{p. The convergence (1.7) can be recovered from

the result (1.9) by considering the functional F pωq “ 1tω1“kuω1 for ω P Dpr0, 1s,Rq. In particular,

Y1 is distributed Yule-Simon of parameter 1{p, hence the name. The key behind (1.9) stems from

the limiting behaviour of the scaled counting processes pNjptntuq : t P r0, 1sqjě1. Namely, if for

every n ě 1 we let U rns be an independent random variable uniformly distributed in t1, 2, . . . , nu,

conditionally on εU rns “ 0, by [19, Lemma 3.6] we have the following weak convergence in the

sense of Skorokhod:
´

NU rns

`

tntu
˘

: t P r0, 1s

¯

L
Ñ

`

Yt : t P r0, 1s
˘

.

Observe that the first jump of the process in the last display is uniformly distributed in t1, . . . , nu.

Roughly speaking, in the continuum the first jump of Y - which is uniformly distributed in r0, 1s
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- corresponds to the time at which an innovation occurs and the subsequent jumps are repetitions

of the latter. The second ingredient needed to define a noise reinforced Lévy process is, of course,

a Lévy processes. We shall now briefly recall the main notions needed for our presentation.

Preliminaries on Lévy processes

Let ξ be a Lévy process and write Ψ for its characteristic exponent, viz. the function defined by

the relation Erexppiλξtqs “ expptψpλqq for λ P R. Then, it is classic that Ψ is of Lévy-Khintchine

the form

Ψpλq “ iaλ ´
1

2
q2λ2 `

ż

R
Λpdxq

`

eiλx ´ 1 ´ iλx1t|x|ď1u

˘

for some a, q P R` and a Lévy measure Λpdxq in Rzt0u. Further, we denote by βpΛq the

Blumenthal-Getoor (upper) index of the Lévy measure Λ, viz. the non-negative number βpΛq P

r0, 2s defined as:

βpΛq :“ inf
!

b ą 0 :

ż

|x|ď1
Λpdxq |x|

b
ă 8

)

.

Now, the Blumenthal-Getoor index β of the Lévy process ξ is defined in terms of βpΛq by the

relation:

β :“

#

2 if q ‰ 0,

βpΛq if q “ 0.

One can think of βpΛq as measuring the regularity of the Lévy measure Λ. For instance, if Λ

is finite we have plainly βpΛq “ 0 while if the Lévy process is of finite variation, in which case
ş

Λpdxqp1 ^ |x|q ă 8, it holds that βpΛq ď 1. Finally, if the Lévy process is α-stable for some

0 ă α ă 2, we get that βpΛq “ α. We are now in position to introduce our main object of interest.

Noise reinforced Lévy processes

Fix a Lévy process ξ with Lévy-Khintchine triplet pa, q2,Λq. For every n ě 1 and k ě 1, we write

X
pnq

k :“ ξk{n ´ ξpk´1q{n for the k-th increment of ξ for a partition with mesh of size 1{n. Then,

S
pnq

k :“ X
pnq

1 ` ¨ ¨ ¨ `X
pnq

k for k ě 1 with S
pnq

0 “ 0 is a random walk that we refer as the skeleton

of ξ for a mesh of size 1{n. We shall write

Ŝ
pnq

k :“ X̂
pnq

1 ` ¨ ¨ ¨ ` X̂
pnq

k , for k ě 1,

with Ŝ
pnq

0 “ 0 for its noise reinforced version, for some reinforcement parameter p P p0, 1q that we

fix from now on. If we further assume that p fulfils the condition:

p ¨ β ă 1, (1.10)

in which case we say that p is admissible for the triplet pa, q2,Λq, the main result in [19] states

that the sequence of skeletons converges as n Ò 8, in the sense of finite-dimensional distributions,

towards a time-indexed process
´

Ŝ
pnq

tntu

¯

tPR`

fdd
ÝÑ

`

ξ̂t
˘

tPR`
(1.11)

named the noise reinforced Lévy process - or in short NRLP - with characteristics pa, q2,Λ, pq. In

particular, if the starting Lévy process ξ is a Brownian motion, the corresponding noise reinforced

Lévy process is a noise reinforced Brownian motion with reinforcement parameter p. We can now

introduce our main object of study.



25 1.3. Noise reinforcement for Lévy processes

Proposition 1.6. Let pa, q2,Λq be the triplet of a Lévy process of exponent Ψ, consider an ad-

missible memory parameter p P p0, 1q and consider a Yule Simon process Y with parameter 1{p.

There exists a process ξ̂ “ pξ̂sqsPR`
whose finite dimensional distributions satisfy that, for any

0 ď s1 ă ¨ ¨ ¨ ă sk ď t and λ1, . . . , λk P R, we have

E

»

–exp

$

&

%

i
k
ÿ

j“1

λj ξ̂sj

,

.

-

fi

fl “ exp

$

&

%

p1 ´ pqtE

»

–Ψ

¨

˝

k
ÿ

j“1

λiY psj{tq

˛

‚

fi

fl

,

.

-

, (1.12)

where the right-hand side does not depend on the choice of t. The process ξ̂ is called a noise

reinforced Lévy process with characteristics pa, q2,Λ, pq.

From now on, when considering a NRLP with characteristics pa, q2,Λ, pq it is implicitly as-

sumed that p is admissible for the triplet pa, q2,Λq in the sense of (1.10). Let us briefly explain the

reason behind condition (1.10). First, note that if β ‰ 2 only p ă 1{2 is admissible for the triplet,

in agreement with Theorem 1.3. Indeed, in that case the Brownian component is non-null and by

the scaling property of Brownian motion the corresponding sequence of reinforced skeletons for

the Brownian component fall in the scope of Theorem 1.10. Further, if we suppose that β “ 0,

observe that we get a restriction on p only when βpΛq ą 1, in which case the so-called ”martingale

compensation on the jumps” of ξ is present. Roughly speaking, if p is too large, the reinforcement

algorithm might break the compensation mechanism and no limiting object can be defined. For

a more detailed discussion we refer to [19, Section 2].

In order to explain the presence of the Yule-Simon process on the characteristic function of the

finite-dimensional distributions (1.12) of ξ̂, we briefly sketch the proof of the finite-dimensional

convergence (1.11). Our arguments are taken from the proof of [19, Theorem 3.1]. For every

n ě 1, we write pN
pnq

j pkq : k ě 1, j ě 1q for the collection of counting processes associated

to pŜ
pnq

k q and observe that these are identically distributed. To establish (1.11) it suffices to

prove that as n Ò 8, the characteristic function of the finite-dimensional of
`

Ŝtntu : t P r0, 1s
˘

converge towards (1.12). Recalling the representation (1.8), the characteristic function of the

finite dimensional distributions of S
pnq

tn ¨u
at times 0 ď s1 ă ¨ ¨ ¨ ă sk ď 1 writes

E

»

–exp

$

&

%

i
k
ÿ

j“1

λjŜtnsju

,

.

-

fi

fl “ exp

$

&

%

1

n
E

»

–

n
ÿ

ℓ“1

Ψ

¨

˝

k
ÿ

j“1

λjNℓptnsjuq

˛

‚

fi

fl

,

.

-

.

for arbitrary λ1, . . . , λk P R. One can then obtain, by making use of (1.9) for an obvious choice

of functional F and a truncation argument, that the limit as n Ò 8 in the last display is precisely

the right-hand side in (1.12). For a detailed proof we refer to [19, Theorem 3.1].

The building blocks of NRLPs

A Lévy process with triplet pa, q2,Λq can be written as the sum of three independent processes

ξt “ pat ` qBtq ` ξ
p2q

t ` ξ
p3q

t , for t ě 0

where B is a standard Brownian motion, ξp2q is a compound Poisson process with Lévy-Khintchine

triplet p0, 0,Λpdxq1|x|ą1q while ξp3q is a martingale with triplet p0, 0,Λpdxq1|x|ď1q, often colloqui-

ally referred to as a compensated sum of jumps. One can infer from formula (1.12) that the law
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of a NRLP ξ̂ of characteristics pa, q2,Λ, pq can be written in terms of tree independents NRLPs

ξ̂t
L
“ pat ` qB̂tq ` ξ̂

p2q

t ` ξ̂
p3q

t , for t ě 0 (1.13)

the identity holding in law, where ξ̂p2q, ξ̂p3q are NRLPs with respective characteristics given by

p0, 0,Λpdxq1|x|ą1, pq, p0, 0,Λpdxq1|x|ď1, pq while B̂ is a noise-reinforced Brownian motion with

reinforcement p if q ‰ 0, and should read as null otherwise. More precisely, ξ̂p2q is the noise

reinforced version of the compound Poisson process ξp2q while ξ̂p3q is the noise reinforced version

of the martingale ξp3q (we stress however that the martingale property is not preserved by the

reinforcement). This two processes admit representations on the interval r0, 1s in terms of Pois-

sonian sums of Yule-Simon processes, shedding some light on the jump structure of NRLPs. The

two following constructions are taken from [19, Section 2].

˝ The reinforced compound Poisson process. Suppose that ξ is a compound Poisson process

with Lévy measure Λpdxq given by cPXpdxq, for some non-negative constant c and a probability

measure PXpdxq. Observe that in that case, any reinforcement parameter p P p0, 1q is admissi-

ble. Denote the law of the Yule-Simon process of parameter 1{p in Dpr0, 1s,Rq by Q and consider

M “
ř

iPN δpxi,Yiq a Poisson random measure in R` ˆDpr0, 1s,Rq with intensity p1´pqΛpdxqbQ.

Then, as can be verified by making use of the exponential formula, the process

ξ̂t “
ÿ

i

xiYiptq, for 0 ď t ď 1,

has the law of the noise reinforced version of ξ and will be called a noise reinforced Poisson

process. Observe from our description that the law of the jumps is still dictated by PXpdxq and

that the Yule-Simon process Yi reinforces the jump xi at every 0 ď t ď 1 such that ∆Yiptq ‰ 0.

Observe as well that the process in the last display is rcll. Getting back to the decomposition

(1.13), it follows that the process ξ̂p2q can (and will) be chosen rcll and with jumps of size larger

than 1.

˝ Compensated compound Poisson processes. Let us now turn our attention to the reinforced

version of the martingale ξp3q. To this end, with the same notations as before we consider a

Poisson measure M with intensity p1 ´ pqΛpdxq b Q. For every 0 ă a ă 1, we introduce the

following finite-variation process:

ξ̂pa,1qptq :“
ÿ

i

1taă|xi|ď1uxiYiptq ´ t

ż

taă|x|ď1u

xΛpdxq, for t P r0, 1s.

It readily follows from Campbell’s formula that the process in the last display in centred, and

by the exponential formula it has the law of the noise reinforced version of a Lévy process with

triplet p0, 0, 1taă|x|ď1uΛpdxqq. It was established in [19] that for any fixed reinforcement parameter

p satisfying the condition p ă 1{βpΛq, for each fixed t P r0, 1s the limit

lim
aÓ0

ξ̂pa,1qptq

exists a.e. and in L1pPq and we denote it by ξ̂
p3q

t . Moreover, ξ̂p3q “ pξ̂
p3q

t qtPr0,1s has the law of

the noise reinforced version of ξp3q. This construction is reminiscent of the non-reinforced setting,

where ξp3q is a so-called compensated sum of jumps. In contrast with our previous case, once

can no longer infer from this description if ξ̂p3q posses a rcll modification. This shall be our first

concern.
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1.4 The reinforced Lévy-Itô decomposition and synthesis

The definition given in Proposition 1.6 gives no information on the trajectorial regularity of

NRLPs. In this direction, let us state the following fundamental result:

Theorem 1.7. A noise reinforced Lévy process ξ̂ has a rcll modification, and we still denote it

by ξ̂.

Let us be more precise. From our previous discussion, finding a rcll modification of a NRLP

boils down to investigating the regularity of ξ̂p3q. The key observation now is that when a NRLP

ξ̂ is centred, the process

t´pξ̂t, for t ą 0

defined as 0 at the origin, is a martingale and therefore posses an rcll modification. For a proof

of this result we refer to [84, Proposition 3.2]. The martingale in the previous display is, roughly

speaking, the continuous time analogue of the discrete remarkable martingale we introduced in

Section 1.1.

Now that we have stated that a NRLP is a rcll process, we shall study the structure of its jump

process p∆ξ̂tq. Since it will share striking similarities with the jump process of a Lévy process,

we start by recalling some well known results on p∆ξtq. If ξ is a Lévy process with Lévy measure

Λ, its jump measure

µpdt, dxq “
ÿ

s

1t∆ξs‰0uδps,∆ξsqpdt, dxq (1.14)

is a homogeneous Poisson point process (abbreviated PPP) with characteristic measure Λpdxq.

Such a PPP can be constructed by decorating point process of jumps of Poisson processes, and

it is classic that (1.14) is determined by the following two properties:

(i) For any Borelian A with ΛpAq ă 8, the counting process of jumps ∆ξs P A occurring until

time t, defined as

NAptq “ #
␣

ps,∆ξsq P r0, ts ˆ A
(

, t ě 0,

is a Poisson process with rate ΛpAq.

(ii) If A1, . . . Ak are disjoint Borelians with ΛpAiq ă 8 for all i P t1, . . . , ku, the processes

NA1
, . . . , NAk

are independent.

In particular, from (i), it follows that pNAptq ´ ΛpAqtqtPR`
is a martingale.

Let us then turn our attention to the study of the jump measure

µ̂pdt, dxq :“
ÿ

s

1
t∆ξ̂s‰0u

δ
ps,∆ξ̂sq

pdt, dxq.

To this end, we shall introduce a family of measures in R` ˆ R parameterised by pΛpdxq, pq of

independent interest under the name noise reinforced Poisson point processes, and abbreviated

NRPPP. In analogy with the non-reinforced setting, NRPPPs are constructed by decorating the

jumps of reinforced Poisson processes. To motivate the introduction of this family of measures we

shall postpone their explicit construction and start by discussing the deep connections between

NRPPPs and NRLPs.

The first main result of the section states that NRPPPs play the role of PPP in the reinforced

setting:
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Theorem 1.8. (Reinforced Lévy-Itô decomposition)

The jump measure µ̂ of ξ̂ is a noise reinforced Poisson point process with characteristic measure

Λpdxq and reinforcement parameter p.

Moreover, if we denote by pFtq the natural filtration of ξ̂, Proposition 4.11 in [84] states that

the predictable compensator µ̂p of µ̂ is given by

µ̂ppω; dt, dxq “ p1 ´ pqdt b Λpdxq ` p
dt

t
Etpω; dxq

where Etpdxq “
ř

săt δ∆ξ̂spdxq is the empirical measure of jumps that occurred strictly before

time t. In particular, if we take p “ 0 in the last display, no reinforcement ocurs and we recover

the compensator of a PPP with intensity dt b Λpdxq.

Let us now turn our attention to the representation of ξ̂ in terms of its jump measure, a result

that we shall refer to as the reinforced Itô synthesis. In this direction, it might be worth recalling

the precise statement of Itô synthesis in the setting of Lévy processes. Write µ for the jump

measure of ξ and denote by µpscq its so-called compensated measure of jumps. Then, Itô synthesis

states that there exits a standard Brownian motion B, such that the following equality holds a.e.

ξt “ at ` qBt `

ż

r0,tsˆr´1,1sc
xµpds, dxq `

ż

r0,tsˆr´1,1s

xµpscq
pds, dxq, t ě 0 (1.15)

with the convention that B is null if q “ 0. The reinforced Lévy-Itô synthesis that we shall now

state shows that an analogous result holds in the setting of NRLPs, where the Brownian motion

is replaced by a noise reinforced Brownian motion B̂ and the measure µ by the reinforced version

µ̂. After properly introducing the ”space-compensated” measure µ̂pscq, we prove:

Theorem 1.9. (Reinforced Itô’s synthesis)

Let µ̂ be the jump measure of a NRLP ξ̂ of characteristics pa, q2,Λ, pq. Then, a.s. we have

ξ̂t “ at ` qB̂t `

ż

r0,tsˆr´1,1sc
xµ̂pds, dxq `

ż

r0,tsˆr´1,1s

xµ̂pscq
pds, dxq, t ě 0,

for some noise reinforced Brownian motion B̂, with the convention that if p ě 1{2 the process B̂

is null. Moreover, the integrals in the previous display are NRLPs with respective characteristics

p0, 0, 1r´1,1scΛ, pq, p0, 0, 1r´1,1sΛ, pq.

Now that we have stated the main results of this section and motivated the notion of a NRPPP,

let us introduce this family of random measures. We shall then give a brief sketch on how on can

prove Theorem 1.8.

The jumps of reinforced Poisson processes

Let N̂ be the reinforced version of a Poisson process with intensity c for some reinforcement

parameter p. With a slight abuse of notation, we still refer to the point measure P̂ :“ dN̂s in

R` as a reinforced Poisson process, and we shall start by investigating the nature of this random

measure in the non-negative real line.

The measure P̂ admits a simple representation in terms of a decorated Poisson process P

with intensity c p1 ´ pqdt in R`. Consider a point measure D “ t0, T1, T2, . . . u satisfying that
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the increments pTk`1 ´Tk : k ě 0q are independent and exponentially distributed with respective

parameter pk, with the convention T0 “ 0. In other terms, if we let Z be a standard Yule process,

D has the law of the jump measure of pZptqtPR`
with an additional Dirac mass at 0. Then, by

(4.5) in [84] the following identity holds in distribution:
ÿ

sPR`

1
ts:∆N̂s“1u

δs
L
“

ÿ

uPP

ÿ

tPDu

δuet .

From this description, the dynamics of the jumps of N̂ can be described as follows: first, since

0 P Du, for every u P P the process N̂ performs a jump at time u. Then, this jump is reinforced

at the subsequent times uet
u
i for every tui P Du. Therefore, roughly speaking, the jumps of N̂

consist in Poissonian jumps u P P which – in analogy with the discrete setting – we refer to

as innovations, and each u has attached to it a family tuet : t P Du, t ‰ 0u which should be

interpreted as repetitions of the original u through time. The connection with the Yule-Simon

process is the following: for fixed u P P, the jumps tuet : t P Du, t ‰ 0u are precisely the jumps

of a Yule-Simon process but started at the Poissonian time u instead of a uniform time in r0, 1s.

We refer to [84, Proposition 4.2] for exponential formulas characterising the law of P̂.

Figure 1.4: Sketch of the jumps of a noise reinforced Poisson process. We marked by x the
jumps corresponding to innovations, while each linked o is a repetition of the former.

The noise reinforced Poisson point process with characteristic measure Λ and parameter p

can now be constructed by decorating independent reinforced Poisson processes. We shall now

describe this procedure.

The reinforced Poisson point process

Fix a Lévy measure Λpdxq in R and consider a disjoint partition pAjqjPI of Rzt0u satisfying that

ΛpAjq ă 8. Further, we fix some reinforcement parameter p P p0, 1q.

‚ Step 1. For every j P I let Pj be independent Poisson processes in R` with intensity

p1 ´ pqΛpAjq. Further, consider independent collections pxu : u P Pjq of i.i.d. random variables

with law Λp ¨ X Ajq{ΛpAjq and pDu : u P Pjq i.i.d. with same law as D. We set

N̂jpds, dxq :“
ÿ

uPPj

ÿ

tPDu

δpuet,xuq.

Note that this corresponds to marking with the collection pxu : u P Pjq the reinforced Poisson

process
ř

uPPj

ř

tPDu
δuet with intensity ΛpAjq and parameter p.

‚ Step 2. Set P :“
ř

j Pj and write N̂ :“
ř

j N̂j for the measure obtained by superposition

of pN̂j : j P Iq. To simplify notation we simply write:

N̂ pds, dxq :“
ÿ

uPP

ÿ

tPDu

δpuet,xuq.
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Definition 1.10. The measure N̂ pds, dxq is referred to as a noise reinforced Poisson point process

with characteristic measure Λpdxq and reinforcement parameter p.

One can then characterise the law of N̂ by computing its exponential formulas, we refer to

Proposition [84, Proposition 4.8] for a precise statement and to [84, Lemma 4.6] for some basic

properties. Notably, NRPPPs admit a characterisation in the same spirit as the one stated for

PPP after (1.14). More precisely, the following holds:

Proposition 1.11. Let N̂ be a point process in R` ˆ R and for any Borelian A Ă R, set

N̂Aptq :“ N̂ pr0, ts ˆ Aq, t ě 0.

Then, N̂ is a noise reinforced Poisson point process with characteristic measure Λ and reinforce-

ment parameter p if and only if the two following conditions are satisfied:

(i) For any Borelian A with ΛpAq ă 8, the process N̂A is a noise reinforced Poisson process

with rate ΛpAq and reinforcement parameter p.

(ii) If A1, . . . Ak are disjoint Borelians with ΛpAiq ă 8 for all i P t1, . . . , ku, the processes

N̂A1
, . . . , N̂Ak

are independent.

Moreover, if ΛpAq ă 8 the process pt´ppN̂Aptq ´ tΛpAqq : t ą 0q is a martingale.

Now, Theorem 1.8 can be established by showing that µ̂ satisfies properties (i) and (ii) in the

previous proposition. We refer to [84, Theorem 4.1] for a detailed proof of this result.

1.5 Weak convergence of skeletons

We shall make use of the notations introduced at the beginning of Section 1.3. We fix a Lévy

process ξ, an admissible reinforcement parameter p for its triplet and we consider the pair
´

S
pnq

tntu
, Ŝ

pnq

tntu

¯

tPR`

composed by the skeleton of the Lévy process ξ paired with its noise-reinforced version. The first

component converges point-wise, with respect to the Skorokhod topology, towards the starting

Lévy process ξ and by the result of Bertoin [19, Theorem 3.1] we know that the second component

converges, in the sense of finite-dimensional distributions, towards a NRLP with characteristics

pa, q2,Λ, pq. Observe however that in contrast with the discrete setting, in the continuum we

don’t have a priori a natural coupling for ξ with its reinforced version. In this direction, let us

start by introducing the law for the coupling that we shall work with.

Proposition 1.12. There exists a pair pξ, ξ̂q, where ξ̂ has the law of a NRLP with characteristics

pa, q2,Λ, pq, with law determined by the following: for all k ě 1, λ1, . . . , λk, β1, . . . βk real numbers,

and 0 ă t1 ă ¨ ¨ ¨ ă tk ď t, we have

E

»

–exp

"

i
k
ÿ

j“1

`

λjξtj ` βj ξ̂tj
˘

*

fi

fl “

exp

"

t ¨ pE

»

–Ψ

˜

k
ÿ

j“1

λj1tUďtj{tu

¸

fi

fl ` t ¨ p1 ´ pqE

»

–Ψ

˜

k
ÿ

j“1

pλj1tY ptj{tqě1u ` βiY ptj{tqq

¸

fi

fl

*

,



31 1.5. Weak convergence of skeletons

where U is a uniform random variable in r0, 1s. A pair of processes with such distribution will

always be denoted by pξ, ξ̂q.

We stress that since noise-reinforcement is an inherently discrete procedure, one can not

define naively this notion in the continuum without considering a discretisation of the process.

Our definition for the joint law pξ, ξ̂q is justified by the following joint convergence, which is the

main result of Section 5 in [84].

Theorem 1.13. Let ξ be a Lévy process with characteristic triplet pa, q2,Λq, fix p P p0, 1{2q an

admissible memory parameter and for each n, let pS
pnq

k , Ŝ
pnq

k q be the pair of the n-skeleton of ξ

and its reinforced version. Then, there is weak convergence in D2pR`,Rq as n Ò 8
´

S
pnq

tn ¨u
, Ŝ

pnq

tn ¨u

¯

L
ÝÑ pξ, ξ̂q.

This is achieved by proving separately tightness and finite dimensional convergence for the

pair. We refer to Section 5 in [84] for a proof of this statement. We believe it is of particular

interest to dwell further into the definition provided in Proposition 1.12 for the joint law pξ, ξ̂q.

To this end, we shall now sketch how one can construct a coupling pξ, ξ̂q with finite-dimensional

distributions characterised by Proposition 1.12. Heuristically, as we shall see this is achieved

by performing the reinforcement algorithm in the continuum to the starting Lévy process ξ. A

precise description of the law pξ, ξ̂q will allow us to understand how the reinforcement of ξ affects

its sample paths.

The joint law pξ, ξ̂q

By Lévy-Itô synthesis (1.15), the Lévy process ξ can be written as pa ¨Id`q2Bq`ξp2q `ξp3q, where

the processes pξp2q, ξp3qq are independent of B and can be constructed from the jump measure µ.

On the other hand, by the reinforced Lévy-Itô synthesis [Theorem 1.9] we can write the law of ξ̂

as pa ¨ Id` q2B̂q ` ξ̂p2q ` ξ̂p3q where pξ̂p2q, ξ̂p3qq are independent of B̂ and can be constructed from

µ̂. Therefore, in order to define the joint law pξ, ξ̂q, it suffices to introduce the law of a Brownian

motion paired with its reinforced version pB, B̂q, as well as the distribution of the pair pµ, µ̂q,

where we denoted by µ̂ a NRPPP with parameters pΛpdxq, pq.

˝ The joint law pN , N̂ q. Denote the set of jump times of ξ by I :“ tu P R` : ∆ξu ‰ 0u and

consider the jump measure

µpds, dxq :“
ÿ

uPI

δpu,∆ξuq.

The construction of µ̂ that we shall now describe in terms of µ is reminiscent of the reinforcement

algorithm in the discrete setting. Roughly speaking, in the continuum, the steps pXnq are replaced

by jumps ∆ξs of the Lévy process ξ. With probability 1 ´ p, the jump-time and the respective

jump is shared with its reinforced version ξ̂ while with complementary probability p it is discarded

by the reinforcement algorithm. The jumps that are not discarded by this procedure are then

repeated at each jump time of an independent counting process that will be attached to it. The

process of discarding jumps with probability p is traduced in a thinning of the jump measure of

ξ. Formally, consider a family of Bernoulli random variables pεuquPI with parameter 1´p as well

as independent collections pDu : u P I q with law D. Then, the measure defined by the relation

µ̂pds, dxq :“
ÿ

uPI

1tεu“1u

ÿ

tPDu

δpuet,∆ξuq
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is a NRPPP with parameters pΛpdxq, pq explicitly constructed in terms of µ.

˝ The joint law pB, B̂q. Observe that we do have a natural candidate for the law of the pair

pB, B̂q. Namely, the law obtained in Theorem 1.3 when we investigated invariance principles for

noise-reinforced random walks: for fixed p P p0, 1{2q, we let pB, B̂q be a pair of Gaussian processes

with respective covariances given by

E rBtBss “ pt ^ sq, ErBtB̂ss “ pt ^ sq1´psp, ErB̂tB̂ss “
pt _ sqppt ^ sq1´p

1 ´ 2p

for any s, t P R`.

Finally, consider independent pairs pB, B̂q and pµ, µ̂q. Now we can state:

Definition 1.14. We call the noise reinforced Lévy process

ξ̂t “ at ` qB̂t `

ż

r0,tsˆr´1,1sc
xµ̂pds, dxq `

ż

r0,tsˆr´1,1s

xµ̂pscq
pds, dxq, t ě 0,

with characteristics pa, q2,Λ, pq the noise reinforced version of ξ, the unicity of the pair only

holding in distribution. Every time we consider a pair pξ, ξ̂q, it will be implicitly assumed that ξ̂

has been constructed by the procedure we just described in terms of ξ.

Now, from a rather long but straightforward computation one gets that the law of the pair

pξ, ξ̂q satisfies the identity of Proposition 1.12.

Figure 1.5: Sketch of a sample path of a Lévy process and its reinforced version. Jumps
in blue correspond to jumps coming from the jump measure of ξ (innovations), and in red
are marked the subsequent reinforcements. The jumps in blue in the path of ξ that are not
present in the right-hand side have been deleted by the thinning.

1.6 Applications

We conclude this introduction by briefly presenting two applications developed in [84] address-

ing two very different aspects of NRLPs. We first start by studying the rates of growth of NRLPs

at the origin, and we compare these with analogous results holding for Lévy processes. This

part strongly relies on the structure of NRPPPs and Theorem 1.8. On the other hand, we shall

identify the main features of NRLPs in the much broader setting of Infinitely Divisible Process,

and study some of its properties.
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Rates of growth at the origin

Let ξ be a Lévy process with characteristic triplet pa, 0,Λq. Observe that in particular, since ξ

has no Gaussian component, the Blumenthal-Getoor index of ξ is given by β “ βpΛq. We make

the following assumptions on the characteristic exponent:

‚ If
ş

t|x|ď1u
|x|Λpdxq “ 8, we assume the characteristic exponent can be written as follows:

Ψpλq “

ż

R

`

eiλx ´ 1 ´ iλx1t|x|ď1u

˘

Λpdxq.

Observe that in this case, we have βpΛq P r1, 2s.

‚ If
ş

t|x|ď1u
|x|Λpdxq ă 8, which can happen for βpΛq P r0, 1s, we suppose Ψ takes the following

form:

Ψpλq “

ż

R

`

eiλx ´ 1
˘

Λpdxq.

This is, when the Lévy process has finite variation, we are supposing that it has no linear drift

- the reason being that in that case the behaviour at 0 is dominated by the drift term. We will

refer to these hypothesis as hypothesis (H). In [84], we proved that the behaviour at zero of a

NRLP is twofold and dictated by the Blumenthal-Getoor index of the Lévy measure Λ.

Proposition 1.15. Let ξ be a Lévy process with triplet pa, q2,Λq satisfying hypothesis (H), and

consider ξ̂ its noise reinforced version for an admissible parameter p. Then, almost surely, we

have

lim
tÓ0

t´γ ξ̂t “ 0, if βpΛq ă 1{γ,

while

lim sup
tÓ0

t´γ |ξ̂t| “ 8, if βpΛq ą 1{γ.

It was established by Blumenthal and Getoor in [26] that under (H), the same result holds if

we replace the NRLP ξ̂ with the corresponding Lévy process ξ. Therefore, despite the reinforce-

ment, the behaviour at the origin - in the sense of Proposition 1.15 - is left unchanged. Finer

asymptotic analysis such as a law of iterated logarithm in the reinforced setting were however not

addressed in [84]. We refer however to [21] for a law of the iterated logarithm for noise-reinforced

Brownian motion. Let us now turn our attention to the second application discussed in [84].

Infinite divisibility

Let T be an arbitrary set. A process X “ pXtqtPT is said to be infinitely divisible if for every

n ě 1, we can write the law of X as a sum of n independent and identically distributed copies

of some other process. The theory of infinitely divisible processes has been subject of intensive

research and general tools have been developed making their study possible. These have found

remarkable applications in different fields, we refer to [86] for a general overview of the theory,

several important examples and applications. One of the main results of the theory states that

infinitely divisible processes are in bijection with so called functional triplets pb,Γ, ν̄q, where

b P RT is a path, Γ : T ˆT Ñ R is a covariance function and ν̄ is a measure in the path space RT ,

often referred to as the path Lévy measure. The finite-dimensional distributions of an infinitely

divisible process can be expressed in terms of the triplet pb,Γ, ν̄q. In this direction, for every finite
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subset I Ă T with I “ tt1, . . . tnu and a path e P RT we let eI :“ pept1q, . . . , eptnqqq. If we write

ΓI for the restriction of Γ to I ˆ I, it holds that

E
«

exp

#

i
ÿ

tPI

θtXt

+ff

“ exp

"

ixbI , θy ´
1

2
xθ ΓI , θy `

ż

RT

´

eixθ,eIy
´ 1 ´ ixθ, JeIKy

¯

ν̄pdeq

*

.

Having an explicit representation for the triplet pb,Γ, ν̄q turn out to be essential for applications,

since it unlocks much of the powerful machinery developed for the study of ID processes.

One can infer from (1.12) that a noise reinforced Lévy processes is infinitely divisible. In

Section 6.2 of [84], we identify their functional triplet, an for instance we show that the path Lévy

measure of a NRLP with characteristics pa, q2,Λ, pq when restricted to the interval r0, 1s is given

by

ν̄ :“ p1 ´ pqpΛ b Qq ˝ V ´1,

where V : R ˆ Dr0, 1s Ñ Rr0,1s is the mapping defined by V px, yq :“ xy, and Q is the law of

the Yule-Simon process. As an application, making use of the so-called Isomorphism theorem for

infinitely divisible processes we prove the following result:

Proposition 1.16. Let ξ̂ be a noise reinforced Lévy process with characteristics pa, 0,Λ, pq. Let

f : R Ñ R` be a bounded, continuous function with fpxq “ Opx2q at 0. Then, we have

lim
hÓ0

h´1E
“

f
`

ξ̂h
˘‰

“ p´1
p1 ´ pq

ż

R
Λpdxq

8
ÿ

k“1

fpkxqBpk, 1{p ` 1q.

where in the last display we denoted by B the beta function.

The probability mass function appearing in the right-hand side of the last display is the Yule-

Simon distribution.
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Introduction to Part II

The second part of this work is devoted on the one hand, at expanding upon the theory of

(continuous) Markov processes indexed by Lévy trees developed in [43], and on the other hand,

at developing an excursion theory for this class of tree-indexed processes. The purpose of this

work is to present the recent development of an excursion theory for this family of tree-indexed

processes, holding under rather general assumptions. More precisely, this introduction is devoted

to giving an overview of the main results obtained in collaboration with Armand Riera and under

the supervision of Jean Bertoin and Armand Riera in [82, 83]. Since the content of both works

is technical and relies on a rather broad spectrum of topics, in this introduction we shall give an

informal presentation with an emphasis on providing the heuristics behind the objects and results

we present. This often comes however at the expense of some lack of precision in some of our

statements. Let us start with an informal description of our objects of interest.

Informally, a Markov process indexed by a Lévy tree can be understood as follows: consider a

Markov process started at the root of a tree T ; the motion moves through the geodesic paths of

T away from the root and at each branching point, it splits in copies with same distribution that

continue to evolve independently. In contrast with the time-indexed setting, this process is defined

through two layers of randomness. Namely, now the indexing set T for the motion is random,

and to be more precise consists in a Lévy-tree. It is important to mention that Markov processes

indexed by Lévy trees are canonical probabilistic objects and for instance, are closely related to

the theory of super-processes [43, Section 4.2]. More recently, Brownian motion indexed by the

Brownian tree has been used as building block for the construction of the universal random metric

space arising in random geometry called the Brownian map [65, 76], as well as in the construction

of other related random surfaces [10, 72]. Establishing fine properties of such random surfaces

therefore often crucially relies in a proper understanding of Brownian motion indexed by the

Brownian tree and more generally, in the theory of Markov processes indexed by Lévy trees.

Let us now turn our attention to the development of an excursion theory for this class of tree-

indexed processes. To motivate the forthcoming results, let us start by briefly recalling some well

known aspects of excursion theory of time-indexed Markov processes. For a detailed overview of

the theory, we refer to e.g. [17, 25].

Excursion theory for time-indexed Markov processes.

Excursion theory has been subject of active research for decades, and this short discussion only

serves the purpose of recalling the facts needed for our exposition. For a detailed account we refer

to e.g. [17, 25]. We consider pξt : t ě 0q a time-indexed strong Markov process with rcll paths,

taking values in a Polish space E. For y P E we write Πy for its law started at y. Let us first

recall some definitions. A point x P E is called regular if Πxpinftt ą 0 : ξt “ xu “ 0q “ 1, and it

35



Chapter 2. Introduction to Part II 36

is called instantaneous if Πxpinftt ą 0 : ξt ‰ xu “ 0q “ 1; note that by Blumenthal’s 0 ´ 1 law,

these probabilities are either 1 or 0. Finally, x is said to be recurrent if for every y P E, under Πy
the Markov process returns to x almost surely. Now, we assume that for some point x P E the

following holds:

pH1q The point x is regular, instantaneous and recurrent for ξ.

pH2q The Markov process ξ does not spend time at x, viz.

ż 8

0
dt 1tξt“xu “ 0, Πx ´ a.s.

Under the first two conditions on x in pH1q, the set

Z ˝
“ tt ě 0 : ξt “ xu

is prefect and nowhere dense, and therefore of fractal nature. Its study is delicate and relies on

a remarkable continuous non-decreasing process L “ pLt : t ě 0q, unique up to a multiplicative

constant that we fix arbitrarily, and with Stieltjets measure dL supported on the closure of Z ˝.

Roughly speaking, at any time t, the variable Lt measures the number of visits of ξ at x, and L
is known under the name the local time of ξ at x. This description is informal, and for instance

under our standing hypothesis the number of visits of ξ to x is uncountable. The right inverse

L´1 of L is a subordinator and hypothesis pH2q ensures that it possesses no drift. For instance,

if ξ is a Brownian motion and x “ 0, under Π0 the process L´1 is a 1{2-stable subordinator. The

recurrence hypothesis is assumed for convenience and our presentation holds up to some minor

modifications if this assumption is dropped.

One of the key properties of L is that it can be used to index the excursion away from x of ξ

and crucially, this indexing is compatible with the ordering induced by time. More precisely, let

pai, biqiPN be the connected components of R`zZ
˝
and for every i, set ξi :“ pξpai`tq^bi : t ě 0q.

Then, ξi is a continuous piece of path, taking the value x for t P t0u Y rbi ´ ai,8q and satisfying

that ξt ‰ x for every t P p0, bi´aiq. We refer to ξi as the excursion away from x of ξ associated to

the excursion interval pai, biq. We let CpR`, Eq be the space of R` indexed E-valued continuous

functions endowed with the local uniform topology. We shall refer to the following point measure

E˝ :“
ÿ

iPN
δpLai ,ξ

iq

on R` ˆ CpR`, Eq as the the excursion process of ξ. Then, it is a classic result on excursion

theory that the measure E˝ is a Poisson point measure with intensity dtbN , where N is a sigma

finite measure on CpR`, Eq. We shall refer to N as the excursion measure of ξ. Moreover, the

path ξ can be recovered from E˝. In the special case when ξ is a Brownian motion, this result is

due to Itô.

Let us mention that the study of the excursions away from x of ξ is only delicate when the

point x is regular and instantaneous. Indeed, when x is not regular the set Z 0 is discrete, while

when x is not instantaneous, Z 0 is a countable union of closed intervals. For a more detailed

discussion, we refer to [17, Chapter IV].
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In this work, we shall explain how one can obtain analogous results in the tree-indexed setting.

Now, the role played by the set Z ˝ is taken over by the subset of points in T at which the

spatial motion takes the value x, say Z . Roughly speaking and in analogy with the time-indexed

setting, the excursion components consist in the connected components of T zZ , and the excursion

associated to a connected component consists in the restriction of the motion to such component.

Much of the effort in [82, 83] was devoted to, on the one hand, understanding the structure of

the set Z and, on the other hand, studying the family of excursions away from x by developing

an excursion theory. It is important to mention that when the random tree is the Brownian

tree and the Markov process a standard Brownian motion, an excursion theory was developed

by C. Abraham and J.-F. Le Gall in [1]. Our theory complements the results obtained in [1]

by employing different methods and notably, we introduce a notion of local time at a recurrent,

instantaneous point for the spatial motion when performing a clockwise exploration of the tree-

indexed process. We shall explain the differences and similarities with our work in more detail in

the sequel.

The introduction is organised as follows: After introducing the setting we shall be working

with, in Section 2.1 we start with a brief introduction to Lévy trees. In Section 2.2 we introduce a

remarkable time-indexed process called the Lévy-Snake, which is the process behind the formalism

of tree-indexed Markov processes. The content of Section 2.2 includes an overview of the theory

of exit local times and the special Markov property. The Lévy snake was defined on its current

most general framework in [43] and was further studied on [S]. For instance, in [S] we strengthen

the trajectorial regularity of the Lévy snake when the spatial motion is continuous and further

developed the theory of exit local times under more general initial distributions for the Lévy

snake. We then discuss in Sections 2.3 and 2.3 the extension of the classic excursion theory of

time indexed processes to our tree-indexed setting. More precisely, in Section 2.3 we introduce

an additive functional that shall play the role of the local time at a regular, instantaneous point

x when performing a clockwise exploration of the tree-indexed process. We then explain how one

can, making use of this additive functional, encode in a random tree the subset of points of TH at

which the motion takes the value x. For instance, we recover some of the results obtained in [66]

by different methods. In Section 2.4, after defining the notion of an excursion away from x, we

introduce the Poisson process of excursions and identify its intensity measure. Finally, in Section

2.5 and in analogy with the time-indexed setting, we address reconstruction questions in terms

of the excursion process.

2.1 Lévy trees

A rooted R-tree pT , dq is a compact metric space with a distinguished point, called the root,

satisfying that for every pair a, b P T , there exists a unique geodesic path Ja, bK Ă T isometric to

the interval r0, dpa, bqs connecting the points a, b. The R´trees we consider in this work are often

canonically constructed from a continuous non-negative function.

Trees coded by continuous functions

Let us start by briefly describing how one can construct a tree out of a continuous non-negative

function e : R` Ñ R` started at ep0q “ 0. We write σe P r0,8s for its duration viz. σe :“

suptt ě 0 : eptq ‰ 0u and if σe “ 8 we shall use the convention r0, σes :“ r0,8q. If for every
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s, t P r0, σes, we set

deps, tq :“ epsq ` eptq ´ 2 ¨ min
rs^t,s_ts

e,

the mapping de is a pseudo-distance on r0, σes and it induces an equivalence relation „e on r0, σes,

by setting s „e t if deps, tq “ 0. We write Te :“ r0, σes{ „e for the corresponding quotient space

and we endow it with the distance de. Let pe : r0, σes Ñ Te be the function mapping every element

s P r0, σes to its equivalence class in Te. The image of 0 under pe is called the root of Te, and it

will be denoted by H. If we write Vole for the pushforward measure of the Lebesgue measure on

r0, σes by pe, the triple pTe, de,Voleq is an R-tree equipped with a volume measure.

Figure 2.1: A non-negative continuous function e and the resulting tree Te.

The total mass of the measure Vole is VolepTeq “ σe and if σe ă 8, the tree Te is compact.

Note that the function e is well defined in the quotient space Te and for every a P Te, the value epaq

is precisely the distance of a to the root H. The set T of rooted R-trees equipped with a volume

measure, considered up to isometry and equipped with the local Gromov-Haussdorf-Prokhorov

metric is Polish, we refer to Section 3 on [3] for the precise statement and a detailed account.

Let us briefly discuss some geometric aspects of Te. First, the multiplicity of a point a P Te
is defined as the (possibly infinite) number of connected components of Teztau. The points with

multiplicity 1 are called the leaves of Te, while the family of points with multiplicity 2 is referred

to as the skeleton. Finally, every point with multiplicity i ě 3 is called a branching point and for

every i P t3, . . . ,8u we write BpipTeq for the collection of branching points with multiplicity i.

One can interpret Te as a genealogical tree, where every a P Te is an individual, and its multiplicity

-1 corresponds to its number of children. The branching points with finite multiplicity should

be interpreted as microscopic events on the scale of a population evolving through time at which

one individual gives birth to a finite number of children, while the ones with infinite multiplicity

correspond to macroscopic events at which the population increases dramatically. For every

a, b P Te, we shall say that a is an ancestor of b if a P JH, bK, and when this holds we write b ą a.

It is then natural to interpret the geodesic path JH, bK as the ancestral line of b, the distance to the
root of b being the moment in time at which the individual b was alive. The first common ancestor

a N b between a, b is the element of Te defined by the relation JH, a N bK “ JH, aK X JH, bK. We

stress that the dependence on e when considering geodesic paths Ja, bK as well as in the ancestral

order ą is omitted to simplify notation.

The tree Te comes naturally equipped with a temporal exploration. Namely, we refer to the

mapping ppeptq : 0 ď t ď σeq as the clockwise exploration of Te. Roughly speaking, ppeptq : 0 ď

t ď σeq starts at time t “ 0 at the root, and then travels through Te in clockwise order following

its contour. If for t P r0, σes we set Teptq :“ pepr0, tsq, one can think of Teptq as the subset the tree
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that has been explored up to time t. On the other hand, the closure of each connected component

of THzTeptq is a sub-tree of Te, say T i
e ptq, and we denote this family by pT i

e ptq : i P Iq. In Te,
every T i

e ptq is attached to the geodesic path JH, pHptqK at some height that we denote by hi - see

Figure 2.5 below. It is then natural to encode TezTeptq, viz the subset of Te that has yet to be

explored, on a point measure
ř

iPI δphi,T i
e ptqq on R` ˆ T. When working with some fixed t, the

dependence on t is omitted to simplify notation.

In what follows, the coding functions we shall consider will be random. Before introducing for-

mally the setting we shall work with, let us start with some motivations from the discreet setting.

Coding of plane trees and Galton-Watson trees.

We write T for the set of finite plane trees defined through the formalism of Neveu [77]. In par-

ticular, every T P T can be thought as a finite graph embedded in the plane with a distinguished

point (that we call the root) and with no loops. For simplicity, we shall enumerate the set of

vertices vpTq of T in lexicographical order t0, 1, 2, . . . , |vpTq| ´ 1u, the root being labelled with 0

and |vpTq| being the cardinally of vpTq. The distance between two elements a, b P vpTq is just the

number of edges on the unique path Ja, bK connecting a and b. The height hpaq of a vertex a is de-

fined as its distance to the root. Now, we define the height process H “ pHn : 0 ď n ď |vpTq| ´1q

of T by the relation Hn :“ hpnq, for 0 ď n ď |vpTq| ´ 1.

Figure 2.2: A plane tree T and the corresponding height function.

By definition, the height process H encodes the distances to the root when performing a

clockwise exploration of T and note that one can clearly recover the tree T from H and vice-

versa.

Let us now introduce another closely related functional of T encoding now the progeny of every

individual in T. In this direction, note that the notion of multiplicity of a vertex a P vpTq still

makes sense in this setting and we denote it by kpaq. The so-called Lukasiewicz walk associated

to T is the t´1, 0, 1, 2, . . . u-valued process pXnqnPN defined recursively as follows: we set X0 “ 0

and for n ě 0, we let

Xn`1 :“

#

Xn ` kpn ` 1q ´ 1, if Xn ą ´1,

´1 otherwise.

We can think of the variable Xn as counting the number of vertices attached to the right of

the geodesic path connecting the vertex n to the root. For every 0 ď n ď vpT q, the increment

Xn`1 ´ Xn ` 1 is precisely the number of children of the vertex n.
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Figure 2.3: A plane tree T and the corresponding Lukasiewicz walk

An important feature of X is that the height of a vertex n P vpTq can be obtained by the relation:

hpnq “ #
␣

k P t0, 1, . . . , n ´ 1u : Xk “ inf
kďiďn

Xi
(

. (2.1)

Therefore, one can recover as well the starting tree T from the path X . If one is only interested

in metric properties of T - as shall often be our case - it is clear that H is of greater use than X .

The main problem stems from the fact that, even in the simplest models of random plane trees,

the height process is in general significantly more difficult to study than the Lukasiewicz walk.

Let us be more precise.

We write GWpµq for the law of a Galton Watson tree on T with sub-critical spring distri-

bution µ “ pµpkq : k ě 0q. We recall that µ being sub-critical is defined through the condition
ř

kě0 kµpkq ď 1, and that under this assumption the corresponding Galton-Watson tree is indeed

a.s. finite. With a slight abuse of notation, under GWpµq we write T for the corresponding

Galton-Watson tree and we maintain the notation H,X for its height process and the corre-

sponding Lukasiewicz walk. If for every n ě 0 we set Yn :“ |ta P vpT q : hpaq “ nu|, the process

pYnq is a Galton-Watson process describing the evolution of the population encoded by T through

time. While in general the process H is not Markovian, the process X is of a significantly sim-

pler nature. Namely, if for k ě ´1 we let µ1pkq :“ µpk ` 1q, the process X is a simple random

walk with step distribution µ1 “ pµ1pkq : k ě ´1q started from 0 and stopped at its first hit-

ting time of ´1. In the continuum, the role played by the Lukasiewicz walk is (roughly) taken

over by an excursion of a Lévy process X and the Galton-Watson process shall be replaced by

a continuous-time branching process. As in the discrete setting, the height process in the con-

tinuum is a functional of X and the corresponding tree encoded by H is a Lévy tree. Defining

formally H in terms of X is a technical task, but we shall see that its definition stems from

the motivations we provided above. Further, since Lévy trees can be obtained as limit of scaled

Galton-Watson trees, Lévy trees should be considered as their continuum analogue - see e.g. Sec-

tion 2 of [43]. Let us now introduce the setting we shall be working with for the rest of this work.

Populations encoded by spectraly positive Lévy processes.

Let Y be a continuous state branching process with branching mechanism ψ started at some

x ą 0. One can think of Y as describing the evolution of a population through time and in

particular, the stopping time inftt ě 0 : Yt “ 0u is interpreted (when finite) as the extinction of

the corresponding population. We further assume that the branching process is (sub)critical, viz
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that ψ1p0`q ě 0 and that the following condition holds:
ż 8

1

dλ

ψpλq
ă 8. (2.2)

It is well known that these two conditions ensure the almost sure extinction of Y . Further, under

our standing hypothesis, the branching mechanism is necessarily of the form

ψpλq “ αλ ` βλ2 `

ż

p0,8q

πpdxqpe´λx
´ 1 ´ xλq

for some α, β ě 0 and a measure π on p0,8q satisfying the condition
ş

πpdxqpx ^ x2q ă 8. We

shall be now interested in encoding the genealogy of the population associated to Y in a random

tree. The almost sure extinction of Y will ensure that the corresponding genealogical tree is

compact. More precisely, it has been argued in [43] that the genealogy of its population can be

encoded in a ψ-Lévy tree. The later is an R-tree, coded by a continuous functional of a spectrally

positive Lévy process X with Laplace exponent ψ, known under the name the height process.

Before providing a proper introduction, for later use we start with some general facts on the

ψ-Lévy process X, that we define for concreteness under some probability P . First, recall that

X and ψ are linked by the relation:

Erexpp´λXtqs “ expptψpλqq, for λ ě 0

and note that since condition (2.2) holds if and only if β ą 0 or
ş

p0,8q
xπpdxq “ 8, the paths

of X have infinite variation. Further, since we have ψ1p0`q ě 0, it follows that X oscillates or

drift towards ´8 and in particular, the running infimum I “ infr0,ts X drifts towards ´8. Now,

we shall write X ´ I “ pXt ´ infr0,ts X : t ě 0q for the reflected Lévy process at its running

infimum. It is classic that X ´ I is a strong Markov process and that the point 0 is instantaneous

and regular. Further, ´I is a local time at 0 for X ´ I and we write N for the corresponding

excursion measure. We shall now explain how one can construct from X a genealogical tree

encoding the population of Y , by introducing the height process of X. The theory to achieve this

was developed in the monograph [43] and we shall now present some of its elements.

The height and exploration processes.

As we already mentioned, in the continuum the role played by the Lukasiewicz walk is taken over

by the Lévy process X. Now, the corresponding height Ht associated to some fixed t ě 0 can be

understood as follows: informally, under N and under P the variable Ht measures the size of the

set

ts P r0, ts : Xs´ ď inf
sďrďt

Xru. (2.3)

Observe that this is reminiscent of (2.1). One can make sense of this informal description by

making use of local times and a time-reversal argument. Let us be more precise: first, for each

t ě 0, we consider the time-reversed process

pX
ptq
s :“ Xt ´ Xpt´sq´ and pS

ptq
s :“ sup

r0,ss

pXptq, for 0 ď s ď t

with the convention pX
ptq
t “ Xt. Then, it is well known that pXs : 0 ď s ď tq has the same

distribution as the time-reversed process p pX
ptq
s : 0 ď s ď tq. Further, the point 0 is instantaneous
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and regular for the strong Markov process S´X “ psupr0,ts X ´Xt : t ě 0q and the restriction of

the latter to r0, ts is distributed as Ŝptq ´ X̂ptq. Now, for every t ě 0 and for some fixed decreasing

sequence pεkq converging to 0 we set

ΓtpX̂
ptq

q :“ lim
kÑ8

1

εk

ż t

0
ds 1

tsupr0,ss X̂
ptq´X̂

ptq
s ăεku

,

the convergence holding a.s. Then, Γtp pX
ptqq is the value of the local time at 0 of pSptq ´ pXptq taken

at time t and note that the set

ts P r0, ts : pS
ptq
s ´ pX

ptq
s “ 0u

is precisely the image of (2.3) under the mapping s ÞÑ t´ s. Now, for every t ě 0, we can define

the value of the height process at time t by the relation:

Ht :“ Γtp pX
ptq

q.

Under our standing assumptions on ψ, Theorem 1.4.3 from [43] ensures that the non-negative

process H “ pHt : t ě 0q possesses a continuous modification that we consider from now on and

still denote by H. It will be crucial for our purposes to note that H is well defined under the

excursion measure N . From the informal description given in (2.3), this should not come as a

surprise since for each t ě 0, the variable Ht only depends on the excursion of X ´ I straddling t.

Moreover, the excursion intervals away from 0 of H and X ´ I coincide. We can now introduce:

Definition 2.1. We define the law of the ψ-Lévy tree as the law on T of the R-tree TH under

the excursion measure N , and the law of a ψ-Lévy forest as the law of the non-compact metric

space TH under P .

The terminology stems from the fact that under N , THzH posses a unique connected compo-

nent while under P , the set THzH is conformed by an infinite family of connected components.

Moreover, the closure of each one of them is on its turn a compact tree. Namely, each excursion

Hi of H away from 0 gives rise to a compact tree THi , and TH is obtained by concatenating

the family pTHi : i P Nq at their respective roots, following the order induced by the local time

´I. Therefore, we can think of every excursion Hi as encoding the evolution of a sub-population

with corresponding genealogical tree THi . In particular, under N the process H describes the

evolution of a single sub-population up to the moment of its extinction. Let us mention that the

connection with the starting ψ-CSBP Y can made through the Ray-Knight theorem [43, Theorem

1.4.1]; since it relies in the notion of the local time at a height a ě 0, we shall not provide the

details. When X is a Brownian motion, N is 1 the positive Itô excursion measure, H under N

is a non-negative Brownian excursion and TH is the so-called free Brownian tree. Further, under

the conditioning σ “ 1, TH is the CRT or Continuum Random Tree [4].

In the same vein as Galton-Watson trees, Lévy trees satisfy a branching property. In this

direction, recall that by construction, for every t the variable Ht is the distance of pHptq from

H and we write HpTHq :“ suptě0Ht for the height of TH . For h, ε ą 0, under N and on the

event HpTHq ą h ` ε, we let T 1, . . . , T K be the sub-trees of TH rooted at height h and reaching

a height HpT iq ą ε. Then, by Corollary 3.2 in [44], for k ě 1 and conditionally on K “ k, the

1Up to an unimportant factor 2.
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sub-trees T 1, . . . , T k are independent and distributed as TH under Np ¨ |HpTHq ą εq. Notably, a

converse statement holds, we refer to Theorem 1.1 in [91].

Let us make a brief comment on how the geometry of TH is influenced by the choice of ψ.

First, it is important to mention that if i R t3,8u the set BpipTHq is a.e. empty independently

of the choice of ψ. The set of branching points Bp3pTHq corresponds to strict local minima of

H, while Bp8pTHq is in bijection with ts ě 0 : ∆Xs ą 0u by the mapping pH . For instance, TH
only possesses points of infinite multiplicity if the Lévy measure of ψ is non-null. One can further

argue that the ”fractal size” of the branching point pHptq P Bp8pTHq for t P ts ě 0 : ∆Xs ą 0u

is precisely ∆Xt. This notion can be made rigorous by making use of the notion of the local time

Figure 2.4: Zooming around an infinite multiplicity point associated to a large jump of the
Lévy process.

at a branching point introduced below. For a thorough study of the geometry of Lévy trees we

refer to [44].

As for Galton-Watson trees, the height process of a Lévy process is in general not Markovian,

and this makes its study a rather difficult task. To this end, let us introduce another crucial

process closely related to H called the exploration process. While H encodes the distances of

ppHptq : 0 ď t ď σHq to the root H of TH , the exploration process further encodes at each t,

the height of the sub-trees in TH attached to the right of the geodesic path J0, pHptqK; let us be
more precise. For every 0 ď s ď t, set Is,t :“ infrs,ts X and write Mf pR`q for the space of finite

function in R` equipped with the weak topology. The exploration process is the Mf pR`q valued

process denoted by ρ “ pρt : t ě 0q and defined, for each t ě 0 under N and under P , by the

relation

ρtpdhq :“ β1r0,Htsphqdh `
ÿ

0ăsďt
Xs´ăIs,t

pIs,t ´ Xs´q δHs
pdhq, t ě 0. (2.4)

We denote by pFtq the completed natural filtration of ρ. If for µ P Mf pR`q we write Hpµq :“

sup supp µ and xµ, 1y :“ µpr0,8qq for the total mass of µ, the pair pH,X´ Iq and ρ are linked by

the identities Ht “ Hpρtq and xρt, 1y “ Xt´It for t ě 0. The key now is that despite its technical

definition, ρ is a right-continuous (with respect to the total variation distance of measures) strong

Feller process [2].
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For every fixed t, the variable ρt carries the

following geometric information: let JH, pHptqK
be the path connecting pHptq to the root and

consider the measure M “
ř

jPIt
δ

phj ,T j
Hq

on

R` ˆ T, composed by the family of sub-

trees attached to the right of JH, pHptqK in-

dexed by their respective heights. Then by

the Markov property, conditionally on Ft, the
measure M is a Poisson point measure with

intensity ρtpdhqNpTH P ¨q. For example, if

X is a Brownian motion, the measure ρt is

simply given by 1r0,Htsphqdh and therefore,

conditionally on Ft, the heights of the sub-

trees that are yet to be explored are uniformly

spread and dense in r0, Hts, each T i
H being dis-

tributed as TH under the positive Itô mea-

sure. To formalise the previous statements

one needs to introduce the law of ρ started

from an arbitrary µ P Mf pR`q, we refer to

Chapter 1 in [43] for a detailed discussion.

Figure 2.5: Sketch of the right spine
seen from pHptq.

Let us close our discussion on the height process and the exploration process with an impor-

tant result for the development of Section 2.5. We already mentioned that H is a functional of

ρ since we can write H “ pHpρtq : t ě 0q. Further, by construction ρ is a function of the Lévy

process X. In the other direction, the null measure 0 is regular and instantaneous for ρ and ´I

is a local time for ρ. Since for every t ě 0 we have xρt, 1y “ Xt ´ It, it follows that X can be

recovered from ρ as well. Notably, by Lemma 6.1 the Lévy process X and (therefore ρ) can be

constructed from H, which yields that despite the fact that X, ρ and H encode different aspects

of TH , they carry the same amount of information.

The local time at a branching point

We now introduce an important notion for the sequel, which is the local time at a branching point

b P Bp8pTHq. This is a continuous, non-decreasing process λℓ,b “ pλℓ,b : 0 ď t ď σHq measuring

at every t ě 0 the time spent by ppHpsq : s ě 0q at b up to time t. We refer to λℓ,b8 as the total

mass of b. The content of this section has been adapted from [83].

Recall that the mapping pH realises a bijection between the sets tt ě 0 : ∆Xt ą 0u and

Bp8pTHq. For every jump-time s P tt ě 0 : ∆Xt ą 0u we write zpsq :“ inftt ě s : Ht ă Hsu,

the latter coinciding with inftt ě s : Xt ď Xs´u. We define the local time at the branching point

b :“ pHpsq by the relation:

λℓ,bt :“ Xs ´ Is,t, for t P rs, zpsqs,

with λℓ,bt “ 0 if 0 ď t ă s and λℓ,bt “ ∆Xt if t ą zpsq. From our definitions, the process λℓ,b is

continuous and non-decreasing. Next, for t ě 0 we let λr,bt :“ ∆Xs´λr,bt which in particular gives

that

λr,bt “ Is,t ´ Xs´, for t P rs, zpsqs.
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We shall now justify our terminology. Consider the connected components of ts ď t ď zpsq :

Ht ą minrs,ts Hu as well as the corresponding excursions of pHt : s ď t ď zpsqq over its running

infimum. Each excursion interval is mapped by pH in a sub-tree T i rooted at b. If pu, vq Ă R` is

an arbitrary interval, we set nppu, vq, εq for the number of these excursions starting in pu, vq and

reaching a height greater than ε. This corresponds roughly to the number of trees T i rooted at

b with height greater than ε and contained in the closure of THpvqzTHpuq. Finally, for ε ą 0 we

set υpεq :“ NpsuptHt ą εq. Lemma 6.2 states that, under P and N , a.e. for every b P Bp8pTHq

and t ě 0 we have the following convergences:

λℓ,bt “ lim
εÑ0

nbppt ^ s, t ^ zpsqq, εq

υpεq
, λr,bt “ lim

εÑ0

nbppt _ s, t _ zpsqq, εq

υpεq

where s :“ p´1
H pbq X tt ě 0 : ∆Xt ą 0u. Moreover, the family ppλℓ,b, λr,bq, b P Bp8pTHqq can

be obtained as a function of H. The approximation of the total mass for points with infinite

multiplicity was already considered in [44], but it will be crucial for our purposes to have the

refined version stated above. Observe that the exploration process ρ can be expressed in terms

of the family pλr,b : b P BppTHqq. Namely, for every t ě 0, we have

ρtpdhq :“ β1r0,Htsphqdh `
ÿ

0ăsďt
∆Xsą0

λ
r,bpsq
t δHs

pdhq, t ě 0 (2.5)

with the notation bpsq :“ pHpsq. For fixed t ą 0, the variable λr,bt thus encodes the ”number” of

sub-trees rooted at b that have yet to be explored after time t.

2.2 Markov processes indexed by Lévy trees

All the ingredients are in place to introduce the notion of a Markov process indexed by a Lévy

tree. Since the formal definition of this process relies in the so-called Lévy Snake which is a rather

technical time-indexed process, we start with an informal discussion. Let E be a Polish space and

fix an arbitrary y P E. For every y P E we let pξt : t ě 0q under Πy be a continuous time-indexed

strong Markov process taking values in E and started at ξ0 “ y. We can define informally the

Markov process ξ indexed by TH and started from y as follows. We first start by sampling TH
under N or P . Then, conditionally on TH , we consider a spatial motion governed by Πy and

indexed by TH . The motion starts at the root H P TH at y and moves through TH away from

H along the geodesic paths according to Πy, with the condition that at each branching point of

TH , it splits into independent copies with same law. This process is denoted by pξaqaPTH
. We

stress that we are dealing with two layers of randomness: the branching structure of pξaqaPTH
is

determined by the choice of ψ while the spatial displacement is governed by Πy.

Now, the corresponding Lévy snake is a time indexed process encoding both the branching struc-

ture and the labels of pξaqaPTH
. More precisely, for each t, write Wt for the finite E-valued finite

path defined by the relation

Wt :“
`

ξa : a P J0, pHptqK
˘

.

In other terms, Wt encodes the labels of the ancestral line JH, pHptqK of pHptq, and recall that

ρt encodes precisely the right spine attached to JH, pHptqK in TH . The Lévy snake is the pair

pρt,Wtq for t ě 0, when TH is sampled under N or under P . We stress that this definition is
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Figure 2.6: Sketch of the spatial positions of an R2-valued Markov process indexed by a
Lévy tree. The underlying tree is not being plotted but can be recovered by looking at the
genealogy of the spatial positions. The paths do not intersect in the picture only for sake of
clarity.

purely heuristic, and for instance, the notion of a Markov process indexed by a Lévy tree is de-

fined through the Lévy snake, and not the other way around. Let us now give a formal definition.

The ψ Lévy snake with spatial motion ξ.

The content of this section is taken from [43]. We write WE for the space of finite E-valued

continuous paths. More precisely, every element w P WE is a continuous path w : r0, ζws Ñ E

defined in a compact interval for some finite ζw P r0,8q, that we refer to as the lifetime of w.

Further, we shall denote by pw the tip of the path wpζwq. With a slight abuse of notation, for

y P E we still denote by y the element w P WE with wp0q “ y having null lifetime. If we equip

the space WE with the distance

dWE
pw,w1

q :“ |ζw ´ ζw1 | ` sup
rě0

dE
`

wpr ^ ζwq,w1
pr ^ ζw1q

˘

the metric space pWE , dWE
q is Polish. We start by defining the notion of a snake driven by a

continuous function, with spatial motion Π :“ pΠyqyPE . This is a WE-valued time inhomogenous

Markov process that was first introduced in [43]. To this end, fix a finite path w P WE with

wp0q “ y for some fixed y P E and for every 0 ď a ď ζw, b ě a we consider a probability kernel

Ra,bpw, dw
1q on WE characterised by the following properties:

(i) Ra,bpw, dw
1q-a.s., w1psq “ wpsq for every s P r0, as.

(ii) Ra,bpw, dw
1q-a.s., ζw1 “ b.
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(iii) Under Ra,bpw, dw
1q, pw1ps ` aqqsPr0,b´as is distributed as pξsqsPr0,b´as under Πwpaq.

We next fix a continuous function h : R` ˆ R` with hp0q “ ζw0 , that we refer as the driving

function, and for 0 ď s ď t we let mhps, tq :“ minrs,ts h. If we write W “ pWt : t ě 0q for

the canonical process in WR`

E , for every fixed w0 P WE we shall denote by Qhw0
the probability

measure on WR`

E characterised by the following relation:

Qhw0

`

Ws0 P A0,Ws1 P A1, ...,Wsn P An
˘

“ 1tw0PA0u

ż

A1ˆ¨¨¨ˆAn

Rmhps0,s1q,hps1qpw0, dw1q . . . Rmhpsn´1,snq,hpsnqpwn´1, dwnq

holding for every 0 “ s0 ă s1 ă ... ă sn and A0, ..., An Borelian sets of WE . We refer to the

canonical process W under Qhw0
as the snake driven by h with spatial motion Π started from w0.

Informally the dynamics of W under Qhw0
can be described as follows: at time 0, the path W0

is precisely w0; when h decreases, this path is erased from its tip while when h increases, it is

extended by adding “little pieces” of trajectories of ξ at the tip. The term snake stems from the

fact that, for every fixed 0 ď s ă t, we have that Wsprq “ Wtprq for every 0 ď r ď mhps, tq.

Now, we shall randomise the driving function h by considering instead the height process of

a ψ-Lévy tree. Formally, denote by P0 the law of ρ under P on Mf pR`q where, with a slight

abuse of notation, we write 0 for the identically null measure. We define a probability measure

on pMf pR`q ˆ WEqR` by the relation:

P0,ypdρ, dW q :“ P0pdρqQ
Hpρq
y pdW q.

The process pρ,W q under P0,y is referred to as the ψ-snake with spatial motion Π started from

p0, yq. For a more general definition of the Lévy snake starting from any pair pµ,wq P Mf pR`q ˆ

WE , we refer to [43, Chapter 4.1]. Under appropriate assumptions on the pair pψ,Πq that we shall

assume from now on, the WE-valued process pWt : t ě 0q possesses a continuous modification

with respect to the metric dWE
- we refer to Proposition 5.2 for the precise assumptions. With a

slight abuse of notation, this modification shall still be denoted by W . For latter use, we gather

some of its main properties:

• The pair pρ,W q :“ ppρt,Wtq : t ě 0q is a right-continuous Mf pR`q ˆ WE-valued strong

Markov process.

• The point p0, yq is instantaneous and regular for pρ,W q and ´I “ ´ infr0,ts X can be taken

as a local time. Further, the corresponding excursion measure Ny can be written as follows:

Nypdρ, dW q “ NpdρqQ
Hpρq
y pdW q.

• For each fixed t, under P0,y and Ny, the path Wt conditionally on Ht is distributed as

pξh : 0 ď h ď Htq under Πy.

• The processW under P0,y and underNy satisfies the snake property : a.e. for every 0 ď s ă t,

we have that

Wsprq “ Wtprq, for every 0 ď r ď mHps, tq
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The snake property entails in particular that a.e., under P0,y and Ny, if Hs “ Ht “ mHps, tq

the two tip of paths xWt, xWs coincide. This gives that xW :“ pxWt : t ě 0q is well defined in the

quotient space TH and with a slight abuse of notation we denote this process by pξaqaPTH
.

Remark: In the sequel, for sake of clarity but at the expense of some lack of rigour, we shall

often write our explanations in terms of the tree indexed process pξaqaPTH
instead of pρ,W q. This

practice will however be avoided for our main results.

The study of geometric properties of pξaqaPTH
often relies in understanding the law of pρ,W q

at typical times sampled with respect to random measures of different natures. These formulas

are often colloquially known under the name many-to-one formulas. In this direction, under E0,

denote by U “ pUt : t ě 0q a subordinator with Laplace exponent ψpλq{λ´ α for λ ě 0. It might

be worth recalling that the subordinator with Laplace exponent ψpλq{λ is the so-called ladder

height process of X, see e.g. Lemma 1.1.2 [43]. For every a ě 0, let Ja be the element of Mf pR`q

defined by the relation Ja :“ 1r0,asprq dUr. The following lemma is taken from [43].

Lemma 2.2. [43, Formula (4.2)] For fixed y P E and for every non-negative measurable function

Φ in Mf pR`q ˆ WE, we have:

Ny

´

ż σ

0
dsΦpρs,Wsq

¯

“

ż 8

0
da exp

`

´ αa
˘

¨ E0
b Πy

”

Φ
`

Ja, pξs : s ď aq
˘

ı

.

For a more general statement describing the law of the right and left spines, we refer to

Proposition 6.17.

The later formula should be interpreted as follows. Consider the pointed measure N‚
y in

Mf pR`q ˆ WE ˆ R` defined by the relation N‚
ypF pρ,W,Uqq “ Ny

` şσ
0 ds F pρ,W, sq

˘

. Note that

the law of pρ,W q under N‚
y is absolutely continuous with respect to Ny. Under N‚

y, one should

think of U as a point uniformly distributed in r0, σs conditionally on pρ,W q. Then, the law of the

Lévy snake at a typical point pρU ,WU q under N‚
y is characterised by the following. Conditionally

onHU , the pair pρU ,WU q is independent and the law ofHU is given by expp´αaq1R`
da. Moreover,

for every a ě 0 and conditionally on HU “ a, the pair pρU ,WU q is distributed as pJa, pξs : s ď aq
˘

under E0 b Πy.

The study of time indexed Markov processes relies crucially on the Markov property. However,

the latter is intrinsically related to time, and therefore not suited for the tree-indexed process

pξaqaPTH
. We shall now introduce the preliminary notions needed to state a spatial version of the

Markov property satisfied by pξaqaPTH
.

Exit local times and the special Markov property.

Let us start presenting the technical background needed to state our first main result. Fix an

open set D of the Polish space E as well as a point y P D, and consider pξaqaPTH
under Ny. If

under Πy we let τD be the first exit time of the Markov process from D we further assume that

ΠypτD ă 8q ą 0.

Let TrpTHq be the subset of TH conformed by points a P TH satisfying that, for every b P JH, aJ
we have ξb P D. Then, TrDpTHq is a tree and we denote by TrDpξq the restricted process

pξa : a P TrDpTHqq. Further, the closure of each connected component of THzTrDpTHq is as well
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a tree. We denote this family of sub-trees by pCDi : i P Iq and we set ξDi :“ pξa : a P CDi q for its

corresponding labels. If we let Hi be the root of CDi , it follows that ξDi is a tree-indexed process

started at the point ξDi pHiq P D, and we shall refer to it as a subtrajectory that exits the domain

D. Due to the fractal nature of TH , the number of subtrajectories that exits the domain D is a.e.

either 0 or (countably) infinite.

Figure 2.7: Sketch of the spatial positions of an R2-valued Markov process indexed by a Lévy
tree pξaqaPTH started from some y P D. We stress that a subtrajectory exiting the domain
D might return into D, but any subsequent exit from D of the latter will not translate into
an exit point from D for the spatial motion pξaqaPTH .

The exploration ppHptq : 0 ď t ď σHq induces a natural order on this family of subtrajectories.

Namely, if for every i P I we write ai :“ inftt ě 0 : pHptq P CDi u for the first time the exploration

visits the component CDi , we can define a partial order on pξDi : i P Iq by considering the order

induced by the corresponding first visit times pai : i P Iq. Note however that this order can not be

recovered solely from the family pξDi : i P Iq. To this end, we shall now explain how one can index

the family of subtrajectories away from D by means of a continuous additive functional of the

Lévy snake compatible with the ordering induced by the clockwise exploration. For every t ě 0

recall the notation THptq “ pHpr0, tsq and for every i P I, we set CDi ptq “ CDi if CDi ptq Ă THptq

while CDi ptq :“ H otherwise. Then, if we write Bi
εpHiq for the ball of radius ε centred at Hi in

CDi ptq, the limit

LDt :“ lim
εÑ0

ε´1VolH

´

ď

iPI
CDi ptq X Bi

εpH
i
q

¯

exists a.e. uniformly in compact intervals. The process LD “ pLDt : t ě 0q is a continuous,

non-decreasing additive functional of pρ,W q called the exit local time from D [43, Section 4.3].

The terminology can be justified by the fact that, roughly speaking, at each fixed t, the variable

LDt measures the ”number” of connected components of THptqzTrDpξq. Moreover, the Stieltjets

measure dLD is supported on the set:

␣

t ě 0 : ξpHptq P BD
(

.
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The following first-moment formula taken from [43, Proposition 4.3.2] describes the law of pρ,W q

at a typical time taken with respect to the measure dLD.

Lemma 2.3. [43, Proposition 4.3.2] For fixed y P E and for every non-negative measurable

function Φ in Mf pR`q ˆ WE, we have:

Ny

ˆ
ż σ

0
dLDs Φpρs,Wsq

˙

“ E0
b Πy

„

1tτDă8u expp´ατDqΦ
`

JτD , pξt : t ď τDq
˘

ȷ

.

We can now turn our attention to the first main result in [82], which is a spacial version

of the Markov property, known as the special Markov property. Roughly speaking, the special

Markov property describes the law of the family ppLDai , ξ
D
i q : i P Iq conditionally on TrDpξq.

Let us start by providing some historical context. This result was originally introduced in [63,

Section 2] in a weaker version for the Brownian motion indexed by the Brownian tree, and has

played a fundamental role in its study, we refer to e.g. [63, 66, 70, 72]. More recently, a stronger

version was proved in [66] still when the tree is the Brownian tree but holding for more general

spatial motions. In this section we shall extend this result to an arbitrary Lévy tree. It is worth

mentioning that the special Markov property is closely related to the one established by Dynkin

in the setting of superprocesses [45] under very general assumptions, the crucial difference being

that in the context of the Lévy snake, it keeps track of the genealogy and the respective labels of

each individual.

Let us introduce the last pieces of notation needed to state formally this result. For w P WE

and with a slight abuse of notation, set τDpwq :“ inftt ě 0 : wphq R Du and consider the functional

V D
t :“

ż t

0
ds1tHsďτDpWsqu, t ě 0.

Note that the variable V D
t measures the volume of TrDpTHq X THptq and write ΓD for its right-

inverse, viz. the right-continuous process defined for every s P r0, V D
8 q as ΓDs :“ inf

␣

t ě 0 : V D
t ą

s
(

. Further, we set

`

TrDpρq,TrDpW q,TrDpLDq
˘

:“ pρΓD
t
,WΓD

t
, LDΓD

t
q for t ě 0.

and we write pθr : 0 ď r ă LD8q for the right-inverse of TrDpLDq. The truncated process

pTrDpρq,TrDpW qq thus encodes the labelled tree TrDpξq and we shall denote by FD its generated

sigma-field. The key now is that Proposition 5.7 ensures that TrDpLDq is FD-measurable. Since

this last point is one of the main technical difficulties that need to be sorted to establish Theorem

2.4, we shall provide the outline of the proof.

Sketch of proof of Proposition 5.7. Let pDn : n ě 1q be an increasing sequence of open

domains containing y, and satisfying both Dn Ă Dn`1 for every n and YnDn “ D. To prove that

TrDpLDq is FD-measurable, it suffices to show that under Ny, the sequence of FD-measurable

processes pTrDpLDnq : n ě 1q converges towards TrDpLDq a.e. uniformly in compact intervals

along some sub-sequence. Exploiting the fact that these are continuous additive functionals

of pρ,W q, this problem can be reduced to establishing the a.e. convergence of the total mass

LDn
σ Ñ LDσ along some subsequence, as n Ò 8. In the context of the Brownian motion indexed

by the Brownian tree, this was proved by Le Gall in [63, Proposition 2.3] by establishing that

the convergence holds in L2pNyq. In the general framework of Lévy trees, this argument can be
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adapted, but one needs to make use of a truncation argument since a priori the convergence no

longer holds in L2pNyq. We refer to Section 5.3.1 for a detailed proof.

Finally, for every i P I we let pρDi ,W
D
i q be the snake trajectory encoding the labelled tree

ξDi - formally, one needs to make use of the notion of subtrajectory of a snake path, we refer to

Section 5.2.3 for a precise definition. Now all the ingredients are in place to state:

Theorem 2.4. (Special Markov property) Under P0,y and Ny, conditionally on FD, the point

measure
ÿ

iPI
δpLD

ai
, ρDi ,W

D
i qpdℓ, dρ, dW q

is a Poisson point measure on R` ˆMf pEq ˆWE with intensity 1r0,LD
σ spℓqdℓNtrDpxW qθℓ

pdρ, dW q.

In the last statement, we denoted by trDpxW qθℓ the process pxWΓD
t
: t ě 0q taken at time θℓ.

2.3 The local time at x and the subordinate tree

Alongside the special Markov property, the main contribution of [82, 83] consists in the develop-

ment of an excursion theory for Markov processes indexed by Lévy trees, holding under rather

general conditions on the pair pψ, ξq. In the following sections we shall present its main elements.

As we already mentioned, we extend the theory developed in the previous work [1] from C. Abra-

ham and J.-F. Le Gall in the setting of Brownian motion indexed by the Brownian tree, with

the notable addition of a notion of local time, making these two approaches rather different. We

shall be more precise in the sequel. It is worth mentioning that the work [1] has found numerous

applications in Brownian geometry, see e.g. [67, 70] and we expect our results to have applications

outside the scope of this work.

Up to this point, we have presented the theory of Markov processes indexed by Lévy trees

under a very large degree of generality. However, as in the time-indexed case, to develop an ex-

cursion theory one needs to impose further restrictions to the class of spatial motions we consider.

To this end, we shall henceforth assume that the Markov process ξ satisfies assumptions pH1q

and pH2q for some point x P E. We shall write pLtqtPR`
for its local time at x and we denote the

corresponding excursion measure by N .

The local time at x of xW .

The content of this section is taken from Section 5.4.2. From now on, the motions we shall

consider consists in pairs of the form,

ξ :“ pξt,Ltq, for t ě 0.

We let pρ,W,Λq “ ppρt,Wt,Λtq : t ě 0q be the ψ-Lévy snake with spatial motion ξ and we write

pξaqaPTH
for the corresponding tree-indexed process, where ξa “ pξa,Laq for a P TH . To motivate

the forthcoming results we start with an informal discussion. In the sequel, we will direct our

efforts towards studying two key objects of interest. First, the role of the set Z ˝ is now taken

over by the following random subset of TH :

Z :“ ta P TH : ξa “ xu.



Chapter 2. Introduction to Part II 52

Observe that Z inherits a tree structure from TH and therefore, is of a significantly more intricate

nature than the subset of the real line Z 0. On the other hand, we have of course the family of

excursions of pξaqaPTH
away from x. Roughly speaking, these consist on the restrictions of pξaqaPTH

to the connected component of THzZ . Note however that, in contrast with the time-indexed

Figure 2.8: In the left hand side, sketch of TH with the set Z coloured in yellow. In the
right-hand side, the corresponding family of excursion components pCuquPD; each debut is
marked with a red dot.

setting, we lack of a proper way to index this family of excursions. We shall start by addressing

this concern and, to this end, we introduce a remarkable continuous additive functional of the

Lévy snake pρ,W,Λq. The construction we provide relies crucially on the theory of exit local

times.

For every r ą 0, let L r “ pL r
t : t ě 0q be the exit local time of pξaqaPTH

from the domain

E ˆ r0, rq. Proposition 6 in [82] states that the process defined by the relation

At :“

ż

R`

drL r
t , for t ě 0,

is an R`-valued continuous additive functional of the Lévy snake with Stieltjets measure dA

supported on an explicit subset of tt ě 0 : xWt “ xu. For this reason and with some abuse of

notation, we refer to A “ pAt : t ě 0q as the local time at x of xW . The process A can be

interpreted as well as the total variation of pΛ :“ ppΛt : t ě 0q in the following sense. Let C˚ be the

subset of R` defined by the relation: t P C˚ if and only if for some open neighbourhood of t, pΛ

is constant. Then we have the following characterisation for the support of the measure dA.

Theorem 2.5. Under P0,x,0 and Nx,0 we have

supp dA “ r0, σszC˚.

The support of dA can also be written in terms of the so-called exit times from x of pρ,W,Λq,

we refer to Definition 5.26 and Theorem 5.30 for a formal definition and the precise statement.

For every r ą 0, under Πy,0 we let τr :“ inftt ě 0 : Lr ą ru. The following lemma describes the

law of pρ,W,Λq at a typical time taken with respect to the measure dA.
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Lemma 2.6. For y P E and for every non-negative measurable function Φ on Mf pR`q ˆWE we

have

Ny,0

ˆ
ż σ

0
dAs Φ pρs,Ws,Λsq

˙

“

ż 8

0
dr E0

b Πy,0
“

exp
`

´ ατr
˘

¨ Φ
`

Jτr , pξt,Lt : t ď τrq
˘‰

.

Let us briefly discuss some connections with related works. When pξaqaPTH
is the Brownian

motion indexed by the Brownian tree and x “ 0, the additive functional A is closely related to

the local time of the Brownian motion indexed by the Brownian tree and the so-called ISE (or

integrated super-Brownian excursion) introduced by Aldous in [5]. First, the local time of the

Brownian motion indexed by the Brownian tree is defined as the R`-valued continuous process

pℓy : y P Rq defined under N0 by the relation

ż σ

0
dt F pxWtq “

ż

R
dy F pyq ¨ ℓy.

In other terms, pℓy : y P Rq is the density with respect to the Lebesgue measure of the occupation

measure of xW . The identity in the last display shares obvious similarities with the occupation

times formula for local times of Brownian motion and for every y P R, one can think of ℓy as

measuring the size of the set ta P TH : ξa “ yu. For this reason pℓy : y P Rq is referred in the

literature as the local time of Brownian motion indexed by the Brownian tree, but we stress that

it should not be mistaken with our additive functional A. By [71, Proposition 3], the processes

A and pℓy : y P Rq are linked through the relation

Aσ “ ℓ0.

Notably, it has been proved recently in [68] that the local time of Brownian motion indexed by the

Brownian tree paired with its derivative ppℓy,
.
ℓyq : y ě 0q is a time-homogeneous Markov process.

One can think of such result as a variant of the classic Ray-Knight theorems. The integrated

super-Brownian excursion is the process pℓy : y P Rq under the conditioning σ “ 1. The ISE has

been subject of active research in recent years [5, 29, 39] and appears as scaling limit of multiple

functionals on discrete tree models, see e.g. [28, 32] and references therein.

The subordinate tree by the local time

The content of this section is taken from [82]. As we already mentioned, the set Z inherits a

genealogical structure from TH . It is then natural to look for a way to encode the set Z in

a tree. To this end, we shall make use of the notion of subordination of trees by continuous

non-decreasing functions introduced in [66].

The mapping pLaqaPTH
is continuous and non decreasing with respect to the genealogical order,

viz. if a ă b, then La ă Lb. If for every a, b P TH we set

dLpa, bq :“ La ` Lb ´ 2min
Ja,bK

L,

then dL is a pseudo-distance on TH and it induces an equivalence relation on TH : namely, we

write a „L b if L is constant on Ja, bK. Then, the quotient space rT :“ pTH{ „L, dLq is again a

compact R-tree that we shall refer to as the subordinate tree by the local time L. The terminology

stems from the fact that rT is obtained from identifying the connected components of TH where
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pLaqaPTH
is constant, which correspond roughly to the connected components of THzZ . This last

description shows that rT encodes as well the genealogical structure of the excursions away from

x of pξaqaPTH
, this fact will be key in the sequel. The function pLaqaPTH

is well defined in the

quotient space rT and now, for every a P rT the variable La is precisely the distance from a to the

root of rT . Notably, the random tree rT is again a Lévy tree. More precisely, write E˚ :“ Eztxu

and for y ‰ x set uλpyq :“ Nyp1 ´ expp´λLE˚
σ qq.

Proposition 2.7. The random tree rT under the measure Nx,0 is a Lévy tree with Laplace exponent

given by

rψpλq “ N
´

ż σ

0
dhψpuλpξhqq

¯

.

When the tree is the Brownian tree, this result is due to Le Gall [66, Theorem 16].

Figure 2.9: Subordination of TH by the local time L. In the left hand side, the set Z is
coloured in yellow. Heuristically, the tree rT is obtained from TH by identifying the black
connected components in TH .

The fact that rT is a Lévy tree is a rather straightforward consequence of the special Markov

property 2.4 and Theorem 1.1 in [91]. We refer to [66, Theorem 16] for a proof when the random

tree is the Brownian tree. One can think of the subordinate tree rT as the geometric analogue of

the inverse local time pL´1
t : t ě 0q. It might be however worth noting that, if we further assume

that pξaqaPTH
is the Brownian motion indexed by the Brownian tree, the Laplace exponent rψ

of the subordinate tree is the one of a 3{2-stable Lévy process (and therefore is less regular

than the Brownian tree) while in contrast, as we already discussed pL´1
t : t ě 0q is a 1{2-stable

subordinator. Note that the latter does not even fulfil our hypothesis on the Laplace exponent.

It is natural to observe a drop in the regularity of the subordinate tree with respect to TH :
identifying the excursion components of ξ away from x generates points of infinite multiplicity in
rT as soon as the corresponding excursion returns to x. We shall come back to this point in the

sequel. Finally, we mention that our results on subordination of trees with respect to the local

time are closely related, in the terminology of Lévy snakes, to Theorem 4 in [23] stated in the

setting of superprocesses – the main difference being that in our work we encode the associated

genealogy.
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Since rT is a Lévy tree constructed in terms of pρ,W,Λq, it is natural to try to express in terms

of pρ,W,Λq, the corresponding height process rH, the Lévy process rX, or even the exploration

process rρ. In that regard, the additive functional A we introduced will play a central role. In this

direction we conclude the section with the second main contribution of [82].

Theorem 2.8. The following properties hold:

(i) Under Nx,0, the subordinate tree rT is isometric to the tree coded by the continuous function

ppΛA´1
r

: r ě 0q.

(ii) Moreover, under Nx,0 the process
`

pΛA´1
r

: r ě 0
˘

is distributed as the height process of a
rψ-Lévy tree.

Since the arguments employed to establish (ii) might be of interest in latter works, let us

sketch the proof of (ii). The later relies crucially on the notion of marked discrete trees embedded

in an excursion, that we shall briefly present. Let e : R` Ñ R` be a non-negative continuous

function with finite lifetime σe ă 8 and write Te for the corresponding tree coded by e. First,

consider a single fixed point t1 P r0, σes and think of pHpt1q as a mark on Te. Recall that the path
J0, pept1qK is isometric to the interval r0, ept1qs and in particular the distance to the root of pHpt1q

is ept1q. We shall write θpe, t1q for the discrete (ordered) tree with a single vertex with label ept1q.

Further, if we consider two marks 0 ă t1 ă t2 ă σe, the geodesics paths JH, pHpt1qK, JH, pHpt2qK
are respectively isometric to r0, ept1qs, r0, ept2qs and share the ancestral line J0, pept1q N pept2qK,
which on its turn is isometric to r0,minrt1,t2s es. Therefore, the marks naturally induce a discrete

ordered labelled tree θpe, t1, t2q, compatible with the order induced by e and encoding the height

and the genealogy between pept1q and pept2q. Namely, the tree θpe, t1, t2q possess one leaf per

mark, each one with respective labels ept1q, ept2q and both are linked to a common ancestor with

label minrt1,t2s e, playing the role of the root. This construction can be generalised inductively

to an arbitrary finite number of marks 0 ă t1 ă ¨ ¨ ¨ ă tm ă σe for m ě 1 and yields a discrete

labelled ordered tree that we denote by θpe, t1, . . . , tM q. With a slight abuse of notation we write

ℓpeq :“ t1, . . . ,Mu for its set of leaves listed in chronological order; we refer to Section 5.5.1 for

a precise definition. We stress that this definition differs slightly with the notion of marginals of

trees introduced in [43].

Let us get back to the proof of Theorem 2.8. To simplify notation set HA :“ ppΛA´1
r

: 0 ď

r ď Aσq and consider rH “ p rHr : 0 ď r ď σ̃q the height process of a rψ-Lévy tree defined under

the corresponding excursion measure rN . We write THA , T
rH
for the corresponding trees coded

respectively by HA, rH and consider Poissonian marks tτ1, τ2, . . . u with rate λ in both r0, Aσs

and r0, σ̃s. We write M , ĂM for the number of marks falling in r0, Aσs and r0, σ̃s respectively,

and work under the probability measures Nx,0p ¨ |M ě 1q, rNp ¨ |ĂM ě 1q. Then, Proposition 5.34

states that the discrete trees θpHA, t1, . . . tM q, θp rH, t1, . . . t
ĂM

q have the same distribution. The

law of θpHA, t1, . . . tM q, θp rH, t1, . . . t
ĂM

q can be computed by exploiting the Markovian character

of the Poisson marks, combined with the Markov property of the Lévy snake, the special Markov

property 2.4 and Proposition 2.6. Noting that the labels on the leafs ℓpHAq “ t1, . . . ,Mu and

ℓp rHq “ t1, . . . ,ĂMu are precisely the respective heights tHA
t1 , . . . , H

A
tM u and t rHt1 , . . . , rHt

ĂM
u, one

can then conclude from an approximation argument that HA under Nx,0p ¨ |M ě 1q and rH under
rNp ¨ |ĂM ě 1q have the same law.
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Figure 2.10: The tree embedded on rT generated by the Poisson marks t1, . . . , tn.

From now on, HA will henceforth be de-

noted by rH and we still write rT for the Lévy

tree coded by rH. By Lemma 6.1 we can con-

struct from rH a pair p rX, rρq where rX is a
rψ-Lévy process and rρ is its associated explo-

ration process. We shall provide in the sequel

a more explicit construction of p rX, rρq in terms

of pρ,W,Λq, but it relies on the development of

the excursion theory for pξaqaPTH
that we shall

now introduce. Finally, let us mention that the

explicit construction of rT in terms of TH and its

labels yields that we can simultaneously explore

both trees in clockwise order: more precisely,

recalling that THptq is the subset of TH that

has been explored up to time t, by (ii) at time

t we have explored the subset rT pAtq from rT .

2.4 The excursion theory

This section is devoted to the study of the excursions away from x of pξaqaPTH
, the content is

taken from [83]. We start with some definitions and first properties. In the context of Brownian

motion indexed by the Brownian tree, these had already been established in [1].

Debuts and excursions away from x

Our first definition is taken from [1]. A point u P TH is called an excursion debut for pξaqaPTH
if

the following properties hold:

(i) We have ξu “ x.

(ii) We can find a strict descendant v of u such that ξa ‰ x for every a in Ku, vK.

We denote by D the collection of excursion debuts. For every u P D, we write Cu for the subset

of points v P TH fulfilling that v ą u with ξa ‰ x for every a P Ku, vJ. For latter use, we gather

some basic properties:
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• For every u P D, set C0
u :“ Cu X ta P TH : ξa ‰ xu. Then, the family pC0

uquPD are the

connected components of the open set ta P TH : ξa ‰ xu [Lemma 6.7].

• The local time pLaqaPTH
is constant on every Cu and we denote its value by ℓu. Moreover,

if we consider some other u1 P D with u ‰ u1, we have ℓu ‰ ℓu1 [Lemma 6.9].

Finally, we can now introduce:

Definition 2.9. For every u P D we set ξu :“ pξa : a P Cuq. We refer to the family pξu : u P Dq

as the excursions away from x of pξaqaPTH
.

If follows from our definition that every excursion is again a tree indexed process and the first

point above yields that the family pξu : u P Dq is countable. Further, the second point shows

that we can make use of pLaqaPTH
to index the family of excursions, by considering the pairs

ppℓu, ξ
uq : u P Dq. This was the approach followed in [1] to introduce an excursion measure in

the setting of the Brownian motion indexed by the Brownian tree. We shall however follow a

different path exploiting the properties of the local time A.

The excursion measure

In this section we define an infinite measure that we shall refer to as the excursion measure for

pξaqaPTH
, as well as a notion of fractal length for its boundary. The terminologies will be justified

by the results of the next sub-section. Our definitions rely on several preliminary construction

that we shall now introduce.

Let us start with an informal discussion. We start by defining a tree-indexed process as follows:

let TH be a ψ-Lévy tree under N . Instead of considering as spatial motion the Markov process

with law Πy, we shall consider as spatial motion an excursion of ξ under N . We write peaqaPTH

for the corresponding tree-indexed process. Observe that if ea “ x for some a ‰ H, then for

every b ą a it must hold that eb “ x. The excursion measure we shall define encodes the law of

peaqaPTH
restricted to points in TH satisfying that ea ‰ x for every a P JH, bJ.

Let us now formalise our previous discussion. The objects we shall introduce rely on several

preliminary constructions that we shall now briefly introduce. For every y P E, write Π:
y for the

law of ξ under Πy stopped at its first hitting time of x. Fix an arbitrary continuous function

h : R` Ñ R` with finite lifetime and satisfying hp0q “ 0. For every t0 ě 0, we write h˝θt0 for the

shifted function phpt0 ` tq : t ě 0q and for any w P WE satisfying hpt0q “ ζw, we denote by Q
h˝θt0
w

the law of the snake driven by h ˝ θt0 with spatial motion Π: :“ pΠ:
yqyPE started from w. Next,

we write νht0pdwq for the law of pξt : 0 ď t ď hpt0qq under the excursion measure N - note that νht0
is a sigma-finite measure on WE . Now, by Kolmogorov’s theorem there exists a unique measure

QhN on WE , charging the subset of paths of WR`

E taking the value x at time 0, characterised by

the relation

QhN pWt0 P A0,Wt1 P A1, . . . ,Wtn P Anq “

ż

WE

νht0pdwq1twPA0uQ
h˝θt0
w pWt1 P A1, . . . ,Wtn P Anq

the latter holding for every 0 ă t0 ă t1 ă ¨ ¨ ¨ ă tn, and A0, . . . , An Borelians in WE . Roughly

speaking, one can think of W under QhN as the snake driven by h with spatial motion N . Finally,

we set

N˚
xpdρ, dW q :“ NpdρqQ

Hpρq

N pdW q.
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Heuristically, pρ,W q under N˚
x is the ψ-Lévy snake with spatial motion N - we stress that this

description is informal since N is an infinite measure. It follows from our definitions that for

every fixed t and conditionally on Ht, the law of Wt “ pWtprq : 0 ď r ď Htq under N
˚
x, is the one

of pξt : 0 ď t ď Htq under N . Under our assumptions, W has a continuous modification under N˚
x

that we consider from now on and still denote by W . The process W satisfies the snake property,

which gives that we can set peaqaPTH
for the function xW under N˚

x in the quotient space TH .
Under N˚

x, it still holds that pρ,W q is a strong Markov process [Proposition 6.13] encoding

the branching structure and labels of the tree indexed process peaqaPTH
. Note that the lifetime

τ˚
x pWtq :“ infth ą 0 : Wtphq “ xu of Wt might a priori be smaller than Ht, in which case we have

plainly Wtphq “ x for every h P rτ˚
x pWtq, Hts. This leads us to consider the following trimmed

sub-tree of TH
Tr˚pTHq :“

␣

a P TH : eb ‰ x for every b PKH, aJ
(

.

See Figure 2.11 below. Note that by definition, with the exception of the root, only the leafs of

Tr˚pTHq might have x as label.

Figure 2.11: In the left hand side, the tree TH with the set ta P THzH : ξa “ xu coloured
in red. On the right-hand side, the trimmed tree Tr˚pTHq, obtained from removing the set
ta P THzH : ξa “ xu from TH .

Finally, under N˚
x we introduce

Tr˚peq :“ pea : a P Tr˚pTHqq.

Making use of techniques stemming from the theory of exit local times, one can define a notion

of measure for the boundary BTr˚pTHq :“ ta P Tr˚pTHq : ξa “ xu. In this direction, for every

t ě 0 consider the family of connected components of THptqzTr˚pTHq. The closure of each one of

them is a tree, say C˚
i , and we denote this family by pC˚

i ptqqiPJ . If we let Bi
εpHiq be the ball in

C˚
i ptq of radius ε centred at the root Hi of C˚

i ptq, the limit

L˚
t :“ lim

εÑ0
ε´1VolH

´

ď

iPJ
C˚
i ptq X BεpH

i
q

¯

exists uniformly in compact intervals in measure under N˚
x1V , for any measurable V with finite

mass. It follows from our definitions that the process L˚ :“ pL˚
t : t ě 0q is continuous and non-
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decreasing. We stress that the theory of exit local times can not be directly applied to define L˚

since we are not considering the exit time from an open set, and the law of the spatial motion is

now an infinite measure. The Stieltjets measure dL˚ is supported on the set tt ě 0 : Ht “ τ˚
x pWtqu

and the total mass L˚
8, which is a.e. finite, can be interpreted as the length of BTr˚pTHq. For

this reason, in the sequel we write |BTr˚pTHq| :“ L˚
σ. Note that Tr˚peq is obtained from peaqaPTH

by removing every tip of path that has returned to x before the end of its respective lifetime. For

t ě 0 we set V ˚
t :“

şt
0 ds 1tHsďτ˚

x pWsqu and write pΓ˚
t : t ě 0q for the right-inverse of pV ˚

t : t ě 0q.

Informally, one can think of the truncated process Tr˚pρ,W q :“ ppρΓ˚
t
,WΓ˚

t
q : t ě 0q as the snake

encoding the branching structure and labels of Tr˚peq.

Definition 2.10. The law of Tr˚pρ,W q under N˚
x is denoted by N˚

x. We shall henceforth refer

to N˚
x as the excursion measure of pξaqaPTH

away from x.

Figure 2.12: Sketch of an excursion away from x under N˚
x; the distance of each label to x

is plotted with respect to the vertical axis. In yellow are coloured the points at which the
spatial motion returns to x. The ”size” of the set ta P THzH : ξa “ xu is measured by L˚

σ.

Moreover, under N˚
x the process pρ,W q is still a right-continuous strong Markov process. The

next proposition describes the law of pρ,W q under the pointed version of N˚
x at a typical time in

r0, σs.

Proposition 2.11. For every non-negative measurable function Φ on Mf pR`q ˆ WE, we have

N˚
x

´

ż σ

0
dsΦpρs,Wsq

¯

“ E0
b N

´

ż σ

0
da exp

`

´ αa
˘

¨ ΦpJa, pξs : s ď aqq

¯

.

It will be crucial for our purposes to define as well the notion of boundary length under N˚
x. In

this direction, if under N˚
x we set Tr˚pL˚q :“ pL˚

Γ˚
t
: t ě 0q, Proposition 6.35 states that Tr˚pL˚q

is Tr˚pρ,W q-measurable and therefore well defined under N˚
x. Under N˚

x, we shall write

`

peaqaPTH
, TH , |BTH |, L˚

˘

for
`

Tr˚peq,Tr˚pTHq, |BTr˚pTHq|,Tr˚pL˚
q
˘

under N˚
x.
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We obtained as well a description for the law of pρ,W q at a typical time taken with respect to

the measure dL˚.

Proposition 2.12. For every non-negative measurable function Φ on Mf pR`q ˆ WE, we have

N˚
x

´

ż σ

0
dL˚

s Φpρs,Wsq

¯

“ E0
b N

`

expp´ασqΦpJσ, pξs : s ď σqq
˘

.

For a more general version of Proposition 2.11 and 2.12 encoding as well the left and right

spine we refer to Proposition 6.39 and Proposition 6.37. As an application of Proposition 2.12,

we obtain the characteristic triplet of the Laplace exponent rψ. If we set

rα :“ N p1 ´ expp´ασqq, rβ :“ 0, rπpdxq :“ N˚
x

`

L˚
σ P dx X p0,8q

˘

,

Corollaries 5.21 and 6.38 that the Lévy-Khintchine triplet of rψ is given by prα, rβ, rπq.

The excursion process

In the last section we introduced a measure N˚
x that we baptised the excursion measure away

from x of pξaqaPTH
. We shall now justify our choice of terminology. Under Nx,0 and P0,x,0,

for every fixed u P D let us write pρu,W uq for the Lévy snake encoding the sub-tree Cu and

write Hu :“ pHpρut q : t ě 0q for the corresponding height function - we refer to Definition

6.8 for a precise definition of pρu,W uq. Let gpuq be the first time at which the exploration

ppHptq : 0 ď t ď σHq visits the excursion component Cu, viz. gpuq :“ inftt ě 0 : pHptq P Cuu. We

shall refer to the point measure

E “
ÿ

uPD

δpAgpuq, ρu,Wuq

as the excursion process of pξaqaPTH
. It is important to note that by Lemma 6.27, for every

u P D the point gpuq belongs to supp dA. Therefore, for every pair of debuts u ‰ u1, we have

Agpuq ‰ Agpu1q. Observe as well that the ordering induced by A is precisely the one induced by

the clockwise exploration. Hence, at least at an heuristic level it sounds plausible that one could

reconstruct the tree indexed process pξaqaPTH
or more precisely the paths of pρ,W q, in terms of

E . We shall address this question in the next section.

We can now state the main contribution of [83].

Theorem 2.13. Under P0,x,0, the measure

E :“
ÿ

uPD

δpAgpuq, ρu,Wuq

is a Poisson measure on R` ˆ Mf pR`q ˆ WE with intensity dt b N˚
x.

The result as stated in [83] is in fact stronger, since it shows that E is a Poisson point process

-or in short PPP- with respect to the (rather complicated) excursion filtration pGtqtě0. We refer

to Section 6.6.2 for its definition and the general statement. Section 6.6.2 is entirely devoted to

the proof of Theorem 2.13 and it is divided in two main steps: we first show that E is a PPP for

some intensity measure dtb pN˚
x, and we then proceed to show the identity N˚

x “ pN˚
x. One of the

main tools used to prove this last point are the so-called spinal decompositions of the Lévy snake

under Nx,0 and N˚
x. This notion has had recurrent use in the setting of Branching random walks
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and in Brownian geometry, see e.g. [72] for a unified representation for non-compact Brownian

surfaces. Spinal decompositions were extensively exploited in our work [83].

Under Nx,0, the measure E is no longer a Poisson measure but we still have the following

averaging formula.

Corollary 2.14. For every non-negative measurable functions Φ and g, we have

Nx,0

´

ÿ

uPD

gpAgpuq, ℓuqΦp ρu,W u
q

¯

“ Nx,0

´

ż Aσ

0
dr gpr, rHrq

¯

N˚
xpΦq.

The proof of this result strongly relies on the fact that E is a pGtqtě0-PPP. In the special case

when pξaqaPTH
is a Brownian motion indexed by the Brownian tree and x “ 0, if one considers

in the last display a function g that does not depend on Agpuq we recover [1, Theorem 1]. In

particular, this yields that the excursion measure introduced by C. Abraham and J.-F. Le Gall

in [1] and N˚
0 coincide.

2.5 Reconstructions

We now turn our attention to the last part of this introduction. In this section we shall address

reconstruction related questions in a rather general sense, but the objective of the section is to

establish the following:

Claim: The Lévy snake pρ,W q, and therefore pξaqaPTH
, can be recovered from

the excursion process E.

Recall from our discussion shortly after the introduction of the exploration process (2.4) that ρ

can be recovered from H. Therefore, by the snake property it readily follows that to prove this

claim it suffices to establish that the R` ˆ E-valued process pH,xW q can be constructed from E .
Let us give a more precise outline of the section. Recall from Theorem 2.8 that we already wrote

the height process rH of rT in terms of pρ,W,Λq. Moreover, by Lemma 6.1 we can construct from
rH a pair p rX, rρq where rX is a rψ-Lévy process and rρ is its associated exploration process. In this

section we describe explicit constructions, in terms of the excursion process E , for the following

random objects:

• The Lévy process rX and its jump measure
ř

sPR`
δ

ps,∆ rXsq
.

• The local times pprλℓ,b, rλr,bq : b P Bp8pTHqq at the branching points of rT and a fortiori, for

the exploration process rρ.

• The Lévy snake pρ,W q.

We shall obtain these representation in the order stated above since each construction relies on

the preceding ones.

Let us write D` for the subsets of debuts u P D satisfying that L˚
σpρu,W uq ą 0. We stress

that a priori, the contention D` Ă D might be strict. For every u P D` we consider the mapping

rg : u ÞÑ Agpuq

and we start with the following result:
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Proposition 2.15. The mapping rg is a bijection between D` and tt ě 0 : ∆ rXt ą 0u.

Since the branching points of rT and tt ě 0 : ∆ rXt ą 0u are as well in bijection, this gives that

D` and Bp8prT q are in one-to-one correspondence by the mapping p
rH

˝ rg : D` Ñ Bp8prT q.

The proof of this proposition relies in the fact that one can identify the jump-times of rX in

terms of its height process rH. We refer to Lemma 6.50 for a precise statement of this result. For

u P D, we introduce the time change:

σuptq :“

ż t

0
ds 1

tpΛs“ℓuu
, t ě 0.

Since, as was discussed in Section 2.4, if u, u1 are distinct debut points we have ℓu ‰ ℓu1 , the

variable σuptq measures the amount of time spent by ppHpsq : 0 ď s ď σHq in Cu up to time t, or

equivalently σuptq “ VolHpTHptq XCuq. For every u P D` and with a slight abuse of notation, we

write prλℓ,u, rλr,uq for the local times at the branching point p
rH

˝ rgpuq in rT . Now we can state the

key relationship between the local times at the branching points of rT and the family of processes

pL˚pρu,W uq : u P Dq.

Proposition 2.16. Nx,0-a.e. for every u P D` we have

rλℓ,uAt
“ L˚

σuptqpρ
u,W u

q, rλr,uAt
“ L˚

σpρu,W u
q ´ L˚

σuptqpρ
u,W u

q

and in particular ∆ rXAgpuq
“ L˚

σpρu,W uq.

In the last statement we used that for every t ě 0, by definition of rλr,u we have rλℓ,ut ` rλr,ut “

∆ rXAgpuq
. Recalling from (2.5) the relationship between the exploration process and the local

times at the branching points of rT , we obtain a representation for rρ at time At in terms of

pL˚pρu,W uq : u P Dq. As a straight consequence of Propositions 2.15 and 2.16 we obtain the

following representation for the jump measure of rX.

Theorem 2.17. We have the identity,

ÿ

uPD`

δpAgpuq, L
˚
σpρu,Wuqq “

ÿ

sPR`

δ
ps,∆ rXsq

.

In other terms, the jump measure of rX is the push-forward of E under the mapping pAgpuq, pρ
u,W uqq ÞÑ

pAgpuq, L
˚
σpρu,W uqq.

Since the Lévy process rX has no Brownian component, by Itô synthesis 1.15 we can recover

the Lévy process rX from the measure in the last display. Recall that the Lévy measure of rψ

is given by rπpdzq “ N˚
xpL˚

σ P dz X p0,8qq. We let pN˚,z
x qzPp0,8q be the rπ-a.e. unique family of

measures in the Polish space DpR`,Mf pR`q ˆ WEq characterised by the relation

N˚
xpdρ, dW X tL˚

σ ą 0uq “

ż

p0,8q

rπpdzqN˚,z
x pdρ, dW q.

Recalling that rH is a functional of rX, we obtain the following corollary:
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Corollary 2.18. For u P D` we write zu :“ L˚
σpρu,W uq. For every non-negative measurable

functions g : R` ˆ Mf pR`q ˆ WE ÞÑ R` and f : CpR`,R`q ÞÑ R`, we have

Nx,0

˜

fp rHq exp
´

´
ÿ

uPD`

gpAgpuq, ξ
u
q

¯

¸

“ Nx,0

˜

fp rHq
ź

uPD`

N˚,zu
x

´

exp
`

´ gpAgpuq, ¨ q
˘

¯

¸

.

In other terms, conditionally on rH, the excursions ppρu,W uq : u P D`q are independent with

respective laws pN˚,zu
x quPD`

.

Figure 2.13: Sketch of the correspondence between the set of branching points with infinite
multiplicity Bp8prT q and the excursions pξuquPD`

away from x with non null measure L˚.
For every such excursion ξu, the ”size” of the set ta P Cu : ξua “ xu is given by L˚

σu
pρu,W uq

and coincides with the ”size” of the corresponding branching point in rT .

This result is closely related to [1, Theorem 40] in the setting of Brownian motion indexed

by the Brownian tree. Let us finally address the reconstruction of pH,xW q in terms of E . Then,

making use of the first moment formula from Lemma 2.2, one can deduce the following Lemma:

Lemma 2.19. For every t ě 0 such that xWt ‰ x we have

xWt “ xW u
σuptq if pΛt “ ℓu, and Ht “

ÿ

uPD

Hu
σuptq. (2.6)

The condition pΛt “ ℓu in the last display holds if the exploration pH is visiting the excursion

component Cu at time t, viz. if pHptq P Cu. It is however not clear if the representation (2.6)

can be expressed solely in terms of E . In this direction, we shall rely on the delicate connection

between the connected components of psupp dAqc and the ones of psupp dL˚pρu,W uqqc, for u P D.

We write pαipuq, βipuqqiPQu
for the connected components of the complement of

`

supp dL˚
pρu,W u

q
˘c

zt0, σHuu

with the convention that if L˚
σpρu,W uq “ 0 we let Qu :“ t0u and pα0puq, β0puqq :“ p0, σHuq.

