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Chapter 1

Introduction to Part I

Reinforcement of stochastic processes has been a topic of active research for decades. Roughly
speaking, one is interested in studying N or R -indexed stochastic processes with memory, or in
how introducing memory in a Markovian process affects its long range behaviour. This description
is vague, and for instance memory can be introduced in multiple forms. Let us start by discussing
some examples. Probably, the oldest family of process with reinforcement appearing in the
literature are Pdlya-Urn type processes. In short, one starts with an urn with a (possibly random)
number of balls of different colours. Then, at each discrete time-step, one ball is drawn unifromly
at random from the urn, and is replaced by a (possibly empty) collection of new balls. The
composition of the balls that are added to the urn depend on the colour of the ball that was
drawn, the replacement rule being fixed from the start. The evolution of the number of balls
of each colour in the urn can be interpreted as a reinforcement process - note that despite the
inherent memory of the model, it is a Markov chain. Next, we have the edge or vertex reinforced
random walks on graphs [41, 78], where a discrete walk travels through the vertices of a graph and
the probability of moving to an adjacent vertex depends on the number of visits by the walk to the
latter, or to the connecting edge. In continuous time, we have for example the vertex-reinforced
jump process [38], which consists in a continuous time process defined in a graph, which jumps
from any state x to a neighbouring edge y at time ¢ at a rate proportional to the occupation
measure of state y up to time ¢. For a thorough overview of various reinforcement models we refer
to the survey [79]. It is important to mention that a process modelling a dynamic where memory
is involved might a prior: still be Markovian, as it is the case in most of the examples we just
mentioned. In this work, we shall be interested in yet another type of reinforcement called step
reinforcement. Let us be more precise. We consider a N-indexed process on the real numbers; at
each time step and with some fixed probability p, the process chooses one of the preceding steps
at random and repeats it, after applying a possibly random transformation to it. On the opposite
case, the motion performs an independent step with some fixed law. The parameter p is often
referred to as the memory or reinforcement parameter, and note that when p = 0, we simply have
a random walk. In contrast, in general a step reinforced process is not a Markov process. We
stress that in our setting, a past step is chosen uniformly at random, but other distributions -
giving for instance higher probability to steps that have been recently performed or to the most
ancient ones - have been addressed in related settings, see e.g. [49, 50]. Despite the fact that this
reinforcement procedure is inherently discrete, we shall see how one can introduce these dynamics
in the continuum through limit approximations. Let us mention that in contrast with the discrete
setting, research on reinforcement of R -indexed processes is, to this day, rather sparse. Let us
now give a more precise overview on how this introduction is structured as well as the objects we
shall be working with.
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In this introduction, we shall give an overview of the main results of the works [16, 84] in the
topic of reinforcement of stochastic processes, obtained under the supervision of Jean Bertoin and
Armand Riera, and the first one in collaboration with Marco Bertenghi. In short, step reinforced
random walks are a family of processes indexed by N = {0,1,2,...} that are obtained from
random walks by preforming a reinforcement on its steps. At each fixed time, the step-reinforced
random walk either, repeats with probability p one of the preceding steps chosen uniformly at
random - after applying some possibly random transformation on the chosen step - or performs
an independent step with fixed law p with complementary probability 1 — p. In this work, we
shall start by investigating two classes of such processes, namely the so-called noise reinforced
random walk and counterbalanced random walk. In [16], we obtain strong laws of large numbers
and investigate the scaling limits of this two families of processes. In particular, we recover the
results previously obtained in [21] for the noise-reinforced random walk by different methods. The
reinforcement procedure is inherently discrete, and it is natural to wonder if in the continuum
one can make sense of this notion. In this direction, in the work of Bertoin [19], it was established
that the reinforced version of skeletons of Lévy processes converge, as the partition mesh tends
to 0, towards a family of processes in the continuum baptised noise reinforced Lévy processes.
In the second work [84] we investigate this family of time-indexed processes and strengthen the
convergence results obtained in [19]. We shall see that noise reinforced Lévy processes share
striking similarities with Lévy processes and notably, satisfy reinforced versions of the celebrated
Lévy-Ito decomposition and Ito synthesis. Moreover, their jump measure is a point process that
can be constructed from the jump measure of a Lévy process by a continuum analogue of the
reinforcement algorithm we described for step-reinforced random walks. For this reason, we shall
refer to this family of point measures as noise reinforced Poisson point processes. As we shall see,
they play a central role in the development of [84].

The introduction of this first part is organised as follows: We start in Section 1.1 by introducing
the family of N-indexed processes that we shall be working with for the rest of this survey. Much
of our analysis in both works [16, 84] relies on a remarkable martingale, and we include a brief
discussion in order to give some background and general remarks on this process. We then present
in Section 1.2 the results obtained in [16]. Sections 1.3 - 1.6 are devoted to the second work [84].
We start in Section 1.3 with some preliminary results on Yule-Simon processes and noise reinforced
Lévy processes. We then introduce in Section 1.4 noise reinforced Poisson point processes and
present the reinforced version of Lévy-It6 decomposition and It6 synthesis. In Section 1.5 we
strengthen the convergence result obtain in [19, Theorem 3.1] and conclude in Section 1.6 with
some applications.

1.1 Step reinforced random walks

Let us start by introducing the family of discrete processes that we shall be working with for the
rest of this work.

The elephant random walk

The story begins with a process indexed by the non-negative integers, with memory and unitary
increments known as the elephant random walk with memory parameter ¢ € [0, 1]. The elephant
starts at time 1 in {—1,+1} according to some fixed distribution and performs steps according



15 1.1. Step reinforced random walks

to the following dynamics. At each n > 2 the elephant chooses a past step uniformly at random;
with probability ¢ this step is repeated in the n-th step, and with complementary probability
1 — ¢ the increment is repeated after changing its sign. In particular, when ¢ = 1/2 the elephant
follows a simple symmetric random walk. The name stems from the fact that, as the saying
goes, elephants never forget. The study of this process has spiked the interest of probabilists in
recent years, see e.g. [9, 11, 34, 33, 59] and references therein for general background, [13, 15] for
results in multiple dimensions and [8, 12, 47, 60| for variations. One of the crucial features of the
elephant random walk is that it presents a phase transition on the asymptotic of its fluctuations
as n 1 o at the critical parameter ¢ = 3/4. Notably, when ¢ < 3/4 the elephant random walk
is diffusive, while for ¢ > 3/4 it is super-diffusive. More precisely, for ¢ < 3/4 when scaled by
\/n, the elephant random walk converges as n 1 oo in distribution to a centred Gaussian random
variable. On the other hand for ¢ > 3/4, when scaled by a factor of n?¢~!, the almost sure limit
exists as n 1 o0, the limit being a non-degenerate random variable. We refer to [9] for a detailed
account. As we shall see, the scaling at the critical parameter ¢ = 3/4 is of more complicated
nature. In the first part of this work, we shall be interested in two natural processes generalising
the dynamics of the elephant random walk. Namely, in the so-called noise-reinforced random
walk and the counterbalanced random walk. Let us start by briefly introducing the former.

The noise reinforced random walk

Let (X,,)nen be a collection of identically distributed random variables with same law as some
fixed (non-degenerate) random variable X € La(IP). We write m := [E[X] and denote the variance
of X by 02. We define the noise-reinforced version of the random walk S, = X1 +---+ X, n > 1
with Sp := 0 by performing the following reinforcement procedure on its steps: first, we consider
independent families of independent random variables (U[n])pen and (&,,)pen where for every n,
U[n] is uniformly distributed in {1,...,n} while ¢, is distributed Bernoulli with parameter p. We
define a family of random variables (Xn)neN by letting X 1 = X1 and for n > 1 we set recursively

A

5 Xn+1  ifeps1 =0,
n+l — .
XU[n] if En+1 = 1.

We shall refer to the process S‘n = Xl + -+ Xn for n > 1, 5'0 := 0 as the noise reinforced
version of (Sy) with reinforcement parameter p € [0,1]. In other terms, for every n > 2 and
with probability 1 — p, the step X,,41 is made of an independent copy with law X, and therefore
shares the same increment as (S,), while with complementary probability p one of the previous
increments is chosen uniformly at random and repeated by the motion (S’n) In particular, if
p = 0 we recover the random walk (.Sy,).

The connection with the elephant random walk is the following: as was noted by Kiirsten [60],
when X is distributed Rademacher, viz. P(X = 1) = P(X = —1) = 1/2, then (S,) is a version of
the elephant random walk with parameter ¢ = (p + 1)/2, with first step distributed Rademacher.
Observe that since p € [0, 1], we can only cover the spectrum ¢ € [1/2, 1].

The noise reinforced random walk has been subject of active research in recent years, see e.g.
[21, 31, 18] to name a few, and its fluctuations present a phase transition at the critical parameter
p = 1/2. Let us briefly give a non-exhaustive overview of some of its main properties. First,
from the recursive reinforcement algorithm we infer that for any bounded measurable function
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Figure 1.1: Sketch of a sample path of (S,,). Steps marked in blue are innovations while in
red are marked those issued from a reinforcement. The reinforced step is linked to the later
by an arrow.

f : R — R we have the recursion
E[f(Xns1)] = (1= p)E[f(Xni)] + = 3 E[F(X))]
j=1

Inductively, this gives that each X,, has same law as X and in particular we have that E[Sn] =
nE[X] for n > 0. Beware however that the sequence (X,,) is not stationary. In [16] we establish
that for any p € [0, 1] the noise reinforced random walk is ballistic, and more precisely fulfils the

following strong law of large numbers:

Theorem 1.1. (Law of large numbers) Recalling the notation m = E[X], for any p € [0,1) we
have the L*(P) and almost sure convergence:

A

. Sp
lim — =m.
n—o N
Note that when p = 1 the latter result can not hold, since for every n > 1 we have plainly
Sp = nXp. As we already mentioned, the fluctuations however do present a phase transition at

the critical parameter p = 1/2. Let us be more precise.

oSuper-diffusive regime: It was established in [21, Theorem 3.2] that when p > 1/2, the following
limit holds in Ly (PP) A

lim Sn——nm =L

n—00 np
where L is a non-degenerate random variable defined in terms of a martingale limit. The con-
vergence was later proved to hold a.s. as well in [16]. Note that because of the strong nature of
the convergence (and in contrast with the diffusive regime discussed below) it is of no interest to
state a functional version of this convergence.
o Diffusive regime: On the other hand, when p € (0,1/2) the fluctuations are always Gaussian
and the scaling no longer depends on p. Namely, in [21] it was proved that for p € (0,1/2) the

sequence of time-indexed processes (S|n|)icr, satisfies the following weak invariable principle:

g[nt] — [ntJm R
N = (Bt)ier, (1.1)
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the convergence holding weakly with respect to the Skorokhod topology, and where B = (Bt)teR N
is a continuous centred Gaussian process with covariance structure

. a thgl—r
E[B;B] = T3
—<p

for 0 <s<t andpe(0,1/2).

We stress that the law of B does depend on the choice of p, and the dependence on the notation
was dropped for sake of clarity.

The process B was baptised the noise reinforced Brownian motion with reinforcement param-
eter p. Observe that the law of B does not depend on the choice of X and therefore, the weak
convergence result in (1.1) should be interpreted as the reinforced version of the classic Donsker
invariance principle in our noise-reinforced setting. It readily follows from the identity in the last
display that B admits the following representation in terms of a stochastic integral,

t
B, =tpf sTPABY, t >0,
0

where B" is a standard Brownian motion. For a more detailed account on noise reinforced Brow-
nian motion we refer to [21]. In the critical case p = 1/2 the fluctuations turn out to still be
Gaussian, but do require of a different scaling. We shall come back to it in the sequel. The
noise reinforced Brownian motion had already appeared as the scaling limit for diffusive regimes
of the elephant random walk and other Polya urn related processes, see [9, 34|, [15] for higher
dimensional generalisations, as well as [7].

The counterbalanced random walk

We maintain the same notations as before and still assume that X € Lo(IP). We stress that
we shall use the same sequences of random variables (X, e,, U[n]),en we used in the previous
section to construct the noise reinforced version of (S,). In the same vein as before, we define a
sequence of random variables (X,,) as follows: we set X1 = X1, and recursively for n > 1 we let

5 Xn+1 for €541 = 0,
n+l = -
_XU[n] for En+1 = 1.

The process Spi=X1+ -+ X,forn>=1,85,:= 0, shall be referred to as the counterbalanced
random walk with reinforcement parameter p. This process was recently introduced and studied
by Bertoin in [22]. The name stems from the fact that in contrast with the noise reinforced random
walk, when a past increment is repeated, its sign is changed and therefore compensates the chosen
step. One of the motivations behind the definition of this process comes from the fact that if X
is distributed Rademacher, the counterbalanced random walk with reinforcement parameter p is
a version of the elephant random walk with memory parameter ¢ = (1 —p)/2 € [0, 1/2], with first
step distributed Rademacher.

In contrast with the noise reinforced case, it no longer holds that the sequence (X,,)pen is
identically distributed. However, since for n > 1 we have the recursion

E[Snii]l = (1 =p)m+(1-p/mE[S,], n>1
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Figure 1.2: Sketch of a sample path of (S'n) Steps marked in blue are innovations while in
green are marked those issued from a counterbalanced. The counterbalanced step is linked to
the later by an arrow. The same sample of random variables used in Figure 1.1 to construct

(S,) was used to construct (S,,).

|
| gﬂ/ \
-

with initial condition E[S] = E[X1] = m, it readily follows that (E[S,] : n = 1) is still ballistic
as n 7 o0 and more precisely

“ 1-—
E[S,] ~ ﬁmn, asn 1 oo.

It was established in [22, Proposition 1.1] that (.5,,), under the weaker assumption that X € L (PP),
satisfies a weak law of large numbers. We later proved in [16] by different methods that under
our standing assumption X € Ly(IP), the result can be strengthened:

Theorem 1.2. (Law of large numbers) For any p € [0, 1], we have the L?*(P) and almost sure
convergences:

In contrast with the noise-reinforced case, for every p € [0,1) the fluctuations are always
Gaussian. Namely, if we let mo := E[X?], it was established in [22, Theorem 1.2] that the
following weak convergence holds towards a centred Gaussian random variable:

S L ma — (ﬂ >2
B 1
i, T 2 N<O o )
n—00 \/ﬁ
Observe that when p = 1, we have plainly S,, = Xlgg for n > 1 where (S, is a counterbalanced
random walk with typical step distributed d;. If we further assume that the law of X is 01, [22,

’ 1+2p

Corollary 2.4] yields that the convergence in the previous display still holds.

In the same spirit as before, for every p € [0,1) we let B = (By);er, be the continuous centred
Gaussian process with covariance structure given by
1+p

L. 1 s
]E'[BtBS] = 2p + 1t_pa

for 0 <s <t (1.2)
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We shall refer to B as the counterbalanced Brownian motion with reinforcement parameter p €
[0,1). Our terminology will be justified by the result of Section 1.2. It readily follows from (1.2)
that the law of B admits as well the following integral representation

t
By :t—pf sPdBS,  t=0
0

in terms of a standard Brownian motion B¢ = (BY)s>0.

On a remarkable martingale
The results of both works [16, 84] rely on a martingale present both in the discrete setting and
in the continuum. We think therefore worthwhile to explain its origins, its connections with
branching processes and recall some of its basic properties for later use.
We start by defining two sequences (ap,n = 1), (Gn,n = 1) of real numbers as follows: Let
a1 =a; = 1 and for every n € {2,3,...}, we set
. ['(n)

=Y d a =
n F(n+p)7 an G,

I'(n)
I'(n—p)
where the notation I' stands for the standard Gamma function. It readily follows from our
definitions that if X is centred or p = 1, the pair of processes M = (a,S, : n € N*) and
M = (4,5, : n € N*) are square-integrable martingales. Further their respective predictable
quadratic variation processes (M), (M) are defined for all n > 1 by the relations

" S\ W
W =®+ 3 a5 | (L=p)o® =p* | 71 | +ep
= k—1

(1.3)

and

n ~ 2 ~
- o Sp_ Vi_
n=et St (0ot (75) i) Y

where (Vn)n>1 is the process defined for every n > 1 as Vj, = X% +-e X,zl This martingale had
already made its appearance in the literature in different forms. In the setting of the elephant
random walk, it was already at the heart of the analysis performed by Bercu in [11] and it was
exploited as well in latter related works, see e.g. [13, 14]. Further, both M and M have continuous
time analogues that can be conjectured from the asymptotic behaviours a,, ~ n™?, @, ~ nP and
the invariance principle (1.1). Namely, the processes N := (£ PBy);=0, N 1= (t*B;)i=0 are still
martingales. Let us now briefly discuss the origins of (M M),

The following remark is from Bertoin [21] and our definitions are taken from [24]. We write
M,(R) for the space of finite atomic measures in R. We consider Z = (Z;(dx))er, a Mp(Ry)-
valued particle system governed by the following dynamics: Z starts at time ¢t = 0 with a collection
of static particles (z1,...2;) € R¥ for some k > 1. Then, every particle dies at rate 1 and is
replaced by a copy of itself and, either with an independent random variable with law X with
probability 1 — p, or with a second copy of itself with probability p. In particular, the process
keeping track of the number of particles alive at every time ¢, that we denote by ((Z¢,1) : t = 0),
is a standard Yule process.
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p
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I
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Figure 1.3: Every horizontal line represent the lifetime of a particle. At death, each particle
is replaced by a copy of itself (in red) and, a second copy of itself is added (in red) with
probability p while with probability 1 — p an innovation is introduced (in blue).

Formally, Z is the time-continuous Feller process with infinitesimal generator defined at every
k .
X = )10z, by the relation:

k
Af(x) = 21 fM o (265 + )~ p00) s, ay) (1.5)

where X} = >, ., 05,, while MI(z,dy) is the law of the random measure in M,(IR;) defined as
(14 1ge,—13)0z + 1s,—0y0x . In particular Z is a so-called Uchiyama’s process 24, Lemma 2.1]. If
we write Id : R — R for the identity function and for n > 1 we set T, := inf{t > 0: (Z, 1) = n},
the key relation with our setting is that the process ((Zr,,Id) : n > 0) started from a single
particle with law X, is a version of the noise reinforced random walk (Sn :n > 1) with parameter
p and typical step distributed as X. Further, we have the identity in distribution

—
~

~

(Zy,1dy i t = 0) 2 (8, : t = 0)

where Z = (Z; : t = 0) is an independent standard Yule process. When X is centred or p = 1,
it readily follows that the function p — {(u,Id) is an eigenfunction for the generator A with
eigenvalue p, as can be checked from (1.5). It now follows from classic theory of Feller processes
that the process

t
Sz, —pf Sz, ds, fort =0,
0

is a martingale, and an integration by parts gives that M; = e PtS z, for t = 0 is on its turn a
martingale. More precisely, recalling that Z; ~ €' as t 1 o as well as the asymptotic behaviour
an ~n~Pasn 1 oo, the discrete martingale M can be thought as M observed at a logarithmic
time-scale. If one wishes to perform the analogous analysis for the counterbalanced random walk,
it suffices to consider in (1.5) instead of II(z, dy), the kernel II(z, dy) defined for every z € R as
the law of d, + 1{51:1}5_35 + 1{51:0}(5)(.
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1.2 The invariance principles

Making use of the martingales introduced in the previous section, we shall now investigate the
fluctuations of (S,) when p € [0,1/2] and of (S,) for p € [0,1]. This will be achieved by
establishing respective invariance principles. Recall that the processes (S, S'n, S'n) are coupled
by construction, and therefore it is natural to investigate the joint scaling limit of the triplet. In

this direction, we have the following result:

Theorem 1.3. Fiz p € [0,1/2) and consider the triplet (Sn, Sp, Sn) consisting of the random walk
(Sp) with its reinforced version and its counterbalanced version of parameter p. Assume further
that X is centred. Then, the following weak convergence holds in the sense of Skorokhod as n
tends to infinity,

1 .1 P
(U\/ﬁslnﬂ’ U\/ﬁSlntJ’mS[ntJ>teR+ - (BtaBtaBt)t€R+ (16>

where (B,B, B) 1s a Gaussian process and B, B, B denote respectively a standard BM, a noise
reinforced BM and a counterbalanced BM with covariances, B(BsBy) = t P(t As)PT1(1—p)/(14p),
E(BsBt) = tP(t A s)'7P, E(ByBs) = tPsP(t A s)(1 —p)/(1 + p).

The restriction p € [0, 1/2) stems from the fact that as we already mentioned, the fluctuations

A

of (Sp) are no longer Gaussian for p € (1/2, 1], while the scaling at the critical parameter p = 1/2
changes drastically - see Theorem 1.5 below. In contrast, the ones of (S,) are still Gaussian in
those regimes and in [16] we established as well the corresponding scaling limits. To keep this
presentation concise we skip the precise statement. The idea behind the proof of Theorem 1.6 is

to establish instead the convergence of the martingales

Intl & Ant] 4
nSl”tJ7 mslnto fort = 0,

VS
Q
—
N
E
Q| &

towards the triple (Bt,t_th,tht) for t > 0, by exploiting the explicit form of the quadratic
variations (1.3), (1.4) in conjunction with the following martingale functional limit theorem taken
from [54].

Theorem 1.4. [54, VIII-Theorem 3.11] Assume M = (M' ... M%) is d-dimensional con-
tinuous Gaussian martingale with independent increments, and predicable covariance process
(M, Mj>)i,je{1,...,d}' For eachn, let M"™ = (M™!, ..., M™%) be a d-dimentional local martingale
with uniformly bounded jumps |AM™| < K for some constant K. The following conditions are
equivalent:

(i) M™ £ M in the sense of Skorokhod,

(ii) There exists some dense set D < Ry such that for eacht € D andi,j € {1,...,d},
asn 1 oo,
(M™Y M™ Ny — (M, M7, in probability,

and
sup |[AM.'| — 0 in probability.

s<t
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The boundedness hypothesis on the jumps can be circumvented by a truncation argument.
Observe that in Theorem 1.3 we assumed that X is centred. In the noise-reinforced case, this can
be assumed without loss of generality since S, —nlE(X) for n > 0 is still a noise reinforced random
walk with typical step distributed X —IE(X), but this is no longer the case for the counterbalanced
random walk. However, one can expect that this restriction can be lifted by working with the

martingale @, (S, — E(S,)) for n = 0 and by performing a straightforward adaptation of our
arguments.

Lastly, our method extends as well to the critical regime p = 1/2; in which case we have the

following;:

Theorem 1.5. Let p = 1/2 and suppose that X € L?(IP). Then, we have the weak convergence of
the sequence of processes in the sense of Skorokhod as n tends to infinity

<SlntJ - ntIE(X)> 2 (B)n
.
t€R+

o+/log(n)nt/?

where B = (By)i>0 denotes a standard Brownian motion.

1.3 Noise reinforcement for Lévy processes

In order to motivate the upcoming sections let us start with an informal discussion. In the
last section, we introduced the notion of a noise reinforced Brownian motion with reinforcement
parameter p. It is therefore natural to ask if more generally, one can make sense of the notion
of a noise reinforced Lévy process with reinforcement parameter p. In the following sections we
shall see that this is indeed the case as long as we impose some restriction on the reinforcement
parameter p - note that this was already the case for noise reinforced Brownian motion. Since
noise reinforcement is an inherently discrete procedure, one needs to define such a process by
a limiting procedure. More precisely, a noise reinforced Lévy processes is obtained by noise-
reinforcing the n-skeleton of a Lévy process for a mesh of size 1/n, and letting n 1 c0. In the rest
of this introduction we shall give an overview of the main results obtained in [84] concerning the
study of noise reinforced Lévy processes. To this end, we shall start by recalling the main results
of the seminal work [19] where this family of processes was introduced. We stress that in the
work [84] we did not addressed other types of reinforcement and for instance we shall no longer
work with the counterbalanced random walk.

The definition and study of noise reinforced Lévy processes is closely related to a family of
heavy tailed distributions on the positive integers called the Yule-Simon distribution. We shall
start by briefly introducing the later as well as its functional version.

From the Yule-Simon distribution to the Yule-Simon process

Imagine one writes a book recursively at random by iterating the following rule: we start by
introducing a word and then, recursively, at each step and with some fixed probability, we either
introduce a brand new word or we repeat one of the former ones. In the work [90], Simon was
interested in studying the asymptotic frequencies of the number of words that had appeared
exactly k times up to time n, say vg(n), as n T o0. This model is of course closely related to
the reinforcement algorithm we have introduced. Namely, in the setting of the noise-reinforced
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random walk, for every 1 < k < n the variable v(n) counts the number of steps among (X) jen
that have been repeated exactly & times up to time n. It was established in [22, Lemma 3.1] the
following convergence in probability of the asymptotic frequencies:

lim 20 _ (1 ;p)B(k:,l +1/p) (1.7)

n—oo n

where B stands for the Beta function. Now, the distribution on {1,2,...} defined by
p 1Bk, 1+1/p), fork>1

is the so-called Yule-Simon distribution of parameter 1/p. This result was greatly generalised
in [19, Proposition 3.3] by proving a functional version of this convergence towards a counting
process named the Yule-Simon process. Namely, if we consider a uniform random variable U in
[0,1] and a standard Yule process Z = (Z(t))er, , the Yule-Simon process Y = (Y; : t = 0) of
parameter 1/p is the counting process defined by the relation:

Vi = i<y Z (p(log(t) — log(U))), for te0,1].

Since the functional version established in [19, Proposition 3.3] will be key for the development of
our theory, we shall now present the general statement. In order to explain the intricate relation
between the Yule-Simon distribution, the Yule-Simon process and noise reinforced Lévy processes,
for later use we sketch the main ideas behind its proof.

In this direction, for every j > 1 let us write N;(n) for the number of repetition up to time
n of the variable X; by the reinforcement algorithm. In particular, if £; = 1 we have plainly

Nj(n) = 0 for every n > 1. Note that in particular, the noise reinforced random walk (.S;,) can
now be written in terms of this family of counting processes as follows:

n
Sp = Z Nj(n)X;, forn=>1. (1.8)
j=1

Now, [19, Proposition 3.3] states that for every continuous functional ' on the Skorokhod space
D([0,1],R) vanishing on the identically 0 trajectory, the following convergence holds in La(IP):

lim % S F(Nj(n- 1)) = (1 — pE[F(Y)] (1.9)

where Y is a Yule Simon process of parameter 1/p. The convergence (1.7) can be recovered from
the result (1.9) by considering the functional F'(w) = 1y, _pyw1 for w € D([0, 1], R). In particular,
Y1 is distributed Yule-Simon of parameter 1/p, hence the name. The key behind (1.9) stems from
the limiting behaviour of the scaled counting processes (N;(|nt]) : t € [0,1]);>1. Namely, if for
every n = 1 we let U[n] be an independent random variable uniformly distributed in {1, 2, ..., n},
conditionally on epp,; = 0, by [19, Lemma 3.6] we have the following weak convergence in the
sense of Skorokhod:

(NU[n]([ntJ) e o, 1]) L (Vi :te(0,1]).

Observe that the first jump of the process in the last display is uniformly distributed in {1, ..., n}.
Roughly speaking, in the continuum the first jump of Y - which is uniformly distributed in [0, 1]
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- corresponds to the time at which an innovation occurs and the subsequent jumps are repetitions
of the latter. The second ingredient needed to define a noise reinforced Lévy process is, of course,
a Lévy processes. We shall now briefly recall the main notions needed for our presentation.

Preliminaries on Lévy processes

Let € be a Lévy process and write W for its characteristic exponent, viz. the function defined by
the relation E[exp(iA\&)] = exp(ty(N)) for A € R. Then, it is classic that U is of Lévy-Khintchine
the form

. 1 ; :
U(N) =ia\ — §q2)\2 + JRA(dx)(e”‘x — 1 — izl <1y)
for some a,q € Ry and a Lévy measure A(dz) in R\{0}. Further, we denote by 5(A) the

Blumenthal-Getoor (upper) index of the Lévy measure A, viz. the non-negative number 3(A) €
[0,2] defined as:

B(A) = inf{b =0 J A(dz) |z]® < oo}.

|z]<1
Now, the Blumenthal-Getoor index (8 of the Lévy process £ is defined in terms of 3(A) by the
relation:
2 it ¢ # 0,
p = ,

B(A) ifg=0.
One can think of S(A) as measuring the regularity of the Lévy measure A. For instance, if A
is finite we have plainly S(A) = 0 while if the Lévy process is of finite variation, in which case
§A(dz)(1 A |z]) < o0, it holds that S(A) < 1. Finally, if the Lévy process is a-stable for some
0 < a < 2, we get that (A) = . We are now in position to introduce our main object of interest.

Noise reinforced Lévy processes
Fix a Lévy process ¢ with Lévy-Khintchine triplet (a,¢?, A). For every n > 1 and k > 1, we write
X]g,n) i= &/ — E(k—1)/n for the k-th increment of ¢ for a partition with mesh of size 1/n. Then,

Slgn) = Xl(n) + e+ X]gn) for £ > 1 with Sén) = 0 is a random walk that we refer as the skeleton
of £ for a mesh of size 1/n. We shall write

S XM e X fork >,

with 5’6”) = 0 for its noise reinforced version, for some reinforcement parameter p € (0,1) that we
fix from now on. If we further assume that p fulfils the condition:

p-B <1, (1.10)

in which case we say that p is admissible for the triplet (a, ¢?, A), the main result in [19] states
that the sequence of skeletons converges as n 1 o0, in the sense of finite-dimensional distributions,
towards a time-indexed process

~ (n) fdd ;2

() ez, 7 e, (1)
named the noise reinforced Lévy process - or in short NRLP - with characteristics (a, ¢%, A, p). In
particular, if the starting Lévy process £ is a Brownian motion, the corresponding noise reinforced
Lévy process is a noise reinforced Brownian motion with reinforcement parameter p. We can now
introduce our main object of study.
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Proposition 1.6. Let (a,q?, A) be the triplet of a Lévy process of exponent W, consider an ad-
missible memory parameter p € (0,1) and consider a Yule Simon process Y with parameter 1/p.
There exists a process é = (55)86R+ whose finite dimensional distributions satisfy that, for any
0<s1<---<sp.<tandM\,..., \; € R, we have

Y (si/t) : (1.12)

||M;r

k
exp EAfsj =exp{ (1-

where the right-hand side does not depend on the choice of t. The process é 15 called a noise
reinforced Lévy process with characteristics (a,q?, A, p).

From now on, when considering a NRLP with characteristics (a,q?, A, p) it is implicitly as-
sumed that p is admissible for the triplet (a, g%, A) in the sense of (1.10). Let us briefly explain the
reason behind condition (1.10). First, note that if 5 # 2 only p < 1/2 is admissible for the triplet,
in agreement with Theorem 1.3. Indeed, in that case the Brownian component is non-null and by
the scaling property of Brownian motion the corresponding sequence of reinforced skeletons for
the Brownian component fall in the scope of Theorem 1.10. Further, if we suppose that 5 = 0,
observe that we get a restriction on p only when 5(A) > 1, in which case the so-called ”"martingale
compensation on the jumps” of £ is present. Roughly speaking, if p is too large, the reinforcement
algorithm might break the compensation mechanism and no limiting object can be defined. For
a more detailed discussion we refer to [19, Section 2].

In order to explain the presence of the Yule-Simon process on the characteristic function of the
finite-dimensional distributions (1.12) of €, we briefly sketch the proof of the finite-dimensional
convergence (1.11). Our arguments are taken from the proof of [19, Theorem 3.1]. For every
n > 1, we write (N](n)(k) : k= 1,7 = 1) for the collection of counting processes associated
to (S']gn)) and observe that these are identically distributed. To establish (1.11) it suffices to
prove that as n 1 oo, the characteristic function of the finite-dimensional of (g[ntJ .t € |0, 1])
converge towards (1.12). Recalling the representation (1.8) the characteristic function of the
finite dimensional distributions of SL(:Z?J at times 0 < 51 < --- < s < 1 writes

1 n k
exp Z Aj S[ns = exXp E]E 2 v 2 )\jN@([TlSjJ)
{=1 j=1
for arbitrary A1,..., A\r € R. One can then obtain, by making use of (1.9) for an obvious choice

of functional F' and a truncation argument, that the limit as n 1 o in the last display is precisely
the right-hand side in (1.12). For a detailed proof we refer to [19, Theorem 3.1].

The building blocks of NRLPs
A Lévy process with triplet (a, g%, A) can be written as the sum of three independent processes

& = (at +¢B) + €2 + ¢ fort =0

where B is a standard Brownian motion, & (2) is a compound Poisson process with Lévy-Khintchine
triplet (0,0, A(dz)1|,>1) while ¢0) is a martingale with triplet (0,0, A(dz)1j3<1), often colloqui-
ally referred to as a compensated sum of jumps. One can infer from formula (1.12) that the law
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of a NRLP ¢ of characteristics (a,q?, A, p) can be written in terms of tree independents NRLPs

&L (at+qB) +EP + &Y fort=0 (1.13)
the identity holding in law, where f (2),5 (3) are NRLPs with respective characteristics given by
(0,0, A(d2)1jz>1,p), (0,0, A(dx)1j3<1,p) while B is a noise-reinforced Brownian motion with
reinforcement p if ¢ # 0, and should read as null otherwise. More precisely, 5(2) is the noise
reinforced version of the compound Poisson process & (2) while é (3) is the noise reinforced version
of the martingale ¢ (we stress however that the martingale property is not preserved by the
reinforcement). This two processes admit representations on the interval [0, 1] in terms of Pois-
sonian sums of Yule-Simon processes, shedding some light on the jump structure of NRLPs. The
two following constructions are taken from [19, Section 2.

o The reinforced compound Poisson process. Suppose that £ is a compound Poisson process
with Lévy measure A(dz) given by c¢Px(dx), for some non-negative constant ¢ and a probability
measure Px(dz). Observe that in that case, any reinforcement parameter p € (0, 1) is admissi-
ble. Denote the law of the Yule-Simon process of parameter 1/p in ID([0, 1], R) by Q and consider
M = 3 e O(a,y;) @ Poisson random measure in Ry x D([0, 1], R) with intensity (1—p)A(dzr)®@Q.
Then, as can be verified by making use of the exponential formula, the process

& =YluYi(t), foro<t<l,
7

has the law of the noise reinforced version of ¢ and will be called a noise reinforced Poisson
process. Observe from our description that the law of the jumps is still dictated by Px(dz) and
that the Yule-Simon process Y; reinforces the jump z; at every 0 < ¢ < 1 such that AY;(t) # 0.
Observe as well that the process in the last display is rcll. Getting back to the decomposition
(1.13), it follows that the process €2 can (and will) be chosen rell and with jumps of size larger
than 1.

o Compensated compound Poisson processes. Let us now turn our attention to the reinforced
version of the martingale £€3). To this end, with the same notations as before we consider a
Poisson measure M with intensity (1 — p)A(dz) ® Q. For every 0 < a < 1, we introduce the
following finite-variation process:

~

§(a’1)(t) = Z 1{a<|$i‘<1}xiyi(t) — tf xA(dx), for te[0,1].
i {a<]z|<1}

It readily follows from Campbell’s formula that the process in the last display in centred, and
by the exponential formula it has the law of the noise reinforced version of a Lévy process with
triplet (0,0, 1{o<|z|<13A(dT)). It was established in [19] that for any fixed reinforcement parameter
p satisfying the condition p < 1/8(A), for each fixed t € [0, 1] the limit

lim € t

al0 f(a,l)( )

exists a.e. and in Lj(IP) and we denote it by ft(?’). Moreover, £G) = (515(3))256[071] has the law of
the noise reinforced version of £ (3), This construction is reminiscent of the non-reinforced setting,
where ¢ () is a so-called compensated sum of jumps. In contrast with our previous case, once
can no longer infer from this description if £€3) posses a rcll modification. This shall be our first
concern.
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1.4 The reinforced Lévy-Ité6 decomposition and synthesis

The definition given in Proposition 1.6 gives no information on the trajectorial regularity of
NRLPs. In this direction, let us state the following fundamental result:

Theorem 1.7. A noise reinforced Lévy process é has a rcll modification, and we still denote it
by &.

Let us be more precise. From our previous discussion, finding a rcll modification of a NRLP
boils down to investigating the regularity of ¢ (3), The key observation now is that when a NRLP

é is centred, the process
t7P&, fort>0

defined as 0 at the origin, is a martingale and therefore posses an rcll modification. For a proof
of this result we refer to [84, Proposition 3.2]. The martingale in the previous display is, roughly
speaking, the continuous time analogue of the discrete remarkable martingale we introduced in
Section 1.1.

Now that we have stated that a NRLP is a rcll process, we shall study the structure of its jump
process (Aét). Since it will share striking similarities with the jump process of a Lévy process,
we start by recalling some well known results on (A&;). If £ is a Lévy process with Lévy measure
A, its jump measure

pldt,dz) = 3 Tiac, 20y0(s,a¢,) (A, do) (1.14)

is a homogeneous Poisson point process (abbreviated PPP) with characteristic measure A(dx).
Such a PPP can be constructed by decorating point process of jumps of Poisson processes, and
it is classic that (1.14) is determined by the following two properties:

(i) For any Borelian A with A(A) < oo, the counting process of jumps As € A occurring until
time ¢, defined as

Na(t) = #{(s,A&) € [0,t] x A}, ¢ =0,

is a Poisson process with rate A(A).

(ii) If Aq,... Ay are disjoint Borelians with A(A4;) < o for all i € {1,...,k}, the processes

N4,,...,N4, are independent.

k
In particular, from (i), it follows that (N4(t) — A(A)t)er, is a martingale.

Let us then turn our attention to the study of the jump measure
f(dt,dz) == >'1 (26.20y0(s.0, (dE, ).
S

To this end, we shall introduce a family of measures in R} x R parameterised by (A(dx),p) of
independent interest under the name noise reinforced Poisson point processes, and abbreviated
NRPPP. In analogy with the non-reinforced setting, NRPPPs are constructed by decorating the
jumps of reinforced Poisson processes. To motivate the introduction of this family of measures we
shall postpone their explicit construction and start by discussing the deep connections between
NRPPPs and NRLPs.

The first main result of the section states that NRPPPs play the role of PPP in the reinforced
setting:
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Theorem 1.8. (Reinforced Lévy-Itd decomposition)
The jump measure i of & is a noise reinforced Poisson point process with characteristic measure
A(dz) and reinforcement parameter p.

Moreover, if we denote by (.%;) the natural filtration of ¢, Proposition 4.11 in [84] states that
the predictable compensator /P of /i is given by

(P (w;dt,dz) = (1 — p)dt ® A(dz) + p%éat(w; dz)

where &;(dz) = Y., 0 AE, (dz) is the empirical measure of jumps that occurred strictly before
time t. In particular, if we take p = 0 in the last display, no reinforcement ocurs and we recover
the compensator of a PPP with intensity dt ® A(dx).

Let us now turn our attention to the representation of é in terms of its jump measure, a result
that we shall refer to as the reinforced Ito synthesis. In this direction, it might be worth recalling
the precise statement of Itd synthesis in the setting of Lévy processes. Write p for the jump
measure of ¢ and denote by ;59 its so-called compensated measure of jumps. Then, It6 synthesis
states that there exits a standard Brownian motion B, such that the following equality holds a.e.

zp(ds, dz) + J 2% (ds, dz), t=0 (1.15)

ft = at + qB; + f
[O,t]x[—l,l]

[Oat]x[_Ll]C
with the convention that B is null if ¢ = 0. The reinforced Lévy-It6 synthesis that we shall now
state shows that an analogous result holds in the setting of NRLPs, where the Brownian motion
is replaced by a noise reinforced Brownian motion B and the measure p by the reinforced version
fi. After properly introducing the ”space-compensated” measure (59, we prove:

Theorem 1.9. (Reinforced It6’s synthesis)
Let i be the jump measure of a NRLP & of characteristics (a,q?, A,p). Then, a.s. we have

étzat+q§t+J

zi(ds, dz) + J 2% (ds, dx), t>0,
[0,¢]x[—1,1]¢

[0,¢]x[-1,1]

for some noise reinforced Brownian motion B, with the convention that if p = 1/2 the process B
1s null. Moreover, the integrals in the previous display are NRLPs with respective characteristics

(07 0, 1[—1,1]°A7p)7 (Oa 0, 1[—1,1]A7p>’

Now that we have stated the main results of this section and motivated the notion of a NRPPP,
let us introduce this family of random measures. We shall then give a brief sketch on how on can
prove Theorem 1.8.

The jumps of reinforced Poisson processes
Let N be the reinforced version of a Poisson process with intensity ¢ for some reinforcement
parameter p. With a slight abuse of notation, we still refer to the point measure 2 = dN; in
R, as a reinforced Poisson process, and we shall start by investigating the nature of this random
measure in the non-negative real line.

The measure & admits a simple representation in terms of a decorated Poisson process &
with intensity ¢ (1 — p)dt in Ry. Consider a point measure D = {0,771, 75, ...} satisfying that
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the increments (T;41 — T} : k = 0) are independent and exponentially distributed with respective
parameter pk, with the convention Ty = 0. In other terms, if we let Z be a standard Yule process,
D has the law of the jump measure of (Z;),er, with an additional Dirac mass at 0. Then, by
(4.5) in [84] the following identity holds in distribution:

Z 1{5 AN, —1} Z Z Oyet -

seR ue P teD,,

From this description, the dynamics of the jumps of N can be described as follows: first, since
0 e D,, for every u € & the process N performs a jump at time u. Then, this jump is reinforced
at the subsequent times ueli for every t¢ € D,. Therefore, roughly speaking, the jumps of N
consist in Poissonian jumps u € & which — in analogy with the discrete setting — we refer to
as innovations, and each u has attached to it a family {ue’ : t € Dy, t # 0} which should be
interpreted as repetitions of the original u through time. The connection with the Yule-Simon
process is the following: for fixed u € £, the jumps {ue' : t € Dy, t # 0} are precisely the jumps
of a Yule-Simon process but started at the Poissonian time u instead of a uniform time in [0, 1].
We refer to [84, Proposition 4.2] for exponential formulas characterising the law of P,

e

Figure 1.4: Sketch of the jumps of a noise reinforced Poisson process. We marked by x the
jumps corresponding to innovations, while each linked o is a repetition of the former.

The noise reinforced Poisson point process with characteristic measure A and parameter p
can now be constructed by decorating independent reinforced Poisson processes. We shall now
describe this procedure.

The reinforced Poisson point process
Fix a Lévy measure A(dz) in R and consider a disjoint partition (A;);ez of R\{0} satisfying that
A(A;) < oo. Further, we fix some reinforcement parameter p € (0, 1).

o Step 1. For every j € T let & be independent Poisson processes in R4 with intensity
(1 —p)A(A;j). Further, consider independent collections (z, : u € &;) of i.i.d. random variables
with law A(- n A;)/A(A;) and (Du cu € ) iid. with same law as D. We set

Nj(ds, dx) Z Z O(uet )
ue P teDy
Note that this corresponds to marking with the collection (z, : u € ;) the reinforced Poisson
process ), 2, DteD, Ouet With intensity A(A;) and parameter p.
e Step 2. Set & = Zj P and write N := )] j/\fj for the measure obtained by superposition
of (N : j € I). To simplify notation we simply write:

ds dz) Z Z (5ue )

ue P teD,
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Definition 1.10. The measure N(ds, dz) is referred to as a noise reinforced Poisson point process
with characteristic measure A(dx) and reinforcement parameter p.

One can then characterise the law of N by computing its exponential formulas, we refer to
Proposition [84, Proposition 4.8] for a precise statement and to [84, Lemma 4.6] for some basic
properties. Notably, NRPPPs admit a characterisation in the same spirit as the one stated for
PPP after (1.14). More precisely, the following holds:

Proposition 1.11. Let N bea point process in Ry x R and for any Borelian A < R, set
Na(t) = N([0,1] x 4), t>0.

Then, N is a noise reinforced Poisson point process with characteristic measure A and reinforce-
ment parameter p if and only if the two following conditions are satisfied:

(i) For any Borelian A with A(A) < oo, the process N is a noise reinforced Poisson process
with rate A(A) and reinforcement parameter p.

(i) If Ay,... Ay are disjoint Borelians with A(A;) < oo for all i € {1,... k}, the processes
Na,,...,Nga, are independent.

Moreover, if A(A) < oo the process (tP(N(t) — tA(A)) - t > 0) is a martingale.

Now, Theorem 1.8 can be established by showing that /i satisfies properties (i) and (ii) in the
previous proposition. We refer to [84, Theorem 4.1] for a detailed proof of this result.

1.5 Weak convergence of skeletons

We shall make use of the notations introduced at the beginning of Section 1.3. We fix a Lévy
process &, an admissible reinforcement parameter p for its triplet and we consider the pair
(Sl( )J’Sl(”t)J>teR+

composed by the skeleton of the Lévy process £ paired with its noise-reinforced version. The first
component converges point-wise, with respect to the Skorokhod topology, towards the starting
Lévy process & and by the result of Bertoin [19, Theorem 3.1] we know that the second component
converges, in the sense of finite-dimensional distributions, towards a NRLP with characteristics
(a, ¢>,A,p). Observe however that in contrast with the discrete setting, in the continuum we
don’t have a priori a natural coupling for £ with its reinforced version. In this direction, let us
start by introducing the law for the coupling that we shall work with.

Proposition 1.12. There exists a pair (&, é), where é has the law of a NRLP with characteristics
(a,q? A, p), with law determined by the following: for allk = 1, \1,..., A, B1, ... Br real numbers,
and 0 < t; < --- <t <t, we have

k
exp{zZ Aftj+ﬁjéj)} =
J=1

k k
exp {t pE | ¥ ( > )‘jl{Ugtj/t}> +i-(1- (Z Ny =1y + BiY (ti/t))> }
7=1

j=1



31 1.5. Weak convergence of skeletons

where U is a uniform random variable in [0,1]. A pair of processes with such distribution will

always be denoted by (€, ).

We stress that since noise-reinforcement is an inherently discrete procedure, one can not
define naively this notion in the continuum without considering a discretisation of the process.
Our definition for the joint law (&, é) is justified by the following joint convergence, which is the
main result of Section 5 in [84].

Theorem 1.13. Let £ be a Lévy process with characteristic triplet (a,q?, A), fix p € (0,1/2) an
admissible memory parameter and for each n, let (S,(Cn), Slin)) be the pair of the n-skeleton of &
and its reinforced version. Then, there is weak convergence in D*(R,,R) asn | o

(50 500)) == €.

This is achieved by proving separately tightness and finite dimensional convergence for the
pair. We refer to Section 5 in [84] for a proof of this statement. We believe it is of particular
interest to dwell further into the definition provided in Proposition 1.12 for the joint law (&, €).
To this end, we shall now sketch how one can construct a coupling (¢, é’ ) with finite-dimensional
distributions characterised by Proposition 1.12. Heuristically, as we shall see this is achieved
by performing the reinforcement algorithm in the continuum to the starting Lévy process . A

precise description of the law (¢, é ) will allow us to understand how the reinforcement of £ affects
its sample paths.

The joint law (£, )

By Lévy-Ito synthesis (1.15), the Lévy process € can be written as (a-Id+¢?B)+£3) +£3) where
the processes (£ @) ¢ (3)) are independent of B and can be constructed from the jump measure .
On the other hand, by the reinforced Lévy-Ito synthesis [Theorem 1.9] we can write the law of é
as (a-Id+ qzé) +£@ 4 £B) where (5(2), 5(3)) are independent of B and can be constructed from
fi. Therefore, in order to define the joint law (¢, ¢ ), it suffices to introduce the law of a Brownian
motion paired with its reinforced version (B, B), as well as the distribution of the pair (u, f1),
where we denoted by i1 a NRPPP with parameters (A(dz), p).

o The joint law (N, /\7) Denote the set of jump times of £ by .# := {u € Ry : A, # 0} and

consider the jump measure
p(ds,dx) == " 6y g,
ue.g

The construction of ji that we shall now describe in terms of y is reminiscent of the reinforcement
algorithm in the discrete setting. Roughly speaking, in the continuum, the steps (X,,) are replaced
by jumps A& of the Lévy process £&. With probability 1 — p, the jump-time and the respective
jump is shared with its reinforced version f while with complementary probability p it is discarded
by the reinforcement algorithm. The jumps that are not discarded by this procedure are then
repeated at each jump time of an independent counting process that will be attached to it. The
process of discarding jumps with probability p is traduced in a thinning of the jump measure of
¢. Formally, consider a family of Bernoulli random variables (g,),e» with parameter 1 — p as well
as independent collections (D, : u € .#) with law D. Then, the measure defined by the relation

f(ds,dr) = 2 Lic,=1) Z O(uet AL,

ue.y teDy
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is a NRPPP with parameters (A(dx), p) explicitly constructed in terms of p.

o The joint law (B, B) Observe that we do have a natural candidate for the law of the pair
(B, B) Namely, the law obtained in Theorem 1.3 when we investigated invariance principles for
noise-reinforced random walks: for fixed p € (0,1/2), we let (B, B ) be a pair of Gaussian processes
with respective covariances given by

. R t P(t 1-p
E[B/Bi] = (t A 9), E[BiBs] = (t n s)' 7", E[BB,] = L Si ( = )
—4p
for any s,t e R,.
Finally, consider independent pairs (B, B) and (u, ft). Now we can state:
Definition 1.14. We call the noise reinforced Lévy process
& =at +qB + J zpi(ds, dz) + f xﬂ(sc)(ds, dz), t =0,
[0,¢]x[-1,1]¢ [0,t]x[-1,1]

with characteristics (a,q?, A, p) the noise reinforced version of &, the unicity of the pair only
holding in distribution. Every time we consider a pair (§,§), it will be implicitly assumed that &
has been constructed by the procedure we just described in terms of €.

Now, from a rather long but straightforward computation one gets that the law of the pair
(&, &) satisfies the identity of Proposition 1.12.

J 4

gg
[722%

el
My

SOV

Figure 1.5: Sketch of a sample path of a Lévy process and its reinforced version. Jumps
in blue correspond to jumps coming from the jump measure of £ (innovations), and in red
are marked the subsequent reinforcements. The jumps in blue in the path of £ that are not
present in the right-hand side have been deleted by the thinning.

1.6 Applications

We conclude this introduction by briefly presenting two applications developed in [84] address-
ing two very different aspects of NRLPs. We first start by studying the rates of growth of NRLPs
at the origin, and we compare these with analogous results holding for Lévy processes. This
part strongly relies on the structure of NRPPPs and Theorem 1.8. On the other hand, we shall
identify the main features of NRLPs in the much broader setting of Infinitely Divisible Process,
and study some of its properties.



33 1.6. Applications

Rates of growth at the origin

Let & be a Lévy process with characteristic triplet (a,0,A). Observe that in particular, since &
has no Gaussian component, the Blumenthal-Getoor index of £ is given by 5 = $(A). We make
the following assumptions on the characteristic exponent:

o If S{|x|<1} |z|A(dx) = o0, we assume the characteristic exponent can be written as follows:

qf()\) = J;R (ei)\x -1 i)\l‘l{‘xKl})A(dx).

Observe that in this case, we have B(A) € [1,2].

o If S{\m|<1} |z|A(dx) < oo, which can happen for S(A) € [0, 1], we suppose ¥ takes the following
form:

U(N) = JR (e — 1) A(dw).

This is, when the Lévy process has finite variation, we are supposing that it has no linear drift
- the reason being that in that case the behaviour at 0 is dominated by the drift term. We will
refer to these hypothesis as hypothesis (H). In [84], we proved that the behaviour at zero of a
NRLP is twofold and dictated by the Blumenthal-Getoor index of the Lévy measure A.

Proposition 1.15. Let € be a Lévy process with triplet (a,q?, A) satisfying hypothesis (H), and
consider & its noise reinforced version for an admissible parameter p. Then, almost surely, we
have

ltil%lt_wét =0, if B(A) <1/,

while
limsupt|&| = o0,  if B(A) > 1/7.
tl0

It was established by Blumenthal and Getoor in [26] that under (H), the same result holds if
we replace the NRLP é with the corresponding Lévy process &. Therefore, despite the reinforce-
ment, the behaviour at the origin - in the sense of Proposition 1.15 - is left unchanged. Finer
asymptotic analysis such as a law of iterated logarithm in the reinforced setting were however not
addressed in [84]. We refer however to [21] for a law of the iterated logarithm for noise-reinforced
Brownian motion. Let us now turn our attention to the second application discussed in [84].

Infinite divisibility

Let T be an arbitrary set. A process X = (X¢)wer is said to be infinitely divisible if for every
n = 1, we can write the law of X as a sum of n independent and identically distributed copies
of some other process. The theory of infinitely divisible processes has been subject of intensive
research and general tools have been developed making their study possible. These have found
remarkable applications in different fields, we refer to [86] for a general overview of the theory,
several important examples and applications. One of the main results of the theory states that
infinitely divisible processes are in bijection with so called functional triplets (b,I',7), where
beRT isapath,I': T xT — R is a covariance function and 7 is a measure in the path space RT,
often referred to as the path Lévy measure. The finite-dimensional distributions of an infinitely
divisible process can be expressed in terms of the triplet (b, ', 7). In this direction, for every finite
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subset [ < T with I = {t1,...t,} and a path e € RT we let e; := (e(t1),...,e(tn))). If we write
['; for the restriction of I' to I x I, it holds that

E [exp {z 3 etXt}] — exp {z’<b1, 6 — %<9 7,05+ f <ei<9»€f> ) [[e[]]>> y(de)} .

tel RT

Having an explicit representation for the triplet (b, ', ) turn out to be essential for applications,
since it unlocks much of the powerful machinery developed for the study of ID processes.

One can infer from (1.12) that a noise reinforced Lévy processes is infinitely divisible. In
Section 6.2 of [84], we identify their functional triplet, an for instance we show that the path Lévy
measure of a NRLP with characteristics (a, ¢?, A, p) when restricted to the interval [0, 1] is given
by

vi=(1-pA®QoV

where V : R x D[0,1] — RI%! is the mapping defined by V(z,y) := zy, and Q is the law of
the Yule-Simon process. As an application, making use of the so-called Isomorphism theorem for
infinitely divisible processes we prove the following result:

Proposition 1.16. Leté be a noise reinforced Lévy process with characteristics (a,0,A,p). Let
f:R — Ry be a bounded, continuous function with f(x) = O(z?) at 0. Then, we have

0

i B[ (6)] =571 p) | Aldn) 3 (Ro)BlE1/p -+ 1)
k=1

where in the last display we denoted by B the beta function.

The probability mass function appearing in the right-hand side of the last display is the Yule-
Simon distribution.



Chapter 2

Introduction to Part I1

The second part of this work is devoted on the one hand, at expanding upon the theory of
(continuous) Markov processes indexed by Lévy trees developed in [43], and on the other hand,
at developing an excursion theory for this class of tree-indexed processes. The purpose of this
work is to present the recent development of an excursion theory for this family of tree-indexed
processes, holding under rather general assumptions. More precisely, this introduction is devoted
to giving an overview of the main results obtained in collaboration with Armand Riera and under
the supervision of Jean Bertoin and Armand Riera in [82, 83]. Since the content of both works
is technical and relies on a rather broad spectrum of topics, in this introduction we shall give an
informal presentation with an emphasis on providing the heuristics behind the objects and results
we present. This often comes however at the expense of some lack of precision in some of our
statements. Let us start with an informal description of our objects of interest.