We set X :“ tpαipuq, βipuqq : u P D, i P Quu and let X 1 be the family of connected components
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of psupp dAqc. Next, consider the mapping q on X defined for every pαipuq, βipuqq P X by the

relation:

qpαipuq, βipuqq :“
`

σ´1
u pαipuqq, σ´1

u pβipuq´q
˘

where for t ě 0, σ´1
u pt´q stands for the left limit of the right inverse σ´1

u of the time change σu
at time t. To simplify notation, the interval on the right-hand side is denoted by pgpu, iq, dpu, iqq.

Proposition 2.20. The mapping q is a bijection between X and X 1.

More precisely, the bijection q satisfies, for every u P D and i P Qu, that

`

xWpgpu,iq`tq^dpu,iq : t ě 0
˘

“
`

xW u
pαipuq`tq^βipuq

: t ě 0
˘

.

Finally, let xW u,i :“ pxW u
pαipuq`tq^βpuq

: t ě 0q, Hu,i :“ pHpαipuq`tq^βipuq : t ě 0q and we introduce

the measure

E 1 :“
ÿ

uPD,iPQu

δ
pAgpu,iq,Hu,i,xWu,iq

.

The key now is that by Lemma 6.48, the measure E 1 can be constructed from E . The proof of

this result crucially relies in the fact pprλℓ,u, rλr,uq : u P D`q is a function of E and Proposition

2.16. Finally, we show that (2.6) can be expressed in terms of E 1 which gives that the process

pHt,xWt : t ě 0q can be recovered from the excursion process E . This last remark concludes the

proof of our initial claim.
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From step reinforced random walks to
noise reinforced Lévy processes
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Chapter 3

Joint invariance principles for random walks
with positively and negatively reinforced
steps

The content of this chapter is taken from the paper [16], written in collabo-

ration with Marco Bertenghi, and has been published in the journal Journal of

Statistical Physics.

Abstract. Given a random walk pSnq with typical step distributed according to some fixed

law and a fixed parameter p P p0, 1q, the associated positively step-reinforced random walk is a

discrete-time process which performs at each step, with probability 1 ´ p, the same step as pSnq

while with probability p, it repeats one of the steps it performed previously chosen uniformly

at random. The negatively step-reinforced random walk follows the same dynamics but when a

step is repeated its sign is also changed. In this work, we shall prove functional limit theorems

for the triplet of a random walk, coupled with its positive and negative reinforced versions when

p ă 1{2 and when the typical step is centred. The limiting process is Gaussian and admits a

simple representation in terms of stochastic integrals,

ˆ

Bptq, tp
ż t

0
s´pdBr

psq, t´p
ż t

0
spdBc

psq

˙

tPR`

for properly correlated Brownian motions B,Br, Bc. The processes in the second and third

coordinate are called the noise reinforced Brownian motion (as named in [21]), and the noise

counterbalanced Brownian motion of B. Different couplings are also considered, allowing us in

some cases to drop the centredness hypothesis and to completely identify for all regimes p P p0, 1q

the limiting behaviour of step reinforced random walks. Our method exhausts a martingale

approach in conjunction with the martingale functional CLT.

Acknowledgements. We warmly thank Jean Bertoin and Erich Baur for the all the fruitful

discussions and feedback, as well as for introducing us to the subject. We also want to thank two

anonymous referees for their careful reading and insightful comments for improving several results

in the paper.

67



Chapter 3. Joint invariance principles 68

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 The martingales associated to a reinforced random walk and proof of Theorem 3.1 75

3.3 Proof of Theorem 3.2, 3.3 and 3.4 when X is bounded. . . . . . . . . . . . . . . . 83

3.4 Reduction to the case of bounded steps. . . . . . . . . . . . . . . . . . . . . . . . 89

3.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4.2 Reduction argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5 The critical regime for the positive-reinforced case: proof of Theorem 3.5 . . . . . 95

3.1 Introduction

In short, the purpose of this work is to establish invariance principles for random walks with step

reinforcement, a particular class of random walks with memory that has been of increasing interest

in recent years. Historically, the so-called elephant random walk (ERW) has been an important

and fundamental example of a step-reinforced random walk that was originally introduced in the

physics literature by Schütz and Trimper [89] more than 15 years ago. We shall first recall the

setting of the ERW in order to motivate the two types of reinforcement that we will work with.

The ERW is a one-dimensional discrete-time nearest neighbour random walk with infinite

memory, in allusion to the traditional saying that an elephant never forgets where it has been

before. It can be depicted as follows: Fix some q P p0, 1q, commonly referred to as the memory

parameter, and suppose that an elephant makes an initial step in t´1, 1u at time 1. After, at each

time n ě 2, the elephant selects uniformly at random a step from its past; with probability q, the

elephant repeats the remembered step, whereas with complementary probability 1´ q it makes a

step in the opposite direction. In particular, in the case q “ 1{2, the elephant merely follows the

path of a simple symmetric random walk. Notably, the ERW is a time-inhomogeneous Markov

chain (although some works in the literature improperly assert its non-Markovian character).

The ERW has generated a lot of interest in recent years, a non-exhaustive list of references (with

further references therein) is [9], [11], [13], [15], [34], [33], [35], [48], [59], [60], see also [8], [12], [47]

for variations. A striking feature that has been pointed at in those works, is that the long-time

behaviour of the ERW exhibits a phase transition at some critical memory parameter. Functional

limit theorems for the ERW were already proved by Baur and Bertoin in [9] by means of limit

theorems for random urns. Indeed, the key observation is that the dynamics of the ERW can be

expressed in terms of Pólya-type urn experiments and fall in the framework of the work of Janson

[55]. For a strong invariance principle for the ERW, we refer to Coletti, Gava and Schütz in [33].

The framework of the ERW is however limited, and it is natural to look for generalisation of

its dynamics that allow the typical step to have an arbitrary distribution on R. In this work,

we aim to study the more general framework of step-reinforced random walks. We shall discuss

two such generalisations, called positive and negative step-reinforced random walks, the former

generalising the ERW when q P p1{2, 1q while the later covers the spectrum q P r0, 1{2s, in both

cases when the typical step is Rademacher distributed. We start by introducing the former. For

the rest of the work, X stands for a random variable that we assume belongs to L2pPq, we denote

by σ2 its variance and by µ its law. Moreover, unless specified otherwise, pSnq will always denote

a random walk with typical step distributed as µ.
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The noise reinforced random walk: A (positive) step-reinforced random walk or noise rein-

forced random walk is a generalisation of the ERW, where the distribution of a typical step of the

walk is allowed to have an arbitrary distribution on R, rather than just Rademacher. The impact

of the reinforcement is still described in terms of a fixed parameter p P p0, 1q, that we also refer

to as the memory parameter or the reinforcement parameter. We will work with different values

of p but for readability purposes p does not explicitly appear in the notation or terminology used

in this work.

Vaguely speaking, the dynamics are as follows: at each discrete time, with probability p a

step reinforced random walk repeats one of its preceding steps chosen uniformly at random, and

otherwise, with complementary probability 1 ´ p, it has an independent increment with a fixed

but arbitrary distribution. More precisely, given an underlying probability space pΩ,F ,Pq and a

sequence X1, X2, . . . of i.i.d. copies of the random variable X with law µ, we define X̂1, X̂2, . . .

recursively as follows: First, let pεi : i ě 2q be an independent sequence of Bernoulli random

variables with parameter p P p0, 1q and also consider pU ris : i ě 2q an independent sequence

where each U ris is uniformly distributed on t1, . . . , iu. We set first X̂1 “ X1, and next for i ě 2,

we let

X̂i “

#

Xi, if εi “ 0,

X̂U ri´1s, if εi “ 1.

Finally, the sequence of the partial sums

Ŝn :“ X̂1 ` ¨ ¨ ¨ ` X̂n, n P N,

is referred to as a positive step-reinforced random walk. We have from the definition of the

sequence pX̂iq that

X̂n`1 “ p1 ´ εn`1qXn`1 ` εn`1X̂U rns

which implies that for any bounded measurable f : R ÞÑ R`,

EpfpX̂n`1qq “ p1 ´ pqEpfpXn`1qq `
p

n

n
ÿ

j“1

EpfpX̂jqq

and it follows by induction that each X̂n has law µ. Beware however that the sequence pX̂iq is

not stationary. Notice that if pŜnq is not centred, it is often fruitful to reduce our analysis to the

centred case by considering pŜn ´ nEpXqq, which is a centred noise reinforced random walk with

typical step distributed as X ´ EpXq. Observe that in the degenerate case p “ 1, the dynamics

of the positive step-reinforced random walk become essentially deterministic. Indeed when p “ 1

we have Ŝn “ nX1 for all n ě 1, in particular the only remaining randomness for this process

stems from the random variable X1.

In this setting, when µ is the Rademacher distribution, Kürsten [60] (see also [46]) pointed

out that Ŝ “ pŜnqně1 is a version of the elephant random walk with memory parameter q “

pp ` 1q{2 P p1{2, 1q in the present notation. The remaining range of the memory parameter can

be obtained by a simple modification that we will address when we introduce random walks with

negatively reinforced steps. When µ has a symmetric stable distribution, Ŝ is the so-called shark

random swim which has been studied in depth by Businger [31]. More general versions when the
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distribution µ is infinitely divisible have been considered by Bertoin in [19], and we will briefly

comment on this setting in a moment. Finally, when we replace the sequence of Bernoulli random

variables pεnq by a deterministic sequence prnq with rn P t0, 1u, the scaling exponents of the

corresponding step reinforced random walks have been studied by Bertoin in [20].

In stark contrast to the ERW, the literature available on general step-reinforced random walks

remains rather sparse. Quite recently, Bertoin [21] established an invariance principle for the

step-reinforced random walk in the diffusive regime p P p0, 1{2q. Bertoin’s work concerned a

rather simple real-valued and centered Gaussian process B̂ “ pB̂ptqqtě0 with covariance function

given by

E
´

B̂ptqB̂psq
¯

“
tps1´p

1 ´ 2p
for 0 ď s ď t and p P p0, 1{2q. (3.1)

This process has notably appeared as the scaling limit for diffusive regimes of the ERW and

other Polya urn related processes, see [9, 34], [15] for higher dimensional generalisations, and [7].

In [21] the process displayed in (3.1) is referred to as a noise reinforced Brownian motion and

belongs to a larger class of reinforced processes recently introduced by Bertoin in [19] called noise

reinforced Lévy processes. The noise reinforced Brownian motion plays, in the framework of noise

reinforced Lévy processes, the same role as the standard Brownian motion in the context of Lévy

processes. Moreover, just as the standard Brownian motion B corresponds to the integral of a

white noise, B̂ can be thought of as the integral of a reinforced version of the white noise, hence

the name. More precisely, from (3.1) it readily follows that the law of B̂ admits the following

integral representation

B̂ptq “ tp
ż t

0
s´pdBr

psq, t ě 0,

where Br “ pBr
sqsě0 is a standard Brownian motion, or equivalently, B̂ “ pB̂ptqqtě0 has the same

law as
ˆ

tp
?
1 ´ 2p

Bpt1´2p
q

˙

tě0

.

Some further properties of the noise reinforced Brownian motion can be found in [21], where the

following functional limit theorem [21, Theorem 3.3] has been established: let p P p0, 1{2q and

suppose that X P L2pPq. Then, we have the weak convergence of the scaled sequence in the sense

of Skorokhod as n tends to infinity
˜

Ŝptntuq ´ ntEpXq
?
σ2n

¸

tPR`

ùñ pB̂ptqqtPR` (3.2)

where pB̂ptqqtě0 is a noise reinforced Brownian motion.

Our work generalises this result but our approach differs from [21] as we work with a discrete

martingale introduced by Bercu [11] for the ERW and later generalised in [14] for step-reinforced

random walks. The martingale we work with is a discrete-time stochastic process of the form

panŜn, where ppanqně0 is a properly defined sequence of positive real numbers of order n´p. As

we shall see, investigation of said martingale and in particular its quadratic variation process, in

conjunction with the functional martingale CLT [92], yields an alternative proof of Theorem 3.3
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in [21].

The counterbalanced random walk: Next we turn our attention to the second process of

interest, called the counterbalanced random walk or negative step-reinforced random walk, intro-

duced recently by Bertoin in [22]. Beware that p in our work always corresponds to the probability

of a repetition event, while in [22] this happens with probability 1´ p. Similarly, we will consider

a sequence of i.i.d. random variables pXnqnPN with distribution µ on R and at each time step,

the step performed by the walker will be, with probability 1 ´ p P p0, 1q, an independent step

Xn from the previous ones while with complementary probability p, the new step is one of the

previously performed steps, chosen uniformly at random, with its sign changed. This last action

will be referred to as a counterbalance of the uniformly chosen step. In particular, when µ is the

Rademacher distribution, we obtain an ERW with parameter p1 ´ pq{2 P r0, 1{2s.

Formally, recall that X1, X2, . . . is a sequence of i.i.d. copies of X and pεi : i ě 2q is an

independent sequence of Bernoulli random variables with parameter p P p0, 1q. We define the

sequence of increments X̌1, X̌2, . . . recursively as follows (beware of the difference of notation

between X̂ and X̌): we set first X̌1 “ X1, and next for i ě 2, we let

X̌i “

#

Xi, if εi “ 0,

´X̌U ri´1s if εi “ 1
,

where U ri ´ 1s denotes an independent uniform random variable in t1, . . . , i ´ 1u. Finally, the

sequence of partial sums

Šn :“ X̌1 ` ¨ ¨ ¨ ` X̌n, n P N,

is referred to as a counterbalanced random walk (or random walk with negatively reinforced steps).

Notice also that, in contrast with the positive step-reinforced random walk, when p “ 1 we still

get a stochastic process, consisting of consecutive counterbalancing of the initial step X1 while

for p “ 0 we just get the dynamics of a random walk. For the positive reinforced random walk

we already pointed out that the steps are identically distributed and hence are centred as soon

as X is centred. On the other hand, for the negatively step-reinforced random walk, since

X̌n`1 “ p1 ´ εn`1qXn`1 ´ εn`1X̌U rns

we clearly have

E
`

Šn`1

˘

“ p1 ´ pqm ` p1 ´ p{nqE
`

Šn
˘

, n ě 1 (3.3)

with initial condition EpŠ1q “ EpX̌1q “ m. As was noted in [22], it follows from the previous

recurrence that:

EpŠnq „

ˆ

p1 ´ pqm

1 ` p

˙

n as n Ò 8, (3.4)

and note that the process pŠnq is also centered if X is centred. Observe however that in stark

contrast to the positive step-reinforced random walk, we cannot say that the typical step is

centered without loss of generality: Indeed, since n ÞÑ EpX̌nq is no longer constant as soon as

m ‰ 0, due to the random swap of signs in the negative reinforcement algorithm, the centered

process pŠn ´ EpŠnqq is also no longer a counterbalanced random walk.

Turning our attention to its asymptotic behaviour, Proposition 1.1 in [22] shows that the

behaviour of the counterbalanced random walk Šn is ballistic. More precisely, denoting by m “



Chapter 3. Joint invariance principles 72

EpXq the mean of the typical step X, then for all p P r0, 1s the process pŠnq satisfies a law of

large numbers:

lim
nÑ8

Šn
n

“
p1 ´ pqm

1 ` p
in probability.

Moreover, Theorem 1.2 in [22] shows that if we also assume that the second moment m2 “ EpX2q

is finite, then the fluctuations are Gaussian for all choices p P r0, 1q:

Šn ´
1´p
1`pmn

?
n

ùñ N

¨

˚

˝

0,
m2 ´

´

1´p
1`pm

¯2

1 ` 2p

˛

‹

‚

.

In particular, when X is centred as will be our case, we simply get

Šn
?
σ2n

ùñ N
`

0, p1 ` 2pq
´1
˘

.

On the other hand, when p “ 1 which corresponds to the purely counterbalanced case, and under

the additional assumption that X follows the Rademacher distribution, then

1
?
n
Šn ùñ N p0, 1{3q.

The proofs of these results rely on remarkable connections with random recursive trees and even

if these will not be needed in the present work, we encourage the interested reader to consult [22]

for more details. In this article, we will establish a functional version of the asymptotic normality

mentioned above under the additional assumption that m “ 0, i.e. the typical step is centered.

We recall that this assumption cannot be made without the loss of generality.

In the same spirit as in the noise-reinforced setting, we will call a noise counterbalanced

Brownian motion of parameter p P r0, 1q a Gaussian process B̌ with covariance given by

E
`

B̌ptqB̌psq
˘

“
1

2p ` 1

s1`p

tp
for 0 ď s ď t and p P r0, 1q, (3.5)

and it follows that the law of B̌ admits the following integral representation

B̌ptq “ t´p
ż t

0
spdBc

psq, t ě 0 (3.6)

in terms of a standard Brownian motion Bc “ pBcpsqqsě0. Let us now state the main results of

this work.

Law of large numbers for step-reinforced random walks: In order to establish our

invariance principles, we shall need to investigate the asymptotic behaviour of step-reinforced

random walks. In this direction, we establish in Section 3.2 the following result:

Theorem 3.1. (Law of large numbers) For any p P p0, 1q, we have the L2pPq and almost sure

convergences:

lim
nÑ8

Ŝn
n

“ m and lim
nÑ8

Šn
n

“
1 ´ p

1 ` p
m. (3.7)

Moreover, if p “ 1, (3.7) still holds for the counterbalanced random walk.
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Note that if p “ 1, in the noise-reinforced case the result is clearly false, since we just have

Ŝn “ nX1 for n ě 1 while in the counterbalanced case, we can write Šn “ X1Š
1
n for n ě 1, where

Š1 is a counterbalanced random walk with same parameter and with typical step distributed δ1.

Theorem 3.1 will be proved by means of two remarkable martingales, denoted throughout this

work by M̂ and M̌ , associated respectively to noise reinforced and counterbalanced random walks.

These will be introduced and studied in Section 3.2 and will play a crucial role in this work. We

stress that the second convergence in Theorem 3.1 was already established in [22] in probability

by different methods.

The invariance principles: Before stating the functional versions of the results we just men-

tioned, notice that given a sample of i.i.d. random variables pXnq with law µ, and an additional

independent collection pεiq, pU risq of Bernoulli random variables and uniform random variables

respectively as before, we can construct from the same sample simultaneously to the associated

random walk pSnq, the processes pŜnq and pŠnq, that we refer respectively as the positive step-

reinforced version and the negative step-reinforced version of pSnq. It is then natural to compare

the dynamics of the triplet pSn, Ŝn, Šnq, instead of individually working with pŜnq and pŠnq.

When considering such a triplet, it will always be implicitly assumed that pŜnq, pŠnq have been

constructed in this special way from pSnq. In particular, we used the same sequence of uniform

and Bernoulli random variables to define both reinforced versions. Now we have all the ingredients

to state our first main result:

Theorem 3.2. Fix p P r0, 1{2q and consider the triplet pSn, Ŝn, Šnq consisting of the random walk

pSnq with its reinforced version and its counterbalanced version of parameter p. Assume further

that X is centred. Then, the following weak convergence holds in the sense of Skorokhod as n

tends to infinity,
ˆ

1

σ
?
n
Stntu,

1

σ
?
n
Ŝtntu,

1

σ
?
n
Štntu

˙

tPR`

ùñ

´

Bptq, B̂ptq, B̌ptq
¯

tPR`
(3.8)

where B, B̂, B̌ denote respectively a standard BM, a noise reinforced BM and a counterbalanced

BM with covariances, EpBpsqB̌ptqq “ t´ppt ^ sqp`1p1 ´ pq{p1 ` pq, EpBpsqB̂ptqq “ tppt ^ sq1´p,

EpB̂ptqB̌psqq “ tps´ppt ^ sqp1 ´ pq{p1 ` pq.

Notice that in the case p “ 0, i.e. when no reinforcement events occur, this is just Donsker’s

invariance principle since pŠnq, pŜnq are just the random walk pSnq and B̂, B̌ are just B. Hence,

from now on we will assume that p ą 0. The process in the limit admits the following simple

integral representation in terms of stochastic integrals
ˆ

Bptq, tp
ż t

0
s´pdBr

psq, t´p
ż t

0
spdBc

psq

˙

tPR`

(3.9)

where B “ pBptqqtě0, B
r “ pBrptqqtě0, B

c “ pBcptqqtě0 denote three standard Brownian mo-

tions with covariance structure EpBpsqBrptqq “ p1 ´ pqpt ^ sq, EpBpsqBcptqq “ p1 ´ pqpt ^ sq,

EpBrpsqBcptqq “ pt ^ sqp1 ´ pq{p1 ` pq.

The restriction on the parameter p P p0, 1{2q comes from the fact that, as we will see, for

the noise reinforced random walk only for such parameter the functional version works with this

scaling, while the centred hypothesis is a restriction coming from the counterbalanced random

walk. Now we point at some variants with less restrictive hypothesis, holding as long as we no
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longer consider the triplet. This allows us to drop some of the conditions we just mentioned,

and the proofs will be embedded in the proof of Theorem 3.2. We start by removing the centred

hypothesis when only working with the pair pSn, Ŝnq in the diffusive regime p P r0, 1{2q.

Theorem 3.3. Let p P r0, 1{2q and suppose that X P L2pPq. Let pSnq be a random walk with

typical step distributed as X and denote by pŜnq its positive step reinforced version. Then, we

have the weak joint convergence of the scaled sequence in the sense of Skorokhod as n tends to

infinity towards a Gaussian process
˜

Sptntuq ´ ntEpXq

σ
?
n

,
Ŝptntuq ´ ntEpXq

σ
?
n

¸

tPR`

ùñ pBptq, B̂ptqqtPR` (3.10)

where B is a Brownian motion, B̂ is a noise reinforced Brownian motion with covariance ErBpsqB̂ptqs “

tppt ^ sq1´p.

It follows that the limit process in (3.10) admits the integral representation
ˆ

Bptq, tp
ż t

0
s´pdBr

psq

˙

tPR`

where B “ pBptqqtě0 and Br “ pBptqrqtě0 denote two standard Brownian motions with convari-

ances EpBptqBrpsqq “ p1 ´ pqpt ^ sq. This result extends Theorem 3.3 in [21] to the pair pS, Ŝq.

Notice that the factor 1 ´ p in the correlation can be interpreted in terms of the definition of

the noise reinforced random walk, since at each discrete time step, with probability 1 ´ p the

processes Ŝ and S share the same step Xn.

Turning our attention to the counterbalanced random walk, when only working with the pair

pSn, Šnq we can extend the convergence to p P r0, 1q, and is the content of the following result:

Theorem 3.4. Let p P r0, 1q and suppose that X P L2pPq is centred. If pSnq is a random walk

with typical step distributed as X and pŠnq is its counterbalanced version of parameter p, then we

have the weak convergence of the sequence of processes in the sense of Skorokhod as n tends to

infinity
ˆ

1

σ
?
n
Stntu,

1

σ
?
n
Štntu

˙

tPR`

ùñ
`

Bptq, B̌ptq
˘

tPR` (3.11)

where B is a Brownian motion and B̌ is a noise counterbalanced Brownian motion with covariance

ErBpsqB̌ptqs “ t´ppt ^ sqp`1p1 ´ pq{p1 ` pq and σ2 “ ErX2s. If p “ 1 and X follows the

Rademacher distribution, the result still holds and in particular B and B̌ are independent.

Moreover, the limit process in (3.11) admits the simple integral representation
ˆ

Bptq, t´p
ż t

0
spdBc

psq

˙

tPR`

where B “ pBptqqtě0 and Bc “ pBcptqqtě0 denote two standard Brownian motions with convari-

ances EpBpsqBcptqq “ p1 ´ pqpt ^ sq.

Finally, we turn back our attention to the noise reinforced setting when the parameter is

p “ 1{2. Our method allows us to establish an invariance principle for the step-reinforced random

walk at criticality p “ 1{2 but notice that in this case we do not establish a joint convergence, as

the required scalings are no longer compatible.
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Theorem 3.5. Let p “ 1{2 and suppose that X P L2pPq. Then, we have the weak convergence of

the sequence of processes in the sense of Skorokhod as n tends to infinity
˜

Ŝtntu ´ ntEpXq

σ
a

logpnqnt{2

¸

tPR`

ùñ pBptqqtPR` (3.12)

where B “ pBptqqtě0 denotes a standard Brownian motion.

Our proofs rely on a version of the martingale Functional Central Limit Theorem (abreviated

MFCLT), which we state for the reader’s convenience. For more general versions, we refer to

Chapter VIII in [54]. If M “ pM1, . . . ,Mdq is a real rcll d-dimentional process, we denote by

∆M its jump process, which is the d-dimensional process null at 0 defined as pM1
t ´M1

t´, . . . ,M
d
t ´

Md
t´qtPR` .

Theorem 3.6 (MFCLT, VIII-3.11 from [54]). Assume M “ pM1, . . . ,Mdq is d-dimentional

continuous Gaussian martingale with independent increments, and predicable covariance process

pxM i,M jyqi,jPt1,...,du. For each n, let M
n “ pMn,1, . . . ,Mn,dq be a d-dimentional local martingale

with uniformly bounded jumps |∆Mn| ď K for some constant K. The following conditions are

equivalent:

(i) Mn ñ M in the sense of Skorokhod,

(ii) There exists some dense set D Ă R` such that for each t P D and i, j P t1, . . . , du,

as n Ò 8,

xMn,i,Mn,j
yt Ñ xM i,M j

yt in probability, (3.13)

and

sup
sďt

|∆Mn
s | Ñ 0 in probability. (3.14)

The rest of this paper is organised as follows: In Section 3.2 we introduce two crucial mar-

tingales for our reasoning associated with step-reinforced random walks and investigate their

properties. We derive maximal inequalities and asymptotic results for step reinforced random

walks that will be needed in the sequel and establish Theorem 3.1. Section 3.3 is devoted to the

proof of Theorem 3.2 under the additional assumption that the typical step X is bounded and in

Section 3.4 we discuss how to relax this assumption to the general case of unbounded steps by a

truncation argument. In the process, we will also deduce the proofs of Theorem 3.3 and Theorem

3.4. Finally, in Section 3.5 we address the proof of Theorem 3.5 and we shall again proceed in

two stages. Since many arguments can be carried over from the previous sections, some details

are skipped.

3.2 The martingales associated to a reinforced random walk and proof
of Theorem 3.1

In this section we work under the additional assumption that the typical step X P L2pPq is centred

and recall that we denote by σ2 “ EpX2q its variance. The centred hypothesis is maintained for

Sections 3 and 4, but dropped in Section 5.
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Recall that if M “ pMnqně0 is a discrete-time real-valued and square integrable martingale

with respect to a filtration pFnq, then its predicable variation process xMy is the process defined

by xMy0 “ 0 and for n ě 1,

xMyn “

n
ÿ

k“1

Ep∆M2
k | Fk´1q,

while if pZnq is another martingale, the predictable covariation of the pair xM,Zy is the process

defined by xM,Zy0 “ 0 and for n ě 1,

xM,Zyn “

n
ÿ

k“1

Ep∆Mk∆Zk | Fk´1q.

We define two sequences ppan, n ě 1q, pqan, n ě 1q as follows: Let pa1 “ qa1 “ 1 and for each

n P t2, 3, . . . u, set

pan “

n´1
ź

k“1

pγ´1
k “

Γpnq

Γpn ` pq
, qan “

n´1
ź

k“1

qγ´1
k “

Γpnq

Γpn ´ pq
(3.15)

for respectively pγn “
n`p
n , qγn “

n´p
n when n ě 2.

Proposition 3.7. The processes M̂ “ pM̂nqně0, M̌ “ pM̌nqně0 defined as M̂0 “ M̌0 “ 0 and

M̂n “ panŜn, M̌n “ qanŠn for n ě 1 are centred square integrable martingales and we denote the

natural filtration generated by the pair by pFnq, where F0 is the trivial sigma-field. Further, their

respective predictable quadratic variation processes is given by xM̂y0 “ xM̌y0 “ 0 and, for all

n ě 1

xM̂yn “ σ2 `

n
ÿ

k“2

pa2k

¨

˝p1 ´ pqσ2 ´ p2

˜

Ŝk´1

k ´ 1

¸2

` p
V̂k´1

k ´ 1

˛

‚ (3.16)

and

xM̌yn “ σ2 `

n
ÿ

k“2

qa2k

˜

p1 ´ pqσ2 ´ p2
ˆ

Šk´1

k ´ 1

˙2

` p
V̂k´1

k ´ 1

¸

(3.17)

where pV̂nqně1 is the step-reinforced process given by V̂n “ X̂2
1 ` ¨ ¨ ¨ ` X̂2

n and the sums should be

considered identical to zero for n “ 1.

Proof. Starting with the positive-reinforced case, notice that for any n ě 1 we have

E
´

X̂n`1 | Fn
¯

“ p1 ´ pqEpXq ` p
X̂1 ` ¨ ¨ ¨ ` X̂n

n
“ p

Ŝn
n
. (3.18)

Hence, since Ŝn`1 “ Ŝn ` X̂n`1, and pγn “ pn ` pq{n,

EpŜn`1 | Fnq “ pγn ¨ Ŝn (3.19)

and therefore, we obtain

EpM̂n`1 | Fnq “ pan`1EpŜn`1 | Fnq “ pan`1pγnŠn “ panŜn “ M̂n.
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Moreover, as X is centred and the steps pX̂kq are identically distributed by what was discussed

in the introduction, we have

EpM̂nq “ EpX̂1q “ EpXq “ 0

and we conclude that pM̂nqně0 is a martingale. Turning our attention to its quadratic variation,

we have EpŜ2
nq ď n2EpX2q “ n2σ2 and hence, M̂n is indeed square integrable and its predictable

quadratic variation exists. Next, we observe that for n ě 1 we have

EpM̂2
n`1 ´ M̂2

n | Fnq “ EppM̂n`1 ´ M̂nq
2

| Fnq

“ pa2n`1EppX̂n`1 ´ EpX̂n`1 | Fnqq
2

| Fnq

“ pa2n`1

´

EpX̂2
n`1 | Fnq ´ pEpX̂n`1 | Fnqq

2
¯

“ pa2n`1

ˆ

EpX̂2
n`1 | Fnq ´

p2

n2
Ŝ2
n

˙

. (3.20)

Finally, as was pointed out in the proof of Lemma 3 in [19], and can be verified from the definition

of the X̂n, it holds that

EpX̂2
n`1 | Fnq “ p

V̂n
n

` p1 ´ pqσ2, (3.21)

and hence we arrive at the formula (3.16).

For the negative-reinforced case, the proof follows very similar steps after minor modifications

have been made. Since for n ě 1,

EpX̌n`1 | Fnq “ mp1 ´ pq ´ p
X̌1 ` ¨ ¨ ¨ ` X̌n

n
“ ´

p

n
Šn (3.22)

we now have

EpŠn`1 | Fnq “

´n ´ p

n

¯

Šn “ qγnŠn, (3.23)

and the martingale property for pM̌nqně0 follows. For the quadratic variation, the proof is the

same after noticing that since clearly X̌2
k “ X̂2

k , we can also write V̂n “ X̌2
1 ` ¨ ¨ ¨ ` X̌2

n.

We write for further use the following asymptotic behaviours: the first ones are related to the

study of the positive-reinforced case and hold for p P p0, 1{2q:

lim
nÑ8

n2p´1
n
ÿ

k“1

pa2k “
1

1 ´ 2p
, pan “

Γpnq

Γpn ` pq
„ n´p as n Ò 8 (3.24)

while for p “ 1{2 we have a change on the asymptotic behaviour in the series,

lim
nÑ8

1

logpnq

n
ÿ

k“1

pa2k “ 1, pan “
Γpnq

Γpn ` 1{2q
„ n´ 1

2 as n Ò 8 (3.25)

which is the reason behind the different scaling showing in Theorem 3.5. On the other hand, for

the negatively-reinforced case we have for p P p0, 1s,

lim
nÑ8

1

n1`2p

n
ÿ

k“1

qa2k “
1

1 ` 2p
, qan “

Γpnq

Γpn ´ pq
„ np as n Ò 8. (3.26)
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The limits are derived from standard Gamma function asymptotic behaviour, and were already

pointed out in Bercu [11].

Before turning our attention to the proof of Theorem 3.1, let us introduce a more general

version of M̌ that will be needed in our analysis, when the steps of the counterbalanced random

walk are not centred. In this direction set Y0 :“ 0 and for n ě 1, let

Yn :“ qanŠn ´ qanEpŠnq. (3.27)

It readily follows by (3.22) and the recursive formula (3.3) that for n ě 1, we have

E pYn`1 | Fnq “ qan`1

`

mp1 ´ pq ` qγnŠn ´ EpŠn`1q
˘

“ qanŠn ` qan`1

`

mp1 ´ pq ´ EpŠn`1q
˘

“ Yn,

and we deduce that pYnqně1 is a centred a martingale – note that if m “ 0, we have Y “ M̌ .

We shall now make use of M̂ , M̌ and Y to study the rate of growth of Ŝ, Š and to establish

Theorem 3.1. In this direction, the following lemma has already been observed in [14, 21] using

a different technique, we present here a more elementary approach.

Lemma 3.8. For every fixed p P p1{2, 1q, the following convergence holds a.s. and in L2pPq,

lim
nÑ8

Ŝn
np

“ Ŵ

where Ŵ P L2pPq is a non-degenerate random variable.

Proof. Thanks to Proposition 3.7 we know that M̂n “ ânŜn is a martingale. Further, we obtain

from (3.20) and the asymptotics pan „ n´p that, for some constant C large enough,

Ep|M̂n|
2
q “ EpxM̂ynq ď σ2

n
ÿ

k“1

pa2k ď C
n
ÿ

k“1

1

k2p
,

for all n P N. Since p ą 1{2, the latter series is summable and we conclude that

sup
nPN

Ep|M̂n|
2
q ă 8.

By Doob’s martingale convergence theorem there exists a non-degenerate random variable Ŵ P

L2pPq such that M̂n Ñ Ŵ a.s. and in L2pPq as n Ñ 8. Using the asymptotics pan „ n´p we

conclude the proof.

We now focus our attention on establishing the almost sure convergence of Theorem 3.1. We

shall show in Corollary 3.11 below that both convergences also hold in L2pPq. However, additional

estimates are still needed to deduce the L2pPq convergence.

Proof of the a.s. convergences in Theorem 3.1. Let us start with the NRRW and in this direction

recall that ErX̂ns “ m for all n ě 1. First, since Ŝpnq ´ nErXs, for n ě 1 is a NRRW with same

parameter p and centered steps with law X ´ErXs, it would suffice to show that for centered X,

we have n´1Ŝpnq “ 0. Considering first the case p P p0, 1{2s, this can now be achieved by making
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use of Theorem 1.3.17 in [42] and the martingale M̂ that we introduced in Proposition 3.7. More

precisely, remark that for any p P p0, 1{2s and α ą 0, we have

n´αErxMyns ď n´α
n
ÿ

k“1

â2k,

where the asymptotic behaviour of
řn
k“1 â

2
k as n Ò 8 is dictated for p P p0, 1{2q and p “ 1{2

respectively by (3.24) and (3.25). Now, it readily follows from these estimations that if p P p0, 1{2q,

for α :“ 2p ´ 1 we have

sup
n
n´p1´2pqEpxM̂nyq ď σ2 sup

n
n2p´1

n
ÿ

k“2

â2k ă 8 (3.28)

while if p “ 1{2, for α :“ ε for any ε ą 0 it holds that

sup
n
n´εEpxM̂nyq ď σ2 sup

n
n´ε

n
ÿ

k“2

â2k ă 8.

We deduce from Theorem 1.3.17 in [42], taking β :“ α, that n´p1´2pqM̂n Ñ 0 and n´εM̂n Ñ 0,

the convergences holding a.s. Recalling that an „ n´p, we get from the definition of M̂ that

n´1Ŝn Ñ 0 almost surely. The case p P p1{2, 1q now easily follows from the convergence of

Proposition 3.8.

The counterbalanced case will follow from Theorem 1.3.24 in [42]. In this direction, fix p P

p0, 1s, recall that the process pYnq defined in (3.27) is a martingale, and we claim that:

n´p1`pqYn Ñ 0 a.s. (3.29)

Let us first explain why this yields the desired result. Recalling from (3.4) that EpŠnq „ np1 ´

pqm{p1 ` pq and qan „ np as n Ò 8, it follows that

lim
nÑ8

n´p1`pq
qanEpŠnq “

p1 ´ pqm

1 ` p
, which yields lim

nÑ8
n´p1`pq

qanŠn “
p1 ´ pqm

1 ` p
a.s.

by definition of pYnq. The second convergence in (3.7) now follows.

We now shall prove (3.29) for p P p0, 1s. Let us recall from Theorem 1.3.17 in [42] that, if for

any 0 ă α{2 ă β, we have

sup
n
n´αEpxYnyq ă 8, (3.30)

then n´βYn Ñ 0 a.s. In order to make use of this result, we start with some estimates for the

angle bracket process pxYnyq. In this direction, note that

Yn`1 ´ Yn “ qan`1Šn`1 ´ qanŠn ´ qan`1EpŠn`1q ` qanEpŠnq

“ qan`1pŠn`1 ´ γnŠnq ´ qan`1pEpŠn`1q ´ γnEpŠnqq

“ qan`1

´

X̌n`1 `
p

n
Šn ´ E

´

X̌n`1 `
p

n
Šn

¯¯

.

Therefore, recalling the inequality pa` bq2 ď 2pa2 ` b2q, by Jensen’s inequality we have for some

constant c that

EppYn`1 ´ Ynq
2
q ď c ¨ qa2n`1

ˆ

EpX̌2
n`1q `

1

n2
ErpŠnq

2
s

˙

“ c ¨ qa2n`1

ˆ

σ2 `
1

n2
ErpŠnq

2
s

˙

,
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where in the last equality we used that X̌2
n`1 “ X̂2

n`1, with EpX̂2
n`1q “ σ2. Set α :“ 1 ` 2p and

note that from our previous estimates, we get:

n´p1`2pqEpxYnyq ď c ¨ n´p1`2pq

n
ÿ

k“1

qa2k`1

ˆ

σ2 `
1

k2
ErpŠkq

2
s

˙

.

Recalling the asymptotic behaviour (3.26) of the series
řn
k“1 a

2
k, the estimate (3.30) will follow if

we prove that supn
1
n2ErpŠnq2s ă 8. In this direction, note that

n´2
pŠnq

2
“ n´2

˜

n
ÿ

k“1

X̌k

¸2

ď n´2n
n
ÿ

k“1

X̌2
k “ n´1V̂n.

By taking expectations on the last display, we infer the uniform bound:

n´2ErpŠnq
2
s ď n´1ErV̂ns “ σ2

and we deduce that (3.30) holds. Finally, since p1 ` 2pq{2 ď 1 ` p, we can take β “ 1 ` p to

conclude that n´p1`pqYn Ñ 0 almost surely.

When the typical step is centred, we can derive from our previous arguments sharper results:

Corollary 3.9. Suppose that p P p0, 1{2q and that ErXs “ 0. We have the almost sure conver-

gences:

lim
nÑ8

Ŝn
n1´p

“ 0 and lim
nÑ8

Šn
n1´p

“ 0.

Proof. The first convergence has already been established during the proof of Theorem 3.1. In-

deed, it is a consequence of the convergence n´p1´2pqM̂n Ñ 0 and the asymptotic behaviour

an „ n´p. For the counterbalanced case, we can proceed similarely, noticing that by (3.26), we

now have:

sup
n
n´p1`2pqEpxM̌nyq ď sup

n
σ2n´2p´1

n
ÿ

k“2

ǎ2k ă 8.

Let now α “ 1 ` 2p and β “ 1. Then, α ă 2β if and only if p ă 1{2 and the conditions of

Theorem 1.3.17 in [42] are again satisfied. It follows, as before, that n´1M̌n “ 0 Ñ 0 a.s. and

since ǎn „ np as n Ñ 8, the claim follows.

We continue by investigating bounds for the second moments of the supremum process of the

step-reinforced random walk Ŝ for all regimes. These bound will be needed for establishing the

L2pPq convergences of Theorem 3.1.

Lemma 3.10. For every n ě 1, the following bounds hold for some numerical constant c:

σ´2E
ˆ

sup
kďn

|Ŝk|
2

˙

ď

$

’

’

&

’

’

%

cn, if p P p0, 1{2q

cn log n, if p “ 1{2

cn2p, if p P p1{2, 1q.

Proof. We tackle each of the three cases p P p0, 1{2q, p “ 1{2 and p P p1{2, 1q individually:
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(i) Let us first consider the case when p P p0, 1{2q. We observe that by (3.20) and by (3.24)

EpM̂2
nq “ EpxM̂ynq ď

n
ÿ

k“1

σ2pa2k „ σ2
1

1 ´ 2p
n1´2p, as n Ñ 8.

Hence we obtain by Doob’s inequality that

E
ˆ

sup
kďn

|M̂k|
2

˙

ď c1σ
2n1´2p

where c1 ą 0 is some constant. Since it evidently holds that

E
ˆ

sup
kďn

|Ŝk|
2

˙

ď
1

pa2n
E
ˆ

sup
kďn

|M̂k|
2

˙

,

it follows readily that

E
ˆ

sup
kďn

|Ŝk|
2

˙

ď c1σ
2n

1´2p

pa2n
„ c1σ

2n, as n Ñ 8.

By monotonicity, we conclude the proof for this case.

(ii) Let us now assume that p “ 1{2, we then obtain by (3.25) and monotonicity that for all

n ě 1 we have

EpxM̂ynq ď σ2 log n.

We conclude as in the previous case that this implies

E
ˆ

sup
kďn

|Ŝk|
2

˙

ď c2σ
2n log n,

where c2 ą 0 is some constant.

(iii) Finally, let us consider the case p ą 1{2. Here, we then have as n Ñ 8

σ2
n
ÿ

k“1

pa2k`1 ď Cσ2
n
ÿ

k“1

1

k2p
ă c̃

for a constant C large enough and some finite constant c̃. This entails that EpxM̂ynq ď σ2c̃

and we deduce as before the bound

E
ˆ

sup
kďn

|Ŝk|
2

˙

ď c3σ
2n2p,

where c3 ą 0 is some constant.

Thus we have established the desired bounds for all regimes.

As an application of the maximal inequalities displayed in Lemma 3.10 for the noise reinforced

random walk, we establish L2pPq convergence type results for all regimes p P p0, 1q and we deduce

that the LLN stated in Theorem 3.1 also hold in L2pPq.
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Corollary 3.11. We have the following convergences in the L2pPq-sense.

(i) For p P p0, 1{2q we have

lim
nÑ8

Ŝn
n1´p

“ 0.

(ii) For p “ 1{2 we have

lim
nÑ8

Ŝn
?
n log n

“ 0.

(iii) For p P p1{2, 1q we have

lim
nÑ8

Ŝn
n

“ 0.

In particular, all the convergences in Theorem 3.1 also hold in L2pPq.

Proof. Let pfpnqq be a sequence of positive numbers and notice that by Lemma 3.10, if as n Ò 8

$

’

’

&

’

’

%

1
f2pnq

n Ñ 0, if p P p0, 1{2q

1
f2pnq

pn log nq Ñ 0, if p “ 1{2

1
f2pnq

n2p Ñ 0, if p P p1{2, 1q

,

then we have convergence in the L2-sense to 0 of the sequence pŜn{fpnqq. Now, respectively for

each one of the tree cases:

(i) We take fpnq :“ n1´p and observe that n2p´1 Ñ 0 as n Ñ 8 since p P p0, 1{2q.

(ii) We take fpnq :“
?
n log n, plainly 1{ logpnq Ñ 0 as n Ñ 8.

(iii) We take fpnq :“ n and observe that n2pp´1q Ñ 0 as n Ñ 8 because p ă 1.

This concludes the first part of the proof. Next, notice that (i), (ii), (iii) imply that for any

p P p0, 1q, we have n´1Ŝn Ñ m in L2pPq. Indeed, it suffices to notice once again that Ŝn ´

nErXs for n ě 1 is a centered noise reinforced random walk. To deduce the convergence in the

counterbalanced case, fix p P p0, 1q and remark that we can bound,

|n´1Ŝn| ď n´1
n
ÿ

i“1

|X̌i|,

where now,
řn
i“1 |X̌i| for n ě 1 is a noise reinforced random walk with typical step distributed

|X|. In particular, it follows from the first part of the proof that n´1
řn
i“1 |X̌i| Ñ Er|X|s in L2pPq.

Now, the desired convergence follows by the (generalized) dominated convergence theorem.

This concludes the proof of Theorem 3.1 and we shall now turn our attention to the proof of

the stated invariance principles.
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3.3 Proof of Theorem 3.2, 3.3 and 3.4 when X is bounded.

Recall that in this section and Section 3.4 we work under the additional assumption that X

is centred. As was discussed in the introduction, for positive step-reinforced random walks the

centredness hypothesis can be assumed without loss of generality, but that is no longer the case for

negative step-reinforced random walks. We are now in a position to prove Theorem 3.2 when X is

bounded and in the process we will also establish Theorem 3.3 and Theorem 3.4. For that reason,

in several statements we also consider p P r1{2, 1s when working with the counterbalanced random

walk. Additionally, when we work with the counterbalanced random walk for p “ 1, we assume

as in Theorem 3.4 that X is Rademacher distributed, this will be recalled when necessary. Our

approach relies on using the martingale introduced in Proposition 3.7 and applying the MFCLT

3.6. We will establish the general case for X P L2pPq by a truncation argument, detailed in

Section 3.4.

Now, the key is to notice that, since by (3.24) resp. (3.26) we have for any t ě 0

patntu

n´p
„ t´p and

qatntu

np
„ tp as n Ò 8,

in order to get the convergence (3.8) it is enough to prove (except for a technical detail at the

origin in the third coordinate that will be properly addressed), the convergence

ˆ

1
?
n
Stntu,

1
?
n

patntu

n´p
Ŝtntu,

1
?
n

qatntu

np
Štntu

˙

tPR`

ùñ

ˆ

σBt, σ

ż t

0
s´pdBr

s , σ

ż t

0
spdBc

s

˙

tPR`

(3.31)

for Brownian motions B and Br and Bc defined as in (3.9) where the sequence on the left-hand

side is now composed by martingales. More precisely, for each n P N, the processes

´

N̂
pnq

t

¯

tPR`
:“

ˆ

1
?
n

patntu

n´p
Ŝtntu

˙

tPR`

,
´

Ň
pnq

t

¯

tPR`
:“

ˆ

1
?
n

qatntu

np
Štntu

˙

tPR`

(3.32)

are just rescaled, continuous-time versions of the martingales we introduced in Proposition 3.7,

multiplied by respective factors of np´1{2 and n´1´p. We will also denote as N pnq the scaled

random walk in the first coordinate and we proceed at establishing (3.31) by verifying that the

conditions of the MFCLT 3.6 are satisfied. In that direction and recalling the condition (3.13),

we start by investigating the asymptotic negligibility of the jumps:

Lemma 3.12 (Asymptotic negligibility of jumps).

(i) Fix p P p0, 1{2q. For each t ą 0, the following convergence holds almost surely:

sup
sďt

|∆N̂
pnq
s | Ñ 0 as n Ò 8.

(ii) Fix p P p0, 1s. For each t ą 0, the following convergence holds almost surely:

sup
sďt

|∆Ň
pnq
s | Ñ 0 as n Ò 8.
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Proof. (i) Notice that

sup
sďt

|∆N̂
pnq
s | ď

1
?
n

sup
kďtntu

ˇ

ˇ

ˇ
nppak`1Ŝk`1 ´ nppakŜk

ˇ

ˇ

ˇ

“
1

n1{2´p
sup
kďtntu

ˇ

ˇ

ˇ
pak`1

´

Ŝk`1 ´ pγkŜk

¯
ˇ

ˇ

ˇ

“
1

n1{2´p
sup
kďtntu

pak`1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

j“1

X̂jp1 ´ pγkq ` X̂k`1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
}X}8

n1{2´p
sup
kďtntu

pak`1pk|1 ´ pγk| ` 1q,

where by hypothesis we have }X}8 ă 8. Now, since pak „ k´p, we have supk pak ă 8 and we

deduce recalling the definition pγk “ pk ` pq{k that:

sup
sďt

|∆N̂
pnq
s | ď

C}X}8

n1{2´p
,

for some constant C ą 0 and (i) follows.

(ii) Similarly, since we also have ∆M̌k`1 “ ǎk`1pŠk`1 ´ γ̌kŠkq, arguing as before we get:

sup
sďt

|∆Ň
pnq
s | “

1

n1{2`p
sup
kďtntu

|qak`1

`

Šk`1 ´ qγkŠk
˘

|

“
1

n1{2`p
sup
kďtntu

qak`1

ˇ

ˇ

ˇ

ˇ

k
ÿ

j“1

X̌jp1 ´ qγkq ` X̌k`1

ˇ

ˇ

ˇ

ˇ

ď
}X}8

n1{2`p
sup
kďtntu

qak`1pk|1 ´ qγk| ` 1q

“
}X}8

n1{2`p
sup
kďtntu

qak`1pp ` 1q,

since qγn “ pn ´ pq{n. Recalling from (3.26) the asymptotic behaviour qan „ np, we get that

supsďt |∆Ň
pnq
s | Ñ 0 pointwise for each t.

Now we turn our attention to the joint convergence of the quadratic variation process, and

this is the content of the following lemma:

Lemma 3.13 (Convergence of quadratic variations). For each fixed t P R`, the following con-

vergences hold almost surely for p P p0, 1{2q, unless specified otherwise:

(i) lim
nÑ8

xN̂ pnq, N̂ pnq
yt “ σ2

ż t

0
s´2pds.

(ii) lim
nÑ8

xŇ pnq, Ň pnq
yt “ σ2

ż t

0
s2pds, for p P p0, 1s.

(iii) lim
nÑ8

xN̂ pnq, N pnq
yt “ σ2p1 ´ pq

ż t

0
s´pds.
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(iv) lim
nÑ8

xŇ pnq, N pnq
yt “ σ2p1 ´ pq

ż t

0
spds, for p P p0, 1s.

(v) lim
nÑ8

xN̂ pnq, Ň pnq
yt “ tσ2

1 ´ p

1 ` p
.

where for the case p “ 1 in (ii) and (iv) we assume that X is distributed Rademacher.

Lemma 3.13 provides the key asymptotic behaviour for the sequence of quadratic variations

and its proof is rather long.

Proof. We tackle each item (i)–(v) individually, item (v) being the most arduous.

(i) For each n P N, we gather from (3.16) that the predictable quadratic variation of this

martingale is given by for t ě 1{2 by

xN̂ pnq, N̂ pnq
yt “

1

n1´2p

¨

˝σ2 ` p1 ´ pqσ2
tntu
ÿ

k“2

pa2k ´ p2
tntu
ÿ

k“2

pa2k

˜

Ŝk´1

k ´ 1

¸2

` p

tntu
ÿ

k“2

pa2k

˜

V̂k´1

k ´ 1

¸

˛

‚,

with xN̂ pnq, N̂ pnqyt “ 0 if t ă 1{n. We will study separately the limit as n Ñ 8 of the three

nontrivial terms, as the first one evidently vanishes. To start with, it follows readily from

(3.24) that

lim
nÑ8

σ2

n1´2p
p1 ´ pq

tntu
ÿ

k“2

pa2k “
σ2

1 ´ 2p
t1´2p

p1 ´ pq. (3.33)

Now, we claim that the second term converges to zero:

lim
nÑ8

1

n1´2p
p2

tntu
ÿ

k“1

pa2k

˜

Ŝk´1

k ´ 1

¸2

“ 0 a.s. (3.34)

Indeed, by (3.24) it suffices to notice that by Proposition 3.1, we have

lim
kÑ8

Ŝk
k

“ 0 a.s.

since we recall that by our standing assumptions X is centered. Finally, we claim that for

the last term, the following limit holds:

lim
nÑ8

1

n1´2p
p

tntu
ÿ

k“1

pa2k
V̂k´1

pk ´ 1q
“

σ2

1 ´ 2p
t1´2pp a.s. (3.35)

In this direction, notice that pV̂nqnPN is the reinforced version of the (non-centered) random

walk

Vn “ X2
1 ` ¨ ¨ ¨ ` X2

n, n P N
with mean EpX̂2

i q “ EpX2
i q “ σ2. Hence, by Theorem 3.1, we have n´1V̂n Ñ σ2 as n Ò 8

and (3.35) follows. Now, combining (3.33), (3.34) and (3.35) we conclude that

lim
nÑ8

xN̂ pnq, N̂ pnq
yt “

σ2

1 ´ 2p
t1´2p a.s.
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(ii) By (3.17), we have

xŇ pnq, Ň pnq
yt

“
1

n1`2p

¨

˝σ2 `

tntu
ÿ

k“2

qa2k

˜

p1 ´ pqσ2 ´ p2
ˆ

Šk´1

k ´ 1

˙2

` p
V̂k´1

k ´ 1

¸

˛

‚

and we shall now study the convergence of the normalised series in the previous expression.

First, by (3.26), the first term converges towards

lim
nÑ8

σ2
p1 ´ pq

n1`2p

tntu
ÿ

k“2

qa2k “ σ2
1 ´ p

1 ` 2p
t1`2p

“ σ2p1 ´ pq

ż t

0
s2pds.

Turning our attention to the second term, we recall from Proposition 3.1 that pŠnq satisfies

a law of large numbers:

lim
nÑ8

1

n
Šn “

p1 ´ pq

1 ` p
m “ 0 a.s.

This paired with the asymptotic behaviour of the series (3.26) yields:

lim
nÑ8

1

n1`2p

tntu
ÿ

k“2

qa2k

ˆ

Šk´1

k ´ 1

˙2

“ 0 a.s. for every t ě 0.

Finally, assuming first that p ă 1, we can proceed as in (3.35) to deduce from (3.26) that

lim
nÑ8

p

n1`2p

tntu
ÿ

k“2

qa2k

˜

V̂k´1

k ´ 1

¸

“ σ2
p

1 ` 2p
t1`2p

“ σ2p

ż t

0
s2pds a.s. (3.36)

If p “ 1, by hypothesis X takes its values in t´1, 1u and V̌k´1 “ k ´ 1, yielding that the

previously established limit (3.36) still holds. Notice however that if we allowed X to take

arbitrary values, we can no longer proceed as we just did since in that case, V̂n is a straight

line with random slope:

V̌n “ nX̌2
1 .

Putting all pieces together, we obtain (ii).

(iii) Recalling that X̂k “ Xk1tεk“0u ` X̂U rk´1s1tεk“1u, and from independence of Xk, εk and

U rk ´ 1s from Fk´1, we get for k ě 2

Ep∆M̂kXk | Fk´1q “ E
´

pŜk´1ppak ´ pak´1q ` X̂kpakqXk | Fk´1

¯

“ pakE
´´

Xk1tεk“0u ` X̂U rk´1s1tεk“1u

¯

Xk | Fk´1

¯

“ pakp1 ´ pqEpX2
q `

k´1
ÿ

j“1

E
`

XkXj1tU rk´1s“j,εk“1u | Fk´1

˘

“ pakp1 ´ pqσ2
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since the steps are centered, while for k “ 1 we simply get EpM̂1X1q “ σ2. From here, we

deduce

xN̂ pnq, N pnq
yt “ np´1

tntu
ÿ

k“1

Ep∆MkXk | Fk´1q “ σ2p1 ´ pqnp´1

¨

˝p1 ´ pq
´1

`

tntu
ÿ

k“2

pak

˛

‚

and from the convergence

lim
nÑ8

np´1
n
ÿ

k“2

pak “ p1 ´ pq
´1

we conclude:

lim
nÑ8

xN̂ pnq, N pnq
yt “ σ2p1 ´ pq lim

nÑ8
np´1

tntu
ÿ

k“2

pak “ t1´p
“ σ2p1 ´ pq

ż t

0
s´pds.

(iv) Recalling that in the counterbalanced case X̌k “ Xk1tεk“1u ´ X̌U rk´1s1tεk“0u, we deduce

from similar arguments as in the reinforced case that for k ě 2 we have,

Ep∆M̌kXk | Fk´1q “ E
`

pŠk´1pqak ´ qak´1q ` X̌kqakqXk | Fk´1

˘

“ qakE
``

Xk1tεk“1u ´ X̌U rk´1s1tεk“0u

˘

Xk | Fk´1

˘

“ qak ¨ p1 ´ pqEpX2
q ´

k´1
ÿ

j“1

E
`

XkXj1tU rk´1s“j,εk“0u | Fk´1

˘

“ qak ¨ p1 ´ pqσ2.

Notice that if p “ 1 the argument still holds and hence the above quantity is null for all

k ě 2. Since if k “ 1 we simply have Er∆M̌1X1s “ σ2, it follows that for t ě 1{n,

xŇ pnq, N pnq
yt “ n´p1`pq

tntu
ÿ

k“1

Ep∆M̌kXk | Fk´1q “ σ2p1 ´ pq ¨ n´p1`pq

¨

˝p1 ´ pq
´1

`

tntu
ÿ

k“2

qak

˛

‚

and from the convergence

lim
nÑ8

n´p1`pq

n
ÿ

k“1

qak “ p1 ` pq
´1

we conclude

σ´2 lim
nÑ8

xŇ pnq, N pnq
yt “ p1 ´ pq lim

nÑ8
n´p1`pq

tntu
ÿ

k“1

qak “
1 ´ p

p1 ` pq
t1`p

“ p1 ´ pq

ż t

0
spds.

Finally if p “ 1, we clearly have limnÑ8xŇ pnq, N pnqyt “ 0.

(v) Notice that

Ep∆M̌k∆M̂k | Fk´1q “ E
´

pŜk´1ppak ´ pak´1q ` X̂kpakqpŠk´1pqak ´ qak´1q ` X̌kqakq | Fk´1

¯

“ Ŝk´1ppak ´ pak´1qŠk´1pqak ´ qak´1q ` Ŝk´1ppak ´ pak´1qEpX̌k|Fk´1qqak

` Šk´1pqak ´ qak´1qEpX̂k | Fk´1qpak ` EpX̌kX̂k | Fk´1qpakqak

“: P
paq

k ` P
pbq
k ` P

pcq
k ` P

pdq

k
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where the notation was assigned in order of appearance. We write,

xŇn, N̂n
yt “ n´1

tntu
ÿ

k“1

´

P
paq

k ` P
pbq
k ` P

pcq
k ` P

pdq

k

¯

and study the asymptotic behaviour of these four terms individually. In that direction,

we recall from (3.18) and (3.22) the identities EpX̂k | Fk´1q “ pŜk´1{pk ´ 1q, EpX̌k |

Fk´1q “ ´pŠk´1{pk ´ 1q as well as the asymptotic behaviour ppak ´ pak´1q „ ´pk´pp`1q and

pqak ´ qak´1q „ pkp´1.

• We first show that

lim
nÑ8

n´1
tntu
ÿ

k“1

P
pcq
k “ 0 a.s..

From the identities and asymptotic estimates we just recalled, we have

Šk´1pqak ´ qak´1qEpX̂k | Fk´1qpak “ Šk´1pqak ´ qak´1qp
Ŝk´1

k ´ 1
pak „

Šk´1

k
kpp2

Ŝk´1

k ´ 1
pak

and since pak „ k´p, we have for some constant C large enough that

n´1

ˇ

ˇ

ˇ

ˇ

tntu
ÿ

k“1

P
pcq
k

ˇ

ˇ

ˇ

ˇ

ď n´1C

tntu
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

Šk´1

k

Ŝk´1

k ´ 1

ˇ

ˇ

ˇ

ˇ

.

However, this converges a.s. towards 0 as n Ò 8 by Proposition 3.1.

• Next, since

Ŝk´1ppak ´ pak´1qEpX̌k | Fk´1qqak “ ´Ŝk´1ppak ´ pak´1qp
Šk´1

k ´ 1
qak „

Ŝk´1

k
k´pp2

Šk´1

k ´ 1
qak

we can follow exactly the same line of reasoning in order to establish

lim
nÑ8

n´1
tntu
ÿ

k“1

P
pbq
k “ 0 a.s..

• Since

ppak ´ pak´1qpqak ´ qak´1q „ ´p2k´2,

we deduce that

Ŝk´1ppak ´ pak´1qŠk´1pqak ´ qak´1q „ Ŝk´1Šk´1p´p2qk´2

and we conclude as before that we have:

lim
nÑ8

n´1
tntu
ÿ

k“1

P
paq

k “ 0 a.s..
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• Finally, since by definition

X̂k “ Xk1tεk“0u ` X̂U rk´1s1tεk“1u, X̌k “ Xk1tεk“0u ´ X̌U rk´1s1tεk“1u

we have

pakqakEpX̌kX̂k | Fk´1q “ pakqakEpX2
k1tεk“0u | Fk´1q ´ pakqakEpX̌U rk´1sX̂U rk´1s1tεk“1u | Fk´1q

“ pakqakp1 ´ pqσ2 ´ pakqak

k´1
ÿ

j“1

EpX̌jX̂j1tεk“1,U rk´1s“ju | Fk´1q.

Since on one hand, X̌j , X̂j for j ă k are Fk´1 measurable while εk, U rk ´ 1s are

independent of Fk´1, denoting as Ǧ the counterbalanced random walk made from the

i.i.d. sequence X2
1 , X

2
2 , . . . from the same instance of the reinforcement algorithm, we

deduce

P
pdq

k “ pakqak

¨

˝p1 ´ pqσ2 ´
1

k ´ 1
p
k´1
ÿ

j“1

X̌jX̂j

˛

‚“ pakqak

ˆ

p1 ´ pqσ2 ´ p
Ǧpk ´ 1q

k ´ 1

˙

and since âkǎk Ñ 1 as k Ñ 8, the problem boils down to studying the convergence as

n Ò 8 of

1

n

tntu
ÿ

k“1

ˆ

p1 ´ pqσ2 ´ p
Ǧpk ´ 1q

k ´ 1

˙

.

The first term obviously converges towards tp1´ pqσ2 and we turn our attention to the

second one. Now, by Theorem 3.1 applied to Ǧ we get:

lim
nÑ8

p

n

tntu
ÿ

k“1

Ǧpk ´ 1q

k
“ pσ2t

1 ´ p

1 ` p
a.s.

and we conclude that the following convergence holds almost surely:

lim
nÑ8

1

n

tntu
ÿ

k“1

P
pdq

k “ tp1 ´ pqσ2 ´ pσ2t
1 ´ p

1 ` p
.

Bringing all our calculations above together we deduce the following almost sure convergence:

lim
nÑ8

xN̂n, Ňn
yt “ σ2p1 ´ pqt ´ pσ2p1 ´ pqp1 ` pq

´1t.

This concludes the proof of the lemma.

With this, we conclude the proof of Theorem 3.2 when X is bounded with an appeal to Lemma

3.12, Lemma 3.13 and the MFCLT (Theorem 3.6).

3.4 Reduction to the case of bounded steps.

In this section, we shall only assume that the typical stepX P L2pPq of the step-reinforced random

walk Ŝ is centred and no longer that it is bounded. We shall complete the proof of Theorem 3.2

by means of the truncation argument reminiscent to the one of Section 4.3 in [21].
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3.4.1 Preliminaries

The reduction argument relies on the following lemma taken from [54], that we state for the

reader’s convenience:

Lemma 3.14 (Lemma 3.31 in Chapter VI of [54]).

Let pZnq be a sequence of d-dimensional rcll (càdlàg) processes and suppose that

@N ą 0, @ε ą 0 lim
nÑ8

P
ˆ

sup
sďN

|Zns | ą ε

˙

“ 0.

If pY nq is another sequence of d-dimensional rcll processes with Y n ñ Y in the sense of Skorokhod,

then Y n ` Zn ñ Y in the sense of Skorokhod.

Finally, we will need the following lemma concerning convergence on metric spaces:

Lemma 3.15. Let pE, dq be a metric space and consider pa
pmq
n : m,n P Nq a family of sequences,

with a
pmq
n P E for all n,m P N. Suppose further that the following conditions are satisfied:

(i) For each fixed m, a
pmq
n Ña

pmq
8 as n Ò 8 for some element a

pmq
8 P E.

(ii) a
pmq
8 Ña

p8q
8 as m Ò 8, for some a

p8q
8 P E.

Then, there exists a non-decreasing subsequence pbpnqqn with bpnq Ñ 8 as n Ò 8, for which the

following convergence holds:

a
pbpnqq
n Ña

p8q
8 as n Ò 8.

Proof. Since the sequence pa
pmq
8 qm converges, we can find an increasing subsequence m1 ď m2 ď

. . . satisfying

dpa
pmkq
8 , a

pmk`1q
8 q ď 2´k for each k P N.

Moreover, since for each fixed mk the corresponding sequence pa
pmkq
n qn converges, there exists a

strictly increasing sequence pnkqk satisfying that, for each k,

dpa
pmkq

i , a
pmkq
8 q ď 2´k for all i ě nk.

Now, we set for n ă n1, bpnq :“ m1 and for k ě 1, bpnq :“ mk if nk ď n ă nk`1 and we claim

pa
bpnq
n qn is the desired sequence. Indeed, it suffices to observe that for nk ď n ă nk`1,

dpa
pbpnqq
n , a

p8q
8 q “ dpa

pmkq
n , a8q ď dpa

pmkq
n , a

pmkq
8 q ` dpa

pmkq
8 , a8q ď 2´k

`

8
ÿ

i“k

2´i.

3.4.2 Reduction argument

Recall that we are assuming that the typical step is centred. During the course of this section we

will use that the truncated versions of the counterbalanced and noise reinforced random walks

are still counterbalanced (resp. noise reinforced) random walks.

Indeed, notice that if pŠnq and pŜnq have been built from the i.i.d. sequence pXnqně1 by means

of the negative-reinforcement and positive-reinforcement algorithms described in the introduction,

splitting each Xi for i P N as

Xi “ XďK
i ` XąK

i
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where respectively,

XďK
i :“ Xi1t|Xi|ďKu ´ E

`

Xi1t|Xi|ďKu

˘

XąK
i :“ Xi1t|Xi|ąKu ´ EpXi1t|Xi|ąKuq,

yields a natural decompositions for pŠnq and pŜnq in terms of two counterbalanced (reps. noise

reinforced) random walks:

Šn “ ŠďK
n ` ŠąK

n , Ŝn “ ŜďK
n ` ŜąK

n

where now pŠďK
n q, pŠąK

n q are counterbalanced versions with typical step centred and distributed

respectively as

XďK :“ X1t|X|ďKu ´ E
`

X1t|X|ďKu

˘

(3.37)

and

XąK :“ X1t|X|ąKu ´ EpX1t|X|ąKuq, (3.38)

an analogue statement holding in the reinforced case for pŜďK
n q, pŜąK

n q. Moreover, XďK is

centred with variance σ2K and σ2K Ñ σ2 as K Õ 8 while the variance of XąK that we denote by

η2K , converges towards zero as K Ò 8. We will also write the respective truncated random walk

as

SďK
n “ XďK

1 ` ¨ ¨ ¨ ` XďK
n SąK

n “ XąK
1 ` ¨ ¨ ¨ ` XąK

n n ě 1.

Notice that pSďKq, pŜďK
n q and pŠďK

n q have now bounded steps, allowing us to apply the result

established in Section 3.3 to this triplet.

Remark 3.16. We point out that while pŜďK
n q can be simply obtained by considering the NRRW

made from the steps Xi1t|Xi|ďKu, i ě 1 and substracting nEpX1tXďKuq at the n-th step for each

n ě 1, and hence yielding a NRRW with steps given by

X̂i1t|X̂i|ďKu
´ EpX1t|X|ďKuq,

for the counterbalanced case we need to subtract the counterbalanced random walk issued from the

constants EpXi1t|Xi|ďKuq, i ě 1 , which in contrast with the reinforced case, is a process on its

own right because of the sign swap.

For each k, write as Nn,K N̂n,K and Ňn,K the corresponding martingales as defined in (3.31)

relative to SďK , ŜďK and ŠďK respectively. An application of Theorem 3.2 in the bounded case

yields for every K, that

´

Nn,ďK
t , N̂ďK,n

t , ŇďK,n
t

¯

tPR`
ùñ

ˆ

σKB, σK

ż t

0
s´pdBr

s , σK

ż t

0
spdBc

s

˙

.

However recalling the asymptotic behaviour nppatntu „ t´p as n Ñ 8 and the definition of Nn,ďK ,

we deduce that
˜

SďKptntuq
?
n

,
ŜďKptntuq

?
n

, ŇďK,n
t

¸

tPR`

ùñ

ˆ

σKB, σKt
p

ż t

0
s´pdBr

s , σK

ż t

0
spdBc

s

˙

.



Chapter 3. Joint invariance principles 92

Since as K Ò 8, the right hand side converges weekly towards pσBt, σt
p
şt
0 s

´pdBr
s , σ

şt
0 s

pdBc
sq

and the convergence in distribution is metrisable, by Lemma 3.15 there exists a slowly increasing

sequence converging towards infinity that we denote as pKpnq : n ě 1q, satisfying that, as n Ò 8,
˜

SďKpnqptntuq
?
n

,
ŜďKpnqptntuq

?
n

, Ň
ďKpnq,n
t

¸

tPR`

ùñ

ˆ

σB, σtp
ż t

0
s´pdBs, σ

ż t

0
spdBs

˙

.

On the other hand, for each n we can clearly decompose
˜

Sptntuq
?
n

,
Ŝptntuq

?
n

, Ňn

¸

“

˜

SďKpnqptntuq
?
n

,
ŜďKpnqptntuq

?
n

, Ň
ďKpnq,n
t

¸

`

˜

SąKpnqptntuq
?
n

,
ŜąKpnqptntuq

?
n

, Ň
ąKpnq,n
t

¸

,

and in order to apply Lemma 3.14 we need the following lemma:

Lemma 3.17. For any sequence pKpnq : n ě 1q increasing towards infinity the following limits

hold:

(i) lim
nÑ8

1

n
E
ˆ

sup
kďnt

ˇ

ˇ

ˇ
S

ąKpnq

k

ˇ

ˇ

ˇ

2
˙

“ 0.

(ii) lim
nÑ8

1

n
E
ˆ

sup
kďnt

ˇ

ˇ

ˇ
Ŝ

ąKpnq

k

ˇ

ˇ

ˇ

2
˙

“ 0, for p P p0, 1{2q.

(iii) lim
nÑ8

P
ˆ

sup
sďT

ˇ

ˇ

ˇ
Ň
n,ąKpnq
s

ˇ

ˇ

ˇ

2
ě ε

˙

“ 0, for every ε ą 0 and p P p0, 1q.

Proof. Recall that we denoted by η2K the variance of XąK .

(i) By Doob’s inequality and independence of the steps we inmediatly get that

1

n
E
ˆ

sup
kďnt

|S
ąKpnq

k |
2

˙

ď
4

n
ηKpnqtntu

which converges towards 0 as n Ò 8.

(ii) From Lemma 3.10 for 0 ă p ă 1{2 we deduce that for any t ą 0,

lim
nÑ8

1

n
E
ˆ

sup
kďnt

|ŜąKpnq
pkq|

2

˙

ď c1 lim
nÑ8

η2Kpnq
t “ 0, (3.39)

proving the claim.

(iii) Doob’s maximal inequality yields

P
ˆ

sup
sďT

|Ň
n,ąKpnq
s | ě ε

˙

ď ε´2E
´

xŇn,ąKpnq, Ňn,ąKpnq
yT

¯

,

and if we denote by V̂ ąpnq the sum of squared steps associated to pSąKpnqq, notice that

xŇn,ąKpnq, Ňn,ąKpnq
yT

ď
1

n1`2p

¨

˝η2Kpnq
`

tnT u
ÿ

k“2

qa2k

˜

p1 ´ pqη2Kpnq
` p

V̂
ąKpnq

k´1

k ´ 1

¸

˛

‚.
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Recalling that EpV̂
ąKpnq

k´1 q “ pk ´ 1qη2Kpnq
, this yields the bound

P
ˆ

sup
sďT

|Ň
n,Kpnq
s | ě ε

˙

ď ε´2η2Kpnq

1

n1`2p

¨

˝1 `

tnT u
ÿ

k“2

qa2k

˛

‚.

Since on the one hand we have η2Kpnq
Ñ 0 as n Ò 8 while on the other by (3.26) it holds

that

lim sup
nÒ8

n´p1`2pq

tnT u
ÿ

k“2

qa2k ă 8,

the desired convergence follows.

This concludes the proof of the lemma.

Now, recalling the definition of Ňn, we deduce from Lemma 3.14 that as n Ò 8,

ˆ

1
?
n
Stntu,

1
?
n
Ŝtntu,

1

σ
?
n

btntu

np
Štntu

˙

tPR`

ùñ

ˆ

Bt, t
p

ż t

0
s´pdBr

s ,

ż t

0
spdBc

s

˙

tPR`

and since btntu{n
p „ tp, we conclude that for any δ ą 0, the desired convergence

ˆ

1
?
n
Stntu,

1
?
n
Ŝtntu,

1

σ
?
n
Štntu

˙

tPrδ,8q

ùñ

ˆ

Bt, t
p

ż t

0
s´pdBs, t

´p

ż t

0
spdBs

˙

tPrδ,8q

,

holds away for the origin (this restriction is due to the fact that t´p is unbounded on any neigh-

bourhood of 0). In order to get the convergence on R` and finally prove the claimed convergence

in Theorem 3.2, we proceed as follows: We will only work with the third coordinate, as it is

the only one presenting the difficulty. The argument is readily adapted to the triplet. Assume

without loss of generality that σ2 “ 1, fix δ ą 0 and consider the partition of r0, δs, with points

tδ2´i : i “ 0, 1, 2, . . . u. Since the sequence pqakq is increasing we obtain,

P
˜

sup
sPr2´pi`1qδ,2´iδs

|Štnsu|
?
n

ą ε

¸

ď P
˜

sup
sPr2´pi`1qδ,2´iδs

qatnsu

qatn2´pi`1qδu

|Štnsu|
?
n

ą ε

¸

ď P
˜

sup
sPr2´pi`1qδ,2´iδs

qatnsu|Štnsu| ą ε ¨ qatn2´pi`1qδu

?
n

¸

“
1

ε2 ¨ nqa2
t2´pi`1qδnu

E
˜

sup
sď2´iδ

|qatnsuŠtnsu|
2

¸

.

Denoting as usual by pM̌nq the martingale pqanŠnqně0, notice that by (3.17), the remark that

follows, and (3.26),

EpM̌2
nq “ EpxM̌, M̌ynq ď c

n
ÿ

k“1

qa2k ď cn1`2p
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for some constant c that might change from one inequality to the other. We deduce by Doob’s

inequality

P
˜

sup
sPr2´pi`1qδ,2´iδs

|Štnsu|
?
n

ą ε

¸

ď c
`

2´iδn
˘1`2p 1

ε2 ¨ nqa2
t2´pi`1qδnu

“ c2´ip1`2pqδ1`2p n2p

qa2
t2´pi`1qδnu

which, recalling the asymptotic behaviour qan „ np, yields for some constant c that might differ

from one line to the other:

sup
n

P
˜

sup
sPr2´pi`1qδ,2´iδs

|Štnsu|
?
n

ą ε

¸

ď c2´ip1`2pqδ1`2p
¨ 22ppi`1qδ´2p

“ c ¨ 2´iδ.

From the previous estimate, we deduce the uniform bound

P
˜

sup
sPr0,δs

|Štnsu|
?
n

ą ε

¸

ď

8
ÿ

i“0

P
˜

sup
sPr2´pi`1qδ,2´iδs

|Štnsu|
?
n

ą ε

¸

ď

8
ÿ

i“0

sup
n

P
˜

sup
sPr2´pi`1qδ,2´iδs

|Štnsu|
?
n

ą ε

¸

ď K ¨ δ. (3.40)

Finally, write Xpnq “ p 1?
n
ŠtntuqtPR` . Since for any δ ą 0 we have pX

pnq

t qtěδ ñ pB̌tqtěδ as n Ò 8

and of course pB̌t`δqtPR` ñ pB̌tqtPR` as δ Ó 0, we deduce that there exists some decreasing

sequence pδpnqq Ó 0 such that
´

X
pnq

s`δpnq

¯

sPR`
ñ B̌ as n Ò 8

while by (3.40),

sup
sPr0,δpnqs

X
pnq
s Ñ 0 in probability.

This establishes that the convergence
´

1?
n
Štntu

¯

tPR`
ñ B̌ holds on R` and with this, we conclude

our proof of Theorem 3.2.

Remark 3.18. In the process of proving Theorem 3.2 in Section 3.3 and 3.4, we showed also that

if we no longer consider the noise-reinforced random walk, we can extend the convergence of the

pair to p P p0, 1q,
ˆ

1

σ
?
n
Stntu,

1

σ
?
n
Štntu

˙

tPR`

ùñ

ˆ

Bt,

ż t

0
spdBc

s

˙

tPR`

(3.41)

where as usual Bc, B are two Brownian motions with xB,Bcyt “ p1´ pqt, and that the result still

holds if p “ 1 if we assume X follows the Rademacher distribution, in which case the processes

are independent. This is precisely the content of Theorem 3.4. Finally, Theorem 3.3 also follows

by recalling that Ŝn ´ nEpXq is a centred positive step-reinforced random walk and hence falls in

our framework.
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3.5 The critical regime for the positive-reinforced case: proof of The-
orem 3.5

In this last section we turn our attention to the critical regime p “ 1{2 for the noise reinforced case

and prove the invariance principle with our martingale approach. The arguments are very similar

and rely on exploiting the martingale defined in Proposition 3.7, the MFCLT and a truncation

argument. The main difference comes from the fact that, for p “ 1{2, the asymptotic behaviour

of
řn
k“1 pa

2
k is no longer the one claimed in (3.24). Namely, as we pointed out previously,

lim
nÑ8

1

logpnq

n
ÿ

k“1

pa2k “ 1

and the different scaling that we will use makes impossible to couple the convergence with the

random walk or the counterbalanced random walk. Once again, we start with a law of large

numbers-type result:

Lemma 3.19. Suppose }X}8 ă 8. We have the almost sure convergence

lim
nÑ8

Ŝn
?
n log n

“ 0 a.s.

and fortiori we have limnÑ8 n´1Ŝn “ 0 a.s.

Proof. The proof of this statement follows along the same lines as the proof of Lemma 3.9. Since

p “ 1{2 we have now, that as n Ñ 8,

νn :“
n
ÿ

k“1

pa2k`1 „ K 1
¨ log n,

where K 1 is a positive constant. That is, νn increases slowly to infinity with a logarithmic speed.

We obtain again from Theorem 1.3.24 in [42] that

M̂2
n

log n
“ Oplog log nq a.s.

Hence, as M̂n “ panŜn, the above readily implies that

pa2n
Ŝ2
n

log n
“ Oplog log nq a.s.

Further, we deduce from (3.25) that for p “ 1{2, limnÑ8 pa2n ¨ n “ 1 and hence we deduce that

Ŝ2
n

n log n
“ Oplog log nq a.s.

which immediately implies the claim.

We now prove the invariance principle under the assumption of boundedness for X.
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Proof of Theorem 3.5 when }X}8 ă 8. The proof relies on similar ideas to the ones used in the

proof of Theorem 3.3. Recalling that,

pak „ k´p
“ k´1{2 as k Ñ 8

from the substitution k “ tntu, we deduce that

patntu „
1

nt{2
.

Then, the limit (3.12) can equivalently be shown by establishing the desired convergence towards

B “ pBtqtě0 for the following sequence of martingales:

˜

patntu
a

logpnq
Ŝtntu

¸

tPR`

ùñ pσBtqtPR` .

Once again, we denote

pN̂n
t qtPR` “

˜

patntu
a

logpnq
Ŝtntu

¸

tPR`

and deduce as before that for each n P N, the predictable quadratic variation of N̂n is given by

xN̂ pnq, N̂ pnq
yt “

1

logpnq

¨

˝σ2 ` σ2p1 ´ pq

tnt
u

ÿ

k“2

pa2k ´ p2
tnt

u
ÿ

k“2

pa2k

˜

Ŝk´1

k ´ 1

¸2

` p

tnt
u

ÿ

k“2

pa2k

˜

V̂k´1

k ´ 1

¸

˛

‚. (3.42)

By the MFCLT, in order to prove our claim it suffices to show that

lim
nÑ8

xN̂ pnq, N̂ pnq
yt “ σ2t a.s.

and that supt |∆N̂
pnq

t | Ñ 0 in probability as n Ñ 8. Since }X}8 ă 8, this last requirement

follows from very similar arguments to the ones we used in the proof of Theorem 3.3. On the

other hand, since logptntuq{ logpnq Ñ t as n Ñ 8 and by (3.25), the first nontrivial term of (3.42)

satisfies the following convergence

lim
nÑ8

1

logpnq
p1 ´ pq

tnt
u

ÿ

k“1

pa2k “ tp1 ´ pq.

By the same arguments we used in the proof of Theorem 3.3 but using the law of large numbers

for the critical regime (Lemma 3.19), we obtain that the second term in (3.42) converges to zero

while for the last term,

lim
nÑ8

1

l logpnq
p

tnt
u

ÿ

k“1

pa2k
V̂k
k

“ t ¨ pσ2 a.s.

It follows that xN̂ pnq, N̂ pnqyt Ñ tσ2 for each t as n Ñ 8, which proves the desired result under

the additional assumption that }X}8 ă 8.
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Now we establish the general case by means of the usual reduction argument. We will not be

as detailed as before, since the ideas are exactly the same. We do still assume without loss of

generality that the steps are centred.

Proof of Theorem 3.5, general case. Maintaining the notation introduced for the truncated rein-

forced random walks of Section 3.4 as well as for the respective variances ηK and σK for K ą 0,

Theorem 3.5 in the bounded step case shows for each K ą 0 the convergences in distribution as

n tends to infinity in the sense of Skorokhod,
˜

ŜďKptntuq
a

logpnqnt

¸

tPR`

ùñ pσKBptqqtPR` (3.43)

and from limKÑ8 σK “ σ, it follows readily from (3.43) and the same arguments as before that

as n tends to infinity,
˜

ŜďKpnqqptntuq
a

logpnqnt

¸

tPR`

ùñ pσBptqqtPR`

for some increasing sequence pKpnqqně0 of positive real numbers converging towards infinity. On

the other hand, from Lemma 3.10 for p “ 1{2 we deduce that

lim
nÑ8

1

nt logpnq
E
ˆ

sup
kďnt

|Ŝąbpnq
pkq|

2

˙

ď c2 lim
nÑ8

η2Kpnq
t “ 0

and from here we can proceed as we did in the previous section. With this, we conclude the proof

of Theorem 3.5.
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Chapter 4

Noise Reinforced Lévy Processes: Lévy-
Itô Decomposition and Applications

The content of this chapter is taken from the paper [84], which has been ac-

cepted for publication, with revisions pending, in the journal Electronic Journal of

Probability .

Abstract. A step reinforced random walk is a discrete time process with memory such that

at each time step, with fixed probability p P p0, 1q, it repeats a previously performed step chosen

uniformly at random while with complementary probability 1´p, it performs an independent step

with fixed law. In the continuum, the main result of Bertoin in [19] states that the random walk

constructed from the discrete-time skeleton of a Lévy process for a time partition of mesh-size

1{n converges, as n Ò 8 in the sense of finite dimensional distributions, to a process ξ̂ referred

to as a noise reinforced Lévy process. Our first main result states that a noise reinforced Lévy

processes has rcll paths and satisfies a noise reinforced Lévy Itô decomposition in terms of the

noise reinforced Poisson point process of its jumps. We introduce the joint distribution of a Lévy

process and its reinforced version pξ, ξ̂q and show that the pair, conformed by the skeleton of the

Lévy process and its step reinforced version, converge towards pξ, ξ̂q as the mesh size tend to 0.

As an application, we analyse the rate of growth of ξ̂ at the origin and identify its main features

as an infinitely divisible process.

Acknowledgements. I warmly thank Jean Bertoin for the discussions and attention provided

through the making of this work, as well as for introducing me to noise reinforced Lévy processes.
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4.1 Introduction

The Lévy-Itô decomposition is one of the main tools for the study of Lévy processes. In short,

any real Lévy process ξ has rcll sample paths and its jump process induces a Poisson random

measure – called the jump measure N of ξ – whose intensity is described by its Lévy measure Λ.

Moreover, it states that ξ can be written as the sum of tree process

ξt “ ξ
p1q

t ` ξ
p2q

t ` ξ
p3q

t , t ě 0,

of radically different nature. More precisely, the continuous part of ξ is given by ξp1q “ pat`qBt :

t ě 0q for a Brownian motion B and reals a, q, while ξp2q is a compound Poisson process with

jump-sizes greater than 1 and ξp3q is a purely discontinuous martingale with jump-sizes smaller

than 1. Moreover, the processes ξp2q, ξp3q can be reconstructed from the jump measure N . It

is well known that N is characterised by the two following properties: for any Borel A with

ΛpAq ă 8, the counting process of jumps ∆ξs P A that we denote by NA is a Poisson process

with rate ΛpAq, and for any disjoint Borel sets A1, . . . , Ak with ΛpAiq ă 8, the corresponding

Poisson processes NA1
, . . . , NAk

are independent. We refer to e.g. [17, 61, 88] for a complete

account on the theory of Lévy processes.

In this work, we shall give an analogous description for noise reinforced Lévy processes (ab-

breviated NRLPs). This family of processes has been recently introduced by Bertoin in [19]

and correspond to weak limits of step reinforced random walks of skeletons of Lévy process.



101 4.1. Introduction

In order to be more precise, let us briefly recall the connection between these discrete ob-

jects and our continuous time setting. Fix a Lévy process ξ and denote, for each fixed n, by

X
pnq

k :“ ξk{n ´ ξpk´1q{n the k-th increment of ξ for a partition of size 1{n of the real line. The

process S
pnq

k :“ X
pnq

1 ` ¨ ¨ ¨ ` X
pnq

k “ ξk{n for k ě 1 is a random walk, also called the n-skeleton

of ξ. Now, fix a real number p P p0, 1q that we call the reinforcement or memory parameter and

let Ŝ
pnq

1 :“ X
pnq

1 . Then, define recursively Ŝ
pnq

k for k ě 2 according to the following rule: for each

k ě 2, set Ŝ
pnq

k :“ Ŝ
pnq

k´1 ` X̂
pnq

k where, with probability 1´ p, the step X̂
pnq

k is the increment X
pnq

k

with law ξ1{n – and hence independent from the previously performed steps – while with proba-

bility p, X̂
pnq

k is an increment chosen uniformly at random from the previous ones X̂
pnq

1 , . . . , X̂
pnq

k .

When the former occurs, the step is called an innovation, while in the latter case it is referred to

as a reinforcement. The process pŜ
pnq

k q is called the step-reinforced version of pS
pnq

k q. It was shown

in [19] that, under appropriate assumptions on the memory parameter p, we have the following

convergence in the sense of finite dimensional distributions as the mesh-size tends to 0

pŜ
pnq

tntu
qtPr0,1s

f.d.d.
ÝÑ

`

ξ̂t
˘

tPr0,1s
, (4.1)

towards a process ξ̂ identified in [19] and called a noise reinforced Lévy process. It should be

noted that the process ξ̂ constructed in [19] is a priori not even rcll, and this will be one of our

first concerns.

We are now in position to briefly state the main results of this work. First, we shall prove the

existence of a rcll modification for ξ̂. In particular, this allow us to consider the jump process

p∆ξ̂sq; a proper understanding of its nature will be crucial for this work. In this direction, we

introduce a new family of random measures in R` ˆ R of independent interest under the name

noise reinforced Poisson point processes (abbreviated NRPPPs) and we study its basic properties.

This lead us towards our first main result, which is a version of the Lévy-Itô decomposition in

the reinforced setting. More precisely, we show that the jump measure of ξ̂ is a NRPPP and that

ξ̂ can be written as

ξ̂t “ ξ̂
p1q

t ` ξ̂
p2q

t ` ξ̂
p3q

t , t ě 0,

where now, ξ̂p1q “ pat ` qB̂t : t ě 0q for a continuous Gaussian process B̂, the process ξ̂p2q is

a reinforced compound Poisson process with jump-sizes greater than one, while ξ̂p3q is a purely

discontinuous semimartingale. The continuous Gaussian process B̂ is the so-called noise reinforced

Brownian motion, a Gaussian process introduced in [21] with law singular with respect to B, and

arising as the universal scaling limit of noise reinforced random walks when the law of the typical

step is in L2pPq – and hence plays the role of Brownian motion in the reinforced setting, see also

[16] for related results. Needless to say that if the starting Lévy process ξ is a Brownian motion,

the limit ξ̂ obtained in (4.1) is a noise reinforced Brownian motion. As in the non-reinforced case,

ξ̂p2q and ξ̂p3q can be recovered from the jump measure N̂ , but in contrast, they are not Markovian.

The terminology used for the jump measure of ξ̂ is justified by the following remarkable property:

for any Borel A with ΛpAq ă 8, the counting process of jumps ∆ξ̂s P A that we denote by N̂A is a

reinforced Poisson process and, more precisely, it has the law of the noise reinforced version of NA
(hence, the terminology N̂A is consistent). Moreover, for any disjoint Borel sets A1, . . . , Ak with

ΛpAiq ă 8, the corresponding N̂A1
, . . . , N̂Ak

are independent noise reinforced Poisson processes.

Informally, the reinforcement induces memory on the jumps of ξ̂, and these are repeated at the
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jump times of an independent counting process. When working on the unit interval, this counting

process is the so-called Yule-Simon process.

The second main result of this work consists in defining pathwise, the noise reinforced version

ξ̂ of the Lévy process ξ. We always denote such a pair by pξ, ξ̂q. This is mainly achieved by

transforming the jump measure of ξ into a NRPPP, by a procedure that can be interpreted as the

continuous time analogue of the reinforcement algorithm we described for random walks. More

precisely, the steps X
pnq

k of the n-skeleton are replaced by the jumps ∆ξs of the Lévy process;

each jump of ξ is shared with its reinforced version ξ̂ with probability 1´p, while with probability

p it is discarded and remains independent of ξ̂. We then proceed to justify our construction by

showing that the skeleton of ξ and its reinforced version pS
pnq

tn¨u
, Ŝ

pnq

tn¨u
q converge weakly towards

pξ, ξ̂q, strengthening (4.1) considerably.

Section 4.6 is devoted to applications: on the one hand, in Section 4.6.1 we study the rates of

growth at the origin of ξ̂ and prove that well know results established by Blumenthal and Getoor

in [26] for Lévy processes still hold for NRLPs. On the other hand, in Section 4.6.2 we analyse

NRLPs under the scope of infinitely divisible processes in the sense of [86]. We shall give a proper

description of ξ̂ in terms of the usual terminology of infinitely divisible processes, as well as an

application, by making use of the so-called Isomorphism theorem for infinitely divisible processes.

Let us mention that in the discrete setting, reinforcement of processes and models has been

subject of active research for a long time, see for instance the survey by Pemantle [79] as well

as e.g. [22, 15, 9, 74, 11, 6] and references therein for related work. However, reinforcement of

time-continuous stochastic processes, which is the topic of this work, remains a rather unexplored

subject.

The rest of the work is organised as follows: in Section 4.2 we recall the basic building blocs

needed for the construction of NRLPs and recall the main results that will be needed. Notably,

we give a brief overview of the features of the Yule-Simon process and present some important

examples of NRLPs. In Section 4.3 we show that a NRLP has a rcll modification. In Section 4.4

we construct NRPPPs, study their main properties of interest, and in Section 4.4.3 we prove that

the jump measure of a NRLP is a NRPPP – a result that we refer to as the ”reinforced Lévy-Itô

decomposition”. In Section 4.5 we show that the pair conformed by the n-skeleton of a Lévy

process and its reinforced version converge in distribution, as the mesh size tends to 0, towards

pξ, ξ̂q. To achieve this, first we start by proving in Section 4.5.1 that a NRLP can be reconstructed

from its jump measure – a result that we refer to as the ”reinforced Lévy Itô synthesis”. Making

use of this result in Section 4.5.2 we define the joint law pξ, ξ̂q and in Section 4.5.3 we establish

our convergence result. Finally, Section 4.6 is devoted to applications. Particular attention is

given through this work at comparing, when possible and pertinent, our results for NRLPs to the

classical ones for Lévy processes.

4.2 Preliminaries

4.2.1 Yule-Simon processes

In this section, we recall several results from [19] concerning Yule-Simon processes needed for

defining NRLPs. These results will be used frequently in this work and are re-stated for ease of



103 4.2. Preliminaries

reading.

A Yule-Simon process on the interval r0, 1s is a counting process, started from 0, with first

jump time uniformly distributed in r0, 1s, and behaving afterwards as a (deterministically) time-

changed standard Yule process. More precisely, for fixed p P p0, 1q, if U is a uniform random

variable in r0, 1s and Z a standard Yule process,

Y ptq :“ 1tUďtuZpplnptq´lnpUqq, t P r0, 1s, (4.2)

is a Yule-Simon process with parameter 1{p. Its law inDr0, 1s, the space of R-valued rcll functions

in the unit interval endowed with the Skorokhod topology, will be denoted by Q. It readily follows

from the definition that this is a time-inhomogeneaous Markov process, with time-dependent birth

rates given at time t by λ0ptq “ 1{p1´ tq and λkptq “ pk{t for k P t1, 2, . . . u. Remark as well that

we have P pY ptq ě 1q “ t. In our work, only p P p0, 1q will be used, and it always corresponds

to the reinforcement parameter. The Yule-Simon process with parameter 1{p is closely related

to the Yule-Simon distribution with parameter 1{p, i.e. the probability measure supported on

t1, 2, . . . u with probability mass function given in terms of the Beta function Bpx, yq by

p´1Bpk, 1{p ` 1q “ p´1

ż 1

0
upp1 ´ uq

k´1du, for k ě 1. (4.3)

The relation with the Yule process is simply that Y p1q is distributed Yule-Simon with parameter

1{p. In this work, we refer to p P p0, 1q as a reinforcement or memory parameter, for reasons

that will be explained shortly. In the following lemma we state for further use the conditional

self-similarity property of the Yule-Simon process, a key feature that will be used frequently.

Lemma 4.1. [19, Corollary 2.3]

Let Y be a Yule-Simon process with parameter 1{p and fix t P p0, 1s. Then, the process pY prtqqrPr0,1s

conditionally on tY ptq ě 1u has the same distribution Q as Y .

In particular, conditionally on tY ptq ě 1u, Y ptq is distributed Yule-Simon with parameter 1{p

and it follows that for every t P r0, 1s, Y ptq has finite moments only of order r ă 1{p. Moreover,

by the previous lemma and the Markov property of the standard Yule process Z, we deduce that

if Y is a Yule-Simon process with parameter 1{p with p P p0, 1q and k ě 1, we have

E rY ptqs “ p1 ´ pq
´1t and E rY ptq|Y psq “ ks “ kpt{sqp for any 0 ă s ď t ď 1, (4.4)

while if 1{p ą 2,

E rY psqY ptqs “
1

p1 ´ pqp1 ´ 2pq
s1´ptp. (4.5)

More details on these statements can be found in Section 2 of [19].

4.2.2 Noise reinforced Lévy processes

Now, we turn our attention to the main ingredients involved in the construction of NRLPs. For

the rest of the section, fix a real valued Lévy process ξ of characteristic triplet pa, q2,Λq, where Λ

is the Lévy measure, and recall that its characteristic exponent Ψpλq :“ logE
“

eiλξ1
‰

is given by

the Lévy-Khintchine formula

Ψpλq “ iaλ ´
q2

2
λ2 `

ż

R

´

eiλx ´ 1 ´ ixλ1t|x|ď1u

¯

Λpdxq. (4.6)
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The constraints on the reinforcement parameter p are given in terms of the following two indices

introduced by Blumenthal and Getoor: the Blumenthal-Getoor (upper) index βpΛq of the Lévy

measure Λ is defined as

βpΛq :“ inf
␣

r ą 0 :

ż

r0,1s

|x|
rΛpdxq ă 8

(

, (4.7)

while the Blumenthal-Getoor index β of the Lévy process ξ is defined by the relation

β :“

#

βpΛq if q2 “ 0

2 if q2 ‰ 0.
(4.8)

When ξ has no Gaussian component, we have β “ βpΛq and both notations will be used indiffer-

ently. We say that a memory parameter p P p0, 1q is admissible for the triplet pa, q2,Λq if pβ ă 1.

Now, fix p an admissible memory parameter for ξ. If pS
pnq

k q is the n-skeleton of the Lévy process

ξ, the sequence of reinforced versions with parameter p,

pŜ
pnq

tntu
qtPr0,1s, n ě 1,

converge in the sense of finite dimensional distributions, as the mesh-size tends to 0, towards

a process whose law was identified in [19] and called the noise reinforced Lévy process ξ̂ of

characteristics pa, q2,Λ, pq. In the sequel, when considering a NRLP with parameter p, it will be

implicitly assumed that p is admissible for the corresponding triplet. For instance, when working

with a memory parameter p ě 1{2 it is implicitly assumed that q “ 0. It was shown in [19,

Corollary 2.11] that the finite-dimensional distributions of ξ̂ can be expressed in terms of the

Yule-Simon process Y with parameter 1{p and the characteristic exponent Ψ as follows:

E
«

exp

#

i
k
ÿ

i“1

λiξ̂si

+ff

“ exp

#

p1 ´ pqE
«

Ψ

˜

k
ÿ

i“1

λiY psiq

¸ff+

, (4.9)

for 0 ă s1 ă ¨ ¨ ¨ ă sk ď 1. Now we turn our attention at defining NRLPs in R`. Notice that

the construction given in the unit interval in r19s can not be directly extended to the real line

since it relies on Poissonian sums of Yule-Simon processes, and these are only defined on the unit

interval.

Proposition 4.2. (NRLPs in R`)

Let pa, q2,Λq be the triplet of a Lévy process of exponent Ψ and consider an admissible memory

parameter p P p0, 1q. There exists a process ξ̂ “ pξ̂sqsPR` whose finite dimensional distributions

satisfy that, for any 0 ă s1 ă ¨ ¨ ¨ ă sk ď t,

E
«

exp

#

i
k
ÿ

i“1

λiξ̂si

+ff

“ exp

#

p1 ´ pqtE
«

Ψ

˜

k
ÿ

i“1

λiY psi{tq

¸ff+

, (4.10)

where the right-hand side does not depend on the choice of t. The process ξ̂ is called a noise

reinforced Lévy process with characteristics pa, q2,Λ, pq.

Proof. First, let us show that the right-hand side of (4.10) does not depend on t. To prove this,

pick another arbitrary T ą t and write ri “ si{t P r0, 1s. From conditioning on tYt{T ě 1u, an
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event with probability t{T , by Lemma 4.1 we get

TE
«

Ψ

˜

k
ÿ

i“1

λiY psi{T q

¸ff

“ tpT {tqE
«

Ψ

˜

k
ÿ

i“1

λiY pri ¨ pt{T qq

¸ff

“ tE
«

Ψ

˜

k
ÿ

i“1

λiY pri ¨ pt{T qq

¸

ˇ

ˇ

ˇ
Y pt{T q ě 1

ff

“ tE
«

Ψ

˜

k
ÿ

i“1

λiY psi{tq

¸ff

, (4.11)

proving our claim, and where in the second equality we used that Ψp0q “ 0. Now, let us establish

the existence of a process with finite-dimensional distributions characterised by (4.10). Remark

that by Kolmogorov’s consistency theorem, it suffices to show that for arbitrary 1 ď S ă T ,

there exists processes X̂S “ pX̂S
t qtPr0,Ss, X̂

T :“ pX̂T
t qtPr0,T s with finite dimensional distributions

characterised by the identity (4.10) for psiq in r0, Ss, t “ S and psiq in r0, T s, t “ T respectively –

and hence satisfying that pX̂T
t qtPr0,Ss

L
“ pX̂S

t qtPr0,Ss. Write ξ̂S “ pξ̂St qtPr0,1s the reinforced version

of the Lévy process pξtSqtPr0,1s, remark that the latter has characteristic exponent SΨ, and set

pX̂S
t qtPr0,Ss :“ pξ̂St{SqtPr0,Ss. From the identity (4.9), we deduce that, for any 0 ă s1 ă ¨ ¨ ¨ ă sk in

the interval r0, Ss, we have:

E
«

exp

#

i
k
ÿ

i“1

λiX̂
S

psiq

+ff

“ exp

#

p1 ´ pqSE
«

Ψ

˜

k
ÿ

i“1

λiY psi{Sq

¸ff+

. (4.12)

In particular X̂S restricted to the interval r0, 1s has the same distribution as pξ̂tqtPr0,1s by the first

part of the proof and (4.9). If we consider the restriction of pX̂T qtPr0,T s to the interval r0, Ss, we

obtain similarly and by applying (4.11) that, for any 0 ă s1 ă ¨ ¨ ¨ ă sk ď S,

E
«

exp

#

i
k
ÿ

i“1

λiX̂
T

psiq

+ff

“ exp

#

p1 ´ pqTE
«

Ψ

˜

k
ÿ

i“1

λiY psi{T q

¸ff+

“ exp

#

p1 ´ pqSE
«

Ψ

˜

k
ÿ

i“1

λiY psi{Sq

¸ff+

,

and it follows that X̂T restricted to r0, Ss has the same distribution as X̂S . Since this holds

for any 1 ď S ă T , we deduce by Kolmogorov’s consistency theorem the existence of a process

satisfying for any 0 ă s1 ă ¨ ¨ ¨ ă sk ď t, the identity (4.10). In particular, from taking the value

t “ 1, it follows that this process satisfies that its restriction to r0, 1s has the same law as ξ̂ by

(4.9).

For later use, notice from (4.10) that for any fixed t P R`, we have the following equality in

law

pξ̂stqsPr0,1s
L
“ pξ¨t̂qsPr0,1s (4.13)

where the right-hand side stands for the noise-reinforced version of the Lévy process pξstqsPr0,1s.

In particular, pξ̂stqsPr0,1s is the NRLP associated to the exponent tΨ with same reinforcement

parameter.
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4.2.3 Building blocks: noise reinforced Brownian motion and noise reinforced com-
pound Poisson process

The characteristic exponent Ψ can be naturally decomposed in tree terms,

Ψpλq “
`

iaλ ´ q
λ2

2

˘

` Φp2q
pλq ` Φp3q

pλq, (4.14)

where respectively, we write

Φp2q
pλq :“

ż

t|x|ě1u

´

eiλx ´ 1
¯

Λpdxq and Φp3q
pλq :“

ż

t|x|ă1u

´

eiλx ´ 1 ´ iλx
¯

Λpdxq.

This decomposition yields that the Lévy process ξ can be written as the sum of tree independent

Lévy process of radically different nature. Namely, we have ξt “ pat ` qBtq ` ξ
p2q

t ` ξ
p3q

t , for

t ě 0, where B is a Brownian motion, ξp2q is a compound Poisson process with exponent Φp2q

and ξp3q is the so-called compensated sum of jumps with characteristic exponent Φp3q. In the

reinforced setting, it readily follows from the identity (4.10) that an analogous decomposition

holds for NRLPs. More precisely, the NRLP ξ̂ of characteristics pa, q2,Λ, pq can be written as a

sum of three independent NRLPs,

ξ̂t
L
“ pat ` qB̂tq ` ξ̂

p2q

t ` ξ̂
p3q

t , t ě 0, (4.15)

the equality holding in law, and where we denoted respectively by B̂, ξ̂p2q, ξ̂p3q, independent rein-

forced versions of the Lévy processes B, ξp2q, ξp3q. Notice that their respective characteristics are

given by pa, q2, 0, pq, p0, 0,1p´1,1qcΛ, pq and p0, 0,1p´1,1qΛ, pq. Let us now give a brief description

of these three building blocks separately:

˝ Noise reinforced Brownian motion: Assume p ă 1{2, consider a Brownian motion B and set

ξ :“ B. In that case, we simply have Ψpλq “ ´λ2{2 and we write B̂ for the corresponding noise

reinforced Lévy process ξ̂. The process B̂ is the so-called noise reinforced Brownian motion (ab-

breviated NRBM) with reinforcement parameter p, a centred Gaussian process with covariance

given by:

E
”

B̂tB̂s

ı

“
pt _ sqppt ^ sq1´p

1 ´ 2p
. (4.16)

Indeed, recalling (4.5), observe first that for any 0 ď t, s ă T the covariance (4.16) can be written

in terms the Yule-Simon process Y with parameter 1{p as follows:

E
”

B̂tB̂s

ı

“ p1 ´ pqT ¨ E rY pt{T qY ps{T qs . (4.17)

It is now straightforward to deduce from (4.10) with Ψpλq “ ´λ2{2 that the noise reinforced

version of B corresponds to the Gaussian process with covariance (4.16). The noise reinforced

Brownian motion admits a simple representation as a Wiener integral. More precisely, the process

tp
ż t

0
s´pdBs, t ě 0, (4.18)

has the law of a noise reinforced Brownian motion with parameter p. Remark that when p “ 0,

there is no reinforcement and we recover a Brownian motion in (4.18). As was already mentioned,

noise reinforced Brownian motion plays the role of Brownian motion in the reinforced setting,
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since it is the scaling limit of noise reinforced random walks under mild assumptions on the law

of the typical step. We refer to [21, 16] for a detailed discussion.

˝ Noise reinforced compound Poisson process: If ξ is a compound Poisson process with rate c ą 0

and jumps with law PX , then its Lévy measure is just Λpdxq “ cPXpdxq, and any p P p0, 1q

is admissible. When working in r0, 1s, the noise reinforced compound Poisson process ξ̂ admits

a simple representation in terms of Poissonian sums of Yule-Simon processes. In this direction,

let Q be the law of the Yule Simon process with parameter 1{p and consider a Poisson random

measure M in R` ˆ Dr0, 1s with intensity p1 ´ pqΛ b Q. If we denote its atoms by pxi, Yiq, the

process

ξ̂t “
ÿ

i

xiYiptq, t P r0, 1s, (4.19)

has the law of the noise reinforced version of ξ with reinforcement parameter p – as can be easily

verified by Campbell’s formula and was already established in [19, Corollary 2.11]. Notice that

(4.19) is a finite variation process and its jump sizes are dictated by PXpdxq. Getting back to

(4.15), it readily follows form our discussion that the NRLP ξ̂p2q associated with the exponent

Φp2q is a reinforced compound Poisson process and its jumps-sizes are greater than one. Finally,

notice that if PX “ δ1, the Lévy process ξ is just a Poisson process with rate c and we deduce from

the last display a simple representation for the reinforced Poisson process N̂ in r0, 1s. Observe

that it is a counting process, since the atoms xi are then identically equal to 1.

˝ Noise reinforced compensated compound Poisson process: Let us now introduce properly ξ̂p3q,

viz. the noise reinforced version of the compensated martingale ξp3q. When working in r0, 1s, this

process also admits a representation in terms of random series of Yule-Simon processes. In this

direction, consider M :“
ř

i δpxi,Yiq a Poisson random measure with intensity p1 ´ pqΛ b Q and

for each a P r0, 1s, set

ξ̂
p3q

a,1ptq :“
ÿ

i

1taď|xi|ă1uxiYiptq ´ t

ż

taď|x|ă1u

xΛpdxq, t P r0, 1s. (4.20)

In the terminology of [19, Section 2], the process ξ̂
p3q

a,1 is a Yule-Simon compensated series 1, and

note that Erξ̂
p3q

a,1ptqs “ 0 for every t P r0, 1s. Moreover, the following family indexed by a P p0, 1q,

ξ̂
p3q

a,1ptq, for t P r0, 1s, (4.21)

is a collection of NRLPs with memory parameter p, Lévy measure 1taď|x|ă1uΛpdxq and the cor-

responding exponent writes:

Φ
p3q
a pλq :“

ż

taď|x|ă1u

´

eiλx ´ 1 ´ iλx
¯

Λpdxq.

Notice that for each a ą 0, the process ξ̂
p3q

a,1 is rcll and with jump-sizes in ra, 1s. Now, the process

defined at each fixed t as the pointwise and L1pPq-limit

ξ̂
p3q

t :“ lim
aÓ0

ξ̂
p3q

a,1ptq, (4.22)

1The notation used in [19] for ξ̂
p2q

t and ξ̂
p3q

t is respectively Σ1,8ptq and Σ
pcq

0,1ptq. These are respectively referred to as
Yule-Simon series and compensated Yule-Simon series.
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is a NRLP with characteristics p0, 0,1t|x|ă1uΛq. In contrast with ξp3q, the noise reinforced version

ξ̂p3q is no longer a martingale, we shall discuss this point in the next section in detail. For latter

use, we point out from [19, Section 2] that the convergence in the previous display also holds in

LrpPq, for r chosen according to

r P pβpΛq _ 1, 1{pq, if 1{p ď 2 and r “ 2, if 1{p ą 2. (4.23)

In particular, we have ξ̂
p3q

t P LrpPq and Erξ̂
p3q

t s “ 0 for every t. We refer to [19] for a complete

account on this construction and for a proof of the convergence in (4.22). The convergence in

(4.22) will be strengthen in the sequel, by showing that it holds uniformly in r0, 1s. At this point,

we have introduced the main ingredients needed for this work.

4.3 Trajectorial regularity

The purpose of this short section is to establish the following regularity theorem:

Theorem 4.3. A noise reinforced Lévy process ξ̂ has a rcll modification, that we still denote by

ξ̂. Moreover, if for ε P p0, 1q, ξ̂
p3q

0,ε denotes a NRLP with characteristics p0, 0,1t|x|ăεuΛ, pq, then

for any t ą 0 we have:

lim
εÓ0

E
„

sup
sďt

|ξ̂
p3q

0,ε psq|

ȷ

“ 0. (4.24)

Before proving this result, let us explain the role of (4.24). Working in r0, 1s and with the

construction (4.22) for ξ̂p3q, remark that for any ε P p0, 1q we can write ξ̂p3q “ ξ̂
p3q

0,ε ` ξ̂
p3q

ε,1 , where

|∆ξ̂
p3q

ε,1 ptq| ě ε for every jump-time t P r0, 1s by construction. Now, the convergence (4.24) shows

that in fact, the jumps of ξ̂ of size greater than ε are precisely the jumps of ξ̂p2q ` ξ̂
p3q

ε,1 . Hence,

when working in r0, 1s, the jumps of ξ̂p3q are precisely the jumps of the weighted Yule-Simon

processes xiYiptq – heuristically, this is the continuous-time analogue of the dynamics described

for the noise reinforced random walk. This fact will be used in Section 4.4.3. Moreover, (4.24)

allow us to improve the convergence stated in (4.22) towards ξ̂p3q. Namely, it follows that for

some subsequence panq with an Ó 0 as n Ò 8, the convergence

lim
nÑ8

pξ̂
p3q

an,1
psqqsPr0,1s “ pξ̂

p3q
s qsPr0,1s,

holds a.s. uniformly in r0, 1s. Remark that the convergence in the previous display was only

stated when working in r0, 1s since, so far, the only explicit construction of NRLPs is the one in

the unit interval we recalled from [19]. In Section 4.5.1 we shall address this point.

The rest of the section is devoted to the proof of Theorem 4.3. Recalling the building blocks

introduced in Section 4.2.3 and the identity in distribution (4.15), ξ̂p2q is a reinforced compound

Poisson process and hence has finite variation rcll trajectories, while B̂ is continuous. It is then

clear that the only difficulty consists in establishing the regularity of the process ξ̂p3q and we

rely on a remarkable martingale associated with centred NRLPs, that we now introduce. This

martingale will play a key role in this work.

Proposition 4.4. Consider a Lévy process ξ with characteristic exponent Ψ satisfying Ψ1p0q “ 0

and Lévy measure fulfilling the integrability condition
ş

t|x|ě1u
xΛpdxq ă 8. Then, the process

M “ pMtqtPR` defined as M0 “ 0 and for t ą 0, as Mt “ t´pξ̂t, is a martingale. Consequently,

M has a rcll modification.
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Proof. Recall from (4.15) that in that case, ξ̂ can be written as a sum of two independent processes

ξ̂ “ qB̂` ξ̂p3q, where B̂ is a noise reinforced Brownian motion. Recalling the representation (4.18)

for B̂, it follows that pt´pB̂tqtPR` is a continuous martingale and we assume therefore that q “ 0.

Turning our attention to ξ̂p3q, notice that Mt is in LrpPq for r chosen according to (4.23) and

that ErMts “ 0 since, as we discussed after (4.23), we have ξ̂
p3q

t P LrpPq, Erξ̂
p3q

t s “ 0. Now, it

remains to show that pMtqtPp0,1s satisfies the martingale property. In this direction it is enough

to check that for any 0 ă t0 ă ¨ ¨ ¨ ă tk ă t and λ1, . . . , λk´1 P R, we have

E
«

t´pk ξ̂
p3q

tk
exp

#

i
k´1
ÿ

i“1

λiξ̂
p3q

ti

+ff

“ E
«

t´pk´1ξ̂
p3q

tk´1
exp

#

i
k´1
ÿ

i“1

λiξ̂
p3q

ti

+ff

. (4.25)

On the one hand, under our standing assumptions, the left-hand side of (4.25) corresponds to the

derivative at λk “ 0 of (4.10) multiplied by ´it´pk and hence equals:

´itp1 ´ pq exp

$

&

%

tp1 ´ pqE

»

–Ψ

¨

˝

k´1
ÿ

j“1

λjY ptj{tq

˛

‚

fi

fl

,

.

-

¨ E rH pY psq : s ď tk´1{tqY ptk{tqs t´pk ,

for H defined as

H pY psq : s ď tk´1{tq :“ Ψ1

¨

˝

k´1
ÿ

j“1

λiY ptj{tq

˛

‚.

Remark that this is a σpY psq : s ď tk´1{tq-measurable random variable. On the other hand, the

right-hand side of (4.25) corresponds to the derivative with respect to λk´1 of (4.10) multiplied

by ´itpk´1 for λk “ 0 and similarly, we deduce that the right-hand side of (4.25) writes:

´itp1 ´ pq exp

$

&

%

tp1 ´ pqE

»

–Ψ

¨

˝

k´1
ÿ

j“1

λjY ptj{tq

˛

‚

fi

fl

,

.

-

¨ E rH pY psq : s ď tk´1{tqY ptk´1{tqs t´pk´1.

Now, it only remains to show that:

E rHpY psq : s ď tk´1{tqY ptk{tqs t´pk “ E rH pY psq : s ď tk´1{tqY ptk´1{tqs t´pk´1. (4.26)

Notice that since Ψ1p0q “ 0 and Y is increasing, H pY psq : s ď tk´1{tq vanishes if Y ptk´1{tq “ 0.

This allows us to restrict the terms inside the expectations in (4.26) to tY ptk´1{tq ě 1u and to

apply the Markov property (4.4) at time tk´1{t to get:

E rHpY prq : r ď tk´1{tqY ptk{tqs t´pk

“

8
ÿ

j“1

E
“

HpY prq : r ď tk´1{tqE rY ptk{tq|Y ptk´1{tq “ js1tY ptk´1{tq“ju

‰

t´pk

“

8
ÿ

j“1

E
“

HpY prq : r ď tk´1{tq ¨ jptk{tk´1q
p1tY ptk´1{tq“ju

‰

t´pk

“ E rHpY prq : r ď tk´1{tqY ptk´1{tqs t´pk´1, (4.27)

proving the claim.
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Let us now conclude the proof of Theorem 4.3.

Proof of Theorem 4.3. The first assertion is now a consequence of the following simple observa-

tion: denoting by M the rcll modification of the martingale M “ pt´pξ̂
p3q

t qtPR` , it is then clear

that the process Ĵ p3q :“ tpM t, for t ě 0, is a rcll modification of ξ̂p3q. Notice by intergrating by

parts that consequently, the process ξ̂p3q is a semimartingale, this will be needed in Section 4.4.3.

To prove the second claim, remark that by the observation right after (4.13), it suffices to work

on the time interval r0, 1s. Moreover, by Proposition 4.4, for each ε ą 0, the process

M pεq :“ ps´pξ̂
p3q

0,ε psqqsPp0,1s

with M
pεq
0 “ 0, is a LrpPq rcll martingale in r0, 1s, for r chosen according to (4.23). Since r ą 1,

by Doob’s inequality at time t “ 1 we have

E
„

sup
sďt

|ξ̂
p3q

0,ε psq|
r

ȷ

ď E
„

sup
sďt

ˇ

ˇs´pξ̂
p3q

0,ε psq
ˇ

ˇ

r
ȷ

ď CrE
”

|ξ̂
p3q

0,ε p1q|
r
ı

,

for some constant Cr ą 0, and it remains to show that the right-hand side converges to 0 as ε Ó 0.

However, this is a consequence of (4.22). More precisely, recalling the construction detailed in

(4.20), note that ξ̂
p3q

t ´ ξ̂
p3q

ε,1 ptq has the same distribution as ξ̂
p3q

0,ε ptq for every t P r0, 1s and ε ą 0.

Since the convergence (4.22) still holds in LrpPq, the result follows by taking the limit as ε Ó 0.

Now that we have established that a NRLP is a rcll process, in the next section we study the

structure of its jump process p∆ξ̂tq. Since it will share striking similarities with the jump process

of a Lévy process, before concluding the section we recall well known results on p∆ξtq. Namely,

if ξ is a Lévy process with Lévy measure Λ, its jump measure

µpdt, dxq “
ÿ

s

1t∆ξs‰0uδps,∆ξsqpdt, dxq, (4.28)

is a homogeneous Poisson point process (abbreviated PPP) with characteristic measure Λpdxq.

Such a PPP can be constructed by decorating the point process of jumps of a Poisson process,

and it is classic that (4.28) is determined by the following two properties:

(i) For any Borelian A with ΛpAq ă 8, the counting process of jumps ∆ξs P A occurring until

time t, defined as

NAptq “ #
␣

ps,∆ξsq P r0, ts ˆ A
(

, t ě 0,

is a Poisson process with rate ΛpAq.

(ii) If A1, . . . Ak are disjoint Borelians with ΛpAiq ă 8 for all i P t1, . . . , ku, the processes

NA1
, . . . , NAk

are independent.

In particular, from (i), it follows that pNAptq ´ ΛpAqtqtPR` is a martingale.

4.4 Reinforced Lévy-Itô decomposition

This section is devoted to the study of the jump process p∆ξ̂sqsPR` and the associated jump

measure in R` ˆ R, viz.

µ̂pdt, dxq :“
ÿ

s

1
t∆ξ̂s‰0u

δ
ps,∆ξ̂sq

pdt, dxq. (4.29)
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In this direction, we shall introduce in Definition 4.9 below a family of random measures in

R` ˆ R under the name noise reinforced Poisson point processes – abbreviated NRPPPs – that

will play the analogous role of PPPs for the jump measure of Lévy processes. Each element of

this family of measures is parametrized by a sigma finite measure Λ in R, that we refer to as its

characteristic measure, and a positive value p P p0, 1q, that we call its reinforcement parameter.

The construction of NRPPPs consists essentially in the reinforced version of the one of PPPs.

More precisely, we shall construct them by decorating the point process of jumps of a reinforced

Poisson process. The main result of this section is the reinforced version of the celebrated Lévy-Itô

decomposition:

Theorem 4.5. (Reinforced Lévy-Itô decomposition)

The jump measure µ̂ of ξ̂ is a noise reinforced Poisson point process with characteristic measure

Λpdxq and reinforcement parameter p.

The rest of the section is organised as follows: In Section 4.4.1 we restrict our study to the jump

process of reinforced Poisson processes. In Section 4.4.2, we construct NRPPPs by decorating the

jump process of reinforced Poisson processes and then study its basic properties. For instance, in

Proposition 4.12 we prove a characterisation in the same vein as the one holding for PPPs, recalled

at the end of Section 4.3. Finally, in Section 4.4.3 we prove Theorem 4.5 and in Proposition 4.15

we identify the predictable compensator of µ̂.

4.4.1 The jumps of noise reinforced Poisson processes

Let us start by introducing the basic building block of this section.

˝ Noise reinforced Poisson process: When ξ is a Poisson process N with rate c, any reinforcement

parameter p P p0, 1q is admissible and recall from the discussion following (4.19) that N̂ is a

counting process. Moreover, the corresponding noise reinforced Poisson process (abbreviated

NRPP) with rate p has finite dimensional distributions characterised, for any 0 ă s1 ă ¨ ¨ ¨ ă

sk ď t and λj P R, by the identity

E
«

exp

#

i
k
ÿ

i“1

λiN̂si

+ff

“ exp

#

p1 ´ pqctE
«˜

exp

"

i
k
ÿ

i“1

λiY psi{tq

*

´ 1

¸ff+

. (4.30)

A Poisson process with rate c has associated to it the random measure dNs, also called its point

process of jumps. This is a Poisson random measure in R` with intensity cdt and it has a natural

reinforced counterpart: namely, the random measure dN̂s, that we shall now study in detail.

To do so, we start by introducing some standard notation for point processes. We shall identify

discrete random sets D “ tt1, t2, . . . u Ă R with counting measures
ř

tPD δt and for f : R ÞÑ R,

we use the notation xD, fy for
ř

tPD fptq. The collection of counting measures in R is denoted

by Mc. We will make use of the following two basic transformations: for x P R, we denote by

TxD the translated point process tt ` x : t P Du and for f : R ÞÑ R, we write D ˝ f´1 the

push-forwarded point process tfptq : t P Du.

Now, consider an increasing sequence of random times 0 “ T0 ă T1 ă T2 ă ..., such that the

increments pTn ´ Tn´1 : n ě 1q are independent and for any n ě 1, Tn ´ Tn´1 is exponentially

distributed with parameter pn. Write D :“ t0, T1, T2, ...u the point process associated to this

family and we denote its law in Mc by Dpdµq. From these ingredients, we define a decorated
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measure as follows: first, consider E a Poisson point process with intensity cp1´ pqetdt in R and,

for each atom u P E , let Du be an independent copy of D. Then, we set

Lpdsq :“
ÿ

uPE

ÿ

tPDu

δu`t “
ÿ

uPE

TuDu. (4.31)

Remark that if pZtq is a standard Yule process started from 1, D has the same law as the point

process induced by the jump-times of pZtpq, with a Dirac mass at 0. The next proposition shows

that the law of the point process of jumps of a noise reinforced Poisson process with rate c is

precisely L ˝ exp´1, the pushforward of L by the exponential function.

Proposition 4.6. The following properties hold:

(i) Let N̂ be a noise-reinforced Poisson process with rate c and write P̂ :“ dN̂s the point process

of its jump-times in R`. Then, we have the equality in distribution P̂
L
“ L ˝ exp´1. We

will still refer to P̂ as a reinforced Poisson process with rate c and reinforcement parameter

p.

(ii) If Y is a Yule-Simon process with parameter 1{p, for any f : R` ÞÑ R` we have

´ logE
„

exp

"

´ xP̂,1p0,tsfy

*ȷ

“ tc ¨ p1 ´ pqE
”

1 ´ e´
ş1

0
fpstqdY psq

ı

. (4.32)

In particular, from (4.31) and (i) we deduce the following identity in distribution: if P is a

Poisson process in R` with intensity cp1 ´ pqdt, we have

P̂ “
ÿ

sPR`

1
ts:∆N̂s“1u

δs
L
“

ÿ

uPP

ÿ

tPDu

δuet . (4.33)

Roughly speaking, the jumps of N̂ consist in Poissonian jumps u P P which – in analogy with

the discrete setting – we refer to as innovations, and each u has attached to it a family tuet : t P

Du, t ‰ 0u which should be interpreted as repetitions of the original u through time.

Figure 4.1: Sketch of the jumps of a noise reinforced Poisson process. We marked by x the
jumps corresponding to innovations, while each linked o is a repetition of the former.

Notice that the time at which u occurs affects the rate of the subsequent repetitions, slowing

the rate down as u grows. This is closely related to what happens to the rate at which a step is

repeated in a step reinforced random walk, depending on its first time of appearance. For later

use, remark that for fixed u P R`, the atoms of
ř

tPD δuet are distributed as the jump times of

the counting process

1tuďsuZpplnpsq´lnpuqq , s ě 0. (4.34)
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Proof. To establish the identity in distribution stated in (i), we compute the respective Laplace

functional of both random measures. Starting with P̂, fix t ě 0 and recall from the identity in

distribution (4.13) that pN̂tsqsPr0,1s has the same law as a noise reinforced Poisson process with

same reinforcement parameter p and rate tc, say pN̂
ptq
s qsPr0,1s. This NRLP is defined in r0, 1s and

hence admits a simple representation in terms of Poisson random measures: by (4.19), if
ř

i δYi
is

a Poisson random measure in Dr0, 1s with intensity tcp1 ´ pqQ, the process p
ř

i Yipsq : s P r0, 1sq

has the same distribution as pN̂
ptq
s qsPr0,1s. In particular, we have

ż t

0
fpsqdN̂s “

ż 1

0
fpstqdN̂st

L
“

ÿ

i

ż 1

0
fpstqdYipsq.

Putting everything together, we deduce (4.32) by making use of the Laplace formula for integrals

with respect to Poisson random measures – we invite the reader to compare (4.32) with the

identity (4.10) for the finite-dimensional distributions of NRLPs – and it remains to show that

the Laplace functional of L ˝ exp´1 coincide with this expression.

In this direction, recall the observation made in (4.34) and denote by Z the law of the standard

Yule process Z. It follows that the law of xL ˝ exp´1, 1p0,tsfy can be expressed in terms of the

Poisson random measure M :“
ř

i δpui,Zpiqq in R` ˆ Dr0, 1s, with intensity cp1 ´ pqdt b Z, by

considering the functional

ÿ

i

ż

p0,ts
fpsq d

´

1tuiďsuZ
piq
pplnpsq´lnpuiqq

¯

,

where the integrals in the previous expression are respectively with respect to the Stieltjes mea-

sure associated to the counting process s ÞÑ 1tuiďsuZ
piq
pplnpsq´lnpuiqq

. It now follows also by the

exponential formula that

´ logE
”

e´xL˝exp´1,1t¨ďtufy
ı

“ p1 ´ pqc

ż

R
duE

„

1 ´ exp

"

´

ż t

0
fpsqd

`

1tuďsuZpplnpsq´lnpuqq

˘

*ȷ

“ p1 ´ pqc

ż t

0
duE

„

1 ´ exp

"

´

ż t

0
fpsqd

`

1tuďsuZpplnpsq´lnpuqq

˘

*ȷ

“ tp1 ´ pqcZ‚

ˆ

1 ´ exp

"
ż 1

0
fpstqd

`

1tuďstuZpplnpstq´lnpuqq

˘

*

ˇ

ˇu ď t

˙

(4.35)

where we denoted in the last line by Z‚
p ¨ |u ď tq the integral in R` ˆ Dr0,8q with respect to

the probability measure

Z‚
p ¨ |u ď tq :“

1tuďtu

t
duZpdZq.

Now, we deduce by Lemma 4.47 - (ii) in the Appendix that (4.35) is precisely (4.32).

Finally, for later use we state the following equivalent expression for the Laplace functional

associated to the random measure L ˝ exp´1.

Lemma 4.7. For any measurable f : R` ÞÑ R`, we have

´ logE
„

exp

"

´ xL ˝ exp´1, fy

*ȷ

“ p1 ´ pqc

ż 8

0
du

ż

Mc

1 ´ e´xTlogpuqµ,f˝ expyDpdµq. (4.36)
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Proof. The proof follows from the equality xL ˝ exp´1, fy “ xL, f ˝ expy and the identity:

´ logE rexp t´xL, hyus “ p1 ´ pqc

ż 8

0
du

ż

Mc

1 ´ e´xTlogpuqµ,hyDpdµq,

holding for any measurable h : R` ÞÑ R`. The proof of the later is just a straightforward

consequence of (4.31) and the exponential formula for Poisson random measures.

Remark 4.8. Notice from (4.33) that the reinforced Poisson process with rate c can be inter-

preted as a Yule-Simon process with immigration: this is, a process modelling the evolution of a

population where new independent immigrants arrive according to a Poisson point process with

intensity p1 ´ pqc ¨ dt and reproduce according to a time changed Yule process, independent of the

rest.

4.4.2 Construction of noise reinforced Poisson point processes by decoration

This section is devoted to the construction of noise reinforced Poisson point processes and to

establishing their first properties. From here, we fix p P p0, 1q.

‚ Step 1: Suppose first that 0 ă ΛpRq ă 8. With the same notation of Section 4.4.1, denote by

E a Poisson random measure in R with intensity ΛpRqp1´ pqetdt and consider the Poisson point

process ΣuPE δpu,xuq in R ˆ R with intensity p1 ´ pqetdt b Λpdxq. Now, for each u P E , consider

an independent copy Du of D and set

Lxpds, dxq :“
ÿ

uPE

ÿ

tPDu

δpu`t,xuq. (4.37)

This is just the point process L from (4.31) with c :“ ΛpRq, marked by a collection of i.i.d.

random variables with law Λpdxq{ΛpRq. Formula (4.37) defines a random measure in RˆR and

if we consider its push forward by pt, xq ÞÑ pexpptq, xq, that we denote as N̂ :“ Lx ˝ pexp, Idq´1,

we obtain the measure in R` ˆ R given by

N̂ pds, dxq :“
ÿ

uPP

ÿ

tPDu

δpuet,xuq, (4.38)

where P :“ E ˝ exp´1 is a Poisson point process in R` with intensity ΛpRqp1 ´ pqdt. We refer

to the measure in the previous display as a NRPPP with (finite) characteristic measure Λ and

reinforcement parameter p.

‚ Step 2: If we no longer assume ΛpRq ă 8, we proceed by superposition. More precisely,

let pAjqjPI be a disjoint partition of Rzt0u such that ΛpAjq ă 8. Consider a collection of

independent NRPPPs pN̂jpds, dxq : j P Iq with respective characteristic measures pΛp ¨ X Ajq :

j P Iq constructed as in (4.38), respectively in terms of:

- independent Poisson random measures
ř

uPPj
δpu,xuq with intensities p1 ´ pqdt b Λp ¨ X Ajq.

- independent collections pDuquPPj
of i.i.d. copies of D.

Finally, set P :“
ř

j Pj . Now we are in position to introduce NRPPPs with sigma-finite

characteristic measures:
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Definition 4.9. (Noise Reinforced Poisson Point Process - NRPPP)

The random measure N̂ pds, dxq :“
ř

jPI N̂jpds, dxq is called a reinforced Poisson point process

with reinforcement (or memory) parameter p and characteristic measure Λ. Moreover, N̂ writes

N̂ pds, dxq “
ÿ

uPP

ÿ

tPDu

δpuet,xuq. (4.39)

From the identity in the previous display and recalling that the first element of D is just

0, the measure N̂ naturally decomposes as N̂ “ N 1 ` N 2, where N 1 is a PPP with intensity

p1 ´ pqdt b Λ. Moreover, the following properties readily follow from our construction:

Lemma 4.10. Let N̂ be a NRPPP with characteristic measure Λ and reinforcement parameter

p.

(i) If A P BpRq, the restriction 1ApxqN̂ pds, dxq is a NRPPP with characteristic measure 1AΛ

and parameter p.

(ii) If A1, A2 P BpRq are disjoints, then 1A1
pxqN̂ pds, dxq, 1A2

pxqN̂ pds, dxq are independent.

(iii) If N̂1, N̂2 are independent NRPPPs with respective characteristic measures Λ1, Λ2 and same

reinforcement parameter p, then N̂1 ` N̂2 is a NRPPP with characteristic measure Λ1 ` Λ2

and parameter p.

The following lemma shows that the intensity measure of a NRPPP with characteristic measure

Λ and parameter p, coincides with the one of a PPP with characteristic measure Λ.

Lemma 4.11. Let N̂ be a NRPPP with characteristic measure Λ and reinforcement parameter

p. For any measurable f : R` ˆ R ÞÑ R`, we have Erxf, N̂ ys “
ş8

0 ds
ş

R Λpdxqfps, xq.

Proof. Suppose first that ΛpRq ă 8 and recall from (4.34) that for fixed u P R`, the atoms of

the measure
ř

tPD δuet are precisely the jumps of the time-changed Yule process (4.34). Hence, if
ř

uPP δpu,xuq is a Poisson random measure with intensity p1 ´ pqdt b Λpdxq and pZpuqquPP is an

independent collection with law Z, it is then clear from our construction in the finite case (4.38)

that we can write

E
”

N̂ p0, T s ˆ A
ı

“ E
«

ÿ

uPP

1tuďT uZ
puq

tpplnpT q´lnpuqqu
1txuPAu

ff

,

where the random measure
ř

uPP δpu,xu,Zpuqq is Poisson with intensity p1 ´ pqdt b Λ b Z. Conse-

quently, recalling that ErZts “ et, by Campbell’s formula we obtain that

E
”

N̂ p0, T s ˆ A
ı

“ T ¨ ΛpAq,

and we deduce that the intensity measure of N̂ is given by dt b Λ. When ΛpRq “ 8, we can

proceed by superposition.

We now identify the law of N̂ by computing its exponential functionals.

Proposition 4.12. Let N̂ be a NRPPP with characteristic measure Λ and reinforcement param-

eter p.
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(i) For every measurable f : R` ˆ R ÞÑ R` and t ě 0 we have

E
«

exp

"

´

ż

p0,tsˆR
fps, xqN̂ pds, dxq

*

ff

(4.40)

“ exp

"

´ tp1 ´ pq

ż

R
ΛpdxqE

„

1 ´ exp

ˆ

´

ż 1

0
fpst, xqdY psq

˙ȷ*

.

(ii) If we no longer assume that f is non-negative, under the condition
şt
0 ds

ş

R Λpdxq|fps, xq| ă

8 we have:

E
«

exp

"

i

ż

p0,tsˆR
fps, xqN̂ pds, dxq

*

ff

(4.41)

“ exp

"

tp1 ´ pq

ż

R
ΛpdxqE

„

exp

ˆ

i

ż 1

0
fpst, xqdY psq

˙

´ 1

ȷ*

.

Proof. (i) We start by considering the finite case ΛpRq ă 8 and we make use of the notations

introduced in (4.37); for instance, recall that xN̂ , fy “ xLx, f ˝ pexp, Idqy. We start showing the

result for f of the form fps, xq “ hpsqgpxq, for non-negatives h : R` ÞÑ R` and g : R ÞÑ R`, in

which case we can write

xLx, ph ˝ expqgy “
ÿ

uPE

ÿ

tPDu

h ˝ exppu ` tqgpxuq “
ÿ

uPE

gpxuqxTuDu, h ˝ expy. (4.42)

Now, we deduce from the formula for the Laplace transform of Poisson integrals and a change of

variable that

´ logE
”

e´xLx,ph˝expqgy
ı

“ p1 ´ pq

ż

R
Λpdxq

ż

R`

du

ż

Mc

1 ´ e´gpxqxTlogpuqµ,h˝expyDpdµq.

If we now replace h by h1t¨ďtu, making use of the equivalent identities (4.36) and (4.32), we obtain

that the previous display writes:

t ¨ p1 ´ pq

ż

R
ΛpdxqE

”

1 ´ e´gpxq
ş1

0
hpstqdY psq

ı

,

proving the claim. Now, still under the hypothesis ΛpR`q ă 8, fix arbitrary αi,j P R`, consider

0 “ t1 ă ¨ ¨ ¨ ă tk`1 ă t as well as disjoint subsets A1, . . . , An of R`. Further, suppose that f is

of the form

fps, xq :“
n
ÿ

j“1

k
ÿ

i“1

αi,j1pti,ti`1spsq1Aj
pxq and write gjps, xq :“

k
ÿ

i“1

αi,j1pti,ti`1spsq1Aj
pxq.

(4.43)

Recall from Lemma 4.10 that the restrictions 1A1
N̂ , . . . ,1An

N̂ are independent NRPPPs with

respective characteristic measures Λp¨ XAiq. By independence and applying the previous case to
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each gj , we deduce that

E
„

exp

"

´ xN̂ ,1t¨ďtufy

*ȷ

“

n
ź

j“1

E
„

exp

"

´ xN̂ ,1t¨ďtugjy

*ȷ

“

n
ź

j“1

exp

"

tp1 ´ pqΛpAjqE
«

1 ´ exp

"

´

ż 1

0

k
ÿ

i“1

αi,j1ptiăstďti`1spsqdY psq

*

ff

*

“ exp

"

tp1 ´ pq

ż

R
ΛpdxqE

„

1 ´ exp

"

´

ż 1

0
fpst, xqdY psq

*ȷ*

,

and once again we recover (4.40). Finally, if f is non-negative and bounded with support in

r0, ts ˆ R, it can be approximated by a bounded sequence of functions pfnq of the form (4.43),

the convergence holding dtΛpdxq a.e. For each n, we have

E
„

exp

"

´ xN̂ , fny

*ȷ

“ exp

"

tp1 ´ pq

ż

R
ΛpdxqE

„

1 ´ exp

"

´

ż 1

0
fnpst, xqdY psq

*ȷ*

, (4.44)

and by Lipschitz-continuity, it follows that

E
”

| exp
␣

´ xN̂ , fy
(

´ exp
␣

´ xN̂ , fny
(

|

ı

ď E
«

ż

r0,tsˆR
|fps, xq ´ fnps, xq|N̂ pds, dxq

ff

“

ż t

0
ds

ż

R
Λpdxq|fps, xq ´ fnps, xq| Ñ 0 as n Ò 8.

In the last equality we used Lemma 4.11. From the same arguments we also obtain that
ż

ΛpdxqE
”

|e´
ş1

0
fpst,xqdY psq

´ e´
ş1

0
fnpst,xqdY psq

|

ı

ď

ż

ΛpdxqE
„
ż 1

0
|fpst, xq ´ fnpst, xq|dY psq

ȷ

“ p1 ´ pq
´1

ż 1

0
ds

ż

R
Λpdxq|fpst, xq ´ fnpst, xq|

which converges to 0 as n Ò 8. Now, we deduce from taking the limit as n Ò 8 in (4.44) that the

identity (4.40) also holds for f .

If we suppose that ΛpRq “ 8, the proof follows by superposition. Namely, with the same

notation used for constructing (4.39), the random measures pN̂jqjPI are independent NRPPPs

with respective finite characteristic measures Λp ¨ X Ajq and by definition we have N̂ “
ř

j N̂j .

From the formula for the Laplace transform we just proved in the finite case and independence

it follows that

E
”

e´xN̂ ,f1t¨ďtuy
ı

“
ź

jPI
E
”

e´xN̂j ,f1t¨ďtuy
ı

“
ź

jPI
exp

"

´ t ¨ p1 ´ pq

ż

Aj

ΛpdxqE
”´

1 ´ e´
ş1

0
fpst,xqdY psq

¯ı

*

,

proving (i). Now (ii) follows from similar arguments, by making use of the formula for the

characteristic function for Poissonian integrals and the inequality |eib ´ eia| ď |a´ b| for a, b P R,

we omit the details.
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The following result is the reinforced analogue of the well known characterisation result for

Poisson point processes. The arguments we use are similar to the ones in the non-reinforced case.

Proposition 4.13. Let N̂ be a point process in R` ˆ R and for any Borelian A Ă R, set

N̂Aptq :“ N̂ pr0, ts ˆ Aq, t ě 0.

Then, N̂ is a noise reinforced Poisson point process with characteristic measure Λ and parameter

p if and only if the two following conditions are satisfied:

(i) For any Borelian A with ΛpAq ă 8, the process N̂A is a noise reinforced Poisson process

with rate ΛpAq and reinforcement parameter p.

(ii) If A1, . . . Ak are disjoint Borelians with ΛpAiq ă 8 for all i P t1, . . . , ku, the processes

N̂A1
, . . . , N̂Ak

are independent.

Proof. First, let us prove that NRPPP do satisfy (i) and (ii). Remark that (ii) is just a consequence

of Lemma 4.10 - (ii) and we focus on (i). Fix A as in (i) as well as times 0 ă t1 ă ¨ ¨ ¨ ă tk ď t,

and we proceed by computing the characteristic function of the finite dimensional distributions

of N̂A. This can now be done by considering the function fps, xq :“
řk
i“1 λi1tsďtiu1Apxq and

applying the exponential formula (4.41), yielding

E
«

exp

#

i
k
ÿ

i“1

λiN̂Aptiq

+ff

“ exp

"

tp1 ´ pq

ż

R
ΛpdxqE

«

exp

˜

i
k
ÿ

i“1

ż 1

0
λi1tstďtiu1ApxqdY psq

¸

´ 1

ff

*

“ exp

#

tp1 ´ pqΛpAqE
«˜

exp

"

i
k
ÿ

i“1

λiY pti{tq

*

´ 1

¸ff+

.

Recalling the identity (4.30), we deduce that N̂A is a noise reinforced Poisson process with rate

ΛpAq and reinforcement p.

Now, we argue that if N̂ is a random measure satisfying (i) and (ii), then it is a NRPPP. We

will establish this claim by showing that N̂ satisfies the exponential formula (4.41). First, observe

that (i) implies that ErN̂Aptqs “ tΛpAq, for example by making use of Lemma 4.11 and the fact

that if M̂ is a NRPPP with characteristic measure Λ and parameter p, then pM̂pr0, tsˆAq : t ě 0q

is a reinforced Poisson process with rate ΛpAq and parameter p. We deduce by a monotone class

argument that N̂ satisfies, for any measurable f : R` ˆ R ÞÑ R`, the identity:

E
«

ż

r0,tsˆR
fps, xqN̂ pds, dxq

ff

“

ż t

0
ds

ż

Λpdxqfps, xq. (4.45)

Still for A as in (i) and for an arbitrary collection of times 0 “ t1 ă t2 ă ¨ ¨ ¨ ă tk`1 ă t, we set

gps, xq :“
k
ÿ

i“1

αi1pti,ti`1spsq1Apxq. (4.46)
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Since by hypothesis pN̂AptqqtPR` is a NRPP with rate ΛpAq, by the formula (4.30) for the charac-

teristic function of the finite dimensional distributions of reinforced Poisson processes, we obtain

that

E
„

exp

"

ixN̂ ,1t¨ďtugy

*ȷ

“ E
«

exp

"

i
k
ÿ

i“1

αipNApti`1q ´ NAptiqq

*

ff

“ exp

"

tp1 ´ pqΛpAqE
«

exp

˜

i
k
ÿ

i“1

αipY pti`1{tq ´ Y pti{tqq

¸

´ 1

ff

*

“ exp

"

tp1 ´ pq

ż

R
ΛpdxqE

«

exp

˜

i

ż 1

0

k
ÿ

i“1

αi1ttiăstďti`1u1ApxqdY psq

¸

´ 1

ff

*

.

Remark that this is precisely the identity (ii) of Proposition 4.12 for our choice of g. Making

use of the independence hypothesis of N̂A1
, . . . N̂Ak

for disjoints A1, . . . , Ak with ΛpAiq ă 8, we

can also show that the identity holds for f as in (4.43) for such collection of sets. Now, if f is

non-negative, bounded and supported on r0, ts ˆA with ΛpAq ă 8, making use of (4.45), we can

proceed as in (4.44) for the proof of Proposition 4.12, approximating f by a bounded sequence of

the form (4.43), and show that the exponential formula (4.41) still holds. The general case follows

by sigma finiteness of Λ and we deduce that N̂ is a NRPPP with the desired parameters.

4.4.3 Proof of Theorem 4.5 and compensator of the jump measure

Let us now establish Theorem 4.5. Remark that paired with Proposition 4.13, it entails that

the role of the counting process of jumps ∆ξ̂s P A for fixed A P BpRq is played precisely by

noise-reinforced Poisson processes, in analogy with the non-reinforced setting.

Proof of Theorem 4.5. The result will follow as soon as we establish (i) and (ii) of Proposition

4.13 for

N̂Aptq :“ #
␣

ps,∆ξ̂sq P r0, ts ˆ A
(

, t ě 0, (4.47)

where A is an arbitrary Borelian satisfying ΛpAq ă 8. By the identity in distribution (4.13),

we can restrict our arguments to the unit interval and hence we can make use of the explicit

construction of NRLPs in r0, 1s that we recalled in Section 4.2.3, in terms of Yule-Simon series.

Denote by M :“
ř

i δpxi,Yiq the Poisson random measure with intensity p1´pqΛbQ and recall

the discussion following Theorem 4.3. If pxi, Yiq is an atom of M, then at time Ui “ inftt ě

0 : Yiptq “ 1u, the process ξ̂ performs the jump xi for the first time, i.e. ∆ξ̂Ui
“ xi and this

precise jump xi is repeated in the interval r0, 1s at each jump time of Yi. It follows that for any

f : R ÞÑ R` we have:
ÿ

sďt

fp∆ξ̂sq “
ÿ

i

fpxiqYiptq, (4.48)

and in particular, we get:

N̂Aptq “
ÿ

i

1txiPAuYiptq.

Hence, by the independence property of Poisson random measures, the processes N̂A1
, . . . , N̂An

are independent as soon as Ai X Aj “ H for all i ‰ j. Now, if we fix λ1, . . . , λk P R, 0 ď t1 ă
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¨ ¨ ¨ ă tk ď 1, we deduce from the formula for the characteristic function for Poisson integrals the

equality:

E

»

–exp

"

i
k
ÿ

j“1

λjN̂Aptjq

*

fi

fl “ exp

"

p1 ´ pqΛpAqE

»

–exp

"

i
k
ÿ

j“1

λjY ptjq

*

´ 1

fi

fl

*

.

Comparing with p4.30q, we get that the right-hand side in the previous display is precisely the

characteristic function of the finite dimensional distributions at times t1, . . . , tk of a reinforced

Poisson process with rate ΛpAq and parameter p.

Recalling the explicit construction of NRPPPs from Definition 4.9, we stress that Theorem 4.5

formalises the idea that the jumps of NRLPs are jumps that are repeated through time, similarly

to the dynamics of noise reinforced random walks – we refer to the beginning of Section 4.5.2

for a brief introduction to the later. Our terminology and notation for the reinforced measure

µ̂ can now be justified by the following: if µ is the jump measure of ξ, the counting process

pµpr0, tsˆAq : t ě 0q is a Poisson process with rate ΛpAq while pµ̂pr0, tsˆAq : t ě 0q is a reinforced

Poisson process with rate ΛpAq. Said otherwise, the following identity holds in distribution:

µ̂pr0, ¨ s ˆ Aq
L
“ µpr0, ¨ s ˆ Aq̂. (4.49)

Now that the key result of the section has been established, we continue our study of the jump

process of NRLPs. In this direction, we start by briefly recalling notions of semi-martingale theory

that will be needed. Let X be a semimartingale defined on a probability space pΩ,F , pFtq,Pq.

Its jump measure µX is an integer valued random measure on pR` ˆ R,BpR`q b BpRqq, in the

sense of [54, Chapter II-1.13]. Denote the predictable sigma-field on Ω ˆ R` by Pr. If H is a

PrbBpR`q-measurable function, we simply write H ˚µX for the process defined at each t P R`

as

pH ˚ µXqtpωq :“

ż

p0,tsˆR
µXpω; ds, dxqHspω;xq, if

ż

p0,tsˆR
µXpω; ds, dxq|Hspω;xq| ă 8,

(4.50)

and 8 otherwise. Both notations for the integral will be used indifferently. Further, we denote

by A ` the class of increasing, adapted rcll finite-variation processes pAtq, with A0 “ 0 such

that E rA8s ă 8, and by A `
loc its localisation class. The jump measure µX posses a predictable

compensator, this is, a random measure µ
p
X on pR` ˆ R,BpR`q b BpRqq unique up to a P-null

set, characterised by being the unique predictable random measure (in the sense of [54, Chapter

II-1.6]) satisfying that for any non-negative H P Pr b BpRq, the equality

E rpH ˚ µXq8s “ E
“

pH ˚ µ
p
Xq8

‰

holds. Equivalently, for anyH P PrbBpRq such that |H|˚µX P A `
loc, the process |H|˚µ

p
X belongs

to A `
loc and H ˚ µ

p
X is the predictable compensator of H ˚ µX . Said otherwise, H ˚ µX ´ H ˚ µ

p
X

is a local martingale.

Recall that by Proposition 4.4, the process ξ̂ is a semimartingale. Hence, we can consider µ̂p,

the predictable compensator of its jump measure µ̂, and our purpose is to identify explicitly µ̂p.

In contrast, it might be worth mentioning that if ξ is a Lévy process with Lévy measure Λ, the

compensator of its jump measure µ is just the deterministic measure µp “ dt b Λpdxq. The first

step consists in observing the following:
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Lemma 4.14. Let A P BpRq be a Borel set that doesn’t intersect some open neighbourhood of the

origin. If we denote by pFA
t q the natural filtration of N̂A, then the process MA “ pMAptqqtPR`

defined as MAp0q “ 0 and

MAptq “ t´p
´

N̂Aptq ´ tΛpAq

¯

, t ě 0,

is a finite variation pFA
t q-martingale.

Remark that this is just a special case of Proposition 4.4 for a Lévy measure of the form

ΛpAqδ1 with q “ 0. Now we can state:

Proposition 4.15. (Compensation formula)

Denote by pFtq the natural filtration of ξ̂ and by µ̂ its jump measure. The predictable compensator

µ̂p of µ̂ is given by

µ̂ppω; dt, dxq “ p1 ´ pqdt b Λpdxq ` p
dt

t
Etpω; dxq, (4.51)

where Etpdxq “
ř

săt δ∆ξ̂spdxq is the empirical measure of jumps that occurred strictly before time

t.

Consequently, for any predictable process H P Pr b BpRq such that |H| ˚ µ̂ P A `
loc, we have

|H| ˚ µ̂p P A `
loc and the following process is a local martingale:

Mt “
ÿ

sďt

Hsp¨ ,∆ξ̂sq ´ p1 ´ pq

ż t

0
ds

ż

R
ΛpdxqHsp¨ , xq ´

ż t

0

ÿ

răs

Hsp¨ ,∆ξ̂rq
p

s
ds, t ě 0. (4.52)

The first compensating term appearing in (4.52) is compensating innovations, i.e. atoms appearing

for the first time, while the second one should be interpreted as the compensator of the memory

part of µ̂. Notice that Proposition 4.15 holds if p “ 0. Indeed, in that case ξ̂ is a Lévy process

and its jump process µ is the Poisson point process (4.28). The compensator (4.51) is just

the deterministic compensator dt b Λpdxq for the Poisson point processes with characteristic

measure Λ and in (4.52) we recover the celebrated compensation formula, see e.g. [17, Chapter

1]. Remark that since the intensity of both µ and µ̂ is dt b Λpdxq, we have, for both X a Lévy

process and its associated NRLP, the equality E
“
ř

sďt fps,∆Xsq
‰

“
şt
0 ds

ş

R Λpdxqfps, xq for any

f : R ˆ R ÞÑ R`. When X :“ ξ, by the compensation formula, this identity holds also if we

replace f by a non-negative predictable process H P Pr b BpRq, viz.

E
«

ÿ

sďt

Hsp¨,∆ξsq

ff

“ E
„
ż t

0
ds

ż

R
ΛpdxqHsp¨, xq

ȷ

. (4.53)

However, we point out that if we replace in (4.53) the Lévy process by its reinforced version

ξ̂, the identity no longer holds. Indeed, if such formula was satisfied, the exact same proof for

the exponential formula of PPPs of XII-1.12 in [81] would hold in our reinforced setting, and

since random measures are characterised by their Laplace functional, this would lead us to the

conclusion that the law of µ̂ coincides with the law of µ.

Proof. (i) In order to establish (4.51), by (i) of Theorem II-1.8 of [54], it suffices to show that for

any nonnegative predictable process H P Pr b BpRq,

E rpH ˚ µ̂q8s “ E rpH ˚ µ̂pq8s , (4.54)
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and the first step consists in showing the result for deterministic Hspω, xq “ 1Bpxq for B P BpRq.

Maintaining the notation introduced in Lemma 4.5 for the process N̂B, consider B an arbitrary

interval not containing a neighbourhood of the origin as well as the associated martingale,

MBptq “ t´pN̂
pcq
B ptq “ t´p

´

N̂Bptq ´ tΛpBq

¯

.

Integrating by parts, we get

tpMBptq “

ż t

0
spdMBpsq `

ż t

0
pMBpsqsp´1ds,

and consequently,

N̂Bptq ´ tΛpBq “

ż t

0
spdMBpsq `

ż t

0
pMBpsqsp´1ds

“

ż t

0
spdMBpsq `

ż t

0

´

N̂Bpsq ´ sΛpBq

¯

ps´1ds¨

Said otherwise,

N̂Bptq ´ tp1 ´ pqΛpBq ´

ż t

0
N̂Bpsqps´1ds “

ż t

0
spdMBpsq,

is a martingale. Since pNBpω; sqqsPR` and pNBpω; s´qqsPR` differ in a set of null Lebesgue mea-

sure, the equality still holds replacing
şt
0 N̂Bpsqps´1ds by

şt
0 N̂Bps´qps´1ds and we obtain precisely

(4.52) for Hspω, xq “ 1Bpxq. Now we can proceed as in the proof of II-2.21 from [54]. Concretely,

pick any positive Borel-measurable deterministic function h “ hpxq, x P R such that h ˚ µ̂´h ˚ µ̂p

is a local martingale and let T be an arbitrary stopping time. With the same terminology as in

I.1.22 of [54] denote by J0, T K the subset of Ω ˆ R` defined by

J0, T K “ tpω, sq : 0 ď s ď T pωqu.

In particular, ph ˚ µ̂qT “ 1J0,T Kh ˚ µ̂ where the process 1J0,T K is predictable (since left continuous)

and moreover, by Theorem I 2.2 of [54], the sigma field generated by the collection

tA ˆ t0u where A P F0, and J0, T K where T is any pFtq-stopping time u

is precisely the predictable sigma field Pr. Then, if pTnq is a localising sequence for the local

martingale h ˚ µ̂ ´ h ˚ µ̂p, it follows from Doob’s stopping theorem that for each n,

E
”

ph ˚ µ̂q
T^Tn
8

ı

“ E
”

ph ˚ µ̂pq
T^Tn
8

ı

.

Consequently, taking the limit as n Ò 8, we deduce by monotone convergence that

E
“

p1J0,T Kh ˚ µ̂q8

‰

“ E
“

p1J0,T Kh ˚ µ̂pq8

‰

which in turn implies that (4.54) holds for any predictable process H “ 1B1J0,T K where B is any

closed interval not containing the origin and T an arbitrary stopping time. Now the claim follows

by a monotone class argument.
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We close our discussion on the jump process of NRLPs with the property at the heart of the

infinite divisibility of ξ̂ as a stochastic process, a topic that will be studied in Section 4.6.2. We

claim that, for A P BpRq with ΛpAq ă 8 the point process of jumps

νApdsq “
ÿ

s

1
t∆ξ̂sPAu

δs, (4.55)

is an infinitely divisible point process. More precisely, the measure νA is a reinforced Poisson

point process P̂ with rate ΛpAq in R` and if we consider n independent copies ν1A, . . . , ν
n
A of the

reinforced Poisson process (4.55) but with rate n´1ΛpAq, we have the equality in distribution

νA
L
“ ν1A ` ¨ ¨ ¨ ` νnA. (4.56)

To see this, consider f : R` ÞÑ R` a positive function with support in r0, ts, and observe that

xf, νAy “
ÿ

sďt

1Ap∆ξsqfpsq.

Now the claim follows by computing the Laplace functional of νA, ν
i
A respectively, by applying

the exponential formula (4.40) and from comparing with (4.32). For a more detailed discussion

on infinitely divisible point processes we refer to page 5 of [73].

4.5 Weak convergence of the pair of skeletons

Before stating the first result of the section, let us briefly recall the statement of the Lévy-Itô

synthesis for Lévy processes: a Lévy process ξ with triplet pa, q2,Λq can be written as ξ “ ξp1q `

ξp2q`ξp3q, where ξp1q “ pat`qBt : t ě 0q is a Brownian motion with drift while ξp2q`ξp3q is a purely

discontinuous process that can be explicitly built from the jump measure µ defined in (4.28). More

precisely, if we denote by µpscq the compensated measure of jumps µpscq “ µ ´ dtΛpdxq, we can

write

ξt “ at ` qBt `

ż

r0,tsˆp´1,1qc
xµpds, dxq `

ż

r0,tsˆp´1,1q

xµpscq
pds, dxq, t ě 0. (4.57)

The reinforced Lévy-Itô synthesis, which is the first main result of the section, states that the

analogous result holds for NRLPs where now, the PPP µ in (4.57) has been replaced by the

reinforced version µ̂, and the Brownian motion B by its reinforced version B̂ (if p ă 1{2q. More

precisely, after properly defining the ”space-compensated” measure µ̂pscq, we prove:

Theorem 4.16. (Reinforced Itô’s synthesis)

Let µ̂ be the jump measure of a NRLP ξ̂ of characteristics pa, q2,Λ, pq. Then, a.s. we have

ξ̂t “ at ` qB̂t `

ż

r0,tsˆp´1,1qc
xµ̂pds, dxq `

ż

r0,tsˆp´1,1q

xµ̂pscq
pds, dxq, t ě 0,

for some noise reinforced Brownian motion B̂, with the convention that if p ě 1{2 the process B̂

is null. Moreover, the integrals in the previous display are NRLPs with respective characteristics

p0, 0,1p´1,1qcΛ, pq, p0, 0,1p´1,1qΛ, pq.
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Remark 4.17. Beware of the notation, µ̂pscq stands for the space-compensated jump measure

µ̂ and should not be confused with the time-compensated measure pµ ´ µpq in the sense of [54,

Chapter II-1.27]. For instance, we stress that ξ̂p3q is not a local martingale. Remark that for Lévy

processes, the time and space compensation of its jump measure coincide, since the compensating

measure is the same.

After proving this result, we start settling the ground for the main result of the section. First,

making use of Theorem 4.16, we define the joint law, of a Lévy process and its reinforced version,

by introducing an appropriate coupling pξ, ξ̂q. We then characterise its law by computing the

characteristic function of its finite dimensional distributions:

Proposition 4.18. There exists a pair pξ, ξ̂q, where ξ̂ has the law of a NRLP with characteristics

pa, q2,Λ, pq, with law determined by the following: for all k ě 1, λ1, . . . , λk, β1, . . . βk real numbers,

and 0 ă t1 ă ¨ ¨ ¨ ă tk ď t, we have

E

»

–exp

"

i
k
ÿ

j“1

`

λjξtj ` βj ξ̂tj
˘

*

fi

fl “

exp

"

t ¨ pE

»

–Ψ

˜

k
ÿ

j“1

λj1tUďtj{tu

¸

fi

fl ` t ¨ p1 ´ pqE

»

–Ψ

˜

k
ÿ

j“1

pλj1tY ptj{tqě1u ` βiY ptj{tqq

¸

fi

fl

*

,

(4.58)

where U is a uniform random variable in r0, 1s. A pair of processes with such distribution will

always be denoted by pξ, ξ̂q.

Now, we connect the distribution of the pair pξ, ξ̂q with the discrete setting. In this direction,

consider the Lévy process ξ and for each fixed n P N we set

X
pnq

k :“ ∆pnqξk “ ξk{n ´ ξpk´1q{n, for k ě 1. (4.59)

For each n, the sequence pX
pnq

k q is identically distributed with law ξ1{n and the random walk

S
pnq

k “ X
pnq

1 ` ¨ ¨ ¨ ` X
pnq

k for k ě 1, S
pnq

0 “ 0 built from these increments for a mesh of length

1{n is referred to as the n´skeleton of the Lévy process ξ. This process consists in the positions

of ξ observed at discrete time intervals and, if we write DpR`q for the space of R` indexed rcll

functions into R with the Skorokhod topology, we have S
pnq

tn¨u

DpR`q
Ñ ξ as n Ò 8. Now, fix a memory

parameter p P p0, 1q and for each n, consider the associated noise reinforced random walk pŜ
pnq

k q

with parameter p built from the same collection of increments:

Ŝ
pnq

k :“ X̂
pnq

1 ` ¨ ¨ ¨ ` X̂
pnq

k , for k ě 1, (4.60)

where we set Ŝ
pnq

0 :“ 0. For a detailed account on the noise reinforced random walk, we refer to

the beginning of Section 4.5.2. The main result in [19] states that Ŝtn¨u

f.d.d.
Ñ ξ̂, the convergence

holding in the sense of finite-dimensional distributions, and we shall now strength this result. To

simplify notation, write D2pR`q the product space DpR`q ˆ DpR`q endowed with the product

topology. Now we can state the main result of the section:
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Theorem 4.19. Let ξ be a Lévy process with characteristic triplet pa, q2,Λq, fix p P p0, 1{2q an

admissible memory parameter and for each n, let pS
pnq

k , Ŝ
pnq

k q be the pair of the n-skeleton of ξ

and its reinforced version. Then, there is weak convergence in D2pR`q as n Ò 8

´

S
pnq

tn¨u
, Ŝ

pnq

tn¨u

¯

L
ÝÑ pξ, ξ̂q, (4.61)

where pξ, ξ̂q is a pair of processes with law (4.58).

The section is organised as follows: In Section 4.5.1, after introducing the (space) compensated

integral with respect to NRPPPs, we shall establish Theorem 4.16. Making use of this result,

in Section 4.5.2 we define the joint law of a Lévy process and its reinforced version pξ, ξ̂q. More

precisely, by Lévy-Itô Synthesis and its reinforced version of Theorem 4.16, it will suffice to define

the joint law of pµ, µ̂q and pB, B̂q. This is respectively the content of the construction detailed in

4.5.1 and Definition 4.23. The construction of µ̂ is done explicitly in terms of the jump measure of

ξ by a procedure that should be interpreted as the continuous-time reinforcement analogue of the

reinforcement algorithm for random walks. We then introduce the joint law pξ, ξ̂q in Definition

4.25 and prove Proposition 4.18. Finally, Section 4.5.3 is devoted to the proof of Theorem 4.19.

4.5.1 Proof of Theorem 4.16

Let us start by introducing the (space)-compensated integral with respect to NRPPPs. Recall

the identity of Lemma 4.11 for the intensity measure of NRPPPs and for fixed t P R, let f :

R` ˆ R ÞÑ R be a measurable function satisfying, for all 0 ă a ă b, the integrability condition
ż

p0,tsˆtaď|x|ăbu
|fps, xq|dsΛpdxq ă 8.

Next, we set
ż

r0,tsˆtaď|x|ăbu
fps, xqN̂ pscq

pds, dxq

:“

ż

r0,tsˆtaď|x|ăbu
fps, xqN̂ pds, dxq ´

ż

p0,tsˆtaď|x|ăbu
fps, xqdsΛpdxq.

This is a centred random variable and if we denote it by Σ
pcq
a,bpf, tq, from Proposition 4.9 - (ii)

we deduce that pΣ
pcq
e´r,bpf, tqqrPr´ logpbq,8q has independent increments, and hence is a martingale.

When the limit of this martingale exists, we will write
ż

r0,tsˆp´b,bq
fps, xqN̂ pscq

pds, dxq :“ lim
rÒ8

ż

r0,tsˆte´rď|x|ăbu
fps, xqN̂ pscq

pds, dxq. (4.62)

Recall that the characteristics of a NRLP are being considered with respect to the cutoff function

x1t|x|ă1u as well as the notation f ˚ N̂ from (4.50). The following lemma shows that the sums of

atoms of NRPPPs are precisely purely discontinuous NRLPs:

Lemma 4.20. Fix a Lévy measure Λ, a parameter p P p0, 1q such that βpΛqp ă 1 and let N̂ be a

NRPPP with characteristic measure Λ and reinforcement parameter p.

(i) For any 0 ă a ă b, the process 1taď|x|ăbux ˚ N̂ is a noise reinforced compound Poisson

process with characteristics pΛp1taď|x|ă1uxq, 0,1taď|x|ăbuΛ, pq.
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(ii) For each t P R` the compensated integral

ż

r0,tsˆp´1,1q

xN̂ pscq
pds, dxq :“ lim

rÒ8

ż

r0,tsˆte´rď|x|ă1u

xN̂ pscq
pds, dxq (4.63)

exists. The process 1p´1,1qx ˚ N̂ pscq is a NRLP with characteristics p0, 0,1p´1,1qΛ, pq and

hence has a rcll modification. Moreover, the convergence (4.63) holds towards its rcll modi-

fication uniformly in compact intervals for some subsequence prnq, and we shall consider it

and denote it in the same way without further comments.

Proof. (i) If we consider ξ̂ a reinforced compound Poisson process with such characteristics and µ̂ is

its jump measure, it is a pure jump process and we can write it as the sum of its jumps. Our claim

can now be proved directly from the identity ξ̂ “ px ˚ µ̂q
L
“ p1paď|x|ăbqx ˚ N̂ q, since by Proposition

4.10 - (i), the restriction 1paď|x|ăbqN̂ has the same distribution as µ̂. Alternatively, this can be

established by means of the exponential formulas we obtained in Proposition 4.12, by fixing 0 ă

t1 ă ¨ ¨ ¨ ă tk ă t and computing the characteristic function of the finite-dimensional distributions

at times t1, . . . , tk of 1taď|x|ăbux ˚ N̂ , noticing that for fps, xq :“
´

řk
j“1 λj1tsďtju

¯

x1taď|x|ăbu

we have
k
ÿ

j“1

λjp1taď|x|ăbux ˚ N̂ qtj “

ż

r0,tsˆR
fps, xqN̂ pds, dxq.

The claim follows by comparing with the identity for the characteristic function of the finite-

dimensional distributions (4.13) of ξ̂ .

(ii) Recall the notation introduced before (4.62) for the martingale pΣ
pcq
e´r,1pf, tqqrě0. In our case,

we have fps, xq “ x and we just write pΣ
pcq
e´r,1ptqqrě0. The fact that the martingale pΣ

pcq
e´r,1ptqqrě0

converges as r Ò 8 and that the limit is a NRLP with characteristics p0, 0,1p´1,1qΛq can be

achieved by similar arguments as in [19] after a couple of observations. Starting with the former,

recall the definition of N̂ from (4.39), and remark that for each r ą 0 we have

ż

r0,tsˆR
1te´rď|x|ă1uxN̂ pds, dxq “

ÿ

uPP

1tuďtu1te´rď|xu|ă1uxu ¨ #
␣

tues : s P Duu X r0, ts
(

.

From the discussion right after Proposition 4.9, we infer that if we we consider pZuquPP an

independent collection of independent, standard Yule processes, the family tues : s P Duu has

the same distribution as the collection of jump times of the counting process 1tuďtuZ
u
pplnptq´lnpuqq

,

t ě 0. Hence the previous display can also be written as

ÿ

uPP

1te´rď|xu|ă1uxu1tuďtuZ
u
pplnptq´lnpuqq

,

and now the proof of the convergence as r Ò 8 of pΣ
pcq
e´r,1ptqqrě0 follows by the same arguments

as in [19, Lemma 2.6]. Alternatively, one can make use of (4.13) to restrict our arguments to the

interval r0, 1s and apply [19, Lemma 2.6]. Next, to see that the process 1p´1,1qx ˚ N̂ pscq defines a

NRLP with characteristics p0, 0,1p´1,1qΛq, fix 0 ă t1 ă ¨ ¨ ¨ ă tk ă t and for ε ą 0, λ P R set

Φ
p3q

ε,1pλq “

ż

tεď|x|ă1u

´

eiλx ´ 1 ´ iλx
¯

Λpdxq.
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Recalling the formula (4.41) for the characteristic function of integrals with respect to NRPPPs,

we deduce from considering the function fps, xq :“
´

řk
j“1 λj1tsďtju

¯

x1tεď|x|ă1u that we have

E

»

–exp

"

i
k
ÿ

j“1

λjp1tεď|x|ă1ux ˚ N̂ pscq
qtjq

*

fi

fl “ exp

"

tp1 ´ pqE

»

–Φ
pcq
ε,1

¨

˝

k
ÿ

j“1

λjY ptj{tq

˛

‚

fi

fl

*

.

Now we can apply the exact same reasoning as in the proof of Corollary 2.8 in [19] by writing

sj “ tj{t P r0, 1s and taking the limit as ε Ó 0. The uniform convergence in compact intervals

towards the rcll modification of 1p´1,1qx ˚ N̂ pscq follows from the second statement of Theorem

4.3, since for every ε P p0, 1q, the process
ż

r0,tsˆt0ď|x|ăεu
xN̂ pscq

pds, dxq, t ě 0,

is a NRLP with characteristics p0, 0,1t|x|ăεuΛq.

It immediately follows from the previous lemma that if N̂ is a NRPPP with characteristic

measure Λ, parameter p and, if p ă 1{2, we consider Ŵ an independent NRBM with same

parameter, then

X̂t “ at ` qŴt `

ż

r0,tsˆp´1,1qc
xN̂ pds, dxq `

ż

r0,tsˆp´1,1q

xN̂ pscq
pds, dxq, t ě 0, (4.64)

defines a NRLP with characteristics pa, q2,Λ, pq. To obtain the a.s. statement of Theorem 4.16

we still need a short argument.

Proof of Theorem 4.16. The result will be deduced from the equality in distribution ξ̂
L
“ X̂ for

X̂ defined as in (4.64) with same characteristics as ξ̂. In this direction, wlog we assume p ă 1{2,

q “ 1 and we set

ξ̂ď1 :“ ξ̂t ´
ÿ

sďt

1
t|∆ξ̂s|ě1u

∆ξ̂s and ξ̂ăε
t :“ ξ̂ď1

t ´

´

ÿ

sďt

1tεď|∆ξs|ă1u∆ξ̂s ´ t

ż

tεď|x|ă1u

xΛpdxq

¯

.

Notice that for every ε ą 0, we can write

ξ̂t “ ξ̂ăε
t `

´

ÿ

sďt

1tεď|∆ξs|ă1u∆ξ̂s ´ t

ż

tεď|x|ă1u

xΛpdxq

¯

` ξ̂
p2q

t . (4.65)

Since µ̂ is a reinforced PPP, by Lemma 4.20 the process (4.65) converges uniformly in compact

intervals for some subsequence pεnq as εn Ó 0 towards Ĉ ` ξ̂p2q ` ξ̂p3q, for some process Ĉ :“

ξ̂ ´ ξ̂p2q ´ ξ̂p3q continuous by construction. Since µ̂ is a reinforced PPP, by the independence

properties of its restriction we know that ξ̂p2q, ξ̂p3q are independent. Hence, it remains to show

that pξ̂p2q, ξ̂p3qq is independent of Ĉ and that Ĉ´at “: B̂ is a NRBM. Fix arbitrary 0 ă u ă v ď 8

and maintain the notation for Ŵ , N̂ used in the representation (4.64). Since N̂ is the clearly the

jump measure of X̂, we have the equality in distribution:
´

ξ̂,
ÿ

sď¨

1
tuď|∆ξ̂s|ăvu

∆ξ̂s

¯

L
“

´

X̂,1tuď|x|ăvux ˚ N̂
¯

. (4.66)

Moreover, since Ŵ is independent of N̂ , from the independence of restrictions of NRPPP and

(4.66) we deduce that 1tεď|x|ă1ux ˚ µ̂pscq ` 1t1ď|x|ux ˚ µ̂ and ξ̂ ´ 1tεď|x|ă1ux ˚ µ̂pscq ´ 1t1ď|x|ux ˚ µ̂

are independent, the later having the same distribution as at` Ŵt `1p´ε,εqx ˚ N̂ . Now the claim

follows by taking the limit as ε Ó 0.
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4.5.2 The joint law pξ, ξ̂q of a Lévy process and its reinforced version

In this section we construct explicitly, for an arbitrary fixed Lévy process ξ, the process ξ̂

in terms of ξ that will be referred to as the noise reinforced version of ξ. This will yield a

definition for the joint law pξ, ξ̂q. Our construction will be justified by the weak convergence of

Theorem 4.19. Let us start by recalling the discrete setting, since our construction is essentially

the continuous-time analogue of the dynamics that we now describe.

˝ The noise reinforced random walk. Given a collection of identically distributed random variables

pXnq with law X, denote by Sn :“ X1 ` ¨ ¨ ¨ `Xn, for n ě 1 the corresponding random walk. We

construct, simultaneously to pSnq, a noise reinforced version using the same sample of random

variables and performing the reinforcement algorithm at each discrete time step. In this direction,

consider pεnq and pU rnsq independent sequences of Bernoulli random variables with parameter

p P p0, 1q and uniform random variables on t1, . . . , nu respectively. Set X̂1 :“ X1 and, for n ě 1,

define

X̂n`1 :“ Xn`11tεn`1“0u ` X̂U rns1tεn`1“1u.

Finally, we denote the corresponding partial sums by Ŝn :“ X̂1 ` ¨ ¨ ¨ ` X̂n, n ě 1. The process

pŜnq is the so-called noise reinforced random walk with memory parameter p, and we refer to this

particular construction of pŜnq as the noise reinforced version of pSnq. The process pŜnq can be

written in terms of the individual contributions made by each one of the steps. In this direction,

let us introduce a counting process keeping track of the number of times each step Xk is repeated

up to time n. Since if the law of X has atoms, we have PpX1 “ X2q ą 0, and we need to perform

a slight modification to our algorithm. Namely, for each n ě 1 we write X 1
n :“ pXn, nq and we

perform the reinforcement algorithm to the pairs pX 1
nq. This yields a sequence that, with a slight

abuse of notation, we denote by pX̂ 1
nq. If for every k, n ě 1 we set:

Nkpnq :“ #t1 ď i ď n : X 1
k “ X̂ 1

iu, (4.67)

we can write:

Ŝn “

8
ÿ

k“1

NkpnqXk, for n ě 1. (4.68)

For convenience, we always set S0 “ 0 “ Ŝ0, and when working with pairs of the form pS, Ŝq it

will always be implicitly assumed that the noise reinforced version has been constructed by the

algorithm we described. For instance, it is clear that at each discrete time step n, with probability

1´p, Sn and Ŝn share the same increment, while with complementary probability p, they perform

different steps.

Roughly speaking, in the continuum, the steps pXnq are replaced by jumps ∆ξs of the Lévy

process ξ. With probability 1 ´ p, the jump is shared with its reinforced version ξ̂ while with

complementary probability p it is discarded and remains independent of ξ̂. The jumps that are

not discarded by this procedure are then repeated at each jump time of an independent counting

process that will be attached to it. The process of discarding jumps with probability p is traduced

in a thinning of the jump measure of ξ. Let us now give a formal description of this heuristic

discussion.
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Construction of the pair pN , N̂ q

For the rest of the section, we fix a Lévy process ξ with non-trivial Lévy measure Λ, denote the

set of its jump times by I :“ tu P R` : ∆ξu ‰ 0u and let

N pds, dxq :“
ÿ

uPI

δpu,∆ξuq,

be its jump measure. By the Lévy-Itô decomposition, this is a PPP with characteristic measure

Λ and we can write ξ “ ξp1q ` J , where ξp1q is a continuous process while J is a process that can

be explicitly recovered from N , as we recalled in (4.57).

If ξ̂ has the law of its reinforced version, by Theorem 4.16 it can also be written as ξ̂ “ ξ̂p1q ` Ĵ ,

where Ĵ is a functional of a NRPPP N̂ with characteristic measure Λ. Hence, the main step for

defining the law of the pair pJ, Ĵq consists in appropriately defining pN , N̂ q. However, recalling

the construction of NRPPPs by superposition detailed before Definition 4.9, this can be achieved

as follows: first, set A0 :“ t1 ď |x|u and for each j ě 1, let Aj :“ t1{pj ` 1q ď |x| ă 1{ju. Next,

for j ě 0 consider the point process

Ij :“ tu P R` : ∆ξu P Aju,

remark that Ij is a PPP with intensity ΛpAjqdt and write I :“ YjIj . Maintaining the notation

of Section 4.4, consider pDuquPI a collection of i.i.d. copies of D and for each j ě 0 we set

Njpds, dxq :“
ÿ

uPIj

ÿ

tPDu

δpuet,∆ξuq.

The measure Nj is a NRPPP with characteristic measure p1 ´ pq´1Λp ¨ X Ajq, and we can now

proceed as in Section 4.4.2 to construct the following NRPPP with parameter p by superposition

of pNjqjě1,
ÿ

uPI

ÿ

tPDu

δpuet,∆ξuq. (4.69)

Notice however that its characteristic measure is p1 ´ pq´1Λ. In this direction, we consider a

sequence of independent Bernoulli random variables pεuquPI with parameter 1 ´ p and apply a

thinning:

N̂ pds, dxq :“
ÿ

uPI

1tεu“1u

ÿ

tPDu

δpuet,∆ξuq. (4.70)

Now, N̂ is a NRPPP with characteristic measure Λ and reinforcement parameter p built explicitly

from the jump process of ξ. From the construction, if a jump ∆ξu occurs at time u, with

probability 1 ´ p it is kept and repeated at each uet for t P Du, while with complementary

probability p, it is discarded and remains independent of N̂ . From now on, we always consider

the pair pN , N̂ q constructed by this procedure. Then, by definition of N we can write

Jt “ ξ
p2q

t ` ξ
p3q

t “

ż

r0,tsˆt|x|ě1u

xN pds, dxq `

ż

r0,tsˆp´1,1q

xN pscq
pds, dxq, t ě 0,

while on the other hand, by Theorem 4.16 the process defined as

Ĵt “ ξ̂
p2q

t ` ξ̂
p3q

t :“

ż

r0,tsˆt|x|ě1u

xN̂ pds, dxq `

ż

r0,tsˆp´1,1q

xN̂ pscq
pds, dxq, t ě 0, (4.71)
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is a NRLP with characteristics p0, 0,Λ, pq. From our construction, the random measures N , N̂
can be encoded in terms of a single Poisson random measure

ř

uPI δpu,∆ξu,Du,εuq, allowing us to

compute explicitly the characteristic function of the finite dimensional distributions of pξp2q, ξ̂p2qq

and pξp3q, ξ̂p3qq. In this direction, for λ P R recall the notation

Φp2q
pλq :“

ż

t|x|ě1u

peiλx ´ 1qΛpdxq. (4.72)

Lemma 4.21. For all k ě 1, let λ1, . . . , λk and β1, . . . βk be real numbers and fix times 0 ă t1 ă

¨ ¨ ¨ ă tk ă t. Then, we have

E

»

–exp

"

i
k
ÿ

j“1

λj
`

ξ
p2q

tj ` βj ξ̂
p2q

tj

˘

*

fi

fl “

exp

"

tpE

»

–Φp2q

¨

˝

k
ÿ

j“1

λj1tY ptj{tqě1u

˛

‚

fi

fl ` tp1 ´ pqE

»

–Φp2q

¨

˝

k
ÿ

j“1

pλj1tY ptj{tqě1u ` βiY ptj{tqq

˛

‚

fi

fl

*

,

(4.73)

where we denote by Y a Yule-Simon process with parameter 1{p.

Let us briefly comment on this expression. The first exponential term in (4.73) corresponds

to the characteristic function of the finite dimensional distributions of a Lévy process with law

pξ
p2q

pt qtPR` , viz.

E

»

–exp

"

i
k
ÿ

j“1

λjξ
p2q

ptj

*

fi

fl “ exp

"

tpE

»

–Φp1q
´

k
ÿ

j“1

λj1tUďtj{tu

¯

fi

fl

*

,

where U is a uniform random variable in r0, 1s (recall that the first jump time of a Yule-Simon

process is uniformly distributed in r0, 1s). More precisely, this Lévy process is built from the dis-

carded jumps
ř

u 1tεu“0uδpu,∆ξuq and consequently is independent of ξ̂p2q and
ř

u 1tεu“1uδpu,∆ξuq,

which explains the form of the identity (4.73).

Proof. We can assume that tk ă 1 by working with t1{t ă ¨ ¨ ¨ ă tk{t and with the pair

pξst, ξ̂stqsPr0,1s, which now has Lévy measure tΛ. Now, the proof follows by a rather long but

straightforward application of the formula for the characteristic function of integrals with respect

to Poisson random measures.

We now turn our attention to the characteristic function of the finite dimensional distributions

of pξp3q, ξ̂p3qq. In this direction, for λ P R, recall the notation

Φp3q
pλq :“

ż

t|x|ă1u

peiλx ´ 1 ´ iλxqΛpdxq. (4.74)
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Lemma 4.22. For all k ě 1, let λ1, . . . , λk and β1, . . . βk be real numbers and fix times 0 ă t1 ă

¨ ¨ ¨ ă tk ă t. Then, we have

E

»

–exp

"

i
k
ÿ

j“1

`

λjξ
p3q

tj ` βj ξ̂
p3q

tj

˘

*

fi

fl “

exp

"

tpE

»

–Φp3q

¨

˝

k
ÿ

j“1

λj1tY ptj{tqě1u

˛

‚

fi

fl ` tp1 ´ pqE

»

–Φp3q

¨

˝

k
ÿ

j“1

pλj1tY ptj{tqě1u ` βiY ptj{tqq

˛

‚

fi

fl

*

,

(4.75)

where we denote by Y a Yule-Simon process with parameter 1{p.

Proof. By the usual scaling argument we can suppose that tk ă 1 “ t. Now, the proof is similar to

the one of Corollary 2.8 in [19]. In this direction, notice that the processes ξp3q “ 1p´1,1qx ˚N pscq

and ξ̂p3q “ 1p´1,1qx ˚ N̂ pscq are respectively the limit as ε Ó 0 of

ξ
p3q

ε,1 :“ 1tεď|x|ă1ux ˚ N ´ 1tεď|x|ă1ux ˚ dt b Λ, (4.76)

ξ̂
p3q

ε,1 :“ 1tεď|x|ă1ux ˚ N̂ ´ 1tεď|x|ă1ux ˚ dt b Λ, (4.77)

the convergence holding uniformly in compact intervals. The characteristic function of the finite-

dimensional distributions of the pair p1tεď|x|ă1ux ˚ N ,1tεď|x|ă1ux ˚ N̂ q can be computed by the

same arguments as in Lemma 4.21 and we obtain for each 0 ă ε ă 1 that

E

»

–exp

"

i
k
ÿ

j“1

pλjξ
p3q

ε,1 ptjq ` βj ξ̂
p3q

ε,1 ptjqq

*

fi

fl

“ exp

"

pE

»

–Φ
p3q
ε

¨

˝

k
ÿ

j“1

λj1tY ptjqě1u

˛

‚

fi

fl ` p1 ´ pqE

»

–Φ
p3q
ε

¨

˝

k
ÿ

j“1

`

λj1tY ptjqě1u ` βiY ptjq
˘

˛

‚

fi

fl

*

.

(4.78)

In order to establish that this expression converges as ε Ó 0 towards (4.75), we recall that since

|eix ´ 1´ ix| is Op|x2|q as |x| Ó 0 and Op|x|q as |x| Ò 8, for any r P pβpΛq _ 1, 1{p^ 2q if βpΛq ă 2

and r “ 2 if βpΛq “ 2, we have

C :“ sup
xPR

|x|
´r

|eix ´ 1 ´ ix| ă 8.

It follows that for all 0 ă ε ă 1, λ P R, we can bound

|Φ
p3q
ε pλq| ď

ż

t|x|ă1u

|eiλx ´ 1 ´ iλx|Λpdxq ď C|λ|
r

ż

t|x|ă1u

|x|
rΛpdxq.

Moreover, by the remark following Lemma 4.1, the random variable Y ptq P LrpPq for any r ă 1{p

and it follows that the term
k
ÿ

j“1

`

λj1tY ptjqě1u ` βiY ptjq
˘

,

is in LrpPq. Hence, by dominated convergence, (4.78) converges towards (4.75) as ε Ó 0. On the

other hand, since pξ
p3q

ε,1 ptjq, ξ̂
p3q

ε,1 ptjqq Ñ pξ
p3q

tj , ξ̂
p3q

tj q as ε Ó 0, we obtain the desired result.
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The distribution of pB, B̂q and proof of Proposition 4.18

The last ingredient needed to define the joint distribution of pξ, ξ̂q is the joint distribution of a

Brownian motion B and its reinforced version B̂, that we denote as pB, B̂q. Recall from [21] that

B̂ has the same law as the solution to the SDE

dXt “ dBt `
p

t
Xtdt, (4.79)

and that X can be written explicitly in terms of the stochastic integral (4.18) with respect to the

driving Brownian motion B. We also recall from (4.17) that for 0 ă s, t ă T the covariance of B̂

can be expressed in terms of the Yule Simon process as follows:

E
”

B̂tB̂s

ı

“
pt _ sqppt ^ sq1´p

1 ´ 2p
“ T p1 ´ pqE rY pt{T qY ps{T qs , (4.80)

and for later use, we observe that

pt ^ sq1´psp “ T p1 ´ pqE
“

1tY pt{T qě1uY ps{T q
‰

. (4.81)

We stress that the right-hand side in the previous display do not depend on the choice of T . The

proof of this identity is a consequence of the representation (4.2) of Y in terms of a standard Yule

process and an independent uniform random variable.

Definition 4.23. Let pB, B̂q be a pair of Gaussian processes and fix a parameter 0 ă p ă 1{2.

We say that the pair pB, B̂q has the law of a Brownian motion with its reinforced version if the

respective covariances are given by

E rBtBss “ pt^sq, E
”

BtB̂s

ı

“ pt^sq1´psp, E
”

B̂tB̂s

ı

“
pt _ sqppt ^ sq1´p

1 ´ 2p
, (4.82)

for any s, t P R`.

Let us briefly explain where this definition comes from: for fixed p, by [16, Theorem 1.1] the

law of the pair pB, B̂q is universal, in the sense that it is the weak joint scaling limit of random

walks paired with its reinforced version with parameter p for p ă 1{2, when the typical step is in

L2pPq. For more details, we refer to [21, 16].

Given a fixed Brownian motion B, it is clear that we can not expect to have an explicit

construction of the reinforced version B̂ in terms of B similar to the one performed for pJ, Ĵq.

However, we can make use of the SDE (4.79) to get an explicit construct of pB, B̂q with the right

covariance structure. This can be easily achieved as follows: first, let W be an independent copy

of B; if we set

βt :“ p1 ´ pqBt `

b

1 ´ p1 ´ pq2Wt, (4.83)

then, B and β are two Brownian motions with E rBtβss “ p1 ´ pqpt ^ sq. If we let B̂ be the

solution to the SDE,

dB̂t “ dβt `
p

t
B̂tdt, (4.84)

B̂ has the law of a noise reinforced Brownian motion with reinforcement parameter p, and can

be written explicitly as B̂t “ tp
şt
0 s

´pdβs. Moreover, it readily follows that the covariance of the
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pair of Gaussian processes pB, B̂q satisfies (4.82). The decorrelation applied for constructing β is

playing the role of the thinning in the construction of pJ, Ĵq.

Finally, we will need for the proof of Proposition 4.18 the following representation of the

characteristic function of the finite-dimensional distributions of the pair pB, B̂q in terms of the

Yule-Simon process:

Lemma 4.24. Let pB, B̂q be a Brownian motion with its reinforced version for a memory pa-

rameter p ă 1{2. For all k ě 1, λ1, . . . , λk, β1, . . . βk real numbers and 0 ă t1 ă ¨ ¨ ¨ ă tk ă t, we

have

E

»

–exp

"

i
k
ÿ

j“1

`

λjBtj ` βjB̂tj
˘

*

fi

fl “

exp

"

´ tpE

»

–

q2

2

˜

k
ÿ

j“1

λj1
tY
`

tj
t

˘

ě1u

¸2
fi

fl´ tp1 ´ pqE

»

–

q2

2

˜

k
ÿ

j“1

`

λj1
tY
`

tj
t

˘

ě1u
` βjY

´tj
t

¯

˘

¸2
fi

fl

*

.

(4.85)

Proof. Since NRBM satisfies the same scaling property of Brownian Motion (see page 3 of [21]),

from (4.82) we deduce pBtc, B̂tcqtPR`
L
“ pc1{2Bt, c

1{2B̂tqtPR` . Hence, as usual we can suppose that

tk ă 1 and we take t :“ 1. To simplify notation we also suppose that q “ 1. Now, the left hand

side of (4.85) writes

E

»

–exp

"

i
k
ÿ

j“1

`

λjBtj ` βjB̂tj
˘

*

fi

fl

“ exp

"

´
1

2

ÿ

i,j

λiλjCovpBti , Btjq ´
1

2

ÿ

i,j

βiβjCovpB̂ti , B̂tjq ´
ÿ

i,j

λiβjCovpBti , B̂tjq

*

“ exp

"

´
1

2
E

»

—

–

¨

˝

k
ÿ

j“1

λj1tY ptjqě1u

˛

‚

2

` p1 ´ pq

¨

˝

k
ÿ

j“1

βjY ptjq

˛

‚

2

` 2p1 ´ pq
ÿ

i,j

λiβj1tY ptiqě1uY ptjq

fi

ffi

fl

*

where we used respectively for each one of the covariances in order of appearance that: the first

jump time of a Yule-Simon process is uniformly distributed, (4.80) and (4.81). However, this is

precisely the right hand side of (4.85).

Now that all the ingredients have been introduced, we define the law of pξ, ξ̂q.

G Recipe for reinforcing Lévy processes: consider a starting Lévy process ξ with triplet pa, q2,Λq

and denote by ξt “ at ` qBt ` Jt for t ě 0 its Lévy Itô decomposition, where B and J are

respectively a Brownian motion and a Lévy process with triplet p0, 0,Λq. Further, fix p P p0, 1q an

admissible parameter for the triplet, denote the jump measure of ξ byN “
ř

δpu,∆ξuq and consider

the NRPPP N̂ with characteristic measure Λ and reinforcement parameter p as constructed in

(4.70) in terms of N . Denote by Ĵ :“ 1p´1,1qx ˚ N̂ pscq `1p´1,1qcx ˚ N̂ the corresponding NRLP of

characteristics p0, 0,Λ, pq and finally, consider a NRBM B̂ independent of pJ, Ĵq, such that pB, B̂q

has the law of a Brownian motion with its reinforced version – for example by proceeding as in

(4.84).
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Definition 4.25. We call the noise reinforced Lévy process ξ̂t :“ at` qB̂t ` Ĵt for t ě 0 of char-

acteristics pa, q2,Λ, pq the noise reinforced version of ξ, the unicity only holding in distribution.

From now on, every time we consider a pair pξ, ξ̂q, it will be implicitly assumed that ξ̂ has been

constructed by the procedure we just described in terms of ξ.

Let us now conclude the proof of Proposition 4.18.

Proof of Proposition 4.18. If Ψ is the characteristic exponent of ξ, we can write

Ψpλq “ iaλ ´
1

2
q2λ2 ` Φp2q

pλq ` Φp3q
pλq,

for Φp2q, Φp3q defined respectively by (4.72) and (4.74). Recalling the independence between the

pairs pB, B̂q, pξp2q, ξ̂p2qq, pξp3q, ξ̂p3qq, the proof of Proposition 4.18 now follows from Lemmas 4.21,

4.22, 4.24 and the previous decomposition for the characteristic exponent Ψ.

From the construction of pN , N̂ q, we can sketch a sample path of pξ, ξ̂q, where the jumps that

are not appearing on the path of ξ̂ are precisely the ones deleted by the thinning:

Figure 4.2: Sample path of a Lévy process and its reinforced version.

4.5.3 Proof of Theorem 4.19

Let us outline the proof of Theorem 4.19. First, by (4.13), it suffices to prove the convergence

in r0, 1s and we therefore work with ξ “ pξtqtPr0,1s. Next, since we are working in D2r0, 1s, it

suffices to establish tightness coordinate-wise to obtain tightness for the sequence of pairs. The

first coordinate in (4.61) converges a.s. towards ξ in Dr0, 1s (and in particular is tight) and hence

it remains to establish tightness for the sequence of reinforced n-skeletons. This is the content of

Section 4.5.3 and more precisely, of Proposition 4.28. This is achieved by means of the celebrated

Aldous tightness criterion and our arguments rely on the discrete counterpart of the remarkable

martingale from Proposition 4.4. This discrete martingale is introduced in Lemma 4.26 and we

recall from [16, 15] its main features. This is the content of Section 4.5.3. Finally, the joint

convergence in the sense of finite-dimensional distributions towards pξ, ξ̂q is proved in Proposition

4.31, by establishing the convergence of the corresponding characteristic functions.

The martingale associated with a noise reinforced random walk

˝ The elephant random walk and its associated martingale. Let us start with some historical con-

text. In [11], Bercu was interested in establishing asymptotic convergence results for a particular

random walk with memory, called the elephant random walk. This process is defined as follows:

for a fixed q P p0, 1q that we still call the reinforcement parameter, we set E0 :“ 0 and let Y1 be
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a random variable with Y1 P t´1, 1u. Then, the position of our elephant at time n “ 1 is given

by E1 “ Y1 and for n ě 2, it is defined recursively by the relation En`1 :“ En ` Yn`1, for Yn`1

constructed by selecting uniformly at random one of the previous increments tY1 . . . Ynu, and

changing its sign with probability 1 ´ q. The analysis of Bercu relies on a martingale associated

to the elephant random walk, defined as M1 “ E1 and for n ě 2, as

Mn :“ ânEn, for ân :“
ΓpnqΓp2qq

Γpn ` 2q ´ 1q
, (4.86)

and where Γ stands for the Euler-Gamma function. This martingale had already made its appear-

ance in the literature in Coletti, Gava, Schütz [34]. As was pointed out by Kürsten [60], the key

is that when q P r1{2, 1q, the elephant random walk is a version of the noise reinforced random

walk when the typical step X has distribution P pX “ 1q “ P pX “ ´1q “ 1{2 with memory

parameter p “ 2q ´ 1.

Getting back to our setting, we maintain the notation introduced at the beginning of Section

4.5.2 for the noise reinforced random walk for a memory parameter p P p0, 1q. Our first observa-

tion is that the martingale (4.86) associated to the elephant random walk is still a martingale in

our setting – we stress that the reinforcement parameter q in [11] corresponds to the parameter

p “ 2q ´ 1 in our context. This martingale plays a fundamental role in our reasoning, and also

played a central role in [16, 15]. More precisely, let a1 :“ 1 and for n ě 2 we set

an :“
Γpnq

Γpn ` pq
“

n´1
ź

k“1

γ´1
k , (4.87)

for γn :“ n`p
n . We write Fn :“ σpX̂1, . . . , X̂nq the filtration generated by the reinforced steps.

The following lemma is taken from [16].

Lemma 4.26. [16, Proposition 2.1] Suppose that the typical step X is centred and in L2pPq. Then,

the process M defined by M0 “ 0 and Mn “ anŜn for n ě 1 is a square-integrable martingale

with respect to the filtration pFnq.

In order to establish tightness for our sequence of reinforced skeletons, we will make use of

the explicit form of the predictable quadratic variation xM,My of this martingale, which is the

process defined as xM,My0 “ 0 and

xM,Myn “

n
ÿ

k“1

E
”

p∆Mkq
2

|Fk´1

ı

, n ě 1.

In this direction, we introduce:

V̂n :“ X̂2
1 ` ¨ ¨ ¨ ` X̂2

n, n ě 1,

with V̂0 “ 0. The following lemma is also taken from [16] and was the main tool for establishing

the invariance principles proven in that work.

Lemma 4.27. [16, Proposition 2.1] The predictable quadratic variation process xM,My is given

by xM,My0 “ 0 and for n ě 1,

xM,Myn “ σ2 `

n
ÿ

k“2

a2k

˜

p1 ´ pqσ2 ´ p2
Ŝ2
k´1

pk ´ 1q2
` p

V̂k´1

k ´ 1

¸

, (4.88)

where the sum should be considered null for n “ 1.
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Proof of tightness

We stress that the f.d.d. convergence of the sequence of reinforced skeletons towards a NRLP ξ̂

of characteristics pa, q2,Λ, pq was already established in Theorem 3.1 of [19].

Proposition 4.28. Let p ă 1{2 be an admissible memory parameter for the triplet pa, q2,Λq.

Then, the sequence of laws associated to the reinforced skeletons

␣`

Ŝ
pnq

tntu

˘

tPr0,1s
: n P N

(

is tight in Dr0, 1s. (4.89)

Therefore, the convergence
`

Ŝ
pnq

tntu

˘

tPr0,1s

L
ÝÑ pξ̂tqtPr0,1s holds in Dr0, 1s.

The reason behind the restriction p ă 1{2 and why we don’t expect our proof to work for p ě 1{2

is explained in Remark 4.30, at the end of the proof.

Proof of Proposition 4.28 for centred ξ with compactly supported Lévy measure.

Until further notice, we restrict our reasoning to the case when ξ is a centred Lévy process,

with Lévy measure Λ concentrated in r´K,Ks for some K ą 0, and without loss of generality

we suppose that K “ 1. In consequence, ξ has finite moments of any order and we set σ2n :“

Erξ21{ns “ ErpX̂
pnq

1 q2s. Notice that under our standing hypothesis, ξ̂ writes

tp
ż t

0
s´pdBs ` ξ̂

p3q

t , t P r0, 1s,

for some Brownian motion B independent of ξ̂p3q. Further, remark that under our restrictions,

the family of discrete skeletons pŜ
pnq

k q, for n P N, have typical steps centred and in L2pPq.

Consequently, we can make use of Lemma 4.26.

Next, to establish Proposition 4.28 under our current restrictions, we claim that it would be

enough to show that the following convergence holds,

´

npatntuŜ
pnq

tntu

¯

tPr0,1s

L
ÝÑ

`

t´pξ̂t
˘

tPr0,1s
, (4.90)

where now, the sequence on the left-hand side of (4.90) is a sequence of martingales, while the

process on the right hand side is the martingale introduced in Proposition 4.4, viz.

Nt :“

ż t

0
s´pdBs ` t´pξ̂

p3q

t , t P r0, 1s.

Indeed, for each n, letMn be the continuous time version of martingale of Lemma 4.26 associated

with the n-reinforced skeleton pŜ
pnq

k qkPN, i.e.

Mn
tntu “ atntuŜ

pnq

tntu
, t ě 0,

and remark that by Lemma 4.27, the predictable quadratic variation of Mn
tn¨u

is given by

xMn,Mn
ytntu “ 1t1{nďtuσ

2
n `

tntu
ÿ

k“2

a2k

˜

p1 ´ pqσ2n ´ p2
pŜ

pnq

k´1q2

pk ´ 1q2
` p

V̂
pnq

k´1

k ´ 1

¸

.
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It follows that for each n P N, the following process

Nn
t :“ npMn

tntu “ npatntuŜ
pnq

tntu
, t ě 0,

is also a martingale, and its predictable quadratic variation writes:

xNn, Nn
yt “ n2pxMn,Mn

ytntu “ 1t1{nďtun
2pσ2n `n2p

tntu
ÿ

k“2

a2k

˜

p1 ´ pqσ2n ´ p2
pŜ

pnq

k´1q2

pk ´ 1q2
` p

V̂
pnq

k´1

k ´ 1

¸

.

(4.91)

Moreover, by Stirling’s formula, we have

an “
Γpnq

Γpn ` pq
„ n´p, as n Ò 8,

which gives:

npatntu „ t´p, as n Ò 8.

This yields the claimed equivalence between (4.89) and (4.90) under our current restrictions for ξ.

For technical reasons, we shall prove first that the convergence of the martingales pNnq towards

N holds in the interval rε, 1s, for any ε ą 0. This leads us to the following lemma:

Lemma 4.29. For any ε ą 0, the sequence pNn
t qtPrε,1s for n P N is tight.

Proof. We denote by pFn
t q the natural filtration of Nn. By Aldous’s tightness criterion (see for

e.g. Kallenberg [57] Theorem 16.11), it is enough to show that for any sequence pτnq of (bounded)

pFn
t q-stopping times in rε, 1s and any sequence of positive real numbers phnq converging to 0, we

have

lim
nÒ8

|Nn
τn`hn

´ Nn
τn | “ 0, in probability.

By Rebolledo’s Theorem (see e.g. Theorem 2.3.2 in Joffre and Metivier [56] ) it’s enough to show

that the sequence of associated predictable quadratic variations pxNn, Nnyq satisfies Aldous’s

tightness criterion, i.e. that

lim
nÒ8

xNn, Nn
yτn`hn

´ xNn, Nn
yτn “ 0, in probability.

In this direction, by (4.91), we have

xNn, Nn
yτn`hn

´ xNn, Nn
yτn “ n2p

tnpτn`hnqu
ÿ

k“tnτnu`1

a2k

˜

p1 ´ pqσ2n ´ p2
pŜ

pnq

k´1q2

pk ´ 1q2
` p

V̂
pnq

k´1

k ´ 1

¸

ď p1 ´ pqn2p
tnpτn`hnqu

ÿ

k“tnτnu`1

a2kσ
2
n ` p ¨ n2p

tnpτn`hnqu
ÿ

k“tnτnu`1

a2k
V̂

pnq

k´1

k ´ 1
, (4.92)

and it remains to show that both terms in the right hand side converge to 0 in probability as

n Ò 8. The key now is in the asymptotic behaviour of the series
řn
k“1 a

2
k. As was already pointed

out in [11], for p P p0, 1{2q, we have

lim
nÒ8

n2p´1
n
ÿ

k“1

a2k “
1

1 ´ 2p
. (4.93)
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Furthermore, since the Lévy measure of ξ is compactly supported, it holds that

σ2n “ E
”

pX̂
pnq

1 q
2
ı

“ E
”

ξ21{n

ı

“ Op1{nq, as n Ò 8. (4.94)

Now, from (4.93) and (4.94) it follows that

lim
nÒ8

p1 ´ pqn2p´1
tnpτn`hnqu

ÿ

k“tnτnu`1

a2k “ 0 a.s.

and a fortiori in probability, which entails that the first term in (4.92) converges in probability

to 0

as n Ò 8. In order to show that the second term in (4.92) also converges in probability to 0, we

need to proceed more carefully. First, since τn P rε, 1s, we can bound the second term in (4.92)

by

n2p
tnpτn`hnqu

ÿ

k“tnτnu`1

a2k
V̂

pnq

k´1

k ´ 1
ď n2p

suptnεuďkďn V̂
pnq

k

tnεu

tnpτn`hnqu
ÿ

k“tnτnu`1

a2k.

Next, since n2p

tnεu
„ n2p´1ε´1, in order to proceed as before we need to show that

sup
tnεuďkďn

V̂
pnq

k “ Op1q, in probability as n Ò 8,

i.e. that the sequence is stochastically bounded. To do so we proceed as follows: for each n,

notice that the process

V̂
pnq

k “ pX̂
pnq

1 q
2

` ¨ ¨ ¨ ` pX̂
pnq

k q
2, k ě 1,

is the reinforced version of the random walk

V
pnq

k “ pX
pnq

1 q
2

` ¨ ¨ ¨ ` pX
pnq

k q
2, k ě 1,

where pX̂
pnq

i q2 are i.i.d. variables with law ξ21{n. In order to have a centred noise reinforced

random walk, for k ě 1 set Ŷ
pnq

k :“ pX̂
pnq

k q2 ´ Erξ21{ns and we introduce:

Ŵ
pnq

k :“ V̂
pnq

k ´ kE
”

ξ21{n

ı

“

´

pX̂
pnq

1 q
2

´ E
”

ξ21{n

ı¯

` ¨ ¨ ¨ `

´

pX̂
pnq

k q
2

´ E
”

ξ21{n

ı¯

“ Ŷ
pnq

1 ` ¨ ¨ ¨ ` Ŷ
pnq

k ,

Now, the process pŴ
pnq

k qkPN is the noise reinforced version of the centred random walk defined

for k ě 1 as

W
pnq

k “ V
pnq

k ´ kE
”

ξ21{n

ı

“

´

pX
pnq

1 q
2

´ E
”

ξ21{n

ı¯

` ¨ ¨ ¨ `

´

pX
pnq

k q
2

´ E
”

ξ21{n

ı¯

“ Y
pnq

1 ` ¨ ¨ ¨ ` Y
pnq

k ,

where pY
pnq

i qiPN are i.i.d. with law ξ21{n ´ Erξ21{ns. We can now apply Corollary 4.3 from [21] to

W pnq: recalling that σ2n “ Erξ21{ns “ Op1{nq, we have

E
„

sup
kďn

´

V̂
pnq

k

¯2
ȷ

“ E
„

sup
kďn

´

Ŵ
pnq

k ` kσ2n

¯2
ȷ

ď CE
„

sup
kďn

´

Ŵ
pnq

k

¯2
ȷ

` Op1q

ď C 1E
„

´

ξ21{n ´ E
”

ξ21{n

ı¯2
ȷ

n ` Op1q.
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Once again, since ξ has compactly supported Lévy measure, Erξ21{ns and Erξ41{ns are both Op1{nq

as n Ò 8 and we deduce that

E
„

sup
kďn

´

V̂
pnq

k

¯2
ȷ

“ Op1q, as n Ò 8.

Hence, by Markov’s inequality the sequence psupkďn V̂
pnq

k qn is Op1q in probability and we can

conclude as before by bounding as follows for L ą 0:

P

¨

˝n2p
suptnεuďkďn V

pnq

k

tnεu

tnpτn`hnqu
ÿ

k“tnτnu`1

a2k ą η

˛

‚

ď P

ˆ

sup
kďn

V̂
pnq

k ą L

˙

`P

¨

˝L
n2p

tnεu

tnpτn`hnqu
ÿ

k“tnτnu`1

a2k ą η

˛

‚.

We shall now conclude the proof of Proportion 4.28 under our standing assumptions, and

in this direction recall our discussion prior to Lemma 4.29. To extend the convergence to the

interval r0, 1s we shall use a truncation argument similar to the one employed in Section 4.3 of

[21]. For each ε ą 0, we have pNn
t qtPrε,1s

L
Ñ pNtqtPrε,1s and since pNt`εqtPr0,1s Ñ pNtqtPr0,1s by

right continuity (extending N¨`ε for t P r1 ´ ε, 1s identically as the constant N1 ), we deduce by

metrisability of the weak convergence that there exists some sequence pεpnqqnPN, converging to 0

slowly enough as n Ò 8 such that pNn
t qtPrεpnq,1s

L
Ñ pNtqtPr0,1s and we only need to show:

sup
sďεpnq

npatnsuŜ
pnq

tnsu
Ñ 0, in probability as n Ò 8. (4.95)

In this direction, notice the inequality

xNn, Nn
ys ď n2pσ2n ` n2p

tnsu
ÿ

k“2

a2k

˜

p1 ´ pqσ2n ` p
V̂

pnq

k´1

k ´ 1

¸

.

Since ErV̂
pnq

k s “ kσ2n, an application of Doob’s inequality and the previous display yield that, for

any δ ą 0, we have

P

˜

sup
sďεpnq

|npatnsuŜ
pnq

tnsu
| ě δ

¸

ď δ´2E
”

xN pnq, N pnq
yεpnq

ı

ď δ´2n2pσ2n ` δ´2E

»

–n2p
tntu
ÿ

k“2

a2k

˜

p1 ´ pqσ2n ` p
V̂

pnq

k´1

k ´ 1

¸

fi

fl

ď δ´2σ2nn
2p

tnεpnqu
ÿ

n“2

a2k.

From the asymptotics,

lim
nÒ8

n2p´1
n
ÿ

k“1

a2k “
1

1 ´ 2p
, and σ2n “ Op1{nq,
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we deduce that, as n Ò 8, the convergence (4.95) holds and we can conclude by an application of

Lemma 3.31 - VI from Jacod and Shiryaev [54].

Remark 4.30. Before proceeding, we point out that our proof no longer works for p ě 1{2:

indeed, one might notice that the change in the asymptotic behaviour of the series
řn
k“1 a

2
k for

p ě 1{2 makes the preceding reasoning unfruitful. Let us be more precise: these series possess

three different asymptotic regimes depending on p and are the reason behind the different regimes

appearing in the behaviour of the Elephant random walk, see e.g. [11]. More generally, they are

behind the three regimes appearing in the invariance principles [21, 16]. When p ě 1{2, there is

no Brownian component and the martingale t´pξ̂p3q is no longer in L2pPq because Y ptq P LqpPq

for q ă 1{p. Since Nn is converging weakly towards t´pξ̂
p3q

t by (4.90), working with the sequence

of quadratic variations xNn, Nny might not be the right approach to obtain tightness.

Proof of Proposition 4.28, general case.

Let us start by introducing some notation. First, if N̂ is the jump measure of ξ̂, we will shorten

our notation for the compensated integrals and simply write ξ̂
p3q
u,vptq :“ p1tuď|x|ăvux ˚ N̂ pscqqt, for

0 ď u ă v. Hence, for K ą 1, we can write

ξ̂
p3q

0,Kptq “ ξ̂
p3q

t ` ξ̂
p3q

1,Kptq, t P r0, 1s.

It will also be convenient to introduce the following notation for the sums of jumps: for fixed

0 ă a ă b, we write

Σa,bptq :“
ÿ

sďt

1
taď|∆ξ̂s|ăbu∆ξ̂s “

ÿ

i

1xiPra,bqxiYiptq, for t P r0, 1s, (4.96)

so that in particular we have ξ̂p2q “ Σ1,8. Next, if ξ can be decomposed into ξ “ Lp1q `

Lp2q, for independent Lévy processes Lp1q, Lp2q, we denote its reinforced skeleton by Ŝpnqpξq “

pŜ
pnq

tntu
pξqqtPr0,1s and we write:

Ŝpnq
pξq “ Ŝpnq

pLp1q
q ` Ŝpnq

pLp2q
q,

for the decomposition that is naturally induced. More precisely, the two noise reinforced random

walks in the right-hand side of the previous display are made with the same sequence of Bernoulli

random variables as Ŝpξq, and just result from decomposing each increment as

∆pnqξi “ `∆pnqL
p1q

i ` ∆pnqL
p2q

i .

Now, we proceed by lifting progressively our restriction imposed in 4.5.3 as follows:

Step 1: First, if ξ satisfies that ξ “ MďK where MďK is the sum of a Brownian motion with

diffusion q and a compensated martingale with jumps smaller than K, by 4.5.3 the following

convergence holds in distribution:

Ŝpnq
´

MďK
¯

L
Ñ qB̂ ` ξ̂

p3q

0,K , as n Ò 8. (End of Step 1 )

Step 2: If b is a deterministic constant, let b ¨ Id :“ pbt : t ě 0q and suppose now that ξ can be

written as ξ “ b ¨ Id ` MďK . Then, we can write

Ŝpnq
pξq “ Ŝpnq

pb ¨ Idq ` Ŝpnq
pMďK

q,
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where the sequence of processes pŜpnqpb ¨ Idq : n ě 1q is deterministic and converges uniformly to

the continuous function b ¨ Id. Indeed, notice that the reinforcement doesn’t affect the drift term

since Ŝpnqpb ¨ Idqt “ btntu{n. We deduce from [54, Lemma 3.33] that, as n Ò 8, we still have

Ŝpnq
´

b ¨ Id ` MďK
¯

“ Ŝpnq
pb ¨ Idq ` Ŝpnq

´

MďK
¯

L
Ñ b ¨ Id ` qB̂ ` ξ̂

p3q

0,K . (4.97)

(End of Step 2 )

From here, we work with the Lévy process ξ with triplet pa, q2,Λq, with Lévy-Itô decomposition

given by:

ξ “ a ¨ Id ` Mď1
` ξp3q,

and we denote its jump measure by N – in particular, we have ξp3q “ 1p´1,1qcx ˚ N . For any

K ą 1, we can rearrange the triplet by compensating and modifying appropriately the drift

coefficient, in such a way that we have:

ξ “ bKId ` MďK
` ξěK ,

where ξěK :“ 1p´K,Kqcx ˚ N . Before moving to Step 3, let us make the two following remarks.

‚ First, notice that for each fixed n, Spnq
`

ξěK
˘ P

Ñ 0 uniformly in probability as K Ò 8.

Indeed, we have

P
´

sup
tPr0,1s

|Ŝ
pnq

tntu

´

ξěK
¯

| ą ε
¯

ď P
´

∆ξěK
t ‰ 0 for some t P r0, 1s

¯

,

where the right-hand side can be written in terms of the jump process N of ξ as

P
´

N
`

tpt, xq P r0, 1s ˆ R : |x| ě Ku
˘

ě 1
¯

“ 1 ´ e´pp´8,KsYrK,8qq. (4.98)

The right-hand side in the previous display converges to 0 as K Ò 8 and notice that the bound

does not depend on n.

‚ Let ξ̂ be the noise reinforced Lévy process of characteristics pa, q2,Λ, pq and write its jump

measure by N̂ . Again, we can rewrite ξ̂, by compensating appropriately and modifying the drift

coefficient, as follows:

ξ̂ “ bKId ` qB̂ ` ξ̂
p3q

0,K ` ΣK,8.

Arguing as before, we have the uniform convergence in probability bKId ` qB̂ ` ξ̂
p3q

0,K
P

Ñ ξ̂ as

K Ò 8, since, by the description of N̂ given in Definition 4.9, we have

P
´

sup
tPr0,1s

ˇ

ˇΣK,8ptq
ˇ

ˇ ě ε
¯

ď P
´

N̂
`

tpt, xq P r0, 1s ˆ R : |x| ě Ku
˘

ě 1
¯

“ 1´e´p1´pqΛpp´8,KsYrK,8qq.

Step 3: To conclude, for K ą 1, we write respectively the Lévy process and the corresponding

NRLP without their jumps of size greater than K as

ξďK :“ bKId ` MďK , and ξ̂ďK :“ bKId ` qB̂ ` ξ̂
p3q

0,K .

In (4.97), we already proved that for each fixed K, we have

Ŝpnq
pξďK

q
L
Ñ ξ̂ďK , as n Ò 8, while by our second remark, it holds that ξ̂ďK L

Ñ ξ̂, as K Ò 8.
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Since the convergence in distribution is metrisable, there exists an increasing sequence pKpnq :

n ě 1q converging to infinity slowly enough as n Ò 8, such that

Ŝpnq
`

ξďKpnq
˘ L

Ñ ξ̂, as n Ò 8.

Moreover, we can write

Ŝpnq
pξq “ Ŝpnq

`

ξďKpnq
˘

` Ŝpnq
`

ξěKpnq
˘

,

where for each ε ą 0, by (4.98) we have:

lim
nÒ8

P
´

sup
tPr0,1s

|Ŝ
pnq

tntu

´

ξěKpnq
¯

| ą ε
¯

ď lim
nÒ8

1 ´ e´Λpp´8,KpnqsYrKpnq,8qq
“ 0.

We can now apply [54, Lemma 3.31, Chapter VI] to deduce that the convergence Ŝpnqpξq
L
Ñ ξ̂

holds.

(End of Step 3 )

With this last result we conclude the proof of Proposition 4.28.

Convergence of finite-dimensional distributions

We maintain the notation and setting introduced at the beginning of Section 4.5.

Proposition 4.31. Let ξ be a Lévy process of characteristic triplet pa, q2,Λq and denote its

characteristic exponent by Ψ. Fix p P p0, 1q an admissible memory parameter, and for each n, let

pS
pnq

k , Ŝ
pnq

k q be the sequence of n-skeletons and its corresponding reinforced versions as defined in

(4.60). Then, there is the weak convergence in the sense of finite-dimensional distributions,
´

`

S
pnq

tntu

˘

tPr0,1s
,
`

Ŝ
pnq

tntu

˘

tPr0,1s

¯

f.d.d.
ÝÑ

´

pξtqtPr0,1s, pξ̂tqtPr0,1s

¯

, (4.99)

where we denoted by pξ, ξ̂q a pair of processes with law characterised by (4.58).

Remark that since the convergence is in the sense of finite dimensional distributions, the

restriction p ă 1{2 is dropped. Our proof will rely on two results taken respectively from [19] and

[26]. We state them without proof for ease of reading:

Corollary 3.7 of [19] Let F be a continuous functional on counting functions such that F p0q “ 0

where, with a slight abuse of notation we still write 0 for the identically 0 trajectory. Further,

suppose that there exists c ą 0 and 1 ď γ ă 1{p such that |F pωq| ď cωp1qγ for every counting

function ω : r0, 1s Ñ N. Then, if Y is a Yule-Simon process with parameter 1{p, the following

convergence holds in L1pPq:

lim
nÑ8

1

n

n
ÿ

j“1

F pNjptn¨uqq “ p1 ´ pqE rF pY qs . (4.100)

The second result concerns the asymptotic behaviour of Ψ.

Lemma 3.1 of [26] The asymptotic behaviour of the characteristic exponent Ψ as |z| Ò 8 is

given by:

|Ψpzq| “

$

’

’

&

’

’

%

op|z|2`ηq when q ‰ 0

op|z|βpΛq`ηq when q “ 0 and
ş

|x|ď1 |x|Λpdxq “ 8

op|z|1`ηq when q “ 0 and
ş

|x|ď1 |x|Λpdxq ă 8.

Now we have all the ingredients needed for the proof of Proposition 4.31.
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Proof. We fix k ě 1, 0 ă λ1 ă ¨ ¨ ¨ ă λk ď 1, and let β1, . . . βk be real numbers. In order to

establish the finite dimensional convergence, it suffices to show that

E

»

–exp

"

i
k
ÿ

j“1

`

λjStntju ` βjŜtntju

˘

*

fi

fl , (4.101)

converges as n Ò 8 towards (4.58). In this direction, for each n, we write pN
pnq

ℓ pkqqkě1,ℓě1 the

counting process of repetitions of Ŝpnq introduced in (4.67). Recalling the identity (4.68), we can

write,

Ŝ
pnq

tntu
“

n
ÿ

ℓ“1

N
pnq

ℓ ptntuqX
pnq

ℓ and S
pnq

tntu
“

n
ÿ

ℓ“1

1tℓďtntuuX
pnq

ℓ ,

with EreiλX
pnq

ℓ s “ e
1
n
Ψpλq for every ℓ. Then, by independence of the counting processes pN

pnq

ℓ pkqqkě1,ℓě1

from the sequence pX
pnq

ℓ qℓě0, the characteristic function (4.101) can be written as follows

E

»

–exp

"

i
k
ÿ

j“1

`

λjStntju ` βjŜtntju

˘

*

fi

fl

“ E

»

–exp

"

i
n
ÿ

ℓ“1

¨

˝

k
ÿ

j“1

´

λjN
pnq

ℓ ptntjuq ` βj1tℓďtntjuu

¯

˛

‚X
pnq

ℓ

*

fi

fl

“ E

»

–exp

"

´
1

n

n
ÿ

ℓ“1

Ψ

¨

˝

k
ÿ

j“1

λjN
pnq

ℓ ptntjuq ` βj1tℓďtntjuu

˛

‚

*

fi

fl .

Remark that since the law of pN
pnq

ℓ pkqqkě1,ℓě1 doesn’t depend on n, we can drop the up-script

pnq in the last display. Next, recall that Nℓptntuq “ 0 for all t P r0, 1s if εℓ “ 1 while on the other

hand, if εℓ “ 1, Nℓptnsuq “ 0 for tnsu ă l, and Nℓptnsuq ě 1 if tnsu ě l . Hence, we have:

1tℓďtnsuu “ 1␣
Nℓtnsuě1

(, on tεℓ “ 0u.