Informally, a Markov process indexed by a Lévy tree can be understood as follows: consider a
Markov process started at the root of a tree 7 the motion moves through the geodesic paths of
T away from the root and at each branching point, it splits in copies with same distribution that
continue to evolve independently. In contrast with the time-indexed setting, this process is defined
through two layers of randomness. Namely, now the indexing set 7 for the motion is random,
and to be more precise consists in a Lévy-tree. It is important to mention that Markov processes
indexed by Lévy trees are canonical probabilistic objects and for instance, are closely related to
the theory of super-processes [43, Section 4.2]. More recently, Brownian motion indexed by the
Brownian tree has been used as building block for the construction of the universal random metric
space arising in random geometry called the Brownian map [65, 76], as well as in the construction
of other related random surfaces [10, 72]. Establishing fine properties of such random surfaces
therefore often crucially relies in a proper understanding of Brownian motion indexed by the
Brownian tree and more generally, in the theory of Markov processes indexed by Lévy trees.

Let us now turn our attention to the development of an excursion theory for this class of tree-
indexed processes. To motivate the forthcoming results, let us start by briefly recalling some well
known aspects of excursion theory of time-indexed Markov processes. For a detailed overview of
the theory, we refer to e.g. [17, 25].

Excursion theory for time-indexed Markov processes.

Excursion theory has been subject of active research for decades, and this short discussion only
serves the purpose of recalling the facts needed for our exposition. For a detailed account we refer
to e.g. [17, 25]. We consider (& : t = 0) a time-indexed strong Markov process with rcll paths,
taking values in a Polish space F. For y € £ we write II, for its law started at y. Let us first
recall some definitions. A point x € E is called regular if I, (inf{t > 0: & =z} = 0) = 1, and it

35
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is called instantaneous if Il (inf{t > 0 : & # z} = 0) = 1; note that by Blumenthal’s 0 — 1 law,
these probabilities are either 1 or 0. Finally, x is said to be recurrent if for every y € E, under II,
the Markov process returns to x almost surely. Now, we assume that for some point x € F the
following holds:

(H1) The point x is regular, instantaneous and recurrent for &.

(H2) The Markov process £ does not spend time at z, viz.

)
J dt ]1{&;35} =0, I, — a.s.
0

Under the first two conditions on = in (Hj), the set
Z0={t=0:& =}

is prefect and nowhere dense, and therefore of fractal nature. Its study is delicate and relies on
a remarkable continuous non-decreasing process £ = (£; : t = 0), unique up to a multiplicative
constant that we fix arbitrarily, and with Stieltjets measure d£ supported on the closure of Z°.
Roughly speaking, at any time ¢, the variable £; measures the number of visits of ¢ at =, and £
is known under the name the local time of & at x. This description is informal, and for instance
under our standing hypothesis the number of visits of £ to x is uncountable. The right inverse
L1 of L is a subordinator and hypothesis (Hz) ensures that it possesses no drift. For instance,
if ¢ is a Brownian motion and = = 0, under IIy the process £ is a 1 /2-stable subordinator. The
recurrence hypothesis is assumed for convenience and our presentation holds up to some minor
modifications if this assumption is dropped.

One of the key properties of £ is that it can be used to index the excursion away from x of £
and crucially, this indexing is compatible with the ordering induced by time. More precisely, let
(aj, bi)ieny be the connected components of RJF\?O and for every i, set &' := (lastynn, = 0).
Then, &£ is a continuous piece of path, taking the value z for ¢t € {0} U [b; — a;,00) and satisfying
that & # x for every t € (0,b; —a;). We refer to ¢ as the excursion away from x of ¢ associated to
the excursion interval (a;, b;). We let C'(R,, E) be the space of R, indexed E-valued continuous
functions endowed with the local uniform topology. We shall refer to the following point measure

E° = Z 5(£ai7£i)
1eN
on Ry x C(R4, E) as the the excursion process of £. Then, it is a classic result on excursion
theory that the measure £° is a Poisson point measure with intensity dt @ N, where N is a sigma
finite measure on C(R;, E). We shall refer to A/ as the excursion measure of £&. Moreover, the
path £ can be recovered from £°. In the special case when £ is a Brownian motion, this result is
due to Ito.

Let us mention that the study of the excursions away from x of £ is only delicate when the
point z is regular and instantaneous. Indeed, when x is not regular the set 2V is discrete, while
when z is not instantaneous, 2V is a countable union of closed intervals. For a more detailed
discussion, we refer to [17, Chapter IV].
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In this work, we shall explain how one can obtain analogous results in the tree-indexed setting.
Now, the role played by the set Z°° is taken over by the subset of points in 7 at which the
spatial motion takes the value x, say 2. Roughly speaking and in analogy with the time-indexed
setting, the excursion components consist in the connected components of 7\, and the excursion
associated to a connected component consists in the restriction of the motion to such component.
Much of the effort in [82, 83] was devoted to, on the one hand, understanding the structure of
the set 2 and, on the other hand, studying the family of excursions away from x by developing
an excursion theory. It is important to mention that when the random tree is the Brownian
tree and the Markov process a standard Brownian motion, an excursion theory was developed
by C. Abraham and J.-F. Le Gall in [1]. Our theory complements the results obtained in [1]
by employing different methods and notably, we introduce a notion of local time at a recurrent,
instantaneous point for the spatial motion when performing a clockwise exploration of the tree-
indexed process. We shall explain the differences and similarities with our work in more detail in
the sequel.

The introduction is organised as follows: After introducing the setting we shall be working
with, in Section 2.1 we start with a brief introduction to Lévy trees. In Section 2.2 we introduce a
remarkable time-indexed process called the Lévy-Snake, which is the process behind the formalism
of tree-indexed Markov processes. The content of Section 2.2 includes an overview of the theory
of exit local times and the special Markov property. The Lévy snake was defined on its current
most general framework in [43] and was further studied on [S]. For instance, in [S] we strengthen
the trajectorial regularity of the Lévy snake when the spatial motion is continuous and further
developed the theory of exit local times under more general initial distributions for the Lévy
snake. We then discuss in Sections 2.3 and 2.3 the extension of the classic excursion theory of
time indexed processes to our tree-indexed setting. More precisely, in Section 2.3 we introduce
an additive functional that shall play the role of the local time at a regular, instantaneous point
x when performing a clockwise exploration of the tree-indexed process. We then explain how one
can, making use of this additive functional, encode in a random tree the subset of points of Tg at
which the motion takes the value x. For instance, we recover some of the results obtained in [66]
by different methods. In Section 2.4, after defining the notion of an excursion away from x, we
introduce the Poisson process of excursions and identify its intensity measure. Finally, in Section
2.5 and in analogy with the time-indexed setting, we address reconstruction questions in terms
of the excursion process.

2.1 Lévy trees

A rooted R-tree (7,d) is a compact metric space with a distinguished point, called the root,
satisfying that for every pair a,b € T, there exists a unique geodesic path [a,b] = T isometric to
the interval [0, d(a, b)] connecting the points a,b. The R—trees we consider in this work are often
canonically constructed from a continuous non-negative function.

Trees coded by continuous functions

Let us start by briefly describing how one can construct a tree out of a continuous non-negative
function e : Ry — R, started at e(0) = 0. We write o, € [0,00] for its duration viz. o, :=
sup{t = 0 : e(t) # 0} and if o, = o0 we shall use the convention [0,c.] := [0,0). If for every
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s,t € [0,0¢], we set
de(s,t) :=e(s) +e(t)—2- min e,
[sAt,svi]

the mapping d, is a pseudo-distance on [0, o¢| and it induces an equivalence relation ~, on [0, o¢],
by setting s ~c t if de(s,t) = 0. We write T¢ := [0,0c]/ ~¢ for the corresponding quotient space
and we endow it with the distance d.. Let p. : [0, 0] — T be the function mapping every element
s € [0, 0] to its equivalence class in T.. The image of 0 under p, is called the root of T¢, and it
will be denoted by ¢J. If we write Vol for the pushforward measure of the Lebesgue measure on
[0, 0¢] by pe, the triple (7¢, d., Vol.) is an R-tree equipped with a volume measure.

Te

0 Oe

Figure 2.1: A non-negative continuous function e and the resulting tree 7.

The total mass of the measure Vol is Vole(7¢) = oe and if 0, < o0, the tree 7, is compact.
Note that the function e is well defined in the quotient space T and for every a € T¢, the value e(a)
is precisely the distance of a to the root . The set T of rooted R-trees equipped with a volume
measure, considered up to isometry and equipped with the local Gromov-Haussdorf-Prokhorov
metric is Polish, we refer to Section 3 on [3] for the precise statement and a detailed account.

Let us briefly discuss some geometric aspects of T.. First, the multiplicity of a point a € T
is defined as the (possibly infinite) number of connected components of Tc\{a}. The points with
multiplicity 1 are called the leaves of T, while the family of points with multiplicity 2 is referred
to as the skeleton. Finally, every point with multiplicity ¢ > 3 is called a branching point and for
every i € {3,...,0} we write Bp;(7¢) for the collection of branching points with multiplicity 4.
One can interpret 7, as a genealogical tree, where every a € 7, is an individual, and its multiplicity
-1 corresponds to its number of children. The branching points with finite multiplicity should
be interpreted as microscopic events on the scale of a population evolving through time at which
one individual gives birth to a finite number of children, while the ones with infinite multiplicity
correspond to macroscopic events at which the population increases dramatically. For every
a,b € Te, we shall say that a is an ancestor of b if a € [F, 0], and when this holds we write b > a.
It is then natural to interpret the geodesic path [, b] as the ancestral line of b, the distance to the
root of b being the moment in time at which the individual b was alive. The first common ancestor
a A b between a, b is the element of 7. defined by the relation [, a A b] = [, a] N [, b]. We
stress that the dependence on e when considering geodesic paths [a, b] as well as in the ancestral
order > is omitted to simplify notation.

The tree T, comes naturally equipped with a temporal exploration. Namely, we refer to the
mapping (pe(t) : 0 < t < o) as the clockwise exploration of T.. Roughly speaking, (pe(t) : 0 <
t < o¢) starts at time ¢t = 0 at the root, and then travels through 7¢ in clockwise order following
its contour. If for t € [0, 0| we set Te(t) := pe([0,t]), one can think of T¢(t) as the subset the tree
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that has been explored up to time . On the other hand, the closure of each connected component
of Ty\Te(t) is a sub-tree of Te, say T.(t), and we denote this family by (72(t) : i € Z). In Te,
every T2(t) is attached to the geodesic path [, py (t)] at some height that we denote by h; - see
Figure 2.5 below. It is then natural to encode Tc\7¢(t), viz the subset of 7. that has yet to be
explored, on a point measure » ;.7 d(, 73(¢)) on Ry x T. When working with some fixed ¢, the
dependence on t is omitted to simplify notation.

In what follows, the coding functions we shall consider will be random. Before introducing for-
mally the setting we shall work with, let us start with some motivations from the discreet setting.

Coding of plane trees and Galton-Watson trees.

We write T for the set of finite plane trees defined through the formalism of Neveu [77]. In par-
ticular, every T € T can be thought as a finite graph embedded in the plane with a distinguished
point (that we call the root) and with no loops. For simplicity, we shall enumerate the set of
vertices v(T) of T in lexicographical order {0,1,2,..., |v(T)| — 1}, the root being labelled with 0
and |v(T)| being the cardinally of v(T). The distance between two elements a, b € v(T) is just the
number of edges on the unique path [a, b] connecting a and b. The height h(a) of a vertex a is de-
fined as its distance to the root. Now, we define the height process H = (H,, : 0 < n < |v(T)|—1)
of T by the relation H,, := h(n), for 0 <n < |v(T)| — 1.

Figure 2.2: A plane tree T and the corresponding height function.

By definition, the height process H encodes the distances to the root when performing a
clockwise exploration of T and note that one can clearly recover the tree T from H and vice-
versa.

Let us now introduce another closely related functional of T encoding now the progeny of every
individual in T. In this direction, note that the notion of multiplicity of a vertex a € v(T) still
makes sense in this setting and we denote it by k(a). The so-called Lukasiewicz walk associated
to T is the {—1,0,1,2,...}-valued process (X},)nen defined recursively as follows: we set Xy = 0
and for n = 0, we let

Xp+k(n+1)—1, if X, > —1,
Xny1 = .
-1 otherwise.
We can think of the variable X, as counting the number of vertices attached to the right of

the geodesic path connecting the vertex n to the root. For every 0 < n < v(T'), the increment
X1 — Xy + 1 is precisely the number of children of the vertex n.
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Figure 2.3: A plane tree T and the corresponding Lukasiewicz walk

An important feature of X is that the height of a vertex n € v(T) can be obtained by the relation:

hin) =#{ke{0,1,....n—1}: X = inf X} (2.1)
k<i<n
Therefore, one can recover as well the starting tree T from the path X’. If one is only interested
in metric properties of T - as shall often be our case - it is clear that H is of greater use than X.
The main problem stems from the fact that, even in the simplest models of random plane trees,
the height process is in general significantly more difficult to study than the Lukasiewicz walk.
Let us be more precise.

We write GW(u) for the law of a Galton Watson tree on T with sub-critical spring distri-
bution g = (u(k) : k = 0). We recall that u being sub-critical is defined through the condition
Y=o ki(k) < 1, and that under this assumption the corresponding Galton-Watson tree is indeed
a.s. finite. With a slight abuse of notation, under GW(u) we write T for the corresponding
Galton-Watson tree and we maintain the notation H, X for its height process and the corre-
sponding Lukasiewicz walk. If for every n = 0 we set Y, := [{a € v(T) : h(a) = n}|, the process
(Y,) is a Galton-Watson process describing the evolution of the population encoded by T through
time. While in general the process H is not Markovian, the process X is of a significantly sim-
pler nature. Namely, if for k£ > —1 we let p/(k) := p(k + 1), the process X is a simple random
walk with step distribution p/ = (¢/(k) : & = —1) started from 0 and stopped at its first hit-
ting time of —1. In the continuum, the role played by the Lukasiewicz walk is (roughly) taken
over by an excursion of a Lévy process X and the Galton-Watson process shall be replaced by
a continuous-time branching process. As in the discrete setting, the height process in the con-
tinuum is a functional of X and the corresponding tree encoded by H is a Lévy tree. Defining
formally H in terms of X is a technical task, but we shall see that its definition stems from
the motivations we provided above. Further, since Lévy trees can be obtained as limit of scaled
Galton-Watson trees, Lévy trees should be considered as their continuum analogue - see e.g. Sec-
tion 2 of [43]. Let us now introduce the setting we shall be working with for the rest of this work.

Populations encoded by spectraly positive Lévy processes.

Let Y be a continuous state branching process with branching mechanism 1) started at some
x > 0. One can think of Y as describing the evolution of a population through time and in
particular, the stopping time inf{t > 0 : ¥; = 0} is interpreted (when finite) as the extinction of
the corresponding population. We further assume that the branching process is (sub)critical, viz
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that ¢/(0+) = 0 and that the following condition holds:

©dA
oY) < . (2.2)

It is well known that these two conditions ensure the almost sure extinction of Y. Further, under
our standing hypothesis, the branching mechanism is necessarily of the form

P(\) = aX + BN + f m(dz) (e — 1 —z))
(0,0)

for some «, 3 > 0 and a measure 7 on (0, 0) satisfying the condition {7 (dz)(z A 22) < 0. We
shall be now interested in encoding the genealogy of the population associated to Y in a random
tree. The almost sure extinction of Y will ensure that the corresponding genealogical tree is
compact. More precisely, it has been argued in [43] that the genealogy of its population can be
encoded in a -Lévy tree. The later is an R-tree, coded by a continuous functional of a spectrally
positive Lévy process X with Laplace exponent v, known under the name the height process.
Before providing a proper introduction, for later use we start with some general facts on the
-Lévy process X, that we define for concreteness under some probability P. First, recall that
X and v are linked by the relation:

Elexp(—=AX3)] = exp(t(A)), for A =0

and note that since condition (2.2) holds if and only if 5 > 0 or S(o,oo) zm(dx) = oo, the paths
of X have infinite variation. Further, since we have ¢/(0+) > 0, it follows that X oscillates or
drift towards —co and in particular, the running infimum [ = inf 4 X drifts towards —oo. Now,
we shall write X — I = (X; —infjg;; X : ¢t > 0) for the reflected Lévy process at its running
infimum. It is classic that X — I is a strong Markov process and that the point 0 is instantaneous
and regular. Further, —I is a local time at 0 for X — [ and we write N for the corresponding
excursion measure. We shall now explain how one can construct from X a genealogical tree
encoding the population of Y, by introducing the height process of X. The theory to achieve this
was developed in the monograph [43] and we shall now present some of its elements.

The height and exploration processes.

As we already mentioned, in the continuum the role played by the Lukasiewicz walk is taken over
by the Lévy process X. Now, the corresponding height H; associated to some fixed ¢ = 0 can be
understood as follows: informally, under N and under P the variable H; measures the size of the
set

{se]0,t]: Xs— < inf X,}. (2.3)

S<r<t
Observe that this is reminiscent of (2.1). One can make sense of this informal description by
making use of local times and a time-reversal argument. Let us be more precise: first, for each
t = 0, we consider the time-reversed process

X=X, - Xy and S i=sup RO, foro<s<t
[0,s]

with the convention )?t(t) = Xy. Then, it is well known that (X, : 0 < s < t) has the same
¢ (t)

distribution as the time-reversed process (X5’ : 0 < s < t). Further, the point 0 is instantaneous
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and regular for the strong Markov process S — X = (sup[(]’t] X — Xy :t > 0) and the restriction of
the latter to [0, ¢] is distributed as SO _x® N ow, for every t > 0 and for some fixed decreasing
sequence (gy) converging to 0 we set

. 1 (¢
Y . 1
Ft(X( )) = kh—»Holo aL ds 1{sup[0’5] XO—XP<er}
the convergence holding a.s. Then, Ft()/(\' (t)) is the value of the local time at 0 of S — X®) taken
at time ¢ and note that the set

(sef0,4:59 - XD -

is precisely the image of (2.3) under the mapping s — ¢t — s. Now, for every t > 0, we can define
the value of the height process at time ¢ by the relation:

Ht = Ft()?(t))

Under our standing assumptions on ¢, Theorem 1.4.3 from [43] ensures that the non-negative
process H = (H; : t = 0) possesses a continuous modification that we consider from now on and
still denote by H. It will be crucial for our purposes to note that H is well defined under the
excursion measure N. From the informal description given in (2.3), this should not come as a
surprise since for each t > 0, the variable H; only depends on the excursion of X — I straddling .
Moreover, the excursion intervals away from 0 of H and X — I coincide. We can now introduce:

Definition 2.1. We define the law of the ¥-Lévy tree as the law on T of the R-tree Ty under
the excursion measure N, and the law of a -Lévy forest as the law of the non-compact metric
space Ty under P.

The terminology stems from the fact that under N, T\ posses a unique connected compo-
nent while under P, the set T\ is conformed by an infinite family of connected components.
Moreover, the closure of each one of them is on its turn a compact tree. Namely, each excursion
H' of H away from 0 gives rise to a compact tree Tz, and T is obtained by concatenating
the family (T : i € N) at their respective roots, following the order induced by the local time
—1I. Therefore, we can think of every excursion H* as encoding the evolution of a sub-population
with corresponding genealogical tree Tpy:. In particular, under N the process H describes the
evolution of a single sub-population up to the moment of its extinction. Let us mention that the
connection with the starting ¢-CSBP Y can made through the Ray-Knight theorem [43, Theorem
1.4.1]; since it relies in the notion of the local time at a height a > 0, we shall not provide the
details. When X is a Brownian motion, N is ! the positive Itd excursion measure, H under N
is a non-negative Brownian excursion and 7z is the so-called free Brownian tree. Further, under
the conditioning o = 1, Ty is the CRT or Continuum Random Tree [4].

In the same vein as Galton-Watson trees, Lévy trees satisfy a branching property. In this
direction, recall that by construction, for every t the variable Hy is the distance of pg(t) from
& and we write H(Ty) = sup;>q H; for the height of 7. For h,e > 0, under N and on the
event H(Tg) > h+ ¢, we let 71, ..., TX be the sub-trees of Ty rooted at height » and reaching
a height H(T") > . Then, by Corollary 3.2 in [44], for k > 1 and conditionally on K = k, the

1Up to an unimportant factor 2.
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sub-trees 771, ..., 7% are independent and distributed as 7z under N(-|H(Tz) > ¢). Notably, a
converse statement holds, we refer to Theorem 1.1 in [91].

Let us make a brief comment on how the geometry of Ty is influenced by the choice of .
First, it is important to mention that if ¢ ¢ {3, 00} the set Bp,;(7Tp) is a.e. empty independently
of the choice of ¥. The set of branching points Bps(7Tg) corresponds to strict local minima of
H, while Bp,,(7f) is in bijection with {s > 0 : AXg > 0} by the mapping pg. For instance, Ty
only possesses points of infinite multiplicity if the Lévy measure of ¢ is non-null. One can further
argue that the ”fractal size” of the branching point pg(t) € Bp,, (Tg) for t € {s = 0 : AX; > 0}
is precisely AX;. This notion can be made rigorous by making use of the notion of the local time

‘\ {

. =

Figure 2.4: Zooming around an infinite multiplicity point associated to a large jump of the
Lévy process.

at a branching point introduced below. For a thorough study of the geometry of Lévy trees we
refer to [44].

As for Galton-Watson trees, the height process of a Lévy process is in general not Markovian,
and this makes its study a rather difficult task. To this end, let us introduce another crucial
process closely related to H called the exploration process. While H encodes the distances of
(pr(t) : 0 <t < op) to the root & of Ty, the exploration process further encodes at each t,
the height of the sub-trees in Ty attached to the right of the geodesic path [0, pg(¢)]; let us be
more precise. For every 0 < s <, set Iy, := inf[, ;) X and write M (R ) for the space of finite
function in R equipped with the weak topology. The exploration process is the M (R, ) valued
process denoted by p = (p; : t = 0) and defined, for each ¢ > 0 under N and under P, by the
relation

pu(dR) = Bl (W)dh+ S (I — X ) 0, (dR), > 0. (2.4)

O<s<t
XS_<IS’t

We denote by (F;) the completed natural filtration of p. If for € M(Ry) we write H(p) :=
supsupp p and {u, 1) := p([0,00)) for the total mass of u, the pair (H, X —I) and p are linked by
the identities H; = H(p;) and {p, 1) = Xy —I; for t > 0. The key now is that despite its technical
definition, p is a right-continuous (with respect to the total variation distance of measures) strong
Feller process [2].
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For every fixed ¢, the variable p; carries the
following geometric information: let [, pg ()]
be the path connecting pg(t) to the root and [[(Z),pH (t)ﬂ
consider the measure M = ZjeZt 5(hj,T§ ) on
R, x T, composed by the family of sub-
trees attached to the right of [, py(t)] in-
dexed by their respective heights. Then by hi
the Markov property, conditionally on F, the
measure M is a Poisson point measure with ’7';[
intensity pi(dh)N(Tg € -). For example, if S
X is a Brownian motion, the measure p; is
simply given by 1jg p,(h)dh and therefore,
conditionally on JF;, the heights of the sub-
trees that are yet to be explored are uniformly hj
spread and dense in [0, H;], each Tfil being dis- .
tributed as 7y under the positive Ito0 mea- Tﬂ;
sure. To formalise the previous statements

one needs to introduce the law of p started Figure 2.5: Sketch of the right spine

from an arbitrary p € M;(Ry), we refer to = o0 pa(t).

Chapter 1 in [43] for a detailed discussion.

Let us close our discussion on the height process and the exploration process with an impor-
tant result for the development of Section 2.5. We already mentioned that H is a functional of
p since we can write H = (H(p;) : t = 0). Further, by construction p is a function of the Lévy
process X. In the other direction, the null measure 0 is regular and instantaneous for p and —1
is a local time for p. Since for every t = 0 we have {p;, 1) = Xy — I, it follows that X can be
recovered from p as well. Notably, by Lemma 6.1 the Lévy process X and (therefore p) can be
constructed from H, which yields that despite the fact that X, p and H encode different aspects
of Ty, they carry the same amount of information.

The local time at a branching point

We now introduce an important notion for the sequel, which is the local time at a branching point
b € Bp., (7). This is a continuous, non-decreasing process X = (A\?: 0 < t < o) measuring
at every t = 0 the time spent by (pg(s) : s = 0) at b up to time ¢t. We refer to ALY as the total
mass of b. The content of this section has been adapted from [83].

Recall that the mapping py realises a bijection between the sets {t > 0 : AX; > 0} and
Bp, (7). For every jump-time s € {t > 0 : AX; > 0} we write 2(s) := inf{t > s : H; < Hg},
the latter coinciding with inf{t > s : X; < X,_}. We define the local time at the branching point
b := pg(s) by the relation:

)\f’b = X — Isy, forte[s, z(s)],
with Af’b =0if0 <t < sand )\f’b = AX; if t > z(s). From our definitions, the process A’ is
continuous and non-decreasing. Next, for ¢ = 0 we let /\;’b =AX,— )\;’b which in particular gives

that
)\:’b = I — Xs—, forte s, z(s)].
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We shall now justify our terminology. Consider the connected components of {s < ¢t < z(s) :
Hy > minp, ;) H} as well as the corresponding excursions of (Hy : s <t < z(s)) over its running
infimum. Each excursion interval is mapped by py in a sub-tree 7" rooted at b. If (u,v) c Ry is
an arbitrary interval, we set n((u,v), ) for the number of these excursions starting in (u,v) and
reaching a height greater than . This corresponds roughly to the number of trees 7° rooted at
b with height greater than € and contained in the closure of Tz (v)\Tx(u). Finally, for e > 0 we
set v(e) := N(sup; Hy > ¢€). Lemma 6.2 states that, under P and N, a.e. for every b € Bp,,(Tx)
and t = 0 we have the following convergences:

)\f,b — lim nb<<t R Z<S))78>’ )\;‘,b — lim le((t v s, tv Z<S))7€>
e—0 U(E) e—0 U(E)

where s := p'(b) 0 {t = 0 : AX; > 0}. Moreover, the family ((A\“*,\"?),b € Bp,,(Tx)) can
be obtained as a function of H. The approximation of the total mass for points with infinite
multiplicity was already considered in [44], but it will be crucial for our purposes to have the
refined version stated above. Observe that the exploration process p can be expressed in terms
of the family (A" : b e Bp(Ty)). Namely, for every t > 0, we have

puldh) = BLpp gy + Y A" sy, (dh), =0 (2.5)
O<s<t
AX;>0

with the notation b(s) := pg(s). For fixed ¢ > 0, the variable )\:’b thus encodes the "number” of
sub-trees rooted at b that have yet to be explored after time t.

2.2 Markov processes indexed by Lévy trees

All the ingredients are in place to introduce the notion of a Markov process indexed by a Lévy
tree. Since the formal definition of this process relies in the so-called Lévy Snake which is a rather
technical time-indexed process, we start with an informal discussion. Let E be a Polish space and
fix an arbitrary y € E. For every y € E/ we let (& : t > 0) under II, be a continuous time-indexed
strong Markov process taking values in E and started at g = y. We can define informally the
Markov process ¢ indexed by T and started from y as follows. We first start by sampling Tx
under N or P. Then, conditionally on 7, we consider a spatial motion governed by II, and
indexed by Tg. The motion starts at the root J € Ty at y and moves through 7y away from
& along the geodesic paths according to II,, with the condition that at each branching point of
Tw, it splits into independent copies with same law. This process is denoted by (£4)ae7;,. We
stress that we are dealing with two layers of randomness: the branching structure of (£;)ae7;, is
determined by the choice of 1) while the spatial displacement is governed by II,,.

Now, the corresponding Lévy snake is a time indexed process encoding both the branching struc-
ture and the labels of (£;)ae7;,- More precisely, for each ¢, write W; for the finite F-valued finite
path defined by the relation

Wy = (ga fa€ [[O,pH(t)]]).
In other terms, W; encodes the labels of the ancestral line [, pg(¢)] of pr(t), and recall that

pt encodes precisely the right spine attached to [, pg(t)] in Tz. The Lévy snake is the pair
(pt, W) for t = 0, when Tg is sampled under N or under P. We stress that this definition is
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Figure 2.6: Sketch of the spatial positions of an R2-valued Markov process indexed by a
Lévy tree. The underlying tree is not being plotted but can be recovered by looking at the
genealogy of the spatial positions. The paths do not intersect in the picture only for sake of
clarity.

purely heuristic, and for instance, the notion of a Markov process indexed by a Lévy tree is de-
fined through the Lévy snake, and not the other way around. Let us now give a formal definition.