By the previous observations, we can write:

1

n

n
ÿ

ℓ“1

Ψ

¨

˝

k
ÿ

j“1

λjNℓptntjuq ` βj1tℓďtntjuu

˛

‚ (4.102)

“
1

n

n
ÿ

ℓ“1

Ψ

¨

˝

k
ÿ

j“1

λjNℓptntjuq ` βj1␣Nℓtntjuě1
(

˛

‚1tεℓ“0u `
1

n

n
ÿ

ℓ“1

Ψ

¨

˝

k
ÿ

j“1

βj1tℓďtntjuu

˛

‚1tεℓ“1u.

Now, let us establish the convergence in probability of both terms in the previous display sep-

arately. Starting with the first one, we introduce the functional F : Dr0, 1s Ñ C defined as

follows:

F pωq :“ Ψ

˜

k
ÿ

j“1

λjωptjq ` βj1tωptjqPr1,8su

¸

, (4.103)

for ω : r0, 1s Ñ N a generic counting function. This is a Q - a.s. continuous functional, since

ω ÞÑ 1tωpsqPr1,8su can be written as ω ÞÑ ωpsq ^ 1, which is a composition of a Q-a.s. continuous
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functional with the continuous mapping x ÞÑ x^ 1. Moreover, we have F p0q “ 0, and notice that

we can bound:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

j“1

λjωptjq ` βj1tωptjqPr1,8su

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď wp1q

˜

k
ÿ

j“1

|λj | ` |βj |

¸

,

by monotonicity of ω and the inequality 1tωpsqPr1,8su ď ωpsq. Now, by Lemma 3.1 of [26], we

deduce that F satisfies the hypothesis of Corollary 3.7 from [19], since

|F pωq| ď |ωp1q|
γK

˜

k
ÿ

j“1

|λj | ` |βj |

¸γ

, with

#

γ P p2, 1{pq, if q ‰ 0

γ P p1, 1{pq, if q “ 0,
(4.104)

for a constant K that only depends on βpΛq and q. From an application of Corollary 3.7 of [19],

we obtain the following convergence:

lim
nÑ8

1

n

n
ÿ

ℓ“1

Ψ

˜

k
ÿ

j“1

λjNℓptntjuq ` βj1␣Nℓtntjuě1
(

¸

1tεℓ“0u

“ lim
nÑ8

1

n

n
ÿ

ℓ“1

Ψ

˜

k
ÿ

j“1

λjNℓptntjuq ` βj1␣Nℓtntjuě1
(

¸

“ p1 ´ pqE

»

–Ψ

˜

k
ÿ

j“1

λjY ptjq ` βj1␣Y ptjqě1
(

¸

fi

fl . (4.105)

Turning our attention to the second term, similarly, we claim that:

lim
nÑ8

1

n

n
ÿ

ℓ“1

Ψ

˜

k
ÿ

j“1

βj1tℓďtntjuu

¸

1tεℓ“1u “ pE

»

–Ψ

˜

n
ÿ

j“1

βj1␣Uďtj
(

¸

fi

fl . (4.106)

Indeed, if for each n we denote by upnq a uniform random variable on t1, . . . , nu independent of

the i.i.d. sequence pεnqn of Bernoulli with parameter p, we have

E

»

–

1

n

n
ÿ

ℓ“1

Ψ

˜

k
ÿ

j“1

βj1tℓďtntjuu

¸

1tεl“1u

fi

fl “ E

»

–Ψ

˜

k
ÿ

j“1

βj1tupnqďtntjuu

¸

1tεupnq“1u

fi

fl

“ E

»

–Ψ

˜

k
ÿ

j“1

βj1tupnqďtntjuu

¸

fi

fl p, (4.107)

since εupnq is independent of upnq for each n. Further, since upnq{n converges in law towards

a uniform random variable in r0, 1s, the sequence of step processes p1tupnqďtn¨uuqnPN converges

weekly towards 1tUď¨u. Consequently, as n Ò 8, (4.107) converges towards

pE

»

–Ψ

˜

k
ÿ

j“1

βj1tUďtju

¸

fi

fl ,

where we recall that 1tUďtu has the same distribution as 1tY ptqě1u by the description (4.2).

Finally, recall the identity of Proposition 4.18 for characteristic function of the finite dimensional
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distributions of the pair pξ, ξ̂q. It follows from (4.102) and the limits (4.105), (4.106) that as

n Ò 8, we have the convergence towards the characteristic function of the finite-dimensional

distributions of pξ, ξ̂q,

lim
nÒ8

E

»

–exp

"

i
k
ÿ

j“1

`

λjStntju ` βjŜtntju

˘

*

fi

fl

“ exp

"

pE

»

–Ψ

˜

k
ÿ

j“1

λj1tY ptjqě1u

¸

fi

fl ` p1 ´ pqE

»

–Ψ

˜

k
ÿ

j“1

λj1tY ptjqě1u ` βiY psiq

¸

fi

fl

*

.

This result paired with the tightness established in Proposition 4.28 proves Theorem 4.19.

4.6 Applications

We conclude this work with three sections devoted to applications.

4.6.1 Rates of growth at the origin

In this section we turn our attention to the trajectorial behaviour of noise reinforced Lévy pro-

cesses at the origin. In this direction let us start by recalling a well known result established

by Blumenthal and Getoor [26] for Lévy processes. Let ξ be a Lévy process with characteristic

triplet pa, q2,Λq with no Gaussian component, viz. q “ 0; in particular βpΛq “ β. Further, we

make the following hypothesis:

‚ If
ş

t|x|ď1u
|x|Λpdxq “ 8, the characteristic exponent can be written as follows:

Ψpλq “

ż

R

´

eiλx ´ 1 ´ iλx1t|x|ď1u

¯

Λpdxq.

Observe that in this case, we have βpΛq P r1, 2s.

‚ If
ş

t|x|ď1u
|x|Λpdxq ă 8, which can happen for βpΛq P r0, 1s, we suppose Ψ takes the following

form:

Ψpλq “

ż

R

´

eiλx ´ 1
¯

Λpdxq.

This is, when
ş

r0,1s
|x|Λpdxq ă 8 we are supposing that the Lévy process has no linear drift, the

reason being that in that case the behaviour at 0 is dominated by the drift term. We insist in

the fact that when βpΛq “ 1 the integral
ş

t|x|ď1u
|x|Λpdxq can be finite or infinite.

We will be working for the rest of the section under these hypothesis, and we will refer to

them as hypothesis (H). It was established by Blumenthal and Getoor in [26] that under (H),

the behaviour at zero of a Lévy process is dictated by the Blumenthal-Getoor index of the Lévy

measure Λ. More precisely, almost surely, we have:

lim
tÓ0

t´γξt “ 0, if βpΛq ă 1{γ and lim sup
tÓ0

t´γ |ξt| “ 8, if βpΛq ą 1{γ.

We will show that the same result still holds if we replace the Lévy process ξ by its noise reinforced

version. Concretely, the main result of the section is the following:
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Proposition 4.32. Let ξ be a Lévy process with triplet pa, q2,Λq satisfying hypothesis (H), and

consider ξ̂ its noise reinforced version for an admissible parameter p. Then, almost surely, we

have

lim
tÓ0

t´γ ξ̂t “ 0, if βpΛq ă 1{γ, (4.108)

while

lim sup
tÓ0

t´γ |ξ̂t| “ 8, if βpΛq ą 1{γ. (4.109)

The rest of the section is devoted to the proof of Proposition 4.32 and it is achieved in several

steps. We start by proving the second statement (4.109), in Lemma 4.33 we prove (4.108) for

βpΛq ě 1,
ş

|x|ď1 |x|Λpdxq “ 8 and the case βpΛq ď 1,
ş

|x|ď1 |x|Λpdxq ă 8 is treated separately

in Lemma 4.35.

Proof of (4.108). It suffice to prove that for some r ą 0 and ε ą 0 a.s. there exists a sequence of

jumps occurring in r0, εs at times, that we denote by ptiq, satisfying

|∆ξ̂ti | ą tγ´r
i .

Now, recall from the discussion following (4.39) that the jump measure N̂ of ξ̂ dominates a

Poisson point process with intensity p1 ´ pqpdu b Λq, say N 1. If we denote the atoms of N 1 by

pui, xiq, we deduce that

#tpui, xiq P N 1 : ui P r0, εs and |xi| ą 2uγ´r
i u,

is distributed Poisson with parameter

p1 ´ pqdu b Λ
´

pu, xq P r0, εs ˆ R : |x|
1{pγ´rq

ą 2 ¨ u
¯

“

ż

R

´

2´1
|x|

1{pγ´rq
^ ε

¯

Λpdxqp1 ´ pq.

(4.110)

Now, take r ą 0 small enough such that the inequality 1{pγ ´ rq ă βpΛq still holds. For such a

choice of r, the integral (4.110) is infinite by definition of the index βpΛq and the claim follows.

Now we focus on showing that limtÓ0 t
´γ |ξ̂t| “ 0 for γ P p0, 1{βpΛqq. In this direction, let us

start introducing some notation and with some preliminary remarks. First, notice that since we

are interested in the behaviour of ξ̂ at the origin, we can rely on the original construction in [19] in

terms of Poissonian sums of Yule-Simon processes that we recalled in Section 4.2.3. Next, under

(H), ξ̂ can be written either as a sum of a compensated integral ξ̂p3q and a reinforced compound

Poisson process ξ̂p2q viz.

ξ̂ “ ξ̂p3q
` ξ̂p2q, if βpΛq ą 1, (4.111)

or as an absolutely convergent series of jumps,

ξ̂ “
ÿ

sďt

∆ξ̂s, t P r0, 1s, if βpΛq ă 1. (4.112)

We stress that if βpΛq “ 1, ξ̂ takes the form (4.111) or (4.112) depending respectively on if
ş

t|x|ď1u
|x|Λpdxq is infinite or not, and remark that γ can be strictly larger than one only when

βpΛq ă 1. Since ξ̂p2q is a finite sum of weighted Yule processes and ξ̂
p2q

0 “ 0, independently of

the value of βpΛq it holds that limtÓ0 t
´γ ξ̂

p2q

t “ 0 and we can consequently restrict our study of

(4.111) resp. (4.112) to the case where ξ̂ “ ξ̂p3q resp. ξ̂ has Lévy measure concentrated in r0, 1s

– and hence is a reinforced, driftless subordinator.
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Lemma 4.33. Suppose that βpΛq ě 1 and let γ P p0, 1 ^ 1{βpΛqq. Then,

lim
TÓ0

E
„

sup
sďT

s´γ
|ξ̂

p3q
s |

ȷ

“ 0.

In particular, if βpΛq ě 1 with
ş

t|x|ď1u
|x|Λpdxq “ 8, we have limtÓ0 t

´γ |ξ̂
p3q

t | “ 0 a.s.

Proof. Recall from Proposition 4.4 that pt´pξ̂
p3q

t qtPr0,1s is a martingale. We start by fixing s ă u

two times in r0, 1s and notice that for any r P pβpΛq, 1{p ^ 2q (or r “ 2 if βpΛq “ 2 ), by Doob’s

inequality in LrpPq we have

E
«

sup
tPrs,us

t´γ |ξ̂
p3q

t |

ff

ď s´pγ´pqE
«

sup
tPrs,us

t´p|ξ̂
p3q

t |

ff

ď s´pγ´pqE
«

sup
tPrs,us

t´p¨r
|ξ̂

p3q

t |
r

ff1{r

ď c ¨ s´pγ´pqu´pE
”

|ξ̂
p3q
u |

r
ı1{r

, (4.113)

for some constant c. In order to bound the expectation on the right hand side, we recall from the

proof of Lemma 2.6 in Bertoin [19] that the following bound holds 2 for some constant C large

enough:

E
”

|ξ̂
p3q
u |

r
ı1{r

ď CE

»

–

ÿ

j

Yjpuq
r
|xj |

r

fi

fl

1{r

. (4.114)

Next, by Campbell’s formula we have

E

»

–

ÿ

j

Yjpuq
r
|xj |

r

fi

fl “ E rY puq
r
s

ż

t|x|ă1u

|x|
rΛpdxq ă 8, (4.115)

and remark that E rY puqrs “ u ¨ E rηrs where η stands for a Yule-Simon random variable with

parameter 1{p. It now follows that we can bound E
”

|ξ̂
p3q
u |r

ı1{r
ď K ¨ u1{r for a positive constant

K depending only on r. This observation paired with the bound we obtained in (4.113), yields:

E
«

sup
tPrs,us

t´γ |ξ̂
p3q

t |

ff

ď s´pγ´pqu´p`1{r
¨ K, (4.116)

for a finite constantK that only depends on the choice of r. Now, set t0 :“ 1, tn :“ 2´n, for n ě 1

and fix N P N. Applying the bound (4.116) to each interval r2´pn`1q, 2´ns, we get:

E
„

sup
tďtN

t´γ |ξ̂
p3q

t |

ȷ

ď
ÿ

něN

E
«

sup
tPrtn`1,tns

t´γ |ξ̂
p3q

t |

ff

ď 2γ´p
ÿ

něN

2npγ´1{rq, (4.117)

and to conclude it suffices to show that, for an appropriate choice of r, the inequality γ´ 1{r ă 0

is satisfied. Since r P pβpΛq, 1{p^2q, we can always choose ε small enough such that r :“ βpΛq`ε

belongs to pβpΛq, 1{p ^ 2q and γ ă 1{pβpΛq ` εq, since we recall that γ ă 1{βpΛq. For such a

particular choice of r, the series (4.117) converge and we obtain the desired result. In particular,

this proves the statement of Proposition 4.32 when
ş

t|x|ď1u
|x|Λpdxq “ 8, which is when ξ̂ “

ξ̂p3q.
2The bound was first established for non-atomic Lévy measures Λ, but it was later shown that a similar bound holds if

Λ has atoms by an approximation argument.
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The statement (4.108) of Proposition 4.32 is incomplete only when the Lévy measure fulfils

the integrability condition
ş

t|x|ď1u
|x|Λpdxq ă 8. Recalling the discussion prior to Lemma 4.33,

we henceforth assume that the Lévy process is a driftless subordinator with jumps smaller than

one, say pTtq, and we denote by pT̂tq the corresponding reinforced version for a memory parameter

p P p0, 1q. It is then convenient to work with its Laplace transform at time t P r0, 1s,

E
”

e´λT̂t

ı

“ exp
´

´ E rΦpY ptqλqs

¯

, for λ ě 0,

for Φpλq :“ p1´ pq
ş

R`

`

1 ´ e´xλ
˘

Λpdxq and Y is a Yule-Simon process with parameter 1{p. The

following result from [26] will be needed and we state it for the reader’s convenience:

Theorem 4.34. [Blumenthal, Getoor][26] If Φpλq is the Laplace exponent of a driftless subordi-

nator with Lévy measure Λ, then for any ε ą 0,

Φpλq “ opλβpΛq`ε
q, as λ Ò 8.

Let ε ą 0, fix λ ą 0 and observe from Theorem 4.34 that for t P p0, 1q, there exists positive

constants K and R such that

Φpηλt´γq ď

#

K if ηλt´γ ď R,
`

ληt´γ
˘βpΛq`ε

if ηλt´γ ą R.

Consequently, for t P p0, 1q the following bound holds:

tΦpηλt´γq ď t
´

K `
`

ληt´γ
˘βpΛq`ε

¯

“ tK ` pληq
βpΛq`εt1´γβpΛq´γε. (4.118)

Lemma 4.35. Let T̂ be a reinforced subordinator of memory parameter p and Lévy measure Λ.

Then, for any γ P R` such that γ ă 1{βpΛq,

lim
tÓ0

t´γT̂t “ 0 a.s.

The proof relies on the same techniques used for subordinators, see [17, Proposition 10 - III.4].

Proof. Consider t P r0, 1s and fix a ą 0. An application of Markov’s inequality for gprq “ 1´ e´r

and the inequality gprq ď r for r ě 0 yield

P
`

T̂t ą a
˘

ď p1 ´ e´1
q

´1
`

1 ´ exp
␣

´E
“

Φ
`

a´1Y ptq
˘‰(˘

ď p1 ´ e´1
q

´1E
“

Φ
`

a´1Y ptq
˘‰

.

Since Φp0q “ 0 and Y ptq conditioned to Y ptq ě 1 follows the Yule-Simon distribution with

parameter 1{p, for a constant C we deduce the bound:

P
`

T̂t ą a
˘

ď CtE rΦ pη{aqs , (4.119)

where we denoted by η a Yule Simon random variable with parameter 1{p. Now, let h be an

increasing function with limtÓ0 hptq “ 0, and consider a “ hp2´nq, t “ 2´pn´1q. Then, by (4.119)

and from summing over n P N, we deduce

8
ÿ

n“1

P
´

T̂2´pn´1q ą hp2´n
q

¯

ď 2CE
«

8
ÿ

n“1

2´nΦ
`

η{hp2´n
q
˘

ff

. (4.120)
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In order to apply a Borel-Cantelli argument, we specialise in our case of interest: we set hptq :“ tγ

and we show that the right hand side of (4.120) is finite. From the first inequality in (4.118) with

λ “ 1, we get

8
ÿ

n“1

2´nΦ
`

η{hp2´n
q
˘

ď K
8
ÿ

n“1

2´n
` ηβpΛq`ε

8
ÿ

n“1

p2´n
q
1´γβpΛq´γε.

For ε small enough, we have both ηβpΛq`ε P L1pPq (since η is in LqpPq for any q ă 1{p and

βpΛq ă 1{p) and 1 ´ γβpΛq ´ γε ą 0, by our standing assumption 1 ą γβpΛq. Consequently, we

have
8
ÿ

n“1

P
´

T̂2´pn´1q ą p2´n
q
γ
¯

ă 8,

which entails by Borel-Cantelli that T̂2´pn´1q ă p2´nqγ holds for all n large enough, a.s. From

a monotony argument, it follows that a.s. T̂t ă tγ for all t small enough and in consequence

lim suptÓ0 t
´γT̂t ď 1. If we now take hptq “ δtγ for δ P p0, 1q, by the same reasoning we obtain

lim suptÓ0 t
´γT̂t ď δ which leads to the desired result.

Finally, our proof of Proposition 4.32 is complete.

4.6.2 Noise reinforced Lévy processes as infinitely divisible processes

As was already mentioned in Section 4.4.3, NRLPs are infinitely divisible processes – abbreviated

ID processes. In this final section, we study their properties under this new scope. In this

direction, we start by giving a brief overview of the theory; our exposition mainly follows Rosinksi

[86] and Chapter 3 of Samorodnitsky [87]. Then, we identify the features of NRLPs in this setting

and more precisely, we identify the functional triplet of NRLPs, in the sense of ID processes. The

objective here is hence to put Lévy processes and their NRLPs counterparts in the context of

ID processes and compare then through this new lens. As an application, making use of the

Isomorphism Theorem for ID processes [86, Theorem 4.4] we establish the following result:

Proposition 4.36. Let ξ̂ be a noise reinforced Lévy process with characteristics pa, 0,Λ, pq. Let

f : R Ñ R` be a bounded, continuous function with fpxq “ Opx2q at 0. Then, we have

lim
hÓ0

h´1E
“

f
`

ξ̂h
˘‰

“ p´1
p1 ´ pq

ż

R
Λpdxq

8
ÿ

k“1

fpkxqBpk, 1{p ` 1q.

Note that the probability distribution appearing in the previous display is the Yule-Simon

distribution (4.3). For an analogous result in the setting of Lévy processes, we refer to [86,

Proposition 4.13] and we shall use in our proof similar type of arguments. To simplify notation,

for the rest of the section we work with NRLPs in r0, 1s, but our exposition can be adapted

to R` with some slight changes. Hence, we can make use of the construction of NRLPs from

[19] in terms of Poissonian Yule-Simon series that we recalled at the end of Section 4.3. This

construction will be used for the rest of the section.

Preliminaries on infinitely divisible processes

Let us introduce some standard notation mostly taken from [86]. For T a nonempty set, we

denote by RT the set of R-valued functions indexed by t P T . If S Ă T is an arbitrary subset
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and e “ peptqqtPT P RT , we write eS for the restriction of e to S. Further, let πS be the canonical

projection πS : RT Ñ RS from RT into RS , viz. the function defined as πSpeq :“ eS . For finite

subsets of T of the form I :“ tt1, . . . , tku Ă T , the space RI is identified with Rk and we write:

eI “ pept1q, . . . , eptkqq P RI .

As usual, the space RT is equipped with the cylindrical sigma field BT :“ σpπt : t P T q generated

by the projection mappings. For any arbitrary S Ă T , we denote by 0S the 0 element of RS and

we write BS
0 :“ tA P BS : 0S R Au. Consequently,

π´1
S p0Sq “ te P RT : eptq “ 0 for all t P Su “: 0S Ă RT .

Notice however that this subset is not BT measurable when S is uncountable. Finally, for

x P R we set JxK :“ x1t|x|ď1u and if x “ px1, . . . , xkq P Rk, the term JxK should be interpreted

component-wise, viz. JxK :“ pJx1K, . . . , JxkKq. Now let us start with the following definition:

Definition 4.37. An R-valued stochastic process X “ pXtqtPT is said to be infinitely divisible (in

law) if for any n P N, there exist independent and identically distributed processes Y pn,1q, . . . Y pn,nq

such that

X
L
“ Y pn,1q

` . . . Y pn,nq.

When T “ t1u is a singleton, this is just the definition of a real valued infinitely-divisible

random variable, in which case, the characteristic function of X1 takes the Lévy-Khintchine form:

E
”

eiθX1

ı

“ exp
!

iθb ´
q2

2
θ2 `

ż

R

´

eiθx ´ 1 ´ iθJxK
¯

νpdxq

)

,

for q, b P R, ν a Lévy measure. Further, it is well known that the set of infinitely divisible random

variables and distributions of Lévy processes are in bijection and it is clear that if X is a Lévy

process with characteristic exponent as in the previous display, we have

X
L
“ Y pn,1q

` ¨ ¨ ¨ ` Y pn,nq,

where for each i P t1, . . . , nu, Y pn,iq is an independent copy of a Lévy process with characteristic

triplet pb{n, q{n, ν{nq. Said otherwise, Lévy processes are infinitely divisible processes. Moreover,

from the formula for the characteristic function of Proposition 4.2, it is clear that NRLPs are in

turn infinitely divisible.

Now, recall that a Gaussian processX “ pXtqtPT is a T -indexed process satisfying that, for any

I “ tt1, . . . , tku Ă T , the vector XI “ pXt1 , . . . , Xtkq is Gaussian. In the sequel we also assume

that the Gaussian processes we work with are centred. Gaussian processes are characterised

by their covariance function, in the sense that the law of X is completely determined by the

semi-definite positive function Γ : T ˆ T Ñ R defined by

Γpt, sq :“ E rXtXss , for t, s P T. (4.121)

The following characterisation of infinitely divisible stochastic processes shows that they are the

natural generalisation of Gaussian processes:

Proposition 4.38. [Proposition 3.1.3][87] An R-valued stochastic process X “ pXtqtPT is in-

finitely divisible if and only if for any finite collection of indices I “ tt1, . . . tku Ă T , the random

vector XI “ pXt1 , . . . Xtkq is infinitely divisible.
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Hence, ifX is an infinitely divisible process, by Lévy-Kintchine representation and the previous

proposition, for every I “ tt1, . . . , tku there exists: an Rk-valued measure νIpdxq verifying

ż

Rk

1 ^ |x|
2νIpdxq ă 8, and νI pt0Iuq “ 0,

a semi-definite positive I ˆ I matrix ΓI and an Rk vector, that we denote as bpIq, satisfying for

every θ P RI the identity:

E
«

exp

#

ÿ

tPI

θtXt

+ff

“ exp

"

ixbpIq, θy ´
1

2
xθ ΓI , θy `

ż

RI

´

eixθ,xy
´ 1 ´ ixθ, JxKy

¯

νIpdxq

*

.

(4.122)

It is possible to show that one can recover the collection of triplets ppbpIq,ΓI , νIq : I Ă T, |I| ă 8q

from a so called functional triplet pb,Γ, ν̄q, consisting in a path b P RT , a covariance function

Γ : T ˆ T Ñ R and a path-valued measure ν̄ defined in RT , satisfying for any finite I Ă T , that

bpIq “ πIpbq ΓI “ Γ
ˇ

ˇ

I
νIpdxq “ ν̄ ˝ π´1

I pdxq in BI
0 ,

where ν̄ satisfies some regularity and integrability conditions that we now introduce:

Definition 4.39. A measure ν̄ on RT is called a path Lévy measure if it satisfies the following

two conditions:

(i)
ş

RT |eptq|2 ^ 1 ν̄pdeq ă 8 for all t P T.

(ii) For every A P BT , there exists a countable subset TA Ă T such that ν̄pAq “ ν̄pAzπ´1
TA

p0TA
qq.

Moreover, we consider the following third condition:

(iii) There exists a countable subset T0 Ă T such that ν̄pπ´1
T0

p0T0
qq “ 0.

Then, (iii) is a stronger statement than (ii) and it has been shown that a path Lévy measure

is σ-finite if and only if (iii) holds – see e.g. [86]. Condition (ii) states roughly speaking that

ν̄ ”does not charge the origin”. As we already mentioned, in general 0T is not measurable and

hence we can not state this condition as in the finite-dimensional case of Lévy measures. One

of the main results of the theory states that infinitely divisible processes are in bijection with

functional triplets pb,Γ, ν̄q, we refer to [86] for the proof:

Theorem 4.40. For every infinitely divisible stochastic process X “ pXtqtPT there exists a unique

generating triplet pb,Γ, ν̄q consisting of a path b P RT , a covariance function Γ in T ˆ T and a

path Lévy measure ν̄ in RT such that for any finite I Ă T̂ ,

E
«

exp

#

i
ÿ

tPI

θtXt

+ff

“ exp

"

ixbI , θy ´
1

2
xθ ΓI , θy `

ż

RT

´

eixθ,eIy
´ 1 ´ ixθ, JeIKy

¯

ν̄pdeq

*

.

(4.123)

Conversely, for every generating triplet pb,Γ, ν̄q there exists an infinitely divisible process satisfying

(4.123).
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Maintaining the notation of Theorem 4.40, it follows in particular that the law of any ID

process X can be written as a sum of two independent processes X
L
“ G`P, where G is Gaussian

with covariance Γ and P is a so-called Poissonian ID process. When the equality X “ G ` P

holds almost surely, we call respectively G and P the Gaussian part and the Poissonian part of

X. Let us conclude our presentation with the following notion that will be of use:

Definition 4.41. A process V “ pVtqtPT defined in a measure space pS,S , nq is called a repre-

sentant of a path Lévy measure ν̄ if for any finite I Ă T , we have

n ps P S : VIpsq P Bq “ ν̄IpBq, for every B P BI
0 .

The representation is called exact if n ˝ V ´1 “ ν̄.

This is, if V is only a representant, the measure ν ˝ V ´1 might not be a Lévy measure since

it might ”charge the origin”. In the situations we will be interested in the representations will

always be exact, and we only enunciate the weaker definition to write the results we need in their

full generality. Representants allow to build explicitly Poissonian ID processes in terms of Poisson

random measure, for more details we refer to [86], see also our brief discussion before the proof

of Proposition 4.36 below.

The characteristic triplet of a NRLP

We can now start investigating Lévy processes and their reinforced counterparts as ID processes,

and we start with a basic analysis of the former. More precisely, we identify the path Lévy measure

of Lévy processes as well as an exact representant. These results are known [86, Example 2.23

] and the statements are only included to contrast with the analogous results for NRLPs – see

Lemma 4.44 below.

Lemma 4.42. The following assertions hold:

(i) Let ξ be a Lévy process with characteristic triplet pa, q,Λq. The path Lévy measure ν̄ of ξ is

given by,

ν̄pdeq :“ pdt b Λq ˝ V ´1
pdeq,

where we denoted by V the mapping V : R` ˆ R ÞÑ RR`

defined as V ps, xq :“ x1tsď¨u.

(ii) Consider a measure Λ on R with Λp0q “ 0 and let V be defined as in (i). Then, the condition
ş

1^ |x|2Λpdxq ă 8 holds if and only if ν̄ :“ pdtbΛq ˝V ´1 is a path Lévy measure in RR`

.

Moreover, if the later holds, the path Lévy measure ν̄ is σ-finite.

In particular, from (i) we get that V is an exact representant of ν̄, on pS,S , nq :“ pR` ˆ

R,BpR`q b BpRq, dt b Λq. We now turn our attention to noise reinforced Lévy processes and

we start with the following technical lemma:

Lemma 4.43. Let ξ̂ be an NRLP of characteristic triplet pa, 0,Λ, pq and let T “ r0, 1s. Then,

for any t P T , we have

E
„
ż

R

ˇ

ˇJY ptqxK ´ Y ptqJxK
ˇ

ˇΛpdxq

ȷ

ă 8. (4.124)
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Proof. First, recalling that JxK “ x1t|x|ď1u, we can write

E
“
ˇ

ˇJY ptqxK ´ Y ptqJxK
ˇ

ˇ

‰

“ E
“
ˇ

ˇY ptqJxK
ˇ

ˇ1t|xY ptq|ą1u

‰

` E
“
ˇ

ˇY ptqx ´ Y ptqJxK
ˇ

ˇ1t|xY ptq|ď1u

‰

. (4.125)

Remark that since Y takes values in t0, 1, 2, . . . u, the second term in the right-hand side vanishes.

On the other hand, for any q P pβpΛq _ 1, 1{pq, we have

ż

R
E
“
ˇ

ˇY ptqJxK
ˇ

ˇ1t|x|Y ptqą1u

‰

Λpdxq “

ż

t|x|ď1u

E
“

Y ptq1t|x|Y ptqą1u

‰

|x|Λpdxq

ď E rY qptqs
1{q

ż

t|x|ď1u

P pY ptq ą 1{|x|q
pq´1q{q

|x|Λpdxq,

(4.126)

where we recall that Y P LqpPq for any q ă 1{p. To conclude, recall the asymptotic behaviour

from (10) in [19],

P pY ptq ą 1{|x|q „ tΓp1{p ` 1q|x|
1{p, as x Ó 0.

It now follows that we can take q close enough to 1{p such that the integral in (4.126) is finite

and we deduce (4.124).

Now, we identify the path Lévy measure of NRLPs.

Lemma 4.44. The following assertions hold:

(i) Let ξ̂ be a NRLP with characteristic triplet pa, q2,Λ, pq. The path Lévy measure ν̄ of ξ̂ is

given by,

ν̄ :“ p1 ´ pqpΛ b Qq ˝ V ´1,

where V : Dr0, 1s ˆ R Ñ Rr0,1s is defined by V px, yq :“ xy.

(ii) Let pa, 0,Λq be the characteristic triplet of a Lévy Process and let V be defined as in (i).

Then, if a memory parameter p P p0, 1q is admissible for the triplet pa, 0,Λq, the measure

ν̄ :“ pΛ b Qq ˝ V ´1 is a σ-finite path Lévy measure in Rr0,1s. On the other hand, if

1{p ă βpΛq, then the integrability condition 4.39 - (i) fails.

In particular, from (i) we get that V is an exact representant of ν̄, in pS,S , nq “ pDr0, 1s ˆ

R,BpDr0, 1sq b BpRq,Q b Λp1 ´ pqq. On other hand, (ii) gives a natural interpretation in the

terminology of ID processes for the admissibility of p for Λ.

Proof. To identify the Lévy measure, let us write the characteristic function of the finite dimen-

sional distributions of ξ̂ in the form (4.123) and to simplify notation, we suppose that a, q “ 0.

In this direction, consider a finite I Ă T , θ “ pθt1 , . . . , θtkq P RI , and denote by y “ pyptqqtPr0,1s

an arbitrary counting function. Recall the formula for the finite dimensional distributions of ξ̂

from Proposition 4.2, for t “ 1. It now follows by Lemma 4.43 and the triangle inequality that

we have:
ż

R
ΛpdxqE

”ˇ

ˇ

ˇ
eixθ,YIyx

´ 1 ´ ixθ, JxYIKy

ˇ

ˇ

ˇ

ı

ă 8. (4.127)
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Now, we can write

E
«

exp

#

i
ÿ

tPI

θtξ̂t

+ff

“ exp

"

p1 ´ pq

ż

R
ΛpdxqE

”

exθ,YIyx
´ 1 ´ ixθ, YIyJxK

ı

*

“ exp

"

p1 ´ pq

ż

RˆDr0,1s

´

exθ,pxyqIy
´ 1 ´ ixθ, JxyIKy

¯

Λ b Qpdx, dyq

` i

ż

RˆDr0,1s

xθ, JxyIKy ´ xθ, yIyJxKΛ b Qpdx, dyqp1 ´ pq

*

,

where all the terms in the previous expression are well defined by Lemma 4.43 and (4.127). Since

pxyqI “ πIpV px, yqq and ν̄ “ p1 ´ pqpΛ b Qq ˝ V ´1, we obtain for a clear choice of bI that

E
«

exp

#

ÿ

tPI

θtξ̂t

+ff

“ exp

"
ż

RT

´

exθ,eIy
´ 1 ´ ixθ, JeIKy

¯

ν̄pdeq ` xθ, bIy

*

.

Next, notice that condition (iii) of Definition 4.39 is satisfied by pΛbQq ˝V ´1. Indeed, if we let

T0 :“ t1u and 0T0
:“ te P RT : ep1q “ 0u, recalling that Y p1q ě 1 a.s., we deduce that

Λ b Q ppx, yq : xy P t0T0
uq “ Λpt0uq “ 0.

To conclude, let us show that ν̄ satisfies the integrability condition (i) of Definition 4.39 if p is an

admissible memory parameter for Λ, viz. if βpΛq ă 1{p, while when βpΛq ą 1{p, the condition

fails. By definition of ν̄, we have
ż

RT

`

|eptq|
2

^ 1
˘

ν̄pdeq “

ż

R
E
“

|xYt|
2

^ 1
‰

Λpdxq, (4.128)

and write:

E
“

|xYt|
2

^ 1
‰

“ |x|
2E

“

|Yt|
21tYtď1{|x|u

‰

`P pYt ą 1{|x|q . (4.129)

Now, recalling from (10) of [19] the asymptotic behaviour,

P pYt ą 1{|x|q „ tΓpp´1
` 1q|x|

1{p, as |x| Ó 0,

it follows that if βpΛq ă 1{p, the term P pYt ą 1{|x|q is integrable with respect to Λ and infinite

if βpΛq ą 1{p. Let us now show that the same holds for
ż

r0,1s

|x|
2E

“

|Yt|
21tYtď1{|x|u

‰

Λpdxq. (4.130)

Recalling Lemma 4.1, we get:

E
“

|Yt|
21tYtď1{|x|u

‰

“

t1{|x|u
ÿ

n“1

n2P pYt “ nq “ tp´1
t1{|x|u
ÿ

n“1

n2B
`

n, p´1
` 1

˘

,

where we denoted by B the Beta function. Now, from the asymptotic behaviour

Bpn, p´1
` 1q „ n´p1`pq{pΓpp´1

` 1q, as n Ò 8,

it follows that (4.130) is finite if βpΛq ă 1{p and infinite if βpΛq ą 1{p.



155 4.6. Applications

Let us state the two last result that we need for the proof of Proposition 4.36. First, the

Poissonian part of ID processes consists, roughly speaking, in Poissonian sums of i.i.d. trajectories

– for instance, remark that for NRLPs those trajectories are the weighted Yule-Simon processes

– for more examples see e.g. [86, Section 3]. More precisely, let X “ pXtqtPT be an infinitely

divisible process with characteristic triplet pb,Σ, ν̄q and suppose that V “ pVtqtPT is a representant

of ν̄ defined on a σ-finite measure space pS,S , nq. To simplify notation, set χpuq :“ 1t|u|ď1u and

consider M a Poisson random measure in pS,S q with intensity n. Then, the following process

has the same distribution as X,

bt ` Gt `

ż

S
Vtpsq

`

Mpdsq ´ χpVtpsqqnpdsq
˘

, t P T, (4.131)

where G “ pGtqtPT is an independent Gaussian process with covariance Σ. The integration in

the previous display should read as a compensated integral, and for a detailed statement we refer

to [86, Proposition 3.1]. For example, notice that if X is a Lévy process, M is Poisson with

intensity dtbΛpdxq and replacing V by x1tsď¨u yields a Lévy-Itô representation. Finally, we give

one of the statements that we use of the Isomorphism Theorem of infinitely divisible processes

needed for our proof.

Theorem 4.45. [Isomorphism Theorem][86, 4.4] Let X “ pXtqtPT be an infinitely divisible process

given by (4.131). Choose an arbitrary measurable function q : S ÞÑ R` such that
ş

S qpsqnpdsq “ 1

and set Npqq :“
ş

S qpsqMpdsq. Then, for any measurable functional F : RT ÞÑ R, we have

E
“

F ppXtqtPT q1tNpqqą0u

‰

“

ż

S
E
”

F ppXt ` VtpsqqtPT q pNpqq ` qpsqq
´1
ı

qpsqnpdsq.

This allows for instance to study the law of X under different conditionings, for appropriate

elections of q. This will be used in our reasoning below. Now, let us conclude the proof of

Proposition 4.36.

Proof of Proposition 4.36. To simplify notation, we will perform a slight abuse of notation by

writing Λ instead of p1 ´ pqΛ. We start by fixing δ P p0, 1q small enough such that m “ Λp|x| ą

δq ą 0. Now, let h ą 0 and as usual, write y “ pyptqqtPr0,1s for a generic counting trajectory in

Dr0, 1s. Recall the result of Lemma 4.44 and consider a Poisson random measure M “
ř

δpxi,Yiq

with intensity Λ b Q. Next, we set

qpy, xq :“
1

mh
1t|x|ěδu1typhqě1u,

and take

Npqq “
1

mh

ż

Dˆt|x|ěδu

1typhqě1uMpdx, dyq “:
1

mh
Sh.

Then, from the definition of Sh we have

Sh “ #tpxi, Yiq : |xi| ě δ and Yiphq ě 1u ď #t|∆ξ̂s| ě δ for s ď hu,

where the inequality stands since a jump xi is repeated at each jump time of its respective Yi,

and consequently might be repeated multiple times in r0, hs. However, we do have #t|∆ξ̂s| ě
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δ for s ď hu “ 0 when Sh “ 0. Finally, we consider the functional F peq :“ fpephqq for e P Dr0, 1s.

An application of Theorem 4.45 yields:

E
”

fpξ̂hq1tShą0u

ı

“

ż

Dˆt|x|ěδu

E
„

f
`

ξ̂h ` xyphq
˘ 1

Sh ` 1

ȷ

1typhqě1uQpdyqΛpdxq

“

ż

Dˆt|x|ěδu

Ghpxyphqq1typhqě1uQpdyqΛpdxq,

for Ghpzq “ E
”

fpξ̂h ` zq 1
Sh`1

ı

and notice that limhÓ0Ghpzq “ fpzq by right-continuity – remark

that the previous display can be interpreted as the law of ξ̂h conditioned at having at least one

jump before time h of size greater than δ. If we let η be a random variable distributed Yule-Simon

with parameter 1{p under P, this entails that we can write:

1

h
E
”

fpξ̂hq

ı

“
1

h
E
”

fpξ̂hq1tSh“0u

ı

`
1

h
E
”

fpξ̂hq1tShą0u

ı

“
1

h
E
”

fpξ̂hq1tSh“0u

ı

`

ż

t|x|ěδu

E rGhpxηqsΛpdxq,

where in the last equality we used that the law of yphq under

1typhqě1u

Qpyphq ě 1q
Qpdyq,

is the Yule-Simon distribution with parameter 1{p by Lemma 4.1 and that Qpyphq ě 1q “ h.

Consequently, we deduce that

ˇ

ˇ

ˇ
h´1E

“

fpξ̂hq
‰

´

ż

R
E rfpxηqsΛpdxq

ˇ

ˇ

ˇ

ď h´1E
”

|fpξ̂hq|1tSh“0u

ı

`

ż

t|x|ďδu

E
“

|fpxηq|
‰

Λpdxq `

ˇ

ˇ

ˇ

ż

t|x|ěδu

E rGhpxηqs ´ E rfpxηqsΛpdxq

ˇ

ˇ

ˇ

“: K1ph, δq ` K2pδq ` K3ph, δq.

Now, we study the limit as h Ó 0 of these three terms separately and we start withK1ph, δq. Recall

the notation introduced in 4.5.3 for the compensated integrals as well as Σδ,8 :“ 1p´δ,δqcx ˚ N̂
for the process obtained by adding jumps of size greater that δ ą 0. Recall that on tSh “ 0u, the

process ξ̂ doesn’t have jumps of seize greater than δ before time h. It now follows that, restricted

to tSh “ 0u, the following equality holds:

ξ̂h “ ξ̂h ´
ÿ

i

xiYiphq1t|xi|ěδu “ a ¨ h ` ξ̂
p3q

0,1phq ` Σ1,8phq ´ Σδ,8phq “ ξ̂
p3q

0,δ phq ´ cδ ¨ h, (4.132)

for cδ :“ ´a ` p1 ´ pq´1
ş

tδď|x|ď1u
xΛpdxq and denote the right hand side of (4.132) by ξ̂δh. Now

let us first consider the case βpΛq ă 2. Since f is bounded and Op|x|2q at the origin, for any

q P pβpΛq _ 1, 1{p ^ 2q satisfying q ă r we can bound |fpxq| ď C|x|q for all x P R, for some

constant C large enough. Then, for a constant C 1 that only depends on q we have

K1ph, δq “ h´1E
”

|fpξ̂hq|1tSh“0u

ı

ď Ch´1E
”

|ξ̂δh|
q
ı

ď C 1h´1E
”

|ξ̂
p3q

0,δ phq|
q
ı

` C 1hq´1
|cδ|q.



157 4.6. Applications

Now, arguing as in (4.114), (4.115), recall that for q P pβpΛq _ 1, 1{p ^ 2q we have the following

bound for the compensated sum of Yule-Simon processes:

E
”

|ξ̂
p3q

0,δ phq|
q
ı

ď E rY phq
q
s

ż

t|x|ďδu

|x|
qΛpdxq “ h ¨ E rηqs

ż

t|x|ďδu

|x|
qΛpdxq ă 8. (4.133)

Since q ´ 1 ą 0, we have lim suphÓ0K1ph, δq ď E rηqs
ş

t|x|ďδu
|x|qΛpdxq which can be made arbi-

trarily small for an appropriate choice of δ. Remark that the same reasoning applies for K2pδq, by

making use once again of the bound |fpxq| ď C|x|q. Finally, since for any choice of δ, K3ph, δq Ó 0

as h Ó 0, we obtain the desired result.

If βpΛq “ 2, we set q “ 2 and once again recall from page 9 of Bertoin [19] that the inequality

(4.133) still holds. In this case, since pβpΛq ă 1, p must be smaller than 1{2 and consequently

E
“

η2
‰

ă 8, while of course
ş

t|x|ďδu
|x|2Λpdxq ă 8 by definition of a Lévy measure. We can then

proceed as before.

4.6.3 Convergence towards reinforced α-stable Lévy process

Before closing the section, we establish a complementary result that is well known in the setting

of Lévy processes and exploits the explicit form of the finite-dimensional distributions (4.10). We

start with some necessary background on the theory of convergence towards stable distributions

and Lévy processes. We say that a sequence of iid random variables is in the domain of attraction

of an α stable distribution for α P p0, 2q if for some sequence an “ n1{αhpnq with hpnq slowly

varying at infinity in the sense of Karamata, the following sequence of normalised sums converges

weakly
X1 ` ¨ ¨ ¨ ` Xn

an

L
ÝÑ Y (4.134)

towards a non-degenerate random variable. For simplicity, we exclude the more delicate case of

α “ 1 and from now on, α belongs to p0, 1qYp1, 2q. In that case, Y is an α-stable random variable

and its characteristic exponent Ψα can be written as

Ψαpuq “ c|u|
α

ˆ

1 ´ iβ
u

|u|
tanpπα1{2q

˙

for some constants c and β. If we denote by φpuq the characteristic function of X1, since φp0q “ 1

and φ is continuous, a branch of the logarithm logφpuq “: Ψpuq with Ψp0q “ 0 is defined in a

neighbourhood of the origin for |u| ă r, for r small enough. The condition of X1 being in the

domain of attraction of Y can then be equivalently phrased by asking Ψ to be of the form

Ψpuq “ iγu ´ c|u|
αh̃puq

ˆ

1 ´ iβ
u

|u|
tan pαπ1{2q

˙

(4.135)

in some neighbourhood of the origin, for h̃puq some slow varying function as u Ó 0 (see for e.g.

Theorem 2.6.5 in Ibragimov and Linnik [52]). Since we will work in the case without centring,

γ is null when α P p1, 2q. Further, when the scaling constants an are n1{α, we say that X1 is in

the normal domain of attraction of a stable law Y and in that case, h̃puq is just constant. The

condition (4.134) can be then written, for n large enough, as

lim
nÑ8

nΨpu{n1{α
q “ Ψαpuq for all u P R.
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Notice that in fact, since h̃ in (4.135) is constant, the stronger convergence holds:

lim
tÑ8

tΨpu{t1{α
q “ Ψαpuq for all u P R,

which entails that

Ψpuq “ Opuαq as u Ó 0. (4.136)

Now we specialise in our case of interest: suppose that X1 is infinitely divisible and denote

by Ψ its corresponding characteristic exponent. In order to establish weak convergence, in the

sense of Skorokhod, of a sequence of Lévy processes pξnq towards another Lévy process ξ, it is

enough to show that the sequence of random variables pξn1 q converges weakly towards ξ1 (see for

e.g. Jacod and Shiryaev [54] VII, Corollary 3.6). For instance, if ξ is a Lévy process and X1 “ ξ1
is in the domain of normal attraction of an α-stable law Y and if we denote by Y pαq a Lévyprocess

with Y
pαq

1
L
“ Y then

´

n´1{αξnt

¯

tPR`

L
Ñ Y α as n Ò 8.

The conditions under which ξ1 is in the domain of attraction of a stable law Y can be expressed

explicitly in terms of the characteristic triplet of ξ, see for example proposition 1 in Rosenbaum

and Tankov [85]. Our following result shows that in the context of noise reinforced Lévy process, if

ξ1 is in the domain of attraction of a stable law Y and p is an admissible memory parameter for the

Blumenthal-Getoor index of the Lévy measure Λ, that we denote as usual as βpΛq, then we also

have weak convergence of the sequence of rescaled reinforced processes pn´1{αξ̂ntqtPR` towards

the corresponding reinforced alpha-stable Lévy process Ŷ pαq in the sense of finite dimensional

distributions, as long as α ď βpΛq. Now we state our result:

Proposition 4.46. Consider ξ a Lévy process and suppose that ξ1 is in the domain of normal

attraction of an α-stable distribution Y , for α ď βpΛq. We denote by Y α a Lévy process with

Y α1
L
“ Y . If ξ̂ is the reinforced version of ξ for an admissible memory parameter p, then p is an

admissible memory parameter for Y α and

´

n´1{αξ̂nt

¯

tPR`

fdd
Ñ Ŷ α as n Ò 8

where Ŷ α stands for the noise reinforced version of Y α with memory parameter p.

Proof. Recall that by definition of an admissible memory parameter, we have βpΛqp ă 1. The

first assertion then follows by noticing that the Blumenthal-Getoor index of the Lévy measure

Λα of an α-stable Lévy process is βpΛαq “ α and in consequence βpΛαqp ă 1. We consider times

0 ď t1 ă ¨ ¨ ¨ ă tk P R` and we fix t with tk ď t. By Proposition 4.10, since ntj ă nt for all j,

E
«

exp

"

i
k
ÿ

i“1

λin
´1{αξ̂nti

*

ff

“ exp

"

ntp1 ´ pqE
«

Ψ

˜

n1{α
k
ÿ

i“1

λiY pti{tq

¸ff

*

while the finite dimensional distribution of the α-stable reinforced process Ŷ α are given by

E
«

exp

"

i
k
ÿ

i“1

λiŶ
pαq

ti

*

ff

“ exp

"

tp1 ´ pqE
«

Ψα

˜

k
ÿ

i“1

λiY pti{tq

¸ff

*

.
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If we denote by Qpdyq the law of a Yule-Simon process in Dr0, 1s, y “ pyptqqtPr0,1s a generic count-

ing trajectory and we set fpyq “
řk
i“1 λiypti{tq, by hypothesis we have the pointwise convergence

nΨpfpyq{n1{α
q Ñ Ψαpfpyqq as n Ò 8 (4.137)

and the result will be established by showing that

Q
´

nΨpfpyq{n1{α
q

¯

Ñ Q pΨαpfpyqqq as n Ò 8. (4.138)

This convergence will follow from the asymptotic behaviour of Ψ at the origin and at infinity.

First, from (4.136), we deduce that for all |u| ă ε for ε small enough and for some positive

constant C, |Φpuq| ď C|u|α and in consequence

n|Ψpfpyq{n1{α
q1t|fpyq{n1{α|ďεu| ď C|fpyq|

α.

Since αp ă 1, Y ptq has moments for order α and we conclude from (4.137) that

lim
nÒ8

Q
´

nΨpfpyq{n1{α
q1t|fpyq{n1{α|ďεu

¯

“ Q pΨαpfpyqqq . (4.139)

On the other hand, we recall from Blumenthal and Getoor [26] that, since the Gaussian component

is null, the asymptotic behaviour at infinity of Ψ is dictated by the integrablity of the Lévy measure

at 0 as follows: for any δ ą 0,

|Ψpuq|

#

op|u|βpΛq`δq when
ş

|x|ď1 |x|Λpdxq “ 8

op|u|1`δq when
ş

|x|ď1 |x|Λpdxq ă 8.

If we first suppose that
ş

t|x|ď1u
|x|Λpdxq “ 8, since Ψ is bounded on any neighbourhood of the

origin, we deduce that for a constant C 1 large enough

n|Ψpfpyq{n1{α
q|1t|fpyq{n1{α|ąεu ď C 1

|fpyq|
βpΛq`δn1´βpΛq{α´δ{α (4.140)

where βpΛq{α ě 1. Once again, since βpΛqp ă 1 and Y ptq P LqpPq for any q ă 1{p, for δ small

enough |fpyq|βpΛq`δ is in L1pQq and

lim
nÑ8

Q
´

nΨpfpyq{n1{α
q1t|fpyq{n1{α|ąεu

¯

“ 0. (4.141)

Finally, from (4.141) and (4.139) we deduce the desired limit (4.138). If we now suppose that
ş

t|x|ď1u
|x|Λpdxq ă 8, the bound established in (4.140) is in this case

n|Ψpfpyq{n1{α
q|1t|fpyq{n1{α|ąεu ď C 1

|fpyq|
1`δn1´1{α´δ{α

and since βpΛq ď 1 under the stronger integrability condition
ş

1^ |x|Λpdxq ă 8, we can proceed

as we did before.

4.7 Appendix

This short section is devoted to proving a technical identity needed for the proof of Lemma 4.6.

The proof was omitted from the main discussion for readability purposes.
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Fix a Lévy measure Λ in R, p P p0, 1q and denote the law of the standard Yule process Z “

pZptqqtPR` started at Z0 “ 1 by Z. We write Dr0,8q the space of R` indexed, R-valued rcll

functions. Since Z is supported on the subset of Dr0,8q of counting functions, z “ pztqtPR` in the

sequel stands for a generic counting function. Moreover, if F : R`ˆDr0,8q ÞÑ R` is a measurable

function, we write Z‚ for the measure in R` ˆ Dr0,8q defined as Z‚
pF q :“

ş

R` duErF pu, Zqs.

Roughly speaking, the objective is to describe the law of the following ”process”:

pu, zq ÞÑ
`

1tuďtuzpplnptq´lnpuqq : t P R`
˘

P Dr0,8q (4.142)

defined on the measure space pR ˆ Dr0,8q,Z‚
q, under different restrictions of the measure Z‚.

In this direction, for T ą 0 we write

Z‚
p¨ |u ď T q :“

1tuďT u

T
duZpdzq,

which is now a probability measure on R` ˆDr0,8q. The main properties of interest are stated

in the following lemma, and shares obvious similarities with Lemma 4.1.

Lemma 4.47. The following properties hold:

(i) For each fixed t ą 0, the random variable

pu, zq ÞÑ 1tuďtuzp lnpt{uq under Z‚
p¨ |u ď tq,

has the same distribution as the Yule Simon random variable η with parameter 1{p.

(ii) For every T ą 0, the process

pu, zq ÞÑ
`

1tuďTtuzp lnpTt{uq : t P r0, 1s
˘

under Z‚
p¨ |u ď T q,

has the same law as the Yule-Simon process pY ptqqtPr0,1s with parameter 1{p.

Notice that the conditioning tu ď tu is playing the exact same role as the conditioning on

tY ptq ě 1u in Lemma 4.1. Heuristically, (4.142) is then a Yule-Simon process started at a time

chosen according to du in R`.

Proof. (i) Since for each fixed t, du b Zpu ď tq “ t, for every bounded measurable function

f : R Ñ R, we have

Z‚
`

f
`

1tuďtuzp lnpt{uq

˘

|u ď t
˘

“ t´1

ż t

0
duE

”

f
´

Z
`

pplnptq ´ lnpuqq
˘

¯ı

, (4.143)

where we denoted by Z a standard Yule process. Since Zr is distributed geometric with parameter

e´r, it follows from the change of variable y “ pu{tqp and (4.3) that (4.143) equals

p´1
ÿ

kě1

fpkqBpk, 1 ` 1{pq,

and the claim follows from (4.3).

(ii) In order to show the second claim, we fix an arbitrary collection of bounded measurable

functions pfiqiďk with fi : R ÞÑ R, and an increasing sequence of times 0 ď t1 ă ¨ ¨ ¨ ă tk ď 1,

and notice that

Z‚

˜

k
ź

i“1

fi
`

1tuďTtiuzp lnpTti{uq

˘

|u ď T

¸

“

ż 1

0
duE

«

k
ź

i“1

fi
`

1tuďtiuZ ppplnptiq ´ lnpuqqq
˘

ff

.

The claim now follows from the description (4.2) by independence between U and Z.
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Excursion theory for Markov processes
indexed by Lévy trees.
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Chapter 5

The structure of the local time of Markov
processes indexed by Lévy trees

The content of this chapter is taken from the paper [82], written in collabora-

tion with Armand Riera, and has been accepted for publication, with revisions

pending, in the journal Probability Theory and Related Fields .

Abstract. We construct an additive functional playing the role of the local time – at a fixed

point x – for Markov processes indexed by Lévy trees. We start by proving that Markov processes

indexed by Lévy trees satisfy a special Markov property which can be thought as a spatial version

of the classical Markov property. Then, we construct our additive functional by an approximation

procedure and we characterize the support of its Lebesgue-Stieltjes measure. We also give an

equivalent construction in terms of a special family of exit local times. Finally, combining these

results, we show that the points at which the Markov process takes the value x encode a new

Lévy tree and we construct explicitly its height process. In particular, we recover a recent result

of Le Gall concerning the subordinate tree of the Brownian tree where the subordination function

is given by the past maximum process of Brownian motion indexed by the Brownian tree.

Acknowledgments. We thank Jean-François Le Gall for stimulating conversations.
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5.1 Introduction

Excursion theory plays a fundamental role in the study of R`–indexed Markov processes dating

back to Itô’s work [53]. The purpose of this theory is to describe the evolution of a Markov

process between visits to a fixed point in the state space. To be more precise, consider a Polish

space E, a strong E-valued continuous Markov process ξ and fix a point x P E, regular and

instantaneous for ξ. The paths of ξ can be decomposed in excursions away from x, where an

excursion is a piece of path of random length, starting and ending at x, such that in between ξ

stays away from x. Formally, they consist of the restrictions of ξ to the connected components of

R`ztt P R` : ξt “ xu. In order to keep track of the ordering induced by the time, the family of

excursions is indexed by means of a remarkable additive functional of ξ, called its local time at

x, and denoted throughout this work by L. It is well known that L is a continuous process with

Lebesgue-Stieltjes measure supported on the random set:

␣

t P R` : ξt “ x
(

, (5.1)

and that the trajectories of ξ can be recovered from the family of indexed excursions by gluing

them together, taking into account the time spent by ξ at x. For technical reasons, we will also

assume that the point x is recurrent for ξ. We stress that excursion theory holds under broader

assumptions on the Markov process ξ, and we refer to e.g. [17, Chapter VI] and [25] for a complete

account.

The purpose of this work is to set the first milestone towards introducing an excursion theory

for Markov processes indexed by random trees. The random trees that we consider are the so-

called Lévy trees. This family is canonical, in the sense that Lévy trees are scaling limits of Galton-

Watson trees [43, Chapter 2] and are characterized by a branching property in the same vein as

their discrete counterparts [66, 91]. At this point, let us mention that Markov processes indexed
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by Lévy trees are fundamental objects in probability theory – for instance, they are intimately

linked to the theory of superprocesses [43, 64]. More recently, Brownian motion indexed by the

Brownian tree has been used as the essential building block in the construction of the universal

model of random geometry called the Brownian map [65, 76], as well as in the construction of

other related random surfaces [10, 72]. We also stress that Brownian motion indexed by a stable

tree is also a universal object, due to the fact that it arises as scaling limit of discrete models [75].

For the sake of completeness, we shall start with a brief and informal account of our objects of

interest.

A Lévy tree can be encoded by a continuous R`-valued process H “ pHtq called its height

process ; and for this reason we denote the associated tree by TH . Roughly speaking, the tree

TH has a root and H encodes the distances to it when the tree is explored in ”clockwise order”.

Under appropriate assumptions, we consider the pair consisting of the Markov process ξ and its

local time L, indexed by a Lévy tree TH . With a slight abuse of notation, this process will be

denoted in the rest of this work by:

`

pξυ,Lυq : υ P TH
˘

. (5.2)

In short, this process can be thought as a random motion defined on top of TH and following the

law of ppξt,Ltq : t P R`q, but splitting at every branching point of TH into independent copies.

The role played by tt P R` : ξt “ xu is taken over in this setting by the following random subset

of TH :
Z :“ tυ P TH : ξυ “ xu. (5.3)

The definition of the excursions of pξυqυPTH
away from x should then be clear at an intuitive

level – since it suffices to consider the restrictions of pξυqυPTH
to the connected components of

THzZ . Notice however that we lack a proper indexing for this family of excursions that would

allow to recover the whole path, as in classical excursion theory. Moreover, one can expect the

gluing of these excursions to be more delicate in our setting, since in the time-indexed case the

extremities of an excursion consist of only two points, while in the present case, the extremities

are subsets of TH of significantly more intricate nature. In the same vein, since the set Z is a

subset of TH , it inherits its tree structure and therefore it possesses richer spatial properties than

the subset of the real line (5.1). More precisely, we consider the equivalence relation „L on TH
which identifies the components of TH where pLυqυPTH

stays constant. The resulting quotient

space T L
H :“ TH{ „L is also a tree, encoding the set Z and endowing it with an additional tree

structure. In the terminology of [66], the tree T L
H is the so-called subordinate tree of TH by L.

Since each component of TH where L stays constant is naturally identified with an excursion of ξ

away from x, a proper understanding of T L
H is crucial to develop an excursion theory for pξυqυPTH

.

This work is devoted to both:

1. Introducing a continuous process suitable to index the excursion of pξυqυPTH
away from x;

2. Studying the structure of the random set Z .

As we shall explain, both questions are intimately related and, as we mentioned before, they

lay the foundations for the development of an excursion theory for pξυqυPTH
. In the case of

Brownian motion indexed by the Brownian tree, an excursion theory has already been developed

in [1] and has turned out to have multiple applications in Brownian geometry, see e.g. [67, 70].
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However, we stress that in [1] the excursions are not indexed and, in particular, a reconstruction

of the Brownian motion indexed by the Brownian tree in terms of its excursions is still out of

reach. Let us now present the general framework of this work.

In order to formally define the tree indexed process (5.2), we rely on the theory of Lévy snakes

and we shall now give a brief account. The theory of Lévy snakes has mainly been developed in

the monograph of Duquesne and Le Gall [43], and a detailed presentation of the results that we

need is given in Section 5.2. The process (5.2) is built from two layers of randomness. First, as

we already mentioned, the family of random trees that we work with are called Lévy trees. If ψ

is the Laplace exponent of a spectrally positive Lévy process X, under appropriate assumptions

on ψ, one can define the height process H as a functional of X. In order to explain how TH is

encoded by H, we work under the excursion measure of X above its running infimum and we

write σ for the duration of an excursion. The relation:

dHps, tq :“ Hs ` Ht ´ 2 ¨ inf
s^tďuďs_t

Hu, for all ps, tq P r0, σs
2,

defines a pseudo-distance on r0, σs, and the associated equivalence relation „H is defined by setting

s „H t if and only if dHps, tq “ 0. The pointed metric space TH :“ pr0, σH s{ „H , dH , 0q is a Lévy

tree1, where for simplicity we keep the notation 0 for the equivalence class of 0. We also write

pH : r0, σs ÞÑ TH for the canonical projection on TH and we refer to Section 5.2.2 for more details

about this encoding. The point 0 is called the root of TH and, by construction, the height process

encodes the distances to it. We stress that the distribution of TH is characterized by the exponent

ψ, and we say that TH is a ψ-Lévy tree. One of the main technical difficulties of this work is that,

except when X is a Brownian motion with drift, the process H is not Markovian and we will

need to introduce a measure-valued process – called the exploration process – which heuristically,

carries the information needed to make H Markovian. This process will be denoted throughout

this work by ρ “ pρt : t ě 0q and its nature has a crucial impact on the geometry of TH . For

instance, ρ allows to characterize the multiplicity and genealogy of points of TH . More precisely,

recall that the multiplicity of a point υ in TH is defined as the number of connected components

of THztυu. For i P N˚ Yt8u, we write MultiipTHq for the set of points of TH of multiplicity i, and

the points of multiplicity strictly larger than 2 are called branching points. For instance, if X does

not have jumps, the measures pρt : t ě 0q are atomless and all branching points have multiplicity

3. In contrast, as soon as the Lévy measure of X is non-null, the measures pρt : t ě 0q have atoms

and the set Multi8pTHq is non-empty. We also refer to [69] for the construction of the exploration

process. The second layer of randomness consists in defining, given TH , a spatial motion indexed

by TH that roughly speaking behaves like the Markov process pξtqtPR`
– when restricted to an

injective path connecting the root of TH to a leaf. This informal description can be formalized

by making use of the theory of random snakes [43, Section 5]. More precisely, one can define a

process pWs,Λs : s P r0, σsq taking values in the collection of finite E ˆ R`–valued continuous

paths, each pWs,Λsq having lifetime Hs and such that, for each s P R` and conditionally on Hs,

the path pWs,Λsq has the same distribution as pξs,Ls : s P r0, Hssq. The second main property

of pW,Λq is that it satisfies the snake property, viz.

`

WtpHtq,ΛtpHtq
˘

“
`

WspHsq,ΛspHsq
˘

, for every s „H t.

1More precisely, since the duration σ is random, TH is referred to as a free Lévy tree.
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For simplicity, from now on, we will write pxWt, pΛtq :“ pWtpHtq,ΛtpHtqq for the tip of pWt,Λtq. By

the snake property, it follows that the process pxWt, pΛt : t P r0, σsq is well defined in the quotient

space TH , and hence it defines a random function indexed by TH which will be denoted by (5.2).

The triplet pρ,W,Λq is the so-called ψ-Lévy snake with spatial motion pξ,Lq, a Markov process

that will be extensively studied throughout this work.

Let us now present the statements of our main results. These are stated under the excursion

measure of pρ,W,Λq, but let us mention that we will obtain similar results under the underlying

probability measure. By construction, the study of Z is closely related to the understanding of

the random set:

tt P r0, σs : xWt “ xu, (5.4)

since Z is precisely its image under the canonical projection pH on TH . However, note that these
two sets are of radically different natures. As in classical excursion theory for Markov processes,

we shall start by constructing an additive functional A “ pAtqtPr0,σs of the Lévy snake pρ,W,Λq

with suitable properties and Lebesgue-Stieltjes measure dA supported on (5.4). The first main

result of this work is obtained in Section 5.4 and is divided in two parts:

(i) The construction of the additive functional A [Proposition 5.22];

(ii) The characterization of the support of dA [Theorem 5.30].

See also Theorem 5.15 for an equivalent formulation of (ii) in the terminology of the tree indexed

process pξυqυPTH
. Recalling our initial discussion, the process pAtqtPR`

is the natural candidate to

index the excursions away from x of pξυqυPTH
. We are not yet in position in this introduction to

formally state the content of (i) and (ii), but we can give a general description. Our construction

of pAtqtPR`
relies on the so-called exit local times of the Lévy snake pρ,W,Λq. More precisely,

if we consider the family of domains tE ˆ r0, rq : r P p0,8qu, for each fixed r ą 0, there exists

an additive functional of pρ,W,Λq that heuristically measures, at every t ě 0, the number of

connected components of THztυ P TH : Lυ ď ru visited up to time t. This description is informal

and we refer to Section 5.3 for details. We establish in Section 5.4.1 that the corresponding family

of exit local times possesses a jointly measurable version pL r
t : t ě 0, r ą 0q, and in Section 5.4.2

we define our continuous additive A by setting:

At :“

ż 8

0
drL r

t , t ě 0.

After establishing that there is no branching point with label x, we give in Section 5.4.3 a precise

characterization of the support of the measure dA. Formally, we prove that:

supp dA “
␣

t P r0, σs : ξpHptq “ x, pHptq P Multi2pTHq Y t0u
(

.

We also show in Theorem 5.30 that, equivalently, the support of dA is the complement of the

constancy intervals of ppΛt : t ě 0q. In particular, if we denote the right inverse of A by pA´1
t :

t ě 0q, the relation:

HA
t :“ pΛA´1

t
, t ě 0,

defines a continuous non-negative process that plays a crucial role in the second part of our work.

In Section 5.5, we turn our attention to the study of Z or, equivalently, to the structure of

the subordinate tree T L
H . Even if this is an object of very different nature, our analysis relies
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deeply on the results and the machinery developed in Section 5.4. The second main result of this

work consists in showing that the process HA satisfies the following properties:

(i’) It encodes the subordinate tree T L
H [Theorem 5.31 (i)];

(ii’) It is the height function of a Lévy tree, with an exponent rψ that we identify [Theorem 5.31

(ii)].

In particular, this shows that T L
H is a Lévy tree with exponent rψ. We stress that a continuous

function can fulfill (i’) without satisfying (ii’), and it is remarkable thatHA follows the exploration

order of a Lévy tree. We also mention that the previous two points were established – although

with a different construction of the height process HA – in [66, Theorem 1] for the subordination

of the Brownian tree by the running maximum of the Brownian motion indexed by the Brownian

tree2. These approaches are complementary, since the techniques employed in [66] rely on a

discrete approximation of the height function, while we shall argue directly in the continuum.

We also mention that one of the strengths of our method is that it gives an explicit definition

of HA which is suitable for computations. This point is crucial in order to study the excursions

of pξυqυPTH
from x. Our result shows that the height function of the subordinate tree T L

H can

be constructed in terms of functionals of pρ,W,Λq, and that A´1 defines an exploration of T L
H

compatible with the order induced byH. Property (i’) will be a consequence of our previous results

(i), (ii) and Section 5.5 is mainly devoted to the proof of (ii’). The main difficulty to establish

(ii’) comes from the fact that, as we already mentioned, the height process of a Lévy tree is not

always Markovian. To circumvent this difficulty, the proof of (ii’) relies on the computation of the

so-called marginals of the tree associated with HA. In particular, it makes use of all the machinery

developed in previous sections as well as standard properties of Poisson random measures.

Let us now close the presentation of our work with a result of independent interest which is

used extensively throughout this paper. In Section 5.3, we state and prove the so-called Special

Markov property of the Lévy snake. This section is independent of the setting of Sections 5.4

and 5.5, and we work with an arbitrary pψ, ξq-Lévy snake under general assumptions on the pair

pψ, ξq. Roughly speaking, the special Markov property is a spatial version of the classical Markov

property for time-indexed Markov processes. The precise statement is the content of Theorem

5.10, see also Corollary 5.12. This result was established in [66, Theorem 20] for continuous

Markov processes indexed by the Brownian tree, and a particular case was proved for the first

time in [64]. Our result is a generalisation of [66, Theorem 20] holding in the broader setting

of continuous Markov processes indexed by ψ-Lévy trees. The special Markov property of the

Brownian motion indexed by the Brownian tree has already played a crucial role in multiple

contexts, see for instance [37, 70, 72] and we expect this result to be useful outside the scope

of this work. We also mention that the special Markov property of the Lévy snake is closely

related to the one established by Dynkin in the context of superprocesses, see [45, Theorem

1.6]. However, we stress that the formulation in terms of the Lévy snake, although less general,

gives additional and crucial information for our purposes. In particular, it takes into account the

genealogy induced by the Lévy tree, and hence it caries geometrical information.

We conclude this introduction non-exhaustive summary of related works. First, as we already

mentioned, we extend to the general framework of Markov processes indexed by Lévy snakes the

2When considering the process pξυ,LυqυPTH indexed by the Brownian tree, the fact that the subordinate tree T L
H is a

rψ–Lévy tree is also proved in [66, Theorem 16] but the construction of its height process is lacking.
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work of Le Gall on subordination in the case of the Brownian motion indexed by the Brownian

tree [66]. Moreover, our results on subordination of trees with respect to the local time are closely

related, in the terminology of Lévy snakes, to Theorem 4 in [23] stated in the setting of super-

processes – the main difference being that in our work we encode the associated genealogy. For

instance, we recover [23, Theorem 4] in a more precise form in our case of interest. We also note

that we expect our results to be useful beyond the scope of this work, for instance in Brownian

geometry. Finally, in the case of Brownian motion indexed by the Brownian tree and when x “ 0,

our functional A is closely related to the so-called integrated super-Brownian excursion [5] – a

random measure arising in multiple limit theorems for discrete probability models, but also in

the theory of interacting particle systems [30, 36] and in a variety of models of statistical physics

[40, 51]. More precisely, the total mass A8 is the density of the integrated super-Brownian excur-

sion at 0, see [71, Proposition 3]. In particular, we hope that our construction of the functional

A will be useful to obtain new explicit computations regarding the integrated super-Brownian

excursion and to generalize these computations to related models.

The work is organised as follows: Section 2 gives an overview of the theory of Lévy trees and

snakes. In Section 3, we state and prove the special Markov property for Lévy snakes and we

explore some of its consequences. This section is independent of the rest of the work but is key for

the development of Section 4 and 5. The preliminary results needed for its proof are covered in

Section 5.3.1, and mainly concern approximation results for exit local times. Section 4 is devoted

to first, constructing in Section 4.2 the additive functional A [Proposition 5.22], and afterwards

to the characterization of the support of the measure dA [Theorem 5.30] in Section 4.3. We

shall give two equivalent descriptions for the support of dA, one in terms of the pair pH,W q,

and a second one only depending on Λ. The latter will be needed in Section 5.5 and we expect

the former to be useful to develop an excursion theory – we plan to pursue this goal in future

works. The preliminary results needed for our constructions are covered in Section 4.1. Finally,

in Section 5, after recalling preliminary results on subordination of trees by continuous functions,

we explore the tree structure of the set tυ P TH : ξυ “ xu by considering the subordinate tree of

TH with respect to the local time L. The main result of the section is stated in Theorem 5.31,

and consists in proving (i’) and (ii’).

5.2 Preliminaries

5.2.1 The height process and the exploration process

Let us start by introducing the class of Lévy processes that we will consider throughout this

work. We set X a Lévy process on R`, and we denote its law started from 0 by P . It will be

convenient to assume that X is the canonical process on the Skorokhod space DpR`,Rq of rcll

(right–continuous with left limits) real-valued paths equipped with the probability measure P .

We denote the canonical filtration by pGt : t ě 0q, completed as usual by the class of P– negligible

sets of G8 “
Ž

tě0 Gt. We henceforth assume that X verifies P -a.s. the following properties:

• (A1) X does not have negative jumps;

• (A2) The paths of X are of infinite variation;
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• (A3) X does not drift to `8.

Since X has no negative jumps the mapping λ ÞÑ Erexpp´λX1qs is well defined in R` and we

denote the Laplace exponent of X by ψ, viz. the function defined by:

Erexpp´λX1qs “ exppψpλqq, for all λ ě 0.

The function ψ can be written in the Lévy-Khintchine form:

ψpλq “ α0λ ` βλ2 `

ż

p0,8q

πpdxq pexpp´λxq ´ 1 ` λx1txď1uq,

where α0 P R, β P R` and π is a sigma-finite measure on R˚
` satisfying

ş

p0,8q
πpdxqp1^x2q ă 8.

Moreover, it is well known that condition (A2) holds if and only if we have:

β ‰ 0 or

ż

p0,1q

πpdxq x “ 8.

The Laplace exponent ψ is infinitely differentiable and strictly convex in p0,8q (see e.g. Chapter

8 in [61]). Since X does not drift towards 8 one has ´ψ1p0`q “ ErX1s ď 0 which, in turn, implies

that X oscillates, or drifts towards ´8 and that Xt has a finite first moment for any t. In terms

of the Lévy measure, this ensures that the additional integrability condition
ş

p1,8q
πpdxq x ă 8

holds. Consequently, ψ can and will be supposed to be of the following form:

ψpλq “ αλ ` βλ2 `

ż

p0,8q

πpdxqpexpp´λxq ´ 1 ` λxq,

where now π satisfies
ş

p0,8q
πpdxqpx ^ x2q ă 8 and α, β P R` since α “ ψ1p0`q. From now on,

we will denote the infimum of X by I and remark that, under our current hypothesis, 0 is regular

and instantaneous for the Markov process X ´ I “ pXt ´ infr0,ts Xs : t ě 0q. Moreover, it is

standard to see that P –a.s., the Lebesgue measure of tt P R` : Xt “ Itu is null. The process

´I is a local time of X ´ I and we denote the associated excursion measure from 0 by N . To

simplify notation, we write σe for the lifetime of an excursion e. Finally, we impose the following

additional assumption on ψ:
ż 8

1

dλ

ψpλq
ă 8. pA4q

From now on, we will be working under (A1) – (A4).

Let us now briefly discuss the main implications of our assumptions. The condition pA4q is

twofold: on the one hand, it ensures that limλÑ8 λ´1ψpλq “ 8 which implies that X has paths of

infinite variation [17, VII-5] (the redundancy in our hypothesis is on purpose for ease of reading).

On the other hand, under our hypothesis (A1) – (A3), it is well known that there exists a con-

tinuous state branching process with branching mechanism ψpλq (abbreviated ψ-CSBP) and that

pA4q is equivalent to its a.s. extinction. The ψ-Lévy tree can be interpreted as the genealogical

tree of this branching process and is defined in terms of a fundamental functional of X, called

the height process, that we now introduce.
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The height and exploration processes. Let us turn our attention to the so-called height

process – the main ingredient needed to define Lévy trees. Our presentation follows [43, Chapter

1] and we start by introducing some standard notation. For every 0 ă s ď t, we set

Is,t :“ inf
sďuďt

Xu,

the infimum of X in rs, ts and remark that when s “ 0 we have It “ I0,t. Moreover, since X

drifts towards ´8 or oscillates, we must have It Ñ ´8 when t Ò 8. By [43, Lemma 1.2.1], for

every fixed t ě 0, the limit:

Ht :“ lim
εÑ0

1

ε

ż

r0,ts
dr 1tXrăIr,t`εu (5.5)

exists in probability. Roughly speaking, for every fixed t, the quantity Ht measures the size of

the set:

tr ď t : Xr´ ď Ir,tu,

and we refer to H “ pHt : t ě 0q as the height process of X. By [43, Theorem 1.4.3], condition

(A4) ensures that H possesses a continuous modification that we consider from now on and that

we still denote by H.

The process H will be the building block to define Lévy trees. However, H is not Markovian

as soon as π ‰ 0 and we will need to introduce a process – called the exploration process –

which roughly speaking carries the needed information to make H Markovian. More precisely,

the exploration process is a Markov process and we will write H as a functional of it. In this

direction, we write Mf pR`q for the set of finite measures on R` equipped with the topology of

weak convergence and with a slight abuse of notation we write 0 for the null measure on R`. The

exploration process ρ “ pρt : t ě 0q is the random measure defined as:

xρt, fy :“

ż

r0,ts
dsIs,t fpHsq, t ě 0, (5.6)

where dsIs,t stands for the measure associated with the non-decreasing function s ÞÑ Is,t. Equiv-

alently, ρ can be defined as:

ρtpdrq :“ β1r0,Htsprqdr `
ÿ

0ăsďt
Xs´ăIs,t

pIs,t ´ Xs´q δHs
pdrq, t ě 0, (5.7)

and remark that (5.6) implies that

xρt, 1y “ It,t ´ I0,t “ Xt ´ It, t ě 0.

In particular, ρt takes values in Mf pR`q. By [43, Proposition 1.2.3], the process pρt : t ě 0q is

an Mf pR`q-valued rcll strong Markov process, and we briefly recall some of its main properties

for later use. For every µ P Mf pR`q, we write supppµq for the topological support of µ and we

set Hpµq :“ sup supppµq with the convention Hp0q “ 0.

The following properties hold:

(i) Almost surely, for every t ě 0, we have supp ρt “ r0, Hts if ρt ‰ 0.

(ii) The process t ÞÑ ρt is rcll with respect to the total variation distance.
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(iii) Almost surely, the following sets are equal:

tt ě 0 : ρt “ 0u “ tt ě 0 : Xt ´ It “ 0u “ tt ě 0 : Ht “ 0u. (5.8)

In particular, note that we have pHpρtqqtě0 “ pHtqtě0 and that point (ii) implies that the excursion

intervals away from 0 of X ´ I, H and ρ coincide. Moreover, since It Ñ ´8 when t Ò 8, the

excursion intervals have finite length and by [43, Lemma 1.3.2] and the monotonicity of t ÞÑ It
we have:

lim
εÑ0

E
“

sup
sPr0,ts

ˇ

ˇ

1

ε

ż s

0
du1tHuăεu ` Is

ˇ

ˇ

‰

“ 0, for every t ě 0. (5.9)

By the previous display, ´I can be thought as the local time of H at 0.

The Markov process ρ in our previous definition starts at ρ0 “ 0 and, in order to make use of

the Markov property, we need to recall how to define it’s distribution starting from an arbitrary

measure µ P Mf pR`q. In this direction, we will need to introduce the following two operations:

Pruning. For every µ P Mf pR`q and 0 ď a ă xµ, 1y, we set κaµ the unique measure on R` such

that for every r ě 0:

κaµpr0, rsq :“ µpr0, rsq ^ pxµ, 1y ´ aq.

If a ě xµ, 1y we simply set κaµ :“ 0. The operation µ ÞÑ κaµ corresponds to a pruning operation

”from the right” and note that, for every a ą 0 and µ P Mf pR`q, the measure κaµ has compact

support. In particular, one has Hpκaµq ă 8 for every a ą 0, even for µ with unbounded support.

Concatenation. Consider µ, ν P Mf pR`q such that Hpµq ă 8. The concatenation of the measure

µ with ν is again an element of Mf pR`q, denoted by rµ, νs and defined by the relation:

xrµ, νs, fy :“

ż

µpdrqfprq `

ż

νpdrqfpHpµq ` rq.

Finally, for every µ P Mf pR`q, the exploration process started from µ is denoted by ρµ and

defined as:

ρµt :“ rκ´Itµ, ρts, t ą 0, (5.10)

with the convention ρµ0 :“ µ. In this definition we used the fact that, P -a.s., It ă 0 for every

t ą 0, since we are not imposing the condition Hpµq ă 8 on µ. Remark that the process

xρµ, 1y :“ pxρµt , 1y : t ě 0q has the same distribution as X started from xµ, 1y, this fact will be

used frequently.

For later use we also need to introduce the dual process of ρ, this is, the Mf pR`q-valued

process pηt : t ě 0q defined by the formula

ηtpdrq :“ β1r0,Htsprqdr `
ÿ

0ăsďt
Xs´ăIs,t

pXs ´ Is,tq δHs
pdrq, t ě 0. (5.11)

This process will be only needed for some computations and the terminology will be justified by

the identity (5.13) below. Moreover, η is rcll with respect to the total variation distance and the

pair pρ, ηq is a Markov process. We refer to [43, Section 3.1] for a complete account on pηt : t ě 0q.

Before concluding this section, it will be crucial for our purposes to define the height process
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and the exploration process under the excursion measure N of X ´ I. In this direction, if for

an arbitrary fixed r we set g “ supts ď r : Xs ´ Is “ 0u and d “ infts ě r : Xs ´ Is “ 0u,

it is straightforward to see that pHt : t P rg, dsq can be written in terms of a functional of the

excursion of X ´ I that straddles r, say ej “ pXpg`tq^d ´ Ig : t ě 0q, and this functional does

not depend on the choice of r. Informally, from the initial definition (5.5) this should not come

as a surprise since the integral (5.5) for t P rg, ds vanishes on r0, gs, we refer to the discussion

appearing before Lemma 1.2.4 in [43] for more details. We denote this functional by Hpejq and it

satisfies that P–a.s., Ht “ Ht´gpejq for every t P rg, ds. Furthermore, if we denote the connected

components of tt ě 0 : Xt ´ It “ 0u by
`

pai, biq : i P N
˘

and the corresponding excursions by

pei : i P Nq, then we have Hpai`tq^bi “ Htpeiq, for all t ě 0. By considering the first excursion e

of X ´ I with duration σe ą ε for every ε ą 0, it follows that the functional Hpeq in DpR`,Rq

under Npde |σe ą εq is well defined, and hence it is also well defined under the excursion measure

N .

Turning now our attention to the exploration process and its dual, observe that for t P rai, bis

the mass of the atoms in (5.7) and (5.11) only depend on the corresponding excursion ei. We

deduce by our previous considerations on H that we can also write ρpai`tq^bi “ ρtpeiq and

ηpai`tq^bi “ ηtpeiq, for all t ě 0, where the functionals ρpeq, ηpeq are still defined by (5.7) and

(5.11) respectively, but replacing X by ei and H by Hpeiq – translated in time appropriately.

By the same arguments as before, we deduce that ρpeq and ηpeq under Npdeq are well defined

Mf pR`q-valued functionals. From now on, when working under N , the dependency on e is omit-

ted from H, ρ and η. Remark that under N , we still have Hpρtq “ Ht and xρt, 1y “ Xt, for every

t ě 0, where now X is an excursion of the reflected process. By excursion theory for the reflected

Lévy process X ´ I we deduce that the random measure in R` ˆ Mf pR`q defined as

ÿ

iPN
δp´Iai ,ρpai`¨q^bi

,ηpai`¨q^bi
q (5.12)

is a Poisson point measure with intensity 1ℓě0dℓNpdρ, dηq. Finally, we recall for later use the

equality in distribution under N :

`

pρt, ηtq : t ě 0
˘ pdq

“
`

pηpσ´tq´, ρpσ´tq´q : t ě 0
˘

, (5.13)

and we refer to [43, Corollary 3.1.6] for a proof. This identity is the reason why η is called the

dual process of ρ.

5.2.2 Trees coded by excursions and Lévy trees

The height process H under N is the main ingredient needed to define Lévy trees, one of the

central objects studied in this work. Before giving a formal definition, we shall briefly recall some

standard notation and notions related to (deterministic) pointed R-trees.

Real trees. In the same vein as the construction of planar (discrete) trees in terms of their

contour functions, there exists a canonical construction of pointed R-trees in terms of positive

continuous functions. In order to be more precise, we introduce some notation. Let e : R` ÞÑ R`

be a continuous function, set σe the functional σe :“ inftt ą 0 : epsq “ 0, for every s ě tu with

the usual convention inftHu :“ 8. In particular, when ep0q “ 0, σe ă 8 and epsq ą 0 for all

s P p0, σeq, the function e is called an excursion with lifetime σe. Note that these notations are
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compatible with the ones introduced in the previous section. For convenience, we take r0, σes :“

r0,8q if σe “ 8. For every s, t P r0, σes with s ď t set

meps, tq :“ inf
sďuďt

epuq,

and consider the pseudo-distance on r0, σes defined by:

deps, tq :“ epsq ` eptq ´ 2 ¨ meps ^ t, s _ tq, for all ps, tq P r0, σes
2.

The pseudo-distance de induces an equivalence relation „e in r0, σes according to the follow-

ing simple rule: for every ps, tq P r0, σes
2 we write s „e t if and only if deps, tq “ 0, and we

keep the notation 0 for the equivalency class of the real number 0. The pointed metric space

Te :“ pr0, σes{ „e, de, 0q is an R-tree, called the tree encoded by e and we denote its canonical

projection by pe : r0, σes Ñ Te. We stress that if σe ă 8, then Te is a compact R´tree.

Let us now give some standard properties and notations. We recall that in an R-tree there

is only one continuous injective path connecting any two points u, v P Te, and we denote its image

in Te by ru, vsTe
. We say that u is an ancestor of v if u P r0, vsTe

and we write u ĺTe
v. One can

check directly from the definition that we have u ĺTe
v if and only if there exists ps, tq P r0, σes

2

such that ppepsq, peptqq “ pu, vq and epsq “ meps ^ t, s _ tq. In other words, we have:

r0, vsTe
“ pe

`␣

s P r0, σes : epsq “ meps ^ t, s _ tq
(˘

,

where t is any preimage of v by pe. To simplify notation, we write uNTe
v for the unique element

on the tree verifying r0, u NTe
vsTe

“ r0, usTe
X r0, vsTe

. The element u NTe
v is known as the

common ancestor of u and v. Finally, if u P Te, the number of connected components of Teztuu

is called the multiplicity of u. For every i P N˚ Y t8u, we will denote the set of points u P Te of
multiplicity equal to i by MultipT q. The points of multiplicity larger than 2 are called branching

points, and the points of multiplicity 1 are called leaves.

Lévy trees. We are now in position to introduce:

Definition 5.1. The random metric space TH under the excursion measure N is the (free) ψ-Lévy

tree.

The term free refers to the fact that the lifetime of H is not fixed under N and it will be omitted

from now on. Note that the metric space TH can be considered under P without any modifica-

tions. Since, under P , we have σH “ 8, the tree TH stands for the space pR`{ „H , dH , 0q, and

in particular it is no longer a compact space. The rest of the properties however remain valid

and we will use the same notations indifferently under P and N . Moreover, since the point 0 is

recurrent for the process X´I, it is also recurrent for H by point (ii) of the previous section. This

gives a natural interpretation of TH as the concatenation at the root of infinitely many trees THi ,

where pHiqiPN “ pHpeiqqiPN are the excursions of H away from 0, and where the concatenation

follows the order induced by the local time ´I. For this reason, we will say that TH under P is

a ψ-forest (made of ψ-Lévy trees). In particular, remark that under P (resp. N), the root pHp0q

is a branching point of multiplicity 8 (resp. a leaf).
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Before concluding the discussion on R-trees, we recall that, under P or N , MultipTHq “ H

for every i R t1, 2, 3,8u. Moreover, we have Mult8pTHqztpHp0qu “ H if and only if π “ 0

or, equivalently, if X does not have jumps. More precisely, pH realizes a bijection between

tt ě 0 : ∆Xt ą 0u and Mult8pTHqztpHp0qu.

5.2.3 The Lévy snake

In this section, we give a short introduction to the so-called Lévy snake, a path-valued Markov

process that allows to formalize the notion of a ”Markov process indexed by a Lévy tree”. We

follow the presentation of [43, Chapter 4]. However, beware that in this work we consider con-

tinuous paths defined in closed intervals, and hence our framework differs slightly with the one

considered in [43, Chapter 4]3.

Snakes driven by continuous functions. Fix a Polish space E equipped with a distance dE
inducing its topology and we let WE be the set of E-valued killed continuous functions. Each

w P WE is a continuous path w : r0, ζws Ñ E, defined in a compact interval r0, ζws. The functional

ζw P r0,8q is called the lifetime of w and it will be convenient to denote the endpoint of w by

pw :“ wpζwq. Further, we write WE,x :“ tw P WE : wp0q “ xu for the subcollection of paths in

WE starting at x, and we identify the trivial element of Wx with zero lifetime with the point x.

We equip WE with the distance

dWE
pw,w1

q :“ |ζw ´ ζw1 | ` sup
rě0

dE
`

wpr ^ ζwq,w1
pr ^ ζw1q

˘

,

and it is straightforward to check that pWE , dWE
q is a Polish space. Let us insist that the notation

e is exclusively used for continuous R`-valued functions defined in R`, and w is reserved for E-

valued continuous paths defined in compact intervals r0, ζws, viz. for the elements of WE .

We will now endow WR`

E with a probability measure. In this direction, consider an E-valued

Markov process ξ “ pξt : t ě 0q with continuous sample paths. For every x P E, let Πx denote

the distribution of ξ started at x and also assume that ξ is time-homogeneous (it is implicitly

assumed in our definition that the mapping x ÞÑ Πx is measurable). Now, fix a deterministic

continuous function h : R` ÞÑ R`. The first step towards defining the Lévy snake consists in

introducing a WE-valued process referred as the snake driven by h with spatial motion ξ. In this

direction, we also fix a point x P E and a path w P WE,x. For every a, b such that 0 ď a ď ζw and

b ě a, there exists a unique probability measure Ra,bpw, dw
1q on WE,x satisfying the following

properties:

(i) Ra,bpw, dw
1q-a.s., w1psq “ wpsq for every s P r0, as.

(ii) Ra,bpw, dw
1q-a.s., ζw1 “ b.

(iii) Under Ra,bpw, dw
1q, pw1ps ` aqqsPr0,b´as is distributed as pξsqsPr0,b´as under Πwpaq.

Denoting the canonical process on WR`

E by pWsqsě0, it is easy to see by Kolmogorov’s extension

theorem that, for every w0 P WE,x with ζw0 “ hp0q, there exists a unique probability measure

3The paths considered in [43, Section 4.1] are rcll and defined in intervals of the form r0, ζq, for ζ P p0,8q.
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Qhw0
on WR`

E satisfying that

Qhw0

`

Ws0 P A0,Ws1 P A1, ...,Wsn P An
˘

“ 1tw0PA0u

ż

A1ˆA2ˆ¨¨¨ˆAn

Rmhps0,s1q,hps1qpw0, dw1qRmhps1,s2q,hps2qpw1, dw2q...Rmhpsn´1,snq,hpsnqpwn´1, dwnq.

for every 0 “ s0 ď s1 ď ... ď sn and A0, ..., An Borelian sets of WE . The canonical process W in

WR`

E under Qhw0
is called the snake driven by h with spatial motion ξ started from w0. The value

Ws “ pWsptq : t P r0, hpsqsq of the Lévy snake at time s coincides with w0 for 0 ď t ď mhp0, sq

while formhp0, sq ď t ď hpsq, it is distributed as the Markov process ξ started at w0pmhp0, sqq and

stopped at time hpsq ´ mhp0, sq. Furthermore, informally, when h decreases, the path is erased

from its tip and, when h increases, the path is extended by adding “little pieces” of trajectories

of ξ at the tip. The term snake refers to the fact that, the definition of Qhw0
entails that for every

s ă s1 we have:

Wsprq “ Ws1prq, r P r0,mhps, s1
qs, Qhw0

–a.s. (5.14)

Note however that this property only holds for fixed s, s1 Qhw0
-a.s. A priori, under Qhw0

, the process

W does not have a continuous modification with respect to the metric dWE
, but it will be crucial

for our work to find suitable conditions guaranteeing the existence of such modification. This

question will be addressed in the following proposition. We start by introducing some notation.

First recall the convention ra,8s :“ ra,8q for a ă 8. Next, consider a J – indexed family

ai, bi P R` Y t8u, J Ă N, with ai ă bi and suppose that the intervals prai, bis, i P J q are disjoint.

A continuous function h : R` ÞÑ R` is said to be locally r-Hölder continuous in prai, bis, i P J q

if, for every n P N, there exists a constant Cn satisfying that |hpsq ´ hptq| ď Cn|s´ t|r, for every

i P J and s, t P rai, bis X r0, ns. We insist on the fact that the constant Cn does not depend on

the index i.

Proposition 5.2. Suppose that there exists a constant CΠ ą 0 and two positive numbers p, q ą 0

such that, for every x P E and t ě 0, we have:

Πx
`

sup
0ďuďt

dEpξu, xq
p
˘

ď CΠ ¨ tq. (5.15)

Further, consider a continuous function h : R` ÞÑ R` and denote by ppai, biq : i P J q the

excursion intervals above its running infimum. If h is locally r-Hölder continuous in prai, bis :

i P J q with qr ą 1 then, for every w P WE with ζw “ hp0q, the process W has a continuous

modification under Qhw.

Proof. With the notation introduced in the statement of the proposition, we fix a continuous

driving function h : R` ÞÑ R` locally r-Hölder continuous in prai, bis : i P J q, an initial

condition w P WE with ζw “ hp0q, and we consider an arbitrary n P N. By definition, for any

s, t P rai, bisXr0, ns, we have |hpsq´hptq| ď Cn ¨ |s´ t|r for a constant Cn that does not depend on

i. Next, we considerW , the snake driven by h under QhwpdW q. The first step of the proof consists

in showing that the process pWs : s P
Ť

iPJ rai, bisq has a locally Hölder-continuous modification

on
`

rai, bis : i P J q. In this direction, we remark that the definition of dWE
gives:

Qhw
`

dWE
pWs,Wtq

p
˘

ď 2p ¨ Qhw

´

sup
mhps,tqďu

dE
`

Wspu ^ hpsqq,Wtpu ^ hptqq
˘p
¯

` 2p ¨ |hpsq ´ hptq|
p,
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for every s, t P rai, bis X r0, ns. Next, note that the first term on the right hand side can be

bounded above by:

Qhw

´

sup
mhps,tqďu

dE
`

Wspu ^ hpsqq,Wtpu ^ hptqq
˘p
¯

ď 2p ¨ Qhw

´

sup
mhps,tqďu

dE
`

Wspu ^ hpsqq,Wspmhps, tqq
˘p
¯

` 2p ¨ Qhw

´

sup
mhps,tqďu

dE
`

Wtpmhps, tqq,Wtpu ^ hptqq
˘p
¯

ď 2p ¨ Qhw

´

ΠWspmhps,tqq

`

sup
uďhpsq´mhps,tq

dEpξu, ξ0q
p
˘

¯

` 2p ¨ Qhw

´

ΠWtpmhps,tqq

`

sup
uďhptq´mhps,tq

dEpξ0, ξuq
p
˘

¯

ď 2pCΠ ¨

´

ˇ

ˇhpsq ´ mhps, tq
ˇ

ˇ

q
`
ˇ

ˇhptq ´ mhps, tq
ˇ

ˇ

q
¯

,

where in the second inequality we applied the Markov property at time mhps, tq, and in the last

one we used the upper bound (5.15). By our assumptions on h we derive that, for every n ą 0,

there exists a constant C 1
n such that:

Qhw pdWE
pWs,Wtq

p
q ď C 1

n ¨
`

|t ´ s|qr ` |t ´ s|pr
˘

, for any s, t P rai, bis X r0, ns,

and we stress that the constant C 1
n does not depend on i. Recall that qr ą 1 and note that

we can assume as well that pr ą 1, since by replacing the distance dWE
by 1 ^ dWE

, we can

take p as large as wanted. Now, fix r0 P p0, pqr ´ 1q{pq. We deduce by a standard Borel-

Cantelli argument, similar to the proof of Kolmogorov’s lemma, that there exists a modification

of pWs : s P r0, ns X
Ť

iPJ rai, bisq, say pW ˚
s : s P r0, ns X

Ť

iPJ rai, bisq, satisfying that Qhw– a.s., for

every i P J
dWE

pW ˚
s ,W

˚
t q ď Kn|s ´ t|r0 , for every s, t P rai, bis X r0, ns, (5.16)

where the (random) quantity Kn does not depend on i. Set V :“ R`z
Ť

iPJ rai, bis and remark

that if t P V , then hptq “ infthpuq : u P r0, tsu. For every t P V , we setW ˚
t :“ pwpuq : u P r0, hptqsq

and we consider the process pW ˚
t : t P r0, nsq. Notice that by the very construction of W ˚, we

have QhwpWt “ W ˚
t q “ 1 for every t P r0, ns, which shows thatW ˚ is a modification ofW in r0, ns.

Let us now show that W ˚ is continuous on r0, ns. The continuity for t P r0, ns X
Ť

iPJ pai, biq

follows by (5.16) and we henceforth fix t P r0, nsz
Ť

iPJ pai, biq. In particular, we have hptq “

infthpuq : u P r0, tsu. On one hand, if psk : k ě 1q is a sequence with sk Ñ t as k Ò 8,

the continuity of w and h ensures that pwpuq : u P r0, hpskqsq Ñ W ˚
t with respect to dWE

.

Consequently, if the subsequence psk : k ě 1q takes values in r0, nsz
Ť

iPJ pai, biq, it holds that:

lim
kÑ8

dWE
pW ˚

sk ,W
˚
t q “ lim

kÑ8
dWE

´

`

wpuq : u P r0, hpskqs
˘

,W ˚
t

¯

“ 0.

On the other hand, for every s P raj , bjs X r0, ns for some j P J with s ă t, we have

dWE
pW ˚

s ,W
˚
t q ď dWE

pW ˚
s ,W

˚
bjq ` dWE

`

W ˚
bj ,W

˚
t

˘

ď Kn|s ´ t|r0 ` dWE

´

`

wpu ^ ζwq : u P r0, hpsqs
˘

,W ˚
t

¯

,
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which goes to 0 as s Ò t since W ˚
t “

`

wpuq : u P r0, hptqs
˘

. The case s ą t can be treated similarly

by replacing bi with ai and it follows that, for any subsequence psk : k ě 1q with sk Ñ t, we

have dWE
pW ˚

sk ,W
˚
t q Ñ 0. Consequently, W ˚ is continuous on r0, ns. Since this holds for any n,

we can define a continuous modification of W in R`.

Under the conditions of Proposition 5.2, the measure Qhw can be defined in the Skorokhod

space of WE-valued right-continuous paths DpR`,WEq and, with a slight abuse of notation, we

still denote it by Qhw. From now on, we shall work under these conditions and Qhw will always be

considered as a measure in DpR`,WEq. In particular, remark that if we writeW for the canonical

process in DpR`,WEq, then W is Qhw–a.s. continuous. Finally, we point out that the regularity

of W was partially addressed in the proof of [43, Proposition 4.4.1], for initial conditions of the

form x with x P E, when working with paths w defined in the half open interval r0, ζwq.

The Lévy snake with spatial motion ξ. The driving function h of the random snake that we

have considered so far was deterministic, and the next step consists in randomising h. We write

M0
f for the subset of Mf pR`q defined as

M0
f :“

␣

µ P Mf pR`q : Hpµq ă 8 and supp µ “ r0, Hpµqs
(

Y t0u,

and we introduce Θ the collection of pairs pµ,wq P M0
f ˆWE such that Hpµq “ ζw. Fix a Laplace

exponent ψ satisfying (A1) – (A4), and set

Υ :“ sup
␣

r ě 0 : lim
λÑ8

λ´rψpλq “ 8
(

. (5.17)

In particular, by the convexity of ψ we must have Υ ě 1. For every µ P M0
f , write Pµ for

the distribution of the exploration process started from µ in DpR`,Mf pR`qq – the space of

right-continuous Mf pR`q-valued paths. With a slight abuse of notation we denote the canonical

process in DpR`,Mf pR`qq by ρ and observe that, by Definition 5.10, the process ρ under Pµ

takes values in M0
f . Notice that Hpρq under Pµ is continuous since µ P M0

f . We can now state

the hypothesis we will be working with.

In the rest of this work, we will always assume that:

Hypothesis pH0q. There exists a constant CΠ ą 0 and two positive numbers p, q ą 0 such

that,

for every x P E and t ě 0, we have:

Πx
`

sup
0ďuďt

dEpξu, xq
p
˘

ď CΠ ¨ tq, and q ¨ p1 ´ Υ´1
q ą 1. pH0q

For instance, it can be checked that condition pH0q is fulfilled if the Lévy tree has exponent

ψpλq “ λα for α P p1, 2s and ξ is a Brownian motion. Let us discuss the implications of pH0q.

Under Pµ, denote the excursion intervals of H above its running infimum by pαi, βiq. Recall from

(5.10) that pρµt :“ rk´Itµ, ρts : t ě 0q, under P0, is distributed according to Pµ, and note that

Htpρ
µq “ Hpk´Itµq ` Hpρtq, for t ě 0. By [43, Theorem 1.4.4], under P0 the process Hpρq is

locally Hölder continuous of exponent m for any m P p0, 1 ´ Υ´1q. In particular, this holds for

some m :“ r verifying qr ą 1 by the second condition in pH0q. Since
`

Hpk´Itµq : t ě 0
˘

is

constant on each excursion interval pαi, βiq and pHpρtq : t ě 0q is locally r-Hölder continuous, we
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deduce that Hpρµq is locally r-Hölder continuous on prαi, βis : i P Nq. Said otherwise, Pµ-a.s.,

the paths of Hpρq satisfy the conditions of Proposition 5.2 and we will henceforth assume that

the condition is satisfied for every path, and not only outside of a negligible set.

Finally, consider the canonical process pρ,W q inDpR`,Mf pR`qˆWEq, the space ofMf pR`qˆ

WE-valued, right continuous paths. By our previous discussion we deduce that we can define a

probability measure in DpR`,Mf pR`q ˆ WEq by setting

Pµ,wpdρ, dW q :“ Pµpdρq Q
Hpρq
w pdW q,

for every pµ,wq P Θ. The process pρ,W q under Pµ,w is called the ψ-Lévy snake with spatial

motion ξ started from pµ,wq. We denote its canonical filtration by pFt : t ě 0q and observe that

by construction, Pµ,w–a.s.,W has continuous paths. Now, the proof of [43, Theorem 4.1.2] applies

without any change to our framework and gives that the process ppρ,W q, pPµ,w : pµ,wq P Θqq is

a strong Markov process with respect to the filtration pFt`q. It should be noted that assumption

pH0q is the same as the one appearing in [43, Proposition 4.4.1], for paths defined in r0, ζwq and

started from x P E. In the particular case ψpλq “ λ2{2, the path regularity of W was already

addressed in [62, Theorem 1.1].

Let us conclude our discussion concerning regularity issues by introducing the notion of snake

paths, which summarises the regularity properties of pρ,W q as well as some related notation that

will be used throughout this work. Recall that Mf pR`q, equipped with the topology of weak

convergence, is a Polish space [58, Lemma 4.5]. We denote systematically the elements of the

path space DpR`,Mf pR`q ˆ WEq by:

pρ, ωq “
`

pρs, ωsq : s P R`

˘

,

and by definition, we have pρspρq,Wspωqq “ pρs, ωsq for s P R`. For each fixed s, ωs is an element

of WE with lifetime ζωs , and the R`-valued process ζpωq :“ pζωs : s ě 0q is called the lifetime

process of ω. We will occasionally use the notation ζspωq instead of ζωs , and in such cases we will

drop the dependence on ω if there is no risk of confusion.

Definition 5.3. A snake path started from pµ,wq P Θ is an element pρ, ωq P DpR`,Mf pR`q ˆ

WEq such that the mapping s ÞÑ ωs is continuous, and satisfying the following properties:

(i) pρ0, ω0q “ pµ,wq.

(ii) pρs, ωsq P Θ for all s ě 0, in particular Hpρq “ ζpωq.

(iii) ω satisfies the snake property: for any 0 ď s ď s1,

ωsptq “ ωs1ptq for all 0 ď t ď inf
rs,s1s

ζpωq.

A continuous WE-valued path ω satisfying (iii) is called a snake trajectory. We point out that

this notion had already been introduced in the context of the Brownian snake [1, Definition 6].

However, in the Brownian case the process W is Markovian and there is no need of working with

pairs pρ, ωq – this is the reason why we have to introduce the notion of snake paths. We denote

the collection of snake paths started from pµ,wq P Θ by Sµ,w and simply write Sx instead of S0,x.

Finally, we set:

S :“
ď

pµ,wq PΘ

Sµ,w.
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For any given pρ, ωq P S, we denote indifferently its duration by

σHpρq “ σpωq “ suptt ě 0 : ζωt ‰ 0u.

Remark that, by continuity and the definition of Qhw, the process ppρ,W q, pPµ,w : pµ,wq P Θqq

takes values in S – it satisfies the snake property by (5.14) and the continuity of W . Said

otherwise, Pµ,w-a.s., we have

ζs “ Hpρsq, for every s ě 0,

and for any t ď t1

Wtpsq “ Wt1psq, for all s ď mHpt, t1q.

We stress that when working on S the equivalent notations ζs, Hpρsq and Hs will be used indif-

ferently. The snake property implies that, for every t, t1 ě 0 such that pHptq “ pHpt1q, we have

Wt “ Wt1 . In particular, for such times it holds that xWt “ xWt1 and hence pxWt : t ě 0q can be

defined in the quotient space TH . More precisely, under Pµ,w, the function defined with a slight

abuse of notation for all υ P TH as

ξυ :“ xWt, where t is any element of p´1
H pυq,

is well defined and leads us to the notion of tree indexed processes. When pµ,wq “ p0, xq, the

process pξυqυPTH
is known as the Markov process ξ indexed by the tree TH and started from x.4

In this work, we will need to consider the restriction of pρ,W q to different intervals and therefore,

it will be convenient to introduce a formal notion of subtrajectories.

Subtrajectories. Fix s ă t such that Hs “ Ht and Hr ą Hs for all r P ps, tq. The sub-

trajectory of pρ,W q in rs, ts is the process taking values in DpR`,Mf pR`q ˆ WEq, denoted by

pρ1
r,W

1
rqrPr0,t´ss and defined as follows: for every r P r0, t ´ ss, set

xρ1
r, fy :“

ż

ρr`spdhqfph ´ Hsq1thąHsu and W 1
rp¨q :“ Ws`rpHs ` ¨ q.

In particular, we have

ζpW 1
rq “ Hs`r ´ Hs “ Hpρ1

rq, for all r P r0, t ´ ss.

Remark that if pρ,W q is a snake path, then the subtrajectory pρ1,W 1q is also in S. Informally,

W 1 encodes the labels pξv : v P pHprs, tsqq.

5.2.4 Excursion measures of the Lévy snake

Fix x P E and consider the Lévy snake pρ,W q under P0,x. By (5.8), the measure 0 is a regular

recurrent point for the Markov process ρ, which implies that p0, xq is on its turn regular and

recurrent for the Markov process pρ,W q. Moreover, p´It : t ě 0q is a local time at 0 for ρ and

hence it is a local time at p0, xq for pρ,W q. We set Nx the excursion measure of pρ,W q away from

p0, xq associated with the local time ´I. We stress that Nx is a measure in the canonical space

DpR`,Mf pR`q ˆ WEq. By excursion theory of the Markov process pρ,W q, if tpαi, βiq : i P Iu

4With the terminology introduced in [1, Definition 7], the pair of processes pH,xW q is called a treelike-path.
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stands for the excursion intervals of pρ,W q and pρi,W iq are the corresponding subtrajectories

then, under P0,x, the measure
ÿ

iPI
δp´Iαi ,ρ

i,W iq, (5.18)

is a Poisson point measure with intensity 1r0,8qpℓqdℓNxpdρ, dωq. Recalling the interpretation of

the restrictions Nxp ¨ |σ ą εq as the law of the first excursion with length greater than ε, it follows

that under Nx, W satisfies the snake property and pρ,W q P S. In particular, we can still make

use of the definition of subtrajectories and pξυqυPTH
under the excursion measure Nx, and for

simplicity we will use the same notation.

By the previous discussion, it is straightforward to verify that

Nxpdρ, dη, dW q “ Npdρ, dηq Q
Hpρq
x pdW q. (5.19)

Said otherwise, under Nx:

• The distribution of pρ, ηq is Npdρ, dηq;

• The conditional distribution of W knowing pρ, ηq is Q
Hpρq
x .

Remark that by construction and (5.13), under Nx we have

`

pρt, ηt,Wtq : t P r0, σs
˘ pdq

“
`

pηpσ´tq´, ρpσ´tq´,Wσ´tq : t P r0, σs
˘

, (5.20)

where we used that by continuity, we have Wσ´t “ Wpσ´tq´ for every t P r0, σs.

When starting from an arbitrary pµ,wq P Θ, the following variant of (5.18) will be used

frequently in our computations: let P:
µ,w be the distribution of pρ,W q killed at time σ :“ inftt ě

0 : Hpρsq “ 0 for every s ě tu. For instance, it will be worth noting that by (5.10), the process

xρ, 1y is a Lévy process started from xµ, 1y and stopped when reaching 0. Write
`

pαi, βiq : i P

N
˘

for the excursion intervals over the running infimum of xρ, 1y under P:
µ,w and denote the

corresponding subtrajectory associated with rαi, βis by pρi,W iq. If for t ě 0 we write It :“

infsďtxρs, 1y ´ xµ, 1y, the measure
ÿ

iPN
δp´Iαi ,ρ

i,W iq, (5.21)

is a Poisson point measure with intensity 1r0,xµ,1yspuq duNwpHpκuµqqpdρ, dW q. Moreover, if hi :“

Hαi “ Hβi , by (5.10) we have hi “ Hpκ´Iαi
µq and since the image measure of 1r0,xµ,1yspuq du

under the mapping u ÞÑ Hpκuµq is precisely µ, we deduce that under P:
µ,w the measure

ÿ

iPN
δphi,ρi,W iq (5.22)

is a Poisson point measure with intensity µpdhqNwphqpdρ, dW q. We refer to [43, Lemma 4.2.4] for

additional details.

We close this section by recalling a many-to-one formula that will be used frequently to ob-

tain explicit computations. We start with some preliminary notations: consider a 2-dimensional

subordinator pU p1q, U p2qq defined in some auxiliary probability space pΩ0,F0, P
0q with Laplace

exponent given by

´ logE0
”

exp
`

´ λ1U
p1q

1 ´ λ2U
p2q

1

˘

ı

:“

#

ψpλ1q´ψpλ2q

λ1´λ2
´ α if λ1 ‰ λ2

ψ1pλ1q ´ α if λ1 “ λ2,
(5.23)
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where E0 stands for the expectation taken with respect to P 0. Notice that in particular U p1q

and U p2q are subordinators with Laplace exponent λ ÞÑ ψpλq{λ ´ α. Let pJa, qJaq be the pair or

random measures defined by

pJa, qJaq :“
`

1r0,asptq dU
p1q

t ,1r0,asptq dU
p2q

t

˘

,

with the convention pJ8, qJ8q :“ p1r0,8qptq dU
p1q

t ,1r0,8qptq dU
p2q

t q. The following many-to-one

equation will play a central role in all this work:

Lemma 5.4. For every x P E and every non-negative measurable functional Φ taking values in

Mf pR`q2 ˆ WE, we have:

Nx

´

ż σ

0
dsΦ

`

ρs, ηs,Ws

˘

¯

“

ż 8

0
da exp

`

´ αa
˘

¨ E0
b Πx

´

Φ
`

Ja, qJa, pξt : t ď aq
˘

¯

. (5.24)

Proof. First, remark that we have

Nx

´

ż σ

0
dsΦ

`

ρs, ηs,Ws

˘

¯

“

ż 8

0
dsNx

´

1tsăσHu Φ
`

ρs, ηs,Ws

˘

¯

.

Next, we use (5.19) to write the previous display in the form:

ż 8

0
dsNx

´

1tsăσHu Πx

”

Φ
`

ρs, ηs, pξr : r ď Hpρsqq
˘

ı¯

“ N
´

ż σ

0
dsΠx

”

Φ
´

ρs, ηs,
`

ξr : r ď Hpρsq
˘

¯ı¯

.

Since now Πx
“

Φ
`

ρs, ηs, pξr : r ď Hpρsqq
˘‰

is a functional of pρs, ηsq, it suffices to establish (5.24)

for a functional only depending on the pair pρs, ηsq. However, this is precisely formula (18) in

[44].

5.3 Special Markov property

In this section we state and prove the (strong) special Markov property for the Lévy snake. This

result was originally introduced in [63, Section 2] in the special case of the Brownian motion

indexed by the Brownian tree, viz. when the Lévy exponent of the tree is of the form ψpλq “ βλ2

and the spatial motion ξ is a Brownian motion. This result plays a fundamental role in the study

of Brownian motion indexed by the Brownian tree, see for example [63, 66, 70, 72]. More recently,

a stronger version was proved in [66] still for ψpλq “ βλ2 but holding for more general spatial

motions ξ. In this section we extend this result to an arbitrary exponent ψ of a Lévy tree. Even

if we follow a similar strategy to the one introduced in [66], general Lévy trees are significantly

less regular than the Brownian tree – in particular the height process H is not Markovian. The

arguments need to be carefully reworked and for instance, the existence of points with infinite

multiplicity hinder considerably the proof.

We start by introducing some standard notation that will be used in the rest of the section

and recalling the preliminaries needed for our purpose. Fix x P E and for an arbitrary open

subset D Ă E containing x and w P WE,x, set

τDpwq :“ inf
␣

t P r0, ζws : wptq R D
(

,
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with the usual convention inftHu “ 8. Similarly, we will write τDpξq :“ inftt ě 0 : ξt R Du for

the exit time from D of the spatial motion ξ. When considering the later, the dependency on ξ

is usually dropped when there is no risk of confusion. In the rest of the section, we will always

assume that:

ΠxpτD ă 8q ą 0. pH1q

The special Markov property is roughly speaking a spatial version of the Markov property. In

order to state it, we need to properly define the notion of paths ”inside D” and ”excursions

outside D”, as well as a notion of measurability with respect to the information generated by the

trajectories staying inside of D. Section 5.3.1 is devoted to the study of paths inside D and to a

fundamental functional of the Lévy snake, called the exit local time. The study of the excursions

outside D is postponed to Section 5.3.2.

5.3.1 The exit local time

Let us begin by introducing some useful operations and notation.

Truncation. We start by defining the truncation of a path pρ, ωq P DpR`,Mf pR`q ˆ WE,xq to

D – we stress that we have ωsp0q “ x for every s ě 0. In this direction, define the functional

V D
t pρ, ωq :“

ż t

0
ds1tζωsďτDpωsqu, t ě 0, (5.25)

measuring the amount of time spent by ω without leaving D up to time t. Let us be more precise:

at time s, we will say that ωs doesn’t leave D (or stays in D) if ωspr0, ζsqq Ă D (notice that pωs
might be in BD) and on the other hand, we say that the trajectory exits D if ωspr0, ζsqqXDc ‰ H.

Observe that a trajectory pωsptq : t P r0, ζssq might exit the domain D and return to it before the

lifetime ζs, but such a trajectory will not be accounted by V D. Write YDpρ, ωq :“ V D
σpωq

pρ, ωq for

the total amount of time spent in D, and for every s P r0,YDpρ, ωqq set

ΓDs pρ, ωq :“ inf
␣

t ě 0 : V D
t pρ, ωq ą s

(

,

with the convention ΓDs pρ, ωq :“ σpωq, if s ě YDpρ, ωq. The truncation of pρ, ωq to D is the

element of DpR`,Mf pR`q ˆ WE,xq with lifetime YDpρ, ωq defined as follows:

trD
`

ρ, ω
˘

:“ pρΓD
s pρ,ωq, ωΓD

s pρ,ωqqsPR`
.

Indeed, observe that the trajectory pρΓD , ωΓDq is rcll since ρ, ω and ΓD are rcll. For simplicity, we

set trDpωq “ pωΓD
s pωqqsPR`

and we write trDppωq for pωΓD . Roughly speaking, trDpωq removes the

trajectories ωs from ω leavingD, glues the remaining endpoints, and hence encodes the trajectories

ωs that stay in D. Let us stress that when pρ, ωq is an element of Sx, the truncation trDpρ, ωq

is still in Sx since trDpωq is a snake trajectory taking values in D Y BD by [1, Proposition 10],

and condition (ii) in Definition 5.3 is clearly satisfied. Recall that pρ,W q stands for the canonical

process in DpR`,Mf pR`q ˆ WE,xq, and that it takes values in Sx under Pµ,w for pµ,wq P Θ or

under Ny for y P E. We will also need to introduce the sigma field

FD :“ σ
`

trDpρ,W qs : s ě 0
˘

(5.26)

in DpR`,Mf pR`q ˆ WEq, which roughly speaking, contains the information generated by the

trajectories that stay in D. The following technical lemma will be often useful. It states that,
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under Nx, when a trajectory Ws exits the domain D, then the measure ρs does not have an atom

at level τDpWsq. More precisely:

Lemma 5.5. Let D be an arbitrary open subset D Ă E containing x. Then, Nx–a.e.

ρsptτDpWsquq “ 0, for all s ě 0.

Proof. First, remark that the many-to-one formula (5.24) gives:

Nx

´

ż σ

0
ds1tτDpWsqă8uρsptτDpWsquq

¯

“

ż 8

0
da expp´αaqE0

b Πx

´

1tτDppξu:uďaqqă8uJaptτDpξu : u ď aquq

¯

,

which vanishes by the independence between ξ and Ja. This shows that Nx–a.e., the Lebesgue

measure of the set ts P r0, σs : ρsptτDpWsquq ‰ 0u is null and now we claim that this implies that

Nx–a.e. ρsptτDpWsquq “ 0 for all s ě 0. We argue by contradiction to prove this claim. Suppose

that for some s ą 0, we have ρsptτDpWsquq ą 0. In this case, recalling that the exploration

process ρ is rcll with respect to the total variation distance, we must have

lim
εÓ0

ˇ

ˇρsptτDpWsquq ´ ρs`εptτDpWsquq
ˇ

ˇ ď lim
εÓ0

sup
APBpRq

ˇ

ˇρspAq ´ ρs`εpAq
ˇ

ˇ “ 0.

We infer that for some δ ą 0, it holds that ρuptτDpWsquq ą 0 for all u P rs, s`δq. In particular, we

have Hu ě Hs for all u P rs, s`δq. By the snake property, we deduce that, for every u P rs, s`δq,

τDpWsq “ τDpWuq and consequently:

ρuptτDpWuquq “ ρuptτDpWsquq ą 0.

However, this is in contradiction with the first part of the proof and the desired result follows.

Exit local time. As in classical excursion theory, we will need to properly index the excursions

outside D but we will also ask the indexing to be compatible with the order induced by H. To

achieve it, we will make use of the exit local time from D. We briefly recall its definition and

main properties and we refer to [43, Section 4.3] for a more detailed account. By Propositions

4.3.1 and 4.3.2 in [43], under Nx and P0,x, the limit

LDs :“ lim
εÑ0

1

ε

ż s

0
dr1tτDpWrqăHrăτDpWrq`εu, (5.27)

exists for every s ě 0, where the convergence holds uniformly in compact intervals in L1pP0,xq

and L1pNxq. This defines a continuous non-decreasing process LD called the exit local time from

D of pρ,W q. We insist that, under Nx and P0,x, the process pρ,W q takes values in Sx which

yields that Hs “ ζs for every s ě 0. We also recall the first moment formula:

Nx

ˆ
ż σ

0
dLDs Φpρs, ηs,Wsq

˙

“ E0
b Πx

ˆ

1tτDă8u expp´ατDqΦ
`

JτD , qJτD , pξt : t ď τDq
˘

˙

, (5.28)

see [43, Proposition 4.3.2] for a proof of this identity. In particular, remark that we have

supp dLDs Ď ts ě 0 : τDpWsq “ Hsu, Nx–a.e.
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We stress that LD is constant at every interval at which Ws stays in D and in each connected

component of

ts ě 0 : τDpWsq ă Hsu.

We call such a connected component an excursion interval from D. This family of intervals will

be studied in detail in the next section. The process LD is not measurable with respect to FD,

the informal reason being that it contains the information on the lengths of the excursions from

D. However, as we are going to show in Proposition 5.7, the time-changed process

rLD :“
`

LDΓD
s

˘

sPR`

is FD-measurable – notice that we removed precisely from LD by means of the time change the

constancy intervals generated by excursions from D. This measurability property will be crucial

for the proof of the special Markov property and the rest of this section is devoted to its proof.

First remark that we have only defined the exit local time under the measures P0,x and Nx

for x P D. In order to be able to apply the Markov property, we need to extend the definition to

more general initial conditions pµ,wq P Θ. This construction will also be essential for the results

of Section 5.4. The precise statement is given in the following proposition:

Proposition 5.6. Fix pµ,wq P Θ such that wp0q P D and suppose that µptτDpwquq “ 0. Then,

under Pµ,w there exists a continuous, non-decreasing process LD with associated Lebesgue-Stieltjes

measure dLD supported on tt P R` : xWt P BDu, such that, for every t ě 0

LDt “ lim
εÑ0

1

ε

ż t

0
ds1tτDpWsqăHsăτDpWsq`εu, (5.29)

where the convergence holds uniformly in compact intervals in L1pPµ,wq. Moreover:

(i) Under Pµ,w, if τDpwq ă 8, we have LDt “ 0 for every t ď infts ě 0 : Hs ă τDpwqu.

(ii) Under P:
µ,w, recall the definition of the random point measure

ř

iPN δphi,ρi,W iq defined in

(5.22). Then we have:

LD8pρ,W q “
ÿ

hiăτDpwq

LD8pρi,W i
q, P:

µ,w–a.s. (5.30)

Proof. Let us start with preliminary remarks and introducing some needed notation. Fix pµ,wq P

Θ with wp0q P D satisfying µptτDpwquq “ 0. We write

Tr :“ inftt ě 0 : Ht “ ru, for every r ě 0, and T`
0 :“ inftt ě 0 : xρt, 1y “ 0u.

By (5.27) and the strong Markov property, we already know that ε´1
şT`

0 `t

T`
0

ds1tτDpWsqăHsăτDpWsq`εu

converges as ε Ó 0 uniformly in compact intervals in L1pPµ,wq towards a non-decreasing continu-

ous process supported on tt ě T`
0 : xWt P BDu. Consequently, it suffices to prove the proposition

under P:
µ,w. In this direction, we set

Ipt, εq :“
1

ε

ż t

0
ds1tτDpWsqăHsăτDpWsq`εu,
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for every ε ą 0. Recall now that under P:
µ,w, the process xρ, 1y is a killed Lévy process started

at xµ, 1y and stopped at its first hitting time of 0. Write ppαi, βiq : i P Nq, for the excursion

intervals of xρ, 1y over its running infimum, and let pρi,W iq be the subtrajectory associated

with the excursion interval rαi, βis. To simplify notation, we also set hi :“ Hpαiq and recall

from (5.22) that the measure M :“
ř

iPN δphi,ρi,W iq is a Poisson point measure with intensity

µpdhqNwphqpdρ, dW q.

We suppose first that τDpwq ě ζw. We shall prove that the collection
`

Ipt, εq, t ě 0
˘

for ε ą 0

is Cauchy in L1pP:
µ,wq uniformly in compact intervals as ε Ó 0, viz.

lim
δ,εÑ0

E:
µ,w

“

sup
sďt

|Ips, εq ´ Ips, δq|
‰

“ 0. (5.31)

This implies directly the existence of LD defined as in (5.29) as well as point (i). We shall then

deduce (ii), and the remaining case τDpwq ă ζw is treated afterwards. Let us proceed with the

proof of (5.31). Since the Lebesgue measure of tt P r0, σs : xρt, 1y “ infsďtxρs, 1yu is null, we can

write

Ipt, εq “
1

ε

ÿ

iPN

ż βi^t

αi^t
ds1tτDpWsqăHsăτDpWsq`εu,

which yields the following upper bound:

E:
µ,w

“

sup
sďt

|Ips, εq ´ Ips, δq|
‰

ď E:
µ,w

”

ÿ

iPN
sup
sďt

ˇ

ˇ

1

ε

ż βi^s

αi^s
du1tτDpWuqăHuăτDpWuq`εu ´

1

δ

ż βi^s

αi^s
du1tτDpWuqăHuăτDpWuq`δu

ˇ

ˇ

ı

ď E:
µ,w

”

ÿ

iPN
sup

sďσpW iq

ˇ

ˇ

1

ε

ż s^t

0
du1tτDpW i

uqăHpρiuqăτDpW i
uq`εu ´

1

δ

ż s^t

0
du1tτDpW i

uqăHpρiuqăτDpW i
uq`δu

ˇ

ˇ

ı

.

Since µptτDpwquq “ 0, the last display is given by
ż

r0,τDpwqq

µpdhqNwphq

´

sup
sďt

|Ips, εq ´ Ips, δq|

¯

. (5.32)

Let us now show that (5.32) converges towards 0 when ε, δ Ó 0. Since for every h P r0, τDpwqq

we have wphq P D, the term inside the integral in (5.32) converges towards 0 as ε, δ Ó 0 by the

approximation of exit local times under the excursion measure given in (5.27). Knowing that µ

is a finite measure, it suffices to show that the term,

Nwphq

´

sup
sďt

|Ips, εq ´ Ips, δq|

¯

,

can be bounded uniformly in ε, δ. However, still under Nwphq, we have the simple upper bound:

sup
sďt

|Ips, εq ´ Ips, δq| ď Ipσ, εq ` Ipσ, δq,

and by the many-to-one formula (5.24), we deduce that

Nwphq

`

Ipσ, εq
˘

“ ε´1E0
b Πwphq

”

ż 8

0
da expp´αaq1tτDpξqăHpJaqăτDpξq`εu

ı

ď 1,
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for every ε ą 0, where to obtain the previous inequality we use that HpJaq “ a. In particular,

we have Nwphq

`

Ipσ, εq ` Ipσ, δq
˘

ď 2 and (5.31) follows. Still under our assumption τDpwq ě ζw
we now turn our attention to (5.30). We know that for any phi,W

i, ρiq P M we have the limit in

probability:

LDσi
pρi,W i

q “ lim
εÑ0

ε´1

ż bi

ai

ds1tτDpWsqăHsăτDpWsq`εu.

It then follows from our definitions that for every r ą 0,

LDσ ´ LDTζw´r
“

ÿ

hiďζw´r

LDσi
pρi,W i

q,

observing that the number of non-zero terms on the right-hand side is finite. By taking the limit

as r Ó 0, we deduce (5.30) by monotonicity.

Let us now assume that τDpwq ă ζw. To simplify notation, set a :“ τDpwq and notice that

pρTa
,WTa

q “
`

µ1r0,τDpwqs, pwphq : h P r0, τDpwqsq
˘

,

where we recall that µptτDpwquq “ 0. By our previous discussion and the strong Markov property,

we deduce that pIpt, εq ´ IpTa, εq : t ě Taq converges as ε Ó 0 uniformly in compact intervals in

L1pPµ,wq towards a continuous process. To conclude our proof, it suffices to show that:

lim
εÑ0

1

ε
E:
µ,w

”

ż Ta

0
ds1tτDpWsqăHsăτDpWsq`εu

ı

“ 0.

To obtain the previous display, write
ż Ta

0
ds1tτDpWsqăHsăτDpWsq`εu “

ÿ

hiěa

ż βi

αi

ds1tτDpWsqăHsăτDpWsq`εu,

where we have hi ‰ a for every i P N, since µptauq “ 0. Moreover, for every i with hi ą a notice

that τDpWsq “ a. This implies:

ż Ta

0
ds1tτDpWsqăHsăτDpWsq`εu ď

ÿ

aďhiďa`ε

ż σpW i
q

0
ds1t0ăHpρisqăεu,

and we can now use that M is a Poisson point measure with intensity µpdhqNwphqpdρ, dW q to

obtain:

E:
µ,w

“

ż Ta

0
ds1tτDpWsqăHsăτDpWsq`εu

‰

ď µpra, a ` εsqNp

ż σ

0
ds1t0ďHpρsqăεuq. (5.33)

Finally, by the many-to-one formula (5.24), the previous display is equal to ε ¨µpra, a`εsq, giving:

lim sup
εÑ0

1

ε
E:
µ,w

”

ż Ta

0
ds1tτDpWsqăHsăτDpWsq`εu

ı

“ µptauq “ 0,

where in the last equality we use that µ P Θ which ensures that µptauq “ 0.

Now that we have defined the exit local time under more general initial conditions, let us turn

our attention to the measurabliliy properties of rLD. From now on, when working under P0,x

or Nx, the sigma field FD should be completed with the P0,x-negligible and Nx-negligible sets

respectively – for simplicity we use the same notation.
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Proposition 5.7. Under P0,x and Nx, the process rLD is FD-measurable.

In particular, the proposition implies that, under Nx, the total mass LDσ “ rLD8 is FD-measurable.

The proof will mainly rely on the two following technical lemmas.

Lemma 5.8. Consider an open subset D Ă E containing x. Fix an arbitrary pµ,wq P Θ with

wp0q “ x and satisfying µptτDpwquq “ 0 if τDpwq ă 8. Then, for every K ą 0, we have:

E:
µ,w

”

ż σ

0
dLDs 1txρs,1yďKu

ı

“

ż µpr0,τDpwqqq

0
du E0

b ΠwpHpκxµ,1y´uµqq

´

1tτDă8u expp´ατDq1txJτD ,1yďK´uu

¯

.

Proof. Recall that, under P:
µ,w, the process xρ, 1y is a Lévy process started at xµ, 1y and stopped

at its first hitting time of 0. As usual, write tpαi, βiq : i P Nu for the excursion intervals of

xρ, 1y ´ xµ, 1y over its running infimum, that we still denote by I. We write pρi,W iq for the

subtrajectory associated with rαi, βis. As explained in (5.18), the measure:

ÿ

iPN
δp´Iαi ,ρ

i,W iq,

is a Poisson point measure with intensity 1r0,xµ,1yspuqduNwpHpκuµqqpdρ, dW q. Furthermore, for

every i P N, we have Hpκ´Iαi
µq “ Hαi “ Hβi and to simplify notation we denote this quantity by

hi. Next, we notice that, by Proposition 5.6, we have
şσ
0 dL

D
s 1txρs,1y´xµ,1y“Isu “ 0 and LDt “ 0,

for every t ď infts ě 0 : Hs ă τDpwqu. From our previous observations, we get:

ż σ

0
dLDs 1txρs,1yďKu “

ÿ

hiăτDpwq

ż βi

αi

dLDs 1txρs,1yďKu

“
ÿ

Hpκ´Iαi
µqăτDpwq

ż βi´αi

0
dLDs pρi,W i

q1txρis,1yďK´xµ,1y´Iαiu,

where we used in the second identity that xρs`αi , 1y “ xρis, 1y ` xραi , 1y “ xρis, 1y ` Iαi ` xµ, 1y,

for every s P r0, βi ´ αis. This implies that:

E:
µ,w

”

ÿ

Hpκ´Iαi
µqăτDpwq

ż βi´αi

0
dLDs pρi,W i

q1txρis,1yďK´xµ,1y´Iαiu

ı

“

ż xµ,1y

µprτDpwq,8qq

duNwpHpκuµqq

´

ż σ

0
dLDs 1txρs,1yďK´xµ,1y`uu

¯

,

and the desired result now follows by performing the change of variable u ÞÝÑxµ, 1y ´ u and

applying the many-to-one formula (5.28).

Lemma 5.9. Consider an increasing sequence of open subsets pDn : n ě 1q containing x, such

that YnDn “ D and Dn Ă D. There exists a subsequence pnk : k ě 0q converging towards

infinity, such that

lim
kÑ8

sup
sPr0,σs

|L
Dnk
s ´ LDs | “ 0, Nx–a.e. (5.34)
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Proof. The proof of this lemma will be achieved by using similar techniques as in [63, Proposition

2.3] in the Brownian setting. We start by showing that, for a suitable subsequence, the total

mass LDn
σ converges towards LDσ , Nx-a.e. The uniform convergence will then be deduced by

standard techniques. Notice however that in [63], this is mainly done by establishing an L2pNxq

convergence of LDn
σ towards LDσ , and that we do not have a priori moments of order 2 in our

setting. In order to overcome this difficulty, we need to localize the tree by the use of a truncation

argument. We start by showing that, for any fixed K ą 0, we have:

lim
nÑ8

ż σ

0
dLDn

s 1txρs,1yďKu “

ż σ

0
dLDs 1txρs,1yďKu, in L2pNxq. (5.35)

In this direction, we write Nx

´

ˇ

ˇ

şσ
0 dL

D
s 1txρs,1yďKu ´

şσ
0 dL

Dn
s 1txρs,1yďKu

ˇ

ˇ

2
¯

in the following form

Nx

´

`

ż σ

0
dLDs 1txρs,1yďKu

˘2
¯

` Nx

´

`

ż σ

0
dLDn

s 1txρs,1yďKu

˘2
¯

´ 2Nx

´

`

ż σ

0
dLDn

s 1txρs,1yďKu

˘

¨
`

ż σ

0
dLDs 1txρs,1yďKu

˘

¯

, (5.36)

and the proof of (5.35) will follow by computing each term separately and by taking the limit as

n Ò 8. First, we remark that

`

ż σ

0
dLDs 1txρs,1yďKu

˘2
“ 2

ż σ

0
dLDs 1txρs,1yďKu

ż σ

s
dLDu 1txρu,1yďKu,

and the idea now is to apply the Markov property. For convenience, we let ΘD be the subset

of Θ of all the pairs pµ,wq satisfying the condition µptτDpwquq “ 0 when τDpwq ă 8, and

we define ΘDn
similarly replacing D by Dn. Notice that by Lemma 5.5, we have, Nx–a.e.,

pρt,Wtq P ΘD X pXně1ΘDn
q for every t ě 0. For pµ,wq P ΘD, we set

ϕDpµ,wq :“ E:
µ,w

”

ż σ

0
dLDs 1txρs,1yďKu

ı

“

ż µpr0,τDpwqqq

0
du E0

b ΠwpHpκxµ,1y´uµqq

´

1tτDă8u expp´ατDq1txJτD ,1yďK´uu

¯

,

where in the second equality we used Lemma 5.8. Note that the dependence of ϕD on K is

being omitted to simplify the notation. By our previous discussion, an application of the Markov

property gives:

Nx

˜

ˆ
ż σ

0
dLDs 1txρs,1yďKu

˙2
¸

“ 2Nx

ˆ
ż σ

0
dLDs 1txρs,1yďKuϕDpρs,Wsq

˙

“ 2E0
b Πx

´

1tτDă8u expp´ατDq1txJτD ,1yďKuϕDpJτD , ξ
τDq

¯

,

(5.37)

where to simplify notation, we write ξτD :“ pξt : 0 ď t ď τDq. Observe that pJτD , ξ
τDq P ΘD since

by independence, we have 1tτDă8uJτDptτDuq “ 0, P 0 bΠx–a.s. Replacing D by Dn, we also have

pJτDn
, ξτDn q P ΘDn

and we obtain

Nx

´

`

ż σ

0
dLDn

s 1txρs,1yďKu

˘2
¯

“ 2E0
b Πx

´

1tτDnă8u expp´ατDn
q1txJτDn

,1yďKuϕDn
pJτDn

, ξτDn q

¯

,

(5.38)
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where for pµ,wq P ΘDn
, we write

ϕDn
pµ,wq “

ż µpr0,τDnpwqqq

0
du E0

b ΠwpHpκxµ,1y´uµqq

´

1tτDnă8u expp´ατDn
q1txJτDn

,1yďK´uu

¯

.

Our goal now is to take the limit in (5.38) as n Ò 8 and to show that this limit is precisely

(5.37). In this direction, we remark that under txJτDn
, 1y ď Ku, we have the trivial bound

ϕDn
pJτDn

, ξτDn q ď K. Thanks to the dominated convergence theorem, it is then enough to show

that, P 0 b Πx-a.s., the following convergence holds:

lim
nÑ8

1tτDnă8ue
´ατDn1txJτDn

,1yďKuϕDn
pJτDn

, ξτDn q “ 1tτDă8ue
´ατD1txJτD ,1yďKuϕDpJτD , ξ

τDq.

In order to prove it, we start noticing that we always have τDn
Ò τD as n Ñ 8. In particular,

since xJ8, 1y “ 8, we see that the limit in the previous display is 0 under tτD “ 8u. Let us

focus now on the event tτD ă 8u. First remark that

κxJτDn
,1y´uJτDn

“ κxJτD ,1y´uJτD ,

for every u ď xJτDn
, 1y. This combined with the independence between J and ξ ensures that,

under tτD ă 8u, the quantities xJτDn
, 1y and ϕDn

pJτDn
, ξτDn q convergence respectively to xJτD, 1y

and ϕDpJτD , ξ
τDq, giving the desired convergence under tτD ă 8u. Consequently, we get:

lim
nÑ8

Nx

´

`

ż σ

0
dLDn

s 1txρs,1yďKu

˘2
¯

“ Nx

´

`

ż σ

0
dLDs 1txρs,1yďKu

˘2
¯

.

Turning our attention to the cross-term, we can apply similar steps and the Markov property

as before to obtain

Nx

´

`

ż σ

0
dLDn

s 1txρs,1yďKu

˘

¨
`

ż σ

0
dLDs 1txρs,1yďKu

˘

¯

“ Nx

´

ż σ

0
dLDn

s 1txρs,1yďKu

ż σ

s
dLDu 1txρu,1yďKu

¯

` Nx

´

ż σ

0
dLDs 1txρs,1yďKu

ż σ

s
dLDn

u 1txρu,1yďKu

¯

“ E0
b Πx

´

1tτDnă8u expp´ατDn
q1txJτDn

,1yďKuϕDpJτDn
, ξτDn q

¯

` E0
b Πx

´

1tτDă8u expp´ατDq1txJτD ,1yďKuϕDn
pJτD , ξ

τDq

¯

,

and using the same method as before we get:

lim
nÑ8

Nx

´

`

ż σ

0
dLDn

s 1txρs,1yďKu

˘

¨
`

ż σ

0
dLDs 1txρs,1yďKu

˘

¯

“ Nx

´

`

ż σ

0
dLDs 1txρs,1yďKu

˘2
¯

.

Taking the limit as n Ò 8 in (5.36) we deduce the claimed L2pNxq convergence (5.35). Now that

the convergence of the truncated total mass has been established, to derive the statement of the

proposition we proceed as follows. First, we introduce the processes

Ant :“

ż t

0
dLDn

s 1txρs,1yďKu and At :“

ż t

0
dLDs 1txρs,1yďKu,

which are continuous additive functionals of the Markov process pρ,W q. Then using the Markov

property, we get

Nx pAn8|Fsq “ Ans^σ ` ϕDn
pρs^σ,Ws^σq and Nx pA8|Fsq “ As^σ ` ϕDpρs^σ,Ws^σq, (5.39)
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since ϕDn
pµ,wq “ E

:
µ,wrAn8s, ϕDpµ,wq “ E

:
µ,wrA8s and ϕDn

pρσ,Wσq “ ϕDpρσ,Wσq “ 0, Nx-a.e.

To simplify notation, we denote respectively by Mn
s “ NxpAn8|Fsq and Ms “ NxpA8|Fsq for

s ě 0 the martingales in (5.39). Next, we apply Doob’s inequality to derive:

Nx

`

sup
są0

|Mn
s ´ Ms| ą δ

˘

ď δ´2Nx

`

|Anσ ´ Aσ|
2
˘

. (5.40)

Indeed, even if Nx is not a finite measure, we can argue as follows: fix a ą 0 and observe that

pMa`tqtě0, pMn
a`tqtě0 under Nxp ¨ |σ ą aq are uniformly integrable martingales, from which we

obtain

Nx

`

sup
sěa

|Mn
s ´ Ms| ą δ

ˇ

ˇ σ ą a
˘

ď δ´2Nx

`

|Anσ ´ Aσ|
2
ˇ

ˇ σ ą a
˘

,

and we deduce (5.40) by multiplying both sides by Nxpσ ą aq and by taking the limit as a Ó 0 –

using monotone convergence.

By (5.35), the right-hand side of (5.40) converges towards 0 as n Ò 8 and we deduce that

lim
kÑ8

sup
są0

|Mnk
s ´ Ms| “ 0, Nx –a.e.

for a suitable subsequence pnk : k ě 1q increasing towards infinity. Since lim
nÑ8

ϕDn
pρs,Wsq “

ϕDpρs,Wsq, we obtain that Nx-a.e., for every t ě 0,
şt
0 dL

Dnk
s 1txρs,1yďKu Ñ

şt
0 dL

D
s 1txρs,1yďKu

as k Ñ 8. By continuity, monotonicity and the fact that σ ă 8 Nx–a.e., we can apply Dini’s

theorem to get:

lim
kÑ8

sup
tą0

ˇ

ˇ

ż t

0
dL

Dnk
s 1txρs,1yďKu ´

ż t

0
dLDs 1txρs,1yďKu

ˇ

ˇ “ 0, Nx– a.e.

Consequently, we deduce that on the event tsupsě0xρs, 1y ď Ku “ tsupX ď Ku, the Nx-a.e.

uniform convergence (5.34) holds under a subsequence pnkq, which depends on K. Since this

holds for arbitrary K, we can use a diagonal argument to find a deterministic subsequence that

we still denote by pnk : k ě 1q converging towards infinity such that

lim
kÑ8

sup
tPr0,σs

|L
Dnk

t ´ LDt | “ 0, Nx– a.e.

We are now in position to prove that the process rLD is FD-measurable.

Proof of Proposition 5.7. Until further notice, we argue under P0,x. By (5.27) and monotonicity,

a diagonal argument gives that we can find a subsequence pεk : k ě 1q, with εk Ó 0 as k Ñ 8,

such that:

LDn

ΓD
s

“ lim
kÑ8

1

εk

ż ΓD
s

0
dr1tτDnpWrqăHrăτDnpWrq`εku,

for every n ě 1 and s ě 0. Our goal is now to show that:

LDn

ΓD
s

“ lim
kÑ8

1

εk

ż s

0
dr1tτDnpW

ΓD
r

qăH
ΓD
r

ăτDnpW
ΓD
r

q`εku, (5.41)
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which will imply that pLDn

ΓD
s

qsě0 is FD-measurable for every n P N. In order to establish (5.41)

we argue for ω fixed and observe that for k large enough, we have:

1tτDnpWrqăHrăτDnpWrq`εku “ 1tτDnpWrqăHrăτDnpWrq`εku1tHrďτDpWrqu, for all r P r0,ΓDs s.

To see it, remark that if the previous display did not hold, by a compactness argument and

continuity we would have τDn
pWr0q “ τDpWr0q ď Hr for some r0 in r0,ΓDs s. This gives a

contradiction since Dn Ă D and pWr0ptqqtPr0,Hr0 s is continuous. Recalling the notation V D given

in (5.25), we deduce that

LDn

ΓD
s

“ lim
kÑ8

1

εk

ż ΓD
s

0
dr1tτDnpWrqăHrăτDnpWrq`εku

“ lim
kÑ8

1

εk

ż ΓD
s

0
dV D

r 1tτDnpWrqăHrăτDnpWrq`εku “ lim
kÑ8

1

εk

ż s

0
dr1tτDnpW

ΓD
r

qăH
ΓD
r

ăτDnpW
ΓD
r

q`εku,

giving us (5.41). The same arguments can be applied under Nx and, to complete the proof of the

proposition, it suffices to show that for every t ě 0

lim
nÑ8

sup
sPr0,ts

|LDn

ΓD
s

´ LDΓD
s

| “ 0, under P0,x and Nx, (5.42)

at least along a suitable subsequence. However, note that when working under Nx, this conver-

gence follows by Lemma 5.9. Now, the result under P0,x is a standard consequence of excursion

theory. More precisely, recall that ´I is the local time of pρ,W q at p0, xq and, for fixed r ą 0,

set Tr :“ inftt ě 0 : ´It ą ru. If we let TD :“ inftt ě 0 : τDpWtq ă 8u, by continuity there

exists a finite number of excursions pρi,W iq of pρ,W q in r0, Trs satisfying TDpW iq ă 8, and their

distribution is Nx,0p ¨ |TD ă 8q. Since Tr Ò 8, the approximation (5.42) under Px,0 now follows

from the result under Nx,0. This completes the proof of Proposition 5.7.

5.3.2 Proof of special Markov property

Now that we have already studied the trajectories staying in D, we turn our attention to the

complementary side of the picture and we start by introducing formally the notion of excursions

from D.

Excursions from D. Observe that (5.24) and assumption pH1q imply that

Nx

´

ż σ

0
ds 1tτDpWsqăζsu ą 0

¯

ą 0.

Hence, the set
␣

s P r0, σs : τDpWsq ă ζs
(

is non-empty with non null measure under Nx and P0,x.

If we define

γDs :“
`

ζs ´ τDpWsq
˘

`
, s ě 0,

it is straightforward to show by the snake property and the continuity of ζ that γD is continuous.

Set

σDt :“ inf
␣

s ě 0 :

ż s

0
dr1tγD

r ą0u ą t
(

,

and consider the process pρDt qtě0 taking values in Mf pR`q defined by:

xρDt , fy :“

ż

ρσD
t

pdhqf
`

h ´ τDpWσD
t

q
˘

1thąτDpW
σD
t

qu. (5.43)



193 5.3. Special Markov property

Then, by Proposition 4.3.1 in [43], ρD and ρ have the same distribution under P0,x. In particular,

xρD, 1y has the same law as the reflected Lévy process X ´ I and we denote its local time at 0

by pℓDpsq : s ě 0q. Moreover, it is shown in [43, Section 4.3] that the process LD is related to

the local time ℓD by the identity:

LDt “ ℓD
ˆ
ż t

0
ds1tγD

s ą0u

˙

. (5.44)

The proof of Proposition 4.3.1 in [43] shows that ρD can be obtained as limit of functions which

are independent of FD, implying that ρD is on its turn independent of FD. Now, denote the

connected components of the open set
␣

t ě 0 : τDpWtq ă ζt
(

“
␣

t ě 0 : γDt ą 0
(

,

by
`

pai, biq : i P I
˘

, where I is an indexing set that might be empty. By construction, for any

s P pai, biq, the trajectory Ws is a trajectory leaving D. Remark that Hai “ Hbi ă Hr for every

r P pai, biq and let pρi,W iq be the subtrajectory of pρ,W q associated with rai, bis as defined in

Section 5.2.3. Observe that in our setting, pρi,W iq is defined for each s P r0, bi ´ ais and for any

measurable function f : R` ÞÑ R` as

xρis, fy “

ż

ρai`spdhqfph ´ τDpWaiqq1thąτDpWaiqu

and

W i
s “ Wpai`sq^bipt ` τDpWaiqq for t P r0, ζpai`sq^bi ´ τDpWaiqs,

with respective lifetime process given by

ζis “ ζpai`sq^bi ´ τDpWaiq,

where τDpWsq “ τDpWaiq “ ζai . We say that pρi,W iq is an excursion of pρ,W q from D. Observe

that W i
sp0q “ W i

aip0q for all s P rai, bis by the snake property and that we have W i
aip0q P BD.

This is the point of BD used by the subtrajectory W i to escape from D.

In order to state the special Markov property we need to introduce one last notation. Let θ

be the right inverse of rLD, viz. the FD-measurable function defined as

θr :“ inf
␣

s ě 0 : LDΓD
s

ą r
(

, for all r P r0, LDσ q.

Recall that we are considering some fixed x P D, the notation ppρi,W iq : i P Iq for the excursions

outside D, and that we are working under the hypothesis pH1q. We are now going to state

and prove the special Markov property under P0,x, and we will deduce by standard arguments a

version under the excursion measure Nx. Under P0,x we use the same notation as under Nx, but

observing that σH “ 8 and noticing that P0,x-a.s., we have YD “
ş8

0 ds1tHsďτDpWsqu “ 8 and

LD8 “ 8. In particular, this implies that ΓDs and θs are finite for every s ă 8.

Theorem 5.10 (Special Markov property). Under P0,x, conditionally on FD, the point measure
ÿ

iPI
δpLD

ai
,ρi,W iqpdℓ, dρ, dωq

is a Poisson point process with intensity

1r0,8qpℓq dℓNtrDpxW qθℓ
pdρ, dωq.
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Recall that we have established in Proposition 5.7 that rLD is FD-measurable. It might also be

worth observing that if F “ F pρ, ωq is a measurable function, when integrating with respect to

the intensity measure 1r0,8qpℓqdℓNtrDpxW qθℓ
pdρ, dωq we can re-write the expression in the following

more tractable form:
ż 8

0
dℓN

trDzpW qθℓ

pF q “

ż 8

0
drLDs N

trDpxW qs
pF q “

ż 8

0
dLDs N

xWs
pF q

where in the last equality, we applied a change of variable for Lebesgue-Stieltjes integrals using

the fact that LD is constant on the excursion intervals rΓDs´,Γ
D
s s when ΓDs´ ă ΓDs . Let us now

prove Theorem 5.10.

Proof. In this proof, we work with pρ,W q under P0,x. Let us start with some preliminary con-

structions and remarks. First, we introduce the Sx-valued process pρ,W ˚q defined at each t ě 0

as
`

ρt,W
˚
t psq

˘

“

´

ρtpdhq,Wt

`

s ^ τDpWtq
˘

¯

, for s P r0, ζWt
s,

and let FD
˚ be its generated sigma-field on DpR`,Mf pR`q ˆ WE,xq. The snake pρ,W ˚q can be

interpreted as the Lévy snake associated with pψ, ξ˚q, where ξ˚ is the stopped Markov process

pξ˚
t : t ě 0q “ pξt^τDpξq : t ě 0q. Since, for every t ě 0,

`

ζWt
´ τDpWtq

˘

`
“
`

ζW˚
t

´ τDpW ˚
t q
˘

`
,

we derive that the process γDt “ pζWt
´ τDpWtqq` is FD

˚ ´measurable. Consequently, we have

FD Ă FD
˚ since V D – the functional measuring the time spent in D defined in (5.25) – is FD

˚ -

measurable and by definition trDpρ,Wq “ trDpρ,W˚q. Recalling that
`

pai, biq : i P I
˘

stands for

the connected components of the open set

tt ě 0 : τDpWtq ă ζWt
u “ tt ě 0 : γDt ą 0u,

we deduce by the previous discussion and the identity τDpWaiq “ ζai , that the variables

xWai “ xW ˚
ai , ζ

i
“ ζpai`¨ q^bi ´ ζai and a fortiori ρi are FD

˚ ´ measurable.

Informally, FD
˚ encodes the information of the trajectories staying in D and the tree structure.

We claim that conditionally on FD
˚ , the excursions pW i : i P Nq are independent, and that the

conditional distribution of W i is Qζi

xW˚
ai

, where we recall from Section 5.2.3 that we denote the

distribution of the snake driven by h started at x by Qh
x.

In order to prove this claim, consider a collection of snake trajectories
`

W i,1 : i P I
˘

such that,

conditionally on pρ,W ˚q, they are independent and each one is respectively distributed according

to the measure Qζi

xW˚
ai

. Next let W 1 be the process defined as follows: for every t such that γDt “ 0

set W 1
t “ W ˚

t , and if γDt ą 0 we set:

W 1
tpsq “

#

W ˚
t psq if s P r0, τDpW ˚

t qs

W i,1
t´ai

`

s ´ τDpW ˚
t q
˘

if s P rτDpW ˚
t q, ζpW ˚

t qs,



195 5.3. Special Markov property

where i is the unique index such that t P pai, biq. By construction, pρ,W 1q is in DpR`,Mf pR`q ˆ

WE,xq and a straightforward computation of its finite marginals shows that its distribution is

P0,x, proving our claim.

Notice that (5.27) implies that LD is constant on the intervals rΓDs´,Γ
D
s s when ΓDs´ ă ΓDs .

Hence, LDs “ rLDV D
s

for all s ě 0 and in particular LDai “ rLDV D
ai

, the latter being FD
˚ -measurable.

Consider now U a bounded FD-measurable random variable, and remark that to obtain the

desired result, it is enough to show that:

E0,x

”

U expp´
ÿ

iPI
F
`

LDai , ρ
i,W i

q
˘

ı

“ E0,x

”

U exp
´

´

ż 8

0
dℓN

trDzpW qθℓ

`

1 ´ expp´F pℓ, ρ,W q
˘

¯ı

,

for every non-negative measurable function F in R` ˆDpR`,Mf pR`q ˆWEq. In order to prove

this identity, we start by projecting the left term on FD
˚ : by the previous discussion and recalling

that FD Ă FD
˚ , we get

E0,x

”

U expp´
ÿ

iPI
F
`

LDai , ρ
i,W i

q
˘

ı

“ E0,x

”

U
ź

iPI
Qζi

xW˚
ai

`

expp´F pLDai , ρ
i,W q

˘

ı

.

Moreover, it is straightforward to see that

xW ˚
ai “ xWai “ trDypW qθ

LD
ai

,

we omit the details of this identity since the argument used in (23) of [66, Theorem 20] for the

Brownian snake applies directly to our framework. Consequently, we have:

E0,x

”

U
ź

iPI
Qζi

xW˚
ai

`

expp´F pLDai , ρ
i,W q

˘

ı

“ E0,x

”

U
ź

iPI
Qζi

trDzpW qθ
LD
ai

`

expp´F pLDai , ρ
i,W q

˘

ı

.

Now, we need to take the projection on FD. Recalling that Hpρiq “ ζi, observe that for every

i P I,
Qζi

trDzpW qθ
LD
ai

`

expp´F pLDai , ρ
i,W q

˘

is a measurable function of the pair pLDai , ρ
iq and the process ptrDpW qθr : r ě 0q, the latter being

FD-measurable. We are going to conclude by showing that the point measure

ÿ

iPI
δpLD

ai
,ρiq

is a Poisson point measure with intensity 1r0,8qpℓqdℓNpdρq independent of FD. Remark that

once this has been established, an application of the exponential formula for functionals of Poisson

random measures yields

E0,x

”

U
ź

iPN
Qζi

trDzpW qθ
LD
ai

`

expp´F pLDai , ρ
i,W q

˘

ı

“ E0,x

”

U exp
´

´

ż 8

0
dℓN

trDzpW qθℓ

`

1´expp´F pℓ, ρ,W q
˘

¯ı

giving the desired result. In this direction, recall the definition of ρD given in (5.43), and that

ℓD stands for the local time of ρD at 0. We denote the connected component of the open set

tt ě 0 : xρDt , 1y ‰ 0u “ tt ě 0 : HpρDt q ą 0u by
`

pcj , djq : j P N
˘

– the latter equality holding
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since ρDt pt0uq “ 0 – and observe that these are precisely the excursion intervals of xρD, 1y from

0. It follows by (5.12) and the discussion before the proof that
ÿ

jPN
δpℓDpcjq, ρD

pcj`¨q^dj
q

is a Poisson point measure with intensity 1r0,8qpℓqdℓNpdρq and observe that this measure is

independent of FD – since ρD is independent of FD. Furthermore, by (5.44) we have:

LDσD
s

“ ℓD
´

ż σD
s

0
dr 1tγD

r ą0u

¯

“ ℓDpsq,

for every s ě 0. It is now straightforward to deduce from our last observations that:
␣

pLDai , ρ
i
q : i P I

(

“
␣

pℓDpcjq, ρ
D
pcj`¨q^dj

q : j P N
(

,

concluding the proof.

Setting TD “ inftt ě 0 : τDpWtq ă 8u, we infer from our previous result a version of the

special Markov property holding under the probability measure

ND
x :“ Nxp ¨ |TD ă 8q.

Observe that NxpTD ă 8q is finite: if this quantity was infinite, by excursion theory, the process

pρ,W q under P0,x would have infinitely many excursions exiting D on compact intervals, contra-

dicting the continuity of its paths. Finally, note that pρ,W q under ND
x has the distribution of

the first excursion exiting the domain D. As a straightforward consequence of Theorem 5.10, this

observation allows us to deduce:

Theorem 5.11. Under ND
x and conditionally on FD, the point measure:

ÿ

iPI
δpLD

ai
,ρi,W iqpdℓ, dρ, dωq

is a Poisson point process with intensity

1r0,LD
σ spℓq dℓNtrDpxW qθℓ

pdρ, dωq.

Recall that the measure dLDs is supported on ts ě 0 : xWs P BDu and consider a measurable

function g : BD Ñ R`. Under Nx, we define the exit measure from D, denoted by ZD as:

xZD, gy :“

ż σ

0
dLDs gpxWsq.

The total mass of ZD is LDσ and, in particular, ZD is non-null only in tTD ă 8u. Again by a

standard change of variable, we get

xZD, gy “

ż σ

0
drLDs gptrDpxWsqq “

ż LD
σ

0
dℓ gptrDxWθℓq, Nx–a.e.

and this implies that ZD is FD-measurable since LDσ P FD by Proposition 5.7. In this work,

we shall frequently make use of the following simpler version of the special Markov property. By

Theorem 5.11, we have
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Corollary 5.12. Under ND
x and conditionally on FD, the point measure

ÿ

iPI
δpρi,W iqpdρ, dωq (5.45)

is a Poisson random measure with intensity
ş

ZDpdyqNypdρ, dωq.

Let us close this section by recalling some well-known properties of ZD that will be needed, and

by introducing some useful notations. Remark by (5.28) that, for any measurable g : BD ÞÑ R`

and for every y P D, we have

Ny

`

xZD, gy
˘

“ Πy

´

1tτDă8u expp´ατDqgpξτDq

¯

,

and for such g, we set:

uDg pyq :“ Ny

`

1 ´ expp´xZD, gyq
˘

, for all y P D. (5.46)

Theorem 4.3.3 in [43] states that for every g : BD Ñ R` bounded measurable function, uDg solves

the integral equation:

uDg pyq ` Πy

´

ż τD

0
dt ψpuDg pξtqq

¯

“ Πy
`

1tτDă8ugpξτDq
˘

. (5.47)

By convention, we set uDg pyq :“ gpyq for every y P BD, and we stress that this convention is

compatible with (5.47).

5.4 Construction of a measure supported on tt P R` : xWt “ xu

From now on, we fix x P E and we consider the random set:

tt P R` : xWt “ xu, as well as its image on the tree TH , viz. tυ P TH : ξυ “ xu. (5.48)

In order to study the latter, we shall construct an additive functional A :“ pAtqtPR`
of the Lévy

snake supported on tt P R` : xWt “ xu. The present section is devoted to the construction of A

and to develop the machinery needed for our analysis. The study of tυ P TH : ξυ “ xu is delayed

to Section 5.5 and will heavily rely on the results of this section. Let us discuss now in detail the

framework we will consider in the rest of this work.

Framework of Section 5.4 and 5.5: With the same notations as in previous sections, consider

a strong Markov process ξ taking values in E with a.s. continuous sample paths and we make

the following assumptions:

x is regular, instantaneous and recurrent for ξ, pH2q

and
ż 8

0
dt 1tξt“xu “ 0, Πx ´ a.s. pH3q

Under pH2q the local time of ξ at x is well defined up to a multiplicative constant (that we fix

arbitrarily) and we denote it by L. The recurrence hypothesis is assumed for convenience and we
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expect our results to hold with minor modifications without it. Set E˚ :“ Eztxu and for w P WE ,

with the notation of Section 5.3 write

τE˚
pwq “ infth P r0, ζws : wphq “ xu,

for the exit time of w from the open set E˚. Observe that since x is recurrent for ξ, we have

ΠypτE˚
ă 8q “ 1 (5.49)

for every y P E˚, and in particular pH1q holds. This will allow us to make use of the special

Markov property established in the previous section. Assumption pH3q might seem a technicality

but it plays a crucial role in our study: it will ensure, under Ny and P0,y, that the set of branching

points of TH and tυ P THzt0u : ξυ “ xu are disjoint. We will explain properly this point after

concluding the presentation of the section.

Let N be the excursion measure of ξ at x associated with L and, with a slight abuse of

notation, still write σξ for the lifetime of ξ under N . The pair

ξs “ pξs,Lsq, s ě 0,

is a strong Markov process taking values in the Polish space E :“ E ˆ R` equipped with the

product metric dE . We set Πy,r for its law started from an arbitrary point py, rq P E. Recall that

we always work under the assumptions pH0q, which for pψ, ξq takes the following form:

Hypothesis pH1
0q. There exists a constant CΠ ą 0 and two positive numbers p, q ą 0 such

that,

for every y P E and t ě 0, we have:

Πy,0

´

sup
0ďuďt

dE
`

pξu,Luq, py, 0q
˘p
¯

ď CΠ ¨ tq, and q ¨ p1 ´ Υ´1
q ą 1, pH1

0q

where we recall the definition of Υ from (5.17). We will use respectively the notation Θ, S for the

sets defined as Θ, S in Section 5.2.3 but replacing the Polish space E by E. It will be convenient to

write the elements of WE as pairs w “ pw, ℓq, where w P WE and ℓ : r0, ζws ÞÑ R` is a continuous

function. Recall that under pH1
0q, the family of measures pPµ,w : pµ,wq P Θq are defined in the

canonical space DpR`,Mf pR`q ˆ WEq and we denote the canonical process by pρ,W,Λq, where

Ws : r0, ζspW sqs ÞÑ E and Λs : r0, ζspW sqs ÞÑ R`. Said otherwise, for each pµ,wq P Θ, under

Pµ,w the process

pρs,Ws,Λsq, s ě 0,

is the ψ-Lévy snake with spatial motion ξ started from pµ,wq and we simply writeW s :“ pWs,Λsq.

For every py, r0q P E, we denote the excursion measure of pρ,W q starting from p0, y, r0q by Ny,r0 .

Recall that under P0,y,r0 or Ny,r0 , for each s ě 0 and conditionally on ζs, the pair

pWs,Λsq “
`

pWsphq,Λsphq
˘

: h P r0, ζss
˘

has the distribution of pξ,Lq under Πy,r0 killed at ζs. In particular, the associated Lebesgue-

Stieltjes measure of Λs is supported on the closure of th P r0, ζsq : Wsphq “ xu, P0,y,r0 and Ny,r0–

a.e. We will restrict our analysis to the collection of initial conditions pµ,wq :“ pµ,w, ℓq P Θ

satisfying that:
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(i) ℓ is a non-decreasing continuous function and the support of its Lebesgue-Stieltjes measure

is
␣

h P r0, ζwq : wphq “ x
(

.

(ii) The measure µ does not charge the set th P r0, ζws : wphq “ xu, viz.
ż

r0,ζws

µpdhq1twphq“xu “ 0.

This subcollection of Θ is denoted by Θx and we will work with the process
`

pρ,W q, pPµ,w :

pµ,wq P Θxq
˘

. Conditions (i) and (ii) are natural, since as a particular consequence of the next

lemma, under P0,y,r0 and Ny,r0 the Lévy snake pρ,W q takes values in Θx.

Lemma 5.13. For every pµ,wq P Θx and py, r0q P E, the process pρ,W q under Pµ,w and Ny,r0

takes values in Θx.

Proof. First, we argue that Ny,r0–a.e. the pair pρt,W tq satisfies (i) and (ii) for each t P r0, σs. On

the one hand, by formula (5.24), for every py, r0q P E we have :

Ny,r0

ˆ
ż σH

0
dt xρt, th P r0, Hts : Wtphq “ xuy

˙

“

ż 8

0
da expp´αaq E0

b Πy,r0
“

ż a

0
Japdhq1tξh“xu

‰

which vanishes. In the last claim we used that, by pH3q and the independence between ξ and

J8, Campbell’s formula yields E0 b Πy,r0
“ ş8

0 J8pdhq1tξh“xu

‰

“ 0. On the other hand, by

construction of the Lévy snake, for each fixed t ě 0 the support of Λtpdhq is the closure of

th P r0, Htq : Wtphq “ xu in r0, Hts, Ny,r0–a.e.

Consequently, Ny,r0–a.e. , we can find a countable dense set D Ă r0, σs such that we have

xρt, th P r0, Hts : Wtphq “ xuy “ 0 and supp Λtpdhq is the closure of th P r0, Htq : Wtphq “ xu

for every t P D. For instance, one can construct the set D by taking an infinite sequence of

independent uniform points in r0, σs. We now claim that ρ satisfies that Ny,r0–a.e., for every

s ă t, we have ρs1r0,mHps,tqq “ ρt1r0,mHps,tqq, where we recall the notation mHps, tq “ minrs,ts H.

Indeed, remark that for fixed s ă t, this holds by the Markov property and we can extend this

property to all 0 ď s ă t ď σ since ρ is right-continuous with respect to the total variation

distance. Now, by the snake property we deduce that Ny,r0–a.e, for every t P r0, σs, we have

xρt, th P r0, Htq : Wtphq “ xuy “ 0 and th P r0, Htq : Wtphq “ xu “ supp Λtpdhq X r0, Htq.

(5.50)

Taking the closure in the second equality we deduce that the closure of th P r0, Htq : Wtphq “ xu

is exactly supp Λtpdhq. However, to conclude that Ny,r0-a.e.

xρt, th P r0, Hts : Wtphq “ xuy “ 0, for all t P r0, σs, (5.51)

we still need an additional step. Arguing by contradiction, suppose that for some t ą 0 the

quantity (5.51) is non-null. Then, by (5.50) we must have ρtptHtuq ą 0 and WtpHtq “ x. By

right-continuity of ρ with respect to the total variation metric, we get

lim
εÑ0

|ρtptHtuq ´ ρt`εptHtuq| “ 0,
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and we deduce that for ε small enough, ρuptHtuq ą 0 for all u P rt, t ` εq; in particular Hpρuq ě

Hpρtq for all u P rt, t` εq. Since WtpHtq “ x, the snake property ensures that WupHtq “ x for all

u P rt, t ` εq and, since ρuptHtuq ą 0 for every u P rt, t ` εq, we obtain a contradiction with the

fact that xρu, th P r0, Hus : Wuphq “ xuy “ 0 for every u P D.

Let us now deduce this result under Pµ,w. First, observe that the statement of the lemma

follows directly under P0,y,r0 by excursion theory. Next, fix pµ,wq P Θx with wp0q “ py, r0q,

consider pρ,W q under Pµ,w and set T`
0 :“ inftt ě 0 : xρt, 1y “ 0u. The strong Markov property

gives us that ppρT`
0 `t,W T`

0 `tq : t ě 0q is distributed according to P0,y,r0 and consequently,

pρT`
0 `t,W T`

0 `tqtě0 takes values in Θx. To conclude, it remains to prove the statement of the

lemma under P:

µ,w. In this direction, under P:

µ,w, consider
`

pαi, βiq : i ě 0
˘

the excursion

intervals of xρ, 1y from its running infimum. Then, write pρi,W
i
q for the subtrajectories of pρ,W q

associated with rαi, βis and set hi :“ Hαi . We recall from (5.22) that the measure:
ÿ

iPN
δ

phi,ρi,W
i
q
,

is a Poisson point measure with intensity µpdhq Nwphqpdρ, dW q. Since pµ,wq P Θx, it follows by

the result under the excursion measures pNy,r0 : py, r0q P Eq that P:

µ,w–a.s. the pair pρt,W tq

belongs to Θx for every t P r0, T`
0 s, as wanted.

Finally, recall that the snake property ensures that the function pxWs, pΛsqsě0 is well defined in

the quotient space TH . Hence, we can think of W as a tree-indexed process, that we write with

the usual abuse of notation as

pξυ,LυqυPTH
.

Main results of Section 4: Now that we have introduced our framework, we can state the main

results of this section. Much of our effort is devoted to the construction of a measure supported

on the set tt P R` : xWt “ xu and satisfying suitable properties. In this direction, for every r ě 0,

we set τrpwq :“ infth ě 0 : wphq “ px, rqu and remark that, for every pµ,wq P Θx, it holds that

µptτrpwquq “ 0, with the convention µp8q “ 0. We can now state the main result of this section:

Theorem 5.14. Fix py, r0q P E and pµ,wq P Θx. The convergence

At “ lim
εÓ0

1

ε

ż t

0
du

ż

R`

dr 1
tτrpWuqăHuăτrpWuq`εu, (5.52)

holds uniformly in compact intervals in measure under Pµ,w and Ny,r0p ¨ X tσ ą zuq for every

z ą 0. Moreover, (5.52) defines a continuous additive functional A “ pAtq for the Lévy snake

pρ,W q whose Lebesgue-Stieltjes measure dA is supported on tt P R` : xWt “ xu.

We will give another equivalent construction of the additive functional A in Proposition 5.22

but we are not yet in position to formulate the precise statement. Both constructions will be

needed for our work. Next, the second main result of the section characterizes the support of the

measure dA as follows:

Theorem 5.15. Fix py, r0q P E, pµ,wq P Θx and denote the support of the Stieltjets measure of

A by supp dA. Under Ny,r0 and Pµ,w, we have:

supp dA “
␣

t P r0, σs : ξpHptq “ x and pHptq P Multi2pTHq Y t0u
(

. (5.53)
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Observe that under Pµ,w with wp0q “ x, the root of TH has infinite multiplicity and this is

why we had to consider it separately in the previous display. This result is stated in a slightly

different but equivalent form in Theorem 5.30. The identity (5.53) can be also formulated in

terms of constancy intervals of pΛ. More precisely, we will also establish in Theorem 5.30 that

under Ny,r0 and Pµ,w, we have:

supp dA “ r0, σsz
␣

t P r0, σs : sup
pt´ε,t`εq

pΛs “ inf
pt´ε,t`εq

pΛs, for some ε ą 0
(

. (5.54)

We conclude the presentation of our framework with a consequence of Lemma 5.13. Roughly

speaking it states that, with the exception of the root under P0,x,0, the process pξυqυPTH
can not

take the value x at the branching points of TH . The precise statement is the following:

Proposition 5.16. For every py, r0q P E and pµ,wq P Θx, we have:

tt P r0, σs : xWt “ xu X tt P r0, σs : pHptq P Multi3pTHq Y Multi8pTHq, pHptq ‰ 0u “ H,

under Ny,r0 and Pµ,w.

Proof. We start by proving our result under Ny,0. First, introduce the measure N‚
y,0pdρ, dW, dsq

supported on DpR`,Mf pR`q ˆ WEq ˆ R` defined by N‚
y,0 “ Ny,0pdρ, dW q ds1tsďσu and write

U : R` ÞÑ R` for the identity function Upsq “ s. The law under N‚
y,0 of pρ,W,Uq is therefore

given by

N‚
y,0

´

Φpρ,W,Uq

¯

“ Ny,0

´

ż σ

0
dsΦpρ,W, sq

¯

.

The measure N‚
y,0 can be seen as a pointed version of Ny,0. In particular, conditionally on pρ,W q,

the random variable U is a uniform point in r0, σs. Under N‚
y,0 we still write Xt :“ xρt, 1y and

Ht :“ Hpρtq. Furthermore, we set X‚
t :“ XU`t ´ XU and I‚

t :“ infsďtX
‚ , for every t ě 0, and

we denote the excursion intervals over the running infimum of X‚ by
`

pαi, βiq : i P N
˘

. The

dependence on U is dropped to simplify notation. Finally, set

h‚
i :“ H

`

κ´I‚
αi
ρU

˘

,

and write pρ‚,i,W
‚,i

q for the corresponding subtrajectory associated with pαi, βiq occurring at

height h‚
i . Under N‚

y,0, the Markov property applied at time U and (5.22) gives that, conditionally

on pρU ,WU q, the random measure

M‚ :“
ÿ

iPN
δ

ph‚
i , ρ

‚,i,W
‚,i

q
,

is a Poisson point measure with intensity ρU pdhqNWU phq
pdρ, dW q. In particular, the functional

F pM‚
q “ #

!

ph‚
i , ρ

‚,i,W
‚,i

q P M‚ : W ‚,i
p0q “ x

)

,

conditionally on pρU ,WU q, is a Poisson random variable with parameter
ş

ρU pdhq1tWU phq“xu.

However, by Lemma 5.13, we have
ş

ρU pdhq1tWU phq“xu “ 0 and we derive that, N‚
y,0 –a.e., F pM‚q

is null. Heuristically, the previous argument shows that if we take – conditionally on σ – a point
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uniformly at random in TH , there is no branching point υ with label x on the right of the branch

connecting the root to υ. Let us now show that this ensures that
␣

t P r0, σs : xWt “ x
(

X
␣

t P r0, σs : pHptq P Multi3pTHq Y Multi8pTHq
(

“ H, Ny,0–a.e.

Since N‚
y,0pΦpρ,W qq “ Ny,0pσ ¨Φpρ,W qq, it suffices to prove the previous display under N‚

y,0. Let

pυi : i P Nq be an indexation of the branching points of TH – an indexation measurable with

respect to H. Pick a branching point υi P Multi3pTHq Y Multi8pTHq and let ti be the smallest

element of p´1
H pυiq. Arguing by contradiction, suppose that xWpHptiq “ x. Still under N‚

y,0, since

υi is a branching point, we can find 0 ď s˚ ă t˚ ď σ in p´1
H ptυiuq such that the event

txWpHptiq “ xu X ts˚ ă U ă t˚u,

is included in tF pMU q ą 0u. However F pMU q “ 0, N‚
y,0–a.e. and we deduce that N‚

y,0

`

xWpHptiq “

x, s˚ ă U ă t˚
˘

“ 0. Next, since conditionally on pρ,W q, the variable U is uniformly distributed

on r0, σs, we conclude that N‚
y,0

`

xWpHptiq “ x
˘

“ 0. The desired result now follows, since the

collection of branching points pυi : i P Nq is countable. Finally, we deduce the statement under

Ny,r0 by the translation invariance of the local time and under Pµ,w by excursion theory – we omit

the details since this is standard and one can apply the method described in Lemma 5.13.

The section is organised as follows: In Section 5.4.1 we address several preliminary results needed

to prove Theorems 5.14 and 5.15 and our results of Section 5.5. More precisely, Section 5.4.1 is

essentially devoted to the study of a family of exit local times of pρ,W q that will be used as

building block for our second construction of A. Then in Section 5.4.2 we shall prove Theorem

5.14 and establish our second construction of A in terms of the family of exit times studied in

Section 5.4.1. The rest of the section is dedicated to the study of basic properties of A that we

will frequently use in our computations. Finally, in Section 5.4.3 we turn our attention to the

study of the support of the measure dA and it will lead us to the proof of Theorem 5.15 and the

characterisation (5.54).

5.4.1 Special Markov property of the local time

The first step towards constructing our additive functional A, with associated Lebesgue-Stieltjes

measure dA supported in tt P R` : xWt “ xu, consists in the study of a particular family of

r0,8q-indexed exit local times of pρ,W q. More precisely, for each r ě 0, let Dr Ă E :“ E ˆ R`

be the open domain

Dr :“ Eztpx, rqu and recall the notation τrpwq :“ infth ě 0 : wphq “ px, rqu,

for every w P WE . Notice that τrpwq is the exit time fromDr and we write τr instead of making use

of the more cumbersome notation τDr
. We also recall that since τrpwq P th P r0, ζws : wphq “ xu

as soon as τrpwq ă 8, for pµ,wq P Θx we have µptτrpwquq “ 0. Proposition 5.6 now yields that

for any pµ,wq P Θx with wp0q ‰ px, rq we have

LDr

t pρ,W q :“ lim
εÑ0

1

ε

ż t

0
ds1

tτrpW sqăHsăτrpW sq`εu, (5.55)

where the convergence holds uniformly in compact intervals in L1pPµ,wq and L1pNwp0qq. Let us be

more precise: recalling the notation w “ pw, ℓq, first remark that if ℓp0q ă r, for any wp0q P E we
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have Πwp0q,ℓp0qpτr ă 8q “ 1 and in consequence pH1q holds. On the other hand, if r ă ℓp0q, we

simply have LDr “ 0 since τrpW sq “ 8 for every s ě 0. Finally, if wp0q ‰ x and r ě 0, we have

τDr
pW sq “ τE˚

pWsq for every s ě 0, and recalling (5.49) it follows that LDrpρ,W q “ LE˚pρ,W q.

It will be usefully for our purposes to extend the definition to the remaining case wp0q “ px, rq,

and that is precisely the content of the following lemma:

Lemma 5.17. For r ě 0, fix pµ,wq “ pµ,w, ℓq P Θx with wp0q “ px, rq. Then, the limit (5.55)

exists for every t ě 0, where the convergence holds uniformly in compact intervals in L1pPµ,wq and

L1pNx,rq, and defines a continuous non-decreasing process that we still denote by LDr . Moreover,

under P:

µ,w and Nx,r, we have LDr
σ “ 0.

Proof. We work under Pµ,w since the result under Nx,r follows directly by excursion theory. For

every a ě 0 we set Ta :“ inftt ě 0 : Ht “ au and let T`
0 :“ inftt ě 0 : xρt, 1y “ 0u. Since

τrpW sq “ 0 for every s ě 0, we have

ż t

0
ds1

tτrpW sqăHsăτrpW sq`εu “

ż t

0
ds1t0ăHsăεu “

ż T`
0 ^t

Tε^t
ds1t0ăHsăεu `

ż T`
0 ^t

T`
0 ^t

ds1t0ăHsăεu.

Furthermore, by the strong Markov property and (5.9), we already know that ε´1
şT`

0 `t

T`
0

ds1t0ăHsăεu

converges as ε Ó 0 uniformly in compact intervals in L1pPµ,wq. To conclude, it suffices to show

that:

lim
εÑ0

ε´1
¨ Eµ,w

“

ż T`
0

Tε

ds1t0ăHsăεu

‰

“ 0. (5.56)

Write pαi, βiq for i P N the excursion intervals of the killed process pxρt, 1y : t P r0, T`
0 sq over

its running infimum and let pρi,W
i
q be the subtrajectory associated with the excursion interval

rαi, βis. To simplify notation, we also set hi “ Hpαiq and recall from (5.22) that the measure

M :“
ř

iPN δphi,ρi,W
i
q
is a Poisson point measure with intensity µpdhqNwphqpdρ, dW q. Next, notice

that:

ż T`
0

Tε

ds1t0ăHsăεu ď
ÿ

0ďhiďε

ż σpW
i
q

0
ds1t0ăHpρisqăεu,

and we can now use that M is a Poisson point measure with intensity µpdhqNwphqpdρ, dW q to

get that:

Eµ,w
“

ż T`
0

Tε

ds1t0ăHsăεu

‰

ď µpr0, εsqNp

ż σ

0
ds1t0ăHpρsqăεuq.

Finally, by the many-to-one formula (5.24), the previous display is ε ¨ µpr0, εsq, which gives:

lim sup
εÑ0

ε´1
¨ E:

µ,w

”

ż T`
0

Tε

ds1t0ăHsăεu

ı

“ µpt0uq.

Now (5.56) follows since we have µpt0uq “ 0, which holds since wp0q “ x and pµ,wq P Θx.

Now, we give a regularity result for the double-indexed family pLDr
s : ps, rq P R2

`q that will be

needed in the next section.
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Lemma 5.18. Let pµ,wq P Θx with w “ pw, ℓq. There exists a BpR`q b BpR`q b F-measurable

function pL r
t : pr, tq P R2

`q satisfying the following properties:

(i) For every r ě 0, the processes LDr and L r are indistinguishables under Pµ,w.

(ii) Pµ,w almost surely, the mapping t ÞÑ L r
t is continuous for every r ě 0.

The result also holds under the measure Ny,r0 , for every py, r0q P E, by the same type of

arguments and we omit the details.

Proof. Fix an initial condition pµ,wq “ pµ,w, ℓq P Θx. Since under Pµ,w,ℓ, the distribution of

pρ,W,Λ ´ ℓp0qq is exactly Pµ,w,ℓ´ℓp0q, without loss of generality we might assume that ℓp0q “ 0.

Next, by (5.55) and Lemma 5.17, for every r ě 0 we have

lim
εÓ0

Eµ,w
”

sup
sďt

|LDr
s ´ ε´1

ż s

0
du1

tτrpWuqăHuăτrpWuq`εu|

ı

“ 0,

and hence for any subsequence pεnq converging to 0, the sequence of processes

Ynpr, tq :“ ε´1
n

ż t

0
du 1

tτrpWuqăHuăτrpWuq`εnu
, t ě 0,

converges uniformly in compact intervals in probability towards LDr . Now, to simplify notation

write ω :“ pρ, ωq for the elements of DpR`,Mf pR`q ˆ WEq. Remark now that the mapping

pu, r,ωq ÞÑ τrpW upωqq is jointly measurable since for each pu,ωq it is rcll in r, while for each fixed

r the mapping pu,ωq ÞÑ τrpW upωqq is measurable. Consequently, by Fubini, for every fixed t the

application

pr,ωq ÞÑ

ż t

0
du 1

tτrpWuqăHuăτrpWuq`εnu
pωq

is measurable while for fixed pr,ωq it is continuous in t, and we deduce that Yn is jointly measurable

in pr, t,ωq. It is now standard – see e.g. [80, Theorem 62] and its proof – to deduce that

there exits a jointly measurable process pr, t,ωq ÞÑ Y pr, t,ωq such that for every pr,ωq P R` ˆ

DpR`,Mf pR`q ˆ WEq, the mapping t ÞÑ Y pr, t,ωq is continuous and for each fixed r ě 0,

Ynpr, ¨q ÞÑ Y pr, ¨q as n Ò 8 uniformly in compact intervals in probability. In particular for each

r ě 0, the process pY pr, tq : t ě 0q is indistinguishable from pLDr

t : t ě 0q and we shall write

pL r
t : t ě 0, r ě 0q instead of pY pr, tq : t ě 0, r ě 0q.

We now turn our attention to the Markovian properties of pL r
σ : r ě 0q under the excursion

measure Nx,0. To simplify notation, for every y ‰ x, we set:

uλpyq :“ Ny,0

`

1 ´ expp´λL 0
σ q

˘

, for y P E˚, (5.57)

and remark that with the notation of (5.46) we have uλpyq “ uE˚

λ pyq. We shall use the usual

convention uλpxq “ λ.

Before stating our next result, we briefly recall from [64, Chapter II-1] that an R`–valued

Markov process with semigroup pPtpy, dzq : t, y P R`q is called a branching process if its semi-

group satisfies the branching property, viz. if for any y, y1 P R`, we have Ptpy, ¨q ˚ Ptpy
1, ¨q “

Ptpy ` y1, ¨q. In order to fall in the framework of [64, Chapter II- Theorem 1] we also assume

that
ş

R`
Ptpy, dzqz ď y for every t, y P R`. By the branching property it follows that for any
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t, y P R` the distribution Ptpy, dzq is infinitely divisible and non-negative, and consequently, for

every t, y P R`, the Laplace transform of Ptpy, dzq takes the Lévy-Khintchine form:
ż

R`

Ptpy, dzq expp´λzq “ exp
`

´ yatpλq
˘

, for λ ě 0,

for some function patpλq : t, λ ě 0q. By [64, Chapter II- Theorem 1], the function patpλq : t, λ ě 0q

is the unique non-negative solution of the integral equation

atpλq `

ż t

0
duΨpaupλqq “ λ, (5.58)

for a function pΨpλq : λ ě 0q of the form,

Ψpλq “ c1λ ` c2λ
2

`

ż

R`

νpdyq pexpp´λyq ´ 1 ` λyq, for λ ě 0,

where c1, c2 P R` and ν is a Lévy measure supported on p0,8q satisfying
ş

p0,8q
νpdyqpy^y2q ă 8.

By (5.58), it follows that atpλq is the unique function that satisfies

ż λ

atpλq

ds

Ψpsq
“ t, t, λ ě 0.

The Markov process with semigroup pPtq is then called a CSBP with branching mechanism Ψ,

or in short a Ψ-CSBP. The exponent Ψ clearly fulfils (A1) and so does (A3) by [17, Corollary 2].

So to fall in our framework, it only need to satisfy (A4) – since as explained in the preliminaries

(A4) implies (A2).

Proposition 5.19. Under Nx,0, the process pL r
σ : r ą 0q is a branching process with entrance

measure νrpdxq “ Nx,0pL r
σ P dxq, for r ą 0, and branching mechanism

rψpλq “ N
´

ż σ

0
dh ψ

`

uλpξhq
˘

¯

, for λ ě 0. (5.59)

Moreover, rψ satisfies the assumptions (A1) – (A4) introduced in Section 5.2.1 and consequently

we can associate to it a Lévy tree.

Our result is a particular case, in the terminology of Lévy snakes, of Theorem 4 in [23] stated

in the setting of superprocesses. Theorem 4 in [23] is more general and the family pL r
σ qrą0 in

our result correspond precisely to the total mass process of the superprocess considered in [23],

for the same branching mechanism rψ.

Proof. The proof is structured as follows: we start by introducing a family of probability kernels

pPtq and by showing that they form a semigroup of operators associated with a branching process.

We then establish that pL r
σ : r ą 0q is a Markov process associated with the semigroup pPtq, with

entrance measure pνr : r ą 0q. Finally, we conclude the proof by establishing that its branching

mechanism is rψ and that it fulfils (A4).

We stress that we are only interested in the finite-dimensional distributions of pL r
σ : r ą 0q.

Recalling the notation (5.46), for any r ą 0 and λ ě 0, we write

uDr

λ px, 0q “ Nx,0

`

1 ´ expp´λL r
σ q

˘

“

ż

νrpdyq p1 ´ expp´λyqq.
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Moreover, since Nx,0pL r
σ ą 0q ď Nx,0psup pΛ ě rq ă 8, we have

ş

p0,8q
νrpdyqp1^ yq ă 8, and we

deduce that the function λ ÞÑ uDr

λ px, 0q is the Laplace exponent of an infinitely divisible random

variable with Lévy measure νrp¨ X p0,8qq. For each t ą 0 and y P R` denote by Ptpy, dzq the

probability measure with Laplace transform

ż

Ptpy, dzq expp´λzq “ exp
`

´ y ¨ uDt

λ px, 0q
˘

, λ ě 0. (5.60)

Remark now that the translation invariance of the local time of ξ implies that, under P0,x,r (resp.

Nx,r) for r ě 0, the distribution of pW,Λ ´ rq is P0,x,0 (resp. Nx,0). In particular, for every

s, t ě 0, we have

uDt`s

λ px, sq “ uDt

λ px, 0q.

We deduce that the family pPtpy, dzq, t ą 0, y P R`q is a semigroup since, by the special Markov

property applied at the domain Ds, it holds that

ż

Pt`spy, dzq expp´λzq “ exp
´

´ yNx,0

´

1 ´ exp
`

´ λL t`s
σ

˘

¯¯

“ exp
´

´ yNx,0

´

1 ´ exp
`

´ L s
σ ¨ uDt`s

λ px, sq
˘

¯¯

“ exp
´

´ yNx,0

´

1 ´ exp
`

´ L s
σ ¨ uDt

λ px, 0q
˘

¯¯

“ exp
´

´ y ¨ uDs

u
Dt
λ px,0q

`

x, 0
˘

¯

,

which coincides with the Laplace transform of the measure
ş

uPR`
Pspy, duqPtpu, dzq. Since we have

Nx,0pL r
σ q ď 1 by (5.28) and 1 ´ expp´λL r

σ q ď λL r
σ , we deduce by dominated convergence and

(5.60) that
ş

R`
Ptpy, dzq z “ y ¨ Nx,0pL r

σ q ď y. Since the semigroup clearly fulfils the branching

property, it follows that there exits a CSBP associated with the semigroup pPtq.

Recall the notation TDε
:“ inftt ě 0 : τεpW tq ă 8u as well as the definition of the sigma

field FDε from (5.26). We will now show that for any ε ą 0, the process pL ε`r
σ : r ě 0q under

the probability measure NDε

x,0 :“ Nx,0p ¨ |TDε
ă 8q has transition kernel pPtq. Fix ε ă a ă b; by

considering the point process of excursions (5.45) outside Da, we deduce by an application of the

special Markov property that NDε

x,0–a.e.

NDε

x,0

´

exp
´

´λL b
σ

¯

ˇ

ˇFDa

¯

“ exp
´

´L a
σ Nx,a

´

1 ´ expp´λL b
σ q

¯¯

“ exp
´

´L a
σ ¨ u

Db´a

λ px, 0q

¯

where in the last equality we used the translation invariance of the local time of ξ. We have

obtained that, for every ε ą 0, pL r`ε
σ : r ě 0q under NDε

x,0 is a CSBP with Laplace functional

puDr

λ px, 0q : r ą 0q and initial distribution NDε

x,0pL ε
σ P dxq with respect to the filtration pFDε`r :

r ě 0q (recall that L r
σ is FDr -measurable by Proposition 5.7 and Lemma 5.18). Now, we

claim that for any 0 ă r1 ă ¨ ¨ ¨ ă rk and any collection of non-negative measurable functions

fi : R` ÞÑ R`,

Nx,0

˜

k
ź

i“1

fipL
ri
σ q

¸

“

ż

R`

νr1pdz1qf1pz1q

ż

R`

Pr2´r1pz1, dz2qf2pz2q . . .

ż

R`

Prk´rk´1pzk´1, dzkqfkpzkq.

(5.61)
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This follows from the previous result, by observing that for any ε ă r1 we have

Nx,0

˜

k
ź

i“1

fipL
ri
σ q1tTDεă8u

¸

“ Nx,0

ˆ

1tTDεă8uf1pL r1
σ q

ż

R`

Pr2´r1pL r1
σ , dz2qf2pz2q . . .

ż

R`

Prk´rk´1pzk´1, dzkqfkpzkq

˙

,

and we conclude taking the limit as ε Ó 0. The fact that the family pνt : t ě 0q satisfies that

νt`s “ νsPt for t, s ě 0 now follows from (5.61). Let us now identify rψ. Recall from our discussion

in (5.58) that the Laplace exponent puDr

λ px, 0q : r, λ ě 0q is the unique solution to the equation

uDr

λ px, 0q `

ż r

0
duΨ

`

uDu

λ px, 0q
˘

“ λ, (5.62)

where Ψ is the branching mechanism associated with pPtq, and that it is defined in a unique way

by (5.62). In particular, Ψ characterizes completely the semigroup pPtq. To identify the branching

mechanism we argue as follows: first, observe that the identity (5.47) applied at the domain Dr

yields

uDr

λ px, 0q ` Πx,0

ˆ
ż τDr

0
dt ψpuDr

λ pξt,Ltqq

˙

“ λ, (5.63)

for every λ ě 0 and r ą 0. Next, by excursion theory and pH3q we get:

Πx,0

ˆ
ż τDr

0
dt ψpuDr

λ pξt,Ltqq

˙

“

ż r

0
du N

ˆ
ż σ

0
dt ψ

´

uDr

λ pξt, uq

¯

˙

“

ż r

0
du N

ˆ
ż σ

0
dt ψ

´

uDr´u

λ pξt, 0q

¯

˙

,

where in the last equality we use the invariance by translation of the local time of ξ. Moreover,

the special Markov property applied at the domain D0 gives

uDr

λ py, 0q “ uuDr
λ px,0q

pyq,

for every y P Eztxu and λ ě 0 – and the identity also holds for y “ x. Putting everything

together, by definition of rψ, the identity (5.63) can be re-written as follows:

uDr

λ px, 0q `

ż r

0
du rψpuDu

λ px, 0qq “ λ. (5.64)

Consequently, we deduce that the branching mechanism associated with the Laplace functional

uDr

λ px, 0q is rψ. It remains to show that the conditions stated in Section 5.2.1 are satisfied by
rψ. As we already mentioned, it only remains to verify (A4). In this direction and recalling the

notation TDr
“ inftt ě 0 : pΛt ě ru, also by (5.64) we obtain that fpλ, rq :“ uDr

λ px, 0q satisfies for

every r,
ż λ

fpλ,rq

ds

rψpsq
“ r, (5.65)

where the limit fp8, rq “ Nx,0pLDr
σ ą 0q is finite, since tLDr

σ ą 0u Ă tTDr
ă 8u and Nx,0pTDr

ă

8q ă 8 by the same argument used before Theorem 5.11. Hence, taking the limit as λ Ò 8 in

(5.65), we infer that the following conditions are fulfilled:

rψp8q “ 8 and

ż 8

¨

ds

rψpsq
ă 8.
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To derive the exact form of (A4), recall that rψ is convex and that we have rψp0q “ 0 and
rψ1p0`q ě 0.

Now that we have established that rψ is the Laplace exponent of a Lévy tree, let us briefly

introduce some related notation and a few facts that will be used frequently in the upcoming

sections. From now on, we set rX a rψ-Lévy process and we write rI for the running infimum of rX.

We also denote the excursion measure of the reflected process rX ´ rI by rN – where the associated

local time is ´rI. The usual notation introduced in Section 5.2.1 applied to rX are indicated

with a „. For instance, we denote the height process and the exploration process issued from rX

respectively by rH and rρ.

By convexity and the fact that rψ1p0`q ě 0, the only solution to rψpλq “ 0 is λ “ 0. This

implies that the mapping λ ÞÑ rψpλq is invertible in r0,8q. By classical results in the theory of

Lévy processes, rψ´1 is the Laplace exponent of the right-inverse of ´rI and, since rX ´ rI does not

spend time at 0, the former is a subordinator with no drift. So, recalling the relation between

excursion lengths and jumps of the right-inverse of ´rI, we derive that:

rψ´1
pλq “ rNp1 ´ expp´λσqq, λ ě 0. (5.66)

For a more detailed discussion, we refer to Chapters IV and VII of [17].

We close this section with some useful identities in the same vein of (5.59), that will be used

frequently in our computations. These identities allow to express some Laplace-like transforms

concerning the process
`

ψpuλpξtqq : t ě 0
˘

, under the excursion measure N , in terms of the rψ.

As an application of these computations, we will identify the drift and Brownian coefficients of
rψ. We summarise these identities in the following lemma.

Lemma 5.20. For every λ1, λ2 P R` with λ1 ‰ λ2, we have

N

˜

1 ´ exp
´

´

ż σ

0
ds

ψ
`

uλ1
pξsq

˘

´ ψ
`

uλ2
pξsq

˘

uλ1
pξsq ´ uλ2

pξsq

¯

¸

“
rψ
`

λ1
˘

´ rψ
`

λ2
˘

λ1 ´ λ2
. (5.67)

Recalling the identities (5.23), remark that Lemma 8 allows to express the Laplace exponent

of prU p1q, rU p2qq in terms of N and ψ.

Proof. First note that the functions λ ÞÑ uλpyq and λ ÞÑ ψpuλpyqq are non-decreasing. So without

loss of generality we can and will assume that λ1 ą λ2. We set Tx :“ inftt ě 0 : ξt “ xu and we

write

N
´

1 ´ exp
´

´

ż σ

0
ds

ψ
`

uλ1
pξsq

˘

´ ψ
`

uλ2
pξsq

˘

uλ1
pξsq ´ uλ2

pξsq

¯¯

“ N

˜

ż σ

0
ds

ψ
`

uλ1
pξsq

˘

´ ψ
`

uλ2
pξsq

˘

uλ1
pξsq ´ uλ2

pξsq
¨ exp

´

´

ż σ

s
dt

ψ
`

uλ1
pξtq

˘

´ ψ
`

uλ2
pξtq

˘

uλ1
pξtq ´ uλ2

pξtq

¯

¸

“ N

˜

ż σ

0
ds

ψ
`

uλ1
pξsq

˘

´ ψ
`

uλ2
pξsq

˘

uλ1
pξsq ´ uλ2

pξsq
¨ Πξs

˜

exp
´

´

ż Tx

0
dt

ψ
`

uλ1
pξtq

˘

´ ψ
`

uλ2
pξtq

˘

uλ1
pξtq ´ uλ2

pξtq

¯

¸¸

where in the last equality we applied the Markov property. On the other hand, the definition of
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rψ given in (5.59) yields

rψ
`

λ1
˘

´ rψ
`

λ2
˘

λ1 ´ λ2
“ N

˜

ż σ

0
ds

ψ
`

uλ1
pξsq

˘

´ ψ
`

uλ2
pξsq

˘

λ1 ´ λ2

¸

“ N

˜

ż σ

0
ds

ψ
`

uλ1
pξsq

˘

´ ψ
`

uλ2
pξsq

˘

uλ1
pξsq ´ uλ2

pξsq
¨
uλ1

pξsq ´ uλ2
pξsq

λ1 ´ λ2

¸

.

Consequently, the lemma will follow as soon as we establish the identity:

uλ1
pyq ´ uλ2

pyq

λ1 ´ λ2
“ Πy

´

exp
´

´

ż Tx

0
dt

ψ
`

uλ1
pξtq

˘

´ ψ
`

uλ2
pξtq

˘

uλ1
pξtq ´ uλ2

pξtq

¯¯

.

In this direction, recall that under Ny,0 with y ‰ x the processes L 0pρ,W q and LE˚pρ,W q are

well defined and indistinguishables, and remark that

uλ1
pyq ´ uλ2

pyq “ Ny,0

´

exp
`

´ λ1

ż σ

0
dL 0

u

˘

´ exp
`

´ λ2

ż σ

0
dL 0

u

˘

¯

“ pλ1 ´ λ2q ¨ Ny,0

´

ż σ

0
dL 0

s exp
`

´ λ1

ż s

0
dL 0

u

˘

¨ exp
`

´ λ2

ż σ

s
dL 0

u

˘

¯

.

Then, an application of the Markov property gives:

uλ1
pyq ´ uλ2

pyq “ pλ1 ´ λ2q ¨ Ny,0

´

ż σ

0
dL 0

s exp
`

´ λ1L
0
s

˘

¨ E:

ρs,W s

“

exp
`

´ λ2L
0
σ

˘‰

¯

.

We can now apply the duality identity
`

pρpσ´tq´, ηpσ´tq´,W σ´tq : t P r0, σs
˘ pdq

“
`

pηt, ρt,W tq : t P

r0, σs
˘

under Ny,0, to get that the previous display is equal to

pλ1 ´ λ2q¨Ny,0

´

ż σ

0
dL 0

s exp
`

´ λ1

ż σ

s
dL 0

t

˘

¨ E:

ηs,W s

“

exp
`

´ λ2L
0
σ

˘‰

¯

“ pλ1 ´ λ2q ¨ Ny,0

´

ż σ

0
dL 0

s E:

ρs,W s

“

exp
`

´ λ1L
0
σ

˘‰

¨ E:

ηs,W s

“

exp
`

´ λ2L
0
σ

˘‰

¯

.

Remark that pη,W q takes values in Θx by duality and right-continuity of η with respect to the

total variation distance. We are now in position to apply the many-to-one equation (5.24). In

this direction, for pµ,wq P Θx with wp0q “ py, 0q and y ‰ x we notice that

E:

µ,w

”

exp
`

´ λL 0
σ

˘

ı

“ exp
´

´

ż τD0pwq

0
µpdhq Nwphq

`

1 ´ expp´λL 0
σ q

˘

¯

“ exp
´

´

ż τD0pwq

0
µpdhq uλpwphqq

¯

,

for every λ ą 0. Consequently, (5.24) gives:

uλ1
pyq ´ uλ2

pyq

λ1 ´ λ2
“ E0

b Πy

´

exp
`

´ αTx
˘

exp
´

´

ż Tx

0
Jpdsq uλ1

pξsq ´

ż Tx

0

qJpdsq uλ2
pξsq

¯¯

.

Finally an application of (5.23) yields exactly the desired result (5.4.1).
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As an immediate consequence, we obtain two other useful identities taking λ2 “ 0 and letting

λ2 Ó λ1 respectively. For every λ ą 0, we have

N
´

1´exp
´

´

ż σ

0
dh ψ

`

uλpξhq
˘

{uλpξhq

¯¯

“ rψpλq{λ, N
´

1´exp
´

´

ż σ

0
dh ψ1

puλpξhqq

¯¯

“ rψ1
pλq,

(5.68)

where for the first one we used that u0pyq “ 0 since NypLE˚
σ “ 8q “ 0. We also stress that (5.68)

can be proved independently directly by the same arguments as the ones applied in the proof of

(5.67).

Since by Proposition 5.19 the exponent rψ satisfies (A1) – (A4), it can be written in the

following form

rψpλq “ rαλ ` rβλ2 `

ż

R`

rπpdxq pexpp´λxq ´ 1 ` λxq,

where rα, rβ ě 0 and rπ is a measure in R` satisfying
ş

rπpdxqpx ^ x2q ă 8. In the following

corollary, we identify the coefficients rα and rβ.

Corollary 5.21. We have rα “ N
`

1 ´ expp´ασq
˘

and rβ “ 0.

Proof. To simplify notation, for λ ě 0 set ψ˚pλq :“ ψpλq{λ, rψ˚pλq :“ rψpλq{λ. Since rψ satisfies

(A1)–(A4), by Fubini we derive that rψ˚ is the Laplace exponent of a subordinator with exponent:

rα ` rβλ `

ż

R`

dr rπprr,8qq
`

1 ´ expp´λrq
˘

. (5.69)

Next, introduce the measure N ˚pdξq :“ N pexpp´ασqdξq and observe that by (5.68), rψ˚pλq can

also be written in the form

N
´

1´exp
´

´

ż σ

0
dh ψ˚

`

uλpξhq
˘

¯¯

“ N
`

1´expp´ασq
˘

`N ˚
´

1´exp
´

´

ż σ

0
dh

`

ψ˚
`

uλpξhq
˘

´α
˘

¯¯

.

(5.70)

Comparing with (5.69), our result will follow by showing that the second term on the right-hand

side of (5.70) is the Laplace exponent of some pure-jump subordinator. In this direction, introduce

under E0 b N ˚ and conditionally on pJ8, ξq, a Poisson point measure

Mpdh, dρ, dW q “
ÿ

iPN
δ

phi,ρi,W
i
q
,

with intensity JσpdhqNξphq,0

`

dρ, dW
˘

. This is always possible up to enlarging the measure space

and for simplicity we still denote the underlying measure by E0 bN ˚. Next, define the functional
ř

iPN L 0
σ pρi,W

i
q and denote its distribution by νpdxq. By definition, we have:

E0
b N ˚

´

1 ´ exp
´

´ λ
ÿ

iPN
L 0
σ pρi,W i

q

¯¯

“ E0
b N ˚

´

1 ´ exp
´

´

ż σ

0
Jσpdhquλ

`

ξphq
˘

¯¯

“ N ˚
´

1 ´ exp
´

´

ż σ

0
dh

`

ψ˚
`

uλpξhq
˘

´ α
˘

¯¯

,

where in the last equality we used that J8 is the Lebesgue-Stieltjes measure of a subordinator

with exponent ψ˚pλq´α. Since the latter expression is finite, we deduce that ν is a Lévy measure

satisfying
ş

νpdrq p1 ^ rq ă 8, and that the second term on the right-hand side of (5.70) is the

Laplace exponent of a driftless subordinator with Lévy measure given by ν.
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5.4.2 Construction of the additive functional pAtq

We are finally in position to introduce our additive function:

Proposition 5.22. Fix py, r0q P E and pµ,wq P Θx. Under Ny,r0 and Pµ,w, the process defined

as

At “

ż

R`

drL r
t , for t ě 0,

is a continuous additive functional of the Lévy snake taking finite values. Furthermore, we have

At “ lim
εÓ0

1

ε

ż t

0
du

ż

R`

dr 1
tτrpWuqăHuăτrpWuq`εu, (5.71)

where the convergence holds uniformly in compact intervals in measure under Pµ,w and Ny,r0p ¨ X

tσ ą zuq for every z ą 0.

Proof. We start proving the proposition under Pµ,w, where pµ,wq :“ pµ,w, ℓq P Θx. Remark that

by the translation invariance of the local time we might assume that ℓp0q “ 0 without loss of

generality. For simplicity, we set y :“ wp0q. Next, we write pΛ˚
t :“ supsďt pΛs and we note that it

suffices to show that for any t,K ą 0

Eµ,w
”

sup
sďt

|

ż

R`

dr
1

ε

ż s

0
du 1

tτrpWuqăHuăτrpWuq`εu ´

ż

R`

drL r
s | ¨ 1

tpΛ˚
t ăKu

ı

Ñ 0,

as ε Ó 0. In this direction, we remark that the previous expression is bounded above by

ż

R`

drEµ,w
”

sup
sďt

|
1

ε

ż s

0
du 1

tτrpWuqăHuăτrpWuq`εu ´ L r
s | ¨ 1

tpΛ˚
t ăKu

ı

ď

ż

p0,Ks

drEµ,w
”

sup
sďt

|
1

ε

ż s

0
du 1

tτrpWuqăHuăτrpWuq`εu ´ L r
s |

ı

,

since on the event tpΛ˚
t ă Ku we have L r “ 0 for every r ą K. Now, by Lemma 5.18, it

suffices to show that the expectation under Pµ,w in the previous display is uniformly bounded

on ε, r ą 0 since the desired result then follows by dominated convergence. To do so, we set

T`
0 :“ inf

␣

t ě 0 : xρt, 1y “ 0
(

and we notice that by the strong Markov property, under Pµ,w,
the distribution of pρT`

0 `s,W T`
0 `s : s ě 0q is P0,y,0pdρ, dW q. In particular we have the upper

bound:

Eµ,w
”

sup
sďt

|
1

ε

ż s

0
du 1

tτrpWuqăHuăτrpWuq`εu ´ L r
s |

ı

ď E:

µ,w

”1

ε

ż σ

0
du1

tτrpWuqăHuăτrpWuq`εu ` L r
σ

ı

` E0,y,0

”

sup
sďt

|
1

ε

ż s

0
du1

tτrpWuqăHuăτrpWuq`εu ´ L r
s |

ı

.

So to conclude we need to prove both:

(i) sup
εą0

sup
rą0

E0,y,0

”

sup
sďt

|
1

ε

ż s

0
du 1

tτrpWuqăHuăτrpWuq`εu ´ L r
s |

ı

ă 8;

(ii) sup
εą0

sup
rą0

E:

µ,w

”1

ε

ż σ

0
du 1

tτrpWuqăHuăτrpWuq`εu ` L r
σ

ı

ă 8.



Chapter 5. The structure of the local time 212

Let us start showing (i). We are going to apply similar techniques to the ones used in the proof

of Theorem 5.10. In this direction, we work under P0,y,0 and we fix r, ε ą 0. Now, recall the

definition of γDr , σDr and ρDr introduced in Section 5.3.2 (keeping in mind the fact that here we

work with pρ,W q) and set

RDr

t :“

ż t

0
ds1

tγDr
s ą0u

, for t ě 0,

which is the right inverse of σDr . Next, for every r ą 0, by definition we have τrpρt,W tq “

τDr
pρt,W tq and we derive that

ż s

0
du 1

tτrpWuqăHuăτrpWuq`εu “

ż RDr
s

0
du 1

t0ăHpρDr
u qăεu,

since on tu ě 0 : HpρσDr
u

q ą τrpW σDr
u

qu, we have HpρDr
u q “ HpρσDr

u
q ´ τrpW σDr

u
q. Recall from

(5.43) that xρDr , 1y is distributed as xρ, 1y under P0,y,0, which is a reflected ψ-Lévy process, and

that we denote its local time at 0 by ℓDr . In particular, the distribution of pxρDr , 1y, ℓDrq is the

same as
`

pXt ´ It,´Itq : t ě 0
˘

. Recalling from (5.44) that L r
t “ ℓDrpRDr

t q and noticing that

RDr
s ď s, we derive the following inequality:

E0,y,0

”

sup
sďt

|
1

ε

ż s

0
du 1

tτrpWuqăHuăτrpWuq`εu ´ L r
s |

ı

“ E0,y,0

”

sup
sďt

|
1

ε

ż RDr
s

0
du 1

t0ăHpρDr
u qăεu ´ ℓDrpRDr

s q|

ı

ď E0,y,0

”

sup
sďt

|
1

ε

ż s

0
du 1

t0ăHpρDr
u qăεu ´ ℓDrpsq|

ı

“ E0,y,0

”

sup
sďt

|
1

ε

ż s

0
du 1t0ăHpρuqăεu ` Is|

ı

,

where in the first line we used that for each fixed r ą 0, the processes L r and LDr are indis-

tinguishable. The latter quantity does not depend on r and by (5.9) it converges to 0 as ε Ó 0,

giving (i).

We now turn our attention to the proof of (ii). On the one hand, by Proposition 5.6 - (ii) and

(5.28), for every r ą 0 we have

E:

µ,w

“

L r
σ

‰

“

ż

p0,τrpwqq

µpdhq Nwphq

`

L r
σ

˘

“

ż

p0,τrpwqq

µpdhq E0
b Πwphq

“

1tτrpξ,Lqă8u exp
`

´ ατrpξ,Lq
˘‰

ď xµ, 1y.

On the other hand, the remaining term

E:

µ,w

”1

ε

ż σ

0
du 1

tτrpWuqăHuăτrpWuq`εu

ı

can be bounded similarly as we did in (5.33). More precisely, consider under P:

µ,w the random

measure
ř

iPN δphi,ρi,W
i
q
defined in (5.22), set T :“ inftt ą 0 : Ht “ τrpwqu, with the convention

T “ 0 if τrpwq “ 8, and remark that for every s P r0, T s we have τrpW sq “ τrpwq. Recalling
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µptτrpwquq “ 0, it follows by considering the excursion intervals of H over its running infimum

and our previous remark, that the integral
şσ
0 du 1tτrpWuqăHuăτrpWuq`εu can be written as

ÿ

hiąτrpwq

ż σpW
i
q

0
du 1tτrpwqăhi`Hpρiuqăτrpwq`εu `

ÿ

hiăτrpwq

ż σpW
i
q

0
du 1

tτrpW
i
uqăHpρiuqăτrpW

i
uqu
,

where the first term is now bounded above by
ř

hiąτrpwq

şσpW
i
q

0 du 1t0ăHpρiuqăεu. Consequently, by

(5.24) we have

E:

µ,w

”

ż σ

0
du 1

tτrpWuqăHuăτrpWuq`εu

ı

ď µppτrpwq,8qqNp

ż σ

0
ds1t0ăHpρsqăεuq `

ż

p0, τrpwqq

µpdhqNwphq

`

ż σ

0
ds1

tτrpW sqăHsăτrpW sq`εu

˘

,

and again by the many-to-one formula (5.24), the previous display is bounded by ε¨xµ, 1y. Putting

everything together we deduce the upper bound

E:

µ,w

”1

ε

ż σ

0
du 1

tτrpWuqăHuăτrpWuq`εu ` L r
σ

ı

ď 2 ¨ xµ, 1y,

which does not depend on the pair r, ε ą 0 and concludes the proof of (ii).

Finally, we extend the result under the excursion measure Ny,r0 . Working under P0,y,r0 fix

z ą 0 and denote by pρ1,W
1
q “ pρpg`¨q^d,W pg`¨q^dq the first excursion with length σ ą z. By

the previous result, the quantity

sup
sďt

ˇ

ˇ

ˇ
ε´1

ż s

0
du

ż

R`

dr1
tτrpW

1

uqăHpρ1
uqăτrpW

1

uq`εu
´

ż

R`

drL r
s pρ1,W

1
q

ˇ

ˇ

ˇ

“ sup
sďt^pd´gq

ˇ

ˇ

ˇ
ε´1

ż g`s

g
du

ż

R`

dr1
tτrpWuqăHuăτrpWuq`εu ´

ż

R`

drpL r
g`s ´ L r

g q

ˇ

ˇ

ˇ

converges in probability to 0, and it then follows that (5.71) holds in measure under Ny,r0p ¨ Xtσ ą

zuq.

As a straight consequence of the definition of A we deduce the following many-to-one formula:

Lemma 5.23. For any non-negative measurable function Φ on Mf pR`q ˆ Mf pR`q ˆ WE and

py, r0q P E, we have

Ny,r0

ˆ
ż σ

0
dAs Φ

`

ρs, ηs,W s

˘

˙

“

ż 8

r0

dr E0
b Πy,r0

´

exp
`

´ ατr
˘

¨ Φ
`

Jτr , qJτr , pξt,Lt : t ď τrq
˘

¯

.

(5.72)

Proof. By the translation invariance of the local time it is enough to prove the Lemma for r0 “ 0.

Now recall that, under Ny,0, for every fixed r ě 0 the processes L r and LDr are indistinguishable.

Consequently, the left-hand side of (5.72) can be written in the form:
ż 8

0
drNy,0

ˆ
ż σ

0
dLDr

s Φ
`

ρs, ηs,W s

˘

˙

,

and hence we arrive at (5.72) applying (5.28).
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A first consequence of Lemma 5.23 is that for any py, r0q P E, we have

supp dA Ă tt P R` : xWt “ xu, Ny,r0– a.e. (5.73)

Indeed, it suffices to observe that by (5.72), for any ε ą 0, it holds that

Ny,r0

ˆ
ż σ

0
dAs1tdEpxWs,xqąεu

˙

“ 0,

where we recall that dE stands for the metric of E. Let us comment on a few useful identities

that will be used frequently in our computations:

Remark. Fix py, r0q P E with y ‰ x. Under Ny,r0 or P0,y,r0 , let pg, dq be an interval such

that Hs ą Hg “ Hd, for every s P pg, dq, and pΛg “ r0 – remark that in particular we have

pHpgq “ pHpdq. We denote the corresponding subtrajectory, in the sense of Section 5.2.3, by

pρ1,W
1
q and its duration by σ1 “ σpW 1q. Since for any q ě r and s ě 0:

Hpg`sq^d “ Hg ` Hpρis^σi
q and τqpW pg`sq^dq “ Hg ` τqpW

i
s^σi

q,

we deduce by the approximation (5.71) that the process pApg`tq^d ´ Ag : t ě 0q only depends

on pρ1,W
1
q and it will be denoted by pAspρ

1,W
1
q : s ě 0q. Now we make the following observations:

(i) Working underNy,r0 , we denote the connected components of the open set tpHs´τr0pW sqq` ą

0u by ppαi, βiq : i P Iq and we set σi :“ βi ´ αi its duration. We also write pρi,W
i
q for the excur-

sions from Dr0 corresponding to the interval pαi, βiq. By Proposition 5.22, the measure dA does

not charge the set ts ě 0 : Hs ď τr0pW squ and we derive that:

Aσ “
ÿ

iPI

ż

pαi,βis
dAs “

ÿ

iPI
Aσipρ

i,W
i
q, Ny,r0–a.e. (5.74)

(ii) We will now make similar remarks holding under P:

µ,w, for pµ,wq P Θx. Under P:

µ,w, denote

the connected components of ts ě 0 : Hs ą infr0,ss Hu by ppai, biq : i P Nq and write pρi,W
i
q

for the subtrajectory associated with rai, bis. We also set hi “ Hai and recall that the measure

M “
ř

iPI δphi,ρi,W
i
q
is the Poisson point measure (5.22) associated with pρ,W q. Moreover, we

have:

E:

µ,w

“

|Aσ ´
ÿ

iPN
Aσpρi,W

i
q|
‰

ď

ż

R`

dr E:

µ,w

“

|L r
σ ´

ÿ

iPN
L r
σ pρi,W

i
q|
‰

.

Consequently, by Proposition 5.6 - (ii), the previous quantity is null and it follows that we still

have

Aσ “
ÿ

iPN
Aσpρi,W

i
q, P:

µ,w– a.s. (5.75)

Recall now the definition (5.59) of rψ and the notation uλ introduced in (5.57). The following

proposition relates the Laplace transform of the total mass Aσ under Ny,r0 and the Laplace

exponent rψ. This identity will be needed to characterize the support of dA and will also play a

central role in Section 5.5.
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Proposition 5.24. For every r0, λ ě 0 and y P E, we have

Ny,r0

´

1 ´ exp
`

´ λA8

˘

¯

“ u
rψ´1pλq

pyq,

where we recall the convention uλpxq “ λ, for every λ ě 0. Moreover, for pµ,wq P Θx, we have:

E:

µ,w

”

exp
`

´ λA8

˘

ı

“ exp
´

´

ż

µpdhq u
rψ´1pλq

pwphqq

¯

.

The proposition has the following consequence: since rψ´1pλq “ rNp1´ expp´λσqq, the total mass

A8 under Nx,0 and σ under rN have the same distribution. This connection is the tip of the

iceberg of the results that will be established in the upcoming section, where we establish that

the tree structure of the set tυ P TH : ξυ “ xu is encoded by a rψ–Lévy tree.

Proof. Under Ny,r0 with y ‰ x and r0 ě 0, set

T ˚ :“ inftt ě 0 : τr0pW tq ă 8u,

which is just the first hitting time of x by pxWtqtPr0,σs. Notice that by (5.73), A8 vanishes on

tT ˚ “ 8u Ny,r0-a.e.. We set Gλ :“ Nx,0p1 ´ expp´λA8qq, and remark that the identity (5.74)

and the special Markov property applied to the domain Dr0 yields:

Ny,r0

´

1 ´ exp
`

´ λA8

˘

¯

“ Ny,r0

´

1 ´ exp
´

´ L r0
σ ¨ Nx,r0

`

1 ´ exp
`

´ λA8

˘˘

¯¯

.

Next, by the translation invariance of the local time L, we derive that the previous display is

equal to:

Ny,0

´

1 ´ exp
´

´ L 0
σ ¨ Nx,0

`

1 ´ exp
`

´ λA8

˘˘

¯¯

“ uGλ
pyq.

Moreover, for pµ,wq P Θx if we denote under P:

µ,w the Poisson process introduced in (5.22) by
ř

iPI δphi,ρi,W
i
q
, we get :

E:

µ,w

”

exp
`

´ λA8

˘

ı

“ E:

µ,w

”

exp
`

´ λ
ÿ

iPI
A8pρi,W

i
q
˘

ı

“ exp
´

´

ż

µpdhq Nwphq

`

1 ´ exp
`

´ λA8

˘˘

¯

“ exp
´

´

ż

µpdhq uGλ
pwphqq

¯

,

where in the first equality we applied (5.75), and in the second we used that
ř

iPI δphi,ρi,W
i
q
is a

Poisson point measure with intensity µpdhqNwphqpdρ, dW q. Consequently, the statement of the

proposition will now follow if we establish that Gλ “ rψ´1pλq. In this direction, for λ ą 0, notice

that the Markov property implies that

Gλ “ λ ¨ Nx,0

´

ż σ

0
dAs exp

`

´ λ

ż σ

s
dAu

˘

¯

“ λ ¨ Nx,0

´

ż σ

0
dAs E:

ρs,W s

”

exp
`

´ λ

ż σ

0
dAu

˘

ı¯

.

By the previous discussion under P:

µ,w and the many-to-one formula of A given in Lemma (5.23),

we get:

Gλ “ λ

ż 8

0
dr E0

b Πx,0

´

exp
`

´ ατr
˘

exp
´

´

ż τr

0
Jτrpdhq uGλ

`

ξphq
˘

¯¯

“ λ

ż 8

0
dr Πx,0

´

exp
´

´

ż τr

0
dh

ψ
`

uGλ
pξphqq

˘

uGλ

`

ξphq
˘

¯¯

,
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where we recall that τrpξ,Lq :“ infts ě 0 : Ls ě ru and in the second equality we used that

J8pdhq is the Lebesgue-Stieltjets measure of a subordinator with exponent ψpλq{λ ´ α. Next,

under Πx,0, we consider psi, tiqiě1 the connected components of ts ě 0 : ξs ‰ xu and we remark

that:
ż τr

0
dh

ψ
`

uGλ
pξphqq

˘

uGλ

`

ξphq
˘ “

ÿ

iě1,Lsiăr

ż ti

si

dh
ψ
`

uGλ
pξphqq

˘

uGλ

`

ξphq
˘ ,

since
ş8

0 dh1tξh“xu “ 0 by assumption pH3q. Consequently, by excursion theory we get:

Πx,0

´

exp
´

´

ż τr

0
dh

ψ
`

uGλ
pξphqq

˘

uGλ

`

ξphq
˘

¯¯

“ exp
´

´ r ¨ N
´

1 ´ exp
`

´

ż σ

0
dh

ψ
`

uGλ
pξhqq

uGλ
pξhq

˘

¯¯

,

and hence

Gλ “ λ ¨ N
´

1 ´ exp
´

´

ż σ

0
dh

ψ
`

uGλ
pξhqq

uGλ
pξhq

¯¯´1
.