The ¢ Lévy snake with spatial motion £.

The content of this section is taken from [43]. We write Wg for the space of finite E-valued
continuous paths. More precisely, every element w € Wpg is a continuous path w : [0, (y] — E
defined in a compact interval for some finite (y, € [0, 0), that we refer to as the lifetime of w.
Further, we shall denote by W the tip of the path w((y). With a slight abuse of notation, for
y € E we still denote by y the element w € Wg with w(0) = y having null lifetime. If we equip
the space Wg with the distance

dy, (W, w') 1= |Gy — Cwr| + SL>118 dE(w(r A Cw), W (r A CW/))
r=
the metric space (Wg,dyy,,) is Polish. We start by defining the notion of a snake driven by a
continuous function, with spatial motion II := (Hy)ye g. This is a Wg-valued time inhomogenous
Markov process that was first introduced in [43]. To this end, fix a finite path w € Wg with
w(0) = y for some fixed y € E and for every 0 < a < (y, b = a we consider a probability kernel
Rqp(w,dw’) on W characterised by the following properties:

(1) Rap(w,dw’)-a.s., w'(s) = w(s) for every s € [0, al.

(ii) Rgp(w,dw')-a.s., (o = b.
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(iii) Under Ry p(w,dw’), (wW'(s + @))se[0,p—q] 15 distributed as (&s)sefo,—a] under My (q)-

We next fix a continuous function h : Ry x Ry with A(0) = (y,, that we refer as the driving
function, and for 0 < s < ¢ we let my(s,t) := minp, b, If we write W = (W : ¢t > 0) for
the canonical process in WR+, for every fixed wg € Wg we shall denote by Q"},O the probability

measure on WER* characterised by the following relation:
Qh (W, € Ao, Wi, € Ay, ..., Wy, € Ay)

= ]l{woer} J:q o Rmh(so,sl),h(sl)(w()> dwl) o Rmh(snfl,sn),h(sn)(wn—la de)
IX-X A,

holding for every 0 = sg < s1 < ... < s, and Ay, ..., A, Borelian sets of Wg. We refer to the
canonical process W under Qf}vo as the snake driven by h with spatial motion II started from wry.
Informally the dynamics of W under QQO can be described as follows: at time 0, the path W)
is precisely wq; when h decreases, this path is erased from its tip while when h increases, it is
extended by adding “little pieces” of trajectories of ¢ at the tip. The term snake stems from the
fact that, for every fixed 0 < s < ¢, we have that W(r) = Wy(r) for every 0 < r < my(s,t).

Now, we shall randomise the driving function h by considering instead the height process of
a 1p-Lévy tree. Formally, denote by Pg the law of p under P on M;(R,) where, with a slight
abuse of notation, we write 0 for the identically null measure. We define a probability measure
on (Mf(Ry) x Wg)®+ by the relation:

Po.,(dp, AW) := Po(dp) QL (aw).

The process (p, W) under Py, is referred to as the 1-snake with spatial motion II started from
(0,y). For a more general definition of the Lévy snake starting from any pair (p, w) € M (R ) x
Wg, we refer to [43, Chapter 4.1]. Under appropriate assumptions on the pair (¢, IT) that we shall
assume from now on, the Wg-valued process (W; : t = 0) possesses a continuous modification
with respect to the metric dyy, - we refer to Proposition 5.2 for the precise assumptions. With a
slight abuse of notation, this modification shall still be denoted by W. For latter use, we gather
some of its main properties:

o The pair (p, W) := ((pt, W) : t = 0) is a right-continuous M ¢(Ry) x Wg-valued strong
Markov process.

e The point (0,y) is instantaneous and regular for (p, W) and —I = —inf[g;; X can be taken
as a local time. Further, the corresponding excursion measure Ny, can be written as follows:

N, (dp,dW) = N(dp)@y'* (aW).

e For each fixed ¢, under Py, and N,, the path W; conditionally on H; is distributed as
(&n 1 0 < h < Hy) under II,,.

e The process W under Py , and under N, satisfies the snake property: a.e. for every 0 < s <,
we have that

Ws(r) = We(r), for every 0 < r < mpg(s,t)
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The snake property entalls in particular that a.e., under Poy and Ny, if Hy = H; = mpy(s,t)
the two tip of paths Wt, W coincide. This gives that W (Wt :t = 0) is well defined in the
quotient space Ty and with a slight abuse of notation we denote this process by (£4)aeTs -

Remark: In the sequel, for sake of clarity but at the expense of some lack of rigour, we shall
often write our explanations in terms of the tree indexed process (£,)qe7;, instead of (p, W). This
practice will however be avoided for our main results.

The study of geometric properties of (&,)qe7;, often relies in understanding the law of (p, W)
at typical times sampled with respect to random measures of different natures. These formulas
are often colloquially known under the name many-to-one formulas. In this direction, under EY,
denote by U = (U : t = 0) a subordinator with Laplace exponent 1)(\)/A — « for A = 0. It might
be worth recalling that the subordinator with Laplace exponent ¢ (A)/\ is the so-called ladder
height process of X, see e.g. Lemma 1.1.2 [43]. For every a > 0, let .J, be the element of M (R )
defined by the relation J, := 19 q)(7) d;-. The following lemma is taken from [43].

Lemma 2.2. [43, Formula (4.2)] For fized y € E and for every non-negative measurable function
@ in M(Ry) x Wg, we have:

(o Q0
Ny<f ds ®(ps, W5)> = f da exp ( — aa) - E° @Hy[CI)(Ja, (&1 s < a))].
0 0

For a more general statement describing the law of the right and left spines, we refer to
Proposition 6.17.

The later formula should be interpreted as follows. Consider the pointed measure N;J in
M;(Ry) x Wg x Ry defined by the relation Ny (F(p, W, U)) = Ny (§; ds F(p, W, s)). Note that
the law of (p, W) under N} is absolutely continuous with respect to Ny. Under N7, one should
think of U as a point un1form1y distributed in [0, o] conditionally on (p, W) Then, the law of the
Lévy snake at a typical point (py, W) under N} is characterised by the following. Conditionally
on Hyy, the pair (prr, Wiy) is independent and the law of Hy is given by exp(—aa)lgr, da. Moreover,
for every a > 0 and conditionally on Hyy = a, the pair (py, Wy) is distributed as (Jq, (& : s < a))
under E° ® I1,,.

The study of time indexed Markov processes relies crucially on the Markov property. However,
the latter is intrinsically related to time, and therefore not suited for the tree-indexed process
(€a)aeTy - We shall now introduce the preliminary notions needed to state a spatial version of the
Markov property satisfied by (£4)ae7s -

Exit local times and the special Markov property.

Let us start presenting the technical background needed to state our first main result. Fix an
open set D of the Polish space £ as well as a point y € D, and consider (§4)qe7;, under Ny. If
under II, we let 7p be the first exit time of the Markov process from D we further assume that

Iy (tp < ) > 0.

Let Tr(7g) be the subset of Ty conformed by points a € Ty satisfying that, for every b € [, af
we have & € D. Then, Trp(Ty) is a tree and we denote by Trp(€) the restricted process
(&, : a € Trp(Ty)). Further, the closure of each connected component of Ty \Trp(Ty) is as well
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a tree. We denote this family of sub-trees by (CP : i € T) and we set P := (&, : a € CP) for its
corresponding labels. If we let 5 be the root of C’,L-D , it follows that {Z.D is a tree-indexed process
started at the point §ZD (") € D, and we shall refer to it as a subtrajectory that exits the domain
D. Due to the fractal nature of Ty, the number of subtrajectories that exits the domain D is a.e.
either 0 or (countably) infinite.

Figure 2.7: Sketch of the spatial positions of an R2-valued Markov process indexed by a Lévy
tree (£,)qe7;, started from some y € D. We stress that a subtrajectory exiting the domain
D might return into D, but any subsequent exit from D of the latter will not translate into
an exit point from D for the spatial motion (&,)ae7s -

The exploration (pg(t) : 0 <t < op) induces a natural order on this family of subtrajectories.
Namely, if for every i € 7 we write a; := inf{t > 0 : py(t) € CP} for the first time the exploration
visits the component C’iD , we can define a partial order on (@D : 1 € Z) by considering the order
induced by the corresponding first visit times (a; : i € Z). Note however that this order can not be
recovered solely from the family (§Z-D 1 € Z). To this end, we shall now explain how one can index
the family of subtrajectories away from D by means of a continuous additive functional of the
Lévy snake compatible with the ordering induced by the clockwise exploration. For every ¢ > 0
recall the notation 7z (t) = pg([0,]) and for every i € Z, we set CP(t) = CP if CP(t) = Tu(t)
while CP(t) := & otherwise. Then, if we write BL(Z") for the ball of radius € centred at & in
CP(¢), the limit

LP = lim e Voly ( JcPw n B;’(@i))
e=0 i€l
exists a.e. uniformly in compact intervals. The process L” = (LP : t > 0) is a continuous,
non-decreasing additive functional of (p, W) called the exit local time from D [43, Section 4.3].
The terminology can be justified by the fact that, roughly speaking, at each fixed t, the variable
LP measures the "number” of connected components of T (t)\Trp(£). Moreover, the Stieltjets
measure dL is supported on the set:

{t =>0: pr(t) € 8D}
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The following first-moment formula taken from [43, Proposition 4.3.2] describes the law of (p, W)
at a typical time taken with respect to the measure dL”.

Lemma 2.3. [43, Proposition 4.3.2] For fivred y € E and for every non-negative measurable
function ® in MR, ) x Wg, we have:

N, (J dLP @(p,, Ws)> =E° ®Hyl]l{m<00} exp(—atp)®(Jry, (& 1 t < 7D)) |-
0

We can now turn our attention to the first main result in [82], which is a spacial version
of the Markov property, known as the special Markov property. Roughly speaking, the special
Markov property describes the law of the family ((L2,¢&P) : i € Z) conditionally on Trp(¢).
Let us start by providing some historical context. This result was originally introduced in [63,
Section 2] in a weaker version for the Brownian motion indexed by the Brownian tree, and has
played a fundamental role in its study, we refer to e.g. [63, 66, 70, 72]. More recently, a stronger
version was proved in [66] still when the tree is the Brownian tree but holding for more general
spatial motions. In this section we shall extend this result to an arbitrary Lévy tree. It is worth
mentioning that the special Markov property is closely related to the one established by Dynkin
in the setting of superprocesses [45] under very general assumptions, the crucial difference being
that in the context of the Lévy snake, it keeps track of the genealogy and the respective labels of
each individual.

Let us introduce the last pieces of notation needed to state formally this result. For w € Wg
and with a slight abuse of notation, set 7p(w) := inf{t > 0 : w(h) ¢ D} and consider the functional

t
VtD c= JO ds 1{H5<TD(VVS)}7 t>0.
Note that the variable V;” measures the volume of Trp(7z) n Tx(t) and write I'P for its right-
inverse, viz. the right-continuous process defined for every s € [0, V.2) as 'Y := inf {t >0:VP >
s}. Further, we set

(TI"D(p), Tl"D(W), TrD(LD)) = (thDa WF?: L??) for t = 0.

and we write (6, : 0 < r < L&) for the right-inverse of Trp(L”). The truncated process
(Trp(p), Trp(W)) thus encodes the labelled tree Trp (&) and we shall denote by Fp its generated
sigma-field. The key now is that Proposition 5.7 ensures that Trp(L”) is Fp-measurable. Since
this last point is one of the main technical difficulties that need to be sorted to establish Theorem
2.4, we shall provide the outline of the proof.

Sketch of proof of Proposition 5.7. Let (D, : n > 1) be an increasing sequence of open
domains containing y, and satisfying both D,, © D,,+1 for every n and u,D, = D. To prove that
Tr D(LD ) is Fp-measurable, it suffices to show that under N, the sequence of Fp-measurable
processes (Trp(LP") : n > 1) converges towards Trp(LP) a.e. uniformly in compact intervals
along some sub-sequence. Exploiting the fact that these are continuous additive functionals
of (p, W), this problem can be reduced to establishing the a.e. convergence of the total mass
L?” — L? along some subsequence, as n 1 c0. In the context of the Brownian motion indexed
by the Brownian tree, this was proved by Le Gall in [63, Proposition 2.3] by establishing that
the convergence holds in LZ(Ny). In the general framework of Lévy trees, this argument can be
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adapted, but one needs to make use of a truncation argument since a priori the convergence no
longer holds in L*(N,). We refer to Section 5.3.1 for a detailed proof.

Finally, for every i € 7 we let (piD , WiD ) be the snake trajectory encoding the labelled tree
§Z.D - formally, one needs to make use of the notion of subtrajectory of a snake path, we refer to
Section 5.2.3 for a precise definition. Now all the ingredients are in place to state:

Theorem 2.4. (Special Markov property) Under Po, and Ny, conditionally on Fp, the point
measure

22 0(Lp, ppwp) (A, dp, dIW)

1€l
is a Poisson point measure on Ry x M¢(E) x Wg with intensity 1o 10)(¢) dENtrD(V/V)ge (dp, dW).

In the last statement, we denoted by tI‘D<W)9£ the process (WFtD :t > 0) taken at time 6.

2.3 The local time at x and the subordinate tree

Alongside the special Markov property, the main contribution of [82, 83] consists in the develop-
ment of an excursion theory for Markov processes indexed by Lévy trees, holding under rather
general conditions on the pair (¢, &). In the following sections we shall present its main elements.
As we already mentioned, we extend the theory developed in the previous work [1] from C. Abra-
ham and J.-F. Le Gall in the setting of Brownian motion indexed by the Brownian tree, with
the notable addition of a notion of local time, making these two approaches rather different. We
shall be more precise in the sequel. It is worth mentioning that the work [1] has found numerous
applications in Brownian geometry, see e.g. [67, 70] and we expect our results to have applications
outside the scope of this work.

Up to this point, we have presented the theory of Markov processes indexed by Lévy trees
under a very large degree of generality. However, as in the time-indexed case, to develop an ex-
cursion theory one needs to impose further restrictions to the class of spatial motions we consider.
To this end, we shall henceforth assume that the Markov process ¢ satisfies assumptions (Hy)
and (Hgz) for some point x € E. We shall write (L¢)er, for its local time at x and we denote the
corresponding excursion measure by N.

The local time at x of V.
The content of this section is taken from Section 5.4.2. From now on, the motions we shall
consider consists in pairs of the form,

Ei=(&,Ly), fort=0.

We let (p, W, A) = ((ps, Wy, Ay) - t = 0) be the 1-Lévy snake with spatial motion & and we write
(€,)aeTs, for the corresponding tree-indexed process, where £, = (&4, L,) for a € T7. To motivate
the forthcoming results we start with an informal discussion. In the sequel, we will direct our
efforts towards studying two key objects of interest. First, the role of the set Z° is now taken
over by the following random subset of Tg:

% ={aeTy: & = x}.
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Observe that 2 inherits a tree structure from 7z and therefore, is of a significantly more intricate
nature than the subset of the real line 2°°. On the other hand, we have of course the family of
excursions of (&;)qe7;, away from z. Roughly speaking, these consist on the restrictions of (£4)aeTsy
to the connected component of Ty\Z. Note however that, in contrast with the time-indexed

T T \ 2

\ VL e \ V.V L
(e (e
Q(}?& ~ Q( =

u

Figure 2.8: In the left hand side, sketch of Tz with the set 2 coloured in yellow. In the
right-hand side, the corresponding family of excursion components (Cy)uep; each debut is
marked with a red dot.

setting, we lack of a proper way to index this family of excursions. We shall start by addressing
this concern and, to this end, we introduce a remarkable continuous additive functional of the
Lévy snake (p, W, A). The construction we provide relies crucially on the theory of exit local
times.

For every r > 0, let .£" = (£, : t = 0) be the exit local time of (£,)4e7;, from the domain
E x [0,r). Proposition 6 in [82] states that the process defined by the relation

Ap = f dr %", for t > 0,
R,

is an R -valued continuous additive functional of the Lévy snake with Stieltjets measure dA
supported on an explicit subset of {t > 0 : I//I\/t = x}. For this reason and with some abuse of
notation, we refer to A = (A; : ¢t > 0) as the local time at z of W. The process A can be
interpreted as well as the total variation of A := (Ay : ¢ > 0) in the following sense. Let C* be the
subset of R, defined by the relation: ¢t € C* if and only if for some open neighbourhood of ¢, A
is constant. Then we have the following characterisation for the support of the measure dA.

Theorem 2.5. Under Py, o and N, o we have
supp dA = [0,0]\C*.

The support of dA can also be written in terms of the so-called exit times from x of (p, W, A),
we refer to Definition 5.26 and Theorem 5.30 for a formal definition and the precise statement.
For every r > 0, under II, o we let 7 := inf{t > 0 : £, > r}. The following lemma describes the
law of (p, W, A) at a typical time taken with respect to the measure dA.
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Lemma 2.6. For y € E and for every non-negative measurable function ® on M;(R ) x W we
have

loa o0

N, (f a4, @(ps,Ws,As)) :J dr E°@ o[ exp (= am) - (s, (€0 Lo it < 7).
0 0

Let us briefly discuss some connections with related works. When (&;)qe7;, is the Brownian

motion indexed by the Brownian tree and x = 0, the additive functional A is closely related to

the local time of the Brownian motion indexed by the Brownian tree and the so-called ISE (or

integrated super-Brownian excursion) introduced by Aldous in [5]. First, the local time of the

Brownian motion indexed by the Brownian tree is defined as the R, -valued continuous process
(¢Y : y € R) defined under Ny by the relation

o}
J dt F(W,) = J dy F(y) - V.
0 R

In other terms, (¥ : y € R) is the density with respect to the Lebesgue measure of the occupation
measure of W. The identity in the last display shares obvious similarities with the occupation
times formula for local times of Brownian motion and for every y € R, one can think of ¢¥ as
measuring the size of the set {a € Ty : & = y}. For this reason (¢Y : y € R) is referred in the
literature as the local time of Brownian motion indexed by the Brownian tree, but we stress that
it should not be mistaken with our additive functional A. By [71, Proposition 3], the processes
A and (¢Y : y € R) are linked through the relation

Ay =0V,

Notably, it has been proved recently in [68] that the local time of Brownian motion indexed by the
Brownian tree paired with its derivative ((¢Y, éy) :y = 0) is a time-homogeneous Markov process.
One can think of such result as a variant of the classic Ray-Knight theorems. The integrated
super-Brownian excursion is the process (¥ : y € R) under the conditioning ¢ = 1. The ISE has
been subject of active research in recent years [5, 29, 39] and appears as scaling limit of multiple
functionals on discrete tree models, see e.g. [28, 32] and references therein.

The subordinate tree by the local time
The content of this section is taken from [82]. As we already mentioned, the set 2 inherits a
genealogical structure from 7Tg. It is then natural to look for a way to encode the set Z in
a tree. To this end, we shall make use of the notion of subordination of trees by continuous
non-decreasing functions introduced in [66].

The mapping (L,)qe7;, is continuous and non decreasing with respect to the genealogical order,
viz. if a < b, then L, < L. If for every a,b e Ty we set

dr(a,b) == Lq+ Ly — 2ﬁnigﬁ£,

then dy is a pseudo-distance on Ty and it induces an equivalence relation on Tx: namely, we
write a ~, b if L is constant on [a,b]. Then, the quotient space T = (Ta/ ~r,dr) is again a
compact R-tree that we shall refer to as the subordinate tree by the local time L. The terminology
stems from the fact that 7 is obtained from identifying the connected components of Tz where
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(La)aeTy, is constant, which correspond roughly to the connected components of T\ 2. This last
description shows that T encodes as well the genealogical structure of the excursions away from
x of (€a)aeTy, this fact will be key in the sequel. The function (Lg)ee7;, is well defined in the
quotlent space T and now, for every a € 7 the variable £, is precisely the distance from a to the
root of 7. Notably, the random tree 7 is again a Lévy tree. More precisely, write E* := E\{z}
and for y # x set uy(y) := Ny(1 — exp(—ALE¥)).

Proposition 2.7. The random tree T under the measure Ny 0 is a Lévy tree with Laplace exponent
given by

0 =N ( [ anvun).

When the tree is the Brownian tree, this result is due to Le Gall [66, Theorem 16].

Figure 2.9: Subordination of Tp by the local time £. In the left hand side, the set 2 is
coloured in yellow. Heuristically, the tree T is obtained from Tg by identifying the black
connected components in 7.

The fact that 7 is a Lévy tree is a rather straightforward consequence of the special Markov
property 2.4 and Theorem 1.1 in [91]. We refer to [66, Theorem 16] for a proof when the random
tree is the Brownian tree. One can think of the subordinate tree 7 as the geometric analogue of
the inverse local time (£, : ¢ > 0). Tt might be however worth noting that, if we further assume
that (£4)aeT;, is the Brownian motion indexed by the Brownian tree, the Laplace exponent zZ
of the subordinate tree is the one of a 3/2-stable Lévy process (and therefore is less regular
than the Brownian tree) while in contrast, as we already discussed (£; ! : ¢ > 0) is a 1/2-stable
subordinator. Note that the latter does not even fulfil our hypothesis on the Laplace exponent.
It is natural to observe a drop in the regularity of the subordinate tree with respect to Tgy:
identifying the excursion components of £ away from x generates points of infinite multiplicity in
T as soon as the corresponding excursion returns to x. We shall come back to this point in the
sequel. Finally, we mention that our results on subordination of trees with respect to the local
time are closely related, in the terminology of Lévy snakes, to Theorem 4 in [23] stated in the
setting of superprocesses — the main difference being that in our work we encode the associated
genealogy.
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Since T is a Lévy tree constructed in terms of (p, W, A), it is natural to try to express in terms
of (p, W, A), the corresponding height process H the Lévy process X or even the exploration
process p. In that regard, the additive functional A we introduced will play a central role. In this
direction we conclude the section with the second main contribution of [82].

Theorem 2.8. The following properties hold:

(i) Under Ny, the subordinate tree T is isometric to the tree coded by the continuous function

(KA;l = O)

ii) Moreover, under N, o the process A,1 i 7 = 0) is distributed as the height process of a
) A g
J—Lévy tree.

Since the arguments employed to establish (ii) might be of interest in latter works, let us
sketch the proof of (ii). The later relies crucially on the notion of marked discrete trees embedded
in an excursion, that we shall briefly present. Let ¢ : Ry — R, be a non-negative continuous
function with finite lifetime 0. < oo and write 7, for the corresponding tree coded by e. First,
consider a single fixed point ¢; € [0, o¢] and think of pg(t1) as a mark on T.. Recall that the path
[0, pe(t1)] is isometric to the interval [0, e(¢1)] and in particular the distance to the root of pg(t1)
is e(t1). We shall write (e, t1) for the discrete (ordered) tree with a single vertex with label e(t1).
Further, if we consider two marks 0 < t; < t2 < 0, the geodesics paths [F, pr(t1)], [, pr(t2)]
are respectively isometric to [0, e(t1)], [0, e(t2)] and share the ancestral line [0, pe(t1) A pe(t2)],
which on its turn is isometric to [0, minf;, 4] €]. Therefore, the marks naturally induce a discrete
ordered labelled tree (e, t1,t2), compatible with the order induced by e and encoding the height
and the genealogy between pe(t1) and pe(t2). Namely, the tree 0(e,t1,t2) possess one leaf per
mark, each one with respective labels e(t1), e(t2) and both are linked to a common ancestor with
label minp, 4,1 €, playing the role of the root. This construction can be generalised inductively
to an arbitrary finite number of marks 0 < t; < --- < t,, < g¢ for m > 1 and yields a discrete
labelled ordered tree that we denote by 6(e, t1,...,tyr). With a slight abuse of notation we write
l(e) :={1,..., M} for its set of leaves listed in chronological order; we refer to Section 5.5.1 for
a precise definition. We stress that this definition differs slightly with the notion of marginals of
trees introduced in [43].

Let us get back to the proof of Theorem 2.8. To simplify notation set H4 := (/A\ a0 <
r < Ay) and consider H = (ITL“ : 0 < r < &) the height process of a QZ—Lévy tree defined under
the corresponding excursion measure N. We write Tra, T for the corresponding trees coded
respectively by H4, H and consider Poissonian marks {71, 72,...} with rate A in both [0, A,]
and [0,5]. We write M, M for the number of marks falling in [0, A,] and [0,5] respectively,
and work under the probability measures N o(-|M > 1), N( : |J\7 > 1). Then, Proposition 5.34
states that the discrete trees (HA,ty,...t), G(ﬁ,tl, ... t77) have the same distribution. The

law of O(HA,t1,.. . ty), H(ﬁ, t1,...t5) can be computed by exploiting the Markovian character
of the Poisson marks, combined with the Markov property of the Lévy snake, the special Markov
property 2.4 and Proposition 2.6. Noting that the labels on the leafs K(HA) {1,...,M} and
((H) = {1,..., M} are precisely the respective heights {HA,...,H}} and (Hy,, ..., ﬁ]tﬁ}, one
can then conclude from an approximation argument that H4 under N, o(-|[M > 1) and H under
N(- ]]\7 > 1) have the same law.
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Figure 2.10: The tree embedded on T generated by the Poisson marks t1,...,%,.

From now on, H4 will henceforth be de- has been explored up to time ¢, by (ii) at time
noted by H and we still write 7 for the Lévy ¢ we have explored the subset %(At) from 7.
tree coded by H. By Lemma 6.1 we can con-
struct from H a pair (X,p) where X is a
J—Lévy process and p is its associated explo-
ration process. We shall provide in the sequel
a more explicit construction of (X, ) in terms
of (p, W, A), but it relies on the development of
the excursion theory for (&,)qe7;, that we shall
now introduce. Finally, let us mention that the
explicit construction of 7 in terms of Ty and its
labels yields that we can simultaneously explore
both trees in clockwise order: more precisely,
recalling that T (t) is the subset of Ty that

2.4 The excursion theory

This section is devoted to the study of the excursions away from x of (£;).e7;,, the content is
taken from [83]. We start with some definitions and first properties. In the context of Brownian
motion indexed by the Brownian tree, these had already been established in [1].

Debuts and excursions away from z
Our first definition is taken from [1]. A point u € Ty is called an excursion debut for (£,)qe7;, if
the following properties hold:

(i) We have &, = x.
(ii) We can find a strict descendant v of u such that &, # z for every a in Ju, v].

We denote by D the collection of excursion debuts. For every u € D, we write C, for the subset
of points v € Ty fulfilling that v > w with &, # x for every a €]u,v[. For latter use, we gather
some basic properties:



o7 2.4. The excursion theory

e For every u € D, set CO := C, n{a e Ty : & # x}. Then, the family (CY),cp are the
connected components of the open set {a € Ty : {; # x} [Lemma 6.7].

e The local time (Lg)qe7;, is constant on every C,, and we denote its value by ¢,. Moreover,
if we consider some other v’ € D with u # «’, we have ¢, # {,y [Lemma 6.9].

Finally, we can now introduce:

Definition 2.9. For every u € D we set £ := (&g : a € Cy). We refer to the family (£ : u € D)
as the excursions away from x of (§a)aeTs -

If follows from our definition that every excursion is again a tree indexed process and the first
point above yields that the family (£* : u € D) is countable. Further, the second point shows
that we can make use of (Lg)ee7;, to index the family of excursions, by considering the pairs
((0y,&") : w e D). This was the approach followed in [1] to introduce an excursion measure in
the setting of the Brownian motion indexed by the Brownian tree. We shall however follow a
different path exploiting the properties of the local time A.

The excursion measure

In this section we define an infinite measure that we shall refer to as the excursion measure for
(€a)aeTs > as well as a notion of fractal length for its boundary. The terminologies will be justified
by the results of the next sub-section. Our definitions rely on several preliminary construction
that we shall now introduce.