However, by the first identity in (5.68), we have

N
´

1 ´ exp
´

´

ż σ

0
dh
ψpuGλ

pξhqq

uGλ
pξhq

¯¯

“
rψpGλq

Gλ
,

and we derive that rψpGλq “ λ for λ ą 0 and equivalently Gλ “ rψ´1pλq. Finally, since G0 “ 0

the identity also holds for λ “ 0.

5.4.3 Characterization of the support of dA

The rest of the section is devoted to the characterisation, under Ny,r0 and Pµ,w, of the support

of the measure dA. Our characterisation is given in terms of the constancy intervals of pΛ, and of

a family of special times for the Lévy snake that will be named exit times from x. Before giving

a precise statement we will need several preliminary results under Nx,0. First recall that under

Nx,0, for every r ą 0 the processes L r and LDr are indistinguishables – and in particular, by

Proposition 5.7, L r
σ is FDr measurable. Fix r ą 0, recall the notation τrpρt,W tq “ τDr

pρt,W tq

for t ě 0, and denote the connected components of the open set tt P r0, σs : τrpW tq ă Htu by

tpari , b
r
i q : i P Iru. We write tpρi,r,W

i,r
q : i P Iru for the corresponding subtrajectories, where as

usual W
i,r

“ pW i,r,Λi,rq. Next, recall the notation ΓDs :“ inf
␣

t ě 0 : V D
t ą s

(

for V D defined

by (5.25) and we set:

θru :“ inf
␣

s ě 0 : L r
ΓDr
s

ą u
(

, for all u P r0,L r
σ q.

Remark that trDr
{pW,Λqθru

“ px, rq, for every u P r0,L r
σ q. An application of the special Markov

property applied at the domain Dr gives that, conditionally on FDr , the point measure of the

excursions from Dr

Mprq :“
ÿ

iPIr

δ
pL r

ar
i
,ρi,r,W

i,r
q

is a Poisson point measure with intensity 1r0,L r
σ spuqdu Nx,r

`

dρ, dW
˘

.

Lemma 5.25. Nx,0–a.e., we have t0, σu P supp dA.
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Proof. We are going to show that for any ε ą 0, we have Nx,0pAε^σ “ 0q “ 0 – the Lemma will

follow since the symmetric statement NxpAσ´ε “ 0q “ 0 will then hold by the duality identity

(5.20). As previously we write

Gλ :“ Nx

`

1 ´ exp
`

´ λA8q
˘

“ rψ´1
pλq,

where the second equality holds by Proposition 5.19. For every positive rational numbers r and

q, we introduce the stopping time T rq :“ inf
␣

s ě 0 : L r
s ą q

(

, with the convention T rq “ 8, if

L r
σ ď q. Let us prove that

Nx,0

`

AT r
q

“ 0,L r
σ ą 0

˘

“ 0. (5.76)

In this direction, set Nr
x,0 :“ Nr

x,0pdρ, dW |L r
σ ą 0q and using the fact that Mprq is a Poisson

point measure with intensity 1r0,L r
σ spuqdu Nx,r

`

dρ, dW
˘

, remark that

Nr
x,0

´

exp
`

´ λAT r
q

˘

¯

ď Nr
x,0

´

exp
`

´λ
ÿ

iPIr

Aσpρi,r,W
i,r

q1tL r
ai

ďqu

˘

¯

“ Nr
x,0

´

exp
´

´ pq ^ L r
σ q ¨ Nx

`

1 ´ expp´λA8q
˘

¯¯

“ Nr
x,0

´

exp
`

´ pq ^ L r
σ q ¨ Gλ

˘

¯

,

and hence:

Nr
x,0pAT r

q
“ 0q ` Nr

x,0

`

exp
`

´ λAT r
q

˘

1tATr
q

ą0u

˘

ď Nr
x,0

`

exp
`

´ pq ^ L r
σ q ¨ Gλ

˘˘

.

Now (5.76) follows taking the limit as λ Ò 8, since we are working under tL r
σ ą 0u and by

Proposition 5.19 the function rψ satisfies (A4), which gives that Gλ goes to 8 when λ Ò 8. We

stress that (5.76) holds for any positive rational numbers r and q. Now fix ε ą 0, and notice that

by the monotonicity of A, we have
␣

Aε^σ “ 0 ; T rq ă ε
(

Ă
␣

AT r
q

“ 0 ; T rq ă ε ; L r
σ ą 0

(

,

where the last set has null Nx,0 measure by (5.76). The identity Nx,0pAε^σ “ 0q “ 0 now will

follow as soon as we show that, Nx,0-a.e. , there exists two positive rational numbers r and q

satisfying that T rq ă ε. Said otherwise, we need to establish that the origin is an accumulation

point of tT rq : r, q P Q˚
`u. Arguing by contradiction, write

Ω0 “
č

r,qPQ˚
`

␣

T rq ě ε
(

“
č

rPQ˚
`

␣

T rq ě ε : @q ą 0
(

“
č

rPQ˚
`

␣

L r
ε “ 0

(

where in the last equality we used (5.76), and suppose that Nx,0pΩ0q ą 0. To simplify notation,

set Cprq :“ infts ě 0 : pΛs ą ru, and remark that the special Markov property, as stated in

Theorem 5.11, applied to the domain Dr gives tL r
ε “ 0u “ tCprq ě εu. We then derive that

0 ă Nx,0

´

č

rPQ˚
`

tCprq ě εu
¯

“ Nx,0

´

pΛs “ 0, @s P r0, ε ^ σs

¯

.

However, recalling the definition (5.19) of the excursion measure Nx,0 this is in contradiction with

the fact that for every s P p0, σq, Nx,0 a.e., pΛs ą 0. Indeed, by definition of the Lévy snake under

Nx,0, for any fixed s the process pWsptq,Λsptq : t ď ζsq has the distribution of a trajectory of the

Markov process pξt,Lt : t ě 0q under Πx,0 killed at ζs. We then have Λsptq ą 0, for every t ą 0,

since Lt ą 0, Πx,0 a.s., and ζs “ Hpρsq does not vanish on p0, σq.
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Define:

C˚ :“
!

t P r0, σs : sup
pt´ε,t`εqXr0,σs

pΛ “ inf
pt´ε,t`εqXr0,σs

pΛ , for some ε ą 0
)

,

and remark that – the closure of the – connected components of C˚ are exactly the constancy

intervals of pΛ. We will show that the support of dA is precisely the complement of C˚. In this

direction, our goal now is to give an equivalent definition of C˚ in terms of H and W , and for this

purpose we introduce the notion of exit times.

Definition 5.26. (Exit times from x) A non negative number t is said to be an exit time from

the point x for the process pρ,W q if xWt “ x and there exists s ą 0 such that

Ht ă Ht`u, for all u P p0, sq.

The collection of exit times from x is denoted by Exitpxq.

Remark 5.27. Note that, for every t P Exitpxq, the point pHptq corresponds by definition to an

interior point of the Lévy tree and in fact, recalling the result of Proposition 5.16, pHptq is a point

of multiplicity 2 in TH . In particular, for every t P Exitpxq, there exists a unique s ą t such that

pHptq “ pHpsq and satisfying that:

xWs “ x and Hs´u ą Ht “ Hs for all u P p0, vq,

for some v ą 0 – in this case, we can take v :“ t ´ s. By analogy, we write ) Exitpxq for

the collection of times in r0, σs satisfying the previous display. Remark that the correspondence

described above between Exitpxq and ) Exitpxq defines a bijection. We also stress that the inclusion

Exitpxq Y ) Exitpxq Ă tt P R` : xWt “ xu is a priori strict since we are excluding in our definition

potential times that will be mapped by pH into leaves with label x.

Let us now prove the following technical lemma:

Lemma 5.28. For every fixed r ą 0, under Nx,0, we have:

supp dL r
“ tari , b

r
i : i P Iru “ Exitpxq X

␣

s P r0, σs : pΛs “ r
(

, (5.77)

and the same identity holds if we replace Exitpxq by ) Exitpxq. In particular, the measure dA gives

no mass to the complement of Exitpxq (or ) Exitpxq).

Proof. First remark that if L r
σ “ 0, by the special Markov property applied to the domain Dr, all

the sets appearing in (5.77) are empty. Hence, it suffices to show (5.77) under Nr
x :“ Nxp¨ |L r

σ ą

0q. Moreover, notice that by definition we have:

tari : i P Iru “ ExitpxqX
␣

s P r0, σs : pΛs “ r
(

, and tbri : i P Iru “ ) ExitpxqX
␣

s P r0, σs : pΛs “ r
(

.

To deduce (5.77), it is then enough to show that:

supp dL r
“ tari : i P Iru,

since the same equality will hold for tari : i P Iru replaced by tbri : i P Iru, using the duality

identity (5.20) under Nx,0.
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So let us prove the previous display. We start showing the inclusion supp dL r Ă tari : i P Iru.
In this direction, consider s P supp dL r. By the special Markov property the set tL r

ari
: i P Iru is

dense in r0,L r
σ s, which gives that for every ε there exists i P Ir such that L r

ps´εq`
ă L r

ari
ă L r

s`ε.

This ensures that ari P ps ´ ε, s ` εq by monotonicity of L r. Consequently, the set supp dL r

is included in the closure of tari : i P Iru. Let us now establish the reverse inclusion by showing

that for every j P Ir, we have arj P supp dL r. In order to prove it, set Rt :“
ř

L r
ar
i

ďt σpW
i,r

q for

t ě 0 and notice that it is a rcll process since R8 ď σ ă 8. Now remark that by definition, for

every k P Ir with ark ă arj , we have:

arj ´ ark ď RL r
ar
j

´ ´ RL r
ar
k

´ ` θrL r
ar
j

´ θrL r
ar
k

´.

Since θr is monotone, it has a countable number of discontinuities and it follows by the special

Markov property – using that θr is FDr -measurable – that all the points tL r
ari

: i P Iu are

continuity points of θr. Since R is rcll, this implies that for every ε ą 0 there exists k P Ir such

that arj ´ ε ă ark ă arj . All the values tL r
ari

: i P Iru being distinct we derive that arj P supp dL r,

as wanted. As a consequence of (5.77), it follows that:

Nx,0

ˆ
ż σ

0
dAs1sRExitpxq

˙

“

ż 8

0
drNx,0

ˆ
ż σ

0
dL r

s 1sRExitpxq

˙

“ 0,

and we deduce by duality that dA gives no mass to the complement of Exitpxq – the same result

holding for ) Exitpxq.

The next proposition establishes the connection between the constancy intervals of pΛ, the exit

times from x and the excursion intervals from Dr. This is the last result needed to characterise

the support of dA.

Proposition 5.29. Nx,0–a.e., we have:

Exitpxq “ ) Exitpxq “ tari , b
r
i : r P Q˚

` and i P Iru “ r0, σszC˚. (5.78)

Proof. The first step consists in showing

Exitpxq Ă tari , b
r
i : r P Q˚

` and i P Iru. (5.79)

Remark that by Lemma 5.28 the other inclusion is satisfied and still holds if we replace Exitpxq

by ) Exitpxq. In this direction, recall that by Lemma 5.13 the process pρ,W q takes values in Θx.

In particular, we have

Nx,0–a.e., for all q P p0, σq, th ă Hq : Wqphq “ xu “ supp Λqpdhq, p˚q

where we recall that supp Λqpdhq is precisely the set
!

t P r0, ζqs : Λqpt` hq ą Λqptq for any 0 ă h ă pHq ´ tq or Λqptq ą Λqpt´ hq for any 0 ă h ă t
)

.

We let Ω0 Ă DpR`,Mf pR`qˆWEq be a measurable subset with Nx,0pΩc0q “ 0 at which property

p˚q holds for every pρ, ωq P Ω0 and we argue for fixed pρ, ωq P Ω0. Fix t P Exitpxq; by definition,

for any ε ą 0 we can find t ă q ă t ` ε such that Ht ă Hr for every r P pt, qs. By our choice of

Ω0 and the snake property, it must hold either that:
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(i) Ht is a time of right-increase for Λq (and in particular pΛq ą ΛqpHtq “ pΛt), or

(ii) Ht is not a time of right-increase for Λq, (and hence ΛqpHtq ą ΛqpHt ´ sq, @ 0 ă s ă Ht).

If (i) holds, set sk :“ supts P rt, qs : pΛs ď 2´kt2kpΛtu ` 2´ku and remark that we have sk P
Ť

rPQ˚
`

tari , b
r
i : i P Iru, as soon as pΛsk ă pΛq. However, this is satisfied for k large enough. On the

other hand, if (ii) holds we must have infrt´ε,ts H ă Ht since t can not be a local infimum for H

(otherwise, pHptq would be a branching point with label xWt “ x, in contradiction with Proposition

5.16). Now, the argument of case (i) holds by working with s1
k :“ supts P r0, ts : pΛs ď 2´kt2kpΛtuu.

This implies that t belongs to the closure of
Ť

rPQ˚
`

tari , b
r
i : i P Iru giving (5.79). Moreover, by

duality the contention (5.79) holds replacing Exitpxq by ) Exitpxq, proving the first two equalities

in (5.78). Consequently, to conclude it is enough to show that:

tari , b
r
i : r P Q˚

` and i P Iru Ă r0, σszC˚
Ă Exitpxq Y ) Exitpxq. (5.80)

In this direction, notice that for every r P Q˚
`, under Nx,r, we have pΛt ą r for every t P p0, σq.

Now, an application of the special Markov property applied to the domain Dr gives that:

tari , b
r
i : i P Iru Ă r0, σszC˚, Nx,0 ´ a.e.,

for every r P Q˚
`, and the first inclusion Ă in (5.80) follows. In order to obtain the remaining

inclusion, let t P r0, σszC˚. By definition, for every ε ą 0 there exists t ´ ε ă t1 ă t2 ă t ` ε

such that pΛt1 ă pΛt2 or pΛt1 ą pΛt2 . If the first holds, then supts P rt ´ ε, t2s : pΛs ď pΛt1u is an exit

time and the other case follows by taking infts P rt1, t2s : pΛs ď pΛt2u. This ensures that t is in the

closure of Exitpxq Y ) Exitpxq concluding our proof.

Now, we are in position to state and prove the main result of the section:

Theorem 5.30. Fix py, r0q P E and pµ,wq P Θx. Under Pµ,w and Ny,r0, we have

supp dA “ Exitpxq “ ) Exitpxq “ r0, σszC˚,

where we recall the convention r0,8s “ r0,8q.

Proof. First remark that by the special Markov property combined with (5.74) and (5.75), it is

enough to prove the theorem under Nx,0 and P0,x,0. We start by proving the theorem under Nx,0

and remark that by Proposition 5.29 we only have to establish the first equality. Moreover, by

Lemma 5.28 it only remains to show that under Nx,0:

supp dA Ą Exitpxq. (5.81)

However, by Lemma 5.25 we know that Nx,0pt0, σu X supp dA “ Hq “ 0, and then using that

conditionally on FDr the measure Mprq is a Poisson point measure with intensity measure given

by 1r0,L r
σ spℓqdℓ Nx,r

`

dρ, dW
˘

, we derive that:

Nx,0 ´ a.e., for all r P Q˚
`, tari , b

r
i : i P Iru Ă supp dA.

Consequently, Proposition 5.29 implies (5.81). Finally, let us briefly explain how to obtain the

result under P0,x,0. In this direction, under P0,x,0, denote the connected components of ts P R` :
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Xs ´ Is ‰ 0u by
`

pαi, βiq : i P I
˘

. Excursion theory and our results under Nx,0, give that, under

P0,x,0, we have:

supp dA X Yipαi, βiq “ Exitpxq X Yipαi, βiq “ ) Exitpxq X Yipαi, βiq “
`

r0, σszC˚
˘

X Yipαi, βiq,

αi P supp dA X Exitpxq X
`

r0,8qzC˚
˘

and βi P supp dA X ) Exitpxq X
`

r0,8qzC˚
˘

for every

i P I. The desired result now follows since the set tαi : i P Iu and tβi : i P Iu are dense in

ts P R` : Xs ´ Is “ 0u.

5.5 The tree structure of tυ P TH : ξυ “ xu

In this section, we work under the framework introduced at the beginning of Section 5.4. Our

goal now is to study the structure of the set tυ P TH : ξυ “ xu and to do so, we encode it by the

subordinate tree of TH with respect to the local time pLυ : υ P THq. In this direction, we need to

briefly recall the notion of subordination of trees defined in [66].

Subordination of trees by increasing functions. Let pT , dT , υ0q be an R-tree and recall

the standard notation ĺT and NT for the ancestor order and the first common ancestor. Next,

consider g : T Ñ R` a non-negative continuous function. We say that g is non-decreasing if for

every u, v P T :

u ĺT v implies that gpuq ď gpvq.

When the later holds, we can define a pseudo-distance on T by setting

dgT pu, vq :“ gpuq ` gpvq ´ 2 ¨ gpu NT vq, pu, vq P T ˆ T . (5.82)

The pseudo-distance dgT induces the following equivalence relation on T : for u, v P T we write

u „
g
T v ðñ dgT pu, vq “ 0,

and it was shown in [66] that T g :“ pT { „
g
T , d

g
T , υ0q is a compact pointed R-tree, where we still

denoted the equivalency class of the root of T g by υ0. The tree T g is called the subordinate tree

of T with respect to g and we write pTg : T Ñ T g for the canonical projection which associates

every u P T with its „
g
T –equivalency class. Observe that any two points u, v P T are identified if

and only if g stays constant on ru, vsT and consequently the subordinate tree is obtained from T
by identifying in a single point the components of T where g is constant.

Getting back to our setting, recall that under Nx,0, pLυ : υ P THq corresponds to ppΛt : t ě 0q

in the quotient space TH “ r0, σs{ „H . This entails that the local time pLυ : υ P THq is a

non-decreasing function on TH and we denote the induced subordinate tree by T L
H . Recall that

the exponent

rψpλq “ N
ˆ
ż σ

0
dhψpuλpξhqq

˙

, for λ ě 0,

is the exponent of a Lévy tree by Proposition 5.19. Hence, it satisfies (A1)—(A4) and by Corollary

5.21 it can be written in the following form:

rψpλq :“ rαλ `

ż

p0,8q

rπpdxqpexpp´λxq ´ 1 ` λxq,
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where rα “ N
`

1´expp´ασq
˘

and rπ is a sigma-finite measure on R`zt0u satisfying
ş

p0,8q
rπpdxqpx^

x2q ă 8. We will also use the notation rH and rN introduced prior to (5.66) for the height process

and the excursion measure of a rψ–Lévy tree. Finally, we recall that A stands for the additive

functional introduced in Proposition 5.22 and we denote its right inverse by A´1
t :“ infts ě

0 : As ą tu, with the convention A´1
t “ σ for every t ě A8 “ Aσ. Remark that the constancy

intervals of A in r0, σs are the connected components of r0, σszsupp dA, which by Theorem 5.30 are

precisely the connected components of C˚ – the constancy intervals of the process ppΛt : t P r0, σsq.

In particular, ppΛA´1
t

: t ě 0q is a continuous non-negative process, with lifetime A8. We can now

state the main result of this section:

Theorem 5.31. The following properties hold:

(i) Under Nx,0, the subordinate tree of TH with respect to the local time L, that we denote by

T L
H , is isometric to the tree coded by the continuous function ppΛA´1

t
: t ě 0q.

(ii) Moreover, we have the equality in distribution

´

p rHt : t ě 0q, under rN
¯

pdq
“

´

`

pΛA´1
t

: t ě 0
˘

, under Nx,0

¯

. (5.83)

In particular, T L
H is a Lévy tree with exponent rψ.

Remark 5.32. Let us mention that when ψpλq “ λ2{2 and the underlying spatial motion ξ is a

Brownian motion in R, the previous theorem implies that under N0,0 the subordinate tree of TH
with respect to the local time L at 0 is a Lévy tree and – as a direct consequence of the scaling

invariance of the Brownian motion – its exponent is of the form rψpλq “ cλ3{2, for some constant

c ą 0. This result was already obtained by other methods in [66, Theorem 2].

We stress that the key result in (ii) is the identity in distribution (5.83): it entails that not

only the function ppΛA´1
t

: t ě 0q encodes the subordinate tree, but it is also the height process of a

Lévy tree. The fact that T L
H is a rψ-Lévy tree is then a direct consequence of (i) and (5.83). By a

straightforward application of excursion theory one can deduce a version under P0,x,0 of Theorem

5.31, where now T L
H is a Lévy forest with exponent rψ. The details are left to the reader.

The rest of the section is organised as follows: The section is devoted to the proof of Theorem

5.31. In Section 5.5.1 we start by showing (i) and we present the strategy that we follow to prove

(ii). The proof of (ii) relies in all the machinery developed in previous sections combined with

standard properties of Poisson point measures and is the content of Section 5.5.2.

5.5.1 The height process of the subordinate tree

In this short section we establish the first claim of Theorem 5.31 and settle the ground for the

second part of the result. For every u P TH , recall that Lu :“ pΛs where s is any element of p´1
H ptuuq

(note that the definition is non ambiguous by the snake property) and that L is non-decreasing

on TH . To simplify notation, we set:

HA
t :“ pΛA´1

t
, t ě 0,

which is a continuous process – as it was already mentioned in the discussion before Theorem

5.31. Let us start with the proof of Theorem 5.31-(i).
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Proof of Theorem 5.31-(i). Our goal is to show that, under Nx,0, the trees THA and T L
H are

isometric. In this direction, we start by introducing the pseudo-distance:

rdps, tq :“ pΛt ` pΛs ´ 2 ¨ min
s^t,s_t

pΛ , s, t P r0, σs,

and we write s « t if and only if rdps, tq “ 0. By the snake property, we have s « t for every

s „H t. Moreover, since L is increasing on TH , we get

rdps, tq “ LpHptq ` LpHpsq ´ 2 ¨ LpHpsqNTH pHptq,

for every s, t P r0, σs. The right-hand side of the previous display is exactly the definition of

the pseudo-distance associated with the subordinate tree T L
H between pHpsq and pHptq given in

(5.82). We deduce that pr0, σs{ «, rd, 0q is isometric to T L
H . It remains to show that pr0, σs{ «, rd, 0q

is also isometric to pTHA , dHA , 0q. In order to prove it, we notice that:

rdpA´1
r1 , A

´1
r2 q “ dHApr1, r2q,

for every r1, r2 P r0, Aσs. Furthermore, for every t P r0, σs there exists r P r0, Aσs such that

A´1
r´ ď t ď A´1

r since by Lemma 5.25 the points 0 and σ are in the support of dA. Moreover we

have rdpA´1
r , tq “ 0, since by Theorem 5.30 the process pΛ stays constant on every interval of the

form rA´1
r´, A

´1
r s. This implies that r0, σs{ « “ tA´1

r : r P r0, A8su{ « and we deduce by the

previous display that pr0, σs{ «, rd, 0q and pTHA , dHA , 0q are isometric giving the desired result.

The main difficulty to establish Theorem 5.31 (ii) comes from the fact that rH is not a Markov

process. To circumvent this, we are going to use the notion of marked trees embedded in a func-

tion.

Marked trees embedded in a function. A marked tree is a pair T :“ pT, thv : v P Tuq,

where T is a finite rooted ordered tree and hv ě 0 for every v P T – the number hv is called the

label of the individual v. For completeness let us give the formal definition of a rooted ordered

tree. First, introduce Ulam’s tree:

U :“
8
ď

n“0

t1, 2, ...un

where by convention t1, 2, ...u0 “ ∅. If u “ pu1, ...umq and v “ pv1, ..., vnq belong to U , we
write uv for the concatenation of u and v, viz. pu1, ...um, v1, ..., vnq . In particular, we have

u∅ “ ∅u “ u. A (finite) rooted ordered tree T is a finite subset of U such that:

(i) ∅ P T;

(ii) If v P T and v “ uj for some u P U and j P t1, 2, ...u, then u P T;

(iii) For every u P T, there exists a number kupTq ě 0 such that uj P T if and only if 1 ď j ď

kupTq.

If u P T can be written as u “ vj for some v P T, 1 ď j ď kvpTq, we say that v is the parent of u.

More generally, if u “ vy for some v P T and y P U with y ‰ H, we say that v is an ancestor of u

or equivalently that u is a descendant of v. On the other hand, if u P T satisfies that kupTq “ 0,
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u is called a leaf. The element ∅ is interpreted as the root of the tree and if v is a vertex of T, the

branch connecting the root and v is the set of prefixes of v – considered with its corresponding

family of labels.

Let us also introduce the concatenation of marked trees. If T1, ...,Tk are k marked trees and

h is a non-negative real number, we write rT1, ...,Tksh for the marked tree defined as follows.

The lifetime of ∅ is h, k∅ “ k, and for 1 ď j ď k the point ju belongs to the tree structure of

rT1, ...,Tksh if and only if u P Tj and its label is the label of u in Tj . For convenience, we will

identity a marked tree T :“ pT, thv : v P Tuq with the set tpv, hvq : v P Tu.

We are now in position to define the embedded marked tree associated with a continuous func-

tion peptqqtPra,bs and a given finite collection of times. We fix a finite sequence of times a ď t1 ď

. . . tn ď b and we recall the notation meps, tq “ infrs^t,s_ts e. The embedded tree associated with

the marks t1, . . . , tn and the function e, θpe, t1, . . . , tnq, is defined inductively, according to the

following steps:

• If n “ 1, set θpe, t1q “ pH, tept1quq.

• If n ě 2, suppose that we know how to construct marked trees with less than n marks. Let

i1, . . . , ik be the distinct indices satisfying that meptiq , tiq`1q “ mept1, tnq, and define the

following restrictions for 1 ď q ď k ´ 1

ep0q
ptq :“ peptq : t P rt1, ti1sq, epqq

ptq :“ peptq : t P rtiq`1, tiq`1sq, epkq
ptq :“ peptq : t P rtik`1, tnsq.

Next, consider the associated finite labelled trees,

θpep0q, t1, . . . , ti1q, θpepqq, tiq`1, . . . , tiq`1q, θpepkq, tik`1, . . . , tnq, for 1 ď q ď k ´ 1,

and finally, concatenate them with a common ancestor with label mept1, tnq, by setting

θpe, t1, . . . , tnq :“ rθpep0q, t1, . . . , ti1q, . . . , θpepkq, tik`1, . . . , tnqsmept1,tnq,

and completing the recursion.

We say that the label hv is the height of v in θpe, t1, . . . , tnq “ pT, thv : v P Tuq. Let

us justify this terminology. First assume that ep0q “ 0 and consider Te the compact R–

tree induced by e. Then if v1, . . . , vn are the leaves of T in lexicographic order, we have

phv1 , . . . , hvnq “ pept1q, . . . , eptnqq. Moreover, if we write vi NT vj for the common ancestor of

vi and vj in T, it holds that hvjNTvi “ infrti^tj ,ti_tjs e.
5

Statements and main steps for the proof of Theorem 5.31 (ii). Our argument relies

in identifying the distribution of the discrete embedded tree associated with ppΛA´1
t

: 0 ď t ď A8q

when the collection of marks are Poissonian. In this direction, we denote the law of a Poisson

process pPt : t ě 0q with intensity λ by Qλ and we work with the pair pHA
t ,PtqtďA8

, under

the product measure Nx,0 b Qλ. For convenience, we denote the law of pρ,W,P¨^A8
q under

Nx,0 b Qλ by Nλ
x,0 and we let 0 ď t1 ă ¨ ¨ ¨ ă tM ď A8 be the jumping times of pPtq falling in

the excursion interval r0, A8s, where M :“ PA8
. Finally, consider the associated embedded tree

TA :“ θ
`

HA, t1, . . . , tM
˘

, under Nλ
x,0p ¨ |M ě 1q.

5The definition of θpe, t1, . . . , tnq is directly connected with the classical notion of marginals trees – where the label of a
point is the increment between its height and the height of its parent.
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Remark that the probability measure Nλ
x,0p ¨ |M ě 1q is well defined since by Proposition 5.24 we

have

Nλ
x,0 pM ě 1q “ Nx,0 p1 ´ expp´λA8qq “ rψ´1

pλq.

Our goal is to show that TA is distributed as the discrete embedded tree of a rψ-Lévy tree

associated with Poissonian marks with intensity λ. To state this formally, recall the notation
rN for the excursion measure of a rψ-Lévy process, and that rH stands for the associated height

process. We write rNλ for the law of prρ,P¨^σ
ĂH

q under rN b Qλ and remark that ĂM :“ Pσ
ĂH
is the

number of Poissonian marks in r0, σ
rH

s. For simplicity, we denote the jumping times of P under
rNλ by t1, . . . , t

ĂM
.

Proposition 5.33. The discrete tree TA under Nλ
x,0p ¨ |M ě 1q has the same distribution as

rT :“ θ
`

rH, t1, . . . , t
ĂM

˘

under rNλ
p ¨ |ĂM ě 1q.

The proof of Proposition 5.33 is rather technical and will be postponed to Section 5.5.2. The

reason behind considering Poissonian marks to identify the distribution ofHA is to take advantage

of the memoryless of Poissonian marks; this flexibility will allow us to make extensive use of the

Markov property and excursion theory. Let us now explain how to deduce Theorem 5.31 (ii) from

Proposition 5.33.

Proof of Theorem 5.31 (ii). First remark that the fact that T L
H is a rψ-Lévy tree is a direct conse-

quence of Theorem 5.31 (i) and (5.83). To conclude it remains to prove (5.83). In this direction,

notice that the marked trees considered are ordered trees – the order of the vertices being the

one induced by the marks. Recall that for every 1 ď i ď M , the quantity HA
ti is the label

of the i-th leaf in lexicographical order, and the same remark holds replacing pHA,M,TA
q by

p rH,ĂM, rTq. Consequently, the identity TA pdq
“ rT of Proposition 5.33 yields the following equality

in distribution

´

`

ĂM, rHt1 , . . . , rHt
ĂM

˘

: rNλ
p ¨ |ĂM ě 1q

¯

pdq
“

´

`

M,HA
t1 , . . . , H

A
tM

˘

: Nλ
x,0p ¨ |M ě 1q

¯

.

Recall from Proposition 5.24 and the discussion after it, that A8 under Nx,0 and σ
rH
under rN

have the same distribution. This ensures that, up to enlarging the measure space, we can define

the height process rH under the measure Nλ
x,0 in such a way that its lifetime is precisely A8, viz.

σ
rH

“ A8, and then we might and will consider the same collection of Poisson marks t1, . . . , tM to

mark the processes HA and rH. In the rest of the proof, we work with this coupling. In particular,

under Nλ
x,0p ¨ |M ě 1q, our previous discussion entails

´

M, rHt1 , . . . , rHtM

¯

pdq
“

´

M,HA
t1 , . . . , H

A
tM

¯

.

Let pUi : i ě 1q be a collection of independent identically distributed uniform random variables

in r0, A8s – and independent of all the rest. Remark that, conditionally on A8, pPt : t ď A8q

is independent of rH and HA, and the random variable M is Poisson with intensity pλA8q. By

conditioning on A8, we deduce that for any m ě 1 and any measurable function f : Rm ÞÑ R`,
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we have

Nλ
x,0

ˆ

fp rHUm
p1q
, . . . , rHUm

pmq
q
pλA8qm

m!
exp

`

´ λA8

˘

˙

“ Nλ
x,0

ˆ

fpHA
Um

p1q
, . . . , HA

Um
pmq

q
pλA8qm

m!
exp

`

´ λA8

˘

˙

, (5.84)

where pUm
p1q
, . . . , Um

pmq
q stands for the order statistics of tU1, . . . , Umu. Since the previous display

holds for every λ ą 0 we get that

´

A8, rHUm
p1q
, . . . , rHUm

pmq

¯

pdq
“

´

A8, H
A
Um

p1q
, . . . , HA

Um
pmq

¯

,

for every m ě 1. Denote the unique continuous function vanishing at R`zp0, A8q and linearly

interpolating between the points tpA8 ¨ im´1, rH
U

pmq

i
q : i P t1, . . . ,muu Y tp0, 0q, pA8, 0qu by

p rHm
t : t ě 0q. Similarly, let HA,m be the analogous function defined by replacing rH by HA.

Next we remark that (5.84) ensures that, for every continuous bounded function F : Rk ÞÑ R`

and any fixed set of times 0 ď t1 ď ¨ ¨ ¨ ď tk, we have

Nλ
x,0

´

F p rHm
t1 , . . . ,

rHm
tk q ¨

`

1 ´ expp´A8q
˘

¯

“ Nλ
x,0

´

F pHA,m
t1 , . . . , HA,m

tk
q ¨

`

1 ´ expp´A8q
˘

¯

.

Using the fact that Um
ttmu

Ñ A8¨t a.s. for every t P r0, 1s, we derive that the pointwise convergences

rHm Ñ rH and HA,m Ñ HA as m Ò 8. Finally since Nλ
x,0p1 ´ expp´A8qq ă 8, we deduce (5.83)

by dominated convergence.

5.5.2 Trees embedded in the subordinate tree

This section is devoted to the proof of Proposition 5.33. In short, the idea is to decompose induc-

tively rT and TA starting from their respective ”left-most branches” – viz. the path connecting

the root H and the first leaf with the corresponding labels – and to show that they have the

same law. Next, if we remove the left-most branch of rT and TA, we are left with two ordered

collections of independent subtrees and we shall establish that they have respectively the same

law as rT and TA. This will allow us to iterate this left-most branch decomposition in such a

way that the branches discovered at step n in rT and TA have the same law. Proposition 5.33

will follow since this procedure leads respectively to discover rT and TA. In order to state this

formally let us introduce some notation.

If T :“ pT, phv : v P Tqq is a discrete labelled tree and n ě 0, we let Tpnq be the set of all

couples pu, huq P T such that u has at most n entries in t2, 3, ...u. In particular Tp0q is the branch

connecting the root and the first leaf. Next, we introduce the collection

SpTq :“
`

phv, kvpTq ´ 1q : v is a vertex of Tp0q
˘

,

where the elements are listed in increasing order with respect to the height and we recall that

kvpTq stands for the number of children of v. For simplicity, set R :“ #Tp0q´1, write v1, ..., vR`1

for the vertices of Tp0q in lexicographic order and observe that v1 is the root while vR`1 is the

first leaf – in particular kvR`1pTq “ 0. Heuristically, SpTq – or more precisely the measure
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ř

ipkvipTq ´ 1qδhvi
– is a discrete version of the exploration process when visiting the first leaf of

T and for this reason SpTq will be called the left-most spine of T. Now, for every 1 ď j ď R, set

KjpTq :“

j
ÿ

i“1

pkvipTq ´ 1q,

with the convention K0pTq “ 0 and remark that KpTq :“ KRpTq stands for the number of

subtrees attached ”to the right” of Tp0q in T. To define these subtrees when KpTq ě 1, we need

to introduce the following: for every 1 ď i ď KRpTq “ KpTq, let apiq be the unique index such

that Kapiq´1pTq ă i ď KapiqpTq. Then, we introduce the marked tree

Ti :“
␣

pu, h1
uq :

`

vapiqpKapiq ` 2 ´ iqu, hvapiq
` h1

u

˘

P T
(

. (5.85)

Remark that the labels in each subtree Ti have been shifted by their relative height in SpTq and

that the collection pTi : 1 ď i ď KpTqq is listed in counterclockwise order.

We now apply this decomposition to rT and TA. For simplicity, we write rK :“ KprTq (resp.

K :“ KpTA
q) for the number of subtrees attached to the right of rTp0q (resp. TA

p0q). When
rK ě 1 (resp. K ě 1), we let rTi (resp. T

A
i ) be the marked trees defined by (5.85) using rT (resp.

TA). Proposition 5.33 can now be reduced to the following result:

Proposition 5.34. (i) We have

´

SprTq : rNλ
p¨|ĂM ě 1q

¯

pdq
“

´

SpTA
q : Nλ

x,0p¨|M ě 1q

¯

.

(ii) Under rNλp¨ | rK,ĂM ě 1q and conditionally on SprTq, the subtrees rT1, . . . rT
rK
are distributed as

rK independent copies distributed as rT under rNλp¨ |ĂM ě 1q. Similarly, under Nλ
x,0pdW, dP |K,M ě

1q and conditionally on SpTA
q, the subtrees TA

1 , . . . ,T
A
K are distributed as K independent copies

distributed as TA under Nλ
x,0pdW, dP |M ě 1q.

Let us explain why Proposition 5.33 is a consequence of the previous result.

Proof of Proposition 5.33. We are going to show by induction that for every n ě 0:

rTpnq under rNλ
p¨ |ĂM ě 1q is distributed as TA

pnq under Nλ
x,0p¨|M ě 1q. (5.86)

First notice that Proposition 5.34 - (i) gives the previous identity in the case n “ 0. Assume now

that (5.86) holds for n ě 0 and let us prove the identity for n` 1. First, remark that it is enough

to argue with rTpn` 1q under rNλp¨ | rK,ĂM ě 1q and TA
pn` 1q under Nλ

x,0p¨|K,M ě 1q – since by

Proposition 5.34, the variable rK under rNλp¨ |ĂM ě 1q is distributed as K under Nλ
x,0p¨|M ě 1q.

Next, we see that rTpn` 1q can be obtained by gluing the trees rTipnq to rTp0q at their respective

positions after translating the labels by the associated heights. Moreover, these positions and

heights are precisely the entries of SprTq. Since the same discussion holds when replacing rT by

TA, the case n` 1 follows by Proposition 5.34 and the case n. Finally, since the trees rT and TA

are finite, (5.86) implies the desired result.
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Our goal now is to prove Proposition 5.34. In this direction, we will first encode the spines

SprTq,SpTA
q as well as the corresponding subtrees rTi, T

A
i in terms of rρ, pρ,W q and P . This

will allow us to identify their law by making use of the machinery developed in previous sections.

While SprTq can be constructed directly in terms of prρt1`t : t ě 0q and the Poisson marks, the

construction of SpTA
q is more technical. Roughly speaking, the strategy consists in defining in

terms of pρ,W q the exploration process for the subordinate tree at time t1, say ρ˚
t1 , and then

show – see Lemma 5.38 below – that rρt1 and ρ˚
t1 have the same distribution. Needless to say that

this statement is informal, since we have not yet shown that the subordinate tree is a Lévy tree.

We will then deduce (i) by considering SprTq, SpTA
q and conditioning respectively on rρt1 and ρ

˚
t1 ,

Point (ii) will then follow easily by construction. For simplicity, from now on we write t :“ t1.

We first start working under rNλp¨ |M ě 1q and we introduce the following notation: let
`

prαi, rβiq :

i P N
˘

be the connected components of the open set

␣

s ě t : rHs ą inf
rt,ss

rH
(

.

As usual, we write rρ i for the associated subtrajectory of the exploration process in the interval

rrαi, rβis. We also consider rHi :“ p rH
prαi`sq^rβi

´ rH
rαi

: s ě 0q, rP i :“ p rP
prαi`tq^rβi

´ rP
rαi

: t ě 0q

and note that in particular we have Hprρ iq “ rHi. Write rhi :“ rHprαiq, and consider the marked

measure:
ĂM :“

ÿ

iPN
δ

prhi,rρ i, rPiq
.

By the Markov property and (5.22), conditionally on Ft, the measure ĂM is a Poisson point

measure with intensity rρtpdhq rNλpdρ, dPq. Now we can identify SprTq in terms of functionals of
ĂM and rHt. First, set prh˝

p : 1 ď p ď rRq the collection of the different heights – in increasing

order – among prhi : i P Nq at which rP i
σprρ iq

ě 1. In particular, rR gives the number of different

heights rhj at which we can find at least one marked excursion above the running infimum of

p rHt`t : t ě 0q. Next, we write ĂM˝
p for the number of atoms at level rh˝

p in ĂM with at least one

Poissonian mark. Now, remark that by construction we have:

SprTq “
`

prh˝
1,
ĂM˝

1 q, . . . , prh˝
rR
,ĂM˝

rR
q, p rHt,´1q

˘

, (5.87)

and in particular rK “
ř

rR
i“1

ĂM˝
i . Finally, for later use denote the corresponding marked excursions

arranged in counterclockwise order by rE :“ pprρq˝, rH
q
˝ , rPq

˝ q : 1 ď q ď rKq. Notice that the subtrees

prTi : 1 ď i ď rKq are precisely the respective embedded marked trees associated with pp rHq
˝ , rPq

˝ q :

1 ď q ď rKq.

The main step remaining in our analysis under rNλp¨ |ĂM ě 1q consists in characterizing the

law of p rHt, rρtq, and this is the content of the following lemma. Since ĂM conditionally on Ft

is a Poisson point measure with intensity rρtpdhq rNλpdρ, dPq, this will suffice to identify the

distribution of SprTq. In this direction, Corollary 5.21 ensures that the measure rρt is purely

atomic and consequently by (5.7) it is of the form:

rρt :“
ÿ

iPN

r∆i ¨ δ
rhi .
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We stress that we have trhi : i P Nu “ trhi : i P Nu – even though the latter set has repeated

elements.

Lemma 5.35. Under rNλp¨| ĂM ě 1q, the random variable rHt is exponentially distributed with

intensity λ{ rψ´1pλq. Moreover, conditionally on rHt, the measure
ř

δ
prhi,r∆iq

is a Poisson point

measure with intensity 1
r0, rHts

pdhqrνpdzq, where rνpdzq is the measure supported on R` charac-

terised by:
ż

rνpdzq
`

1 ´ expp´pzq
˘

“
rψppq ´ λ

p ´ ψ´1pλq
´

λ

ψ´1pλq
, p ě 0. (5.88)

Proof. Recall that by Proposition 5.24, we have rψ´1pλq “ rNp1 ´ expp´λσqq “ rNλpĂM ě 1q.

Consider two measurable functions g : R` ÞÑ R`, F : Mf pR`q ÞÑ R` and remark that

rNλ
`

gp rHtqF prρtq1tĂMě1u

˘

“ λ ¨ rN
`

ż σ

0
ds expp´λsqgp rHsqF prρsq

˘

.

By duality (5.20) and the Markov property, the previous expression can be written in the form:

λ ¨ rN
`

ż σ

0
ds gp rHsqF prηsq expp´λpσ ´ sqq

˘

“ λ ¨ rN
`

ż σ

0
ds gp rHsqF prηsq rE

rρsrexpp´λσqs
˘

“ λ ¨ rN
`

ż σ

0
ds gp rHsqF prηsq expp´ rψ´1

pλqxrρs, 1yq
˘

,

where in the last line we use the identity rψ´1pλq “ rNp1 ´ expp´λσqq. Consider under P 0 the

pair of subordinators prU p1q, rU p2qq with Laplace exponent (5.23), defined replacing ψ by rψ, and

denote its Lévy measure by rγpdu1, du2q. We stress that since rψ does not have Brownian part,

the subordinators prU p1q, rU p2qq does not have drift. The many-to-one formula (5.24) applied to rψ

gives:

rNλ
`

gp rHtqF prρtq
ˇ

ˇ ĂM ě 1
˘

“
λ

rψ´1pλq

ż 8

0
da expp´rαaqgpaqE0

“

F p1r0,asdrU
p1q

q expp´ rψ´1
pλqrU

p2q
a q

‰

.

(5.89)

We shall now deduce from the later identity that the pair
`

rHt,
ř

δ
prhi,r∆iq

˘

has the desired distri-

bution. In this direction, let f : R2
` Ñ R` be a measurable function satisfying fph, 0q “ 0, for

every h ě 0. By (5.89), we derive that

rNλ
`

gp rHtq exp
`

´
ÿ

iPN
fprhi, r∆iq

˘

|ĂM ě 1
˘

“
λ

rψ´1pλq

ż 8

0
da gpaq expp´rαaqE0

”

exp
´

´
ÿ

hďa

`

fph,∆rU
p1q

h q ` rψ´1
pλq∆rU

p2q

h

˘

¯ı

.

(5.90)

Moreover, by the exponential formula it follows that the expectation under E0 in the previous

display equals

exp
´

´

ż a

0
dh

ż

rγpdu1, du2q
`

1 ´ expp´fph, u1q ´ rψ´1
pλqu2q

˘

¯

,
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and notice that we can write:
ż

rγpdu1, du2q
`

1 ´ expp´fph, u1q ´ rψ´1
pλqu2q

˘

“

ż

rγpdu1, du2q expp´ rψ´1
pλqu2q

`

1 ´ expp´fph, u1qq
˘

`

ż

rγpdu1, du2q
`

1 ´ expp´ rψ´1
pλqu2q

˘

.

To simplify this expression, introduce the measure rγ1pdu1q :“
ş

u2PR rγpdu1, du2q expp´ rψ´1pλqu2q

and observe that (5.23) entails
ş

rγpdu1, du2qp1 ´ expp´ rψ´1pλqu2qq “ λ{ rψ´1pλq ´ rα. We deduce

that (5.90) can be written in the following form:

λ

rψ´1pλq

ż 8

0
da gpaq expp´

λ

rψ´1pλq
aq exp

´

´

ż a

0
dh

ż

rγ1
pdu1q

´

1 ´ exp
`

´ fph, u1q
˘

¯¯

,

and to conclude it suffices to remark that rγ1 “ rν, since by (5.23) we have
ż

rγ1
pdu1q

`

1 ´ expp´pu1q
˘

“

ż

rγpdu1, du2q
`

expp´ rψ´1
pλqu2q ´ expp´pu1 ´ rψ´1

pλqu2q
˘

“
rψppq ´ λ

p ´ rψ´1pλq
´

λ

rψ´1pλq
,

for every p ě 0.

We now turn our attention to the other side of the picture, and we now work under Nλ
x,0p¨|M ě

1q. The objective is to obtain analogue results for the spine SpTA
q. In this direction, recall the

notation Gλ :“ rψ´1pλq and we start with the following technical lemma characterizing the law of

pρ,W q at time A´1
t .

Lemma 5.36. For any non-negative measurable function f in Mf pR`q ˆ WE, we have:

Nλ
x,0

´

fpρA´1
t
,WA´1

t
q1tMě1u

¯

“ λ

ż 8

0
daE0

b Πx

´

expp´ατaqfpJτa , pξt,Ltqtďτaq exp
`

´

ż τa

0

qJτapdhquGλ
pξhq

˘

¯

.

Proof. Since tM ě 1u “ tt ď A8u, we have:

Nλ
x,0

´

fpρA´1
t
,WA´1

t
q1tMě1u

¯

“ λ ¨ Nx,0

˜

ż A8

0
ds fpρA´1

s
,WA´1

s
q expp´λsq

¸

“ λ ¨ Nx,0

ˆ
ż σ

0
dAs fpρs,W sq expp´λAsq

˙

“ ´λ ¨ Nx,0

ˆ
ż σ

0
dAσ´s fpρσ´s,W σ´sq expp´λAσ´sq

˙

.

Moreover, by time reversal (5.20), we know that:

pρpσ´sq´,W σ´s, Aσ´s : 0 ď s ď σq
pdq
“ pηs,W s, Aσ ´ As : 0 ď s ď σq,

and we remark that ts P r0, σs : ρs ‰ ρs´u Ă ts P r0, σs : ρsptHsuq ą 0u which has null dA

measure Nx,0– a.e by the many-to-one formula of Lemma 5.23. This implies:

´Nx,0

ˆ
ż σ

0
dAσ´s fpρσ´s,W σ´sq expp´λAσ´sq

˙

“ Nx,0

ˆ
ż σ

0
dAs fpηs,W sq expp´λ

ż σ

s
dAsq

˙

.
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Next, by making use of the strong Markov property, we derive that

Nλ
x,0

´

fpρA´1
t
,WA´1

t
q1tMě1u

¯

“ λ ¨ Nx,0

ˆ
ż σ

0
dAs fpηs,W sq exp

`

´ λ

ż σ

s
dAs

˘

˙

“ λ ¨ Nx,0

ˆ
ż σ

0
dAs fpηs,W sqE:

ρs,W s

”

exp
`

´ λ

ż σ

0
dAs

˘

ı

˙

“ λ ¨ Nx,0

ˆ
ż σ

0
dAs fpηs,W sq exp

´

´

ż

ρspdhquGλ
pWsphqq

¯

˙

,

where in the last line we used Proposition 5.24. The statement of the lemma now follows applying

(5.72) and recalling that pJ8, qJ8q
pdq
“ p qJ8, J8q, under P 0.

For simplicity, in the rest of the section we write:

pρAt ,W
A
t q :“ pρA´1

t
,WA´1

t
q,

and W
A
t :“ pWA

t ,Λ
A
t q – remark that in particular we have HA

t “ pΛAt . Let us now decompose W
A
t

in terms of its excursion intervals away from x. To be more precise, we need to introduce some

notation. For every r ą 0 and w :“ pw, ℓq P WE , we set:

τ`
r pwq :“ inf

␣

h ě 0 : ℓphq ą r
(

.

Remark that since ℓ is continuous, r ÞÑ τ`
r pwq is right-continuous. Moreover, τpwq and τ`pwq

are related by the relation τrpwq “ τ`
r´pwq. Similarly, under Πy,0 for y P E, we will write

τ`
r pξq :“ inftt ě 0 : Lt ą ru. The advantage of working with τ`pξq instead of τpξq is that, under

Πx,0, the process τ`pξq is a subordinator. Moreover, by excursion theory, it is well known that

its Lévy-Itô decomposition is given by

τ`
r pξq “

ÿ

sďr

∆τ`
s pξq, r ě 0,

since pH3q ensures that the process τ`pξq does not have drift part – equivalently τ`pξq is purely

discontinuous. For simplicity, when there is no risk of confusion the dependency on ξ is dropped.

Getting back to our discussion, under Nλ
x,0p¨ |M ě 1q, let prj : j P J q be an enumeration of

the jumping times of the right-continuous process pτ`
r pW

A
t q : 0 ď r ă HA

t q – for technical reasons

the indexing is assumed to be measurable with respect to W
A
t . For each j P J , set

W
A,j
t :“

´

`

WA
t

`

h` τrjpW
A
t q
˘

,ΛAt
`

h` τrjpW
A
t q
˘

´ΛAt pτrj
`

W
A
t q
˘˘

: h P r0, τ`
rj pW

A
t q ´ τrjpW

A
t qs

¯

,

and

xρA,jt , fy :“

ż

ρAt pdhqfph ´ τrjpW
A
t qq1

tτrj pW
A
t qăhăτ`

rj pW
A
t qu
.

The first coordinates of the family pW
A,j
t : j P J q correspond to the excursion of WA

t away from

x while the second coordinate is identically zero. We also stress that since px, 0q P Θx, by Lemma

5.13 the support of ρAt is included in
Ť

jPJ pτrjpW
A
t q, τ`

rj pW
A
t qq. Our goal now is to identify the

law of
ř

jPJ δprj ,ρ
A,j
t ,WA,j

t q
. As we shall see, the restriction to the first two coordinates of this

measure is, roughly speaking, a biased version of the excursion point measure of ξ under Πx,0.

More precisely, let pE0 b N q˚pdJ, dξq be the measure in Mf pR`q b DpR`, Eq defined by

pE0
b N q˚

“

F pJ, ξq
‰

:“ E0
b N

”

exp
`

´

ż

qJσpdhquGλ
pξhq ´ ασ

˘

F pJσ, ξq

ı

.
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Lemma 5.37. Under Nλ
x,0p¨|M ě 1q, the random variable HA

t is exponentially distributed with

parameter λ{ψ´1pλq. Moreover, conditionally on HA
t , the measure:

ÿ

jPJ
δ

prj ,ρ
A,j
t ,WA,j

t q
,

is a Poisson point measure with intensity 1r0,HA
t sprqdrpE

0 b N q˚pdJ, dξq.

Proof. First, we fix two measurable functions g : R` ÞÑ R` and f : R` ˆMf pR`qˆDpR`, Eq ÞÑ

R`. The statement of the lemma will follow by establishing that:

Nλ
x,0

`

gpHA
t q expp´

ÿ

jPJ
fprj , ρ

A,j
t ,WA,j

t qq | M ě 1
˘

“
λ

rψ´1pλq

ż 8

0
dr exp

`

´ r ¨
λ

rψ´1pλq

˘

gprq exp
´

´

ż r

0
ds pE0

b N q˚

“

1 ´ exp
`

´ fps, J, ξq
˘‰

¯

.

(5.91)

To simplify notation, for every µ P MpR`q and a, b ě 0, we write ϕpµ, a, bq for the measure ν

defined by:
ż

νpdhqF phq “

ż

pa,bq
µpdhqF ph ´ aq.

Next, under Πx,0, denote the excursion point measure of ξ by
ř

j δprj ,ξjq. Now an application of

Lemma 5.36 gives

Nλ
x,0

`

gpHA
t q expp´

ÿ

jPJ
fprj , ρ

A,j
t ,WA,j

t qq | M ě 1
˘

“
λ

rψ´1pλq

ż 8

0
dr gprqE0

b Πx,0

´

expp´ατrq exp
`

´
ÿ

rjďr

fprj , ϕpJ8, τrj , τ
`
rj q, ξjq

˘

¨ exp
`

´

ż

qJτrpdhquGλ
pξhq

¯¯

“
λ

rψ´1pλq

ż 8

0
dr gprqE0

b Πx,0

´

exp
´

´
ÿ

rjďr

!

f
`

rj , ϕpJ8, τrj , τ
`
rj q, ξj

˘

`

ż τ`
rj

τrj

qJ8pdhquGλ
pξhq ` ασpξjq

)¯¯

,

where in the last equality we used the fact that τ` is purely discontinuous and that thanks to

pH3q, under P 0 bΠx,0, we can write qJ8pdhq “
ř

rj
qJ8pdhq1rτrj ,τ

`
rj sphq. We are going to conclude

using standard techniques of excursion theory. First remark that if we introduce an i.i.d. collection

of measures pJj8, qJ
j
8qjPN distributed as pJ8, qJ8q under P 0, the previous display can be written

in the form:

λ

rψ´1pλq

ż 8

0
dr gprqE0

b Πx,0

´

exp
´

´
ÿ

rjďr

!

fprj , J
j
σpξjq

, ξjq `

ż

qJj
σpξjq

pdhquGλ
pξjhq ` ασpξjq

)¯¯

.

(5.92)

Since by excursion theory
ř

rjďr δprj ,J
j
8, qJ

j
8,ξjq

is a Poisson point measure with intensity measure

given by 1r0,rspdsqE
0 b N pdJ8, d qJ8, dξq, we deduce that the expectation under E0 b Πx,0 in



233 5.5. The tree structure of tυ P TH : ξυ “ xu

(5.92) writes:

exp
´

´

ż r

0
dsE0

b N
”

1 ´ exp
`

´ fps, Jσ, ξq ´

ż

qJσpdhquGλ
pξhq ´ ασ

˘

ı¯

.

Next, we remark that the previous display equals:

exp
´

´

ż r

0
ds pE0

b N q˚

”

1 ´ exp
`

´ fps, J, ξq
˘

ı¯

¨ exp
´

´ r ¨ E0
b N

”

1 ´ exp
`

´

ż

qJσpdhquGλ
pξhq ´ ασ

˘

ı¯

.

Moreover, by (5.23) the measure qJ8 is the Lebesgue-Stieltjes measure of a subordinator with

Laplace exponent p ÞÑ ψppq{p ´ α, which yields

E0
b N

“

1 ´ exp
`

´

ż

qJσpdhquGλ
pξhq ´ ασ

˘‰

“ N
´

1 ´ exp
´

´

ż σ

0
dh
ψpuGλ

pξhqq

uGλ
pξhq

¯¯

“
λ

rψ´1pλq
,

where in the first equality we applied (5.23) and in last one we used (5.68). Putting everything

together we obtain the desired identity (5.91).

To identify the law of SpTA
q, we now define the natural candidate of the exploration process

of the subordinate tree at time t – as we already mentioned, this statement is purely heuristic.

Let us start by introducing some notations. Still under Nλ
x,0p¨|M ě 1q denote the connected

components of the open set

␣

s ě A´1
t : Hs ą inf

rA´1
t ,ss

H
(

by ppαi, βiq : i P Nq, and as usual write pρi,W
i
q :“ pρi,W i,Λiq for the subtrajectory associated

with the excursion interval rαi, βis. Further, set hi :“ Hαi and consider the measure:
ÿ

iPN
δ

phi,ρi,W
i
q
. (5.93)

By the strong Markov property and (5.22), conditionally on pρAt ,W
A
t q, the measure (5.93) is a

Poisson point measure with intensity ρAt pdhqN
W

A
t phq

pdρ, dW q. Next, for every j P J we set:

Lj :“
ÿ

τrj pW
A
t qăhiăτ

`
rj pW

A
t q

L
rj
σ pρi,W

i
q, (5.94)

which is the total amount of exit local time from the domain Drj generated by the excursions

glued on the right-spine of W
A
t at the interval

`

τrjpW
A
t q, τ`

rj pW
A
t q
˘

. Finally, we introduce the

measure ρ˚
t :“

ř

jPJ
Lj ¨ δrj .

Lemma 5.38. We have the following identity in distribution:

`

p rHt, rρtq : rNλ
p¨|ĂM ě 1q

˘ pdq
“

`

pHA
t , ρ

˚
t q : Nλ

x,0p¨|M ě 1q
˘

.

In particular, Lemma 5.38 implies that Hpρ˚
t q “ HA

t .
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Proof. We start noticing that, by Lemmas 5.35 and 5.37, we already have:

`

rHt : rNλ
p¨|ĂM ě 1q

˘ pdq
“

`

HA
t : Nλ

x,0p¨|M ě 1q
˘

.

Consequently, again by Lemma 5.35 the desired result will follow by showing that, underNλ
x,0p¨|M ě

1q and conditionally on HA
t , the measure

ÿ

jPJ
δprj ,Ljq

is a Poisson point measure with intensity 1r0,HA
t spdhqrνpdzq, where the measure rν is charac-

terised by (5.88). In this direction, we work in the rest of the proof under Nλ
x,0p¨|M ě 1q

and recall that, conditionally on pρAt ,W
A
t q, the measure (5.93) is a Poisson point measure with

intensity ρAt pdhqN
W

A
t phq

pdρ, dW q. In particular, (5.94) entails that conditionally on pρAt ,W
A
t q,

the random variables pLj : j P J q are independent. Moreover, since by definition uppyq “

Ny,0p1 ´ expp´pL 0
σ qq, the translation invariance of the local time L gives

Nλ
x,0

`

expp´pLjq | ρAt ,W
A
t q “ exp

´

´

ż τ`
rj

pW
A
t q

τrj pW
A
t q

ρAt pdhqup
`

WA
t phq

˘

¯

“ exp
´

´

ż

ρA,jt pdhqup
`

WA,j
t phq

˘

¯

,

for every j P J . It will be then convenient to introduce, for pµ,wq P Mf pR`q ˆ WE , the

probability measure mµ,w in R` defined through its Laplace transform:
ż

mµ,wpdzq expp´pzq “ exp
´

´

ż

µpdhqup
`

wphq
˘

¯

,

if Hpµq “ ζpwq and mµ,w “ 0 otherwise. The map pµ,wq ÞÑ mµ,w takes values in Mf pR`q and it

is straightforward to see that it is measurable. Next, remark that by our previous discussion we

have:

Nλ
x,0

´

GpHA
t q expp´

ÿ

jPI
fprj , L

j
qq | M ě 1

¯

“ Nλ
x,0

´

GpHA
t q

ź

jPI

ż

mρA,j
t ,WA,j

t
pdzq expp´fprj , zqq

ˇ

ˇ

ˇ
M ě 1

¯

“ Nλ
x,0

´

GpHA
t q expp´

ÿ

jPJ
f˚

prj , ρ
A,j
t ,WA,j

t qq

ˇ

ˇ

ˇ
M ě 1

¯

,

where f˚pr, µ,wq :“ ´ log
` ş

mµ,wpdzq expp´fpr, zqq
˘

. Now, we can apply Lemma 5.37 to get:

Nλ
x,0

´

GpHA
t q expp´

ÿ

jPI
fprj , L

j
qq

ˇ

ˇ

ˇ
M ě 1

¯

“ Nλ
x,0

˜

GpHA
t q exp

´

´

ż HA
t

0
dr pE0

b N q˚

”

ż

mJ,ξpdzq
`

1 ´ exp´fpr, zq
˘

ı¯

¸

,

and it follows that conditionally on HA
t the measure

ř

δprj ,Ljq is a Poisson point measure with

intensity:

1r0,HA
t sprqdr pE0

b N q˚

“

mJ,ξpdzqs.
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To conclude, we need to show that the measure pE0 b N q˚

“

mJ,ξpdzqs is precisely rνpdzq. In this

direction, remark that:

pE0
b N q˚

“

ż

mJ,ξpdzqp1 ´ expp´pzqq
‰

“ pE0
b N q˚

“

1 ´ expp´

ż

Jpdhquppξphqq
‰

“ E0
b N

´

1 ´ exp
`

´

ż

Jσpdhq uppξphqq ´

ż

qJσpdhquGλ
pξphqq ´ ασ

˘

¯

´ E0
b N

´

1 ´ exp
`

´

ż

qJσpdhquGλ
pξphqq ´ ασ

˘

¯

.

Then, (5.23) entails that the previous display is equal to

N
´

1 ´ exp
`

´

ż σ

0
dh
ψpuppξphqqq ´ ψpuGλ

pξphqqq

uppξphqq ´ uGλ
pξphqq

q

¯

´ N
´

1 ´ exp
`

´

ż σ

0
dh
ψpuGλ

pξphqqq

uGλ
pξphqq

˘

¯

.

However, by Lemma 5.20 the previous display is precisely (5.88).

We can now identify SpTA
q in terms of our functionals. In this direction, for every i P N,

we introduce pρi,k,W i,k,Λi,kqkPKi
the excursions from D0 “ E ztpx, 0qu of pρi,W i,Λi ´ Λi0q. In

particular, the family pρi,k,W
i,k

qkPKi
is in one-to-one correspondence with the connected com-

ponents rai,k, bi,ks, k P Ki, of the open set ts P r0, σpW
i
qs : τΛi

0
pW

i
sq ă ζspW

i
squ, in such a way

that pρi,k,W i,k,Λi,k ` Λi0q is the subtrajectory of pρi,W
i
q associated with the interval rai,k, bi,ks.

In the time scale of ppρs,W sq : s ě 0q, the excursion pρi,k,W i,k,Λi,k ` Λi0q corresponds to the

subtrajectory associated with rαi,k, βi,ks, where αi,k :“ αi ` ai,k and βi,k :“ αi ` bi,k. Next, for

each k P Ki, we introduce the point process P i,k
t :“ PpAαi,k

`tq^Aβi,k
´ PAαi,k

and we set:

M :“
ÿ

iPN

ÿ

kPKi

δ
pΛi

0p0q,ρi,k,W
i,k
,Pi,kq

.

An application of the Markov property at time A´1
t and the special Markov property applied to

the domain D0 shows that, conditionally on ρ˚
t , the measure M is a Poisson point measure with

intensity ρ˚
t pdrqNλ

x,0pdρ, dW, dPq. For every j P J , consider

Mj :“ #
!

`

Λi0p0q, ρi,k,W
i,k
,P i,k

˘

P M : Λi0p0q “ rj and P i,k

AσpW
i,k

q
ě 1

)

,

and denote the elements of tprj ,Mjq, j P J : Mj ě 1u arranged in increasing order with respect

to rj by
`

pr˝
1,M

˝
1 q, . . . , pr˝

R,M
˝
Rq
˘

. We now remark that by construction we have:

SpTA
q “

`

pr˝
1,M

˝
1 q, . . . , pr˝

R,M
˝
Rq, pHA

t ,´1q
˘

, (5.95)

and, in particular, K “
řR
p“1M

˝
p which is the number of atoms pΛi0p0q, ρi,k,W

i,k
,P i,kq P M

with at least one Poissonian mark. Finally, we write E :“ ppρq˝,W
q
˝,P

q
˝ q : 1 ď q ď Kq for the

collection of these marked excursions enumerated in counterclockwise order. Remark that, for

every 1 ď q ď K, TA
i is the embedded tree associated with pΛq˝ – time changed by Apρq˝,W

q
˝q –

and marked by Pq
˝ . We are now in position to prove Proposition 5.34.

Proof of Proposition 5.34. For every h ě 0 with rρtpthuq ą 0, we write ĂMphq :“ ĂM1
trhi“hu

.

Similarly, for every r ě 0 satisfying ρ˚
t ptruq ą 0, we set Mprq :“ M1tΛi

0p0q“ru. Next, we introduce

the following families respectively under rNλp¨|ĂM ě 1q and Nλ
x,0p¨|M ě 1q :

␣`

h1
t ĂMphqpĂMě1qě1u

, ĂMphq
pĂM ě 1q

˘

: h ě 0, rρtpthuq ą 0
(

Ytp rHt,´1qu, (5.96)
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and
␣`

r1tMprqpMě1qě1u, Mprq
pM ě 1q

˘

: r ě 0, ρ˚
t ptruq ą 0

(

YtpHA
t ,´1qu, (5.97)

where by Lemma 5.38, we have respectively that HpρAt q “ HA
t , Hprρtq “ rHt. Recall that, under

rNλp¨|ĂM ě 1, rρtq, the measure ĂM is a Poisson point measure with intensity rρtpdhq rNλpdρ, dPq

and similarly, under Nλ
x,0p¨|M ě 1, ρ˚

t q, the measure M is a Poisson point measure with inten-

sity ρ˚
t pdrqNλ

x,0pdρ, dW, dPq. Consequently, by restriction properties of Poisson measures, under

rNλp¨|ĂM ě 1, rρtq, the variables p ĂMphqpĂM ě 1q : rρtpthuq ą 0
˘

are independent Poisson ran-

dom variables with intensity rρtpthuq rNλpM ě 1q and, under Nλ
x,0p¨|M ě 1, ρ˚

t q, the variables

pMprqpM ě 1q : ρ˚
t ptruq ą 0

˘

are also independent Poisson random variables, this time with

intensity ρ˚
t ptruqNλ

x,0pM ě 1q. Now, recall from Lemma 5.38 the identity

prρt : rNλ
p¨|ĂM ě 1qq

pdq
“ pρ˚

t : Nλ
x,0p¨|M ě 1qq.

Since rNλpĂM ě 1q “ Nλ
x,0pM ě 1q, this ensures that the families (5.96) and (5.97) have the

same distribution. Moreover, the measures rρt and ρ˚
t being atomic, the families (5.87), (5.95)

correspond respectively to the subset of elements of (5.96) and (5.97) with non-null entries. This

gives the first statement of the proposition.

To establish (ii), it suffices to show that conditionally on SprTq, the marked excursions rE are

distributed as rK independent copies with law rNλpdH, dP |ĂM ě 1q and that, conditionally on

SpTAq, the excursions E are distributed as K independent copies with law Nλ
x,0pdW, dP |M ě 1q.

Remark that our previous reasoning already implies that rE and E satisfy the desired property if

we do not take into account the ordering. However, this is not enough and to keep track of the

ordering we proceed as follows:

We start studying rE under rNλp¨|ĂM ě 1q and we introduce p ĂIs : s ě tq, the running infimum

of pxrρs, 1y ´ xrρt, 1y : s ě tq. Next, we consider the measure

ÿ

iPN
δ

p´ ĂI
rαi
,rρi, rPiq

, (5.98)

and we stress that, by the strong Markov property and the discussion below (5.21), condition-

ally on Ft this measure is a Poisson point measure with intensity 1r0,xrρt,1yspuqdu rNλpdρ, dPq.

Moreover, its image by the transformation s ÞÑ Hpκsrρtq on its first coordinate gives precisely
ĂM. In particular, the collection

`

prh˝
1,
ĂM˝

1 q, . . . , prh˝
rR
,ĂM˝

rR
q, p rHt,´1q

˘

only depends on rρt and
`

ĂI
rαi

: i ě 0 with rP i
σprρ iq

ě 1
˘

. Remark that the ordered marked excursions rE correspond

precisely to the atoms Hprρ iq of (5.98) with rP i
σprρ iq

ě 1, when considered in decreasing order with

respect to ´ ĂI
rαi
. Since Hprρtq “ rHt, we deduce by restriction properties of Poisson measures that,

conditionally on prρt, rKq, the collection rE is independent of SprTq and formed by rK i.i.d. variables

with distribution rNλpdρ, dP |ĂM ě 1q, as wanted.

Let us now turn our attention to the distribution of E under Nλ
x,0p¨|M ě 1q. Similarly, under

Nλ
x,0p¨|M ě 1q we consider pIs : s ě A´1

t q, the running infimum of pxρs, 1y ´ xρA´1
t
, 1y : s ě A´1

t q

as well as the measure
ÿ

iPN
δp´Iαi ,ρ

i,W iq. (5.99)
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Once again, by the strong Markov property and (5.21), conditionally on FA´1
t
, the measure

(5.99) is a Poisson point measure with intensity 1r0,xρAt ,1yspuqdu Nλ

W
A
t pHpκuρAt qq

pdρ, dW q. We now

introduce the process:

Vt :“
ÿ

iPN
L Λi

0

t^βi´t^αi
pρi,W

i
q, t ě 0,

where V8 “ xρ˚
t , 1y ă 8 by Lemma 5.38. Recall that pρi,k,W

i,k
qkPKi

stands for the excursions

of pρi,W i,Λi ´ Λi0q outside D0 and we stress that in the time scale of ppρs,W sq : s ě 0q,

the excursion pρi,k,W i,k,Λi,k ` Λi0q corresponds to the subtrajectory associated with rαi,k, βi,ks,

where αi,k :“ αi`ai,k and βi,k :“ αi` bi,k. To simplify notation set Trpρi,W
i
q for the truncation

of pρi,W
i
q to the domain DΛi

0
. An application of the strong Markov property combined with

the special Markov property in the form given in Theorem 5.11 implies that, conditionally on
ř

i
δ

p´Iαi ,Trpρ
i,W

i
qq
, the measure:

ÿ

iPN,kPKi

δ
pVαi,k

,ρi,k,W
i,k
,Pi,kq

(5.100)

is a Poisson point measure with intensity 1r0,xρ˚
t ,1ysppqdp Nλ

x,0pdρ, dW, dPq. The conclusion is

now similar to the previous discussion on rE . First, remark that the collection of variables

ppr˝
1,M

˝
1 q, . . . , pr˝

R,M
˝
Rq, pHA

t ,´1qq can be recovered from

ÿ

iPN
δ

p´Iαi ,Trpρ
i,W

i
qq

and
´

Vαi,k : i P N, k P Ki with P i,k

AσpW
i,k

q
ě 1

¯

by making use of the mapping r ÞÑ
ř

p´Iαiqďr L Λi
0

σ pρi,W
i
q and the fact that Λi0p0q can be read

from Trpρi,W
i
q. In our last claim we used that L Λi

0
σ pρi,W

i
q is measurable with respect to

Trpρi,W
i
q – by Proposition 5.7 – as well as the equality HA

t “ supiPN Λi0p0q – which holds since

M conditionally on ρ˚
t is Poisson ρ˚

t pdrqNλ
x,0 and Hpρ˚

t q “ HA
t by Lemma 5.38. Furthermore, the

ordered marked excursions E correspond precisely to the atoms of (5.100) with P i,k

AσpW
i,k

q
ě 1 in

decreasing order with respect to the process V – since V is non-decreasing and all the values tVαi,k :

i P N, k P Kiu are distinct. Putting everything together, we deduce by restriction properties of

Poisson measures that, conditionally on
ř

i
δ

p´Iαi ,Trpρ
i,W

i
qq
and K, the collection E is independent

of SpTA
q and composed by K i.i.d. variables with distribution Nλ

x,0pdρ, dW, dP |M ě 1q. This

completes the proof of Proposition 5.34.
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Chapter 6

The excursion theory

The content of this chapter is taken from the work in progress [16], written

in collaboration with Armand Riera. This version constitutes an early prelim-

inary version and the content is subject to modifications. Occasionally, only

sketches of proof are provided and some measurably questions have not been

properly addressed yet.

Abstract. We develop an excursion theory for Markov processes indexed by Lévy trees, away

from a regular instantaneous point x. Excursion components are defined as the connected compo-

nents of the complement of the set of points in the tree with label x. The excursion corresponding

to an excursion component is the restriction to the motion to such component. The family of

excursion are indexed by means of the additive functional introduced in [82, Section 4]. We prove

that, as in classical excursion theory, the excursion process is a Poisson point process with inten-

sity dtbN˚
x. We refer to the measure N˚

x as the excursion measure away from x, and we provide a

precise description of the latter. Finally, we address the reconstruction of the tree-indexed process

in terms of its excursion process.

239
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6.2.2 Trees coded by excursions and Lévy trees . . . . . . . . . . . . . . . . . . 248

6.2.3 Snake driven by a function . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
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6.1 Introduction

The content of this chapter is work in progress, and this short introduction serves the sole purpose

of giving a brief outline of the results obtained in [83].

Excursion theory for time-indexed Markov processes has been an active topic of research for

decades, and has shown to be a powerful tool in settings of very different natures. In short, it is

classic that if x is a regular, instantaneous point for a time-indexed Markov process pξtqtPR taking

values in a Polish space E with rcll paths, one can decompose the path in a family of excursions

away from x. More precisely, set Z ˝ for the set of times at which the Markov process visits x,

and write pai, biqiPN for the connected components of the open set R`zZ ˝. We shall call the

piece of path ξi :“ pξpai`tq^bi : t ě 0q the excursion associated with the excursion interval pai, biq.

The family of excursions pξiqiPN can be then studied by means of a remarkable additive functional

L “ pLtqtPR`
called the local time at x of the Markov process ξ. Namely, the point process of

excursions indexed by their respective local time
ř

iPN δpLai ,ξ
iq, often referred to as the excursion

process, is a Poisson point process in R` ˆ DpR`, Eq with intensity dt b N . The (infinite)

measure N is the so-called excursion measure away from x of the Markov process. Moreover, the

path pξtqtPR`
can be recovered from the excursion process, making use of the fact that the order

induced by L is precisely the temporal order.

In this work, and in contrast with the time-indexed setting, the Markov processes we consider

are indexed by a random set. Namely, the indexing set is now a so-called Lévy tree. The purpose
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of this work is to develop an excursion theory for continuous Markov processes indexed by a Lévy

tree away from a regular and instantaneous point x for the Markov process. When the tree is

the Brownian tree, the Markov process a Brownian motion and x “ 0, an excursion theory was

developed in [1] by different methods. The results we obtain both complement and extend the

results from the work [1] to arbitrary Lévy trees and more general continuous spatial motions.

Let us give a brief overview of the object we shall be working with.

Lévy trees are a family of rooted, compactR-trees introduced in [43]. These can be constructed

canonically by considering the tree coded by the height function H under the excursion measure

N away from 0 of a spectraly positive Lévy process, with Laplace exponent ψ, reflected at its

infimum. Namely, if we write σ for the duration of an excursion under N and for every s, t P R`

we set s „H t if Hs “ Ht “ minrs,ts H, the ψ-Lévy tree TH is defined as the quotient space

TH :“ r0, σs{ „H , and we write pH for the projection mapping every element t P r0, σs to its

equivalence class. One can think of ppHptq : t ě 0q as a clockwise exploration of TH , starting at

the root H :“ pHp0q. If we denote the law of the ψ-Lévy process by P0, this construction can still

be performed under P0 but the resulting tree TH is no longer compact, and is referred instead as

a ψ-Lévy forest. The height function H is in general not a Markov process, and its study often

relies in a measure valued strong Markov process ρ “ pρt : t ě 0q called the exploration process

taking values in the space of finite measure in R`, that we denote byMf pR`q. Roughly speaking,

the exploration process ρ encodes the branching structure of TH ; moreover, if for an arbitrary

µ P Mf pR`q we write Hpµq :“ sup supp µ for the topological support of µ, the exploration

process and H are linked by the relation ρt “ Hpρtq for t ě 0. We refer to Section 6.2.1 for

a detailed discussion. Now, informally, the Markov process pξ,Lq indexed by the Lévy tree TH
can be understood as follows. We start the Markov process ξ, paired with its local time at x, at

some point py, rq P E ˆ R` at the root H of TH . Then, the pair travels along the branches of

TH away from the root, and at each branching point it splits in independent copies with same

law. We shall henceforth denote this process by pξa,LaqaPTH
. We stress that this description is

informal, and to define this process formally we rely in the formalism of Lévy snakes in the sense

of [43]. In this direction, we write WEˆR`
the space of finite EˆR`-valued paths; every element

pw, ℓq P WE consists in a pair of continuous functions w : r0, ζws Ñ E, ℓ : r0, ζws Ñ R` with

finite lifetime 0 ď ζw ă 8. We write ppw, pℓq for the tip of the path pw, ℓq, viz. pwpζwq, ℓpζwqq.

In short, the ψ-Lévy snake with spatial motion pξ,Lq is a time indexed strong Markov process

pρ,W,Λq, taking values in Mf pR`q ˆ WEˆR`
and such that for every t ě 0, pWt,Λtq encodes

the labels of pξa,LaqaPTH
along the geodesic path JH, pHptqK Ă TH , connecting the root to pHptq.

If with a slight abuse of notation, for py, rq P E ˆ R` we still write py, rq for the path with null

lifetime started at py, rq, we denote by P0,y,r the law of the Lévy snake started from p0, y, rq. For

an overview of the Lévy snake, we refer to Section 6.2.4.

The notions of excursion components and excursions away from x of pξaqaPTH
should be heuris-

tically clear. Namely, if we set Z for the set of points with label x in TH , the excursion components

pC0
uquPD consist in the connected components of the open set THzZ , and the excursion ξu associ-

ated to the excursion component C0
u is the restriction of the motion to the closure of C0

u, say Cu.

The point in Cu closest to the root H shall be denoted by u, and we refer to it as the debut point

of the excursion ξu. For every ξu, one can construct a Mf pR`q ˆ WE valued process pρu,W uq

in terms of deterministic operations on pρ,W q encoding both Cu and ξu. We refer to Definition

6.8 for a precise definition. The study of the collection of excursions pξuquPD is preformed in the
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sequel through the family of processes pρu,W uquPD, and with a slight abuse of notation we shall

refer to them still as the excursions away from x.

From our previous discussion, there are two main objects of interest: on the one hand, the

random subset set Z , and on the other hand the family of excursions away from x. The study of

the set Z was conducted in [82], and it strongly relies in an additive functional A “ pAtqtPR`
of

pρ,W q introduced in [82, Proposition 6], with Stieltjes measure dA supported in a (well identified)

subset of tt ě 0 : xWt “ xu - we refer to [82, Theorem 4.3] for a precise statement. The set Z

possesses a natural genealogical structure as it is a subset of TH . It has been shown in [82] that

this genealogy can be encoded in the random tree obtained from subordinating - in the sense of

[66] - the tree TH by the continuous non-decreasing function 1 pLaqaPTH
. The resulting tree, that

we denote by T L
H , is a Lévy tree with explicit exponent rψ, see [82, Theorem 4.1]. Since the tree T L

H

has been explicitly constructed in terms of pρ,W,Λq, it is natural to look for explicit constructions

of the functionals related to T L
H in terms of pρ,W q. A first result in this direction was obtained

in [82]. Namely, Theorem [82, Theorem 4.1] yields that the tree coded by the continuous function

pΛA´1
t
, t ě 0,

is isometric to T L
H , and has the law of the height process of a rψ-Lévy tree. We shall henceforth

denote the process in the last display by rH, and write rX for the Lévy process associated with

such height process - we refer to Proposition 6.1 for a precise statement.

This work is devoted to the study of the family of excursions pρu,W uquPD; let us give an

overview of our main results. First, in Section 6.4 we introduce an infinite measure N˚
x in

DpR`,Mf pR`q ˆWEq that corresponds, roughly speaking, to the law of the ψ-Lévy snake with

spatial motion and excursion under N , trimmed at its first return time to x. This description is

informal since the excursion measure N is an infinite measure. This explicit description allows to

construct, making use of the theory of exit local times - see e.g. Section 6.6.1 for a brief overview

- a notion of fractal measure for the set of points tt ě 0 : xWt “ xu under N˚
x. More precisely,

under N˚
x we introduce a continuous non-decreasing process pL˚

t qtPR`
that at each time t ě 0,

measures the fractal size of the set ts P r0, ts : xWs “ xu.

We now turn our attention to the intricate relationship between the measure N˚
x and the

family of excursions away from x. In analogy with the time-indexed setting, to index this family

we shall rely in the additive functional A. Write DpR`, E ˆR`q for the space of E ˆR`-valued

rcll paths equipped with the Skorokhod topology. We can now introduce the main result of this

work. Theorem 6.28 states that if we set gpuq :“ inftt ě 0 : pHptq “ uu for the first time the

exploration pH visits the debut point u, for any py, rq P E ˆ R` and under P0,y,r, the point

measure

E “
ÿ

uPD

δpAgpuq,ρu,Wuq

is a Poisson point process in R` ˆ DpR`, E ˆ R`q with intensity dt b N˚
x. For this reason, we

baptise N˚
x the excursion measure away from x of pξaqaPT - we refer to Theorem 6.28 for a more

precise and general statement. As a byproduct of our results, we deduce that when the tree is

the Brownian tree, the motion a Brownian motion and x “ 0, the measure N˚
0 coincides with

the excursion measure introduced, by different methods, by C. Abraham and J.-F. Le Gall in [1].

The proof of Theorem 6.28 is achieved in two steps.

1with respect to the genealogical order
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Step 1: We show in Proposition 6.30 and Corollary 6.31 that the measure E is a Poisson measure

with intensity dt b pN˚
x, where

pN˚
x is a sigma-finite measure in DpR`,Mf pR`q ˆ WEq.

Step 2: Proving that pN˚
x is precisely the measure N˚

x introduced in Section 6.4. This identifi-

cation is made in Proposition 6.33 by making use of spinal decompositions of the Lévy

snake under Nx,0 and N˚
x.

Theorem 6.28 shares striking similarities with the results we stated in the setting of time-indexed

Markov processes.

Finally, Section 6.8 is devoted to reconstruction related questions, as we obtain explicit de-

scriptions for the different functionals of T
rH
and pρ,W q in terms of the excursion process E . More

precisely, we prove the following results.

(R2) The jump measure of rX is given by
ř

uPD`
δpAgpuq,L

˚
8pρu,Wuqq.

(R3) The local times at the branching points of T
rH
(in the sense of Lemma 6.2) and the family

of process pL˚pρu,W uq : u P Dq differ by an explicit time-change

(R4) The Lévy snake pρ,W q, an therefore the tree-indexed process pξaqaPTH
, can be recovered

from the excursion process E .

As a corollary of (R2), we identify the law of pρu,W uquPD conditionally on rH. We stress that the

content of this last section is at an early stage and is subject to change.

6.2 Preliminaries

6.2.1 The height process and the exploration process

In this section, we introduce the framework that we will be working with for the rest of this

study. We begin with standard considerations on Lévy processes, deferring the construction of

the corresponding Lévy trees to the next section. In this direction, we write X for the canonical

process on DpR`,Rq, the space of right-continuous paths with left limits endowed with the

Skorokhod topology, and we denote the law of an arbitrary Lévy process started from 0 by P .

We write pFt : t P r0,8sq for the canonical filtration, completed as usual by the class of all

P -negligible sets of F8. In what follows, we shall always assume that under P , the following

assumptions hold:

(A1) X does not have negative jumps;

(A2) The paths of X are of infinite variation;

(A3) X does not drift to `8.

We shall write ψ : R` ÞÑ R for the Laplace exponent of X, viz. the function defined by the

relation

Erexpp´λX1qs “ exppψpλqq, for every λ ě 0.

We recall that ψ is well defined since X is spectrally positive. If we denote the Lévy measure of

X by π, condition (A1) ensures that π is supported on p0,8q. Further, it is straightforward to
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see that (A2) holds if and only if ψ has Gaussian component or
ż

p0,1q

πpdxq x “ 8,

while (A3) yields that the Lévy measure satisfies the integrability condition
ş

p0,8q
πpdxqpx^x2q ă

8. Now, it is not difficult to check that under (A1)-(A3), the Laplace exponent ψ can be written

in the following form:

ψpλq “ αλ ` βλ2 `

ż

p0,8q

πpdxqpexpp´λxq ´ 1 ` λxq, (6.1)

for some α, β P R`. As discussed in [43], for every such function ψ, it is possible to construct a

random tree out of a fundamental functional of X called the height process associated with X.

To this end, we shall as well impose the following additional condition on the Laplace exponent:

(A4)
ż 8

1

dλ

ψpλq
ă 8.

As we will explain below, (A4) is a necessary and sufficient condition for the continuity of the

height process. This in turn will ensure the compactness of the corresponding tree. For the rest

of this work, we shall work under assumptions (A1)-(A4). Examples of processes that verify these

assumptions include Brownian motion and spectrally positive α-stable processes with α P p1, 2q.

Let us now give a brief introduction to the height process; our presentation follows [43, Section

1.2]. Inspired by its discrete analogue for Galton-Watson trees (see Section 0.2 in [9]), the height

process H :“ pHt : t ě 0q is a functional of X defined in such a way that, at each fixed t, the

variable Ht measures the size of the set:

␣

s P r0, ts : Xs´ ď inf
sďrďt

Xr

(

. (6.2)

To make our description precise, we shall make use of local times and a time-reversal argument.

Let us start by introducing some notation. For each t ě 0, we consider the time-reversed process

pX
ptq
s :“ Xt ´ Xpt´sq´ and pS

ptq
s :“ sup

r0,ss

pXptq, for 0 ď s ď t, (6.3)

with the convention pX
ptq
t “ Xt. Then, it is well known that pXs : 0 ď s ď tq has the same

distribution as the time-reversed process p pX
ptq
s : 0 ď s ď tq. Further, the point 0 is instantaneous

and regular for the strong Markov process S ´ X “ psupr0,ss X ´ Xs : s ě 0q. Now, for every

s ě 0, let us consider the functional Γs : DpR`,Rq ÞÑ R` defined for every e P DpR`,Rq by the

relation:

Γspeq :“ lim inf
kÑ8

1

εk

ż s

0
dr 1tsupr0,rs e´eprqăεku,

for some arbitrary fixed decreasing sequence pεkqkě0 of positive numbers converging to 0. Under

P one can find a sub-sequence, that we still write pεkqkě0, such that for each fixed t the process

Γp pXptqq :“ pΓsp pX
ptqq : 0 ď s ď tq exists a.s. The process Γp pXptqq is a local time at 0 for pSptq ´ pXptq,

and note that the set

ts P r0, ts : pS
ptq
s ´ pX

ptq
s “ 0u
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is precisely (6.2) under the mapping s ÞÑ t ´ s. Now, for every t ě 0 we set:

Ht :“ Γtp pX
ptq

q. (6.4)

We shall refer to H “ pHt : t ě 0q as the height process of X. Condition (A4) ensures that H

possesses a continuous modification [43, Theorem 1.4.3], that we consider from now on and that

we still denote by H. Let us stress that despite the fact that H can be defined when condition

(A4) fails, in that case the behaviour of H is highly irregular: in any interval rr, ss Ă R`, the

image of H contains a half-line ra,8q for some a ě 0.

One of the main difficulties arising in the study of the height process is that it is not Markovian

as soon as π ‰ 0. To circumvent this difficulty, we will need to introduce a measure-valued Markov

process – called the exploration process – which roughly speaking carries the information needed

to make H markovian. Let us start by introducing some notation. For every 0 ď s ď t, we set

Is,t :“ inf
sďuďt

Xu

and write dsIs,t for the Lebesgue-Stieltjets measure associated with the non-decreasing, continuous

mapping u ÞÑ Iu,t for u P r0, ts. We denote the space of finite measures in R` equipped with the

topology of weak convergence by Mf pR`q and we still write 0 for the identically nul measure.

The exploration process is the Mf pR`q – valued process ρ “ pρt : t ě 0q defined, for every

nonnegative measurable function f , by the relation

xρt, fy :“

ż

r0,ts
dsIs,t fpHsq, t ě 0.

Note that in particular, the total mass xρt, 1y of ρt isXt´It. Despite its rather technical definition,

the exploration process possesses crucial properties making its study viable. For instance, by [43,

Proposition 1.2.3], pρt : t ě 0q is an Mf pR`q–valued càdlàg strong Markov process and the

decomposition of the measure ρt on its continuous and purely discontinuous parts is given by:

ρtpdrq “ β1r0,Htsprqdr `
ÿ

0ăsďt
Xs´ăIs,t

pIs,t ´ Xs´q δHs
pdrq, t ě 0. (6.5)

It was later established in [2] that the exploration process is a Feller process. Let us now briefly

explain the connection between ρ and H. To this end, we use the notation µ for an arbitrary

element ofMf pR`q and we denote the supremum of its topological support byHpµq, viz. Hpµq :“

suppsuppµq, with the convention Hp0q “ 0. The following properties hold P - a.s.

(i) We have the equality between the processes pHt : t ě 0q “ pHpρtq : t ě 0q.

(ii) The process t ÞÑ ρt is càdlàg with respect to the total variation distance.

(iii) Almost surely, the following sets are equal:

tt ě 0 : ρt “ 0u “ tt ě 0 : Xt ´ It “ 0u “ tt ě 0 : Ht “ 0u. (6.6)

From our previous discussion, under P the exploration process starts from ρ0 “ 0. We shall now

explain introduce the law of ρ started from an arbitrary µ P Mf pR`q. To this end, we shall make
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use of two deterministic operations on the elements of Mf pR`q.

Pruning. For µ P Mf pR`q and a ě 0, we write κaµ for the element of Mf pR`q characterised by

the relation:

κaµpr0, rsq “ µpr0, rsq ^ pxµ, 1y ´ aq, (6.7)

with the convention κaµ “ 0 if a ě xµ, 1y. Roughly speaking, the operation µ ÞÑ κaµ prunes the

measure µ from the tip of its topological support so that the remaining mass is xµ, 1y´a. Remark

that despite the fact that Hpµq might be infinite, the measure κaµ has compact support for every

a ą 0. Further, if µ has compact support and supp µ “ r0, Hpµqs, the mapping R` Q a ÞÑ Hpκaµq

is continuous.

Concatenation. Consider µ, ν two element of Mf pR`q and assume Hpµq ă 8. We write rµ, νs

for the element of Mf pR`q defined as follows:

xrµ, νs, fy :“

ż

r0,Hpµqs

µpdrq fprq `

ż

R`

νpdrqfpHpµq ` rq,

where f is an arbitrary, non-negative measurable function on R`.

We are now in position to define the law of the exploration process started from an arbitrary

measure µ P Mf pR`q. Under P , we write ρµ “ pρµt : t ě 0q for the Mf pR`q – valued process

defined at time t “ 0 as ρµ0 :“ µ and for t ą 0 by

ρµt :“ rκ´Itµ, ρts. (6.8)

Remark that the right-hand side is well defined since κaµ has compact support for every a ą 0.

We will use the notation Pµ to denote the law of ρµ in DpR`,Mf pR`qq, the space of right-

continuous Mf pR`q-valued paths. If for r ě 0 we set Tr :“ inftt ě 0 : ´It ą ru, it follows

that

xρµt , 1y “ Xt ` xµ, 1y, for 0 ď t ď Txµ,1y, and xρµt , 1y “ Xt ´ It, for t ě Txµ,1y.

Said otherwise, the process pxρµt , 1y : 0 ď t ď Txµ,1yq is distributed as the Lévy process X

started from xµ, 1y and stopped when reaching 0, and pxρµt`Txµ,1y
, 1y : t ě 0q has the same law as

pxρt, 1y : t ě 0q under P . We shall write P:
µ for the law of pρµt^Txµ,1y

: t ě 0q under P .

Let us now introduce a closely related process to ρ that will be used frequently in this work.

Under P , we write η :“ pηt : t ě 0q for the measure-valued process defined as

ηtpdrq :“ β1r0,Htsprqdr `
ÿ

0ăsďt
Xs´ăIs,t

pXs ´ Is,tq δHs
pdrq, t ě 0. (6.9)

The process η is càdlàg with respect to the total variation distance of measures [43, Corollary

3.1.6] and takes values in Mf pR`q [43, Lemma 3.1.1]. Further, we have Hpηtq “ Hpρtq for every

t ě 0 and the set tt ě 0 : ηt “ 0u coincides with (6.6). The process η is often referred to as the

dual of ρ – the terminology is justified by the identity in distribution (6.11) below – and the pair

pρ, ηq, is a strong Markov process [43, Proposition 3.1.2]. For a complete account on pηt : t ě 0q

we refer to [43, Section 3.1].

For our purposes, it will be crucial to define the height process H and a fortiori, the pair pρ, ηq,
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under the excursion measure of the reflected process X ´ I “ pXt ´ infr0,ts Xs : t ě 0q. Let us be

more precise: under our current hypothesis, 0 is regular and instantaneous for the Markov process

X ´ I, and it is well known that P –a.s. the Lebesgue measure of the set tt P R` : Xt “ Itu is

null. The process ´I is a local time of X ´ I and we denote the associated excursion measure

from 0 by N . For e P DpR`,Rq, we write σe for the lifetime of e, viz. σe :“ suptt ě 0 : eptq ‰ 0u,

with the usual convention inftHu “ 8. Now, denote the excursion intervals of X ´ I away from

0 by pai, biqiPN – we recall that these are defined as the connected components of the open set

tt ě 0 : Xt ´ It ą 0u. For every i P N, we set ei “ pXpai`tq^bi ´ Iai : t ě 0q for the corresponding

excursion. Remark that since ´It Ñ 8 as t Ò 8 by (A3), every excursion interval has finite length.

Moreover by (iii), the intervals pai, biqiPN are precisely the excursion intervals away from 0 of ρ

and H. The key observation is that H, and therefore pρ, ηq, restricted to an arbitrary excursion

interval rai, bis can be written in terms of a functional that only depends on the corresponding

excursion ei. Informally, this should not come as a surprise: note that the definition of H in (6.4)

only depends on the excursion straddling t, we refer to the discussion preceding Lemma 1.2.4 in

[43] for a more detailed account. This implies that the same holds for the measures defined in (6.5)

and (6.9), and with some abuse of notation, we write pρpeq, ηpeqq for the corresponding functional

on DpR`,Rq. In particular, it holds that pρpai`tq^bi , ηpai`tq^biq “ pρtpeiq, ηtpeiqq for every t ě 0.

Now, by considering the first excursion ej “ pXpg`tq^d ´ Ig : t ě 0q with duration σej ą ε, we

can define the law of pρ, ηq under Npde|σe ą εq as the law of pρtpejq, ηtpejq : t ě 0q under P .

By repeating this procedure for every ε ą 0, defines the law of pρ, ηq under N . Similarly, the

functional e ÞÑ Hpρpeqq on DpR`,Rq extends the construction of H under N and we often write

Hpeq for Hpρpeqq. Note that in particular, P -a.s. for every i P N, we have Hpai`tq^bi “ Htpeiq for

t ě 0. As a straightforward consequence of our previous discussion and excursion theory for the

reflected Lévy process X ´ I, we deduce that the random measure in R` ˆ Mf pR`q2 defined as

ÿ

iPN
δp´Iai ,ρpai`¨q^bi

,ηpai`¨q^bi
q (6.10)

is a Poisson point measure with intensity 1R`
puqduNpdρ, dηq. Note that (iii) and our discussion

on the process η immediately yields that under P , the measure p0, 0q is regular and instantaneous

for the Markov process pρ, ηq, and that ´I is a local time. Therefore, by (6.10) the excursion

measure of pρ, ηq, associated with ´I, is precisely Npdρ, dηq. We also recall for later use the

identity in distribution:

`

pρt, ηtq : t ě 0
˘ pdq

“
`

pηpσ´tq´, ρpσ´tq´q : t ě 0
˘

, under N, (6.11)

and we refer to [43, Corollary 3.1.6] for a proof. Clearly ´I is as well a local time for ρ and

the corresponding excursion measure is given by Npdρq. The strong Markov property of the

exploration process under N takes the following form. Let T be a pFtq stopping time and Φ a

bounded FT -measurable function. For every bounded functional F on DpR`,Mf pR`qq, we have

N
`

1t0ăTă8uΦ ¨ F pρT`s : s ě 0q
˘

“ N
`

1t0ăTă8uΦ ¨ E:
ρT rF s

˘

. (6.12)

We stress that under N , we still have Hpρtq “ Ht and that xρt, 1y “ Xt, for every t ě 0.

Let us close our discussion with some reconstruction related questions concerning H, ρ and X.

Namely, we shall be interested in addressing when does one can reconstruct, given one of these
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tree processes, the remaining two. We argue under P but analogous arguments hold under N .

First, by (i) the height process is a functional of ρ and since we have that xρ, 1y “ X´I where ´I

is a local time for ρ, it readily follows that one can recover the Lévy process X out of ρ. Further,

by construction both H and ρ are functionals of X, so it remains to check if one can recover X

(and therefore ρ) from the height process. To this end, let us recall that by [43, Lemma 1.3.2]

and the monotonicity of t ÞÑ It we have:

lim
εÑ0

E
“

sup
sPr0,ts

ˇ

ˇ

1

ε

ż s

0
du1tHuăεu ` Is

ˇ

ˇ

‰

“ 0, for every t ě 0. (6.13)

The convergence in the previous display yields that ´I can also be thought of as the local time

at 0 of H. This leads us to the following important result:

Proposition 6.1. Under P and N , the processes ρ and X are measurable functions of H.

Proof. Let us start arguing under P . Observe from our previous discussion and (6.13) that it

plenty suffices to show that we can construct the reflected Lévy process X´I from H. Therefore,

by right continuity, this will follow as soon as we show that for every rational t, we have the

convergence in probability

Xt ´ It “ lim
εÑ0

ε´1

ż t`T0˝θt

t
ds1tHsďminrt,ss H`εu,

where in the last display we write T0 ˝ θt :“ infts ě 0 : Xt`s ´ It`s “ 0u. By conditioning on Ft
and applying the Markov property it suffices to establish that for every µ P M0

f , under P
:
µ the

following convergence holds in probability

xµ, 1y “ lim
εÑ0

ε´1

ż σ

0
ds1tHsďminr0,ss H`εu

where σ “ inftt ě 0 : ρs “ 0 for every s ě tu. Since under P , by (6.8) we can write Hpρµs q “

Hpκ´Isµq `Hpρsq and minr0,ss Hpρµq “ Hpκ´Isµq, this is equivalent to showing that the conver-

gence in the last display holds in probability under P , replacing σ by inftt ě 0 : ´It “ xµ, 1yu.

However, this follows from (6.13). Now, the result under N can be obtained by similar arguments

by applying the Markov property under the excursion measure (6.12).

6.2.2 Trees coded by excursions and Lévy trees

In this section, we introduce the notion of a Lévy tree with branching mechanism ψ (or, in short,

a ψ-Lévy tree), in the sense of [43]. We start by briefly recalling standard notation and basic

properties of R-trees. An R-tree pT , dq is a uniquely arcwise connected metric space, in which

each arc is isometric to a compact interval of R. In this work we shall exclusively work with

rooted R-trees, which further imposes that T possesses a distinguished point ρ P T , called the

root. In this work, trees are considered modulo isometries preserving the root, and with a slight

abuse of notation we shall still denote them by pT , dq.

For every u, v P T , we write Ju, vK for the unique injective path connecting u and v, and

we denote their common ancestor by u N v, viz. the unique element of T verifying the relation

Jρ, uNvK “ Jρ, uKXJρ, vK. It is therefore natural to define a partial order ĺ encoding the genealogy

of T . Namely, we shall write u ĺ v if u P Jρ, vK, and when the latter holds we say that u is an
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ancestor of v. The multiplicity of u is defined as the (possibly infinite) number of connected

components of T ztuu. For every k P N˚ Y 8, we write MultikpT q for the family of points in T
with multiplicity k. This allows us to extend classic notions from discrete trees to the framework

of R-trees. For instance, we shall make use of the following standard nomenclature:

• The elements of Multi1pT q are the leaves of T ;

• The elements with multiplicity at least 2 are the skeleton of T ;

• The elements with multiplicity at least 3 are the branching points of T .

Let us now present a canonical way to construct R-trees using continuous, non-negative functions.

This method is standard and we refer to [43] for a thorough study on coding of R-trees. Fix a

continuous, non-negative function e : R` ÞÑ R`, recall the notation σe “ suptt ě 0 : eptq ‰ 0u

and that by convention, we write r0,8q for r0, σes if σe “ 8. For every s, t P r0, σes with s ď t,

let

meps, tq :“ inf
sďuďt

eu,

and define the pseudometric de in r0, σes by setting

deps, tq :“ es ` et ´ 2 ¨ meps ^ t, s _ tq, for s, t P r0, σes.

For every s, t P r0, σes such that deps, tq “ 0, we write s „e t and note that this is equivalent to

the condition meps ^ t, s _ tq “ 0. Now, we set Te :“ r0, σes{ „e for the corresponding quotient

space and let pe : r0, σes ÞÑ Te be the canonical projection. The metric space pTe, deq is an R-tree,

and the function e is referred to as the coding function of Te. If we further assume that σe ă 8,

the resulting tree Te is compact. By convention, Te is rooted at pep0q and with a slight abuse

of notation we still denote its root by 0. We stress that a priori, the coding function e can not

be recovered in general from Te. Roughly speaking, e encodes the tree Te as well as a canonical

orientation of it.

We are now in position to introduce Lévy trees. These are precisely the (random) trees

obtained from using as coding function the height process H of a Lévy process under the excursion

measure N . Let us be more precise. Let X be a Lévy process with Laplace exponent ψ and, under

the excursion measure N of X ´ I, consider the height process H. The random tree pTH , dHq

coded by H under N is called the Lévy tree with branching mechanism ψ (or in short, ψ-Lévy

tree). We mention that when ψpλq “ λ2{2 for λ ě 0, the corresponding tree TH is the so-called

Brownian tree, and TH under Np¨ |σH “ 1q is the celebrated Brownian continuum random tree.

If we work instead under P , the height process H is still a continuous, non-negative function on

R` and thus pTH , dHq is still well defined under P . Recall the equality between the sets (6.6),

write pai, biqiPN for the excursion intervals of H away from 0 and for every i P N, set Hi :“ Hpeiq.

The tree TH under P can be interpreted as the concatenation at the root, with respect to the

order induced by the local time ´I, of the collection of trees pTHi : i P Nq. For this reason, under

P we refer to TH as a forest of ψ - Lévy trees.

Let us now briefly discuss some geometric properties of TH under the excursion measure N . By

[44, Theorem 4.6.], for every non-negative integer k R t1, 2, 3,8u, the sets MultikpTHq are empty

- in particular, branching points in a Lévy tree are either of multiplicity 3 or infinite. Moreover,

Multi8pTHq is nonempty if and only if the Lévy measure π is non-null, and every element of
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tt ě 0 : ∆Xt ą 0u is in bijection by the projection pH with an point of Multi8pTHq. If ∆Xt ą 0,

it can be argued that ∆Xt is the fractal mass of the corresponding branching point pHptq and

that it encodes the number of trees rooted at pHptq. In this work we shall need a more precise

notion of mass, measuring at any time t the number of sub-trees in TH rooted at pHptq attached

to the left and to the right of the geodesic path J0, pHptqK. To this end, we introduce a pair of

continuous processes that we shall refer to as the local times at the branching point pHptq. Let

us be more precise.

The local time at a branching point. First, underN or P and for every υ P tt ě 0 : ∆Xt ą 0u,

we set zpυq :“ inftt ě υ : Ht ă Hυu. Note that by the strong Markov property of the exploration

process and the fact that 0 is regular for p´8, 0q under P for the Lévy process X, the latter

coincides with inftt ě υ : Xt ď Xυ´u. Now, we define a continuous non-decreasing process

λυ,ℓ “ pλυ,ℓt : t ě 0q by the relation:

λυ,ℓt :“ Xυ ´ Iυ,t, for t P rυ, zpυqs,

with λυ,ℓt “ 0 if 0 ď t ă υ and λυ,ℓt “ ∆Xυ if t ą zpυq. We refer to λυ,ℓ8 , or equivalently ∆Xυ, as

the mass at the branching point pHpυq. Next, for t ě 0 we let λυ,rt :“ ∆Xυ ´ λυ,ℓt . In particular,

this gives that

λυ,rt “ Iυ,t ´ Xυ´, for t P rυ, zpυqs

where now λυ,rt “ ∆Xt for t ď υ and λυ,rt “ 0 if t ě zpυq. We shall now justify our terminology.

Consider the connected components of tυ ď t ď zpυq : Ht ą minrυ,ts Hu as well as the correspond-

ing excursions of pHt : υ ď t ď zpυqq over its running infimum. If pa, bq Ă R` is an arbitrary

interval, we set nυppa, bq, εq for the number of these excursions starting in pa, bq and reaching a

height greater than ε. Observe that every excursion interval is mapped by pH in a sub-tree of TH
rooted at pHptq.

Lemma 6.2. For every ε ą 0, we set V pεq :“ NpsupH ą εq. Under P and N , a.e. for every

υ P ts ě 0 : ∆Xs ą 0u and t ě 0, we have the following point-wise convergences:

λυ,ℓt “ lim
εÑ0

nυ
`

p0, tq, ε
˘

V pεq
, λυ,rt “ lim

εÑ0

nυ
`

pt, zpυqq, ε
˘

V pεq
. (6.14)

Moreover, the family pλυ,ℓ, λυ,r : υ P r0, σs with ∆Xυ ą 0q is H-measurable, and will be referred

to as the local times at the branching points of TH .

Proof. We shall only argue under the excursion measure N . Let T be an arbitrary stopping

time satisfying that on the event tT ă σu, we have ∆XT ą 0. On tT ă σu, we introduce the

notations XpT q :“ pXT`t ´ XT : t ě 0q, IpT q :“ infp0,ts X
pT q for the running infimum and note

that by standard properties of Lévy processes we can write zpT q “ T ` inftt ě 0 : ´I
pT q

t “

∆XT u. Consider pai, biqiPN the connected components of tt ě 0 : X
pT q

t ą I
pT q

t u, write peiqiPN
the corresponding excursions of XT and set Hi :“ Hpeiq. By the strong Markov property and

excursion theory for the reflected Lévy process, on the event tT ă σu and conditionally on FT , the
measure µT :“

ř

i δp´I
pT q
ai ,Hiq

1
t´I

pT q
ai ă∆XT u

is a Poisson measure with intensity 1r0,∆XT sduNpdHq.

Remark that pHiqiPN are precisely the excursions of pHt : υ ď t ď zpυqq over its running infimum.

Still on the event tT ă σu, we set υ :“ T and to simplify notation, for q, ε ą 0 we write
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Npq, εq :“ #tp´I
pT q
ai , Hiq P µT : I

pT q
ai ă q, supuH

i
u ą εu. Now, the first convergence of the lemma

will follows as soon as we prove that a.e. for every 0 ď t ď inftu ě 0 : ´I
pT q
u “ ∆XT u we have

the pointwise convergence:

´I
pT q

t “ lim
εÑ0

Np´I
pT q

t , εq

V pεq
. (6.15)

To this end, we work on tT ă σu and conditionally on ∆XT . We recall from Corollary 1.4.2

of [43] that the function V “ pV paq : a ą 0q is determined by the relation
ş8

V paq
dλψpλq´1 “ a.

Since ψ is strictly convex with ψp0q “ 0 and ψ1p0q ě 0, it follows that V is continuous and

limεÑ0 V pεq “ 8. Now, this yields that for every fixed r ą 0, the process Pt :“ Npq, e´tq for

t ě 0 is a counting process with independent increments and continuous predicable compensator

νt :“ qV pe´tq for t ě 0. By Corollary 25.26 of [57], the time-changed process pPν´1
t

: t ě 0q

is a standard Poisson process and by the law of large numbers of Poisson processes we get that

Npq, εq{V pεq Ñ q a.e. as ε Ó 0. Furthermore, by monotonicity the convergence holds a.e. for

every 0 ď q ď ∆XT . Taking q “ I
pT q

t for 0 ď t ď inftu ě 0 : ´I
pT q
u “ ∆XT u yields (6.15). Now,

since the set ts ě 0 : ∆Xs ą 0u can be exhausted by a collection of stopping times, each one of

them satisfying that 1tTă8u∆XT ą 0, we infer that the first desired convergence of the lemma

holds. The second convergence follows by similar arguments, we skip the details.

Finally, observe that the family of jump-times tt ě 0 : ∆Xt ą 0u is H measurable by Lemma

6.50, and that the same holds for nυppa, bq, εq for every pa, bq Ă R` and ε ą 0 by definition

of nυ. Now, the approximation (6.14) show that pλυ,ℓ, λυ,r : υ P r0, σs with ∆Xυ ą 0q is H-

measurable.

Observe that the exploration process ρ as defined in (6.5) can be written in terms of the family

pλυ,r : υ P r0, σs with ∆Xυ ą 0q. Namely, under P and N , we have

ρtpdhq :“ β1r0,Htsphqdh `
ÿ

0ăsďt
∆Xsą0

λs,rt δHs
pdhq, t ě 0. (6.16)

We are now in position to introduce the notion of a Markov process indexed by a Lévy tree. To

do so we shall rely in the formalism of Lévy snakes.

6.2.3 Snake driven by a function

This section provides an overview of the theory of Lévy snakes, which are a class of time-indexed

Markov processes first introduced in [43] and further developed in [82]. After a brief introduction

to this remarkable family of time-indexed processes, we fix the framework that we shall be working

with for the rest of this work. Our presentation draws upon [43, 82].

Let us start by fixing a Polish space pE, dEq. We write WE for the collection of E-valued finite

paths in E. More precisely, every element w of WE is a continuous mapping w : r0, ζws ÞÑ E,

where ζw is a finite non-negative number called the lifetime of w. The endpoint or tip of the

path of w is denoted by pw :“ wpζwq. For every y P E, we write WE,y Ď WE for the collection of

continuous finite paths starting from y. With a slight abuse of notation, we still denote by y the

unique element of WE,y with lifetime ζw “ 0. If for every w,w1 P WE we set

dWE
pw,w1

q :“ |ζw ´ ζw1 | ` sup
rě0

dE
`

wpr ^ ζwq,w1
pr ^ ζw1q

˘

,
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the mapping dWE
: WE ˆ WE ÞÑ R is a metric on WE and pWE , dWE

q is a Polish space.

The first step towards defining the Lévy snake consists in introducing the notion of a snake

driven by a continuous (deterministic) function, with spatial motion a continuous Markov process

with values E. In this direction, we denote the space of all continuous E-valued functions endowed

with the uniform metric by CpR`, Eq, and we write ξ “ pξt : t ě 0q for the canonical process on

CpR`, Eq. We next fix an E-valued strong Markov process with continuous sample paths and

for every y P E, we let Πy be its law in CpR`, Eq started from y. Finally, we set Π :“ pΠyqyPE .

Now, fix an arbitrary finite path w P WE . For every a, b P R` with a ď ζw and a ď b, we let

Ra,bpw, dw
1q be the probability measure on WE characterised by the following properties:

‚ Ra,bpw, dw
1q-a.s., w1psq “ wpsq for every s P r0, as.

‚ Ra,bpw, dw
1q-a.s., ζw1 “ b.

‚ Under Ra,bpw, dw
1q, pw1ps ` aqqsPr0,b´as is distributed as pξsqsPr0,b´as under Πwpaq.

Namely, w1 under Ra,bpw, dw
1q coincides with w up to time a, and then it is distributed as the

Markov process pξt : 0 ď t ď b ´ aq under Πwpaq.

We will now endow WR`

E with a probability measure. In this direction, writeW “ pWt : t ě 0q

for the canonical process on WR`

E . We next fix a continuous, non-negative function h such that

ζw “ hp0q, and for s, t ě 0 recall the notation mhps, tq for the infimum of h on rs ^ t, s _ ts. We

let QhwpdW q be the probability measure on WR`

E characterised, for every n ě 1 and 0 “ t0 ă t1 ă

t2 ă ¨ ¨ ¨ ă tn, by the relation:

Qhw

´

Wt0 P A0, . . . ,Wtn P An

¯

“ 1A0
pwq

ż

A1ˆ¨¨¨ˆAn

Rmhp0,t1q,hpt1qpw, dw1q . . . Rmhptn´1,tnq,hptnqpwn´1, dwnq.

The canonical process W under Qhw is a time-inhomogenous WE-valued Markov process, referred

to as the snake driven by h, with spatial motion Π started from w. The function h is called the

driving function since for every t ě 0, Qhw-a.s. it holds that ζWt
“ hptq. Furthermore, the term

snake stems from the following key property: for every fixed 0 ď s ă t, Qhw-a.s. we have

Wsprq “ Wtprq, for every 0 ď r ď mhps, tq. (6.17)

We stress that this property only holds Qhw-a.s. for fixed s, t P R`. In the sequel, we will refer to

it as the (weak) snake property. Turning now our attention to the path regularity of W , let us

recall from [82] sufficient conditions on the pair ph,Πq ensuring thatW under Qhw has a continuous

modification under the metric dWE
. To this end, we recall the convention ra,8s :“ ra,8q for

a ă 8 and we proceed to introduce some relevant terminology. Consider a family of disjoint

intervals prai, bis, i P J q indexed by an arbitrary subset J Ď N, with ai ă bi, for ai, bi P R` Yt8u.

A continuous, non-negative function h : R` ÞÑ R` is said to be locally r-Hölder-continuous in

prai, bis : i P J q for some r P p0, 1s if, for every n ą 0, there exists a constant Cn ą 0 we have:

|hpsq ´ hptq| ď Cn|s ´ t|r, for every s, t P rai ^ n, bi ^ ns, i P J .

Now, let us consider the following assumptions on the pair ph,Πq.

(i) There exists a constant CΠ ą 0 and two positive numbers p, q ą 0 such that, for every y P E

and t ě 0, we have:

Πy
`

sup
0ďuďt

dEpξu, yq
p
˘

ď CΠ ¨ tq.
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(ii) If we let ppai, biq : i P J q be the excursion intervals of h above its running infimum, the

function h is locally r-Hölder continuous in prai, bis : i P J q, with qr ą 1.

Proposition 1 in [82] states that under conditions (i) and (ii) on pΠ, hq, for every w P WE with

ζw “ hp0q, the process W under Qhw possesses a continuous modification. Therefore, the measure

Qhw can be defined in the Skorokhod space of WE-valued right-continuous paths DpR`,WEq and,

with a slight abuse of notation, we still denote it by Qhw. From now on, when (i) and (ii) hold, the

measure Qhw will always be considered as a measure in DpR`,WEq. One crucial consequence is

that, under (i) - (ii), the identity (6.17) now holds Qhw-a.s simultaneously for every 0 ď s ă t ă 8,

by continuity of W . This key property will be used frequently and we refer to it as the (strong)

snake property. Crucially, it allows to define xW “ pxWt : t ě 0q as a process indexed by Th, the
tree coded by h. Let us be more precise. Since h is a continuous, non-negative function in R`,

we can consider the corresponding tree Th “ r0, σhs{ „h. The snake property entails that the

continuous, R` ˆ E-valued process ph,xW q :“ pphs,xWsq : s ě 0q satisfies that,

for every 0 ď s ď t such that, s „h t we have xWs “ xWt. (6.18)

Said otherwise, the function xW is compatible with the equivalence relation „h and therefore, is

well defined in the quotient space Th. With a slight abuse of notation, we write pxWa : a P THq for

the E-valued function in TH defined, for every a P Th, by the relation

xWa :“ xWs, where s is an arbitrary element of p´1
H paq.

Remark: Let us briefly comment on our definitions. In the terminology of [1], a continuous WE-

valued mapping ω “ pωs, s ě 0q fulfilling the (strong) snake property and with finite lifetime

σpωq “ suptt ě 0 : ζωt ‰ 0u, is called a snake trajectory. A continuous R` ˆ E-valued pair

ph, pωq with finite lifetime satisfying (6.18), is a so-called tree-like path. These two families are

in bijection, see e.g. Section 2.2 in [1] for a more detailed discussion - keeping in mind that the

paths ω considered in [1] start at ω0 “ y, for some y P E.

In this work, the driving function of the snakes we consider is random, and more precisely

consists in the height process Hpρq of a Lévy process. However, the corresponding snake is

not in general a Markov process. This can be solved by working with the pair, conformed by

the exploration process ρ and the respective snake driven by Hpρq. In order to give a precise

description of this process, we shall now introduce the notion of a snake path. First, write

M0
f :“

␣

µ P Mf pR`q : Hpµq ă 8 and supp µ “ r0, Hpµqs
(

Y t0u,

and let Θ be the collection of pairs pµ,wq P M0
f ˆ WE satisfying that Hpµq “ ζw.

Definition 6.3. A pair pρ, ωq P DpR`,Mf pR`q ˆ WEq is called a snake path started from

pµ,wq P Θ if the mapping s ÞÑ ωs is continuous in pWE , dWE
q and the following properties hold:

(S1) pρ0, ω0q “ pµ,wq.

(S2) For every s ě 0, we have pρs, ωsq P Θ - in particular Hpρq “ ζpωq.

(S3) ω satisfies the snake property: for every 0 ď s ď t,

ωsprq “ ωtprq, for every 0 ď r ď inf
rs,ts

ζpωq.
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The family of snake paths started from some fixed pµ,wq P Θ is denoted by Sµ,w, and when

pµ,wq is of the form p0, yq for some y P E, we simply write Sy. Note that the snake property (S3)

yields that for every pρ, ωq P Sy, the mapping pω is well defined in THpρq. Now, we set

S :“
ď

pµ,wqPΘ

Sµ,w.

The elements of S are simply referred to as snake paths and the duration of an arbitrary pρ, ωq P S
is indifferently denoted by

σHpρq “ σpωq “ suptt ě 0 : ζωt ‰ 0u.

We will frequently consider restrictions of snake paths pρ, ωq P S to intervals ra, bs Ă R` at which

Hpρaq “ Hpρbq with Hpρaq ă Hpρtq for every t P pa, bq – note that this condition ensures that

pHpρqpaq “ pHpρqpbq. To this end, we introduce the notion of subtrajectories.

Subtrajectories. Let us start by introducing some notation. First, for pµ,wq P Θ and fixed

0 ă z ď Hpµq, we let θzpµ,wq “ pθzµ, θzwq be the element of Θ defined by the relations:

xθzµ, fy :“

ż

µpdrqfpr ´ zq1trązu, θzw :“ wpz ` rq, r P r0, ζw ´ zs, (6.19)

where f : R` ÞÑ R is an arbitrary measurable bounded function. Now, consider an arbitrary

pρ, ωq P S and fix 0 ď a ă b such that Hpρaq “ Hpρbq with Hpρaq ă Hpρtq for every t P pa, bq.

The subtrajectory of pρ, ωq in ra, bs is the element of Sω̂a
, defined by

Tapρ, ωq :“ θHpρaqpρpa`tq^b, ωpa`tq^bq, for t ě 0.

More precisely, if we let pρ1, ω1q “ Tapρ, ωq, for every t P r0, b ´ as we have

xρ1
t, fy :“

ż

ρa`tpdrqfpr ´ Hpρaqq1trąHpρaqu and ω1
t :“ ωa`tpHpρaq ` ¨ q,

with pρ1
t, ω

1
tq “ p0, ω̂aq for every t ě b ´ a. In particular, the lifetime of pρ1, ω1q writes

ζpω1
tq “ Hpρa`tq ´ Hpρaq “ Hpρ1

tq, for every t P r0, b ´ as.

Notice that the subtrajectory Tapρ, ωq is an element of S
pωa
, and that it encodes the labels

pω̂υ : υ P pHpρqprs, tsqq in the sub-tree pHpρqpra, bsq Ă THpρq.

6.2.4 The Lévy snake with spatial motion pξ,Lq

In this work, we will be interested mostly in spatial motions consisting of pairs formed by an E-

valued continuous strong Markov process coupled with its local time at some fixed point x P E.

Let us be more precise: for the rest of this work, we consider a continuous strong Markov process

ξ taking values in E, and satisfying the following assumptions:

x is regular, instantaneous and recurrent for ξ, pH1q

and
ż 8

0
dt 1tξt“xu “ 0, Πx ´ a.s. pH2q
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Let us briefly comment on these assumptions. Hypothesis pH1q ensures the existence of a local

time for ξ at x, that we denote by L “ pLt : t ě 0q. Since x is recurrent we have L8 “ 8 . Recall

that L is unique up to a multiplicative constant, that we fix arbitrarily, and we write N for the

corresponding (infinite) excursion measure. The pair

ξs :“ pξs,Lsq, s ě 0,

is a strong Markov process taking values in the Polish space E :“ E ˆ R` equipped with the

product metric dE . We set Πy,r for its law in CpR`, Eq started from an arbitrary point py, rq P E

and it will be convenient to assume that ξ is the canonical process in CpR`, Eq. With a slight

abuse of notation, Under Πy,r and N , we write σξ for the lifetime of ξ defined as σξ :“ suptt ě

0 : ξt ‰ xu. The main implications of pH2q are postponed. Let us just note for latter use

that, if we write pai, biqiPN for the excursion intervals away from x of ξ and we let pξiqiPN be the

corresponding excursions with respective (finite) durations σi :“ σξi , condition pH2q ensures that

for any non-negative function f : E ÞÑ R` we have
ş8

0 dsfpξsq “
ř

iPN
şσi

0 ds fpξisq, Πx,0–a.s. This

fact will be used frequently in our computations.

Getting back to the setting of snakes driven by continuous functions, the role of the Polish space

E is taken-over in our framework by the product space E. Therefore, every element of WE writes

w “ pw, ℓq for some w P WE and ℓ P WR`
with identical lifetimes. Letting Π “ pΠy,rqpy,rqPE ,

we stress that as soon conditions (i) and (ii) from Section 6.2.3 are fulfilled by pΠ, hq, for every

w P WE with ζw “ hp0q the measure Qhw is well defined in DpR`,WEq.

The Lévy snake. We are now in position to introduce the ψ-Lévy Snake with spacial motion

Π (abbreviated as the pψ,Πq-Lévy snake). In short, this process is defined by considering as

(random) driving function for the snake with spacial motion Π, the height process of a ψ-Lévy

process. Fix a Laplace exponent ψ satisfying (A1) – (A4) and for µ P M0
f , recall the notation Pµ

for the law in DpR`,Mf pR`qq of the exploration process started from µ. With a slight abuse

of notation, we still write ρ for the canonical process in DpR`,Mf pR`qq. Recall that under P0,

the exploration process ρ takes values in M0
f . From the definition of Pµ given in (6.9), we get

that for every µ P M0
f , the exploration process under Pµ takes values as well in M0

f , and that

Hpρq is continuous Pµ-a.s. To ensure the continuity of the spacial positions of the pψ,Πq-Lévy

snake, we still need to impose one last condition on the pair pψ,Πq. In this direction, we set

Υ :“ sup
␣

r ě 0 : lim
λÑ8

λ´rψpλq “ 8
(

and remark that Υ ě 1 by convexity of ψ. For the rest of this work, we impose the following

assumption on the pair pψ,Πq:

Hypothesis pH3q. There exists a constant CΠ ą 0 and two positive numbers p, q ą 0 such

that,

for every y P E and t ě 0, we have:

Πy,0

´

sup
0ďuďt

dE
`

pξu,Luq, py, 0q
˘p
¯

ď CΠ ¨ tq, and q ¨ p1 ´ Υ´1
q ą 1, pH3q

This last assumption has the following implication. Write Θ for the collection of pairs pµ,wq P

M0
f ˆWE satisfying the condition Hpµq “ ζw. If for pµ,wq P Θ and under Pµ we write pai, biqiPN
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for the excursion intervals of Hpρq over its running infimum, the second condition in pH3q com-

bined with [43, Theorem 1.4.4] ensures that for some r P p0, 1s with qr ą 1, the height process

Hpρq is a.s. locally r-Holder continuous in pai, biqiPN. Therefore, for every such r, Pµ–a.s. con-

dition (ii) from Section 6.2.3 is satisfied; for a detailed discussion we refer to Section 2.3 in [82].

We infer that for every pµ,wq P Θ, Pµ–a.s. the measure Q
Hpρq

w is well defined in DpR`,WEq.

Now, consider the canonical process pρ,W,Λq inDpR`,Mf pR`qˆWEq, the space ofMf pR`qˆ

WE-valued, right continuous paths, where Ws : r0, ζWs
s ÞÑ E and Λs : r0, ζWs

s ÞÑ R`. With a

slight abuse of notation, we denote its canonical filtration by pFt : t ě 0q and to simplify no-

tation, we write W :“ pW,Λq. For every, pµ,wq P Θ, we let Pµ,w be the probability measure in

DpR`,Mf pR`q ˆ WEq defined by the relation

Pµ,wpdρ, dW q :“ Pµpdρq Q
Hpρq

w pdW q.

In other terms, the law of pρ,W q under Pµ,w is characterised by the following conditions:

‚ Under Pµ,w, the law of ρ is Pµ.

‚ Conditionally on ρ, the distribution of W is Q
Hpρq

w .

The process
´

`

ρ,W
˘

,
`

Pµ,w : pµ,wq P Θ
˘

¯

is a strong Markov process with respect to the filtration pFt`q, known as the ψ-Lévy snake with

spatial motion Π. Note that under Pµ,w, the process pH,W q has continuous paths. This entails

that the strong snake property holds in the following sense: Pµ,w-a.s., for every s ď t, we have

Wsprq “ Wtprq, for 0 ď r ď mHps, tq.

Moreover, Pµ,w-a.s.
ζWs

“ Hpρsq, for every s ě 0.

To simplify notation we often write ζs for ζWs
. Note from the definition of Pµ,w that for every

py, rq P E and under P0,y,r, for each fixed s ě 0 and conditionally on ζs, the pair pWs,Λsq “
`

pWsphq,Λsphq
˘

: h P r0, ζss
˘

has the distribution of pξ,Lq under Πy,r killed at ζs. In particular,

the associated Lebesgue-Stieltjes measure of Λs is supported on the closure of th P r0, ζsq :

Wsphq “ xu, P0,y,r–a.e. Note however that the later property might fail if we work under Pµ,w
for an arbitrary pµ,wq P Θ. Therefore, it will be convenient for our purposes to impose further

restrictions on the initial conditions pµ,wq P Θ that we shall work with. In this direction, we

let Θx be the subset of Θ conformed by pairs pµ,wq, with w “ pw, ℓq, satisfying the following

conditions:

(i’) ℓ is a non-decreasing continuous function and the support of its Lebesgue-Stieltjes measure

is
␣

h P r0, ζwq : wphq “ x
(

.

(ii’) The measure µ does not charge the set th P r0, ζws : wphq “ xu, viz.
ż

r0,ζws

µpdhq1twphq“xu “ 0.
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The following lemma taken from [82] justifies our definition for the subset Θx.

Lemma 6.4. [82, Lemma 5] For every pµ,wq P Θx, the process pρ,W q under Pµ,w takes values

in the subset Θx.

Since this hold for instance for initial conditions of the form p0, y, rq for py, rq P E, the space

Θx is the natural subset of initial condition to work with. From now on, we will work with pρ,W q

under Pµ,w for pµ,wq P Θx.

It now follows from our definitions and our previous discussion on the regularity of the Lévy

snake that for every pµ,wq P Θx, the process pρ,W q under Pµ,w takes vales in Sµ,w. In particular, if

we write TH for the Lévy tree coded by Hpρq, the snake property yields that pxWs, pΛs : s P r0, σH sq

under Pµ,w is well defined in the quotient space TH . With a slight abuse of notation, we write

ppξa,Laq : a P THq

for the TH -valued function defined, for every a P TH , as pξa,Laq :“ pxWs, pΛsq for any s P p´1
H paq.

When working under P0,y,r for some py, rq P E, we refer to the process in the previous display as

the Markov process pξ,Lq indexed by the ψ-Lévy tree TH , started from py, rq. At this point, let

us mention the crucial role played by assumption pH2q. By [82, Proposition 4], it ensures that

the set of branching points of TH and tυ P THzt0u : ξυ “ xu are disjoint. More precisely, for

every pµ,wq P Θx, Pµ,w–a.e. we have:

!

t P r0, σs : xWt “ x
)

X

!

t P r0, σs : pHptq P Multi3pTHq Y Multi8pTHq, pHptq ‰ 0
)

“ H. (6.20)

Excursion measures of the Lévy snake. The identity (6.6) combined with the snake property

yields that for every py, rq P E, the point p0, py, rqq P M0
f ˆ WE is instantaneous and regular for

pρ,W q and that ´I is a local time for pρ,W q at p0, py, rqq. We write Ny,r for the corresponding

excursion measure in DpR`,Mf pR`q ˆWEq. Let pαi, βiqiPN be the connected components of the

complement of tt ě 0 : ρt “ 0u and for every i P N, write pρi,W
i
q for the subtrajectory of pρ,W q

corresponding to the excursion interval pαi, βiq. By excursion theory, under P0,y,r the measure

M “
ÿ

iPI
δ

p´Iαi ,ρ
i,W

i
q

(6.21)

is a Poisson point measure with intensity 1R`
puqduNy,rpdρ, dW q.

Since the excursion measure of pρ, ηq under P0,y,r is Npdρ, dηq, it readily follows from the form

of the conditional law of W given pρ, ηq that the measure Ny,r writes:

Ny,rpdρ, dη, dW q “ Npdρ, dηq Q
Hpρq
y,r pdW q.

In other words, pρ, ηq under Ny,r is distributed as pρ, ηq under the excursion measure N and,

conditionally on the pair, W has the law of a snake driven by Hpρq with spatial motion ξ. Under

the excursion measure Ny,r, we have the following identity in distribution:

`

pρt, ηt,W tq : t P r0, σs
˘ pdq

“
`

pηpσ´tq´, ρpσ´tq´,W σ´tq : t P r0, σs
˘

. (6.22)

We refer to the identity in the previous display as the duality property of the Lévy snake.
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The strong Markov property under the excursion measure Ny,r takes the following form. Let

T ą 0 be an arbitrary Ft`-stopping time and Φ be a bounded FT`-measurable function. For

every nonegative measurable functional F on DpR`,M0
f ˆ WEq, we have

Ny,r

`

1tTă8uΦ ¨ F pρT`s,W T`s : s ě 0q
˘

“ Ny,r

`

1tTă8uΦ ¨ E:

ρ,W
rF s

˘

,

where we denoted by P:

µ,w the law of ppρs^σ,W s^σq : s ě 0q under Pµ,w. We will be henceforth

frequently interested in computing quantities of the form E:

µ,wrF s for different functionals of

interest F of the Lévy snake. To this end, the following observation will be of use. Recall

that xρ, 1y under P:
µ,w is distributed as the Lévy process X under P started from xµ, 1y and

killed at its first passage time at 0. If under P:
µ,w and with a slight abuse of notation, we write

It “ infr0,tsxρ, 1y ´ xµ, 1y for t ě 0, the measure M under P:
µ,w is a Poisson point measure with

intensity

1r0,xµ,1yspuqduNwppHpκuµqqpdρ, dW q. (6.23)

We refer to [43, Lemma 4.2.4] and its proof for details on these statements. The strong Markov

property will be often combined with this fact.

We conclude the section with a reconstruction lemma, which states that the Lévy snake can

be recovered solely from its lifetime process and the tip of the snake path.

Corollary 6.5. For every py, rq P E, under P0,y,r and Ny,r, the process pρ,W q can be recovered

from pH,xW q.

This corollary is an immediate consequence of Corollary 6.1 and the snake property, we leave

the details to the reader.

6.3 Debut points, debut times and excursions

In this section, we shall introduce the notion of an excursion away from x for the tree-indexed

process pξaqaPTH
. In contrast with the classic setting of time-indexed Markov processes, the family

of excursions away from x of pξaqaPTH
possesses a significantly richer geometric structure. For

latter use, we shall now address some of its basic geometric properties. More precise versions

of the results that we present had already been established for the Brownian motion indexed by

the Brownian tree in [1], and we shall rely on similar arguments. Recall that a point of TH with

multiplicity at least 3 is called a branching point, and that the collection of branching points of

TH and the set ta P TH : ξa “ xu are disjoint by (6.20). We recall as well that for every a, b P TH ,
we write Ja, bK for the unique geodesic path connecting the points a, b.

Definition 6.6. Under P0,y,r or Ny,r for py, rq P E, a point u P TH is called an excursion debut

for pξaqaPTH
if the following properties hold:

(i) We have ξu “ x.

(ii) We can find v ą u such that ξa ‰ x for every a in Ku, vK.

We denote the collection of excursion debuts by D. For every u P D, we write Cu for the subset

of points v P TH fulfilling that v ą u with ξa ‰ x for every a P Ku, vJ. In particular, if u is a debut

point, then it belongs to Cu.
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For the rest of the section, we work under Ny,r and P0,y,r for py, rq P E but our results are

often only established under the excursion measure Ny,r. We start our discussion with some

elementary geometric properties of the set ta P TH : ξa “ xu.

Lemma 6.7. For every u P D, set C0
u :“ Cu X ta P TH : ξa ‰ xu. Then, the family pC0

uquPD are

the connected components of the open set ta P TH : ξa ‰ xu.

In particular, this yields that the collection D is countable, since for every u P D, the non-

empty subset p´1
H pCuq of p0, σq is open and consequently has non-null Lebesgue measure. Remark

that a priori, and in contrast with the Brownian case treated in [1], we do not have IntpCuq “ C0
u.

Indeed, remark that for instance, we can not rule out the existence of an isolated point w of the

set Cu X ta P TH : ξa “ xu satisfying w P Multi1pTHq. For such w, we have both w P IntpCuq and

ξw “ x. This scenario can not occur for the Brownian motion indexed by the Brownian tree by

Lemma 16 of [1].

Proof. Since pxWtqtPr0,σs is continuous and compatible with the equivalence relation „H , we infer

that pξaqaPTH
is also continuous. In particular, the set ta P TH : ξa ‰ xu is open in TH and for every

u P D, the connected component C0
u is open. Next, we claim that YuPDC

0
u “ tx P TH : ξa ‰ xu.

Note that the inclusion YuPDC
0
u Ă tx P TH : ξa ‰ xu follows by definition. To obtain the reverse

inclusion, consider w P TH such that ξw ‰ x and remark that the set J0, wK X ta P TH : ξa ‰ xu

is nonempty. Then by continuity of pξaqaPTH
, we can find a unique u P J0, wK satisfying ξu “ x

and such that for every a PKu,wK, we have ξa ‰ x. It now follows from our definitions that u is

an excursion debut and that w P C0
u, which proves the reverse inclusion. It remains to prove that

the sets C0
u, u P D, are disjoint and connected. The latter follows directly from the fact that for

any w1, w2 P C0
u, we have Jw1, w2K Ă C0

u since u is not a branching point, and thus u R Jw1, w2K.
Finally, let us check that if u, u1 are distinct debut points, then Cu and Cu1 are disjoint. Arguing

by contradiction, if we had v P Cu XCu1 , then it must hold that u ă u1 ă v or u1 ă u ă v. In any

case, we get respectively that u1 P Ku, vJ with ξu1 “ x and u P Ku1, vJ with ξu “ x, in contradiction

with the fact that v belongs to Cu X Cu1 .

For u P D, we set

gpuq :“ inf
␣

t ě 0 : pHptq “ u
(

, and dpuq :“ sup
␣

t ě gpuq : pHptq “ u
(

. (6.24)

Note that p´1
H puq “ tgpuq, dpuqu since u is not a branching point. Every u P D can be identified

with a snake path pρu,W uq started from p0, xq, that we shall refer to as an excursion away from

x of pρ,W q. In short, it consists in the sub-trajectory associated to rgpuq, dpuqs truncated at its

first return time to x. To give a precise definition we first need to introduce some deterministic

operations. For w “ pw, ℓq P WE , we write τ
˚
x pwq :“ inftt ą 0 : wptq “ xu for the hitting time of x

by w and for pµ,wq P Θx, 0 ă z ď ζw, recall from Section 6.2.3 the notation θzpµ,wq “ pθzµ, θzwq

for the translation of pµ,wq to time z. Fix pρ, ωq P DpR`,Mf pRq ˆ WEq and for t ě 0, we set

V ˚
t pρ, ωq :“

ż t

0
ds 1tHpρsqďτ˚

x pωsqu.

We denote the right-inverse of pV ˚
t pρ, ωq : 0 ď t ď σq by pΓ˚

t pρ, ωq : 0 ď t ă V ˚
σ pρ, ωqq, viz.

Γ˚
t pρ, ωq “ infts ě 0 : V ˚

s pρ, ωq ą tu (6.25)
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with the convention Γ˚
t pρ, ωq “ σpωq if t ě V ˚

σ pρ, ωq. We shall write tr˚pρ, ωq for the element of

DpR`,Mf pRq ˆ WEq defined by the relation:

tr˚pρ, ωqt :“ pρΓ˚
t pρ,ωq, ωΓ˚

t pρ,ωqq, for t ě 0. (6.26)

Informally, tr˚pωq removes the trajectories ωs from ω hitting x and glues the remaining end-

points. Note that if pρ, ωq is an element of Sx, then we have tr˚pρ, ωq P Sx. We can now introduce

the notion of an excursion away from x. Under Nx,r recall that for every u P D, there exits exactly

two times gpuq ă dpuq such that pHpgpuqq “ pHpdpuqq “ u, and note that for s P rgpuq, dpuqs we

have Hs ą Hgpuq. Finally, for every u P D, we set:

pρu,W u
q :“ tr˚

`

Tgpuqpρ,W q
˘

.

Definition 6.8. The family ppρu,W uq : u P Dq is referred to as the family of excursion away

from x of pρ,W q.

The excursions of pξaqaPTH
away from x, that we denote by pξuquPD, can now be defined for

every u P D as pxW u
a : a P THpρuqq. The following lemma shows that the family of excursions away

from x can be indexed by the value of the local time at the respective connected component.

Lemma 6.9. For every u P D, the process pLaqaPTH
is constant on Cu and we denote its value

by ℓu. Moreover, if u1 is another arbitrary element of D with u ‰ u1, we have ℓu ‰ ℓ1
u.

Proof. For every debut u P D, we set ℓu “ Lu. We recall from Lemma 5 in [82] that Nx,r a.e., the

Lévy snake pρ,W q takes values in Θx. Therefore, we can consider a measurable subset Ω0 of full

Nx,0-measure such that for every pρ, ωq P Ω0, the process pρtpρq,W tpωqqtě0 stays in Θx. Without

loss of generality, we work under Ω0. Let us now prove that, on every Cu, the local time L is

constant and identically equal to ℓu. To this end, let u P D and consider a P Cuztuu. Recall that

by definition, it holds that ξv ‰ x for every v PKu, aJ. Next, consider t :“ infts ě 0 : pHpsq “ au

and note that we have gpuq ă t with Ht ą infrgpuq,ts H “ Hgpuq. Since the image under pH of

I :“
␣

r P pgpuq, tq : infrr,ts H “ Hr

(

is Ku, aJ, it must hold that xWs ‰ x for every s P I. By the

snake property, we get that Wtphq ‰ x for every h P pHgpuq, Htq and since pρt,W tq P Θx, we infer

that pΛt “ ΛtpHgpuqq “ pΛgpuq. This shows that Lu “ La and since a is arbitrary, we infer that L
is identically equal to ℓu on Cu.

Let us now show that if u ‰ u1, then ℓu ‰ ℓu1 . For t, t1 P Q, we write t N t1 for the smallest

element of p´1
H ppHptq N pHpt1qq. Note from the definition of Nx,0 that conditionally on pWtphq :

0 ď h ď HtNt1q, the processes

L :“
`

ΛtpHtNt1 ` hq ´ ΛtpHtNt1q : h P r0, Ht ´ HtNt1s
˘

L1 :“
`

Λt1pHtNt1 ` hq ´ Λt1pHtNt1q : h P r0, Ht1 ´ HtNt1s
˘

are independent, and distributed as the local time L under ΠWtpHtNt1 q,0 stopped respectively at

Ht ´ HtNt1 and Ht1 ´ HtNt1 . Further, set Z˝ :“ tt ě 0 : xWt “ xu and for t P pZ˝qc, write uptq for

the unique element u P D such that pHptq P Cu - in particular remark that ℓuptq “ pΛt “ LpHptq,

and note that the unicity is guaranteed by Lemma 6.7. Consider another arbitrary t1 P Z˝. The

lemma will shortly follow as soon as we prove that we have ℓuptq ‰ ℓupt1q if L
1 or L is not identically

null; in this direction, we shall make use of the following remark.
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Under Πx,0, if for r ě 0 we let τ`
r pLq “ inftt ě 0 : Lt ą ru, recall that pτ`

r pLq : r ě 0q is a

subordinator. Under Πy,0 for y P E, consider an independent copy pξ1,L1q of pξ,Lq and note that

under Πx,0, the family of jump-times of the independent subordinators τ`pLq, τ`pL1q are disjoint.

If we write pai, biqiPI and pa1
i, b

1
iqiPI 1 for the excursion intervals away from x of ξ and ξ1 under Πy,0

and we fix t0 ą 0, it follows that the collections tLai : i P I, 0 ă ai ă t0u, tL1
a1
i
: i P I 1, 0 ă a1

i ă t0u

are disjoint on the event tτxpξq ă t0 or τxpξ1q ă t0u.

Let us then conclude the statement of the lemma. If we consider two arbitrary u, u1 P D with

u ‰ u1, we can find t, t1 P Q X pZ˝qc such that pHptq P Cu, pHpt1q P Cu1 ; note that by definition

uptq “ u and upt1q “ u1. If uptq ă upt1q, since ξupt1q “ x we get from the fact that LpHptq “ Luptq

the inequality LpHptq ă LpHpt1q - we stress that in the last assertion we used that under Nx,0,

the Lévy snake pρ,W q takes values in Θx. The case upt1q ă uptq follows by analogous reasoning,

and it remains to address when the common ancestor upt1q N uptq is neither upt1q nor uptq. When

this holds, we must have uptq P KpHpt1q N pHptq, pHptqJ since uptq is not a branching point. Since

ξuptq “ x, with the same notation as before, we get that the process L is not identically equal to

0 and from our previous discussion we infer that ℓu ‰ ℓu1 .

6.4 The excursion measure N˚
x away from x

Now that we have defined the notion of an excursion away from x for pρ,W q, the next step

consists in constructing a candidate for the corresponding (infinite) excursion measure, that we

shall denote by N˚
x. We shall use the notation Π:

y for the law of ξ started from y and stopped

at its first passage time to x. For every driving function h and w P WE with ζw “ hp0q, we

denote by Qhw the law of the snake driven by h with spatial motion Π: :“ pΠ:
yqyPE . For every

w P WE , we consider the family of measures Ra,bpw, dw
1q for 0 ď a ď ζw and b ě a introduced

in Section 6.2.3 associated to the spatial motion Π:. For 0 ă t ď σh we write νht pdwq for the law

of pξs : 0 ď s ď hptqq under the excursion measure N - note that νht is a measure on WE . The

interest on the family pνht : t ą 0q stems from the following property.

Proposition 6.10. Fix a driving function h with σh ă 8 and h0 “ hσh “ 0. There exists

QhN pdW q a unique probability measure on WR`

E such that, for every n ě 1 and 0 “ t0 ă t1 ă

t2 ¨ ¨ ¨ ă tn,

QhN

´

Wt0 P A0,Wt1 P A1, . . . ,Wtn P An

¯

“ 1A0
pxq

ż

A1ˆ¨¨¨ˆAn

νht1pdw1qRmhpt1,t2q,hpt2qpw1, dw2q . . . Rmhptn´1,tnq,hptnqpwn´1, dwnq.

Proof. First remark that for every 0 ă s ă t and f measurable function f on WE , we have

ż

WE

νhs pdwq

ż

WE

Rmhps,tq,hptqpw, dw
1
qfpw1

q “ N
`

fpξr : 0 ď r ď hptqq
˘

“ νht pfq,

where in the second equality we used the Markov property at time mhps, tq. Therefore, we have:

νht
`

dw1
˘

“

ż

WE

νhs
`

dw
˘

Rmhps,tqpw, dw
1
q.
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This entails that the family of measures QhN
`

Wt0 P dw0, . . . ,Wtn P dwn
˘

, for n ě 1 and 0 “

t0 ă t1 ă ¨ ¨ ¨ ă tn satisfy Kolmogorov’s consistency criterion. The proposition now follows by

Kolmogorov’s theorem.

Informally, the canonical process W under QhN can be interpreted as the snake driven by h

with spatial motion an excursion under N . We now turn our attention to some basic properties

of QhN .

Lemma 6.11. Fix a driving function h with σh ă 8, h0 “ hσh “ 0 and set hσ9‚ :“ phσh´t : 0 ď

t ď σhq. The following properties hold:

(i) The distribution of pWpσ´tq : 0 ď t ď σhq under QhN coincides with the law of pWt : 0 ď t ď

σhq under Qhσ9 ‚

N .

(ii) Let q ą 0 be as in pH3q. If we suppose that h is r-Hölder-continuous with qr ą 1, then the

canonical process W under QhN possesses a continuous modification.

Proof. For 0 ď s ă t ď σh, we shall write P
h
s,t and P

hσ9 ‚

s,t for the transition semigroup from time s

to time t of the time-inhomogenous Markov processW under QhN and Qhσ9 ‚

N respectively. Turning

our attention to (i), first note that the result will follow as soon as we establish that

νhσ´tf2P
h
σ´t,σ´sf1 “ νhσ9 ‚

s f1P
hσ9 ‚

s,t f2, (6.27)

for every 0 ă s ă t ă σh and bounded measurable functions f1, f2 on WE . Indeed, if the previous

identity holds, then by inductively applying (6.27) and noting that νhσ9 ‚

t “ νhσ´t we infer

νhσ´tkfkP
h
σ´tk,σ´tk´1

fk´1 . . . P
h
σ´t2,σ´t1f1 “ νhσ9 ‚

t1 f1P
hσ9 ‚

t1,t2f2 . . . P
hσ9 ‚

tk´1,tk
fk,

for every 0 ă t1 ă ¨ ¨ ¨ ă tk ă σh and bounded measurable functions f1, . . . , fk on WE . The latter

equality yields that pWσ´t : 0 ď t ď σhq under QhN and pWt : 0 ď t ď σhq under Qhσ9 ‚

N have the

same finite-dimensional distributions, proving (i). Now, note that the left-hand side of (6.27) is

given by

νhσ´tf2P
h
σ´t,σ´sf1 “

ż

WE

νhσ´tpdwqf2pwq

ż

WE

Rmhpσ´t,σ´sq,hpσ´sqpw, dw
1
qf1pw1

q.

Said otherwise, the law of pWσ´t,Wσ´sq under QhN is characterised by the following: up to time

mhpσ ´ s, σ ´ tq, the paths pWσ´t,Wσ´sq coincide and are distributed as an excursion under N
restricted to the time-interval r0,mhpσ ´ t, σ ´ sqs. Moreover, by the Markov property under N
and the definition of the measures pRa,bpw, dw

1q : w P WE , 0 ď a ď ζw and b ě aq, conditionally

on pWσ´tpuq : 0 ď r ď mhpσ ´ t, σ ´ sqq, the restrictions

Wσ´t

`

mhpσ ´ t, σ ´ sq ` r
˘

, r P
“

0, hpσ ´ tq ´ mhpσ ´ t, σ ´ sq
‰

and

Wσ´s

`

mhpσ ´ t, σ ´ sq ` r
˘

, r P
“

0, hpσ ´ sq ´ mhpσ ´ t, σ ´ sq
‰

are independent with distributions ξ under Π:

W pmhpσ´t,σ´sqq
stopped at time hpσ ´ tq ´ mhpσ ´

t, σ ´ sq and hpσ ´ sq ´mhpσ ´ t, σ ´ sq respectively. A similar inspection of the right-hand side
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of (6.27) gives that this is precisely the law of pWs,Wtq under Qhσ9 ‚

N , and concludes the proof of

(i).

Now let us prove (ii). Recall that we are working under pH3q and observe that, since

ppΠ:
yqyPE , hq satisfies conditions (i) and (ii) of Section 6.2.3, under QhN the process W possesses a

continuous modification on pσh{3, σhq. Furthermore, by (ii) we have the equality in distribution,

pWs : ε ď s ď σhq under Qhσ9‚

N
pdq
“ pWσ´s : ε ď s ď σhq under QhN .

This implies that W under QhN possesses as well a continuous modification in r0, 2σh{3q and

therefore in the interval r0, σhs.

Now, we randomise the driving function h by setting:

N˚
xpdρ, dη, dW q :“ Npdρ, dηqQ

Hpρq

N pdW q.

Note that N˚
x is a sigma-finite measure - consider for example the events tsuptr ě 0 : Wεprq ‰

xu ą εu, for ε ą 0 with the convention that suptHu “ 0. In order to study the properties of N˚
x

we consider as well the following family of closely related measures. In this direction, we shall

denote the collection of pairs pµ,wq P M0
f ˆ WE with Hpµq “ ζw verifying condition pii1q from

Section 6.2.4 by Θx.

• For y P E, we let Ny be the excursion measure of the pψ,Π:q-Lévy snake at p0, yq.

• For pµ,wq P Θx, we let P:
µ,w be the law of the pψ,Π:q - Lévy snake started at pµ,wq and

stopped at time infts ě 0 : ρs “ 0u.

We stress that Nx and N˚
x are of drastically different nature; for instance, under Nx we have

xWt “ x for every t ě 0. We shall start investigating the properties of N˚
x and then address its

relation with the family of measures we just introduced. Since Hpρq under Npdρq is a.e. r-Hölder

continuous with qr ą 1, by Lemma 6.11-(ii), under N˚
x the process W possesses a continuous

modification. Therefore, the measure N˚
x is well defined in the canonical space DpR`,Mf pR`q ˆ

WEq, and from now on it will be implicitly assumed that N˚
x is a measure on DpR`,Mf pR`q ˆ

WEq. Heuristically, the canonical process pρ,W q under N˚
x can be interpreted as the ψ - Lévy

snake with spatial motion distributed according to N . This description is informal, since N is

an infinite measure.

The definition of N˚
x, combined with Lemma 6.11-(i) and (6.22), allows us to recover the

so-called duality property of the Lévy snake under N˚
x.

Corollary 6.12. Under N˚
x, the processes pρs,Ws : 0 ď s ď σq and pηpσ´sq´,Wσ´s : 0 ď s ď σq

have the same distribution.

Let us now address the Markovian character of N˚
x.

Proposition 6.13. For every pFt`q-stopping time T ą 0, every non-negative FT`-measurable

function Φ and non-negative measurable function F on DpR`,Mf pR`q ˆ WEq, we have

N˚
x

`

1tTă8uΦ ¨ F
`

pρT`s,WT`s : s ě 0q
˘˘

“ N˚
x

`

1tTă8uΦ ¨ E:

ρT ,WT
rF s

˘

. (6.28)
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Proof. Our arguments and notation follow closely Section 4.1.3 of [43]. In this direction, it suffices

to prove the result for an arbitrary bounded stopping time T ą 0, that we fix from now on. For

t ě 0 we let rts be the smallest integer satisfying t ă rts and for every n ě 1, we set T pnq :“ rTns{n.

We write dTV for the total variation metric on Mf pR`q and recall that the Prokhorov metric dP
on Mf pR`q is bounded above by dTV, viz. dP ď dTV. Consider f : Mf pR`q ˆ WE ÞÑ R` a

bounded Lipschitz-continuous function with respect to the product metric dTV ^ 1 ` dWE
^ 1 as

well as a bounded FT`-measurable random variable Φ, non-null on a set with finite N˚
x measure.

If we let pQ:

t : t ą 0q be the transition semi-group of pρ,W q under N˚
x, the statement of the

proposition will follow by showing that

N˚
x

`

Φ ¨ fpρT`t,WT`tq
˘

“ N˚
x

`

Φ ¨ Q:

tfpρT ,WT q
˘

.

In this direction, for every n ě 1, by the simple Markov property we have

N˚
xpΦ ¨ fpρT pnq`t,WT pnq`tqq “

8
ÿ

k“1

N˚
xpΦ ¨ 1tT pnq“ k

n
ufpρT pnq`t,WT pnq`tqq

“

8
ÿ

k“1

N˚
x

`

Φ ¨ 1tT pnq“ k
n

uQ
:

tfpρ k
n
,W k

n
q
˘

“ N˚
x

`

Φ ¨ Q:

tfpρT pnq ,WT pnqq
˘

(6.29)

By right-continuity of pρ,W q underN˚
x, we have that limnÑ8 fpρT pnq`t,WT pnq`tq “ fpρT`t,WT`tq

and to conclude, it suffices to prove that lim supnÑ8 |Q:

tfpρT ,WT q ´ Q:

tfpρT pnq ,WT pnqq| “ 0 a.e.

To this end, for every ε ą 0 and pµ,wq P Θ, set

Vεpµ,wq :“
!

pµ1,w1
q P Θ : D ε0, ε1 P r0, εq such that κε0µ “ κε1µ

1,

and pwphq : 0 ď h ď Hpκε0µqq “ pw1
phq : 0 ď h ď Hpκε1µ

1
qq

)

, (6.30)

where we recall that κ is the cutting operation defined in (6.7). We introduce this set since it is

plain that, N˚
x-a.e., for every s ą 0 small enough, the pair pρT`s,WT`sq belongs to VεpρT ,WT q.

Therefore, N˚
x a.e.,

lim sup
nÑ8

|Q:

tfpρT ,WT q ´ Q:

tfpρT pnq ,WT pnqq| ď sup
pµ1,w1qPVεpρT ,WT q

|Q:

tfpρT ,WT q ´ Q:

tpµ
1,w1

q|.

Now, it was established in the proof of [43, Lemma 4.1.3] by means of a coupling argument that

that for every pµ,wq P Θ, we have

lim
εÑ0

sup
pµ1,w1qPVεpµ,wq

|Q:

tfpµ,wq ´ Q:

tpµ
1,w1

q| “ 0. (6.31)

This completes the proof of the proposition.

For pρ, ωq P DpR`,Mf pRq ˆWEq, recall the definition of Γ˚pρ, ωq and tr˚pρ, ωq given respec-

tively in (6.25) and (6.26).

Definition 6.14. We denote by N˚
x the law of Tr˚pρ,W q under N˚

x. The measure N˚
x is referred

to as the excursion measure of pξaqaPTH
away from x.
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The terminology might be slightly misleading and for instance, the measure N˚
x should not be

confused with Nx, the excursion measure of pρ,W q away from the measure 0 and the path x. As

before, we consider the following family of measures closely related to N˚
x : we set

• N˚
y with y P Eztxu the law of Tr˚pρ,W q under Ny.

• P˚
µ,w with Θx the law of Tr˚pρ,W q under P:

µ,w.

Before concluding the section, let us briefly address some properties of N˚
x that will be used

frequently in this work. The time-changed process Tr˚pρ,W q is adapted to the filtration Gt :“
FΓ˚

t ` for t ě 0 and pGtq is right-continuous. If we consider a pGtq - stopping time T ą 0, it readily

follows that Γ˚
T is a pFt`q-stopping time and that GT “ FΓ˚

T `. We refer to [27, Exercise 2.11]

for a more detailed discussion. Therefore, with the same notation as in (6.28), we infer from the

strong Markov property of pρ,W q under N˚
x that for every non-negative GT -measurable function

Φ, we have

N˚
x

`

1tTă8uΦ ¨ F
`

pρT`s,WT`s : s ě 0
˘˘˘

“ N˚
x

`

1tTă8uΦ ¨ E˚
ρT ,WT

rF s
˘

. (6.32)

Now, recall the identity in distribution under N˚
x of Corollary 6.12. Let us infer that the same

identity holds under N˚
x.

Corollary 6.15. Under N˚
x, the processes pρs,Ws : 0 ď s ď σq and pηpσ´sq´,Wσ´s : 0 ď s ď σq

have the same distribution.

Proof. Under N˚
x, to simplify notation, we write ρ˚

t :“ ρΓ˚
t
, η˚

t :“ ηΓ˚
t
, W ˚

t :“ WΓ˚
t
, σ˚ :“ V ˚

σ and

recall that the lifetime of W ˚ is σ˚. To prove the corollary it suffices to show that, under N˚
x, we

have:

pη˚
pσ˚´sq´

,W ˚
σ˚´s : 0 ď s ď σ˚

q
pdq
“ pρ˚

s ,W
˚
s : 0 ď s ď σ˚

q. (6.33)

In this direction, note that the processes ρ˚ and η˚ are càdlàg. Moreover, it is straightforward to

check that for every s ě 0, we have the identity

Γ˚
pσ˚´sq´

“ σ ´ Γ˚
spWσ9‚ q.

Now, fix s ě 0 and let psnqně0 be an arbitrary decreasing sequence with sn Ó s. Then, since

Γ˚
σ˚´sn

Ò Γ˚
pσ˚´sq´

as n Ñ 8, we infer that

η˚
pσ˚´sq´

“ lim
nÑ8

η˚
σ˚´sn “ ηpΓ˚

pσ˚´sq´
q´ “ ηpσ´Γ˚

s pWσ9 ‚qq´

as well as the equality W ˚
σ˚´s “ Wσ´Γ˚

s pWσ9 ‚q. Finally, the duality of N˚
x established in Corollary

6.12 yields the identity in distribution

`

ηpσ´Γ˚
s pWσ9 ‚qq´,Wσ´Γ˚

s pWσ9 ‚q : 0 ď s ď σ˚
˘ pdq

“
`

ρ˚
s ,W

˚
s : 0 ď s ď σ˚

˘

.

This concludes the proof of (6.33).

Let us conclude the section with a lemma that will be used frequently in our computations,

in conjunction with the strong Markov property under N˚
x.
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Lemma 6.16. Fix an arbitrary pµ,wq P Θx satisfying that wp0q “ x, and set u0 :“ inftu ě 0 :

τ˚pwpHpκuµqqq “ 8u. Under P˚
µ,w, write pαi, βiqiPI for the excursion intervals of xρ, 1y ´ xρ0, 1y

over its running infimum It “ infr0,tsxρt, 1y ´ xρ0, 1y and for every i P I let pρi,W iq be the

subtrajectory associated to the interval pαi, βiq. Then, the measure

M “
ÿ

iPI
δp´Iαi ,ρ

i,W iq.

is a Poisson point measure with intensity 1p0,xµ,1y´u0spuqduN˚
wpκuµq

pdρ, dW q

Proof. Recall that the law of Tr˚pρ,W q under P:
µ,w is precisely P˚

µ,w. For the rest of the proof

we argue under P:
µ,w and we shall work with an arbitrary fixed initial condition pµ,wq satis-

fying that τ˚pwq ă 8; when τ˚pwq “ 8, we have u0 “ 0 and the arguments are simpler.

We maintain the notation I for the running infimum of xρΓ˚
t
, 1y ´ xρΓ˚

0
, 1y and pαi, βiqiPI for

the corresponding excursion intervals. Next, we write pa1
j , b

1
jqjPJ for the excursion intervals of

xρ, 1y ´ xµ, 1y over its running infimum I 1, set pρj,1,W j,1qjPJ for the corresponding subtrajecto-

ries and recall from Section 6.2.4 that the measure
ř

jPJ δp´I 1
aj
ρj,1,W j,1q is a Poisson measure with

intensity 1r0,xµ,1ysduNwpκuµqpdρ, dW q. Let us start verifying that

Γ˚
0pρ,W q “ infts ě 0 : ´I 1

s “ u0u. (6.34)

To see this, recall the definition of the exploration process started from µ from (6.8) as well as the

definition of W under P:
µ,w, and write Tu0 for the stopping time in the right-hand side. Now, on

the one hand, note that for every t ă Tu0 it holds that Ht ě τ˚pwq “ τ˚pWtq where the equality

Ht “ τ˚pWtq can only hold if xρt, 1y “ I 1
t. Since the set of such time has null Lebesgue measure,

we get that Γ˚
0pρ,W q ě Tu0 . To prove the converse inequality it suffices to show that for every

t ą Tu0 , we have Hpκ´I 1
t
µq ă τ˚pwq. To see this, we first note that Hpκ´I 1

Tu0

µq “ τ˚pwq. Since

p´8, 0q is regular for X under P , by the strong Markov property we get that for every t ą Tu0 ,

we have I 1
t ă I 1

Tu0
and by definition of Tu0 it follows that Hpκ´I 1

t
µq ă Hpκ´I 1

Tu
µq “ τ˚pwq.

Now, noting that for every t ą Tu0 it holds that τ˚pwpκ´Itµqq “ 8, we deduce that for ev-

ery pα1
j , β

1
jq with α1

j ą Tu0 we have that τ˚pwpκ´Iα1
j

µqq “ 8. It now follows from our previous

observations that the sets tpα1
j , β

1
jq : j P J and α1

j ą Tu0u and tpΓ˚
αi
,Γ˚

βi
q : i P Iu are identi-

cal. Moreover, the subtrajectory of Tr˚pρ,W q corresponding to the interval pαi, βiq is precisely

Tr˚pρj,
1

,W j,1q, where j P J is the unique index satisfying pα1
j , β

1
jq “ pΓ˚

αi
,Γ˚

βi
q. Since by (6.34)

we can write infp0,tsxρΓ˚
t
, 1y ´ xρΓ˚

0
, 1y “ I 1

Γ˚
t

´ u0, we conclude that the measure M under P˚
µ,w

has the same distribution as the following measure under P:
µ,w

ÿ

jPJ
1t´I 1

α1
j
ąu0uδp´I 1

α1
j
`u0,Tr˚pρj,1,W j,1qq,

the latter being a Poisson measure with intensity 1p0,xµ,1y´u0spuqduNwpHpκuµqqpTr˚pρ,W q P ¨q.

Finally, since the push-forward measure of the Lebesgue measure in r0, xµ, 1ys by the mapping

u ÞÑ Hpκuµq is precisely µ, the condition µpt0 ď h ď ζw : wphq “ xuq “ 0 on the pair pµ,wq

ensures that the Lebesgue measure of the set tu P p0, xµ, 1y ´ u0s : wpHpκuµqq “ xu is null, so we

can replace NwpHpκuµqqpTr˚pρ,W q P ¨q by N˚
wpHpκuµqq

pdρ, dW q.
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6.5 Spinal decompositions

6.5.1 Spinal decomposition of the Lévy snake

On the forthcoming sections, the study of spatial properties of the Lévy snake and its excursions

away from x rely in a precise description of the law of pρ, η,W q at a typical time viz. sampled

uniformly in r0, σs. To this end, for an arbitrary py, rq P E we introduce the pointed measure

N‚
y,r :“ Ny,rpdρ, dη, dW qds 1tsďσu on DpR`,

`

Mf pR`q
˘2

ˆWEqˆR` and write U : R` ÞÑ R` for

the identity function Upsq “ s. Then, the law of the triplet pρ, η,W,Uq under N‚
y,r is characterised

by the relation

N‚
y,rpΦpρ, η,W,Uqq “ Ny,r

´

ż σ

0
dsΦpρ, η,W, sq

¯

.

Roughly speaking U is a point taken, conditionally on pρ,W q, uniformly at random with respect

to the Lebesgue measure on r0, σs. In particular, pρU , ηU ,WU q under N‚
y,r should be interpreted

as the law of the Lévy snake at a typical time, taken with respect to the Lebesgue measure, under

the biased measure N‚
y,r. It will be crucial for our purposes to not only characterise the law of

pρU , ηU ,WU q under N‚
y,r, but to include as well the subtrajectories in the left and right spine

of pρU , ηU ,WU q; the functional encoding such information shall be denoted by Sppρ,W qU . The

definition of the latter requires us to introduce some notation.

We argue under N‚
y,r for some arbitrary py, rq P E. We fix some s P p0, σq and we shall start

by defining a point measure that encodes the right spine of pρs,Wsq. Denote by pαipsq, βipsqqiPIs

the connected components of tt ě s : xρ, 1yt ą infrs,tsxρ, 1ytu. For each i P Is, we let pρi, ηi,W
i
q

be the subtrajectory associated to the interval pαipsq, βipsqq. To simplify notation, when there

is no risk of confusion we write αi, βi instead of αipsq, βipsq. Finally, for t ě s we let I
prq

t :“

infrs,tsxρ, 1y ´ xρu, 1y and we set

Pprq
s pρ,W q :“

ÿ

iPIs

δ
p´I

prq
αi ,ρ

i,ηi,W
i
q
. (6.35)

We can now perform an analogous construction to encode the left spine. Namely, we consider

pαjpsq, βjpsqqjPJs
the connected components of t0 ď t ď s : xηt, 1y ą infrt,ssxη, 1yu and write

pρi, ηi,W
i
q be the corresponding sub-trajectories. Finally, we set I

pℓq
t :“ infrt,ssxη, 1y ´ xηs, 1y for

0 ď t ď s. With the same convention as before, we can define an analogous measure

Ppℓq
s pρ,W q :“

ÿ

jPJs

δ
p´I

pℓq
αj ,ρ

j ,ηj ,W
j
q

(6.36)

encoding now the left spine of pρs, ηs,W sq. For convenience, the sets Js, Is are assumed to be

disjoint. In the sequel, to simplify notation we simply write tj :“ ´I
pℓq
αj , ti :“ ´I

prq
αi for j P Js,

i P Is.
The triplet

Sppρ,W qs :“
`

pρs, ηs,W sq,Ppℓq
s pρ,W q,Pprq

s pρ,W q
˘

, (6.37)

is referred to as the spine decomposition of pρ,W q at time s, pρs, ηs,W sq being the spine. Our

goal now is to characterise the distribution of Sppρ,W qU under N‚
y,r. In this direction, in an

auxiliary probability space pΩ0,F0, P 0q, consider a 2-dimensional subordinator pU p1q, U p2qq with
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Laplace exponent given by:

´ logE0
”

exp
`

´ λ1U
p1q

1 ´ λ2U
p2q

1

˘

ı

:“

#

ψpλ1q´ψpλ2q

λ1´λ2
´ α if λ1 ‰ λ2,

ψ1pλ1q ´ α if λ1 “ λ2.

In particular, we have the identity in law pU p1q, U p2qq
pdq
“ pU p2q, U p1qq and note that both subordi-

nators U p1q, U p2q have Laplace exponent ψpλq{λ ´ α, for λ ě 0. Finally, still under P 0 and for

a P p0,8s, we write pJa, qJaq for the measure in R2
` defined by the relation,

pJa, qJaq :“
`

1r0,asptq dU
p1q

t ,1r0,asptq dU
p2q

t

˘

with the usual convention r0,8s :“ r0,8q. We shall write Mp :“ MppR` ˆ Mf pR`q2 ˆ WEq for

the collection of point measures in R` ˆ Mf pR`q2 ˆ WE . We can now state:

Proposition 6.17. For fixed py, rq P E and under Πy,r bE0, for every a ě 0 we let pMpℓq
a ,Mprq

a q

be a pair of point measure on R`ˆMf pR`q2ˆWE such that conditionally on p qJa, Ja, pξs : s ď aqq,

they are independent Poisson measures with respective intensities

1
r0,x qJa,1ys

duN
ξpHpκu

qJaqq
pdρ, dη, dW q, and 1r0,xJa,1ysduNξpHpκuJaqq

pdρ, dη, dW q.

For every non-negative measurable functional Φ in Mf pR`q2 ˆ WE ˆ M2
p , we have:

Ny,r

´

ż σ

0
dsΦ

`

Sppρ,W qs
˘

¯

“

ż 8

0
da exp

`

´αa
˘

¨E0
bΠy,r

´

ΦpJa, qJa, pξs : s ď aq,Mpℓq
a ,Mprq

a q

¯

.

(6.38)

Proof. Our proof follows by similar arguments to the ones used in Proposition 2 of [72]. First,

note that if instead of Φ we consider a non-negative measurable function Φ1 on Mf pR`q2 ˆWE ,

identity (6.38) follows by [82, Lemma 1]. Namely, we have

Ny,r

´

ż σ

0
dsΦ1

`

ρs, ηs,W s

˘

¯

“

ż 8

0
da exp

`

´ αa
˘

¨ E0
b Πy,r

´

ΦpJa, qJa, pξs : s ď aqq

¯

.

Returning to the general setting, remark that it suffices to prove the result for an arbitrary func-

tional Φ of the form Φ1Φ2Φ3, for Φ1 as before and Φ2,Φ3 non-negative measurable functionals

on Mp. For pµ,wq P Θx, we shall write Qµ,wpdPq for the law of a Poisson measure with intensity

measure 1r0,xµ,1ysduNwpHpkuµqqpdρ, dη, dW q and recall from Section 6.2.4 that the law of the mea-

sure M defined in (6.21) under P:

µ,w is precisely Qµ,w. By the Markov property at time s under

1tsăσuNy,r and a change of variable, we get

Ny,r

´

ż σ

0
dsΦ1

`

ρs, ηs,W s

˘

Φ2pPpℓq
s qΦ3pPprq

s q

¯

“ Ny,r

´

ż σ

0
dsΦ1

`

ρs, ηs,W s

˘

Φ2pPpℓq
s qQρs,W s

pΦ3q

¯

“ Ny,r

´

ż σ

0
duΦ1

`

ρσ´u, ησ´u,W σ´u

˘

Φ2pPpℓq
σ´uqQρσ´u,Wσ´u

pΦ3q

¯

.
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The proof will now follow by carefully applying the duality property of the Lévy snake (6.22).

In this direction, write Rev the time reversal operator, defined by the relation Revpρ, η,W q “

pρpσ9‚q´, ηpσ9‚q´,W σ9‚q. Recall that by definition, we have:

Ppℓq
σ´upρ,W q “

ÿ

jPJσ´u

δ
p´I

pℓq
αj ,ρ

j ,ηj ,W
j
q

where pαj , βjqjPJσ´u
are the connected components of tt P r0, σ ´ us : xηt, 1y ą infrt,σ´usxη, 1yu,

pρj , ηj ,W
j
qjPJσ´u

are the corresponding subtrajectories and I
pℓq
t “ infrt,σ´usxη, 1y ´ xησ´u, 1y for

t P r0, σ ´ us. Let us express this family of functionals of pρ, η,W q in terms of the time-reversed

process pρpσ9‚q´, ηpσ9‚q´,W σ9‚q. In what follows, we shall make repeated use of the duality property

(6.22) without explicit mention. With a slight abuse of notation, we let pαj1 , βj1qj1PJ 1
u
be the con-

nected components of tt P ru, σs : xηpσ´tq´, 1y ą infru,tsxηpσ9‚q´, 1yu, and write pρj
1

, ηj
1

,W
j1

qjPJ 1
u

the corresponding subtrajectories of pρpσ9‚q´, ηpσ9‚q´,W σ9‚q. Further, we set I
pℓ1

q

t :“ infru,tsxησ9‚´, 1y´

xηpσ´uq´, 1y, for t P ru, σs. Observe that the set of jump-times of η is countable and under

Ny,r, for every fixed u ą 0 the sets tt ě u : pρt, ηtq ‰ pρt´, ηt´qu, tt ě u : Xt “ infru,ts Xu

are disjoint. It follows that for du almost every u P p0, σq, under Ny,r the processes Ipℓ1
q and

pinfru,tsxησ9‚, 1y ´ xησ´u, 1y : t P ru, σsq are indistinguishable. We infer that for du almost every

u P p0, σq, there exists a bijection j1 Ø j between J 1
u and Jσ´u such that we have

p´I
pℓq
αj , ρ

i, ηi,W
i
q “ p´I

pℓ1
q

αj1 ,Revpρj
1

, ηj
1

,W
j1

qq.

In the last identity we used that pρ, ηq are continuous at the extremities of excursion intervals

tαj , βj : j P Juu. Therefore, for du almost every u P p0, σq we can write:

Ppℓq
σ´upρ,W q “

ÿ

j1PJ 1
u

δ
p´I

pℓ1q
α
j1 , Revpρj1 ,ηj1 ,W

j1

qq

where by the Markov property and duality (6.22), conditionally on σppηpσ´sq´, ρpσ´sq´,W σ´sq :

0 ď s ď uq the measure in the right-hand side is a Poisson measure with intensity Qηpσ´uq´,Wσ´u
.

We stress that in the last claim we used that under Ny,r, the distribution of pηpσ9‚q´, ρpσ9‚q´,W σ9‚q

is pρ, η,W q. Putting everything together, we deduce

Ny,r

´

ż σ

0
dsΦ1

`

ρs, ηs,W s

˘

Φ2pPpℓq
s qΦ3pPprq

s q

¯

“ Ny,r

´

ż σ

0
dsΦ1

`

ηs, ρs,W s

˘

Qρs,W s
pΦ2qQηs,W s

pΦ3q

¯

.

Now, the proof follows from the case we covered initially for Φ “ Φ1, recalling that p qJa, Jaq has

the same distribution as pJa, qJaq.

We shall now apply the same treatment to the Lévy snake under a pointed version of the

excursion measure N˚
x. This will allow us in the next section to obtain a second connection

between the measures Nx and N˚
x through a spinal decomposition in excursions under Nx. Note

that the functional (6.37) is well defined under both N˚
x and N˚

x as soon as we remove the process

Λ as well as the subtrajectoiries Λi,Λj from our definitions. The same notations are maintained,

replacing W by W , and W i by Wi for i P Is YJs, for every s ě 0. In the same vain as before, we

introduce the pointed measure N˚,‚
x :“ N˚

xpdρ, dη, dW qds 1tsďσu and we characterise the law of

Sppρ,W qU under N˚,‚
x . We shall write M˚

p :“ MppR` ˆ Mf pR`q2 ˆ WEq for the space of point

measures in R` ˆ Mf pR`q2 ˆ WE .
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Proposition 6.18. Under E0 b N , for a ě 0 let pMℓ,˚
a ,Mr,˚

a q be a pair of point measure on

R` ˆ Mf pR`q2 ˆ WE such that on the event tσ ě au and conditionally to p qJa, Ja, pξs : s ď aqq,

they are independent Poisson measures with respective intensities

1
r0,x qJa,1ys

duN˚

ξpHpκu
qJaqq

pdρ, dη, dW q, and 1r0,xJa,1ysduN˚
ξpHpκuJaqq

pdρ, dη, dW q.

For every non-negative measurable functional Φ in pMf pR`qq2 ˆ WE ˆ pM˚
p q2, we have:

N˚
x

´

ż σ

0
dsΦ

`

Sp pρ,W qs

¯

“ E0
b N

´

ż σ

0
da exp

`

´ αa
˘

¨ ΦpJa, qJa, pξs : s ď aq,Mℓ,˚
a ,Mr,˚

a q

¯

.

(6.39)

Proof. The proof follows by the same arguments as in Proposition 6.17 after a few considerations.

In this direction, suppose first that Φ1 is a bounded measurable function on pMf pR`qq2 ˆ WE .

Since for every fixed s ě 0, conditionally on pρ, ηq the variable Ws is distributed as an excursion

under N stopped at time Hs, we deduce from [43, Proposition 3.1.3] that for every non-negative

measurable functional Φ taking values in Mf pR`q2 ˆ WE , we have:

N˚
x

´

ż σ

0
dsΦ1

`

ρs, ηs,Ws

˘

¯

“

ż 8

0
da exp

`

´ αa
˘

¨ E0
b N

“

Φ
`

Ja, qJa, pξt : t ď aq
˘‰

(6.40)

Now, by definition of N˚
x and a change of variable we have

N˚
x

´

ż σ

0
dsΦ1

`

ρs, ηs,Ws

˘

¯

“ N˚
x

´

ż V ˚
σ

0
dsΦ1

`

ρΓ˚
s
, ηΓ˚

s
,WΓ˚

s

˘

¯

“ N˚
x

´

ż σ

0
ds 1tHsďτ˚

x pWsqu Φ1

`

ρs, ηs,Ws

˘

¯

.

We deduce from (6.40) that the term in the right-hand side writes
ż 8

0
da exp

`

´ αa
˘

¨ E0
b N

“

1taďσuΦ
`

Ja, qJa, pξt : t ď aq
˘‰

proving the result for our choice of Φ. In the last reasoning we used that underN , we have τ˚
x pξq “

σpξq. To prove the result for an arbitrary functional Φ as in the statement of the proposition, we

need one last remark. Let Φ2 be a non-negative measurable functional on M˚
p and write Q˚

µ,w for

the law of a Poisson point measure with intensity 1r0,xµ,1ysduN˚
wpHpκuµqq

pdρ, dη, dW q . Making

use of (6.40), by the same arguments as in [82, Lemma 5] we infer that under N˚
x, the Lévy snake

takes values in the set Θe :“ tpµ,wq P Θ : wp0q “ x, τ˚
x pwq ą 0 and µpt0, τ˚

x pwquq “ 0qu, with the

convention that µp8q “ 0. We deduce from this that under N˚
x, the process pρ,W q takes values

in Θe X tpµ,wq P Θ : τ˚
x pwq P tζw,8uu. Hence, by Lemma 6.16, for every fixed s ě 0 we get that

conditionally on Fs and on ts ă σu, the law of Pprq
s is precisely Q˚

ρs,Ws
. The general case now

follows exactly as in the proof of Proposition 6.17, by making use of the Markov property (6.32)

under N˚
x, and the duality property of Lemma 6.15 under N˚

x.

We maintain the notation

Θe :“ tpµ,wq P Θ : wp0q “ x, τ˚
x pwq ą 0 and µpt0, τ˚

x pwquq “ 0qu.

For latter use, we gather from the previous proof the following result.

Corollary 6.19. Under N˚
x resp. N˚

x, the process pρ,W q takes values in Θe resp. Θe X tpµ,wq P

Θ : τ˚
x pwq P tζw,8uu.
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6.5.2 Spinal relation between Nx and N˚
x

In this section, we shall relate the measures Nx, N˚
x through a spinal decomposition in excursion

away from x under Nx. Let us start by introducing some notation: for every r ě 0 and w :“

pw, ℓq P WE , we set:

τ`
r pwq :“ inf

␣

h ě 0 : ℓphq ą r
(

.

Under Πy,r for py, rq P E, we still write τ`
r pξq :“ inftt ě 0 : Lt ą ru and as usual when there is

no risk of confusion the dependence on ξ is dropped. Until further notice we argue under Nx,0.

In what follows it will be convenient to index each excursion W u with the value taken by the

local time pΛ in p´1
H pCuq. In other terms, we will work with the family of pairs pℓu,W uquPD, where

ℓu :“ pΛgpuq. Recall from Lemma 6.9 that if u, u1 are two excursion debuts with u ‰ u1, we have

ℓu ‰ ℓu
1 Nx,0 –a.e. For fixed t ą 0 we set,

J pΛtq :“ tr P r0, pΛtq : τrpΛtq ă τ`
r pΛtqu.

For u P D, we say that W u is present in the spine at time t if ℓu P J pΛtq Y tpΛtu. Let us justify

our terminology: for fixed t ą 0 and Nx,0–a.e., when ℓ
u is present in the spine at time t, the path

pWtpτℓu ` sq : s P r0, τ`
ℓu ^ Ht ´ τℓusq is non-trivial and coincides with pξa : a P J0, pHptqK X Cuq.

Moreover and still for fixed t ą 0, it follows from the definition of debut points that Nx,0–a.e. for

every r P J pΛtq Y tpΛtu, there exists a unique pair pℓu,W uq with ℓu “ r. In the two last assertions

we used that Nx,0–a.e. it holds that xWt ‰ x by Lemma 6.17. Note that N‚
x,0 – a.e. for every

u P D we have

tU P rgpuq, dpuqsu “ tℓu P J pΛU q Y tpΛUuu

since the set tℓu “ pΛU , U R rgpuq, dpuqsu is N‚
x,0 null - the latter being a consequence of Proposition

6.17 and Lemma 6.9. To study the family of excursions present in the spine at time U , we

decompose pρU , ηU ,WU q in terms of the excursion intervals away from x ofWU . Namely, consider

an enumeration prj : j P t1, 2, . . . uq of the elements of J pΛU q and for each rj P J pΛU q, we set

W j
U :“

´

`

WU

`

h ` τrjpWU q
˘

: h P r0, τ`
rj pWU q ´ τrjpWU qs

¯

,

xρjU , fy :“

ż

ρU pdhqfph ´ τrjpWU qq1
tτrj pWU qăhăτ`

rj pWU qu
,

and

xηjU , fy :“

ż

ηU pdhqfph ´ τrjpWU qq1
tτrj pWU qăhăτ`

rj pWU qu
.

The family pW j
U : rj P J pΛU qq are the excursions of WU away from x, excluding the excursion

straddling HU . It will be crucial for our purposes to also keep track of the latter. To this end,

for w P WE,x, we recall the notation ℓxpwq for the last passage time to x of w, viz.

ℓxpwq :“ supth ă ζw : wphq “ xu.

In particular, the excursion straddling HU writes

pρ0U , η
0
U ,W

0
U q :“ θℓxpWU qpρU , ηU ,WU q.

We set r0 :“ pΛU for the corresponding value of the local time at this last excursion. We stress that

since px, 0q P Θx, by [82, Lemma 5] the support of ρU is included in the union of the excursion

intervals pτrjpWU q, τ`
rj pWU qq for j ě 1 and pτr0 , HU s.
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As in the previous section, to encode the left and right spine of each pρjU , η
j
U ,W

j
U q for j ě

0, we introduce a family of measures pPℓ,j
U ,Pr,j

U qjě0. Let us start by introducing the neces-

sary notation to define pPr,j
U qjě0. First, for every j ě 0, we set Trj “ inftt ě U : pΛt “

rju and T`
rj “ inftt ě U : pΛt ă rju. Let pαkprjq, βkprjqqkPKj

be the excursion intervals of

pxρTrj `t, 1y ´ xρTrj
, 1y : t P r0, T`

rj ´ Trj sq over its running infimum, a process that we denote

by Iprjq. If we write pρj,k, ηj,k,W j,k,Λj,kqkPKj
for the corresponding subtrajectories, for k P Kj

we set W
j,k

:“ pW j,k,Λj,k ´ rjq and consider the point measure:

Pr,j
U :“

ÿ

kPKrj

δ
p´I

prjq

αkprjq
,ρj,k,ηj,k,W

j,k
q
.

Analogously, for every j ě 0, we let Srj “ inftt ě 0 : pΛU´t “ rju and S`
rj “ inftt ě 0 : pΛU´t ă

rju. Write pα1
kprjq, β

1
kprjqqkPK1

j
for the excursion intervals of pxηU´Srj ´t, 1y ´ xηU´Srj

, 1y : t P

r0, S`
rj ´ Srj sq over its running infimum I 1prjq and denote the corresponding sub-trajectories by

pρj,k,W j,k,Λj,kqkPK1
j
, where the indexing sets Kj and K1

j are supposed disjoint. For k P K1
j we

set W
j,k

“ pW j,k,Λj,k ´ rjq. Note that these subtrajectories are parameterised counterclockwise.

Finally, set:

Pℓ,j
U :“

ÿ

kPK1
rj

δ
p´I

1prjq

α1
k

prjq
,Revpρj,k,ηj,k,W

j,k
qq
.

Our goal now consists in identifying the law of the pair :
ÿ

rjPJ pΛU q

δ
prj ,ρ

j
U ,η

j
U ,W

j
U ,P

ℓ,j
U ,Pr,j

U q
and

`

θℓxpWU qpρU , ηU ,WU q,Pℓ,0
U ,Pr,0

U

˘

.

In this direction, we setN˚pdξq :“ N pdξqe´ασ for the biased excursion measure and under E0bN˚

and E0 bN we consider pMℓ,Mrq a pair of point measures on R` ˆMf pR`q2 ˆWE such that,

conditionally on pJσ, qJσ, ξq, they are independent Poisson measures with respective intensities:

1
r0,x qJσ,1ys

puqduN
ξpHpκu

qJσqq,0
pdρ, dη, dW q, and 1r0,xJσ,1yspuqduNξpHpκuJσqq,0pdρ, dη, dW q.

(6.41)

Finally, for every 0 ă a ă σ, we write pMℓ
a,Mr

aq for the restrictions pMℓ1
r0,x qJa,1ys

,Mr1r0,xJa,1ysq

and recall the notation rα :“ N p1 ´ expp´ασqq. Now we can state:

Proposition 6.20. Under N‚
x,0, the random variable pΛU has density 1txą0u expp´xrαq with respect

to the Lebesgue measure in R. Further, the pair
´

OU :“
ÿ

rjPJ pΛU q

δ
prj ,ρ

j
U ,η

j
U ,W

j
U ,P

ℓ,j
U ,Pr,j

U q
,
`

θℓxpWU qpρU , ηU ,WU q,Pℓ,0
U ,Pr,0

U

˘

¯

is independent and the joint law is characterised by the following properties:

(i) The measure OU is a Poisson measure with intensity 1
r0,pΛU s

pyqdyE0bN˚ppJσ, qJσ, ξ,Mℓ,Mrq P

dzq.

(ii) The triplet
`

θℓxpWU qpρU , ηU ,WU q,Pℓ,0
U ,Pr,0

U

˘

is independent from pΛU and its law is charac-

terised by the relation:

N‚
x,0

´

F
`

θℓxpWU qpρU , ηU ,WU q,Pℓ,0
U ,Pr,0

U

˘

¯

“ E0
b N

´

ż σ

0
da e´aαF pJa, qJa, ξ

a,Mℓ
a,Mr

aq

¯

(6.42)

where to simplify notation we write ξa :“ pξt : 0 ď t ď aq.
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Observe that the right-hand side of (6.42) is essentially (6.39), the only difference being that

the atoms of Mℓ, Mr are not truncated at the exit time from Eztxu. We mention that we shall

as well identify the characteristic measure of OU in Proposition 6.37 below.

Proof. Let us start by identifying the law of pΛU under N‚
x,0 and proving that conditionally on

pΛU , the pair
´

ÿ

rjPJ pΛU q

δ
prj ,ρ

j
U ,η

j
U ,W

j
U q
, θℓxpWU qpρU , ηU ,WU q

¯

is independent, the measure being a Poisson point measure with intensity 1
r0,pΛU s

prqdrpE0 b

N˚qpdJσ, d qJσ, dξq. In this direction, we fix measurable functions g : R` ÞÑ R`, f : R` ˆ

Mf pR`q2 ˆ WE ÞÑ R` and F : Mf pR`q2 ˆ WE ÞÑ R`. This first statement will follow by

establishing that:

N‚
x,0

´

gppΛU q exp
`

´
ÿ

rjPJ pΛU q

fprj , ρ
j
U , η

j
U ,W

j
U q
˘

F
`

θℓxpWU qpρU , ηU ,WU q
˘

¯

“

ż 8

0
dy e´yrαgpyq exp

´

´

ż y

0
ds pE0

b N˚q
“

1 ´ exp
`

´ fps, Jσ, qJσ, ξq
˘‰

¯

¨ E0
b N

´

ż σ

0
da e´aαF pJa, qJa, ξ

a
q

¯

. (6.43)

To simplify notation, we shall henceforth suppose that the functions f and F only depend on

prj , ρ
j
U ,W

j
U q, and pρ0U ,W

0
U q respectively, the general case follows by the same type of arguments

we now describe. Under Πx,0, denote the excursion point measure of ξ by
ř

jPI δprj ,ξjq. With our

convention, the first moment formula of Lemma 6.17 gives that the left-hand side in the previous

display writes:

ż 8

0
da E0

b Πx,0

´

expp´αaqgpLaq ¨ exp
`

´
ÿ

rjăLa

fprj , ϕpJ8, τrj , τ
`
rj q, ξjq

˘

F
`

θℓxpξaqpJa, ξ
a
q
˘

¯

,

(6.44)

where we denoted by ϕpJ8, τrj , τ
`
rj q the measure under E0 b Πx,0 defined by the relation

ϕpJ8, τrj , τ
`
rj q :“

ż

J8pdhqfph ´ τrjq1tτrj ăhăτ`
rj u.

Now, since L is constant on the excursion intervals pτrj , τ
`
rj q, we can write (6.44) as:

E0
b Πx,0

´

ÿ

iPI
gpriq ¨ exp

`

´
ÿ

rjări

fprj , ϕpJ8, τrj , τ
`
rj q, ξjq

˘

exp
`

´ α
ÿ

rjări

σpξjq
˘

¨

ż σpξiq

0
da expp´αaqF pϕpJ8, τri , τri ` aq, pξit : 0 ď t ď aqq

¯

.

Hence, if we consider under P 0 an i.i.d. collection pJ iqiPI with same law as J8, by an application

of the compensation formula we get that the previous display writes:

ż 8

0
dy gpyqE0

b Πx,0

´

exp
`

´
ÿ

rjďy

ασpξjq ` fprj , J
j
σj , ξ

j
q
˘

¯

E0
b N

´

ż σpξq

0
da expp´αaqF pJa, ξ

a
q

¯

.
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To conclude, by the exponential formula we have

E0
bΠx,0

´

exp
`

´
ÿ

rjďy

ασpξjq`fprj , J
j
σj , ξ

j
q
˘

¯

“exp
´

´

ż y

0
ds pE0

bN q
“

1´exp
`

´ασ´fps, Jσ, ξq
˘‰

¯

,

and since rα “ N p1 ´ expp´ασqq, we deduce the desired identity (6.43).

To conclude the proof of the proposition we still need one argument. Recall that we write

pρ0U , η
0
U ,W

0
U q :“ θℓxpWU qpρU , ηU ,WU q. It remains to show that conditionally on the pair of vari-

ables ppΛU ,
ř

rjPJ pΛU q

δ
prj ,ρ

j
U ,η

j
U ,W

jq
, pρ0U , η

0
U ,W

0
U qq, the measures pPℓ,j

U ,Pr,j
U qjě0 are independent Pois-

son measure with respective intensities:

1
r0,xηjU ,1ys

puqduNW j
U pHpκuη

j
U qq,0pdρ, dη, dW q and 1

r0,xρjU ,1ys
puqduNW j

U pHpκuρ
j
U qq,0pdρ, dη, dW q.

(6.45)

With the notations of Proposition 6.17, recall that by the Markov property and (6.23), condi-

tionally on pρU ,WU q, the measure Pprq

U is a Poisson measure with intensity measure given by

1r0,xρU ,1ysduNWU pHpkuρU qq
pdρ, dη, dW q. For every j P N we set

mj “

ż

ρU pdhq1
pτ`

rj pWU q,8q
, m`

j “

ż

ρU pdhq1
pτrj pWU q,8q

.

It follows that the family of restricted measures Pprq

U 1pmj ,m
`
j q for j P N are, conditionally on

pρU ,WU q, independent Poisson measures with respective intensities

1pmj ,m
`
j qpuqduNWU pHpκuρU qq

pdρ, dη, dW q.

Finally, consider the mapping Gj defined by the relation Gjpu, ρ, η,W,Λq “ pu´mj , ρ, η,W,Λ ´

Λ0q and remark that Pr,j
U is precisely the image of Pprq

U 1pmj ,m
`
j q under Gj . Noting that xρjU , 1y “

m`
j ´ mj , we get from classic properties of Poisson measures and straightforward computations

that the intensity of Pr,j
U is given by the second measure in (6.45). The conditional law of pPℓ,j

U qjPN
follows by duality by similar arguments, we skip the details.

6.6 The excursion point process

In this section we turn our attention to the study of the family pρu,W uquPD of excursions away

from x. As in classic excursion theory of time-indexed Markov processes, to index this family,

we shall make use of an additive functional of the Lévy snake introduced in [82, Section 4]. To

this end, in this first section we shall recall its definition as well as some of its basic properties.

We state as well the so-called special Markov property, a spacial version of the classic Markov

property crucial for the study of the Lévy snake.

6.6.1 Additive functionals of the Lévy snake and the special Markov property

Let us start by introducing some notations that will be used from now on. Fix py, rq P E and an

arbitrary open subset D Ă E containing py, rq. For w P WE with wp0q “ py, rq, set

τDpwq :“ inf
␣

t P r0, ζws : wptq R D
(

,
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with the usual convention inftHu “ 8. With a slight abuse of notation, under Πy,r we write τD
for τDpξq :“ inftt ě 0 : ξt R Du. Unless stated otherwise, we will always assume that D fulfils:

Πy,rpτD ă 8q ą 0. (6.46)

Exit local time. The notions that we are about to present rely on some deterministic operations

on snake paths, that we shall now briefly introduce. For pρ, ωq P DpR`,Mf pR`q ˆEq, we define

the functional

V D
t pρ, ωq :“

ż t

0
ds1tζωsďτDpωsqu, t ě 0. (6.47)

Roughly speaking, the variable V D
t measures the amount of time the snake trajectory ω spent

in D up to time t. We write ΓDpρ, ωq for its right-inverse, viz. for the right-continuous process

defined for every s P r0, V D
σpωq

pρ, ωq
˘

as

ΓDs pρ, ωq :“ inf
␣

t ě 0 : V D
t pρ, ωq ą s

(

,

with the convention ΓDs pρ, ωq :“ σpωq, if s ě V D
σpωq

pρ, ωq. The truncation of pρ, ωq to D is the

element of DpR`,Mf pR`q ˆ Eq defined by the relation:

trD
`

ρ, ω
˘

:“ pρΓD
s pρ,ωq, ωΓD

s pρ,ωqqsPR`
.

Furthermore, if pρ, ωq P Sy,x, then trD
`

ρ, ω
˘

is still in Sy,x - we refer to Section 3.1 of [82] for a

more detailed discussion. Roughly speaking, trDpρ, ωq encodes the trajectories of pρ, ωq that stay

in D during their entire lifetime.

Recall that pρ,W q stands for the canonical process in DpR`,Mf pR`q ˆ WEq, and that it

takes values in Sy,r under Ny,r and Pµ,w, for pµ,wq P Θx with wp0q “ py, rq. To encode the

information gathered by the trajectories that stay in D, we introduce the following sigma field in

DpR`,Mf pR`q ˆ WEq

FD :“ σ
`

trDpρ,W qs : s ě 0
˘

. (6.48)

When working under P0,y,r and Ny,r, it will be implicitly assumed that the sigma field FD has

been completed with the respective negligible subsets – to simplify notation, we still denote it by

FD.

Now, consider pµ,wq P Θx satisfying that wp0q P D, and further assume that µptτDpwquq “ 0

if τDpwq ă 8. Then, under Pµ,w and Ny,r, there exists a continuous, non-decreasing process LD

with associated Lebesgue-Stieltjes measure dLD supported on tt P R` : xWt P BDu defined, for

every t ě 0, by the limit

LDt “ lim
εÑ0

1

ε

ż t

0
ds1tτDpWsqăHsăτDpWsq`εu (6.49)

where the convergence holds uniformly in compact intervals in L1pNy,rq and L1pPµ,wq. We refer

to Propositions 4.3.1 and 4.3.2 in [43] as well as Proposition 3 in [82] for a proof of this statement.

The process LD is called the exit local time from D. Heuristically, LDt measures the number of

connected components not containing the root of pHpr0, tsqztpHpsq : τDpWsq “ ζs, s ď tuu. In

particular, if inftt ě 0 : τDpW tq ă 8u “ 8, we have LDσ “ 0. It was established in Proposition 2

of [82] that under Ny,r and P0,y,r, the time-changed process

rLD :“
`

LDΓD
s

˘

sPR`
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is FD-measurable – note that in particular, this yields that the total mass LDσ is FD-measurable.

Finally, for latter use, we recall from [43, Proposition 4.3.2] the first moment formula:

Ny,r

ˆ
ż σ

0
dLDs Φpρs, ηs,W sq

˙

“ E0
b Πy,r

ˆ

1tτDă8u expp´ατDqΦ
`

JτD , qJτD , pξt : t ď τDq
˘

˙

.

The special Markov property. One of the key properties of the exit local time is that it can

be used to index the subtrajectories of pρ,W q that exit the domain D. Let us be more precise:

first, denote the connected components of the open set

␣

t ě 0 : τDpW tq ă ζt
(

by
`

pai, biq : i P I
˘

, where I is an indexing set that might be empty. Condition (6.46) and the first

moment formula of Lemma 6.17 ensure that under Ny,r and P0,y,r the set in the previous display

is non-empty with non-null measure. Recall that the processes ζ and H are indistinguishable and

note that for every i P I, we have τDpWaiq “ Hai “ Hbi with Hs ą Hai for every s P pai, biq.

In fact, Lemma 2 of [82] states that the multiplicity of pHpaiq is exactly 2. For every i P I, let
pρi,W

i
q be the subtrajectory of pρ,W q associated with the interval rai, bis (in the sense of Section

6.2.3) and with lifetime process given by ζi “ pζpai`sq^bi ´ τDpW aiqqsě0. By the snake property,

we have W
i
0p0q “ W

i
sp0q for every s P r0, bi ´ ais and note that W

i
0p0q P BD. We refer to the

collection ppρi,W
i
q : i P Iq as the family of subtrajectories of pρ,W q that exit the domain D.

Remark that each subtrajectory pρi,W
i
q encodes the labelled sub-tree of TH rooted at pHpaiq

and starting at the boundary point W
i
0p0q P δD. Now, set TD “ inftt ě 0 : τDpW tq ă 8u and

write

θr :“ inf
␣

s ě 0 : LDΓD
s

ą r
(

, for r P r0, LDσ q

for the right-inverse of rLD. Now we can state the special Markov property.

Theorem 6.21. [82, Theorem 3.1, Corolary 1] Under P0,y,r and Ny,rp¨ |TD ă 8q, conditionally

on FD, the point measure
ÿ

iPI
δ

pLD
ai
,ρi,W

i
q
pdℓ, dρ, dωq

is a Poisson point measure with intensity

1r0,LD
σ spuq duN

trDpxW, pΛqθu
pdρ, dωq,

where under P0,y,r, we have LDσ “ 8 a.s.

Note that in the previous statement we are relying crucially in the fact that rLD is FD mea-

surable.

The local time at x of pxWt : t ě 0q. Recall conditions (i’), (ii’) in the definition of Θx from

Section 6.2.3 and fix an arbitrary pµ,wq P Θx, py, rq P E. For every r ě 0, consider the open

domain Dr :“ Eztpx, rqu and to simplify notation, write

τrpwq :“ infth ě 0 : wphq “ px, rqu

for the exit time from Dr of w. We stress that in contrast with our previous discussion, w and

py, rq are arbitrary, and for instance we are no longer assuming that wp0q, py, rq P Dr. Under P:
µ,w
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and Ny,r, there exists a continuous, non-decreasing process A “ pAtqtPR`
null at 0 and defined

by the relation

At “ lim
εÓ0

1

ε

ż t

0
du

ż

R`

dr 1
tτrpWuqăHuăτrpWuq`εu

where the convergence holds uniformly in compact intervals in measure under Pµ,w and Ny,rp ¨ X

tσ ą zuq for every z ą 0. Moreover, the support of the Stieltjes measure dA, that we denote

by supp dA, satisfies supp dA Ď tt P r0, σs : xWt “ xu; we refer to [82, Section 4.2] for a proof

of this statements. For this reason, the process A is called the local time at x of xW . A useful

consequence of the fact that dA is supported on the subset tt P r0, σs : xWt “ xu is that under

P:

µ,w, we can decompose Aσ in the contributions made by each sub-trajectory attached to the

spine pµ,wq. More precisely, let It “ infr0,tsxρ, 1y ´ xµ, 1y for t ě 0, and write pαi, βiqiPN the

excursion intervals of xρ, 1y over its running infimum. We denote the subtrajectory associated

with the interval pαi, βiq by pρi,W iq. If we set M “
ř

iPN δp´Iαi ,ρ
i,W

i
q
, we can write

Aσ “
ÿ

iPN
Aσpρi,W

i
q, P:

µ,w– a.s. (6.50)

We refer to the remark following [82, Lemma 9] for a proof of this identity. This identity will

be used in the following setting. For s P r0, σsztt P r0, σs : xWt “ xu, we shall write upsq for the

unique debut u P D satisfying that pHpsq P Cu - note that the unicity is a consequence of Lemma

6.7 - and for w P WE,x, we recall the notation ℓxpwq for the last passage time to x of w. As

a consequence of identity (6.50) we infer the following lemma, that we state for latter use, and

whose proof might be skipped in a first lecture:

Lemma 6.22. Under Nx,0 and for s P p0, σq, recall the notation Ppℓq
s ,Pprq

s for the left and right

spines at time s in the sense of Section 6.5.1. For every j P Js, i P Is we write hj :“ Hpκtjηsq,

hi :“ Hpκtiρsq and note that in particular we have hj “ Hαj , hi “ Hαi. For any non-negative

measurable functions g1, g2 on R and F on Mf pR`q ˆ WE, we have

Nx,0

´

ż σ

0
ds g1pAgpupsqqqF pρs,Wsqg2pAσ ´ Adpupsqqq

¯

“ Nx,0

´

ż σ

0
ds g1

`

ÿ

hjăℓxpWsq

Aσpρj ,W j
q
˘

F pρs,Wsqg2
`

ÿ

hiăℓxpWsq

Aσpρi,W i
q
˘

¯

.

Note that despite the fact that upsq is not defined for s in the set tt P r0, σs : xWt “ xu, the

identity in last display is well defined since we have Nxp
şσ
0 ds1txWs“xu

q “ 0 by Lemma 6.17 and

pH2q.

Proof. First, note that for every fixed s P p0, σq, on the event txWs ‰ xu we can write dpupsqq “

inftt ą s : Ht “ ℓxpWsqu. Using the fact that ρsptℓxpWsquq “ 0 as well as the strong Markov

property, the latter coincides with inftt ą s : Ht ă ℓxpWsqu. By an application of the strong
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Markov property and the identity (6.50) we infer that

Nx,0

´

ż σ

0
ds g1pAgpupsqqqF pρs,Wsqg2pAσ ´ Adpupsqqq

¯

“ Nx,0

´

ż σ

0
ds g1pAgpupsqqqF pρs,Wsqg2

`

ÿ

hiăℓxpWsq

Aσpρi,W i
q
˘

¯

“ Nx,0

´

ż σ

0
ds g1pAgpupσ´sqqqF pρσ´s,Wσ´sqg2

`

ÿ

hiăℓxpWσ´sq

Aσpρi,W i
q
˘

¯

.

Now, recall the identity in distribution (6.22) and note that we can write

Agpupσ´sqq “ Aσpηpσ9‚ q´,W σ9‚q ´ Adpupsqqpηpσ9‚ q´,W σ9‚q.

where the of debut in the previous display and the functionals g, d should be considered with

respect to the time reversed process pησ9‚´,Wσ9‚q. The proof of the lemma now follows by making

use of the same reasoning as before for the time-reversed process pηpσ´sq´,Wσ´s : 0 ď s ď σq.

We now turn our attention to the support of dA and its connection with the family of debuts.

In this direction, we recall from [82, Proposition 8] that the support of the measure dA can be

fully characterised both in terms of the constancy intervals of pΛ “ ppΛt : t ě 0q, and in terms

of a family of random times of the Lévy snake called exit times from x. More precisely, a time

t P r0, σs is called an exit time from x for pρ,W q if xWt “ x and there exists some s ą t such that

Ht ă Hr, for every r P pt, ss.

We denote by Exitpxq the collection of exit times from x. On the other hand, we write C˚ for

the subset of R` defined by the relation: t P C˚ if and only if pΛ is constant on some open

neighbourhood of t. Then, Proposition 8 in [82] states that for every pµ,wq P Θx, py, rq P E,

under Pµ,w and Ny,r, a.e. we have

supp dA “ r0, σszC˚
“ Exitpxq. (6.51)

We refer to [82, Proposition 8] for a proof of this statements as well as for equivalent formulations.

In fact, a closer look to the identity in the last display yields the following result:

Corollary 6.23. Under Pµ,w and Ny,r, a time t ě 0 is a point of left (resp. right) increase for

A if and only if for every ε ą 0, we can find s P pt´ ε, ts (resp. s P rt, t` εq) such that pΛs ‰ pΛt.

In the sequel, we will make use of A to index the family of excursions; namely, we will work

with the family of pairs pAgpuq, pρ
u,W uqq. It will be crucial for our purposes to prove that the

set tgpuq : u P Du belongs to supp dA and to have a description of this set in terms of the pair

pH,Λq. To this end, we introduce the notion of a debut time for the Lévy snake:

Definition 6.24. A time t P r0, σs is called a debut time for pρ,W q if it satisfies the following

properties:

(i) There exists s ą t such that Ht ă Hr for every r P pt, ss, and pΛs “ pΛt.

(ii) For every δ ą 0, we have inf
ppt´δq`,ts

pΛ ă pΛt.
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The family of debut times is denoted by D˝.

We stress that under Ny,r, condition (ii) does not hold for neither 0 nor σ and therefore t0, σu

are not a debut times. Analogously, under P0,y,r the point 0 is not a debut time. The following

lemma justifies our terminology.

Lemma 6.25. Under P0,y,r and Ny,r, the mapping g : D ÞÑ p0, σq is a bijection between excursion

debuts and debut times, and its inverse is given by pH .

Proof. We shall only prove the statement under Nx,0. Recall that under Nx,0, a.e. the process

pρ,W q takes values in Θx. Consider a measurable subset Ω0 of DpR`,Mf pR`q ˆ WEq at which

this property holds for every pρ, ωq P Ω0 and work for fixed pρ, ωq P Ω0. We shall start by proving

that gpDq Ď D˝, and then proceed to show that the mapping g : D ÞÑ D˝ is bijective with inverse

pH : D˝ Ñ D.

First, consider an arbitrary u P D and let us show that gpuq P D˝. Condition (ii) in Definition

6.6 yields that we can find s P pgpuq, dpuqq such that we have Wsphq ‰ x for h P pHgpuq, Hss.

In particular, the path Λs is constant on rHgpuq, Hss and therefore pΛgpuq “ pΛs. Since u is not

a branching point, it must hold that Hr ą Ht for every r P pt, ss which shows that Definition

6.24-(i) is fulfilled by gpuq. Still for s as before, by condition (i) in Definition 6.6, we have

x “ xWgpuq “ WspHgpuqq and since Wsphq ‰ x for h P pHgpuq, Hss it must hold that Hgpuq is a time

of left increase for the path Λs. This gives that ΛsppHgpuq ´ δq`q ă ΛspHgpuqq for every δ ą 0.

Now, since u is not a branching point, gpuq can not be a local infimum for H and we get that

infr0,pgpuq´δq`s H ă Hgpuq for every δ ą 0. Now, by the snake property we deduce that (ii) holds.

Let us now prove that the mapping g : D Ñ D˝ is surjective. In this direction, consider an

arbitrary t P D˝ and let us show that u :“ pHptq is an excursion debut. This proves that the

mapping g is surjective since it is plain that g ˝ pHptq “ t; indeed, since t fulfils condition (i)

of Definition 6.24, for d : D Ñ p0, σq as in (6.24) we necessarily have d ˝ pHptq ą t. First, by

considering s as in Definition 6.24 - (i) and arguing as before, the snake property yields that
xWt “ x and that Wsphq ‰ x for h P pHt, Hsq. If we set w :“ pHpsq, we infer that w ą u with

Lw “ Lu and ξa ‰ x for every a PKu,wJ. It readily follows from the fact that Hs ą Ht and the

support properties of local times that we can further find w1 with w ą w1 ą u such that ξa ‰ x

for every a PKu,w1K, proving that condition (ii) of Definition 6.6 holds. The fact that g is injective

is clear since pH ˝ gpuq “ u by definition of gpuq; this concludes the proof of the lemma.

Note however that in the previous lemma we worked with a restricted subset of initial condi-

tions, which leads us to the following remark.

Remark 6.26. Under Pµ,w for an arbitrary starting condition pµ,wq P Θx with ζw ą 0, the

definition of excursion debuts D given in Definition 6.6 still make sense, but a priori we no longer

have a bijection between D and D˝. Indeed, for every excursion away from x of the starting

condition w we have an excursion debut u in the sense of Definition 6.6, but now the variables

gpuq, dpuq coincide and gpuq is no longer an element of D˝. Therefore, it will be convenient to

extend the definition of D under Pµ,w, P:

µ,w or Ny,r by the relation

D :“ pHpD˝
q.

In particular, the set D considers only debuts that will be visited twice by the exploration t ÞÑ

pHptq - which was always the case under P0,y,r,Ny,r. Note that if we take pµ,wq “ p0, y, rq or py, rq,
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by Lemma 6.25 this definition is consistent with Definition 6.6. Moreover, with this definition

the statement of Lemma 6.25 now holds as well under Pµ,w. Under Pµ,w and for every u P D, we

shall still write gpuq, dpuq for respectively inftt ě 0 : pHptq “ uu and suptt ě 0 : pHptq “ uu, and

we set pρu,W uq :“ tr˚

`

Tgpuqpρ,W q
˘

for the respective excursion.

We now turn our attention to a technical lemma summing up two important properties of

debut times.

Lemma 6.27. Under Pµ,w and Ny,r, for every pµ,wq P Θx and py, rq P E, every debut time

t P D˝ is an element of Exitpxq and a point of left increase for A.

Proof. One easily gets from the arguments employed in the proof Lemma 6.25 (or as a straight

consequence of the latter) that under Pµ,w and Ny,r for pµ,wq P Θx, py, rq P E, if t is a debut

time, it must hold that xWt “ x. Therefore every debut time belongs to Exitpxq. Moreover, under

Pµ,w and Ny,r, by (ii) and Corollary 6.23 any debut time is a point of left-increase for A.

The genealogy of the excursions pρu,W uquPD can be encoded in a random tree that was studied

in [82]. To this end, we shall now briefly recall its definition as well as some of the main results

obtained in this work. Much of the effort in [82] was directed towards studying the structure of

the following random subset of TH

Z “ tυ P TH : ξυ “ xu.

Since the image under pH of tt P r0, σs : xWt “ xu is precisely Z, the study of the latter is closely

related with the additive functional A that we just introduced. First, we shall introduce a random

tree that encodes the genealogical structure of Z. In this direction, since the mapping a ÞÑ La in

non-decreasing in TH , this can be achieved by making use of the notion of subordination of trees

by non decreasing functions introduced in [66]. Namely, we define a pseudodistance in TH by the

relation

dLpa, bq :“ La ` Lb ´ 2LaNb, a, b P TH

and we for any a, b P TH , we shall write a „L b if and only if dLpa, bq “ 0. It readily follows that „L
is an equivalence relation on TH . Now, by [66, Proposition 4] the metric space T L

H :“ pTH{ „L, dLq

is still a tree. Heuristically, this tree is obtained by contracting the excursion components pCuquPD

in TH in a single point. If we write pL for the canonical projection mapping any element of TH
to its equivalence class in T L

H , by convention T L
H is rooted at pLp0q. In the terminology of [66],

we refer to T L
H as the tree obtained by subordinating TH by the local time pLaqaPTH

. For a more

detailed account, we refer to [66, 82]. By construction, the tree T L
H encodes the genealogy of the

elements in the set Z, and in the sequel we shall argue that it can be used as well to (partially)

encode the genealogy of the excursions away from x. Recalling our discussion on trees coded by

continuous functions, since T L
H was constructed explicitly in terms of pρ,W q, it is then natural to

ask for an explicit coding function for the tree T L
H given in terms of the Lévy snake. This leads

us to the following result:

Theorem 5.1-(i) in [82]. Under Nx,0, the subordinate tree of TH with respect to the local time

L, that we denote by T L
H , is isometric to the tree coded by the continuous function ppΛA´1

t
: t ě 0q.
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Let us now turn our attention to the Markovian character of T L
H . Set E˚ :“ Eztxu ˆ R`, for

λ ě 0 write uλpyq :“ Ny,0p1´expp´λLE˚
σ qq and we define a function rψ : R` ÞÑ R by the relation:

rψpλq “ N
´

ż σ

0
dh ψ

`

uλpξhq
˘

¯

, for λ ě 0. (6.52)

By [82, Proposition 5], the function rψ is the characteristic exponent of a Lévy tree - in the sense

that it is the Laplace exponent of a Lévy process satisfying conditions (A1) - (A4). Therefore, rψ

writes as (6.1) for some coefficient rα, rβ P R` and a Lévy measure rπ. Further, by [82, Corollary2]

the Gaussian component rβ is null, and the drift is given by rα “ N p1 ´ expp´ασqq.

Now, consider in another probability space a Lévy process rX with exponent rψ. We write rN

for its excursion measure and rH for the corresponding height process. In particular, the tree T
rH

coded by rH under rN is a rψ-Lévy tree. Finally, we can state the main result of Section 5 in [82].

Theorem 5.1-(ii) in [82]. With the notations introduced above, we have the equality in distri-

bution
´

p rHt : t ě 0q, under rN
¯

pdq
“

´

`

pΛA´1
t

: t ě 0
˘

, under Nx,0

¯

. (6.53)

In particular, T L
H is a Lévy tree with exponent rψ.

6.6.2 The Poisson point process of excursions

Recall the (extended) definition for the set of debuts D under Pµ,w and Ny,r, for pµ,wq P Θx and

py, rq P E from Remark 6.26 as well as the notation gpuq :“ inftt P r0, σs : pHptq “ uu for u P D,

and write pρu,W uq for the corresponding excursion. Finally, recall the definition of the measure

N˚
x from Section 6.4. We are now in position to state the main result of this work.

Theorem 6.28. For every pµ,wq P Θx, under Pµ,w the measure

E :“
ÿ

uPD

δpAgpuq,ρu,Wuq

is a Poisson measure on R` ˆ DpR`,Mf pR`q ˆ WEq with intensity dt b N˚
x.

As a byproduct of our reasoning, we shall deduce that when ψpλq “ λ2{2, the spatial motion

is a real Brownian motion and x “ 0, the measure N˚
0 coincides with the excursion measure

introduced in [1]. Theorem 6.28 shares striking similarities with the celebrated result by Itô in

the time-indexed setting, where now the role of the local time is taken over by pAtqtPR`
. The

measure E is referred to as the point process of excursions away from x, or in short, the excursion

process of pξaqaPTH
. The next two sections are devoted to the proof of this result and its proof is

broken down in two main steps:

Step 1: Showing in Proposition 6.30 and Corollary 6.31 that under Pµ,w, the measure E is a

Poisson measure on R` ˆ DpR`,Mf pR`q ˆ WEq with intensity dt b pN˚
x, where

pN˚
x is

a sigma-finite measure on DpR`,Mf pR`q ˆ WEq that does not depend on pµ,wq.

Step 2: Proving that pN˚
x is precisely the measure N˚

x introduced in Section 6.4. This identifica-

tion is done in Proposition 6.33.
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In this section, we shall prove the first step and we postpone the proof of the second step to the

next section. In fact, we are going to prove a more precise version of Theorem 6.28: in Proposition

6.30 and Corollary 6.31, we establish that E is a Poisson measure with respect to a filtration pGrq
that we now introduce.

The filtration of the excursion process. We shall work under Pµ,w for an arbitrary initial

condition pµ,wq P Θx. To simplify notation, for every r ě 0 we shall write pρAr ,W
A
r q for pρ,W q

at time A´1
r . Consider pI

prq
s : s ě A´1

r q, the running infimum of pxρs, 1y ´ xρAr , 1y : s ě A´1
r q

and set T :“ inftt ě A´1
r : xρs, 1y “ 0u. Denote the excursion intervals of pxρs, 1y ´ xρAr , 1y :

A´1
r ď s ď T q over its running infimum by pαi, βiqiPN, write pρi,W

i
qiPN for the the corresponding

sub-trajectories, and consider the measure

ÿ

iPIA
r

δ
p´I prq

αi ,ρ
i,W

i
q
. (6.54)

By the strong Markov property, and more precisely the discussion preceding (6.23), conditionally

on FA´1
r
, the measure in the previous display is a Poisson measure with intensity given by

1r0,xρAr ,1yspsqds NW
A
r pHpκsρAr qq

pdρ, dW q.

Recall the notation tr˚pρi,W
i
q for the truncation of pρi,W

i
q at its first return time to x and set:

Gr :“ FA´1
r

_ σ
´

ÿ

iPIA
r

δ
p´I prq

αi ,tr˚pρi,W
i
qq

¯

.

In the sequel, for each pµ,wq as before, when working under Pµ,w it will be implicitly assumed

that we work with the filtration pGrq completed with the set of Pµ,w negligible subsets, and we

still denote it the same. Now, let us write E1r0,rs resp. E1r0,rq for the restriction of E to the atoms

pAgpuq, ρ
u,W uq satisfying that Agpuq ď r resp. Agpuq ă r.

Lemma 6.29. For every pµ,wq P Θx, under Pµ,w and for every fixed r ě 0, we have that

E1r0,rs “ E1r0,rq a.s. Moreover, the measure E1r0,rs is Gr - measurable.

Proof. For the rest of the proof, we work for some fixed r ě 0. Writing D :“ DpR`,Mf pR`q ˆ

WEq, let us start by showing that Pµ,w a.s. we have Eptru ˆ Dq “ 0. First, remark that

neither A´1
r nor A´1

r´ are debut times: by the strong Markov property at time A´1
r , we have that

infrA´1
r ,ts H ă HA´1

r
for any t ą A´1

r , which gives that A´1
r is not an element of Exitpxq. In our

reasoning we used that by Lemma 6.4, we have ρAr ptHA
r uq “ 0 since xWA

r “ x; remark that the

same argument holds if we consider instead A´1
r´. Further, since by Lemma 6.25 the point gpuq

is a debut time, Corollary 6.23 yields that gpuq P supp dA and therefore, no debut time gpuq

can fall in the interval pA´1
r´, A

´1
r q. Now, since A´1

r is a point of right-increase for A, for every

gpuq ą A´1
r we have that Agpuq ą AA´1

r
“ r. Analogously, A´1

r´ is a point of left-increase for A

and by a similar reasoning we get that for every gpuq ă A´1
r´, we have Agpuq ă AA´1

r´
“ r. This

proves that for every fixed r ě 0, a.s. we have Eptru ˆ Dq “ 0.

It remains to show that E1r0,rq is Gr-measurable - modulo considering another enumeration of

its atoms. We fix one element pAgpuq, ρ
u,W uq P E1r0,rq and observe it must hold that gpuq ă A´1

r´.

From the definition of excursion debut-times and crucially point 2 of Lemma 6.27 it follows that
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the family tpgpuq, Agpuqq : gpuq ă A´1
r´u is Gr-measurable. The same holds for the family of

excursions pρu,W uq satisfying that dpuq ă A´1
r and it remains to prove that the same holds for

those satisfying gpuq ă A´1
r ď dpuq ă inftt ě A´r

r : ρt “ 0u. However, this follows from the fact

that in that case, the corresponding excursion can be recovered in terms of pρt,Wt : t ď A´1
r q

and the (truncated) right spine
ř

iPIA
r
δ

p´Iαi ,tr˚pρi,W
i
qq
, by making use of the snake property and

standard arguments from excursion theory. We leave the details to the reader.

We introduce the shift operator θr on E , defined for every fixed r ą 0 by the relation

θrE :“
ÿ

uPD,Agpuqąr

δpAgpuq´r,ρu,Wuq.

Note that θrE is pρA´1
r `t,WA´1

r `t : t ě 0q - measurable, and that by Lemma 6.29, in the last

display one can change the strict inequality Agpuq ą r by Agpuq ě r.

Proposition 6.30. Under P0,x,0 the measure E is a pGrq - Poisson measure on R`ˆDpR`,Mf pR`qˆ

WEq with intensity dt b pN˚
x, where

pN˚
x is a sigma-finite measure on DpR`,Mf pR`q ˆ WEq.