Let us start with an informal discussion. We start by defining a tree-indexed process as follows:
let Trr be a ¥-Lévy tree under N. Instead of considering as spatial motion the Markov process
with law II,, we shall consider as spatial motion an excursion of £ under N'. We write (eg)qeTs,
for the corresponding tree-indexed process. Observe that if e, = = for some a # ¢, then for
every b > a it must hold that e, = x. The excursion measure we shall define encodes the law of
(€q)aeT;; restricted to points in Tz satisfying that e, # x for every a € [, b[.

Let us now formalise our previous discussion. The objects we shall introduce rely on several
preliminary constructions that we shall now briefly introduce. For every y € E, write HL for the
law of £ under II, stopped at its first hitting time of x. Fix an arbitrary continuous function
h: Ry — Ry with finite lifetime and satisfying h(0) = 0. For every ¢y > 0, we write ho @y, for the
shifted function (h(tg+t) : t = 0) and for any w € Wg satisfying h(tp) = (w, we denote by QcLVOOtO
the law of the snake driven by h o 6, with spatial motion IT := (Hz)ye g started from w. Next,
we write ]! (dw) for the law of (& : 0 <t < h(ty)) under the excursion measure A - note that ;!
is a sigma-finite measure on Wpg. Now, by Kolmogorov’s theorem there exists a unique measure
Qf([ on Wg, charging the subset of paths of WER* taking the value = at time 0, characterised by
the relation

hogt
Q?\/’(Wto € Ao, th € Al, R ,th € An) = f Vt}g(dw)l{weAg}QW O(th € Al, cey th € An)

E
the latter holding for every 0 < tg < t; < --- < tp, and Ao, ..., A, Borelians in Wg. Roughly
speaking, one can think of W under le\/ as the snake driven by h with spatial motion A/. Finally,
we set

N (dp, dW) := N (dp)QN ) (aw),
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Heuristically, (p, W) under N is the 1-Lévy snake with spatial motion N - we stress that this
description is informal since A is an infinite measure. It follows from our definitions that for
every fixed ¢ and conditionally on Hy, the law of Wy = (Wi(r) : 0 < r < Hy) under N7, is the one
of (& : 0 <t < Hy) under M. Under our assumptions, W has a continuous modification under N7
that we consider from now on and still denote by W. The process W satisfies the snake property,
which gives that we can set (e4)qe7;, for the function W under N in the quotient space T.

Under N3, it still holds that (p, W) is a strong Markov process [Proposition 6.13] encoding
the branching structure and labels of the tree indexed process (€4)qe7;,- Note that the lifetime
TE(Wy) = inf{h > 0 : Wi(h) = x} of W} might a priori be smaller than Hy, in which case we have
plainly Wy(h) = x for every h € [7(W;), Hy]. This leads us to consider the following trimmed
sub-tree of Ty

Tro(T) = {a € Ty : ey # x for every b €], a[}.

See Figure 2.11 below. Note that by definition, with the exception of the root, only the leafs of
Tr,.(Tz) might have z as label.

T

s 7
{aeTu\0:& =x}

Figure 2.11: In the left hand side, the tree Ty with the set {a € Tyg\@ : & = x} coloured
in red. On the right-hand side, the trimmed tree Tr, (7 ), obtained from removing the set
{a e Tyg\D : & = x} from Ty.

Finally, under N, we introduce
Try(e) := (eq : a € Tru(Ty)).

Making use of techniques stemming from the theory of exit local times, one can define a notion
of measure for the boundary 0Tr.(7x) := {a € Tru(Ty) : &, = x}. In this direction, for every
t = 0 consider the family of connected components of Tg (¢)\Try(7z). The closure of each one of
them is a tree, say Cf, and we denote this family by (C(t))ic7. If we let BL(5") be the ball in
C#(t) of radius e centred at the root ° of CF(¢), the limit

LF = lim E’IVOIH( U cr) n Bs(@i)>
e—0 e
exists uniformly in compact intervals in measure under N1y, for any measurable V' with finite
mass. It follows from our definitions that the process L* := (L} : ¢ = 0) is continuous and non-



59 2.4. The excursion theory

decreasing. We stress that the theory of exit local times can not be directly applied to define L*
since we are not considering the exit time from an open set, and the law of the spatial motion is
now an infinite measure. The Stieltjets measure dL* is supported on the set {t = 0 : H; = 7;(W;)}
and the total mass L7,
this reason, in the sequel we write |0Tr. (7 )| := L%. Note that Tr.(e) is obtained from (eg)qe7s

which is a.e. finite, can be interpreted as the length of 0Tr. (7). For

by removing every tip of path that has returned to x before the end of its respective lifetime. For
t >0 we set V* := Sé ds Ly <rx(w,)y and write (I'y : ¢ > 0) for the right-inverse of (V;* : ¢ > 0).
Informally, one can think of the truncated process Tr«(p, W) := ((prs, Wrsx) : t = 0) as the snake
encoding the branching structure and labels of Tr,(e).

Definition 2.10. The law of Try(p, W) under N} is denoted by N%. We shall henceforth refer
to N* as the excursion measure of (§4)aeT;; aWay from x.

Figure 2.12: Sketch of an excursion away from z under N¥; the distance of each label to x

is plotted with respect to the vertical axis. In yellow are coloured the points at which the
spatial motion returns to x. The "size” of the set {a € Tyg\J : & = =} is measured by L.

Moreover, under NZ the process (p, W) is still a right-continuous strong Markov process. The
next proposition describes the law of (p, W) under the pointed version of N* at a typical time in
[0,0].

Proposition 2.11. For every non-negative measurable function ® on My(Ry) x Wg, we have

N;(foa ds @(PS,WS)) = EO®/\/'<JOU da exp (— aa) - ®(Jq, (& : s < a))).

It will be crucial for our purposes to define as well the notion of boundary length under N%. In
this direction, if under N} we set Tri(L*) := (Lj« : t = 0), Proposition 6.35 states that Tr. (L")
is Try(p, W)-measurable and therefore well defined under N*. Under N, we shall write

((ea)aeT> T, 10T, L*) for (Try(e), Try(Ta), |0Tr«(T)|, Tra(L*)) under Nj.
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We obtained as well a description for the law of (p, W) at a typical time taken with respect to
the measure dL*.

Proposition 2.12. For every non-negative measurable function ® on My(Ry) x WE, we have

N;(JOJ dL} @ (ps, W3)> — F° QN (exp(—ao)®(Jy, (& : s < 0))).

For a more general version of Proposition 2.11 and 2.12 encoding as well the left and right
spine we refer to Proposition 6.39 and Proposition 6.37. As an application of Proposition 2.12,
we obtain the characteristic triplet of the Laplace exponent 1. If we set

~

& :=N(1—exp(—ac)), B:=0, 7(dz):=Nj(L}edzn (0,0)),

Corollaries 5.21 and 6.38 that the Lévy-Khintchine triplet of QZ is given by (q, E ,T).

The excursion process

In the last section we introduced a measure N that we baptised the excursion measure away
from x of (§g)ae7,- We shall now justify our choice of terminology. Under N, o and Py 0,
for every fixed u € D let us write (p“, W) for the Lévy snake encoding the sub-tree C, and
write H* := (H(p}") : t = 0) for the corresponding height function - we refer to Definition
6.8 for a precise definition of (p*, W"). Let g(u) be the first time at which the exploration
(pr(t) : 0 <t < op) visits the excursion component C,, viz. g(u) :=inf{t = 0: pg(t) € C,}. We
shall refer to the point measure

€= Z 5(A9(u)vpu’Wu)
ueD

as the excursion process of (£4)aeTs- It is important to note that by Lemma 6.27, for every
u € D the point g(u) belongs to supp dA. Therefore, for every pair of debuts u # u’, we have
Agu) # Agw)- Observe as well that the ordering induced by A is precisely the one induced by
the clockwise exploration. Hence, at least at an heuristic level it sounds plausible that one could
reconstruct the tree indexed process (£;)qe7;, Oor more precisely the paths of (p, W), in terms of
E. We shall address this question in the next section.

We can now state the main contribution of [83].

Theorem 2.13. Under Py, the measure

&= Z O( Ay, v, W)
ueD

is a Poisson measure on Ry x M¢(Ry) x Wg with intensity dt @ N3,

The result as stated in [83] is in fact stronger, since it shows that £ is a Poisson point process
-or in short PPP- with respect to the (rather complicated) excursion filtration (Gi)i=o. We refer
to Section 6.6.2 for its definition and the general statement. Section 6.6.2 is entirely devoted to
the proof of Theorem 2.13 and it is divided in two main steps: we first show that £ is a PPP for
some intensity measure dt ® ﬁ;, and we then proceed to show the identity N} = N ». One of the
main tools used to prove this last point are the so-called spinal decompositions of the Lévy snake
under N, g and N?. This notion has had recurrent use in the setting of Branching random walks
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and in Brownian geometry, see e.g. [72]| for a unified representation for non-compact Brownian
surfaces. Spinal decompositions were extensively exploited in our work [83].

Under N, o, the measure £ is no longer a Poisson measure but we still have the following
averaging formula.

Corollary 2.14. For every non-negative measurable functions ® and g, we have

Nao( 35 9y 8", ) = Noo |

ueD 0

Ao ~
dr g(r, 1) ) N3(®).

The proof of this result strongly relies on the fact that £ is a (G;);=0-PPP. In the special case
when (£;)qe7;, is @ Brownian motion indexed by the Brownian tree and x = 0, if one considers
in the last display a function g that does not depend on Ay, we recover [1, Theorem 1]. In
particular, this yields that the excursion measure introduced by C. Abraham and J.-F. Le Gall
in [1] and N coincide.

2.5 Reconstructions

We now turn our attention to the last part of this introduction. In this section we shall address
reconstruction related questions in a rather general sense, but the objective of the section is to
establish the following:

Claim: The Lévy snake (p, W), and therefore (&4)aeT;, can be recovered from
the excursion process &.

Recall from our discussion shortly after the introduction of the exploration process (2.4) that p
can be recovered from H. Therefore, by the snake property it readily follows that to prove this
claim it suffices to establish that the Ry x E-valued process (H, W) can be constructed from £.
Let us give a more premse outline of the section. Recall from Theorem 2.8 that we already wrote
the height process H of T in terms of (p, W, A). Moreover, by Lemma 6.1 we can construct from
H a pair (X ,p) where Xisa 1/J—Levy process and p is its associated exploration process. In this
section we describe explicit constructions, in terms of the excursion process &, for the following
random objects:

e The Lévy process X and its jump measure seR, 5( s AR

e The local times ((Xz’b, :\T’b) . b € Bp.,(Ti)) at the branching points of 7 and a fortiori, for
the exploration process p.

e The Lévy snake (p, ).

We shall obtain these representation in the order stated above since each construction relies on
the preceding ones.

Let us write D for the subsets of debuts u € D satisfying that L% (p", W*) > 0. We stress
that a priori, the contention Dy < D might be strict. For every v € D we consider the mapping

ﬁ:u —> Ag(u)

and we start with the following result:
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Proposition 2.15. The mapping § is a bijection between D and {t = 0 : AX; > 0}.

Since the branching points of 7 and {t=0: AX, > 0} are as well in bijection, this gives that
D and Bp,, (’7’) are in one-to-one correspondence by the mapping pgog: Dy — Bpoo(%).

The proof of this proposition relies in the fact that one can identify the jump-times of X in
terms of its height process H. We refer to Lemma 6.50 for a precise statement of this result. For
u € D, we introduce the time change:

¢
ou(t) = J ds L3y t20
0

Since, as was discussed in Section 2.4, if u,u’ are distinct debut points we have £, # £, the
variable o, (t) measures the amount of time spent by (pg(s) : 0 < s < op) in Cy up to time ¢, or
equivalently o, (t) = Vol (Tg(t) n C,,). For every u € Dy and with a slight abuse of notation, we
write (Xﬁ’“, XT’“) for the local times at the branching point py o g(u) in 7. Now we can state the

key relationship between the local times at the branching points of 7 and the family of processes
(L*(p",W") :ue D).

Proposition 2.16. N, g-a.e. for every u e D4 we have

A * NS * *

Adp = Loy (0" W), N = Lo (0", W) = Lg (0", W)
and in particular A)N(Ag(u) = Li(p", W).

In the last statement we used that for every ¢t > 0, by definition of AT we have Xf’u + X;“ =
AX4,,,- Recalling from (2.5) the relationship between the exploration process and the local

times at the branching points of 7~', we obtain a representation for p at time A; in terms of
(L*(p*,W") : w e D). As a straight consequence of Propositions 2.15 and 2.16 we obtain the
following representation for the jump measure of X.

Theorem 2.17. We have the identity,

Z 5(Ag(u)7L§(Pu7W")) = 2 6(3,A)?S)'

U€D+ S€R+

In other terms, the jump measure of X is the push-forward of € under the mapping (Agu), (p, W) >
(Ag(u)v L;(pua WU))

Since the Lévy process X has no Brownian component, by Ito synthesis 1.15 we can recover
the Lévy process X from the measure in the last display. Recall that the Lévy measure of v
*,2

is given by 7(dz) = N3(L; € dz n (0,00)). We let (N3").c(,c0) be the T-a.e. unique family of
measures in the Polish space D(R;, M ¢(Ry) x Wg) characterised by the relation

N*(dp, AW A {LE > 0}) = f #(d2)N2 (dp, dTV).
(0.0)

Recalling that H is a functional of X , we obtain the following corollary:
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Corollary 2.18. For u € Dy we write z, := L:(p*, W"). For every non-negative measurable

Junctions g : Ry x My(Ry) x Wg — Ry and f: C(Ry,Ry) — Ry, we have
Nz.0 (f(ﬁf) exp(— > g(%@yf“))) = N (f(ff) |1 Ni’“(@Xp(—g(Ag(u), -))))-
ueD ueD

In other terms, conditionally on H, the excursions ((p",W") 1 w € D) are independent with
respective laws (N3**)yep L

~

F

X
S

C
f Pl VT . A, ;
¢ 2y
1 Y 9 WU Perid
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Figure 2.13: Sketch of the correspondence between the set of branching points with infinite
multiplicity Bp,,(7) and the excursions (£%)uep . away from z with non null measure L*.
For every such excursion £*, the "size” of the set {a € Cy : { = x} is given by L} (p", W")
and coincides with the ”size” of the corresponding branching point in T.

This result is closely related to [1, Theorem 40] in the setting of Brownian motion indexed
by the Brownian tree. Let us finally address the reconstruction of (H,W) in terms of £. Then,
making use of the first moment formula from Lemma 2.2, one can deduce the following Lemma:

Lemma 2.19. For every t > 0 such that Wt # x we have

Wt = Wgu(t) Z'f//it = gu, and Ht = Z ng(t)‘ (26)
ueD

The condition Kt = {, in the last display holds if the exploration py is visiting the excursion
component Cy, at time ¢, viz. if pg(t) € C,. It is however not clear if the representation (2.6)
can be expressed solely in terms of £. In this direction, we shall rely on the delicate connection
between the connected components of (supp dA)¢ and the ones of (supp dL*(p*, W*))¢, for u € D.
We write (;(u), 5i(u))ieo, for the connected components of the complement of

(supp dL*(p", W"))\{0, oy}

with the convention that if L:(p" W") = 0 we let Q, := {0} and (ap(u), Bo(u)) := (0,0fu).
We set X := {(«;(u), Bi(u)) : uwe D, i€ Q,} and let X’ be the family of connected components
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of (supp dA)¢. Next, consider the mapping q on X defined for every («;(u), 5i(u)) € X by the
relation:

alai(u), Bi(u) = (o5 (i), oy (Bi(uw)-))
where for ¢t > 0, o, !(t—) stands for the left limit of the right inverse ;! of the time change o,
at time t. To simplify notation, the interval on the right-hand side is denoted by (g(u, ), d(u,)).
Proposition 2.20. The mapping q is a bijection between X and X'.

More precisely, the bijection q satisfies, for every u € D and 7 € Q,,, that

—~~~

(Wiguay+tyadui) = t = 0) = Wiy 1o agiu) - = 0)-

Finally, let W' = (W o s

/. Py
g - DZ Q 5(A9<U,i)7Hu’i7Wu’i)‘
ue ey,

(> 0), H% = (H(a;(u)+t)nB:(w) : t = 0) and we introduce
the measure

The key now is that by Lemma 6.48, the measure £ can be constructed from £. The proof of
this result crucially relies in the fact (Ao%, X%) : u € D) is a function of € and Proposition
2.16. Finally, we show that (2.6) can be expressed in terms of £ which gives that the process
(Hy, Wyt > 0) can be recovered from the excursion process €. This last remark concludes the
proof of our initial claim.
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Chapter 3

Joint invariance principles for random walks
with positively and negatively reinforced
steps

THE CONTENT OF THIS CHAPTER IS TAKEN FROM THE PAPER [16], WRITTEN IN COLLABO-
RATION WITH MARCO BERTENGHI, AND HAS BEEN PUBLISHED IN THE JOURNAL Journal Of
Statistical Physics.

Abstract. Given a random walk (S;,) with typical step distributed according to some fixed
law and a fixed parameter p € (0, 1), the associated positively step-reinforced random walk is a
discrete-time process which performs at each step, with probability 1 — p, the same step as (Sy,)
while with probability p, it repeats one of the steps it performed previously chosen uniformly
at random. The negatively step-reinforced random walk follows the same dynamics but when a
step is repeated its sign is also changed. In this work, we shall prove functional limit theorems
for the triplet of a random walk, coupled with its positive and negative reinforced versions when
p < 1/2 and when the typical step is centred. The limiting process is Gaussian and admits a
simple representation in terms of stochastic integrals,

(B(t), P J t sPAB(s), t7P f t sdec(s)>

0 0 teR+

for properly correlated Brownian motions B, B", B¢. The processes in the second and third
coordinate are called the noise reinforced Brownian motion (as named in [21]), and the noise
counterbalanced Brownian motion of B. Different couplings are also considered, allowing us in
some cases to drop the centredness hypothesis and to completely identify for all regimes p € (0,1)
the limiting behaviour of step reinforced random walks. Our method exhausts a martingale
approach in conjunction with the martingale functional CLT.

Acknowledgements. We warmly thank Jean Bertoin and Erich Baur for the all the fruitful
discussions and feedback, as well as for introducing us to the subject. We also want to thank two
anonymous referees for their careful reading and insightful comments for improving several results
in the paper.

67



Chapter 3. Joint invariance principles 68

3.1 Introduction . . . . . . . . . 68
3.2 The martingales associated to a reinforced random walk and proof of Theorem 3.1 75
3.3 Proof of Theorem 3.2, 3.3 and 3.4 when X is bounded. . . . ... ... ... ... 83
3.4 Reduction to the case of bounded steps. . . . . . . . . ... ... ... ... 89

3.4.1 Preliminaries . . . . . . . .. 90

3.4.2 Reduction argument . . . . ... Lo 90
3.5 The critical regime for the positive-reinforced case: proof of Theorem 3.5 . . . . . 95

3.1 Introduction

In short, the purpose of this work is to establish invariance principles for random walks with step
reinforcement, a particular class of random walks with memory that has been of increasing interest
in recent years. Historically, the so-called elephant random walk (ERW) has been an important
and fundamental example of a step-reinforced random walk that was originally introduced in the
physics literature by Schiitz and Trimper [89] more than 15 years ago. We shall first recall the
setting of the ERW in order to motivate the two types of reinforcement that we will work with.

The ERW is a one-dimensional discrete-time nearest neighbour random walk with infinite
memory, in allusion to the traditional saying that an elephant never forgets where it has been
before. It can be depicted as follows: Fix some ¢ € (0, 1), commonly referred to as the memory
parameter, and suppose that an elephant makes an initial step in {—1, 1} at time 1. After, at each
time n > 2, the elephant selects uniformly at random a step from its past; with probability ¢, the
elephant repeats the remembered step, whereas with complementary probability 1 — ¢ it makes a
step in the opposite direction. In particular, in the case ¢ = 1/2, the elephant merely follows the
path of a simple symmetric random walk. Notably, the ERW is a time-inhomogeneous Markov
chain (although some works in the literature improperly assert its non-Markovian character).
The ERW has generated a lot of interest in recent years, a non-exhaustive list of references (with
further references therein) is [9], [11], [13], [15], [34], [33], [35], [48], [59], [60], see also [8], [12], [47]
for variations. A striking feature that has been pointed at in those works, is that the long-time
behaviour of the ERW exhibits a phase transition at some critical memory parameter. Functional
limit theorems for the ERW were already proved by Baur and Bertoin in [9] by means of limit
theorems for random urns. Indeed, the key observation is that the dynamics of the ERW can be
expressed in terms of Pélya-type urn experiments and fall in the framework of the work of Janson
[55]. For a strong invariance principle for the ERW, we refer to Coletti, Gava and Schiitz in [33].

The framework of the ERW is however limited, and it is natural to look for generalisation of
its dynamics that allow the typical step to have an arbitrary distribution on R. In this work,
we aim to study the more general framework of step-reinforced random walks. We shall discuss
two such generalisations, called positive and negative step-reinforced random walks, the former
generalising the ERW when ¢ € (1/2,1) while the later covers the spectrum ¢ € [0,1/2], in both
cases when the typical step is Rademacher distributed. We start by introducing the former. For
the rest of the work, X stands for a random variable that we assume belongs to L?(IP), we denote
by o? its variance and by p its law. Moreover, unless specified otherwise, (Sp) will always denote
a random walk with typical step distributed as pu.
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The noise reinforced random walk: A (positive) step-reinforced random walk or noise rein-
forced random walk is a generalisation of the ERW, where the distribution of a typical step of the
walk is allowed to have an arbitrary distribution on R, rather than just Rademacher. The impact
of the reinforcement is still described in terms of a fixed parameter p € (0,1), that we also refer
to as the memory parameter or the reinforcement parameter. We will work with different values
of p but for readability purposes p does not explicitly appear in the notation or terminology used
in this work.

Vaguely speaking, the dynamics are as follows: at each discrete time, with probability p a
step reinforced random walk repeats one of its preceding steps chosen uniformly at random, and
otherwise, with complementary probability 1 — p, it has an independent increment with a fixed
but arbitrary distribution. More precisely, given an underlying probability space (2, F,P) and a
sequence X1, Xo,... of i.i.d. copies of the random variable X with law u, we define X1, Xo, ...
recursively as follows: First, let (¢; : @ = 2) be an independent sequence of Bernoulli random
variables with parameter p € (0,1) and also consider (U[i] : i > 2) an independent sequence
where each U[i] is uniformly distributed on {1,...,i}. We set first X; = X7, and next for i > 2,
we let

i =

~

~ XZ', if & = 0,
X
XU[i—l]v if g = 1.
Finally, the sequence of the partial sums
Spi=X1+ - +X, neN,

is referred to as a positive step-reinforced random walk. We have from the definition of the

~

sequence (X;) that
Xng1 = (1 —ens1)Xns1 + 5n+1XU[n]

which implies that for any bounded measurable f : R — R*,
E(f(Xu+1)) = (1= PE(f(Xas1) + = 3 E(F(X))
j=1

and it follows by induction that each X, has law u. Beware however that the sequence (XZ) is
not stationary. Notice that if (3n) is not centred, it is often fruitful to reduce our analysis to the
centred case by considering (S, — nE(X)), which is a centred noise reinforced random walk with
typical step distributed as X — [E(X). Observe that in the degenerate case p = 1, the dynamics
of the positive step-reinforced random walk become essentially deterministic. Indeed when p =1
we have S, = nX; for all n > 1, in particular the only remaining randomness for this process
stems from the random variable Xj.

In this setting, when p is the Rademacher distribution, Kiirsten [60] (see also [46]) pointed
out that S = (S’n)n>1 is a version of the elephant random walk with memory parameter ¢ =
(p+1)/2 € (1/2,1) in the present notation. The remaining range of the memory parameter can
be obtained by a simple modification that we will address when we introduce random walks with
negatively reinforced steps. When p has a symmetric stable distribution, S is the so-called shark

random swim which has been studied in depth by Businger [31]. More general versions when the
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distribution g is infinitely divisible have been considered by Bertoin in [19], and we will briefly
comment on this setting in a moment. Finally, when we replace the sequence of Bernoulli random
variables (e,) by a deterministic sequence (r,) with r, € {0,1}, the scaling exponents of the
corresponding step reinforced random walks have been studied by Bertoin in [20].

In stark contrast to the ERW, the literature available on general step-reinforced random walks
remains rather sparse. Quite recently, Bertoin [21] established an invariance principle for the
step-reinforced random walk in the diffusive regime p € (0, 1/2) Bertoin’s work concerned a
rather simple real-valued and centered Gaussian process B = (B (t))t=0 with covariance function
given by

tpgl—p
1—-2p

E <B(t)B(s)> - for0<s<t andpe(0,1/2). (3.1)
This process has notably appeared as the scaling limit for diffusive regimes of the ERW and
other Polya urn related processes, see [9, 34], [15] for higher dimensional generalisations, and [7].
In [21] the process displayed in (3.1) is referred to as a noise reinforced Brownian motion and
belongs to a larger class of reinforced processes recently introduced by Bertoin in [19] called noise
rewnforced Lévy processes. The noise reinforced Brownian motion plays, in the framework of noise
reinforced Lévy processes, the same role as the standard Brownian motion in the context of Lévy
processes. Moreover, just as the standard Brownian motion B corresponds to the integral of a
white noise, B can be thought of as the integral of a reinforced version of the white noise, hence
the name. More precisely, from (3.1) it readily follows that the law of B admits the following
integral representation

t
B(t) = tpf s PdB"(s), t=0,
0
where B" = (B")s0 is a standard Brownian motion, or equivalently, B = (B(t));=0 has the same
law as

Some further properties of the noise reinforced Brownian motion can be found in [21], where the
following functional limit theorem [21, Theorem 3.3] has been established: let p € (0,1/2) and
suppose that X € LZ(IP’). Then, we have the weak convergence of the scaled sequence in the sense
of Skorokhod as n tends to infinity

<§([ntj) — ntE(X)

2, ) — (B(t))1er+ (3.2)
teR+
where (B(t))i=0 is a noise reinforced Brownian motion.

Our work generalises this result but our approach differs from [21] as we work with a discrete
martingale introduced by Bercu [11] for the ERW and later generalised in [14] for step-reinforced
random walks. The martingale we work with is a discrete-time stochastic process of the form
anén, where (a,)n>0 is a properly defined sequence of positive real numbers of order n™P. As
we shall see, investigation of said martingale and in particular its quadratic variation process, in
conjunction with the functional martingale CLT [92], yields an alternative proof of Theorem 3.3
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in [21].

The counterbalanced random walk: Next we turn our attention to the second process of
interest, called the counterbalanced random walk or negative step-reinforced random walk, intro-
duced recently by Bertoin in [22]. Beware that p in our work always corresponds to the probability
of a repetition event, while in [22] this happens with probability 1 — p. Similarly, we will consider
a sequence of i.i.d. random variables (X,)neny with distribution g on R and at each time step,
the step performed by the walker will be, with probability 1 — p € (0,1), an independent step
X, from the previous ones while with complementary probability p, the new step is one of the
previously performed steps, chosen uniformly at random, with its sign changed. This last action
will be referred to as a counterbalance of the uniformly chosen step. In particular, when p is the
Rademacher distribution, we obtain an ERW with parameter (1 —p)/2 € [0, 1/2].

Formally, recall that X7, Xs,... is a sequence of i.i.d. copies of X and (g; : ¢ = 2) is an
independent sequence of Bernoulli random variables with parameter p € (0,1). We define the
sequence of increments X1, Xo,... recursively as follows (beware of the difference of notation
between X and X): we set first X7 = X7, and next for i > 2, we let

Xi _ {Xiv if g = 0, 7
_XU[ifl] if &, = 1

where U[i — 1] denotes an independent uniform random variable in {1,...,¢ — 1}. Finally, the
sequence of partial sums

Spi=X1 4+ -+ X, neN,

is referred to as a counterbalanced random walk (or random walk with negatively reinforced steps).
Notice also that, in contrast with the positive step-reinforced random walk, when p = 1 we still
get a stochastic process, consisting of consecutive counterbalancing of the initial step X7 while
for p = 0 we just get the dynamics of a random walk. For the positive reinforced random walk
we already pointed out that the steps are identically distributed and hence are centred as soon
as X is centred. On the other hand, for the negatively step-reinforced random walk, since

Xny1 = (1 —ent1)Xn+1 — 5n+1XU[n]

we clearly have
E(Sp1) = (1—p)m+ (1 —p/mE(S), n>1 (3.3)

with initial condition E(S;) = E(X;) = m. As was noted in [22], it follows from the previous
recurrence that:

E(S,) ~ (%) n asnt o, (3.4)

and note that the process (S,) is also centered if X is centred. Observe however that in stark
contrast to the positive step-reinforced random walk, we cannot say that the typical step is
centered without loss of generality: Indeed, since n — E(X),) is no longer constant as soon as
m # 0, due to the random swap of signs in the negative reinforcement algorithm, the centered
process (S, —E(S,)) is also no longer a counterbalanced random walk.

Turning our attention to its asymptotic behaviour, Proposition 1.1 in [22] shows that the

behaviour of the counterbalanced random walk S, is ballistic. More precisely, denoting by m =
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E(X) the mean of the typical step X, then for all p € [0,1] the process (S,) satisfies a law of
large numbers:

S, 1—
lim —= = M in probability.
n—o N 1+p

Moreover, Theorem 1.2 in [22] shows that if we also assume that the second moment mg = E(X?)
is finite, then the fluctuations are Gaussian for all choices p € [0, 1):

2
5 1— 1-p
Sh'—'TI%ﬂln :::>.A/ 0 mo — (T157n>
vn ’ 1+2p

In particular, when X is centred as will be our case, we simply get
S

o?n

— N(0,(1+2p)71).

On the other hand, when p = 1 which corresponds to the purely counterbalanced case, and under
the additional assumption that X follows the Rademacher distribution, then
\%Sn = N(0,1/3).

The proofs of these results rely on remarkable connections with random recursive trees and even
if these will not be needed in the present work, we encourage the interested reader to consult [22]
for more details. In this article, we will establish a functional version of the asymptotic normality
mentioned above under the additional assumption that m = 0, i.e. the typical step is centered.
We recall that this assumption cannot be made without the loss of generality.

In the same spirit as in the noise-reinforced setting, we will call a noise counterbalanced
Brownian motion of parameter p € [0,1) a Gaussian process B with covariance given by

1 Sl+p
Cp41 tp

E (B(t)B(s)) for0<s<t andpe]l0,1), (3.5)

and it follows that the law of B admits the following integral representation

t
B(t) = t_pf sPdB*(s), t=0 (3.6)
0
in terms of a standard Brownian motion B¢ = (B¢(s))s>0. Let us now state the main results of

this work.

Law of large numbers for step-reinforced random walks: In order to establish our
invariance principles, we shall need to investigate the asymptotic behaviour of step-reinforced
random walks. In this direction, we establish in Section 3.2 the following result:

Theorem 3.1. (Law of large numbers) For any p € (0,1), we have the L>(P) and almost sure
convergences:

~

lim Sn _ m and lim — = —=m. (3.7)
n—ow 7 n—aw 7 1+p

Moreover, if p =1, (3.7) still holds for the counterbalanced random walk.
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Note that if p = 1, in the noise-reinforced case the result is clearly false, since we just have
Sn = nX; for n > 1 while in the counterbalanced case, we can write S, =X 15’ for n > 1, where
S’ is a counterbalanced random walk with same parameter and with typical step distributed 6.
Theorem 3.1 will be proved by means of two remarkable martingales, denoted throughout this
work by M and M, associated respectively to noise reinforced and counterbalanced random walks.
These will be introduced and studied in Section 3.2 and will play a crucial role in this work. We
stress that the second convergence in Theorem 3.1 was already established in [22] in probability
by different methods.

The invariance principles: Before stating the functional versions of the results we just men-
tioned, notice that given a sample of i.i.d. random variables (X,,) with law p, and an additional
independent collection (g;), (U[¢]) of Bernoulli random variables and uniform random variables
respectively as before, we can construct from the same sample simultaneously to the associated
random walk (S,), the processes (S,,) and (S,), that we refer respectively as the positive step-
reinforced version and the negative step-reinforced version of (S,). It is then natural to compare
the dynamics of the triplet (S, Sy, Sy), instead of individually working with (S,) and (S,,).
When considering such a triplet, it will always be implicitly assumed that (S,), (Sn) have been
constructed in this special way from (.S,). In particular, we used the same sequence of uniform
and Bernoulli random variables to define both reinforced versions. Now we have all the ingredients
to state our first main result:

Theorem 3.2. Fiz p € [0,1/2) and consider the triplet (Sn, Sp, Sy) consisting of the random walk
(Sp) with its reinforced version and its counterbalanced version of parameter p. Assume further
that X is centred. Then, the following weak convergence holds in the sense of Skorokhod as n
tends to infinity,

(5SS oS ) — (B0 B0.50) (3.5)

where B, B, B denote respectively a standard BM, a noise reinforced BM and a counterbalanced
BM with covariances, B(B(s)B(t)) = t7P(t n s)PT1(1 — p)/(1 + p), E(B(s)B(t)) = t°(t A s)}7P,
E(B(t)B(s)) = t's P(t A s)(1 —p)/(1 +p).

Notice that in the case p = 0, i.e. when no reinforcement events occur, this is just Donsker’s
invariance principle since (S),), (S’n) are just the random walk (S,,) and B, B are just B. Hence,
from now on we will assume that p > 0. The process in the limit admits the following simple
integral representation in terms of stochastic integrals

t t

(B(t), tpf s PAB"(s), t_pJ sdec(s)> (3.9)
0 0 teR+

where B = (B(t))=0, B" = (B"(t))i=0, B¢ = (B(t))i=0 denote three standard Brownian mo-

tions with covariance structure E(B(s)B"(t)) = (1 — p)(t A s), E(B(s)B(t)) = (1 — p)(t A s),

E(B(s)B(t)) = (t 7 5)(1 - p)/(1 +p).

The restriction on the parameter p € (0,1/2) comes from the fact that, as we will see, for
the noise reinforced random walk only for such parameter the functional version works with this
scaling, while the centred hypothesis is a restriction coming from the counterbalanced random
walk. Now we point at some variants with less restrictive hypothesis, holding as long as we no
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longer consider the triplet. This allows us to drop some of the conditions we just mentioned,
and the proofs will be embedded in the proof of Theorem 3.2. We start by removing the centred
hypothesis when only working with the pair (Sy, S,) in the diffusive regime p € [0,1/2).
Theorem 3.3. Let p € [0,1/2) and suppose that X € L?(P). Let (S,) be a random walk with
typical step distributed as X and denote by (S‘n) its positive step reinforced version. Then, we
have the weak joint convergence of the scaled sequence in the sense of Skorokhod as n tends to
infinity towards a Gaussian process

S(nt]) — ntE(X) S(|nt]) — ntE(X) . )
( o\/n ’ NG )tew (B(t), B(t))ter+ (3.10)

where B is a Brownian motion, B is a noise reinforced Brownian motion with covariance E[B(s)B(t)] =
tP(t A s)1P.

It follows that the limit process in (3.10) admits the integral representation

(B(t), tP Lt s‘de’"(s)> -

where B = (B(t))i=0 and B" = (B(t)")¢=0 denote two standard Brownian motions with convari-
ances (B(t)B"(s)) = (1 — p)(t A s). This result extends Theorem 3.3 in [21] to the pair (S, S).
Notice that the factor 1 — p in the correlation can be interpreted in terms of the definition of
the noise reinforced random walk, since at each discrete time step, with probability 1 — p the
processes S and S share the same step X,.

Turning our attention to the counterbalanced random walk, when only working with the pair
(Sp, Sp) we can extend the convergence to p € [0,1), and is the content of the following result:

Theorem 3.4. Let p € [0,1) and suppose that X € L*(IP) is centred. If (Sy) is a random walk
with typical step distributed as X and (Sy) is its counterbalanced version of parameter p, then we
have the weak convergence of the sequence of processes in the sense of Skorokhod as n tends to
nfinity
1 1 . y
(oS o dion) = (B B0) e (3.11)

where B is a Brownian motion and B is a noise counterbalanced Brownian motion with covariance
E[B(s)B(t)] = t™P(t A s)PTYH1 — p)/(1 + p) and ¢ = E[X?]. Ifp = 1 and X follows the
Rademacher distribution, the result still holds and in particular B and B are independent.

Moreover, the limit process in (3.11) admits the simple integral representation

(B(t), = L t sdeC(s)> .

where B = (B(t))t=0 and B¢ = (B(t))t>0 denote two standard Brownian motions with convari-
ances K(B(s)B¢(t)) = (1 —p)(t A s).

Finally, we turn back our attention to the noise reinforced setting when the parameter is
p = 1/2. Our method allows us to establish an invariance principle for the step-reinforced random
walk at criticality p = 1/2 but notice that in this case we do not establish a joint convergence, as
the required scalings are no longer compatible.
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Theorem 3.5. Let p = 1/2 and suppose that X € L*>(P). Then, we have the weak convergence of
the sequence of processes in the sense of Skorokhod as n tends to infinity

(SW | - n'E(X)

o+/log(n)nt/?

where B = (B(t))i=0 denotes a standard Brownian motion.

) — (B(t))ter+ (3.12)
teR+

Our proofs rely on a version of the martingale Functional Central Limit Theorem (abreviated
MFCLT), which we state for the reader’s convenience. For more general versions, we refer to
Chapter VIII in [54]. If M = (M!,..., M%) is a real rcll d-dimentional process, we denote by
AM its jump process, which is the d-dimensional process null at 0 defined as (]\4751 —Mtl_, ey Mtd—

M2 ) iers+.

Theorem 3.6 (MFCLT, VIII-3.11 from [54]). Assume M = (M*,..., M%) is d-dimentional
continuous Gaussian martingale with independent increments, and predicable covariance process
(M, Mj>)i,je{1,...,d}- For each n, let M™ = (M™, ..., M™% be a d-dimentional local martingale
with uniformly bounded jumps |AM™| < K for some constant K. The following conditions are
equivalent:

(i) M"™ = M in the sense of Skorokhod,

(i) There exists some dense set D < RT such that for eacht € D and i,j € {1,...,d},

as n 1 o,
(M™ M™ S — (M M7y in probability, (3.13)
and
sup |[AMY| — 0 in probability. (3.14)
s<t

The rest of this paper is organised as follows: In Section 3.2 we introduce two crucial mar-
tingales for our reasoning associated with step-reinforced random walks and investigate their
properties. We derive maximal inequalities and asymptotic results for step reinforced random
walks that will be needed in the sequel and establish Theorem 3.1. Section 3.3 is devoted to the
proof of Theorem 3.2 under the additional assumption that the typical step X is bounded and in
Section 3.4 we discuss how to relax this assumption to the general case of unbounded steps by a
truncation argument. In the process, we will also deduce the proofs of Theorem 3.3 and Theorem
3.4. Finally, in Section 3.5 we address the proof of Theorem 3.5 and we shall again proceed in
two stages. Since many arguments can be carried over from the previous sections, some details
are skipped.

3.2 The martingales associated to a reinforced random walk and proof
of Theorem 3.1

In this section we work under the additional assumption that the typical step X € L*(P) is centred
and recall that we denote by o = E(X?) its variance. The centred hypothesis is maintained for
Sections 3 and 4, but dropped in Section 5.
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Recall that if M = (M,)n>0 is a discrete-time real-valued and square integrable martingale
with respect to a filtration (F,,), then its predicable variation process (M) is the process defined
by (M)y = 0 and for n > 1

(Myn = Y E(AM} | Fi),
k=1

while if (Z,) is another martingale, the predictable covariation of the pair (M, Z) is the process
defined by (M, Z)y = 0 and for n > 1,

(M, Zyn = Y E(AMAZ) | Fiov).

k=1
We define two sequences (ap,n = 1), (dn,n = 1) as follows: Let a; = @3 = 1 and for each
ne{2,3,...}, set
-1
= = = — 3.15

for respectively 7,, = "Tﬂ’, Yn = £ when n > 2.

Pr0p051t10n 3.7. The processes M = (M Ynz0, M = (My)n=o defined as My = My = 0 and
M, = @nSy, My, = nSh for n =1 are centred square integrable martingales and we denote the
natural filtration generated by the pair by (Fy), where Fy is the trivial sigma-field. Further, their
respective predictable quadratic variation processes is given by <M>0 = (M)y = 0 and, for all
n=1

(3.16)

~ 2 ~
<M>n _ 0_2 + i a2 (1 _p)02 _p2 Sk—l +ka—1
= K k—1 k—1

and

n 5 2 ~
. Sy_ Vi
Wy =o?+ 3 & ((1—p>02—p2(k“) +pk’“1) (3.17)
k=2

where (Vn)n>1 is the step-reinforced process given by Vi, = X% +t XT% and the sums should be
considered identical to zero for n = 1.

Proof. Starting with the positive-reinforced case, notice that for any n > 1 we have

. Xi+--+X S
E (%41 | Fa) = (1= pE(X) + p= n_pn, (3.18)
n n
Hence, since Sn+1 = Sn + Xn-l—lu and 7, = (n +p)/n,

and therefore, we obtain

~

]E<Mn+l | Fn ) = an—i—lE( n+1 | Fn ) = an—l—l’/)\/ngn = angn = M,
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Moreover, as X is centred and the steps (X 1) are identically distributed by what was discussed
in the introduction, we have

and we conclude that (Mn)n>0 is a martingale. Turning our attention to its quadratic variation,
we have E(52) < n?E(X?) = n?0? and hence, M,, is indeed square integrable and its predictable
quadratic variation exists. Next, we observe that for n > 1 we have
E(Mgﬂ - Mg | Fn) = E((MnH - Mn)2 | Fn)
= @2 B (X1 — E(Knar | F))? | F)
=2 (B2 | Fo) = (E(Kni | F0)P?)

2
-2 (B | 7 - 582). (3.20)

Finally, as was pointed out in the proof of Lemma 3 in [19], and can be verified from the definition
of the X,,, it holds that

~

~ Vn
E(Xj1 | Fa) = p= + (1= p)o?, (3.21)

and hence we arrive at the formula (3.16).
For the negative-reinforced case, the proof follows very similar steps after minor modifications
have been made. Since for n > 1,

. X1+ + X, D =
E(Xni1 | Fn) = m(l —p) — p=2 - =5 (3.22)

we now have

~ n —
E(Sn—H | }—n) = < n p) S = '7nSna (3'23>

and the martingale property for (Mn)n>0 follows. For the quadratic variation, the proof is the
same after noticing that since clearly X2 = X,f, we can also write V,, = X% + -+ X,% O]

We write for further use the following asymptotic behaviours: the first ones are related to the
study of the positive-reinforced case and hold for p € (0,1/2):

1 . ['(n)
2p—1 N S -
nhm n kg 1% T o0’ an, n ] n asn T oo (3.24)

while for p = 1/2 we have a change on the asymptotic behaviour in the series,

(SIS

lim
n—00 log

- ~ I'(n _
Z an=ﬁ~n asn 1 o (3.25)

which is the reason behind the different scaling showing in Theorem 3.5. On the other hand, for
the negatively-reinforced case we have for p € (0, 1],

1 = p = ———— ~n? . 3.26
nl_r,%onlJerZak an, Tn—p) n’ asn 1w (3.26)
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The limits are derived from standard Gamma function asymptotic behaviour, and were already
pointed out in Bercu [11].

Before turning our attention to the proof of Theorem 3.1, let us introduce a more general
version of M that will be needed in our analysis, when the steps of the counterbalanced random
walk are not centred. In this direction set Yy := 0 and for n > 1, let

Yy, = nSn — anE(Sy). (3.27)
It readily follows by (3.22) and the recursive formula (3.3) that for n > 1, we have

E(Yn—i-l | ]:n) =a n+1 ( ( )"’_an _E(S’n—i—l))
anSn + Gnr1 (m(1 = p) = E(Sp+1)) = Yq,

and we deduce that (Yy,),>1 is a centred a martingale — note that if m = 0, we have Y = M.

We shall now make use of M , M and Y to study the rate of growth of S . S and to establish
Theorem 3.1. In this direction, the following lemma has already been observed in [14, 21] using
a different technique, we present here a more elementary approach.

Lemma 3.8. For every fized p € (1/2,1), the following convergence holds a.s. and in L*(IP),

Sn ~
lim — =W
n—o0 NP

where W e L2(P) is a non-degenerate random variable.

Proof. Thanks to Proposition 3.7 we know that Mn = &ngn is a martingale. Further, we obtain
from (3.20) and the asymptotics @, ~ n~P that, for some constant C' large enough,

E(|3,) = E(0NDa) < 0® Y8 < C Y 135,

k=1 k=1

for all n € N. Since p > 1/2, the latter series is summable and we conclude that

sup B(|M,|?) < o
neN

By Doob’s martingale convergence theorem there exists a non-degenerate random variable W e
L?*(P) such that M, — W a.s. and in L?(P) as n — co. Using the asymptotics @, ~ nP we
conclude the proof. O

We now focus our attention on establishing the almost sure convergence of Theorem 3.1. We
shall show in Corollary 3.11 below that both convergences also hold in L?(IP). However, additional
estimates are still needed to deduce the L?(IP) convergence.

Proof of the a.s. convergences in Theorem 3.1. Let us start with the NRRW and in this direction
recall that E[X,] = m for all n > 1. First, since S(n) —nE[X], for n > 1 is a NRRW with same
parameter p and centered steps with law X — E[X], it would suffice to show that for centered X,
we have n=15(n) = 0. Considering first the case p € (0,1/2], this can now be achieved by making
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use of Theorem 1.3.17 in [42] and the martingale M that we introduced in Proposition 3.7. More
precisely, remark that for any p € (0,1/2] and « > 0, we have

n

n E[(M),] <n™* ) af,
k=1
where the asymptotic behaviour of >, d% as n T o is dictated for p € (0,1/2) and p = 1/2
respectively by (3.24) and (3.25). Now, it readily follows from these estimations that if p € (0,1/2),
for o := 2p — 1 we have

supn~ "PEM,)) < o supnzp 12@ < (3.28)
" k=2

while if p = 1/2, for o := ¢ for any € > 0 it holds that

n

supn  E((M,))) < o supn~° Z a3 < oo.
We deduce from Theorem 1.3.17 in [42], taking  := «, that n~(=20) N1, — 0 and n=¢M,, — 0,
the convergences holding a.s. Recalling that a,, ~ n™P, we get from the definition of M that
n~1S, — 0 almost surely. The case p € (1/2,1) now easily follows from the convergence of
Proposition 3.8.
The counterbalanced case will follow from Theorem 1.3.24 in [42]. In this direction, fix p €
(0, 1], recall that the process (Y;,) defined in (3.27) is a martingale, and we claim that:

n~ Py, -0 a.s. (3.29)

Let us first explain why this yields the desired result. Recalling from (3.4) that E(S,) ~ n(1 —
p)m/(1+ p) and @, ~ nP as n 1 oo, it follows that

“ 1-— 1-—
lim n_(Hp)ﬁnE(Sn) = M, which yields lim n_(Hp)EnSn = M a.s.
n—00 1+ p n—>00 1+ p

by definition of (Y},). The second convergence in (3.7) now follows.
We now shall prove (3.29) for p € (0,1]. Let us recall from Theorem 1.3.17 in [42] that, if for
any 0 < a/2 < 3, we have
supn” “E(Y,)) < o, (3.30)
n

then n=?Y;, — 0 a.s. In order to make use of this result, we start with some estimates for the
angle bracket process ((Y;)). In this direction, note that
Y1 —Yn = 6n+1‘§n+1 - 6719 - an-i—lE(S ) + anE(S )

= 6n+1<gn+1 - Vnsn) - an—i-l(]E(Sn ) E(S ))
= a/nJrl (X'I’L+1 + ggn -E (XnJrl + %Sn>> .

Therefore, recalling the inequality (a 4 b)? < 2(a? + b?), by Jensen’s inequality we have for some
constant c that

B(Vier = Y2)?) < -2, (B ) + B P) = e (o7 + LEIG)
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— X2, with E(X2

2.) =02 Set a:=1+2pand

where in the last equality we used that X?L 1=

note that from our previous estimates, we get:

n+1s

R < e 0 Yt (o7 4 GBS

Recalling the asymptotic behaviour (3.26) of the series );_; a2, the estimate (3.30) will follow if
we prove that sup,, #E[(Sny] < 0. In this direction, note that

n 2 n
n"2(5,)? =n2 (Z Xk> <n ’n Z X2 =n"V,.
k=1 k=1
By taking expectations on the last display, we infer the uniform bound:
n?E[(Sn)?] < n 'E[V,] = o?

and we deduce that (3.30) holds. Finally, since (1 + 2p)/2 < 1 + p, we can take § = 1+ p to
conclude that n~(1*P)Y;, — 0 almost surely.
[

When the typical step is centred, we can derive from our previous arguments sharper results:

Corollary 3.9. Suppose that p € (0,1/2) and that E[X]| = 0. We have the almost sure conver-
gences:

lim Sn =0 and lim Sn

I 1 = 0.
n—o Nt P n—oo Nt P

Proof. The first convergence has already been established during the proof of Theorem 3.1. In-
deed, it is a consequence of the convergence n~=20) N1, — 0 and the asymptotic behaviour
an ~ n~P. For the counterbalanced case, we can proceed similarely, noticing that by (3.26), we
now have:
supn~UHPIE((M,)) < Supa n=2P- 12@ < .
" k=2

Let now o« = 1+ 2p and = 1. Then, a < 24 if and only if p < 1/2 and the conditions of
Theorem 1.3.17 in [42] are again satisfied. It follows, as before, that n='M,, = 0 — 0 a.s. and
since a, ~ nP as n — oo, the claim follows. O

We continue by investigating bounds for the second moments of the supremum process of the
step-reinforced random walk S for all regimes. These bound will be needed for establishing the
La(IP) convergences of Theorem 3.1.

Lemma 3.10. For every n > 1, the following bounds hold for some numerical constant c:

en, ifpe(0,1/2)
o ’E (Sup |Sk;|2) < {cnlogn, ifp=1/2
en’P, ifpe(1/2,1).

Proof. We tackle each of the three cases p € (0,1/2), p = 1/2 and p € (1/2, 1) individually:
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(i) Let us first consider the case when p € (0,1/2). We observe that by (3.20) and by (3.24)

- 1
E(M7) = <M>n Z o ak ~ o? — 2pn1 . asn — .

Hence we obtain by Doob’s inequality that
E (Sup|Mk|2> < croinl™?P
k<n

where ¢; > 0 is some constant. Since it evidently holds that

1
E (supl5i) < B (sw i),
k<n k<

nlf@
E (sup \Sk\Q) < ¢10? ~ c10%n, asn — .
a

~2
k<n n

it follows readily that

By monotonicity, we conclude the proof for this case.

(ii) Let us now assume that p = 1/2, we then obtain by (3.25) and monotonicity that for all
n > 1 we have

(<M>n) o log n.

We conclude as in the previous case that this implies

E (sup|5k| ) coo’nlogn,

k<n

where ¢9 > 0 is some constant.

(iii) Finally, let us consider the case p > 1/2. Here, we then have as n — «©
n n 1
0226%+1<0022ﬁ<5
k=1 k=1
9~

for a constant C' large enough and some finite constant & This entails that E((M),) < o2¢
and we deduce as before the bound

E <sup |Sk|2) < cz02n??,
k<n
where c3 > 0 is some constant.

Thus we have established the desired bounds for all regimes. O

As an application of the maximal inequalities displayed in Lemma 3.10 for the noise reinforced
random walk, we establish L?(IP) convergence type results for all regimes p € (0, 1) and we deduce
that the LLN stated in Theorem 3.1 also hold in L?(IP).
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Corollary 3.11. We have the following convergences in the L*(IP)-sense.

(i) Forpe (0,1/2) we have

(ii) For p =1/2 we have

lim ——— =
oo vnlogn 0

(iii) Forpe (1/2,1) we have

S
lim =2 = 0.
n—o N

In particular, all the convergences in Theorem 8.1 also hold in L?(IP).

Proof. Let (f(n)) be a sequence of positive numbers and notice that by Lemma 3.10, if as n 1 oo

f+(n)n — 0, if pe (0,1/2)
#n)(nlogn) -0, ifp=1/2
fz;(n)n% — 0, if pe (1/2,1)

then we have convergence in the L2-sense to 0 of the sequence (S,/f(n)). Now, respectively for
each one of the tree cases:

(i) We take f(n) := n'~P and observe that n?’~! — 0 as n — oo since p € (0,1/2).
(ii) We take f(n) := 4/nlogn, plainly 1/log(n) — 0 as n — .
(iii) We take f(n) := n and observe that n2(P~1) — 0 as n — o because p < 1.

This concludes the first part of the proof. Next, notice that (i), (ii), (iii) imply that for any
p € (0,1), we have n~1S, — m in L%*(P). Indeed, it suffices to notice once again that S, —
nE[X] for n > 1 is a centered noise reinforced random walk. To deduce the convergence in the
counterbalanced case, fix p € (0,1) and remark that we can bound,

n
1S <n Y |XG
=1

where now, ", |X;| for n > 1 is a noise reinforced random walk with typical step distributed
|X|. In particular, it follows from the first part of the proof that n=! 321" | | X;| — E[|X|] in L?(P).
Now, the desired convergence follows by the (generalized) dominated convergence theorem.  [J

This concludes the proof of Theorem 3.1 and we shall now turn our attention to the proof of
the stated invariance principles.
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3.3 Proof of Theorem 3.2, 3.3 and 3.4 when X is bounded.

Recall that in this section and Section 3.4 we work under the additional assumption that X
is centred. As was discussed in the introduction, for positive step-reinforced random walks the
centredness hypothesis can be assumed without loss of generality, but that is no longer the case for
negative step-reinforced random walks. We are now in a position to prove Theorem 3.2 when X is
bounded and in the process we will also establish Theorem 3.3 and Theorem 3.4. For that reason,
in several statements we also consider p € [1/2, 1] when working with the counterbalanced random
walk. Additionally, when we work with the counterbalanced random walk for p = 1, we assume
as in Theorem 3.4 that X is Rademacher distributed, this will be recalled when necessary. Our
approach relies on using the martingale introduced in Proposition 3.7 and applying the MFCLT
3.6. We will establish the general case for X € L?(P) by a truncation argument, detailed in
Section 3.4.
Now, the key is to notice that, since by (3.24) resp. (3.26) we have for any ¢ > 0
C;Lfg ~ 7P and % ~ P

asn 1 oo,

in order to get the convergence (3.8) it is enough to prove (except for a technical detail at the
origin in the third coordinate that will be properly addressed), the convergence

1 1 Ay 1 ) 4
(%SWJ’_nn—P Sty == 5 S\l -

t ¢
— (UBt,O'J s_deg,aJ sdeg) (3.31)

0 0 teR+

for Brownian motions B and B" and B¢ defined as in (3.9) where the sequence on the left-hand
side is now composed by martingales. More precisely, for each n € N, the processes

qm) o (g N A BT
(Nt >tER+ B <\/ﬁn—p S[ntj>t€R+, <Nt )teR+ - (\/ﬁ np SlntJ)teR+ (3:32)

are just rescaled, continuous-time versions of the martingales we introduced in Proposition 3.7,

multiplied by respective factors of n?~1/2 and n~1"?. We will also denote as N the scaled
random walk in the first coordinate and we proceed at establishing (3.31) by verifying that the
conditions of the MFCLT 3.6 are satisfied. In that direction and recalling the condition (3.13),
we start by investigating the asymptotic negligibility of the jumps:

Lemma 3.12 (Asymptotic negligibility of jumps).
(i) Fiz pe (0,1/2). For eacht > 0, the following convergence holds almost surely:

sup\ANs(n)| —0 asn 1 0.

s<t
(ii) Fiz p € (0,1]. For each t > 0, the following convergence holds almost surely:

sup |A]\78(n)| — 0 asn 1 oo.

s<t
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Proof. (i) Notice that

. 1 . .
sup [ AN < — sup ‘npakJrlSkJrl - npaksk‘
s<t " k<|nt|
1 . .
= 5, Sup ’akﬂ <Sk+1 - 'YkSk>‘
n P k<|nt]
1 LA .
= —7— sup apy1| ), X;(1 =A%) + X1
n27P g ; ’
| X oo

< nl/pr kSTpJak+1(k|1 - ?k| + 1)7
<|[nt

where by hypothesis we have | X |, < 0. Now, since a; ~ k~P, we have sup, ax < o and we

deduce recalling the definition 43 = (k + p)/k that:

o) — ClX o
ilgf)mNs < nl/z—p’

for some constant C' > 0 and (i) follows.
(i) Similarly, since we also have AM,q = akH(SkH — 4,S1,), arguing as before we get:

. 1 . .
su AN = sup |a Spi1 — S
S<It)| s 1= KVIL)tJ\ ko1 (Ske1 — TuSk) |

k
X1 =) + X
j=1

1 .
= 1755, SUpP Gg41
nl/2+p k<|nt|

|- X loo
n1/2+p

[ X o

= sup dg+1(p + 1),
nl/2+p k<|nt|

sup dp1(k[1 — g + 1)
k<|nt|

since ¥, = (n — p)/n. Recalling from (3.26) the asymptotic behaviour G, ~ nP, we get that

SUPs<y |AN5(n)\ — 0 pointwise for each t.