Proof. For every arbitrary measurable subset U Ă DpR`,Mf pR`qˆWEq, we consider the r0,8s-

valued process

NU prq :“ E
`

r0, rs ˆ U
˘

“ #
␣

pAgpuq, ρ
u,W u

q P E : Agpuq ď r and pρu,W u
q P U

(

, r ě 0

and we set pN˚
xpUq :“ E0,x,0pNU p1qq. The proof of the proposition mainly consists in establishing

the two following properties:

(i) For every measurable U Ă DpR`,Mf pR`q ˆ WEq such that NU ptq ă 8 for t ě 0, NU is a

pGrq - Poisson process with rate N˚
xpUq.

(ii) For every disjoint measurable subsets U1, . . . ,Un ofDpR`,Mf pR`qˆWEq such thatN˚
xpUiq ă

8, the processes NU1
, . . . , NUn

are independent.

It will then follow from classic arguments that pN˚
x is a sigma-finite measure on DpR`,Mf pR`q ˆ

WEq and that E is a Poisson measure in R` ˆ DpR`,Mf pR`q ˆ WEq with intensity dt b pN˚
x.

Let us start by addressing (i). It suffices to show that NU is a counting process and that

it is a pGrq - Lévy process; viz. NU is pGrq-adapted and for every fixed r ě 0, the process

pNU pt` rq ´NU prq : t ě 0q is independent of Gr and with same distribution as NU under P0,x,0.

Starting with the former, from our definitions it is clear that NU is non-decreasing and that it

takes values in the non-negative integers. Therefore, it remains to show that it only has jumps of

unitary size, which boils down to proving that if u1, u2 P D are distinct, we have Agpu1q ‰ Agpu2q.

But now, this fact is an immediate consequence of Lemma 6.27. Let us now show that NU is a

pGrq-Lévy process. In this direction, by Lemma 6.29 the process NU is pGrq-adapted and notice

that for every fixed r ě 0, we can write

NU pr ` hq ´ NU prq “ E
`

pr, r ` hs ˆ U
˘

“ θrE
`

r0, hs ˆ U
˘

, for h ě 0.

Now, remark that the first point (i) will follow as soon as we prove that the measure θrE is

independent from Gr and distributed as E under P0,x,0, since this gives that for every bounded

Gr-measurable function Φ we have

E0,x,0

´

Φ ¨ F
`

θrE
`

r0, hs ˆ U
˘

, h ě 0
˘˘

¯

“ E0,x,0pΦq ¨ E0,x,0

´

F
`

E
`

r0, hs ˆ U
˘

, h ě 0
˘

¯

, (6.55)
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where F is an arbitrary non-negative measurable function on DpR`,Rq. To achieve this, we shall

encode θrE in terms of a point measure independent from Gr. Still under P0,x,0, consider the

measure (6.54) and we introduce the process:

Vt :“
ÿ

iPIA
r

LE˚

t^βi´t^αi
pρi,W

i
q, t ě 0. (6.56)

Note that V8 is Gr-measurable since for every i P IAr , by [82, Proposition 3] LE˚
σ pρi,W iq is

tr˚pρi,W
i
q-measurable, and that V8 ă 8 by. For every i P IAr , let pρi,k,W

i,k
qkPKi

be the

sub-trajectories of pρi,W i,Λi ´ Λi0q escaping the domain E˚ and write pai,k, bi,kqkPKi
for the

respective excursion intervals. Note that in the time scale of ppρs,W sq : s ě 0q, the excursion

pρi,k,W i,k,Λi,k ` Λi0q is the subtrajectory associated to the interval rαi,k, βi,ks, where αi,k :“

αi ` ai,k and βi,k :“ αi ` bi,k. An application of the strong Markov property combined with the

special Markov property [Theorem 6.21] yields that conditionally on Gr, the measure:
ÿ

iPN,kPKi

δ
pVαi,k

,ρi,k,W
i,k

q

is a Poisson point measure with intensity 1r0,V8sppqdp Nx,0pdρ, dW q. Next, set T :“ inftt ě

A´1
r : xρt, 1y “ 0u and remark that by the strong Markov property, the process pρt,Wt : t ě T q is

distributed P0,x,0 and is independent from FT - and in particular, independent from the measure

in the previous display. If we write pci, diqiPN for the sub-collection of excursion intervals away

from 0 of xρ, 1y occurring in rT,8q, it follows from our previous observation, excursion theory

and by conditioning with respect to Gr, that the measure

M1
“

ÿ

iPN,kPKi

δ
pVαi,k

,ρi,k,W
i,k

q
`
ÿ

iPN
δ

pV8´Ici ,ρ
i,W

i
q

is a Poisson measure independent from Gr, with intensity dt b Nx,0. In particular, it has the

same distribution as the measure M defined in (6.21) under P0,x,0. Let us now infer from these

observations that θrE is M1-measurable and distributed as E under P0,x,0. To do so, it suffices

to argue that both measures θrE and E under P0,x,0 can be written in terms of a functional of

M1 and M respectively, this functional being the same for both. First, by classical arguments

from excursion theory we can recover the Lévy Snake pρ,W q from M and, since M1 has the same

distribution as M, by the same procedure we can construct from M1 a process pρ1,W
1
q with same

distribution as pρ,W q. Let D1 be the excursion debuts of pρ1,W
1
q, write pρ1u1

,W 1u1

qu1PD1 for the

corresponding family of excursions, and set

Epρ1,W
1
q “

ÿ

u1PD1

δpAgpu1qpρ1,W 1q,ρ1u1 ,W 1u1
q

for the associated excursion process. Note from our construction that there exists a bijection

between tu P D : gpuq ě A´1
r u and D1 satisfying that, for every debut point u in the set

tu P D : gpuq ě A´1
r u, we can find u1 P D1 with W u “ W 1u1

. Moreover, for such a pair u, u1 it

holds that

Agpuqpρ,W q ´ r “ Agpu1qpρ
1,W

1
q.

Let us stress however that the processes pAA´1
r `t ´ r : t ě 0q and Apρ1,W

1
q differ. To obtain the

identity in the previous display we used (6.50) combined with the fact that pρA´1
r
,WA´1

r
q belongs
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to Θx. This shows that θrE is precisely Epρ1,W 1q, and therefore it is distributed as E under P0,x,0.

Since M1 is independent of Gr, equality (6.55) holds, concluding the proof of (i).

To establish the second point (ii), note that a slight variation of our previous argument gives

that pNU1
, . . . , NUn

q has independent and stationary increments. Hence, to show that the Poisson

processes NU1
, . . . , NUn

are independent, it suffices to show that they jump at different times.

But once again, this property follows immediately from the fact that if u1, u2 P D are distinct,

we have Agpu1q ‰ Agpu2q.

To conclude that E under P0,x,0 is a Poisson measure with intensity dtb pN˚
x we still need one

argument. If for arbitrary δ ą 0 we set Uδ :“ tpρ, ωq P DpR`,Mf pR`q ˆ WEq : σpωq ą δu, we

have NUδ
ptq ă 8 for every t ě 0 and therefore E0,x,0pNUδ

p1qq ă 8. Indeed, this can be deduced

from observing that
ÿ

uPD

σpW u
q1tAgpuqďru ď inftt ą A´1

r : xρt, 1y “ 0u ă 8.

Since U “ Yδą0Uδ, we deduce from standard arguments that pN˚
x is a sigma-finite measure on

DpR`,Mf pR`q ˆ WEq and that under P0,x,0, the measure E is a Poisson measure with charac-

teristic measure dt b pN˚
x.

Let us now extend the previous result under Pµ,w.
Corollary 6.31. For every pµ,wq P Θx, under Pµ,w the measure E is a pGrq-Poisson measure on

R` ˆ DpR`,Mf pR`q ˆ WEq with intensity dt b pN˚
x and therefore, with same distribution as E

under P0,x,0.

We stress that the characteristic measure of E under Pµ,w does not depend on the choice of

pµ,wq.

Proof. We work for a fixed arbitrary initial condition pµ,wq P Θx. The proof follows from very

similar arguments to the ones employed in Proposition 6.30, so we will only give a brief sketch.

Consider two disjoint indexing sets I, J and denote the excursion intervals of xρ, 1y ´ xµ, 1y over

its running infimum I “ pIt : t ě 0q occurring before time T “ inftt ě 0 : xρ, 1y “ ´xµ, 1yu by

pαi, βiqiPI , and by pci, diqiPJ those falling in rT,8q. We write pρi,W
i
qiPIYJ for the corresponding

sub-trajectories. For every i P I, we denote the excursions of pρi,W i,Λi ´ Λi0q outside E˚ by

pρi,k,W
i,k

qkPKi
. If we let pVtq be the process defined as in (6.56) in terms of pρi,W

i
qiPI , the

measure
ÿ

iPN,kPKi

δ
pVαi,k

,ρi,k,W
i,k

q

is a Poisson point measure with intensity 1r0,V8sppqdp Nx,0pdρ, dW q.

Next, let us first assume that wp0q ‰ x and recall the notation w “ pw, ℓq. Then, by the

strong Markov property, the process ppρT`t,WT`tq : t ě 0q is independent of FT and has law

P0,y,0. Every pρi,W
i
q with i P J , is then an excursions away from p0, y, ℓp0qq. For every such

excursion, we denote the subtrajectories of pρi,W i,Λi ´ ℓp0qq outside E˚ by pρi,k,W
i,k

qkPKi
and

we write the corresponding excursion intervals by pci,k, di,kqkPKi
. If we let pV ˚

t q be the process

defined as in (6.56) in terms of pρi,W i,Λi ´ ℓp0qqiPJ , the measure

M1
“

ÿ

iPI,kPKi

δ
pVαi,k

,ρi,k,W
i,k

q
`

ÿ

iPJ ,kPKi

δ
pV8`V ˚

ci,k
,ρi,k,W

i,k
q

(6.57)
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is a Poisson measure with intensity dt b Nx,0. Therefore, if we write pρ1,W
1
q for the Lévy snake

constructed in terms of M1, the law of pρ1,W
1
q under Pµ,w is P0,x,0. In particular, if we denote

the excursion process of pρ1,W
1
q by Epρ1,W

1
q, we infer that the distribution of Epρ1,W

1
q is the

one of E under P0,x,0. Moreover, arguing as in the proof of Proposition 6.30 we deduce that under

Pµ,w we have the a.s. equality E “ Epρ1,W
1
q.

Let us now assume that wp0q “ x. Then, the shifted process pρT`t,W T`t : t ě 0q is indepen-

dent of FT , its law is P0,x,ℓp0q and the process p´IT`t ` IT : t ě 0q is a local time. Now, to prove

that E is a Poisson point process with intensity dtb pN˚
x we can proceed as before by considering

instead of (6.57) the following measure

M
2

“
ÿ

iPN,kPKi

δ
pVαi,k

,ρi,k,W
i,k

q
`
ÿ

iPN
δ

pV8´Ici`IT ,ρi,W
i
´ℓp0qq

, (6.58)

which is a Poisson measure with intensity dt b Nx,0.

The fact that E is a pGrq-Poisson point process follows from very similar arguments as in

Proposition 6.30, we skip the details.

6.6.3 Identification of the intensity measure

The objective of this section is to show that the measure pN˚
x is precisely N˚

x. Recall from Lemma

6.9 that for every fixed u P D, the process pLaqaPTH
is constant on Cu and that we write ℓu for its

value. Recall as well the notation pΛAr for pΛ at time A´1
r . Under Ny,r, the measure E is no longer

a Poisson measure but we still have the following averaging formula:

Proposition 6.32. For every fixed py, rq P E and every non-negative measurable functions Φ :

DpR`,Mf pRq ˆ WEq ÞÑ R` and g : R2 ÞÑ R`, we have

Ny,r

´

ÿ

uPD

gpAgpuq, ℓuqΦpρu,W u
q

¯

“ Ny,r

´

1tAσą0u

ż Aσ

0
dr gpr, pΛAr q

¯

pN˚
xpΦq. (6.59)

Let us start by commenting on some important consequences of this result. In this direction,

recall the notation rN for the excursion measure of a reflected Lévy process with characteristic

exponent rψ and write rH for the corresponding height process. By the identity in distribution

(6.53) the process ppΛAr : 0 ď r ď Aσq under Nx,0 has the same distribution as p rHs : 0 ď s ď σq

under rN . Now, it immediately follows from this fact, Corollary 6.32 and 6.17 that for every

measurable non-negative function g on R` we have

Nx,0

´

ÿ

uPD

gpℓuqΦpρu,W u
q

¯

“

ż 8

0
da expp´rαaqgpaqpN˚

xpΦq. (6.60)

where we recall that rα stands for the drift coefficient of rψ. When the spatial motion ξ is a

Brownian motion, TH is the Brownian tree and x “ 0, identity (6.60) was already obtained in [1,

Theorem 23] by different methods for an excursion measure introduced in [1, Theorem 23], and

(6.60) proves that the latter coincides with pN˚
0. Another important consequence of (6.60) is that

the measure pN˚
x is invariant under the time-reversal operation Trev on DpR`,Mf pR`q2 ˆWEq,

defined by the relation Trev : pρ,η, ωq ÞÑ pηpσ9‚q´,ρpσ9‚q´, ωσ9‚q. More precisely, by duality

(6.22) under Nx,0 we have :

Nx,0

`

ÿ

uPD

gpℓuqΦpW u, ρu, ηuq
˘

“ Nx,0

`

ÿ

uPD

gpℓuqΦpTrevpW u, ρu, ηuqq
˘

,
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and an application of (6.60) yields the equality pN˚
x,0pF pρ, η,W qq “ pN˚

x,0pF pTrevpρ, η,W qqq.

Proof. First, fix an arbitrary initial condition pµ,wq P Θx with pwp0q, ℓp0qq “ py, rq and Hpµq ą 0.

The first step consists in showing that (6.59) holds if we replace Nx,0 by P:

µ,w, and σ by T0 :“

inftt ě 0 : xρ, 1yt “ 0u. In this direction, we shall argue under Pµ,w and further assume that the

function g is bounded and compactly supported. Since the process ppΛAr qrPR`
is continuous and

adapted to pGrq, it is pGrq-predictable and for every u P D we can write ℓu “ pΛgpuq “ pΛAAgpuq
.

Now, by Corollary 6.31 the measure E is a pGrq-Poisson point process with intensity dtb pN˚
x and

hence

Eµ,w
´

ÿ

uPD

gpAgpuq, ℓuqΦpρu,W u
q

¯

“ Eµ,w
´

ÿ

uPD

gpAgpuq, pΛ
A
Agpuq

qΦpρu,W u
q

¯

“ Eµ,w
´

ż 8

0
dr gpr, pΛAr q

¯

pN˚
xpΦq. (6.61)

The goal now consists in computing

Eµ,w
´

ÿ

uPD

gpAgpuq, ℓuqΦpρu,W u
q1tAgpuqąAT0u

¯

.

To make our arguments precise it will be convenient to introduce the shift operator θr for r ą 0

on DpR`,Mf pR`q ˆ WEq, defined by the relation θrpρ, ωq “ pρr`t, ωr`t : t ě 0q. In particular,

the additive property of A writes for every s, t ą 0 as As`t “ As ` At ˝ θs. With our notations,

we can write

Eµ,w
´

ÿ

uPD

gpAgpuq, ℓuqΦpρu,W u
q1tAgpuqąAT0u

¯

“ Eµ,w
´

ÿ

uPD˝θT0

gpAT0
` Agpuq ˝ θT0

, pΛAAgpuq
˝ θT0

qΦ
`

pρu,W u
q ˝ θT0

˘

¯

.

Now, note that by the strong Markov property, AT0
is independent from pρ,W q ˝ θT0

and the

distribution of pρ,W q ˝θT0
is P0,x,0. In particular, the measure E ˝θT0

is a Poisson measure with

intensity dt b pN˚
x. Therefore, arguing as before but with the shifted process pρ,W q ˝ θT0

we get

Eµ,w
´

ÿ

uPD

gpAgpuq, ℓuqΦpρu,W u
q1tAgpuqąAT0u

¯

“ Eµ,w
´

ż 8

0
dr gpAT0

` r, pΛAr ˝ θT0
q

¯

pN˚
xpΦq

“ Eµ,w
´

ż 8

0
dr gpAT0

` r, pΛAAT0`rq

¯

pN˚
xpΦq

“ Eµ,w
´

ż 8

AT0

dr gpr, pΛAr q

¯

pN˚
xpΦq, (6.62)

In the second equality we used that, by the identity A´1
At0`r “ T0 ` A´1

r ˝ θT0
, we can write

pΛAr ˝ θT0
“ pΛT0`A´1

r ˝θT0
“ pΛAAT0`r.

We now infer from (6.61) and (6.62) that we have:

E:
µ,w

´

ÿ

uPD

gpAgpuqqΦpρu,W u
q

¯

“ Eµ,w
´

ż 8

0
dr gpr, pΛAr q

¯

pN˚
xpΦq ´ Eµ,w

´

ż 8

AT0

gpr, pΛAr q

¯

pN˚
xpΦq

“ Eµ,w
´

ż AT0

0
dr gpr, pΛAr q

¯

pN˚
xpΦq.
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This proves the identity (6.59) if we replace Nx,0 by P:

µ,w. The result of the corollary will now

follow by applying the Markov property under Nx,0. More precisely, for every ε ą 0, note that on

the event tA´1
ε ă 8u we can write AA´1

ε `t “ At ˝ θA´1
ε

` ε for t ě 0. Hence, from a very similar

reasoning as before, the strong Markov property and the identity in the previous display yield

Ny,r

´

1tA´1
ε ă8u

ÿ

uPD

g
`

Agpuq, pΛ
A
Agpuq

˘

Φpρu,W u
q1tAgpuqąεu

¯

“ Ny,r

´

1tA´1
ε ă8uE

:

ρ
A´1
ε
W

A´1
ε

´

ż AT0

0
dr gpε ` r, pΛAr q

¯¯

pN˚
xpΦq

“ Ny,r

´

1tA´1
ε ă8u

ż Aσ˝θ
A´1
ε

0
dr gpε ` r, pΛAr ˝ θA´1

ε
q

¯

pN˚
xpΦq

“ Ny,r

´

1tA´1
ε ă8u

ż Aσ

ε
dr gpr, pΛAr q

¯

pN˚
xpΦq

where in the last equality we used that pΛAr ˝ θA´1
ε

“ pΛAε`r as well as the additive property of A.

By right-continuity we have A´1
ε Ó A´1

0 “ 0 as ε Ó 0 and note that tA´1
0 ă 8u “ tAσ ą 0u. In

particular, since by [82, Lemma 10] under Nx,r the point 0 belongs to the support of the measure

dA, we have A´1
0 “ 0. Identity (6.59) now follows by monotone convergence taking the limit as

ε Ó 0 noting that Ny,r-a.e., Ept0u ˆ Dq “ 0. Indeed, this fact follows if y “ x since 0 belongs to

the support of dA and is not a debut time, while for y ‰ x it can be deduced from the fact that

no debut time can occur in r0, A´1
0 q by the first point of Lemma 6.27 and A´1

0 is not a debut

time - by the same reasoning employed in the proof of Lemma 6.29.

Finally, we are in position to conclude the proof of Theorem 6.28, by proving that the intensity

measure pN˚
x is precisely the measure N˚

x introduced in Section 6.4

Proposition 6.33. The intensity measure pN˚
x is precisely the excursion measure N˚

x.

Proof. Recall the spine decomposition under the measure N˚
x obtained in Proposition 6.18. The

result of the proposition will be obtained by showing that the same identity holds if we replace
pN˚
x by N˚

x.

Let us start by supposing that this result holds and let us explain how to deduce from it

that the measures N˚
x and pN˚

x are identical. Recall from the discussion of Section 6.5.1 that,

under N˚
x or pN˚

x, for every s P p0, σq we can reconstruct by means of some functional F in

pMf pR`qq2 ˆ WE ˆ pM˚
p q2 the snake path pρ,W q from its spine Sppρs,Wsq. We stress that F

does not depend on the election of the time s P p0, σq. By making use of identity (6.39) and the

analogue version under pN˚
x, we get for that choice of functional F that for every non-negative

function f on DpR`,Mf pR`q ˆ WEq, we have

N˚
xpfpρ,W qq “ N˚

x

´

ż σ

0
ds f ˝ F

`

Sp pρ,W qsq

¯

“ pN˚
x

´

ż σ

0
ds f ˝ F pSp pρ,W qsq

¯

“ pN˚
xpfpρ,W qq.

(6.63)

Since both N˚
x and pN˚

x are measures in Mf pR`q ˆ WE , this proves the equality N˚
x “ pN˚

x,

Let us then prove that identity (6.39) holds if we replace N˚
x by pN˚

x, for an arbitrary non-

negative function F on pMf pR`qq2 ˆ WE ˆ pM˚
p q2. Fix an arbitrary non-negative function g

on R and consider the functional Φ : DpR`,Mf pR`q ˆ WEq ÞÑ R` defined by the relation
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Φpρ,W q “
şσ
0 ds F pSppρs,Wsqq. On the one hand, Proposition 6.32 immediately gives:

Nx,0

´

ÿ

uPD

gpAgpuqqΦpρu,W u
q

¯

“ Nx,0

´

ż Aσ

0
dx gpxq

¯

pN˚
x

´

ż σ

0
ds F pSppρs,Wsqq

¯

. (6.64)

We shall now compute the left-hand side of the previous display by making use of Proposition

6.20 and we shall make extensive use of the notations introduced in the latter. For pµ,wq P Θx,

recall the notation θrpµ,wq “ pθrµ, θrwq for the translation of pµ,wq to time r defined in (6.19)

and that for s P r0, σsztt ě 0 : xWt “ xu, we write upsq for the unique debut u P D satisfying

that pHpsq P C0
u. Recall from Lemma 6.7 that the family pC0

uquPD are the connected components

of THzZ and therefore, p´1
H pCuzC0

uq Ă tt ě 0 : xWt “ xu. Note that by Proposition 6.17 and

pH2q yield that Nxp
şσ
0 ds1txWs“xu

q “ 0. In particular, under Nx,0, the mapping s ÞÑ upsq is a.e.

well defined for almost every s P p0, σq. Now, by definition of the functional Φ and our previous

observations, for every u P D we can write

gpAgpuqqΦpρu,W u
q “

ż

p´1
H pC0

uq

ds gpAgpupsqqqF
`

θℓxpWsqpρs,Wsq,Pℓ,0
s ,Pr,0

s

˘

, Nx,0 a.e.

where in the last display we used that Agpupsqq is identically equal to Agpuq for s P p´1
H pCuq. It

now follows that the left hand side of (6.64) can be written as

Nx,0

´

ÿ

uPD

gpAgpuqqΦpρu,W u
q

¯

“ Nx,0

´

ÿ

uPD

ż

p´1
H pC0

uq

ds gpAgpupsqqqF
`

θℓxpWsqpρs,Wsq,Pℓ,0
s ,Pr,0

s

˘

¯

“ Nx,0

´

ż

ds 1p´1
H pYuC0

uq gpAgpupsqqqF
`

θℓxpWsqpρs,Wsq,Pℓ,0
s ,Pr,0

s

˘

¯

“ Nx,0

´

ż σ

0
ds gpAgpupsqqqF

`

θℓxpWsqpρs,Wsq
˘

,Pℓ,0
s ,Pr,0

s

¯

,

where in the last equality we used again that Nx,0p
şσ
0 ds1txWs“xu

q “ 0. To compute the expression

in the last display we shall use the spinal decomposition of pρ,W q in excursions under Nx,0

obtained in Section 6.5.2. More precisely, recall from Section 6.5.2 the definition of the measure

OU as well as the family of measures Pℓ,j
U “

ř

jPK1
j
δ

ptj ,ρj,k,ηj,k,W
j,k

q
for rj P J pΛU q. If for an

obvious choice of functional G, we set
ÿ

riPJ pΛU q

ÿ

kPKj

Aσpρi,k,W i,k
q “: GpOU q

we deduce by Lemma 6.22, followed by an application of Proposition 6.20 that

Nx,0

´

ż σ

0
ds gpAgpupsqqqF

`

θℓxpWsqpρs,Wsq,Pℓ,0
s ,Pr,0

s

˘

¯

“ N‚
x,0

´

g ˝ GpOU qF
`

θℓxpWU qpρU ,WU q,Pℓ,0
U ,Pr,0

U

˘

¯

“ N‚
x,0

`

g ˝ GpOU q
˘

¨ N b E0
´

ż σ

0
da e´αaF pJa, qJa, ξ

a,Mℓ
a,Mr

aq

¯

. (6.65)

Putting everything together, we have established that (6.65) and (6.64) coincide. Therefore,

comparing with (6.39), it now remains to show that for some function g : R Ñ R`, we have

Nx,0

´

ż Aσ

0
dx gpxq

¯

“ N‚
x,0

`

g ˝ GpOU q
˘

ă 8. (6.66)
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In this direction, consider the function gpxq “ e´λx, for x P R, λ ě 0. First, by Proposition 7 in

[82] the left hand side in the previous display is given by λ´1Nx,0p1 ´ e´λAσq “ rψ´1pλq{λ. On

the other hand, if for y ‰ x we set vλpyq :“ Nyp1 ´ eλAσq, by the description of the law of OU

given in Proposition 6.20 we obtain that the right-hand side of (6.66) writes

ż 8

0
dr e´rαr exp

´

r ¨ E0
b N˚

´

1 ´ exp
`

´

ż σ

0
Jpdhqvλpξphqq

˘

¯¯

.

Recalling that Jσpdhq under E0 b N˚ is the Lebesgue-Stieltiets measure of a subordinator with

Laplace exponent ψpλq{λ´ α for λ ě 0 stopped at time σ, as well as the definition of the biased

measure N˚pdξq “ N pdξqe´ασ and rα “ N p1 ´ expp´ασqq, we infer that

N‚
x,0

`

g ˝ GpOU q
˘

“

ż 8

0
dre´rαr exp

´

r ¨ E0
b N˚

´

1 ´ exp
`

´ σα ´

ż σ

0
dhψ

`

vλpξphqq
˘

{vλpξphqq
˘

¯¯

“

ż 8

0
dr exp

´

´ rN
´

1 ´ exp
´

´

ż σ

0
dh ψ

`

vλpξhq
˘

{vλpξhq

¯¯¯

Now, by Proposition 7 of [66] we can write vλpyq “ u
rψ´1pλq

pyq. This fact combined with identity

(4.21) from [66] yields that the last display is precisely rψ´1pλq{λ. This concludes the proof of

identity (6.66) and of the proposition.

This concludes the proof of Theorem 6.28.

6.7 Construction of L˚

This section is devoted to introducing an additive functional L˚ :“ pL˚
t : t ě 0q of the Lévy snake

under the excursion measure N˚
x that will be crucial for the development of Section 6.8. Roughly

speaking, at each time t, the variable L˚
t measures the number of subtrajectories of W that have

returned to x up to time t and in particular, the total mass L˚
σ can be interpreted as measuring

the (fractal) size of the set tt P p0, σq : xWt “ xu under N˚
x. We stress however that this description

is imprecise. The definition of L˚ under N˚
x is given in Proposition 6.35 and relies on preliminary

constructions under both P:
µ,w and N˚

x that we shall now introduce.

In this direction, recall the notation Θe for the subset of Θ consisting in pairs pµ,wq with

wp0q “ x, τ˚
x pwq ą 0 and satisfying µpt0, τ˚

x pwquq “ 0 . Recall from Lemma 6.19 that pρ,W q

under N˚
x takes values in Θe. For any pµ,wq P Θe and under P:

µ,w , denote by pαi, βiqiPN the

excursion intervals of xρ, 1y ´ xµ, 1y over its running infimum pIt : t ě 0q. If we write pρi, ηi,W iq

for the subtrajectory associated to the interval pαi, βiq, recall that the measure

M :“
ÿ

iPI
δp´Iαi ,ρ

i,ηi,W iq (6.67)

is a Poisson measure with intensity 1r0,xµ,1ysduNwpHpkuµqqpdρ, dη, dW q. If for every i P I we set

hi :“ Hpκ´Iαi
µq “ Hαi ,

it is straightforward to check from standard properties of Poisson measures that
ř

iPI δphi,ρi,ηi,W iq

is a Poisson measure with intensity µpdhqNwphqpdρ, dη, dW q. In the second equality of the last

display, we used the definition (6.8) of ρ under Pµ,w as well as the identity (6.6). We stress that
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the definition of Θe ensures that µ does not charge the set t0u Y tτ˚pwqu. This yields that P:
µ,w–

a.s. there are no excursions W i with starting point W i
0 “ x at height hi P r0, τ˚pwqs. Finally,

recall the notation pΓ˚
t : t ě 0q for the right-inverse of V ˚

t “
şt
0 ds 1tHsďτ˚

x pWsqu for t ě 0.

Lemma 6.34. For every fixed pµ,wq P Θe and under P:
µ,w, there exits a continuous, non-

decreasing process pL˚
t : t ě 0q, with L˚

σ ă 8 a.e. defined by:

lim
εÑ0

sup
sďt^σ

|
1

ε

ż s

0
du1tτ˚

x pWuqăHuăτ˚
x pWuq`εu ´ L˚

s | (6.68)

the convergence holding for every t ą 0 in L1pP:
µ,wq. Moreover, still under P:

µ,w the following

properties hold:

(i) Under Ny with y ‰ x, we consider LE˚ the exit local time from E˚. Then, P:
µ,w – a.e., we

have

L˚
t “

ÿ

τ˚pwqąhi, iPI
LE˚

t^βi´t^αi
pρi,W i

q, for t ě 0. (6.69)

(ii) The process pL˚
Γ˚
t
: 0 ď t ď V ˚

σ q is Tr˚pρ,W q measurable.

Proof. We work under P:
µ,w for a fixed arbitrary initial condition pµ,wq P Θe. We shall first

establish the existence of a continuous, non-decreasing process L˚ defined by the relation (6.68).

This will be achieved by showing that for any t ą 0, the sequence

´1

ε

ż s

0
du1tτ˚

x pWuqăHuăτ˚
x pWuq`εu : 0 ď s ď t

¯

εą0
(6.70)

is Cauchy in L1pP:
µ,wq with respect to the uniform norm as ε Ó 0. We will make use of similar

arguments to the ones employed in Proposition 2 of [82]. We shall then infer (i) and (ii) from our

definitions.

We start with some preliminary remarks and constructions. First, this lemma shares obvious

similarities with the theory of exit local times recalled in Section 6.6.1, but we stress that we can

not directly make use of (6.49) in the current setting. Indeed, since for w P Θe we have wp0q “ x,

this gives that τ˚
x pwq “ infth ą 0 : wphq “ xu is not an exit time. Let us now explain how

this minor difficulty can be circumvented. For every 0 ă r ă Hpµq ^ σpwq and pρ, ωq P S with

pρ0, ω0q “ pµ,wq, we let pρprq, ωprqq be the trajectory defined by the relation:

pρ
prq

t , ω
prq

t q :“

#

θrpρt, ωtq for 0 ď t ď inftt ą 0 : xθrρt, 1y “ 0u,

p0,wprqq otherwise.

In particular, we have σpωprqq “ inftt ą 0 : xθrρt, 1y “ 0u and pρ
prq

0 , ω
prq

0 q “ θrpµ,wq. Now, fix

r P p0, Hpµq^σpwqq and note that pρprq,W prqq under P:
µ,w is distributed as pρ,W q under P:

θrpµ,wq
,

where now, the initial condition fulfils θrwp0q ‰ x. Therefore, for every t ě 0, τ˚
x pW

prq

t q coincides

with τE˚
pW

prq

t q, the exit time from the open set E˚ by W
prq

t . It now follows from (6.49) that

there exists a continuous, non-decreasing process L˚,r such that for every t ą 0,

lim
εÑ0

E:
µ,w

´

sup
sďt^σprq

|
1

ε

ż s

0
du 1

tτ˚
x pW

prq
u qăHpρ

prq
u qăτ˚

x pW
prq
u q`εu

´ L˚,r
s |

¯

“ 0.
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We stress that L˚,r is just the exit local time LE˚pρprq,W prqq. Now, let Tr :“ σpρprqq and remark

that Tr “ inftt ą 0 : Ht “ ru. The key now is that we have

1

ε

ż t^Tr

0
du 1tτ˚

x pWuqăHuăτ˚
x pWuq`εu “

1

ε

ż t

0
du 1

tτ˚
x pW

prq
u qăHpρ

prq
u qăτ˚

x pW
prq
u q`εu

, for t ě 0, (6.71)

which gives that the approximation (6.68) holds if we replace σ by Tr setting pL˚
t : 0 ď t ď Trq :“

pL˚,r
t : 0 ď t ď Trq. Note that this holds for any 0 ă r ă Hpµq ^ σpwq. Since Tr Ò σ, by (6.71)

the process pL˚
t : 0 ď t ă σq is well defined, and is continuous and non-decreasing.

Let us extend the construction to the closed interval r0, σs by showing that the sequence

(6.70) is Cauchy in L1pP:
µ,wq – in particular this gives that L˚

σ ă 8, P:
µ,w – a.e. By our previous

discussion, this will follow as soon as we show that

lim
rÓ0

sup
εą0

E:
µ,w

´1

ε

ż σ

Tr

du 1tτ˚
x pWuqăHuăτ˚

x pWuq`εu

¯

“ 0. (6.72)

Under P:
µ,w, recall that the measure

ř

iPI δphi,ρi,W iq is a Poisson measure with intensity given

by µpdhqNwphqpdρ, dW q. Since P:
µ,w – a.e. the Lebesgue measure of the set ts ě 0 : xρs, 1y “

infuďsxρu, 1yu is null, we infer from basic properties of Poisson measures and Lemma 6.17 that

E:
µ,w

´1

ε

ż σ

Tr

du 1tτ˚
x pWuqăHuăτ˚

x pWuq`εu

¯

“

ż

r0,rs

µpdhqNwphq

´1

ε

ż σ

0
du 1tτ˚

x pWuqăHuăτ˚
x pWuq`εu

¯

“

ż

r0,rs

µpdhqΠ:

wphq

´1

ε

ż 8

0
da expp´αaq1tτ˚

x pξqăaăτ˚
x pξq`εu

¯

ď µr0, rs.

Now, since pµ,wq P Θe, we have µpt0uq “ 0 and we deduce that the limit as ε Ó 0 in the previous

display is 0. This proves (6.72) and concludes the proof of the existence of L˚.

Let us now establish (i) and (ii). First, note that the excursion intervals pαi, βiq with βi ď Tr

away from 0 of pxρt, 1y ´ infsďtxρs, 1y : t ě 0q are precisely the ones of pxρ
prq

t , 1y ´ infsďtxρ
prq
s , 1y :

t ě 0q. Moreover, the subtrajectory of pρ,W q and pρprq,W prqq associated to the interval pαi, βiq

coincide. By Proposition 2 - (ii) of [82] applied to pρprq,W prqq at the exit time τE˚
, we have that

L˚
Tr

“ L˚,r
σprqpρ

prq,W prq
q “

ÿ

τ˚
x pwqąhiěr

LE˚

σ pρi,W i
q.

Now, the identity (6.69) follows by monotonicity taking the limit as r Ó 0 since µpt0uq “ 0.

Finally, in order to prove (ii), we shall decompose L˚ ˝ Γ˚ in terms of Tr˚pρ,W q-measurable

functionals. In this direction, write I 1 for the subset of I defined by the relation: i P I 1 if

and only if hi ă τ˚pwq. For every i P I 1 we set pα˚
i , β

˚
i q :“ pV ˚

αi
, V ˚

βi
q. Remark that this is

the unique pair satisfying the relation pΓ˚
α˚
i
,Γ˚

β˚
i

q “ pαi, βiq. Indeed, for every i P I 1, we have

τpWαiq “ τpWβiq “ 8, which gives that Γ˚ is piece-wise linear in a neighbourhood of V ˚
αi

and

V ˚
βi
. The family ppα˚

i , β
˚
i q : i P I 1q are precisely the excursion intervals away from 0 of the

time-changed process pxρΓ˚
t
, 1y ´ infsďtxρΓ˚

s
, 1y : t ě 0q and therefore are Tr˚pρ,W q measurable.

Further, for every r P tu ě 0 : xρΓ˚
u
, 1y “ infsďuxρΓ˚

s
, 1yu we have τ˚pWΓ˚

r
q “ 8, which gives that

dΓ˚ does not charge the set tu ě 0 : xρΓ˚
u
, 1y “ infsďuxρΓ˚

s
, 1yu since the Lebesgue measure of
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tt ě 0 : xρt, 1y “ infsďtxρs, 1yu is null. If for every i P I 1 we let Γ˚
i ptq :“ Γ˚

t pρi,W iq, this gives

that

Γ˚
t “

ÿ

iPI 1

Γ˚
t^α˚

i
´ Γ˚

t^β˚
i

“
ÿ

iPI 1

Γ˚
i pt ^ β˚

i ´ t ^ α˚
i q.

We infer from the identity in the last display that, still for i P I 1, we have

LE˚

Γ˚
t ^βi´Γ˚

t ^αi
pρi,W i

q “ LE˚

Γ˚
t ^Γ˚

β˚
i

´Γ˚
t ^Γ˚

α˚
i

pρi,W i
q

“ LE˚

Γ˚

t^β˚
i

´Γ˚

t^α˚
i

pρi,W i
q

“ LE˚

Γ˚
i pt^β˚

i ´t^α˚
i q

pρi,W i
q,

and now (6.69) yields that we can write

L˚
Γ˚
t

“
ÿ

hiăτ
˚
x pwq, iPI

LE˚

Γ˚
i pt^β˚

i ´t^α˚
i q

pρi,W i
q for t ě 0.

The second point (ii) follows from recalling that under Ny, the process pLE˚ ˝ΓE˚

t : 0 ď t ď V E˚
σ q

is TrE˚
pρ,W q – measurable by Proposition 3 of [82].

We shall now use Lemma 6.34 to extend our construction under the excursion measure N˚
x.

In this direction, we argue under N˚
x and we start introducing some notation. For fixed 0 ă t ă σ

recall from Section 6.5.2 that we write Sppρ,W qt “ pρt, ηt,Wt,Ppℓq
t ,Pprq

t q the spinal decomposition

at time t of pρ,W q, where Ppℓq
t “

ř

jPJt
δ

p´I
pℓq
αj ,ρ

j ,ηj ,W jq
and Pprq

t “
ř

iPIt
δ

p´I
prq
αi ,ρ

i,ηi,W iq
. Set

T
pt,rq
˚ “ infts ě t : τ˚pWsq “ 8u, T

pt,ℓq
˚ “ t ´ infts ě 0 : τ˚pWt´sq “ 8u and denote by I 1

t (resp.

J 1
t ) the subset of It (resp. Jt) defined by the relation: i P I 1

t (resp. j P J 1
t ) if and only if we have

α
prq

i ptq ě T
pt,rq
˚ (resp. α

pℓq
j ptq ď T

pt,ℓq
˚ ).

Proposition 6.35. Under N˚
x, there exits a continuous, non-decreasing process pL˚

t q defined by

the relation:

lim
εÑ0

1V sup
sďt

|
1

ε

ż s

0
du 1tτ˚

x pWuqăHuăτ˚
x pWuq`εu ´ L˚

s | (6.73)

the convergence holding uniformly in compact intervals in measure for any V P F with N˚
xpV q ă

8. Moreover, the following holds:

(i) pL˚
Γ˚
t
: 0 ď t ď V ˚

σ q is Tr˚pρ,W q measurable and under N˚
x it is simply denoted by pL˚

t q.

(ii) Under N˚
x, a.s. for every t P p0, σq we have the identities:

L˚
t “

ÿ

jPJ 1
t

LE˚

σ pρj ,W j
q and L˚

σ ´ L˚
t “

ÿ

iPI 1
t

LE˚

σ pρi,W i
q. (6.74)

Note that in particular, we get from (ii) that

L˚
σ “

ÿ

jPJ 1
t

LE˚

σ pρj ,W j
q `

ÿ

iPI 1
t

LE˚

σ pρi,W i
q.
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Proof. Let us start proving the existence of pL˚
t q. In this direction, for every ε ą 0, δ ě 0 we set

Itpδ, εq :“
1

ε

ż t

δ^t
du 1tτ˚

x pWuqăHuăτ˚
x pWuq`εu, t ě 0.

It suffices to show that for any η, t ą 0 and V P F with N˚
xpV q ă 8 – that we fix from now on –

we have

lim
ε,ε1Ñ0

N˚
x

`

sup
sďt^σ

|Isp0, εq ´ Isp0, ε
1
q| ě η, V q “ 0. (6.75)

For every δ ą 0, we set Vδ :“ tσ ą δ, σpWδq ą δu. Remark that Vδ is a Fδ-measruable subset

with finite N˚
x-measure, and Vδ Ò Ω as δ Ó 0. In particular for every ℓ ą 0, we can find some δ ą 0

small enough such that N˚
xpV zVδq ă ℓ. Let us start by showing that for every δ ą 0,

lim
ε,ε1Ñ0

N˚
x

´

sup
sďt

|Ispδ, εq ´ Ispδ, ε
1
q| ą η, V

¯

“ 0. (6.76)

Remark that it suffices to show that the convergence in the last display holds if we replace V by

Vδ, for every arbitrary small δ ą 0. Now, by the Markov property, we have:

lim
ε,ε1Ñ0

N˚
x

´

sup
sďt

|Ispδ, εq´Ispδ, ε
1
q| ą η, Vδ

¯

ď lim
εÑ0

N˚
x

´

1Vδ
P:

ρδ,Wδ

`

sup
sďt

|Ispδ, εq´Ispδ, ε
1
q| ą η

˘

¯

“ 0,

where in the last equality we used Lemma 6.34 and the dominated convergence theorem. We

stress that in the last display we used that pρδ,Wδq belongs to Θe, N˚
x – a.e.

Let us now infer from our previous reasoning the convergence (6.75). Note that for every

δ ą 0, we can bound

sup
sďt

|Isp0, εq ´ Isp0, εq| ď Iδp0, εq ` Iδp0, ε
1
q ` sup

sďt
|Isp0, εq ´ Isp0, εq|.

Now, (6.75) will follow as soon as we show that

lim
δÑ0

sup
εą0

N˚
x

´

ε´1

ż δ

0
1tτ˚

x pWuqăHuăτ˚
x pWuq`εu ě η, V

¯

“ 0. (6.77)

Remark that by duality, we can write

N˚
x

´

ε´1

ż δ

0
1tτ˚

x pWuqăHuăτ˚
x pWuq`εu ě η, V

¯

“ N˚
x

´

ε´1

ż σ

σ´δ
1tτ˚

x pWuqăHuăτ˚
x pWuq`εu ě η, rV

¯

where rV is the image of V by the mapping pρ, ωq ÞÑ
`

ρσ´t, ωσ´t : 0 ď t ď σpρq
˘

. Now, to prove

(6.77) it suffices to check that for every δ ą 0, it holds that

lim
εÑ0

N˚
x

´1

ε

ż σ

δ
du 1tτ˚

x pWuqăHuăτ˚
x pWuq`εu ě η, Vδ

¯

“ 0. (6.78)

First, by an application of the Markov property we have

N˚
x

´1

ε

ż σ

δ
du 1tτ˚

x pWuqăHuăτ˚
x pWuq`εu ě η, Vδ

¯

ď N˚
x

´

P:

ρδ,Wδ

`

Iσp0, εq ě η
˘

1Vδ

¯

.

Further, for any pµ,wq P Θe, Markov’s inequality and the first-moment formula (6.38) give that

P:
µ,w

`

Iσp0, εq ě η
˘

ď η´1E:
µ,w

´

ε´1

ż σ

0
du 1tτ˚

x pWuqăHuăτ˚
x pWuq`εu

¯

ď η´1
xµ, 1y.
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This yields that we have the pointwise convergence:

lim
δÑ0

P:

ρδ,Wδ

`

Iσp0, εq ě η
˘

ď lim
δÑ0

η´1
xρδ, 1y “ 0 N˚

x – a.e.

and it follows by dominated convergence that (6.78) holds, concluding the proof of (6.75).

Property (i) follows immediately from Lemma 6.34 and we turn our attention to (ii). Let us

start by constructing a version of the family p
ř

iPI 1
s
LE˚
σ pρi,W iq : 0 ă s ă σq defined outside of a

N˚
x– negligible set. The uniform convergence (6.73) gives that for every V P F measurable with

NxpV q ă 8, there exists some sub-sequence pεnqně0 such that Nx a.s. for every 0 ă a ă b, we

have the pointwise convergence,

lim
εÑ0

1V |
1

ε

ż b

a
du 1tτ˚

x pWuqăHuăτ˚
x pWuq`εu ´ pL˚

b ´ L˚
aq|.

Now, it easily follows from our definition that for every fixed t and Nx a.e. for every i P It
we have LE˚

σ pρi,W iq “ L˚
βr
i ptq ´ L˚

αr
i ptq. From now on, for every 0 ă t ă σ and i P It, we set

LE˚
σ pρi,W iq :“ L˚

βr
i ptq ´L˚

αr
i ptq. In particular, the family p

ř

iPI 1
s
LE˚
σ pρi,W iq : s P p0, σqq is defined

outside of aN˚
x-null set. An analogous reasoning can be applied to p

ř

iPJ 1
s
LE˚
σ pρi,W iq : s P p0, σqq

and in therefore, statement (ii) makes sense. By Lemma 6.34-(i), for fixed s ą 0 and on the event

ts ă σu, the Markov property at time s gives that N˚
x–a.s., we have

pL˚
σ ´ L˚

sq “
ÿ

iPI 1
s

LE˚

σ pρi,W i
q. (6.79)

Consider a measurable subset Ω0 Ă Ω with full N˚
x - measure such that for every pρ, ωq P Ω0, the

equality in the last display holds for every rational s. Let us now prove that the equality in the

previous display holds in Ω0 for every s P p0, σq. We pick an arbitrary q ą 0 and fix arbitrary

rationals s, t such that s ă q ă t. By continuity of L˚, our claim will follow if we prove that we

have

L˚
σ ´ L˚

t ď
ÿ

iPI 1
q

LE˚

σ pρi,W i
q ď L˚

σ ´ L˚
s . (6.80)

The second inequality immediately follows from our definitions and we turn our attention to the

first equality. By considering a smaller rational t we can assume that t belongs to an interval of

the form pq ` α
prq

j pqq, q ` β
prq

j pqqq for some j P Iq. Now, by comparison of the summands we get

that
ř

iPI 1
t
LE˚
σ pρi,W iq ď

ř

iPI 1
q
LE˚
σ pρi,W iq and by our choice of Ω0 we infer that (6.80) holds.

Finally, by duality, we get that N˚
x–a.e. for every s P p0, σq we have

L˚
σ´s “ L˚

σpρσ9‚,Wσ9‚q ´ L˚
spρσ9‚,Wσ9‚q “

ÿ

iPJ 1
σ´s

LE˚

σ pρi,W i
q

concluding the proof of the lemma.

The identities (6.69) and (6.74) yield analogue results under P˚
µ,w and N˚

x. Let us briefly

comment on this. First, recall that under Ny for y ‰ x, the time-changed exit local time

pLE˚

Γ˚
t
: 0 ď t ď Vσq is FE˚

– measurable. With some abuse of notation, under Ny we shall write

LE˚

t pTrpρ,W qq :“ LE˚

Γ˚
t
, for 0 ď t ď V ˚

σ (6.81)
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and in particular, we have LE˚

V ˚
σ

pTrpρ,W qq “ LE˚
σ . Hence, LE˚ is defined under N˚

y and as usual

the dependence on pρ,W q is omitted. Further, when working under P:
µ,w for pµ,wq P Θe with

τ˚
x pwq P tζw,8u and with the same notation as in Lemma 6.34-(i), it follows from our definitions

that we can write

LE˚

σ “
ÿ

hiăτ
˚
x pwq, iPI

LE˚

σ pρi,W i
q “

ÿ

hiăτ
˚
x pwq, iPI

LE˚

V ˚
σ

pTrpρi,W i
qq

and we set LE˚
σ pTrpρ,W qq :“

ř

hiăτ
˚
x pwq L

E˚
σ pTrpρi,W iqq. Remark that the truncated measure

Mtr :“
ř

hiăτE˚ pwq δp´Iαi ,Trpρ
i,W iqq is Tr˚pρ,W q – measurable and that since the initial condition

pµ,wq belongs to Θe with τ˚
x pwq P tζw,8u, for every i P I we have hi ă τ˚pwq. Finally, under

P˚
µ,w recall the definition of the measure M introduced in Lemma 6.16 and that pMtr,Tr˚pρ,W qq

under P:
µ,w has the same distribution as pM, pρ,W qq under P˚

µ,w. Now, we can state:

Corollary 6.36. The following identities hold:

(i) Let M “
ř

iPI δp´Iαi ,ρ
i,W iq be the measure introduced in Lemma 6.16. For pµ,wq P Θe with

τ˚
x pwq P tζw,8u and under P˚

µ,w, we have:

LE˚

σ “
ÿ

iPI
LE˚

σ pρi,W i
q, P˚

µ,w – a.e. (6.82)

(ii) Under N˚
x and for every t P p0, σq, consider Sppρ,W qt the spinal decomposition of pρ,W q at

time t. Then, a.e. for every t P p0, σq,

L˚
t “

ÿ

iPJt

LE˚

σ pρi,W i
q and pL˚

σ ´ L˚
t q “

ÿ

iPIt

LE˚

σ pρi,W i
q. (6.83)

The first point (i) follows from our previous observations while (ii) is a consequence of identities

(6.74); we skip the details. We now turn our attention to a description for the law of pρ,W q

observed at a typical time taken with respect to the measure dL˚.

Proposition 6.37. Under E0 b N , let pMℓ,˚,Mr,˚q be a pair of point measures on R` ˆ

Mf pR`q2 ˆ WE such that conditionally on p qJσ, Jσ, pξs : s ď σqq, they are independent Pois-

son measures with respective intensities

1
r0,x qJσ,1ys

duN˚

ξpHpκu
qJσqq

pdρ, dη, dW q, and 1r0,xJσ,1ysduN˚
ξpHpκuJσqq

pdρ, dη, dW q.

For every non-negative measurable function F on Mf pR`q2ˆWE ˆMppR` ˆMf pR`q2ˆWEq2,

we have

N˚
x

´

ż σ

0
dL˚

s F p Sppρ,W qsq

¯

“ E0
b N

`

expp´ασqF pJσ, qJσ, pξs : s ď σq,Mℓ,˚,Mr,˚
q
˘

.

Observe that the measure in the right-hand side of the previous display coincides with the

characteristic measure of OU obtained in Proposition 6.20, modulo a truncation of the atoms of

pMℓ,Mrq at their exit from Eztxu.
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Proof. First, we shall consider a continuous bounded function F on Mf pR`q ˆWE vanishing on

␣

pµ,wq P Mf pR`q ˆ WE : ζw ă ℓ or wpℓq “ x
(

,

for some fixed arbitrary ℓ ą 0. Let us then define

V :“ tpρ, ωq P DpR`,Mf pR`q ˆ WEq : for some s P p0, σpωqq it holds that ζωs ě ℓ, ωspℓq ‰ xu.

Note that F pρs,Wsq vanishes for every s ě 0 on the complement of V and that N˚
xpV q ă 8. By

Proposition 6.35, we can find a sub-sequence pεnqnPN such that the convergence (6.73) holds a.e.

for every 0 ď t ď σ along pεnqnPN. Therefore, along this sub-sequence, the sequence of measures

ds 1tτ˚pWsqăHsăτ˚pWsq`εnu for n ě 0 converge weakly towards dL˚
s . Since the mappings s ÞÑ

F pρs,Wsq and s ÞÑ F pρs´,Wsq are respectively upper-semicontinuous and lower semicontinuous,

we have the N˚
x-a.e. convergences:

lim sup
nÑ8

1

εn

ż σ

0
ds 1tτ˚

x pWsqăHsăτ˚
x pWsq`εnuF pρs,Wsq ď

ż σ

0
dL˚

sF pρs,Wsq,

and

lim inf
nÑ8

1

εn

ż σ

0
ds 1tτ˚

x pWsqăHsăτ˚
x pWsq`εnuF pρs´,Wsq ě

ż σ

0
dL˚

sF pρs´,Wsq.

To conclude, we first need a couple of observations. First, remark that the approximation (6.35)

yields that the measure dL˚
s is N˚

x–a.e. supported on the set ts P R` : Hs “ τ˚
x pWsqu. On the

other hand, since by Lemma 6.19 the process pρ,W q takes vales in Θe, it holds that N˚
x–a.e. for

every s we have ρsptτ˚
x pWsquq “ 0. Putting this two facts together yields that ρ is continuous at

dL˚
s almost every s. Since the set of discontinuities of ρ is countable, we infer that we can replace

ρs´ by ρs in both terms of the last display. It now follows from this observation and Proposition

6.35 that we have

N˚
x

´

ż σ

0
dL˚

s F pρs,Wsq

¯

“ N˚
x

´

1V

ż σ

0
dL˚

s F pρs,Wsq

¯

“ lim
εnÑ0

N˚
x

´

1V
1

εn

ż σ

0
ds 1tτ˚

x pWsqăHsăτ˚
x pWsq`εnuF pρs,Wsq

¯

.

Now, by (6.38) we can write:

N˚
x

´

ż σ

0
ds 1tτ˚

x pWsqăHsăτ˚
x pWsq`εuF pρs,Wsq

¯

“ N b E0
´

ż 8

0
da e´αa1tσpξqăaăσpξq`εuF

`

Ja, pξt : 0 ď t ď aq
˘

¯

where in the last equality we used that τ˚
x pξq “ σpξq under N . By an application of the dominated

convergence theorem, we infer from the continuity of F and right-continuity of Ja at time a “ σ

that

N˚
x

´

ż σ

0
dL˚

sF pρs,Wsq

¯

“ N b E0
`

expp´ασqF pJσ, pξs : 0 ď s ď σqq
˘

.

We stress that in our last argument we used that the set tσ ě ℓu has finite N -measure as well

as our standing hypothesis on the function F . By the usual approximation methods the previous
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equality holds for any non-negative measurable F onMf pR`qˆWE . SinceN
˚
x – a.e. the measure

dL˚
s is supported on ts P R` : Hs “ τ˚

x pWsqu, we get by time-change (see e.g. [81, Proposition

V-1.4]) that
ż σ

0
dL˚

sF pρs,Wsq “

ż V ˚
σ

0
dL˚

Γ˚
s
F pρΓ˚

s
,WΓ˚

s
q, N˚

x a.e.

Finally, noting that pV ˚
σ , pL

˚
Γ˚
s
q,Tr˚pρ,W qq under N˚

x is distributed as pσ, pL˚
sq, pρ,W qq under N˚

x,

we deduce the desired result for our choice of F . The proof when considering an arbitrary F as

in the statement of the proposition follows by the same type of arguments as in Proposition 6.17,

we skip the details.

Let us conclude the section with an application of Proposition 6.37.

Corollary 6.38. Recall the definition of the Laplace exponent rψ from (6.52). If we write π̃ for

its correspodning Lévy measure on p0,8q, we have π̃pdzq “ N˚
xpL˚

σ P dzq.

Since by [82, Corollary 2] the drift coefficient of rψ is given by rα “ N p1 ´ expp´ασqq and the

Gaussian component rβ is null, this completely characterises the Lévy-Kintchine triplet of rψ.

Proof. Since the Laplace exponent rψ has no Brownian component [82, Corollary 2], this is equiv-

alent to proving that for λ ě 0, we have the identity

N˚
x

`

expp´λL˚
σq ´ 1 ` λL˚

σ

˘

“ rψpλq ´ rαλ.

We shall follow similar arguments to the ones employed in the proof of Lemma 8 in [66]. In this

direction, note that by the Markov property under N˚
x, we have

N˚
x

`

expp´λL˚
σq ´ 1 ` λL˚

σ

˘

“ λ ¨ N˚
x

ˆ
ż σ

0
dL˚

s

´

1 ´ expp´λ

ż σ

s
dL˚

uq

¯

˙

“ λ ¨ N˚
x

ˆ
ż σ

0
dL˚

s E˚
ρs,Ws

´

1 ´ expp´λ

ż σ

0
dL˚

uq

¯

˙

. (6.84)

In order to compute the last expression, fix pµ,wq P Θe and recall the identity (6.82). The formula

for the Laplace transform for integrals with respect to Poisson random measures yields

E˚
µ,w

“

expp´λL˚
σq
‰

“ exp
´

´

ż τ˚
x pwq

0
µpdhqN˚

wphq

`

1´expp´λL˚
σq
˘

¯

“ exp
´

´

ż τ˚pwq

0
µpdhquλ

`

wphq
˘

¯

,

where in the last equality we used that by definition, the distribution of LE˚
σ under N˚

y for y ‰ x

is precisely the one of LE˚
σ under Ny. Getting back to (6.84), we infer from the identity in the

last display and Proposition 6.37 that:

N˚
x

`

expp´λL˚
σq ´ 1 ` λL˚

σ

˘

“ λ ¨ N˚
x

´

ż σ

0
dL˚

s 1 ´ exp
`

´

ż

ρspdhquλ
`

Wsphq
˘˘

¯

“ λ ¨ N b E0
´

expp´ασq

´

1 ´ exp
`

´

ż

Jσpdhquλpξhq
˘

¯¯

“ λ ¨ N b E0
´

expp´σαq ´ exp
`

´

ż σ

0
dhψpuλpξhq

˘

{uλpξhq
˘

¯

,
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where in the last equality we used that J8 under P 0 is the jump measure of a subordinator with

Laplace exponent ψpλq{λ ´ α. Finally, we observe that the last display writes:

λ ¨ N b E0
´

1 ´ exp
`

´

ż σ

0
dhψpuλpξhq

˘

{uλpξhq
˘

¯

´ λ ¨ N b E0
´

1 ´ expp´σαq
˘

¯

.

The result of the corollary now immediately follows from the identity (4.21) in [66].

We conclude the section with some technical results that will be needed in Section 6.8. With

the notations of Proposition 6.20 under E0 bN˚, let us write Mℓ “
ř

kPKpℓq δ
pt

pℓq

k ,ρk,ηk,W
k

q
, Mr “

ř

kPKprq δ
pt

prq

k ,ρk,ηk,W
k

q
where Kpℓq, Kprq are two disjoint indexing sets. Next, for k P Kpℓq set

αk :“
ř

t
pℓq

i ăt
pℓq

k
σpW iq, βk :“

ř

t
pℓq

i ďt
pℓq

k
σpW iq and introduce the process

VtpMℓ
q :“

ÿ

kPKpℓq

LE˚

t^βk´t^αk
pρk,W

k
q, t ě 0.

To simplify notation and when there is no risk of confusion, we denote the process in the previous

display by V pℓq. Note that this construction is a deterministic function of Mℓ and for instance

can be applied to Mr. Analogously, we write V prq for V pMrq.

Lemma 6.39. Under E0 b N˚, for every ε ą 0 we have VεpMℓq, VεpMrq ą 0 a.e.

Proof. Recall from (6.41) the intensity measure of Mr conditionally on pξ, Jq. Since p qJσ, ξ,Mrq

and pJσ, ξ,Mℓq have the same distribution, it suffices to show that for any ε ą 0, we have

E0 b N˚pV
prq
ε “ 0q “ 0.

Consider a deterministic increasing sequence pan : n ě 0q with an Ò 1. It suffices to show

that E0 b N˚pL˚
σi

pρi,W iq “ 0, @ i P Kprq such that HpκtiJσq ą σanq “ 0. If for y P E˚ we write

vpyq “ NypLE˚
σ ‰ 0q, this is equivalent to proving that E0 b N˚ a.e.,

exp
`

´

ż σ

anσ
Jσpdhqvpξphqq

˘

“ 0. (6.85)

Under P˚
µ,w and N˚

x and for every n ě 0 we set Tn “ inftt ě 0 : Ht ă anH0u. Since by Corollary

6.36-(i) for pµ,wq P Θe with τ˚
x pwq “ ζw we have P˚

µ,wpLE˚

Tn
“ 0q “ exp

`

´
şζw
anζw

µpdhqvpwphqq
˘

,

by the first moment formula of Proposition 6.37 we get

E0
b N

´

expp´ασq exp
`

´

ż σ

anσ
Jσpdhqvpξphqq

˘

¯

“ N˚
x

´

ż σ

0
dL˚

s P˚
ρs,Ws

pLE˚

Tn
“ 0q

¯

(6.86)

“ N˚
x

´

ż σ

0
dL˚

s 1tL˚
s`Tn˝θs

´L˚
s “0u

¯

where in the last equality we applied the Markov property as well as the identities of Lemma 6.36.

Now, note that the interval ps, s`Tn ˝ θsq is open and non-empty and therefore the cardinality of

Cpnq “ ts P supp dL˚ : dL˚ps, s`Tn˝θsq “ 0u is countable. Indeed, any element of this set is the

right end of a connected component of the open set R`zsupp dL˚. Therefore, by continuity of L˚

it holds that dL˚pCpnqq “ 0 and it follows that the formula in the last display is null. We infer

that (6.85) holds, concluding the proof of the lemma. Since J8 under E0 is the jump measure

of a subordinator with Laplace exponent ψpλq{λ ´ α, remark that in particular we deduce from

the fact that (6.86) vanishes that N – a.e., we have
şσ
σan

dhψpvpξphqqq{vpξphqq “ 8, a fact that a

priory is not simple to establish directly.
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Let us conclude the section with an important consequence of Lemma 6.39. We shall still

make use of the notations of Proposition 6.20. Under E0 b N˚ consider the measure Mℓ “
ř

kPKpℓq δ
pt

pℓq

k ,ρk,ηk,W
k

q
and for every k P Kpℓq, write pρk,j ,W

k,j
q
jPKpℓq

k
for the subtrajectories of

pρk,W
k
q outside E˚ ˆ R`. Denote the corresponding excursion intervals by pak,j , bk,jqjPKpℓq

k
and

for j P Kpℓq
k set αk,j :“ αk ` ak,j . After performing the analogous construction in terms of

the measure Mr “
ř

kPKprq δ
pt

prq

k ,ρk,ηk,W
k

q
, with an obvious choice of notation we introduce the

following pair of measures:

`

Ξ˚
pMℓ

q,Ξ˚
pMr

q
˘

:“
´

ÿ

kPKpℓq,jPKpℓq

k

δ
pV

pℓq
αk,j

,ρk,j ,ηk,j ,W
k,j

q
,

ÿ

kPKprq,jPKprq

k

δ
pV

prq
αk,j

,ρk,j ,ηk,j ,W
k,j

q

¯

. (6.87)

We infer from the special Markov property that, conditionally on pJσ, qJσ, ξq and

´

ÿ

kPKpℓq

δ
pt

pℓq

k ,Tr˚pρk,W
k

qq
,
ÿ

kPKprq

δ
pt

prq

k ,Tr˚pρk,W
k

qq

¯

, (6.88)

the pair
`

Ξ˚pMℓq,Ξ˚pMrq
˘

are independent Poisson measures with respective intensities

1
r0,V

pℓq
8 s

puqduNx,0pdρ, dW q and 1
r0,V

prq
8 s

puqdu Nx,0pdρ, dW q. (6.89)

Lemma 6.39 ensures that both measures are non trivial E0 bN ˚–a.e. Let us now briefly perform

an analogous construction to the tip of the spine, viz. for ppρ0U , η
0
U ,W

0
U q, pPℓ,0

U ,Pr,0
U qq under N‚

x,0.

Still from Proposition 6.20 recall that under N‚
x,0, conditionally on pρ0U , η

0
U ,W

0
U q, the pair of

measures pPℓ,0
U ,Pr,0

U q are independent Poisson random measures with respective intensities

1r0,xη0U ,1yspuqduNW 0
U pHpκuη0U qq,0pdρ, dη, dW q and 1r0,xρ0U ,1yspuqduNW 0

U pHpκuρ0U qq,0pdρ, dη, dW q.

Then, if we now consider pVtpPℓ,0q, VtpPr,0
U qqtě0 as well as the pair of measures

`

Ξ˚pPℓ,0
U q,Ξ˚pPr,0

U q
˘

we still have that conditionally on pρ0U , η
0
U ,W

0
U q and pV8pPℓ,0

U q, V8pPr,0
U qq the pair of variables

`

Ξ˚pPℓ,0
U q,Ξ˚pPr,0

U q
˘

are independent Poisson measures with respective intensities (6.89). Note

however that in contrast with our previous case, we might have V8pPℓ,0
U q “ 0 or V8pPr,0

U q “ 0.

6.8 Reconstructions

The content of this section is at an early stage.

It is well know from classic excursion theory of time indexed Markov processes that one can

recover the initial path of the Markov process from its excursion measure. This is essentially

achieved by concatenating the excursions, using the fact that the ordering induced by the local

time is precisely the temporal order. In the setting of Markov processes indexed by Lévy trees,

the inherent complexity of these objects gives rise to a several natural analogous questions that

we shall now address. We shall start with an overview of the main results of the section.

In this direction, recall that we write rH for the height process pΛA of the subordinate tree and

we let rX be the Lévy process associated to this height process. The first part of this section is

devoted to proving that one can recover the Lévy process rX - or equivalently, the height process
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rH - from the excursion process E . To be more precise, let us introduce some notation. Under

Nx,0 and P0,x,0, recall that we write E “
ř

uPD δpAgpuq,ρu,Wuq for the excursion process of pρ,W q

and consider the following subset of D

D` :“ tu P D : L˚
σpW u

q ą 0u.

We shall write
ř

uPD`
δpAgpuq,L

˚
σpρu,Wuqq for the image of E1tL˚

σpρ,W qą0u under the mapping given

by pAgpuq, ρ
u,W uq ÞÑ pAgpuq, L

˚
σpρu,W uqq. The first main result of the section is the following

theorem:

Theorem 6.40. Under P0,x,0, the measure
ř

uPD`
δpAgpuq,L

˚
σpρu,Wuqq is the jump measure of rX.

The proof of this result is achieved in two steps:

Step 1: We first prove in Proposition 6.45 that the set tAgpuq : u P D`u is precisely the set of

jump-times of rX. This is the main content of Section 6.8.1.

Step 2: We then show in Section 6.8.2 that for every u P D` we have ∆ rXAgpuq
“ L˚

σpρu,W uq.

The proof of the later will be a straight consequence of Proposition 6.47, which links

the local times at the branching points of T
rH
with the family of processes pL˚pρu,W uq :

u P D`q via an explicit time-change. Section 6.8.2 is devoted to the proof of the latter.

As a consequence of Theorem 6.40 we deduce both, the reconstruction of rX in terms of E , and
identify the law of the family of excursions pρu,W uquPD given rH. This result is closely related to

[1, Theorem 40].

Corollary 6.41. The Lévy process rX is E-measurable. In particular, if for every u P D we let

zu “ L˚
σpρu,W uq, we have

Nx,0

˜

gp rHq exp
`

ÿ

uPD

fpAgpuq, ρ
u,W u

q
˘

¸

“ Nx,0

˜

gp rHq
ź

uPD

N˚
x

´

exp
`

fpAgpuq, ρ,W q
˘

ˇ

ˇ

ˇ
L˚
σ “ zu

¯

¸

.

In other words, conditionally on rH, the family pρu,W uquPD are independent with respective law

given by N˚
xpdρ, dW |L˚

σ “ zuq.

We now turn our attention to the reconstruction of the Lévy snake in terms of the excursion

process E . Unsurprisingly, this procedure turns out to be significantly more delicate than in the

classic setting of time-indexed Markov processes, but we still have the following analogue theorem:

Theorem 6.42. Recall the notation E for the excursion process of pρ,W q. The Lévy snake pρ,W q

can be recovered from E.

Remark that by Corollary 6.5, to obtain this result it suffices to show that the pair pH,xW q can

be recovered from E . This is precisely the content of Proposition 6.49. Section 6.8.3 is devoted

to the proof of this result, and relies strongly again in Proposition 6.47.

In what follows, we shall make extensive use of the spinal decomposition in excursions of

Proposition 6.20 as well as the closing remarks of Section 6.5.1. The same notations are maintained

through this section. Roughly speaking, our arguments often rely on proving desired properties

for the excursions on a typical Snake path - viz. by working under N‚
x,0 and using Proposition

6.20 - and then transferring such properties to every excursion pρu,W uq of pρ,W q. This last step

relies on the following lemma:
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Lemma 6.43. Let A P F , B P F b R` and suppose that for some (random) I Ă BpR`q with

Nx,0 -a.e. positive Lebesgue measure it holds that Bc X tU P Iu Ě Ac ˆ tU P Iu. If B has full

N‚
x,0 measure, then A has full Nx,0-measure.

Proof. Since B has full N‚
x,0 measure, then 0 “ N‚

x,0pBcq ě N‚
x,0pBc X tU P Iuq ě Nx,0pLpIq;Acq

where we denoted by LpIq the Lebesgue measure of I. Since LpIq ą 0 Nx,0 a.e. this gives that A

has full Nx,0 measure.

The rest of the section is organised as follows: in Section 6.8.1 we study the family of jump-times

of rX and prove that the sets tt ě 0 : ∆ rXt ą 0u and tAgpuq : u P D`u coincide [Proposition

6.45]. In Section 6.8.2 we establish that the local times at the branching points of T
rH

and

pL˚pρu,W uq : u P D`q differ by a time change [Proposition 6.92]. In particular, we shall deduce

from this result the identity ∆ rXAgpuq
“ L˚

σpρu,W uq for u P D` which concludes the proof of

Theorem 6.40. Finally, Section 6.8.3 is devoted to the proof of Theorem 6.8. Namely, we shall

prove in Proposition 6.49 that the pair pH,xW q can be reconstructed from E .

6.8.1 The jump-times of rX

This short section is devoted to proving that the two following sets tt ě 0 : ∆ rXt ą 0u and

tAgpuq : u P D`u coincide. This is the first step towards proving Theorem 6.40 and we shall

start by covering some preliminary results. Recall that we write D˝ for the set of debut times

[Definition 6.24], and that by Lemma 6.25 the relation u ÞÑ gpuq is a bijection between D and D˝.

In particular, the subset D` Ă D is in bijection with a subset of D˝ that we now characterise:

Lemma 6.44. For t P r0, σs, we introduce the condition

(i’) There exists s ą t such that Hs ą Ht with infrt,ss H “ Ht and pΛs ą pΛt.

The subset of debut times that satisfy (i’) is denoted by D˝
`. Then, under Nx,0 and P0,x,0 a debut

u P D belongs to D` if an only if gpuq belongs to D˝
`.

Proof. Recall that under Nx,0, for every fixed t P p0, σq such that xWt ‰ x, we let uptq P D be

the unique debut such that ℓuptq “ pΛt. Since N‚
x,0-a.e. we have xWU ‰ x, we can write upUq

for the unique debut point satisfying ℓupUq “ pΛU . Let us start arguing under N‚
x,0. By the

discussion following Lemma 6.39, condition (i’) is satisfied by gpupUqq if and only if V8pPℓ,0
U q ‰ 0

or V8pPr,0
U q ‰ 0. Moreover, since by (6.83) we can write L˚

8pρupUq,W upUqq “ V8pPℓ,0
U q`V8pPr,0

U q,

it follows that the union of the (disjoint) sets tgpupUqq P D˝
`, L

˚
σpρupUq,W upUqq ą 0u, tgpupUqq R

D˝
`, L

˚
σpρupUq,W upUqq “ 0u has full N‚

x,0 measure. The statement of the lemma now immediately

follows by an application of Lemma 6.43. Since this type of reasoning will be often used, we shall

provide the details for reader’s convenience, but in the sequel they will be systematically omitted.

Fix an arbitrary u P D. There exists a non-empty interval pg1puq, d1puqq Ă pgpuq, dpuqq such that

tU P pg1puq, d1puqqu Ď tpΛU “ ℓuu. Therefore, from our previous reasoning we get

0 “ N‚
x,0

`

gpupUqq P D˝
`, L

˚
σpρupUq,W upUq

q “ 0, U P pg1
puq, d1

puqq
˘

“ Nx,0

`

pd1
puq ´ g1

puqq; gpuq P D˝
`, L

˚
σpρu,W u

q “ 0
˘

and analogously we obtain as well that Nx

`

pd1puq´g1puqq; gpuq R D˝
`, L

˚
σpρu,W uq ą 0

˘

“ 0. Since

Nx,0-a.e. it holds that d
1puq´g1puq ą 0, we infer that Nx,0-a.e. the sets tgpuq P D˝

`, L
˚
σpρu,W uq ą
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0u, tgpuq R D˝
`, L

˚
σpρu,W uq “ 0u are a partition of Ω. It follows that Nx,0-a.e. we have that

gpuq P D` if and only if gpuq belongs to D˝
`.

We can now prove the remarkable connection between D` and the set of jump-times of rX.

Recall the notation rH for the height process pΛA of the subordinate three rT
rH
.

Proposition 6.45. Under P0,x,0 and Nx,0, the mapping g̃ : D` ÞÑ R` defined by the relation

g̃puq :“ Agpuq is a bijection between the sets D` and tt ě 0 : ∆ rXt ą 0u.

Proof. It suffices to prove the result under Nx,0 and for clarity, we divide the proof in two main

steps. In this direction, fix an arbitrary u P D` and let us start proving that:

‚ rgpuq is a jump time for rX. To achieve this, by Lemma 6.50 it suffices to prove that Nx,0-a.e.,

1. For every δ ą 0, we have inf
rrgpuq´δ, rgpuqs

rH ă rH
rgpuq.

2. For every ε ą 0 such that inf
rrgpuq, rgpuq`εs

rH “ rH
rgpuq, there exists r P prgpuq, rgpuq ` εq satisfying

rH
rgpuq “ rHr.

To establish this two properties we shall make use of the results of Section 6.5.2. Let us start

with some preliminary remarks. Under E0 b N˚ and to simplify notation, write
`

Ξ˚
ℓ ,Ξ

˚
r

˘

for the

pair of measures (6.87) and introduce the processes:

AtpΞ
˚
ℓ q :“

ÿ

kPKpℓq,jPKprq

k

At^βk,j´t^αk,j
pρk,j ,W

k,j
q, pΛtpΞ

˚
ℓ q :“

ÿ

kPKpℓq,jPKprq

k

pΛk,jt^βk,j´t^αk,j
1t Ppαk,j ,βk,jq.

Recall that by Lemma 6.39 we have V
pℓq

8 ą 0 and that conditionally on pJσ, ξq and V
pℓq

8 , the

measure Ξ˚
ℓ is a Poisson measure with intensity 1

r0,V
pℓq

8 s
puqduNx,0pdρ, dW q. We infer that con-

ditionally on pJσ, ξq and (6.88), the pair
`

AtpΞ
˚
ℓ q, pΛtpΞ

˚
ℓ q
˘

tě0
is distributed as pAt, pΛtqtě0 under

P0,x,0 stopped at time infts ě 0 : ´Is “ V
pℓq

8 u and in particular, A8pΞ˚
ℓ q ą 0 by Lemma 10

of [82]. In our last argument we used that under P0,x,0, the measure dA does not charge the

set tt ě 0 : It “ Xtu. This follows noting that E0,x,0

`

dApts ě 0 : Hs “ 0uq
˘

“ 0, since

for every r ą 0 and writing L r for the exit local time from the domain E ˆ r0, rq, we have

dL r
s pts ě 0 : Hs “ 0uq “ 0 were the last assertion follows form the integral representation of A

given in [82, Proposition 6]. Now, we deduce that the origin is regular and instantaneous for the

time changed process pΛApΞ˚
ℓ q, from identity (6.6) combined with the fact that pΛA under P0,x,0

is the height process of a rψ - Lévy tree. Note that the same holds for the time reversed process

TrevpΛApΞ˚
ℓ q.

Now we work under N‚
x,0 and recall that we write rH for pΛA. For a fixed arbitrary ℓu P J pΛU q,

let us prove that the corresponding rgpuq “ Agpuq satisfies conditions 1 and 2. Starting with the

latter, recall that by Proposition 6.20, conditionally on pΛU the measure OU is a Poisson measure

with intensity 1
r0,pΛU s

dsE0 b N˚ppJσ, qJσ, ξ,Mℓ,Mrq P dzq and let pri, ρ
i
U , η

i
U ,W

i
U ,P

ℓ,i
U ,P

r,i
U q be

the unique atom of OU such that ri “ ℓu. To simplify notation, we write Ξ˚,i
ℓ for Ξ˚pPℓ,i

U q. By

our previous considerations under E0 bN˚ and (4.27) in [82], we have A8pPℓ,i
U q “ A8pΞ˚,i

ℓ q ą 0

and note that we can write
´

pΛAAgpuq`t : 0 ď t ď A8pPℓ,i
U qq

¯

“ Trev
´

pΛAt pΞ˚,i
ℓ q ` ri : 0 ď t ă A8pΞ˚,i

ℓ q

¯

.
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Further, from our reasoning under E0bN˚ the point 0 is regular and instantaneous for the process

in the right-hand side, and we infer that condition 2 is fulfilled by Agpuq. Condition 1 will follow

if we can find an increasing sequence of times ptnqně0 with tn Ò gpuq and such that rHAtn
ă rHAgpuq

for every n ě 0. Recall that gpuq is a debut time by Lemma 6.25 and in particular, by Definition

6.24-(ii) we have infpgpuq´ε,gpuqs
pΛ ă pΛgpuq for every ε ą 0. Now, it readily follows that we can

find a sequence ptnqně0 with tn Ò t such that rHAtn
“ pΛtn ă pΛgpuq “ rHAgpuq

.

Our previous reasoning shows that under N‚
x,0, the set B :“ t @ℓu P J pΛU q, Agpuq P tt ě

0 : ∆ rXt ą 0uu has full measure. Let us deduce from this that under Nx,0 and for every fixed

u1 P D`, the point Agpu1q is a jump-time for rX. Using the fact that L˚
σpρu

1

,W u1

q ą 0, it is not

difficult to check that there exists a nonempty interval pg1pu1q, d1pu1qq Ă pgpu1q, dpu1qq such that

tU P pg1pu1q, d1pu1qqu Ă tℓu
1

P J pΛU qu. Now, our claim readily follows by an application of Lemma

6.43 to the sets B, A :“ tAgpu1q P tt ě 0 : ∆ rXt ą 0uu and I :“ pg1pu1q, d1pu1qq.

‚ The mapping rg : D` ÞÑ tt ě 0 : ∆ rXt ą 0u is bijective. Let us start proving that rg is injective.

Consider u, u1 P D with u ‰ u1 and without loss of generality suppose that gpu1q ă gpuq. Since gpuq

is a debut time, we infer from condition (i) in Definition 6.24 and Lemma 6.27 that gpuq is a point

of left increase for A. This gives that Agpu1q ă Agpuq and proves that the mapping rg is injective.

Let us now check the surjectiviy of rg. Fix an arbitrary time t in the set tt ě 0 : ∆ rXt ą 0u, so

that conditions (i) and (ii) of Lemma 6.40 are satisfied by rH at time t. We start checking that

A´1
t´ is an element of D˝

` viz. that pH, pΛq at time A´1
t´ fulfils conditions (i),(ii) of Definition 6.24

as well as (i’) of Lemma 6.44. We consider two different cases. Suppose first that A´1
t´ ă A´1

t .

By condition (i) of Lemma 6.40, we can find an increasing sequence of times sn Ò t such that
rHsn ă rHt for every n ě 0. By left continuity, we have A´1

sn Ò A´1
t´ which yields that A´1

t´ satisfies

Definition 6.6-(ii). Further, noting that pΛ is constant on rA´1
t´ , A

´1
t s, by the snake property it

must hold that Hr ě HA
t´ for every r P rA´1

t´ ă A´1
t s. Since H has no constancy intervals, we

can find some time s on this interval at which Hs ą HA
t´. This proves that A´1

t´ satisfies as well

condition (i) and therefore is a debut time. Let us now assume that A´1
t´ “ A´1

t . Arguing as

before, condition Definition 6.24-(ii) is fulfilled by A´1
t´ so let us prove that Definition 6.24-(i) also

holds. Suppose by contradiction that we can not find s ą A´1
t such that Hs ą HA

t with both

minrA´1
t ,ss H “ HA

t and pΛAt “ pΛs. Since t is a jump time of rH, we can find a decreasing sequence

sn Ó t satisfying that sn P tr ě t : rHr “ rHt “ minrt,rs
rHu. By right-continuity, A´1

sn Ó A´1
t and

for every n, it must hold that HA
sn “ HA

t . It follows that conditions (i) and (ii) of Lemma 6.40

are satisfied by H at time A´1
t , which gives that A´1

t is a jump time for X. Further, since dA is

supported on tt ě 0 : xWt “ xu, we have xWA
t “ x which contradicts (6.20). This concludes the

proof that A´1
t´ is a debut-time for pρ,W q. Moreover, clearly condition Lemma 6.44-(i’) is fulfilled

as well by H at time A´1
t´ proving that A´1

t belongs to D˝
`. Now, recall from Lemma 6.25 that

the mapping g : u ÞÑ gpuq for u P D is a bijection between D and D˝. If we write u :“ g´1pA´1
t´ q

for the corresponding excursion debut associated to A´1
t´ by the bijection g, by Lemma 6.44 we

have that u belongs to D`. Finally, since rgpuq “ Agpuq “ t this proves that the mapping rg is

surjective, and concludes the proof of the proposition.

By Proposition 6.45, the first entries of the atoms on the following pair of measures

ÿ

uPD`

δpAgpuq,L
˚
σpWuqq, and

ÿ

tPR`

1
tX̃t´‰X̃tu

δ
pt,∆ rXtq
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coincide P0,x,0 and Nx,0 – a.e. To establish Theorem 6.40 it remains to show that for every

u P D`, we have L˚
σpρu,W uq “ ∆ rXAgpuq

. This fact will be obtained, as we mentioned previously,

as a straight consequence of the crucial relationship linking the local times at the branching points

of T
rH
, and the family of processes pL˚pρu,W uq : u P D`q.

6.8.2 The local time at the branching points of T
rH

For every u P D, write pαipuq, βipuqqiPQu
for the connected components of the complement in

p0, σpW uqq of supp dL˚pρu,W uq, with the convention that if L˚
σpρu,W uq “ 0 we let Qu :“ t0u

and therefore pα0puq, β0puqq :“ p0, σpW uqq. We set X :“ tpαipuq, βipuqq : u P D, i P Quu. Next,

for every u P D and t ě 0, we introduce the time change

σuptq :“

ż t

0
ds1

tpΛs“ℓuu
as well as σ´1

u ptq :“ infts ě 0 : σupsq ą tu.

We write σ´1
u pt´q for the left limit of σ´1

u at t. Roughly speaking, σuptq measures the amount of

time spent by ppHpsq : s ě 0q in Cu up to time t. Next, consider the mapping q on X defined for

every pαipuq, βipuqq P X by the relation:

qpαipuq, βipuqq :“ pσ´1
u pαipuqq, σ´1

u pβipuq´qq.

To simplify notation the interval on the right-hand side is denoted by pgpu, iq, dpu, iqq. Finally,

denote the family of connected components of psupp dAqc by X 1.

Lemma 6.46. Under Nx,0 and P0,x,0, the mapping q : X Ñ X 1 is a bijection between the sets

X ,X 1. The bijection q is characterised by the following property: for every fixed u P D, i P Qu,

we have
`

θℓxpWgpu,iqqpρ,W, pΛqpt`gpu,iqq^dpu,iq : t ě 0
˘

“
`

pρu,W u, ℓuqpt`αipuqq^βipuq : t ě 0
˘

. (6.90)

Note that (6.90) in particular ensures both that dpu, iq ´ gpu, iq “ αipuq ´ βipuq, and that for

t P pgpu, iq, dpu, iqq, the mapping σu is linearly increasing while every other σu1 with u1 ‰ u it

remains constant.

Proof. Recall from (6.51) that the support of dA is precisely the complement of the constancy

intervals of pΛ. We start arguing under N‚
x,0. First, since xWU ‰ x a.e., we can find a unique

pg˚, d˚q P X 1 such that U P pg˚, d˚q. Namely, g˚ :“ supts ď U : pΛs ‰ pΛUu, d˚ :“ infts ą U :
pΛs ‰ pΛUu. On the other hand, let u0 :“ upUq be the unique excursion such that pHpUq P Cu0 .

With the notations of Proposition 6.20, note that σu0pUq “
ř

kPK1
r0
σpTr˚pρk,W kqq as well as the

identity

pθℓxpWU qpρU , ηU ,WU q,Pℓ,0
U ˝ Tr´1

˚ ,Pr,0
U ˝ Tr´1

˚ q “ Sppρu0 ,W u0qσu0pUq. (6.91)

Further, there exist a unique connected component in the complement of supp dL˚pρu0 ,W u0q,

that we denote by pα˚pu0q, β˚pu0qq P X , such that we have σu0pUq P pα˚pu0q, β˚pu0qq. Namely,

α˚pu0q :“ supts ď σu0pUq : s P supp dL˚u, β˚pu0q :“ inftt ě σu0pUq : L˚
t pρu0 ,W u0q ą

L˚
σu0pUq

pρu0 ,W u0qu. Let us now prove that qpα˚pu0q, β˚pu0qq “ pg˚, d˚q. In this direction, with

the notations introduced in Section 6.5.2 and at the end of Section 6.7, we consider the process

VtpPr,0
U q :“

ÿ

kPKr0

LE˚

t^βk´t^αk
pρk,W

k
q, t ě 0, and Ξ˚

pPr,0
U q “

ÿ

kPKr0 ,jPKr0,k

δ
pV

prq
αk,j

,ρk,j ,ηk,j ,W
k,j

q
.
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Recall from Proposition 6.20 that conditionally on ppΛU , V8pPr,0
U qq, the measure Ξ˚pPr,0

U q is a

Poisson measure with intensity 1
r0,V8pPr,0

U qs
prqdrNx,0pdρ, dη, dW q. By the relation (6.83), for

t ě 0 we can write VtpPr,0
U q “ L˚

σu0pU`tqpρ
u0 ,W u0q ´ L˚

σu0pUq
pρu0 ,W u0q and we distinguish two

cases. Suppose first that V8pPℓ,0
U q ą 0, and for t ě 0 we set

pΛtpΞ
˚
r,0q :“

ÿ

kPKr0 ,jPKr0,k

pΛk,jt^βk,j´t^αk,j
1t Ppαk,j ,βk,jq.

As a straight consequence of the special Markov property and the fact that under Nx,0, pΛt ą 0 for

every t P p0, σq, we get that inftt ě 0 : pΛtpΞ
˚
r,0q ą 0u and inftt ě 0 : VtpPr,0

U q ą 0u coincide. This

implies that d˚ and inftt ě 0 : L˚
σu0ptqpρ

u0 ,W u0q ą L˚
σu0pUq

pρu0 ,W u0qu coincide, and we deduce

that

σ´1
u0

pβ˚pu0q´q “ inftt ě 0 : σu0ptq “ β˚pu0qu “ inftt ě 0 : L˚
σu0ptq ą L˚

σu0pUq
pρu0 ,W u0qu “ d˚.

We stress that to derive the second equality we used the special Markov property. Suppose now

that V8pPr,0
U q “ 0. On the one hand, this yields that β˚pu0q “ σpW u0q, while on the other hand

arguing as before we deduce that pΛ is constant on pU, dpu0qq. Noting that infrdpu0q,dpu0q`εs
pΛ ă

pΛdpu0q for every ε ą 0, this proves both that σ´1
u0

pβ˚pu0q´q “ dpu0q and that the later coincides

with d˚.

From our previous reasoning and the relationship between the respective spines (6.91) we infer

as well that
`

θℓxpWU qpρ,W, pΛqpt`Uq^d˚
: t ě 0

˘

“
`

pρu0 ,W u0 , ℓu0qpt`σu0pUqq^β˚pu0q : t ě 0
˘

. An

analogous inspection of the left spine gives that σ´1
u0

pα˚pu0qq “ g˚ as well as the identity

pθℓxpWU qpρ,W, pΛqpt`g˚q^d˚
: t ě 0q “ ppρu0 ,W u0 , ℓu0qpt`α˚pu0qq^β˚pu0q : t ě 0q.

By making use of Lemma 6.43 it plenty follows from our reasoning that q is a bijection between

the sets X , X 1 and that it fulfils property (6.90).

We are now in position to prove the crucial relation between the family of local times at

the branching points of the subordinate tree T
rH
- in the sense of Lemma 6.2 - and the family

pL˚pρu,W uq : u P Dq. This will conclude the proof of Theorem 6.40 and will be crucial as well

for establishing Theorem 6.42.

Proposition 6.47. For every u P D` and with a slight abuse of notation, we write rλℓ,u, rλr,u for

the local times at the branching point p
rH

˝rgpuq in T
rH
. Then, Nx,0-a.e. for every u P D` we have

rλℓ,uAt
“ L˚

σuptqpρ
u,W u

q, rλr,uAt
“ L˚

σpρu,W u
q ´ L˚

σuptqpρ
u,W u

q (6.92)

and in particular ∆ rXAgpuq
“ L˚

σpρu,W uq.

Proof. We shall make use of the notations and results of Proposition 6.20 and in this direction

we start arguing under E0 b N ˚. Recall that conditionally on the triplet pJσ, qJσ, ξq, the mea-

sures Ξ˚pMℓq,Ξ˚pMrq are independent Poisson measures with respective intensities given by

1r0,V8pMℓqsprqdrNx,0pdρ, dW q and 1r0,V8pMrqsprqdrNx,0pdρ, dW q. By the exact same argument

employed in the proof of Lemma 6.2, using the fact that Nx,0psupt pΛt ą εq “ rNpsupt rHt ą εq by
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(6.53), we have

V8pMℓ
q “ lim

εÓ0

#tΛk,j P Ξ˚pMℓq : supt pΛ
k,j
t ą εu

Nx,0psupt pΛt ą εq
, (6.93)

V8pMr
q “ lim

εÓ0

#tΛk,j P Ξ˚pMrq : supt pΛ
k,j
t ą εu

Nx,0psupt pΛt ą εq

the convergences holding point-wise E0 b N ˚–a.e. On the other hand, by Lemma 6.2 and with

the notations of Lemma 6.2, we have the following a.e. convergence under N‚
x,0

rλℓ,uAU
“ lim

εÑ0

#t rHi : a1
i ă AU , supt rH

i
t ą εu

rNpsupt rHt ą εq
“ lim

εÓ0

#tΛi,k P Ξ˚pPℓ,i
U q : supt pΛ

i,k
t ą εu

Nx,0psupt pΛt ą εq
(6.94)

with an analogous result holding for rλr,uAU
. Since the measure OU is a Poisson measure with

intensity 1
r0,pΛU s

prqdrE0 b N˚ppJσ, qJσ, ξ,Mℓ,Mrq P dzq, this proves that N‚
x,0 a.e., for every

ℓu P J pΛU q and if we let pri, ρ
i
U , η

i
U ,W

i
U ,P

ℓ,i
U ,P

r,i
U q be the unique atom of OU such that ri “ ℓu,

we have the identities rλℓ,uAU
“ V8pPℓ,i

U q, rλr,uAU
“ V8pPr,i

U q. By making use of a similar reasoning

for the tip pρ0U , η
0
U ,W

0
U ,P

ℓ,0
U ,Pr,0

U q these identities hold as well for i “ 0, ℓu “ pΛU as soon as

u P D`. Since V8pPℓ,i
U q “ L˚

σu0pUq
pρu,W uq, V8pPr,i

U q “ L˚
σpρu,W uq ´ L˚

σupUq
pρu,W uq it follows

that Nx,0 a.e. for a dense set of times t in p0, σq identity (6.92) holds for every u P D`. The

statement of the lemma now follows by continuity and recalling that for every t ě 0, we have
rλℓ,ut ` rλr,ut “ ∆ rXAgpuq

.

The previous proposition concludes the proof of Theorem 6.40.

6.8.3 Reconstruction of the tree-like path pH,xW q

This last section is devoted to proving Theorem 6.42. Recall that to achieve this it suffices to

show that pH,xW q can be recovered from the excursion process E . In this direction, with the

notations of Lemma 6.46, for every u P D, i P Qu we let Hu,i :“ pHu
pαipuq`tq^βipuq

: t ě 0q,

xW u,i :“ pxWpαipuq`tq^βipuq : t ě 0q. Recall that tpgpu, iq, dpu, iqq : u P D, i P Quu are the connected

components of psupp dAqc as well as the relation (6.90). Now, we consider the measure

E 1 :“
ÿ

uPD,iPQu

δ
pAgpu,iq,Hu,i,xWu,iq

.

In Proposition 6.49 below we shall provide a reconstruction of the pair pH,xW q written in terms of

E 1 and rH. Therefore, the following lemma is the last steeping stone towards establishing Theorem

6.42.

Lemma 6.48. The measure E 1 can be constructed from E.

Proof. Since the family pAgpuq, H
u,i,xW u,iquPD,iPQu

is E-measurable, it remains to show that the

same still holds if we replace Agpuq by Agpu,iq. Now, this will follow as soon as we show that, for

every u P D and i P Qu it holds that

Agpu,iq “

$

&

%

infta ě 0 : rλℓ,ua “ L˚
αipuq

pρu,W uqu if L˚
αipuq

pρu,W uq ą 0,

Agpuq if L˚
αipuq

pρu,W uq “ 0.
(6.95)
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Let us be more precise: the family pAgpuq, rλ
ℓ,uquPD`

is a function of rH, which on its turn is a

functional of E by Theorem 6.40. Since the family pAgpuq, L
˚
αipuq

pρu,W uqquPD`,iPQu
can also be

obtained from E , this would prove that Agpu,iq is E-measurable. Fix u P D, i P Qu and let us

assume first that L˚
αipuq

pρu,W uq “ 0. Then, it must hold that αipuq “ 0 and by definition of q

we get gpu, iq “ qpαipuqq “ gpuq. This proves the second equality in (6.95). On the other hand,

if L˚
αipuq

pρu,W uq ą 0 the variable Agpu,iq is a time of left increase for rλℓ,u - see argument below -

and therefore, we have that

Agpu,iq “ infta ě 0 : rλℓ,ua “ rλℓ,uAgpu,iq
u.

Now, by Proposition 6.92 and definition of the bijection q we have the equalities:

rλℓ,uAgpu,iq
“ L˚

σupgpu,iqq
pρu,W u

q “ L˚
αipuq

pρu,W u
q

proving the first equality in (6.95). This concludes the proof of the corollary and it remains

to show that Agpu,iq is a point of left increase for rλℓ,u when L˚
αipuq

pρu,W uq ą 0. Arguing by

contradiction, suppose that the latter does not hold. Then, since gpu, iq is a point of left increase

for A, for some ε ą 0 small enough it must hold that

L˚
σupgpu,iq´εqpρ

u,W u
q “ rλℓ,uAgpu,iq´ε

“ rλℓ,uAgpu,iq
“ L˚

αipuq
pρu,W u

q.

Since αipuq is a point of left increase for L˚pρu,W uq, the process σu must be constant in the interval

pgpu, iq ´ε, gpu, iqq. The hypothesis L˚
σupgpu,iqq

pρu,W uq ą 0 ensures that pΛ in such neighbourhood

must be strictly larger than ℓu, and therefore there must exists an excursion of pΛ away from ℓu
ending at dpu, iq. In particular, on the event U P pgpu, iq, dpu, iqq we can find an event of positive

measure at which the measure ΞpPℓ,0
U q has an atom with first coordinate equal to L˚

αipuq
pρu,W uq.

However, this is impossible since the family pL˚
αipuq

pρu,W uq : i P Quq is measurable with respect

to pρu,W uq.

The following proposition concludes the proof of Theorem 6.42.

Lemma 6.49. The process pHt,xWt : t ě 0q can be recovered from the excursion process E.

Proof. By Lemma 6.48 and Corollary 6.41, it would suffice to show that we can express pH,xW q in

terms of the measure E 1 and rH. While the reconstruction of xW from E 1 does not present additional

difficulties, the one of H still requires of some additional work that we shall now address. In this

direction, we argue under N‚
x,0. For every u P D` we set Tu :“ inftt ě 0 : L˚

t pρu,W uq ą

rλu,ℓAU
u1

trλu,ℓ
AU

ą0u
, while if u P DzD` we simply let Tu “ 0. Note that U belongs to some element of

X 1, say pgpu0, i0q, dpu0, i0qq P X 1, so we can replace AU by Agpu0,i0q in our definition of Tu. The

bulk of the proof consists in proving that HU can be decomposed as follows:

HU “
ÿ

uPD,u‰u0

Hu
Tu

` Hu0

σu0pUq
(6.96)

with our usual notation u0 :“ upUq. First, recalling the law of pHU ,WU q under N‚
x,0 from

Proposition 6.17, we can write

HU “ infth ě 0 : ΛU phq “ pΛUu ` θℓxpWU qpHU q

“
ÿ

riăpΛU

pτ`
ri pWU q ´ τripWU qq ` Hu0

σu0pUq
(6.97)
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where in the second equality we used pH2q. We next fix an arbitrary ℓu P J pΛU q and let

pri, ρ
i
U , η

i
U ,W

i
U ,P

ℓ,i
U ,P

r,i
U q be the unique atom of OU such that ri “ ℓu. Since the characteristic

measure of OU is precisely E0 bN ˚, Lemma 6.39 ensures that the corresponding debut u belongs

to D`. Further, let us check that the following identities hold:

τ`
ri pWU q ´ τripWU q “ Hu

σupUq
“ Hu

Tu
(6.98)

The first equality follows from observing that σupUq “
ř

kPK1
ri
σpTr˚pρk,W kqq - where the atoms

in the right hand side belong to Pℓ,i
U - while the second one is essentially a consequence of

Proposition 6.47 and Lemma 6.39. Let us be more precise on this last point: first, by Proposition

6.47 we have L˚
σupUq

pρu,W uq “ rλℓ,iAU
which gives that Tu ě σupUq. On the other hand, Lemma

6.39 and an application of the special Markov property yields that

L˚
σupUq

pρu,W u
q ă L˚

σupUq`εpρ
u,W u

q

for every ε ą 0. This shows that Tu “ σupUq and (6.98) follows. Observe that if ℓu R J pΛU q Y

tpΛUu, then σupUq is either null or equal to σpW uq. If we further assume that u P D`, by

Proposition 6.47 we infer that rλℓ,uAU
is either null or equal to the total mass L˚

σpWuq
pρu,W uq, and

therefore Tu P t0,8u. Noting that if u P DzD` by definition we have Tu “ 0, we infer that in

any case it holds that Hu
Tu

“ 0. Identity (6.96) now follows from combining this fact with (6.98)

and equality (6.97). Our argument under N‚
x,0 yields that for a countable dense set of times in

p0, σq, we have the identity

Ht “
ÿ

uPD,u‰uptq

Hu
Tu

` H
uptq
σuptqptq

(6.99)

where the process on the right-hand side is continuous on pgpu, iq, dpu, iqq for every u P D, i P Qu.

Let us now finally describe the reconstruction of the pair pH,xW q in terms of pE 1, rHq. First,

consider the following càglàd process

Zpaq :“
ÿ

Agpu,iqP E 1

σpW u,i
q1tAgpu,iqăau, for a ě 0.

We write Zpa`q for its right limit at time a and observe that σpW u,iq “ dpu, iq ´ gpu, iq. If we

fix an arbitrary pgpu1, i1q, dpu1, i1qq P X 1, the fact that Nx,0 a.e. the integral
ş8

0 ds1
txWs“xu

is null

ensures that pZpAgpu1,i1qq, ZpAgpu1,i1q`qq “ pgpu1, i1q, dpu1, i1qq. Let us then construct pHt,xWtq for

for every t P pgpu1, i1q, dpu1, i1qq in terms of pE 1, rHq. In this direction, we let s :“ t ´ gpu1, i1q and

we proceed as follows:

1. Consider the family of local times prλℓ,uquPD`
at the branching points of rH.

2. For every u P D`, we set Tu :“ inftt ě 0 : L˚
t pρu,W uq “ rλℓ,uAgpu1,i1q

u1
trλℓ,u

A
gpu1,i1q

ą0u
and let

Tu “ 0 if u P DzD`.

3. Making use of identity (6.99), we can write

Ht :“
ÿ

uPD,u‰u1

Hu
Tu

` Hu1,i1

s and xWt “ xW u1,i1

s .

This concludes the proof of the proposition.
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6.9 Appendix

In this appendix we include a technical lemma that was excluded from the main discussion for

readability purposes.

Lemma 6.50. For t P R`, let zptq :“ infts ě t : Hs ă Htu. Under P and N , a time t P R` is a

jump time of X if and only if

(i) For every δ ą 0, infrt´δ,ts H ă Ht

(ii) For every ε ą 0, there exists u P pt, t ` εq such that Ht “ Hu with infrt,t`εs H “ Ht.

When these properties hold, zptq coincides with infts ě t : Xs “ Xt´u

Note that since H has no constancy intervals, (ii) implies that for every ε ą 0, we can also

find u P pt, t ` εq such that Ht ă Hu.

Proof. We shall only prove the result under P . The collection of jump-times of X is countable

and can be written as a disjoint union of stopping times. We write T for an arbitrary stopping

time such that ∆XT ą 0. We shall also write Y for the collection of times that fulfil both (i) and

(ii).

‚ Let us start by proving that every fixed stopping time T at which ∆XT ą 0 fulfils properties

(i) and (ii). Let us start by establishing the former and in this direction we shall make use

of the notations introduced in (6.3). First, note that since for every fixed t ą 0, the process

pXs : 0 ď s ď tq has the same distribution as pXt ´ Xpt´sq´ : 0 ď s ď tq, the strong Markov

property combined with the fact that 0 is regular for p0,8q for X yields T can not be a local

infimum. Now, fix an arbitrary rational t ą T such that XT´ ď IT,t. Note that by the definition

of Ht as the local time at 0 of the time reversed process Ŝptq ´ X̂ptq in r0, ts, we have that for any

u1 ă u2 ă u3 belonging to the set ts P r0, ts : Xs´ ď Is,tu, it holds that Hu1 ă Hu3 . Moreover,

since T is not a local infimum, for any ε ą 0 we can find some u P pT ´ ε, T s belonging to the set

ts P r0, T s : Xs´ ď Is,T u. It now follows that both u, T P ts P r0, ts : Xs´ ď Is,tu and we deduce

that Hu ă HT . We now turn our attention to (ii) and in this direction let us start by introducing

some notation. For t ě 0 we write X
pT q

t :“ XT`t ´ XT , I
pT q

t “ infr0,ts X
pT q and ρ

pT q

t for the

corresponding exploration process. Further, for r P R` we set TrpIq :“ inftt ě 0 : ´It ě ru.

Since ρT ptHT uq “ ∆XT , it follows by the strong Markov property of the exploration process (see

(1.13) in [43]) that for any 0 ď t ď T∆XT
pIpT qq, we have

HpρT`tq “ Hpκ
´I

pT q

t
ρT q ` Hpρ

pT q

t q “ HT ` Hpρ
pT q

t q.

SinceXpT q has the same distribution asX, the point 0 is regular and instantaneous forXpT q´IpT q,

and since a.e. we have tt ě 0 : X
pT q

t ´ I
pT q

t “ 0u “ tt ě 0 : ρ
pT q

t “ 0u we infer that (ii) holds.

Now, the fact that zpT q coincides with T ` inftr ě 0 : ´I
pT q
r “ ∆XT u readily follows again by

the strong Markov property.

‚ Let us now show that every T P Y is a jump time for X. To achieve this, it suffices to show

that such a time t must be a discontinuity time for ρ – with respect to the total variation distance

of measures. Indeed, by (1.12) in [43] we know that the discontinuity times of ρ are precisely of

the form ρu “ ρu´ `δHu
∆Xu, for u P ts ě 0 : ∆Xs ą 0u. Now, to show that ρ is discontinuous at
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time t, it plenty suffices to show that ρt´ptHtuq “ 0 while ρtptHtuq ą 0. Starting with the former,

note that by (i), there exists a decreasing sequence of positive numbers pδnqně0 with δn Ó 0 such

that Hpρt´δnq ă Hpρtq. Hence, for every n ě 0 it holds that ρt´δnptHtuq “ 0, and it follows by

left-continuity that ρt´ptHtuq “ 0. Let us now show that ρtptHtuq ą 0. It readily follow from our

definitions that we can construct a non-increasing sequence of stopping times τn Ó t satisfying

for every n ě 0, that Ht “ Hτn “ minrτ,τ`qs H for some q ą 0 which depends on n. Remark

that the condition infrτn,τn`qs H “ Hτn ensures, by the strong Markov property of the exploration

process, that ρτnptHτnuq ą 0 and consequently ρτnptHtuq ą 0. Moreover, since if s, s1 are distinct

jump-times it must hold that Hs ‰ Hs1 , the sequence pρτnptHtuq : n ě 0q must be non-decreasing

and by right-continuity of ρ we get ρtptHtuq ą 0. This proves that t is a jump-time for ρ and

concludes the proof of the lemma.
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[47] M. González-Navarrete. Multidimensional walks with random tendency. J. Stat. Phys.,

181(4):1138–1148, 2020.

[48] V.-H. Guevara and S. Hugo Cruz. An elephant random walk based strategy for improving

learning (preprint). doi:10.13140/RG.2.2.10920.72960.

[49] A. Gut and U. Stadtmüller. Variations of the elephant random walk. J. Appl. Probab.,

58(3):805–829, 2021.

[50] A. Gut and U. Stadtmüller. The elephant random walk with gradually increasing memory.

Statist. Probab. Lett., 189:Paper No. 109598, 10, 2022.

https://doi.org/10.13140/RG.2.2.10920.72960


Bibliography 316

[51] T. Hara and G. Slade. The scaling limit of the incipient infinite cluster in high-dimensional

percolation. II. Integrated super-Brownian excursion. J. Math. Phys., 41(3):1244–1293, 2000.

[52] I. Ibragimov and Y. Linnik. Independent and stationary sequences of random variables.

Wolters-Noordhoff Publishing, Groningen,.
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Poincaré Probab. Stat., 56(1):502–523, 2020.

[76] G. Miermont. The Brownian map is the scaling limit of uniform random plane quadrangu-

lations. Acta Math., 210(2):319–401, 2013.

[77] J. Neveu. Arbres et processus de Galton-Watson. Ann. Inst. H. Poincaré Probab. Statist.,
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[89] G. Schütz and S. Trimper. Elephants can always remember: Exact long-range memory effects

in a non-Markovian random walk. Phys. Rev. E, 70, 2004.

[90] H.A. Simon. On a class of skew distribution functions. Biometrika, 42:425–440, 1955.

[91] M. Weill. Regenerative real trees. Ann. Probab., 35(6):2091–2121, 2007.

[92] W. Whitt. Proofs of the martingale FCLT. Probab. Surv., 4:268–302, 2007.


	 Introduction
	Introduction to Part I
	Step reinforced random walks
	The invariance principles
	Noise reinforcement for Lévy processes
	The reinforced Lévy-Itô decomposition and synthesis
	Weak convergence of skeletons
	Applications

	Introduction to Part II
	Lévy trees
	Markov processes indexed by Lévy trees
	The local time at x and the subordinate tree
	The excursion theory
	Reconstructions


	I From step reinforced random walks to noise reinforced Lévy processes
	Joint invariance principles for random walks with positively and negatively reinforced steps
	Introduction
	The martingales associated to a reinforced random walk and proof of Theorem 3.1
	Proof of Theorem 3.2, 3.3 and 3.4 when X is bounded.
	Reduction to the case of bounded steps.
	Preliminaries
	Reduction argument

	The critical regime for the positive-reinforced case: proof of Theorem 3.5

	Noise Reinforced Lévy Processes: Lévy-Itô Decomposition and Applications
	Introduction
	Preliminaries
	Yule-Simon processes
	Noise reinforced Lévy processes
	Building blocks: noise reinforced Brownian motion and noise reinforced compound Poisson process

	Trajectorial regularity
	Reinforced Lévy-Itô decomposition
	The jumps of noise reinforced Poisson processes
	Construction of noise reinforced Poisson point processes by decoration
	Proof of Theorem 4.5 and compensator of the jump measure

	Weak convergence of the pair of skeletons
	 Proof of Theorem 4.16 
	The joint law (, ) of a Lévy process and its reinforced version
	Proof of Theorem 4.19 

	Applications
	Rates of growth at the origin
	Noise reinforced Lévy processes as infinitely divisible processes
	Convergence towards reinforced -stable Lévy process

	Appendix


	II Excursion theory for Markov processes indexed by Lévy trees.
	The structure of the local time of Markov processes indexed by Lévy trees 
	Introduction
	Preliminaries
	The height process and the exploration process
	Trees coded by excursions and Lévy trees
	The Lévy snake
	Excursion measures of the Lévy snake

	Special Markov property 
	The exit local time
	Proof of special Markov property

	Construction of a measure supported on Lg
	Special Markov property of the local time
	Construction of the additive functional Lg
	Characterization of the support of Lg

	The tree structure of Lg 
	The height process of the subordinate tree
	Trees embedded in the subordinate tree


	The excursion theory
	Introduction
	Preliminaries
	The height process and the exploration process
	Trees coded by excursions and Lévy trees 
	Snake driven by a function
	The Lévy snake with spatial motion (, L)

	Debut points, debut times and excursions
	The excursion measure Nx* away from x
	Spinal decompositions
	Spinal decomposition of the Lévy snake
	Spinal relation between Nx and Nx*

	The excursion point process
	Additive functionals of the Lévy snake and the special Markov property
	The Poisson point process of excursions
	Identification of the intensity measure 

	Construction of L* 
	Reconstructions
	The jump-times of 
	The local time at the branching points of  T
	Reconstruction of the tree-like path (H,)

	Appendix

	Bibliography