]

Now we turn our attention to the joint convergence of the quadratic variation process, and

this is the content of the following lemma:

Lemma 3.13 (Convergence of quadratic variations). For each fived t € R, the following con-

vergences hold almost surely for p € (0,1/2), unless specified otherwise:

¢
(i) lim (N Ny, 02f s 2Pds.
n—ao0 0

4
(ii) lim (N, Ny, = JZJ s’ds,  for pe (0,1].

n—oo 0

t
(iii) lim (N Ny, = 62(1 - p)J s7Pds.

n—aoo 0
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t
(iv) lim (N™ NMY, = 52(1 — p) f sPds,  forpe (0,1].

n—ao 0

N . 1-—
(v) lim (N NMY, 4522 P
n—0o0 ]_ + p
where for the case p =1 in (ii) and (iv) we assume that X is distributed Rademacher.
Lemma 3.13 provides the key asymptotic behaviour for the sequence of quadratic variations
and its proof is rather long.

Proof. We tackle each item (i)—(v) individually, item (v) being the most arduous.

(i) For each n € N, we gather from (3.16) that the predictable quadratic variation of this
martingale is given by for ¢ > 1/2 by

A

<]\7("),N(”)>t -
Int] Int] Y NZ Intl -
1 ~ ~o [ Sk-1 ~o [ Vi1
=% “2+(1p>022a2P22a2<k—1) “’Zai<k—1> ’
k=2 k=2

with (N N, — 0 if t < 1/n. We will study separately the limit as n — oo of the three
nontrivial terms, as the first one evidently vanishes. To start with, it follows readily from

(3.24) that
. o anA2 o 1-2
nhfgom(l—l?)zak = 1_—2pt P(1—p). (3.33)
k=2

2
. o [ Sk—1
lim nl 2P 22 2( ) —0 as. (3.34)

Indeed, by (3.24) it suffices to notice that by Proposition 3.1, we have

~

lim 2K —
k1—>Holo]€ a5

since we recall that by our standing assumptions X is centered. Finally, we claim that for
the last term, the following limit holds:

I ZAQ V’“ _ T pew (3.35)
nl—{%onl 2P S 1-2p pooas '

In this direction, notice that (V;,)nen is the reinforced version of the (non-centered) random
walk
Vo=Xl4+---+X2  neN

with mean E(X?) = E(X?) = ¢2. Hence, by Theorem 3.1, we have n~1V,, — 02 as n } o
and (3.35) follows. Now, combining (3.33), (3.34) and (3.35) we conclude that

2
o

lim (N N0y, = _Z 4122 5
n—00 1-— 2p
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(i)

(i)

By (3.17), we have
(N N®)y,
[nt] = 2 ~
L o 2 o Sk-1 Vi1
= % o +]§2ak ((1 p)oc —p - +pk—1

and we shall now study the convergence of the normalised series in the previous expression.
First, by (3.26), the first term converges towards

52 — 021;pt1+2p = o2(1-p) Jt 2P ds
k 1+2p 0 '

Turning our attention to the second term, we recall from Proposition 3.1 that (S,,) satisfies
a law of large numbers:

1. 1—
lim -5, = ( p)m =0 as.
n—o 1 1+p

This paired with the asymptotic behaviour of the series (3.26) yields:

2

1 s
lim —— Z a2 <ﬁ> -0 a.s. for every ¢t = 0.
n—o N —

Finally, assuming first that p < 1, we can proceed as in (3.35) to deduce from (3.26) that

» |nt] Vk . P t
y 2 (Vi) _ 2 P sy o f 2ds  as. 3.36
Jim e | " T+ TP (330

If p = 1, by hypothesis X takes its values in {—1,1} and Vj,_; = k — 1, yielding that the
previously established limit (3.36) still holds. Notice however that if we allowed X to take
arbitrary values, we can no longer proceed as we just did since in that case, V,, is a straight
line with random slope:

7 = nX2
Putting all pieces together, we obtain (ii).

Recalling that X = Xplie—0y + XU[k—1]1{8k=1}7 and from independence of X}, ; and
Ulk — 1] from Fy_1, we get for k > 2

E(AN Xy, | Fo1) = E ((S,H(ak ~Gp1) + Xkar) X | f,H)

= a;l& ((Xkl{skzo} + XU[k—1]1{5k=1}> X | Fk—1>
k—1

= ag(1 = p)E(X?) + > B (Xp XL yp—1]—jene1} | Fro1)
j=1

= k(1 — p)o?
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3.3. Proof of Theorem 3.2, 3.3 and 3.4 when X is bounded.

since the steps are centered, while for & = 1 we simply get E(MlX 1) = 0. From here, we
deduce
|nt] |nt]
(N N0, = nP DN B(AM X | Fro1) = 0*(L—p)n? ™ [ (1=p) "+ ) G
k=1 k=2

and from the convergence

n—o

n
lim nP~1 Z ar=(1-p) 7t
k=2

we conclude:
X [nt] t
lim (N0, Ny, = 62(1 = p) Tim n#L Y @ = 1177 = 0%(1 - p) f s Pds.

n—aoo n—aoo 0
k=2

(iv) Recalling that in the counterbalanced case X, = Xl =1y — XU[kfl]l{sk:O}a we deduce

from similar arguments as in the reinforced case that for k£ > 2 we have,
E(AM Xy, | Fe-1) = E ((Sk—1 (@ — Gr—1) + Xgar) Xg | Fr—1)
= kB (Xelqe,—1) — Xupe-1]Lier—o}) Xk | Fr-1)

k-1

=g - (1= p)E(X?) = Y E (Xe XL pphotj—jer-o} | Fio1)
=1

=Gy, - (1 - p)o*.

Notice that if p = 1 the argument still holds and hence the above quantity is null for all
k > 2. Since if k = 1 we simply have E[AM;X1] = ¢2, it follows that for ¢ > 1/n,

[nt] [nt]
(N N = =04 N BAM; X | Fymr) = 0*(1—p) -0~ [ (1= p) 7t + Y @,

k=1 k=2
and from the convergence

n
lim n~(+P) Z ar=(1+p)*

n—oo

k=1
we conclude

2 xr(n) Ar(n) : f(1+)lmjv l—p 14 '

72 i (V) N0y = (1= ) lim w049 3 = o pz(l—p)fospds.

k=1
Finally if p = 1, we clearly have lim,, (N N, = 0.

(v) Notice that

E(ANGAN | Fio1) = B ((Sp1 (@ — 1) + Kae) S @ — 1) + Xeiin) | Fir )
= Sp—1(@k — A1) Sk—1 (@ — dr—1) + Sp—1(@r — ap—1)E(Xp| Fy1)d
+ S (g, — @1 E(Xy | Frm1)an, + B(Xp Xk | Foor)agty
= P,E“) + P,Eb) + P,EC) + P,Ed)
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where the notation was assigned in order of appearance. We write,
[nt]
(N", Ny =n"" ) (P,g“) + P 4 Pl 4 P,Ed))
k=1

and study the asymptotic behaviour of these four terms individually. In that direction,
we recall from (3.18) and (3.22) the identities E(X) | Fi_1) = pSp_1/(k — 1), E(X} |

Fi_1) = —pSk_1/(k — 1) as well as the asymptotic behaviour (@ — ax_1) ~ —pk~®+1) and
<6k — a/k—l) ~ pkp_l.
e We first show that
[nt] @
lim n~' 7=0 as.
1im 7 Z Py 0 a.s
k=1
From the identities and asymptotic estimates we just recalled, we have
& ~ ~ O ~ Y ~ ~ Sk—lA Sk—l Sk—lA
k=1 = Q1) B(Xy | Frp—1)@p = Sp—1 (@ — dp—1)p— 0 ~ — kprk —

and since a; ~ k7P, we have for some constant C' large enough that

|nt] |7t

Z Péc) <n 'C Z
k=1 k=1

However, this converges a.s. towards 0 as n T o0 by Proposition 3.1.

Sk—1 Sk—1
k k-1

nfl

e Next, since

Sk=1v _ Sk=1, p 25k—1+

1 (A — ap—1)E(X, 1) = —Sp_1(@y — g
S—1(@k — ap—1)E(Xy | Fp—1)@k = =Sp-1(@k — Qp-1)p— a6 ~ —1 i

we can follow exactly the same line of reasoning in order to establish

|nt] .
lim n~! Z Pkb =0 a.s.

e Since
(g — 1) (@ — 1) ~ —p%k2,

we deduce that
Sp—1(@r — Ap—1)Sk_1(Tg — dp_1) ~ Sp_1Sp_1(—p*)k >

and we conclude as before that we have:

[nt]
lim n~! Z P,ia) =0 a.s..
n—o0 k1
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e Finally, since by definition
Xp = Xilpomoy + Xopnlg=ty i = Xiligmoy — Xope-1liem)
we have

Al B(Xp X, | Fro1) = aplin E(XP 1o, —0y | Fre1) — arln E(Xppen) Xuge—1)Liem1y | Fr1)
k—1

= gl (1 — p)o® — apt Y B(X;Xj 110 e—1)=j) | Fre1)-
o1

Since on one hand, Xj,Xj for j < k are Fj,_; measurable while e, U[k — 1] are
independent of Fj,_;, denoting as G the counterbalanced random walk made from the

i.i.d. sequence X 12, X22, ... from the same instance of the reinforcement algorithm, we
deduce
@ _ -~ - SR T < Ut B ,  G-1)
Py =agag | (1 —p)o” — 1P XX | = awty (1 -po B

and since apar — 1 as k — oo, the problem boils down to studying the convergence as

n 1 oo of
[nt] <
1 ,  Gk—1)
I =

The first term obviously converges towards ¢(1 — p)o? and we turn our attention to the
second one. Now, by Theorem 3.1 applied to G we get:

a.s.

P Glk—1) 2, 1—p
nZ k p0t1+p

m (d) 2 2, 1-p
JLI{:OEZP"? =t(1—p)o° —po tm.

Bringing all our calculations above together we deduce the following almost sure convergence:

lim (N™, Ny = 02(1 — p)t — po?(1 — p)(1 + p) "¢,

n—0oo
This concludes the proof of the lemma. n
With this, we conclude the proof of Theorem 3.2 when X is bounded with an appeal to Lemma
3.12, Lemma 3.13 and the MFCLT (Theorem 3.6).

3.4 Reduction to the case of bounded steps.

In this section, we shall only assume that the typical step X € L?(IP) of the step-reinforced random
walk S is centred and no longer that it is bounded. We shall complete the proof of Theorem 3.2
by means of the truncation argument reminiscent to the one of Section 4.3 in [21].



Chapter 3. Joint invariance principles 90

3.4.1 Preliminaries

The reduction argument relies on the following lemma taken from [54], that we state for the
reader’s convenience:

Lemma 3.14 (Lemma 3.31 in Chapter VI of [54]).
Let (Z™) be a sequence of d-dimensional rcll (cadlag) processes and suppose that

VN >0, Ve>0 lim ]P’(sup|Z§| >5) = 0.
n—o0 SgN
If (Y™) is another sequence of d-dimensional rcll processes with Y™ =Y in the sense of Skorokhod,
then Y" + Z™ =Y in the sense of Skorokhod.

Finally, we will need the following lemma concerning convergence on metric spaces:

(m)

Lemma 3.15. Let (E,d) be a metric space and consider (a, ~ : m,n € N) a family of sequences,

with a%m) € E for all n,m € N. Suppose further that the following conditions are satisfied:

(i) For each fized m, a%m)ﬁaggl) as n 1 oo for some element aggl) e E.

(ii) aggb)—»aggo) as m 1 o, for some aggo) € F.

Then, there exists a non-decreasing subsequence (b(n)), with b(n) — c as n 1 oo, for which the
following convergence holds:

(b(n))_, ()

an - —ay as n 1 o0.

Proof. Since the sequence (a&@” ))m converges, we can find an increasing subsequence m; < mo <
. satisfying
d(a(()gnk)’ agé"’““)) <27k for each k € N.
(mx)

Moreover, since for each fixed my, the corresponding sequence (ay, ), converges, there exists a
strictly increasing sequence (ny) satisfying that, for each k,

d(agmk)v aggzk)) <27k for all i > ng.

Now, we set for n < ny, b(n) := m; and for k > 1, b(n) := my, if np < n < niy1 and we claim

an )n is the desired sequence. Indeed, it suffices to observe that for ny < n < ng,q,

(00)
d(ay™, a5y = d(a™, ax) < d(al™), a8y + d(@E™, a0) <277+ Y27,
i=k

3.4.2 Reduction argument

Recall that we are assuming that the typical step is centred. During the course of this section we
will use that the truncated versions of the counterbalanced and noise reinforced random walks
are still counterbalanced (resp. noise reinforced) random walks.

Indeed, notice that if (S,,) and (S,,) have been built from the i.i.d. sequence (X,,)p>1 by means
of the negative-reinforcement and positive-reinforcement algorithms described in the introduction,
splitting each X; for i € N as

Xi= XK+ x7K
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where respectively,
X5 = Xilyx<ry — B (Xilgx<xy)
X;K = Xi]-{\Xi|>K} - E(Xil{‘Xi|>K})7

yields a natural decompositions for (S,) and (S,) in terms of two counterbalanced (reps. noise
reinforced) random walks:

Sp = SsK 4 57K Sp = SsK 1 oK
where now (SK), (S>K) are counterbalanced versions with typical step centred and distributed
respectively as

\K .

and
XK . — X1gxi=x) — E(X1x=1), (3.38)

an analogue statement holding in the reinforced case for (SfK ) (S; K). Moreover, X<K is
centred with variance 0%( and 0%( — 0% as K /" o while the variance of X~ that we denote by
77%(, converges towards zero as K 1 co. We will also write the respective truncated random walk
as

SEE = XK ¢ X5K SR xpE . xPK n>=1.

Notice that (S<K), (S=K) and (SSK) have now bounded steps, allowing us to apply the result
established in Section 3.3 to this triplet.

Remark 3.16. We point out that while (SfK) can be simply obtained by considering the NRRW
made from the steps X;lx, <k}, i = 1 and substracting n&(X 1 x <) at the n-th step for each
n = 1, and hence yielding a NRRW with steps given by

Xilyx<xy — EXTyxi<xy),

for the counterbalanced case we need to subtract the counterbalanced random walk issued from the
constants E(Xilﬂ Xi|< K}), i = 1, which in contrast with the reinforced case, is a process on its
own right because of the sign swap.

For each k, write as N N™E and N™E the corresponding martingales as defined in (3.31)
relative to S<K, SSK and S<K respectively. An application of Theorem 3.2 in the bounded case
yields for every K, that

t t

< < NS
NBSE gsKn g<Kn — (oxB, ox
Lottt teR+ ’

s PdBy;, O'Kf
0

sP ng) .
0

However recalling the asymptotic behaviour np&lnt | ~t7P as n — o0 and the definition of N n<K

we deduce that

<K(|nt 3 ! '
SSE(|n J)’ S ,N; — (UKB, UKth s PdBy, UKJ 5de§> :
\/ﬁ \/ﬁ teR+ 0 ’

A
=
=
il
<
A
=
3
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Since as K 1 o, the right hand side converges weekly towards (o By, ot? Sé s PdB, O’Sé sPdBC)
and the convergence in distribution is metrisable, by Lemma 3.15 there exists a slowly increasing
sequence converging towards infinity that we denote as (K(n) : n > 1), satisfying that, as n 1 oo,

<K(n) o<K(n) 5 t t
(S ([ntJ)’ 5 (nt)) : NfK(n)’n> — (UB,O’th s_deS,aJ SdeS> .
teR+

Vn Vn 0 0

On the other hand, for each n we can clearly decompose

(S([nt]) S(WJ), N"> _ <5<K<n>([mj) SsK(n)([ntJ)’ thK(n),n>

NTIND i
. (S>K(n)([ntj) G=K®) (|nt)) N>K<”>v”>,

vy
and in order to apply Lemma 3.14 we need the following lemma:

Lemma 3.17. For any sequence (K(n) : n = 1) increasing towards infinity the following limits

hold:
2
)-o

. . 1 K(n
(i) lim —E (Sup Sk> ()
2
) =0, for pe (0,1/2).

n—oo N kgnt

(ii) lim l]E (Sup g i

n—00 7 k<nt

5 2
(iii) lim P (sup N§’>K(”) > 5) =0, for every e >0 and pe (0,1).
n—0o0 SST
Proof. Recall that we denoted by 7]%( the variance of X~ K.

(i) By Doob’s inequality and independence of the steps we inmediatly get that

1 >K(m)2\ _ 4
VE (sun 1575 R ) < Dot

k<nt

which converges towards 0 as n 1 oo.

(ii) From Lemma 3.10 for 0 < p < 1/2 we deduce that for any ¢ > 0,

lim E <sup 15> KM () )|2) cl hm nK( )t =0, (3.39)

n—ow N k<nt

proving the claim.

(iii) Doob’s maximal inequality yields

(sup ‘Nn >K(n )| > 6) < 2R <<Nn,>K Nn >K(n >T>
s<T

and if we denote by V> the sum of squared steps associated to (S>K (”)), notice that

<Nn,>K(n) 7 Nn,>K(n) >T

1 [nT| vk>[1(( n)
2 )
nl+2p Mi(n) T k; Qg <(1 _P)TI K (n) ‘H?ﬁ)
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Recalling that E(Vkill((n)) = (k — 1)7]%(11), this yields the bound

) |nT|

\ K — ~
]P’(sup]Ng’ (")125) <e 277%( ) (L Z az
s<T k=2

Since on the one hand we have n%((n) — 0 as n 1 oo while on the other by (3.26) it holds

that
[nT]
lim sup n~(1+2p) Z Ei < o0,
ntoo k=2
the desired convergence follows.
This concludes the proof of the lemma. O

Now, recalling the definition of N”, we deduce from Lemma 3.14 that as n 1 o,

( ! A L bl d S ) - (B P ft s PdB" ft sdec>
) ) ts )
\f ntJ \/7 l"’LtJ 0 \/7 np Lt teR+ 0 3 0 ° teR+

and since by, /nP ~ P we conclude that for any 6 > 0, the desired convergence

1 1 t t
[nt] [nt] Sn ) e <Bt,tpj SideS, tpf Sdes) ,
<\/7 % \/7 el oy/n el te[d,00) 0 0 te[d,00)

holds away for the origin (this restriction is due to the fact that ¢™? is unbounded on any neigh-
bourhood of 0). In order to get the convergence on R and finally prove the claimed convergence
in Theorem 3.2, we proceed as follows: We will only work with the third coordinate, as it is
the only one presenting the difficulty. The argument is readily adapted to the triplet. Assume
without loss of generality that o2 = 1, fix § > 0 and consider the partition of [0, ], with points
{027%:i=0,1,2,...}. Since the sequence () is increasing we obtain,

|S[nsj
P sup >e| <P sup = €
se[2-G+152-15] VN se[2-G+1g,2-15] Qln2-G+15| VT

<P ( sup \dlm”glnsﬂ > & 6[n2(i+1)5j\/ﬁ>
[

se[2-(+1§,2-16)

1 .
=3 9 E|{ sup |a |ns] S[nsj‘ :
€7 A g—(i+1) oy 5271

Denoting as usual by (M,) the martingale (&,S,)n>0, notice that by (3.17), the remark that
follows, and (3.26),

E(N2) = E(Q1,0D,) < ¢ Y & < en*%
k=1
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for some constant ¢ that might change from one inequality to the other. We deduce by Doob’s
inequality

S ns 1
P ( sup [Sinsi > 8) <c (2_’(5n)1+2p L
sef.

_ | 5 =9
2-nga-ig] VN <7 g1 5y

2p
— (9—i(1+2p) s1+2p - n

A|2-Gi+1) 6n)

which, recalling the asymptotic behaviour a, ~ nP, yields for some constant ¢ that might differ
from one line to the other:

sup P sup |Sln8J‘ > o | < o il42) s142p | 92p(it1) 5—2p
n se[2-G+152-15] VN

=c-27%5.

From the previous estimate, we deduce the uniform bound

Pl sup M>€ <§IP’ sup |Sl&”>s
se[0,5] VI S \sepz-trga-is) Vn

< i sup P sup M >e| < K0 (3.40)
i=0 ™ 86[2_(i+1)5,2_i5] \/ﬁ

Finally, write X () — (\/%;S[ntj)teﬂ%% Since for any 6 > 0 we have (Xt("))t%; = (By)izs as n 1 o
and of course (Byis)ier+ = (Bi)er+ as 0 | 0, we deduce that there exists some decreasing

sequence (d(n)) | 0 such that
) = B asn 1 oo
seR+

while by (3.40),

sup X™ 0 in probability.
se[0,0(n)]

This establishes that the convergence ( ==}, = B holds on R* and with this, we conclude
vn L] teR+

our proof of Theorem 3.2.
Remark 3.18. In the process of proving Theorem 3.2 in Section 3.3 and 3.4, we showed also that
if we no longer consider the noise-reinforced random walk, we can extend the convergence of the
pair to p € (0,1),

(LS B ) — <B f sdeC) (3.41)

U\/ﬁ [nt]> O'\/ﬁ [nt] R ts 0 s . .

where as usual B¢, B are two Brownian motions with (B, B¢); = (1 —p)t, and that the result still
holds if p = 1 if we assume X follows the Rademacher distribution, in which case the processes
are independent. This is precisely the content of Theorem 3.4. Finally, Theorem 3.3 also follows
by recalling that S, — nlE(X) is a centred positive step-reinforced random walk and hence falls in
our framework.
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3.5 The critical regime for the positive-reinforced case: proof of The-
orem 3.5

In this last section we turn our attention to the critical regime p = 1/2 for the noise reinforced case
and prove the invariance principle with our martingale approach. The arguments are very similar
and rely on exploiting the martingale defined in Proposition 3.7, the MFCLT and a truncation
argument. The main difference comes from the fact that, for p = 1/2, the asymptotic behaviour
of >y ai is no longer the one claimed in (3.24). Namely, as we pointed out previously,

1 n
1. /\2 _ 1
s log(n) kgl @k

and the different scaling that we will use makes impossible to couple the convergence with the
random walk or the counterbalanced random walk. Once again, we start with a law of large
numbers-type result:

Lemma 3.19. Suppose | X||o < 00. We have the almost sure convergence

li S 0

im ——— = a.s.
n—w /nlogn
and fortiori we have lim, n_lgn =0 a.s.

Proof. The proof of this statement follows along the same lines as the proof of Lemma 3.9. Since
p = 1/2 we have now, that as n — oo,

n
Up i= Z aiﬂ ~ K’ - logn,
k=1

where K’ is a positive constant. That is, v, increases slowly to infinity with a logarithmic speed.
We obtain again from Theorem 1.3.24 in [42] that

“r2
n

ogn O(loglogn) a.s.

Hence, as Mn = anS‘n, the above readily implies that

&2
Azlognn = O(loglogn) a.s.

Further, we deduce from (3.25) that for p = 1/2, lim,, a2 - n = 1 and hence we deduce that

G2
Sn

nlogn

= O(loglogn) a.s.
which immediately implies the claim. O]

We now prove the invariance principle under the assumption of boundedness for X.
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Proof of Theorem 3.5 when | X | < 0. The proof relies on similar ideas to the ones used in the
proof of Theorem 3.3. Recalling that,

G ~ kP =k1/2 as k — o

from the substitution k& = |n!|, we deduce that

- 1
alntJ ~ W

Then, the limit (3.12) can equivalently be shown by establishing the desired convergence towards
B = (B¢)=0 for the following sequence of martingales:

a[ntJ

—gnt = (UBt)t R+-
( log(n) J) e

Once again, we denote

cn alntJ A~
(N )ier+ = (—Slntj)
V log(n) teR+
and deduce as before that for each n € N, the predictable quadratic variation of N™ is given by

(N N0y, =

oc“ 4o 1—p§a—p§a — +p§a - . 3.42
log(n) | )k_2 ’ k=2 ’ (k_1> k=2 ’ (k_1> )

By the MFCLT, in order to prove our claim it suffices to show that

lim (N Ny, = 62 a.s.

n—ao
and that sup, ]ANt(n)\ — 0 in probability as n — 0. Since |X |, < o0, this last requirement
follows from very similar arguments to the ones we used in the proof of Theorem 3.3. On the
other hand, since log(|n?|)/log(n) — t as n — oo and by (3.25), the first nontrivial term of (3.42)
satisfies the following convergence

By the same arguments we used in the proof of Theorem 3.3 but using the law of large numbers
for the critical regime (Lemma 3.19), we obtain that the second term in (3.42) converges to zero
while for the last term,

1 Wy

lim ——p Y ar—- = t-po® as.

e llog(n)pkg1 T poras

It follows that <N (”), N (”)>t — to? for each t as n — o0, which proves the desired result under

the additional assumption that | X4 < oo. O
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Now we establish the general case by means of the usual reduction argument. We will not be
as detailed as before, since the ideas are exactly the same. We do still assume without loss of
generality that the steps are centred.

Proof of Theorem 3.5, general case. Maintaining the notation introduced for the truncated rein-
forced random walks of Section 3.4 as well as for the respective variances ng and o for K > 0,
Theorem 3.5 in the bounded step case shows for each K > 0 the convergences in distribution as
n tends to infinity in the sense of Skorokhod,

<S<K<tntJ>

log(n>nt>th+ = (oxBE))ens (3.43)

and from limg .o, 0 = o, it follows readily from (3.43) and the same arguments as before that
as n tends to infinity,

S<EM)(|nt))
(W) . = (0B(t))ter+

for some increasing sequence (K (n))n>0 of positive real numbers converging towards infinity. On
the other hand, from Lemma 3.10 for p = 1/2 we deduce that

. 1 &>b(n) (112 2 _

n—ao nt log k<nt

and from here we can proceed as we did in the previous section. With this, we conclude the proof
of Theorem 3.5. ]
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Chapter 4

Noise Reinforced Lévy Processes: Lévy-
Itd Decomposition and Applications

THE CONTENT OF THIS CHAPTER IS TAKEN FROM THE PAPER [84], WHICH HAS BEEN AC-
CEPTED FOR PUBLICATION, WITH REVISIONS PENDING, IN THE JOURNAL FElectronic Journal of
Probability.

Abstract. A step reinforced random walk is a discrete time process with memory such that
at each time step, with fixed probability p € (0,1), it repeats a previously performed step chosen
uniformly at random while with complementary probability 1—p, it performs an independent step
with fixed law. In the continuum, the main result of Bertoin in [19] states that the random walk
constructed from the discrete-time skeleton of a Lévy process for a time partition of mesh-size
1/n converges, as n 1 o in the sense of finite dimensional distributions, to a process é referred
to as a noise reinforced Lévy process. Our first main result states that a noise reinforced Lévy
processes has rcll paths and satisfies a noise reinforced Lévy 1to6 decomposition in terms of the
noise reinforced Poisson point process of its jumps. We introduce the joint distribution of a Lévy
process and its reinforced version (¢, é ) and show that the pair, conformed by the skeleton of the
Lévy process and its step reinforced version, converge towards (¢, é) as the mesh size tend to 0.
As an application, we analyse the rate of growth of f at the origin and identify its main features
as an infinitely divisible process.

Acknowledgements. I warmly thank Jean Bertoin for the discussions and attention provided
through the making of this work, as well as for introducing me to noise reinforced Lévy processes.
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4.1 Introduction

The Lévy-Ito decomposition is one of the main tools for the study of Lévy processes. In short,
any real Lévy process ¢ has rcll sample paths and its jump process induces a Poisson random
measure — called the jump measure N of £ — whose intensity is described by its Lévy measure A.
Moreover, it states that £ can be written as the sum of tree process

G=eD+e@ 1™ s,

of radically different nature. More precisely, the continuous part of £ is given by £ = (at+qBy :
t = 0) for a Brownian motion B and reals a, g, while £ (2) is a compound Poisson process with
jump-sizes greater than 1 and ¢ is a purely discontinuous martingale with jump-sizes smaller
than 1. Moreover, the processes & (2), & (3) can be reconstructed from the jump measure N. It
is well known that A is characterised by the two following properties: for any Borel A with
A(A) < oo, the counting process of jumps A& € A that we denote by N4 is a Poisson process
with rate A(A), and for any disjoint Borel sets Ay, ..., A with A(A;) < o0, the corresponding

Poisson processes N4, ..., N4, are independent. We refer to e.g. [17, 61, 88] for a complete

k
account on the theory of Lévy processes.

In this work, we shall give an analogous description for noise reinforced Lévy processes (ab-
breviated NRLPs). This family of processes has been recently introduced by Bertoin in [19]

and correspond to weak limits of step reinforced random walks of skeletons of Lévy process.
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In order to be more precise, let us briefly recall the connection between these discrete ob-
jects and our continuous time setting. Fix a Lévy process ¢ and denote, for each fixed n, by
X]g,n) = &k/n — §(k—1)/n the k-th increment of § for a partition of size 1/n of the real line. The

process S,gn) = X{n) + -+ Xlgn) = &g/p for k = 1 1s a random walk, also called the n-skeleton
of £&. Now, fix a real number p € (0,1) that we call the reinforcement or memory parameter and
let S”gn) =X 1(n) . Then, define recursively glgn) for k > 2 according to the following rule: for each
k> 2, set S ,g") =S ]Efi)l +X ]gn) where, with probability 1 — p, the step X ]gn) is the increment X lgn)
with law &1/, — and hence independent from the previously performed steps — while with proba-
bility p, X ]E:n) is an increment chosen uniformly at random from the previous ones X l(n), e ,X ]gn) .
When the former occurs, the step is called an innovation, while in the latter case it is referred to
as a reinforcement. The process (S ]gn)) is called the step-reinforced version of (S ,E;n)) It was shown
in [19] that, under appropriate assumptions on the memory parameter p, we have the following
convergence in the sense of finite dimensional distributions as the mesh-size tends to 0

a(n fdd. /2
<S[(nt)J>t€[071:| — (§t>te[0,1]’ (4.1)

towards a process ¢ identified in [19] and called a noise reinforced Lévy process. It should be
noted that the process f constructed in [19] is a priori not even rcll; and this will be one of our
first concerns.

We are now in position to briefly state the main results of this work. First, we shall prove the
existence of a rcll modification for é . In particular, this allow us to consider the jump process
(Afs); a proper understanding of its nature will be crucial for this work. In this direction, we
introduce a new family of random measures in R™ x R of independent interest under the name
noise reinforced Poisson point processes (abbreviated NRPPPs) and we study its basic properties.
This lead us towards our first main result, which is a version of the Lévy-It6 decomposition in
the reinforced setting. More precisely, we show that the jump measure of é is a NRPPP and that
é can be written as

=&Y+ +8Y t>0,

where now, 5(1) = (at + th : t = 0) for a continuous Gaussian process B, the process 5(2) is
a reinforced compound Poisson process with jump-sizes greater than one, while f () is a purely
discontinuous semimartingale. The continuous Gaussian process B is the so-called noise reinforced
Brownian motion, a Gaussian process introduced in [21] with law singular with respect to B, and
arising as the universal scaling limit of noise reinforced random walks when the law of the typical
step is in Lo(IP) — and hence plays the role of Brownian motion in the reinforced setting, see also
[16] for related results. Needless to say that if the starting Lévy process £ is a Brownian motion,
the limit € obtained in (4.1) is a noise reinforced Brownian motion. As in the non-reinforced case,
f (@) and f (3) can be recovered from the jump measure N , but in contrast, they are not Markovian.
The terminology used for the jump measure of é is justified by the following remarkable property:
for any Borel A with A(A) < oo, the counting process of jumps Aés e A that we denote by N4 is a
reinforced Poisson process and, more precisely, it has the law of the noise reinforced version of N 4

(hence, the terminology Ny is consistent). Moreover, for any disjoint Borel sets Ay, ..., Ay with
A(A;) < o, the corresponding Ny, ..., N4, are independent noise reinforced Poisson processes.

Informally, the reinforcement induces memory on the jumps of é , and these are repeated at the
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jump times of an independent counting process. When working on the unit interval, this counting
process is the so-called Yule-Simon process.

The second main result of this work consists in defining pathwise, the noise reinforced version
é of the Lévy process £&. We always denote such a pair by (f,f). This is mainly achieved by
transforming the jump measure of £ into a NRPPP, by a procedure that can be interpreted as the
continuous time analogue of the reinforcement algorithm we described for random walks. More
precisely, the steps X lgn) of the n-skeleton are replaced by the jumps A& of the Lévy process;
each jump of £ is shared with its reinforced version £ with probability 1 — p, while with probability
p it is discarded and remains independent of é . We then proceed to justify our construction by

showing that the skeleton of £ and its reinforced version (S[(:)J, SL(:Z)J) converge weakly towards

(&, €), strengthening (4.1) considerably.

Section 4.6 is devoted to applications: on the one hand, in Section 4.6.1 we study the rates of
growth at the origin of é and prove that well know results established by Blumenthal and Getoor
in [26] for Lévy processes still hold for NRLPs. On the other hand, in Section 4.6.2 we analyse
NRLPs under the scope of infinitely divisible processes in the sense of [86]. We shall give a proper
description of é in terms of the usual terminology of infinitely divisible processes, as well as an
application, by making use of the so-called Isomorphism theorem for infinitely divisible processes.

Let us mention that in the discrete setting, reinforcement of processes and models has been
subject of active research for a long time, see for instance the survey by Pemantle [79] as well
as e.g. [22, 15,9, 74, 11, 6] and references therein for related work. However, reinforcement of
time-continuous stochastic processes, which is the topic of this work, remains a rather unexplored
subject.

The rest of the work is organised as follows: in Section 4.2 we recall the basic building blocs
needed for the construction of NRLPs and recall the main results that will be needed. Notably,
we give a brief overview of the features of the Yule-Simon process and present some important
examples of NRLPs. In Section 4.3 we show that a NRLP has a rcll modification. In Section 4.4
we construct NRPPPs, study their main properties of interest, and in Section 4.4.3 we prove that
the jump measure of a NRLP is a NRPPP — a result that we refer to as the "reinforced Lévy-Ito
decomposition”. In Section 4.5 we show that the pair conformed by the n-skeleton of a Lévy
process and its reinforced version converge in distribution, as the mesh size tends to 0, towards
(&, é ). To achieve this, first we start by proving in Section 4.5.1 that a NRLP can be reconstructed
from its jump measure — a result that we refer to as the "reinforced Lévy Ito synthesis”. Making
use of this result in Section 4.5.2 we define the joint law (&, f) and in Section 4.5.3 we establish
our convergence result. Finally, Section 4.6 is devoted to applications. Particular attention is
given through this work at comparing, when possible and pertinent, our results for NRLPs to the
classical ones for Lévy processes.

4.2 Preliminaries

4.2.1 Yule-Simon processes

In this section, we recall several results from [19] concerning Yule-Simon processes needed for
defining NRLPs. These results will be used frequently in this work and are re-stated for ease of
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reading.

A Yule-Simon process on the interval [0, 1] is a counting process, started from 0, with first
jump time uniformly distributed in [0, 1], and behaving afterwards as a (deterministically) time-
changed standard Yule process. More precisely, for fixed p € (0,1), if U is a uniform random
variable in [0, 1] and Z a standard Yule process,

Y(t) = ]l{Uét}Zp(ln(t)—ln(U))a te [0, 1], (42)

is a Yule-Simon process with parameter 1/p. Its law in D[0, 1], the space of R-valued rcll functions
in the unit interval endowed with the Skorokhod topology, will be denoted by Q. It readily follows
from the definition that this is a time-inhomogeneaous Markov process, with time-dependent birth
rates given at time ¢ by Ag(t) = 1/(1—t) and A\ (t) = pk/t for k € {1,2,...}. Remark as well that
we have P (Y (¢) > 1) = t. In our work, only p € (0,1) will be used, and it always corresponds
to the reinforcement parameter. The Yule-Simon process with parameter 1/p is closely related
to the Yule-Simon distribution with parameter 1/p, i.e. the probability measure supported on
{1,2,...} with probability mass function given in terms of the Beta function B(z,y) by

1
p Bk, 1/p+1) = plf uP (1 —u)*tdu, for k > 1. (4.3)
0

The relation with the Yule process is simply that Y (1) is distributed Yule-Simon with parameter
1/p. In this work, we refer to p € (0,1) as a reinforcement or memory parameter, for reasons
that will be explained shortly. In the following lemma we state for further use the conditional
self-similarity property of the Yule-Simon process, a key feature that will be used frequently.

Lemma 4.1. [19, Corollary 2.3]
LetY be a Yule-Simon process with parameter 1/p and fixt € (0,1]. Then, the process (Y (rt)),e[0,1]
conditionally on {Y (t) = 1} has the same distribution Q as Y.

In particular, conditionally on {Y(¢) > 1}, Y (¢) is distributed Yule-Simon with parameter 1/p
and it follows that for every ¢ € [0, 1], Y (¢) has finite moments only of order < 1/p. Moreover,
by the previous lemma and the Markov property of the standard Yule process Z, we deduce that
if Y is a Yule-Simon process with parameter 1/p with p € (0,1) and k > 1, we have

E[Y(#)]=(1-p) and  E[Y()|Y(s) = k] = k(t/s)P forany 0 <s<t<1, (4.4)

while if 1/p > 2,
1

(1 =p)(1—2p)
More details on these statements can be found in Section 2 of [19].

E[Y(s)Y(t)] = s1PLP. (4.5)

4.2.2 Noise reinforced Lévy processes

Now, we turn our attention to the main ingredients involved in the construction of NRLPs. For
the rest of the section, fix a real valued Lévy process € of characteristic triplet (a, g%, A), where A
is the Lévy measure, and recall that its characteristic exponent ¥(A) := log K [ei)‘&] is given by
the Lévy-Khintchine formula

q2
T(N) = iaX — 5/\2 + J

" (ei/\x —-1- Z'LL’)\]I{|$|<1}> A(da:). (4.6)
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The constraints on the reinforcement parameter p are given in terms of the following two indices
introduced by Blumenthal and Getoor: the Blumenthal-Getoor (upper) index 5(A) of the Lévy
measure A is defined as

B(A) :==inf {r > 0: J[o . |z|"A(dz) < oo}, (4.7)

while the Blumenthal-Getoor index 3 of the Lévy process £ is defined by the relation

§im {5(/\) if ¢* = 0

4.8
2 if g% # 0. (48

When ¢ has no Gaussian component, we have § = (A) and both notations will be used indiffer-
ently. We say that a memory parameter p € (0,1) is admissible for the triplet (a,¢?, A) if p3 < 1.
Now, fix p an admissible memory parameter for £. If (S ]in) ) is the n-skeleton of the Lévy process
¢, the sequence of reinforced versions with parameter p,

A

(S ey, n=1,

converge in the sense of finite dimensional distributions, as the mesh-size tends to 0, towards
a process whose law was identified in [19] and called the noise reinforced Lévy process f of
characteristics (a, g%, A, p). In the sequel, when considering a NRLP with parameter p, it will be
implicitly assumed that p is admissible for the corresponding triplet. For instance, when working
with a memory parameter p > 1/2 it is implicitly assumed that ¢ = 0. It was shown in [19,
Corollary 2.11] that the finite-dimensional distributions of f can be expressed in terms of the
Yule-Simon process Y with parameter 1/p and the characteristic exponent ¥ as follows:

k k
E [exp {z Z )\ifsi}] = exp {(1 —p)E [\Il (Z )\iY(si)) } : (4.9)
im1 i—1

for 0 < sy < -+ < s < 1. Now we turn our attention at defining NRLPs in R™. Notice that
the construction given in the unit interval in [19] can not be directly extended to the real line

since it relies on Poissonian sums of Yule-Simon processes, and these are only defined on the unit
interval.

Proposition 4.2. (NRLPs in RT)

Let (a,q* ) be the triplet of a Lévy process of exponent U and consider an admissible memory
parameter p € (0,1). There ezists a process £ = (55)56R+ whose finite dimensional distributions
satisfy that, for any 0 < s1 < --- < sp < t,

k k
E [exp {@ >N, H = exp {(1 —piE [qf (Z )\iY(si/t)) ] } , (4.10)
=1 1=1

where the right-hand side does not depend on the choice of t. The process é 15 called a noise
reinforced Lévy process with characteristics (a,q?, A, p).

Proof. First, let us show that the right-hand side of (4.10) does not depend on t. To prove this,
pick another arbitrary 7' > t and write r; = s;/t € [0,1]. From conditioning on {Y;/7 > 1}, an
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event with probability ¢/T", by Lemma 4.1 we get

Y (zk] )\Z-Y(si/T)> = {(T/HE [\If <Zk] AiY (ri - (t/T)))]
i=1

i=1

=tE (i (t)T) ) ’Y(t/T) >1
ik
2

— (. ( Y (s/t) )] (4.11)

proving our claim, and where in the second equality we used that ¥(0) = 0. Now, let us establish

the existence of a process with finite-dimensional distributions characterised by (4.10). Remark
that by Kolmogorov’s consistency theorem, it suffices to show that for arbitrary 1 < S < T,
there exists processes X% = (X} )te[0,5] XT .= (xF )te[o,r] With finite dimensional distributions
characterised by the identity (4.10) for (s;) in [0, 5], t = S and (s;) in [0,T], t = T respectively —
and hence satisfying that (X} )te[0,5] = Z (X5 Jte[o,5]- Write €5 = (&7 )te[0,1] the reinforced version
of the Levy process (ﬁts)te [0,1], remark that the latter has characteristic exponent SV, and set
(XS)tE[O S] (ft/s)te [0,5]- From the identity (4.9), we deduce that, for any 0 < s; <--- < s in
the mterval [0, S], we have:

[exp { Z X X5 (s }] — exp {(1 —p)SE [\p (z: /\iY(sZ-/S)) ] } : (4.12)

In particular X ¥ restricted to the interval [0, 1] has the same distribution as (ét)te[o,l] by the first
part of the proof and (4.9). If we consider the restriction of (X T)te[O,T] to the interval [0, S], we
obtain similarly and by applying (4.11) that, for any 0 < s; < -+ < s < S,

[exp{ Z NXT (s }] = exp {(1 —p)TE \If (Zk] )\iY(si/T)>: }
zexp{(l—p)SE_ (; Z/S>:},

and it follows that X7 restricted to [0, 5] has the same distribution as X°. Since this holds
for any 1 < S < T, we deduce by Kolmogorov’s consistency theorem the existence of a process
satisfying for any 0 < s1 < -+ < s < t, the identity (4.10). In particular, from taking the value

t = 1, it follows that this process satisfies that its restriction to [0, 1] has the same law as é by

(4.9). O
For later use, notice from (4.10) that for any fixed ¢t € R*, we have the following equality in
law
.,5,”
(Est)sefo.1] (5 t)se[0,1] (4.13)

where the right-hand side stands for the noise-reinforced version of the Lévy process (£st)sefo,1]-
In particular, (fst) se[0,1] 18 the NRLP associated to the exponent ¢¥ with same reinforcement
parameter.
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4.2.3 Building blocks: noise reinforced Brownian motion and noise reinforced com-
pound Poisson process

The characteristic exponent ¥ can be naturally decomposed in tree terms,

2

() = (ia) — q%) + 32\ + B (N), (4.14)

where respectively, we write
P ()) = J (ei)‘x - 1) A(dz) and ®B)()) = f (ei)‘x —-1- M;E) A(dz).
{lz[>1} {lz|<1}

This decomposition yields that the Lévy process £ can be written as the sum of tree independent
Lévy process of radically different nature. Namely, we have & = (at + ¢B;) + 5252) + §§3), for
t > 0, where B is a Brownian motion, 5(2) is a compound Poisson process with exponent (2
and ¢G) is the so-called compensated sum of jumps with characteristic exponent ®®). In the
reinforced setting, it readily follows from the identity (4.10) that an analogous decomposition
holds for NRLPs. More precisely, the NRLP f of characteristics (a, ¢?, A, p) can be written as a
sum of three independent NRLPs,

&L (at+qB) +EP + €Y >0, (4.15)

the equality holding in law, and where we denoted respectively by B , é @) f (3) independent rein-
forced versions of the Lévy processes B, & (2) & (3), Notice that their respective characteristics are
given by (a, ¢?,0,p), (0,0, T_1,1)eA,p) and (0,0,1(_; 1A, p). Let us now give a brief description
of these three building blocks separately:

o Noise reinforced Brownian motion: Assume p < 1/2; consider a Brownian motion B and set

¢ := B. In that case, we simply have U(\) = —A2/2 and we write B for the corresponding noise

reinforced Lévy process f . The process B is the so-called noise reinforced Brownian motion (ab-

breviated NRBM) with reinforcement parameter p, a centred Gaussian process with covariance

given by:

(t v s)P(t A s)t7P
1—-2p

Indeed, recalling (4.5), observe first that for any 0 < ¢,s < T' the covariance (4.16) can be written

) [Btés] - (4.16)

in terms the Yule-Simon process Y with parameter 1/p as follows:
E [étés] —(1-p)T-E[Y(t/T)Y(s/T)]. (4.17)

It is now straightforward to deduce from (4.10) with W(\) = —\?/2 that the noise reinforced
version of B corresponds to the Gaussian process with covariance (4.16). The noise reinforced
Brownian motion admits a simple representation as a Wiener integral. More precisely, the process

t
th s PdB;, t>=0, (4.18)
0

has the law of a noise reinforced Brownian motion with parameter p. Remark that when p = 0,
there is no reinforcement and we recover a Brownian motion in (4.18). As was already mentioned,
noise reinforced Brownian motion plays the role of Brownian motion in the reinforced setting,
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since it is the scaling limit of noise reinforced random walks under mild assumptions on the law
of the typical step. We refer to [21, 16] for a detailed discussion.

o Noise reinforced compound Poisson process: If £ is a compound Poisson process with rate ¢ > 0
and jumps with law Py, then its Lévy measure is just A(dzx) = cPx(dz), and any p € (0,1)
is admissible. When working in [0, 1], the noise reinforced compound Poisson process é admits
a simple representation in terms of Poissonian sums of Yule-Simon processes. In this direction,
let Q be the law of the Yule Simon process with parameter 1/p and consider a Poisson random
measure M in RT x D[0, 1] with intensity (1 — p)A ® Q. If we denote its atoms by (x;,Y;), the
process

has the law of the noise reinforced version of ¢ with reinforcement parameter p — as can be easily
verified by Campbell’s formula and was already established in [19, Corollary 2.11]. Notice that
(4.19) is a finite variation process and its jump sizes are dictated by Px(dx). Getting back to
(4.15), it readily follows form our discussion that the NRLP f (2) associated with the exponent
®?) is a reinforced compound Poisson process and its jumps-sizes are greater than one. Finally,
notice that if Px = 91, the Lévy process € is just a Poisson process with rate ¢ and we deduce from
the last display a simple representation for the reinforced Poisson process N in [0,1]. Observe
that it is a counting process, since the atoms x; are then identically equal to 1.

o Noise reinforced compensated compound Poisson process: Let us now introduce properly é )
viz. the noise reinforced version of the compensated martingale & (3), When working in [0, 1], this
process also admits a representation in terms of random series of Yule-Simon processes. In this
direction, consider M := »;d(,, y,) a Poisson random measure with intensity (1 —p)A ® Q and
for each a € [0, 1], set

O/ (1) = Y Loy Yi(t) — tf{ y }:cA(dx), te[0,1]. (4.20)
i a<|z|<1

1

In the terminology of [19, Section 2|, the process 5(231) is a Yule-Simon compensated series *, and

note that E[¢ () (t)] = 0 for every t € [0, 1]. Moreover, the following family indexed by a € (0, 1),

a,l
£34),  fortelo,1], (4.21)

is a collection of NRLPs with memory parameter p, Lévy measure 1,<|,<13A(dr) and the cor-
responding exponent writes:

@,(13)()\) = J (ei)“” -1- @'Ax) A(dz).
{a<|z|<1}

Notice that for each a > 0, the process 5(531) is rcll and with jump-sizes in [a, 1]. Now, the process
defined at each fixed ¢ as the pointwise and Lj(IP)-limit

&7 = m0), (4.22)

!The notation used in [19] for ét@) and gt(s) is respectively ¥ (t) and ngi (t). These are respectively referred to as
Yule-Simon series and compensated Yule-Simon series.
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is a NRLP with characteristics (0,0, 1 {|m|<1}A). In contrast with £3), the noise reinforced version
f (3) is no longer a martingale, we shall discuss this point in the next section in detail. For latter
use, we point out from [19, Section 2] that the convergence in the previous display also holds in
L, (IP), for r chosen according to

re(B(A)v1,1/p),ifl/p<2 and r=2 ifl/p>2. (4.23)

In particular, we have ét(?’) € L,(P) and E[ét(g)] = 0 for every t. We refer to [19] for a complete
account on this construction and for a proof of the convergence in (4.22). The convergence in
(4.22) will be strengthen in the sequel, by showing that it holds uniformly in [0, 1]. At this point,
we have introduced the main ingredients needed for this work.

4.3 Trajectorial regularity

The purpose of this short section is to establish the following regularity theorem:

Theorem 4.3. A noise reinforced Lévy process f has a rcll modification, that we still denote by
£. Moreover, if for e € (0,1), 5(()35) denotes a NRLP with characteristics (0,0, Ly <yA, p), then
for any t > 0 we have:

lim E [Sup |gg3g<s>|] —0. (4.24)
el0 s<t ’

Before proving this result, let us explain the role of (4.24). Working in [0, 1] and with the
construction (4.22) for €3, remark that for any e € (0,1) we can write £3) = éégg) + 5231) , where
\Af?l) (t)| = € for every jump-time ¢ € [0, 1] by construction. Now, the convergence (4.24) shows
that in fact, the jumps of é of size greater than e are precisely the jumps of é 2) 4+ 5231) . Hence,
when working in [0, 1], the jumps of é (3) are precisely the jumps of the weighted Yule-Simon
processes x;Y;(t) — heuristically, this is the continuous-time analogue of the dynamics described
for the noise reinforced random walk. This fact will be used in Section 4.4.3. Moreover, (4.24)
allow us to improve the convergence stated in (4.22) towards ¢®). Namely, it follows that for
some subsequence (ay) with a, | 0 as n 1 o0, the convergence

Tim (€7 (5)sefo 1) = () sefo 1)
holds a.s. uniformly in [0,1]. Remark that the convergence in the previous display was only
stated when working in [0, 1] since, so far, the only explicit construction of NRLPs is the one in
the unit interval we recalled from [19]. In Section 4.5.1 we shall address this point.

The rest of the section is devoted to the proof of Theorem 4.3. Recalling the building blocks
introduced in Section 4.2.3 and the identity in distribution (4.15), é @) is a reinforced compound
Poisson process and hence has finite variation rcll trajectories, while B is continuous. It is then
clear that the only difficulty consists in establishing the regularity of the process £®) and we
rely on a remarkable martingale associated with centred NRLPs, that we now introduce. This
martingale will play a key role in this work.

Proposition 4.4. Consider a Lévy process & with characteristic exponent VU satisfying ¥'(0) = 0
and Lévy measure fulfilling the integrability condition S{|x|>1} zA(dz) < oo. Then, the process

M = (My)er+ defined as My = 0 and fort > 0, as My = t7P&, is a martingale. Consequently,
M has a rcll modification.
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Proof. Recall from (4.15) that in that case, f can be written as a sum of two independent processes
é = qB+ é (3) where B is a noise reinforced Brownian motion. Recalling the representation (4.18)
for B, it follows that (t*pBet)tdw is a continuous martingale and we assume therefore that ¢ = 0.

Turning our attention to £3), notice that M; is in L,(P) for r chosen according to (4.23) and
that E[M;] = 0 since, as we discussed after (4.23), we have ft(?’) e L, (P), E[ét(g)] = 0. Now, it
remains to show that (My)e(o,1] satisfies the martingale property. In this direction it is enough
to check that for any 0 <ty < --- <t <tand Ai,...,\pr_1 € R, we have

k-1 k—1
E [t/:;pét(f) exp {2 Z )\Z'é?) }] =K [t,;flét(f)l exp {1 Z )\ifg) }] . (4.25)
i=1 i=1

On the one hand, under our standing assumptions, the left-hand side of (4.25) corresponds to the
derivative at Ay, = 0 of (4.10) multiplied by —it, ” and hence equals:

k—1
—it(1—p)exp t(1—p)E [ [ YAV (t;/) E[H (Y(s) s < tp1 /1) Y (te/1)] .7,
j=1

for H defined as

k—1
H(Y(s) 15 <tpr/t) =T [ DAY (t/t)
j=1

Remark that this is a o(Y(s) : s < tx_1/t)-measurable random variable. On the other hand, the
right-hand side of (4.25) corresponds to the derivative with respect to A\x_1 of (4.10) multiplied
by —it%_l for A = 0 and similarly, we deduce that the right-hand side of (4.25) writes:

k—1
—it(1—p)exp t(1—p)E [ [ YT AV (t;/) E[H (Y(s) 18 < tp1/t) Y (tg—1/D)] .7}
j=1

Now, it only remains to show that:
E[H(Y(s) : s <tp1/O)Y (ti/t)]t," =E[H (Y(s) : s <tp_1/t) Y (tp—1/t)] .7, (4.26)

Notice that since ¥/(0) = 0 and Y is increasing, H (Y(s) : s < ty_1/t) vanishes if Y (tx_1/t) = 0.
This allows us to restrict the terms inside the expectations in (4.26) to {Y (tx_1/t) = 1} and to
apply the Markov property (4.4) at time t;_1/t to get:

E[HY (r):r <tpa/t)Y (te/t)] t,"

= Y E[HY(r): r < tia/OR[Y (t/O)Y (th—1/t) = 5] Ly rsjy=iy ) B
=1
= Y E[HY(r): r < tpa/t) - 5lte/th—1) Dy (s jiy—iy ) B
=1
=E[H(Y (r): 7 < tp1 /)Y (te—1/D)] 1,7, (4.27)

proving the claim. O]
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Let us now conclude the proof of Theorem 4.3.

Proof of Theorem 4.3. The first assertion is now a consequence of the following simple observa-
tion: denoting by M the rcll modification of the martingale M = (t’pét(g))teRh it is then clear
that the process J®) := Py, for ¢ = 0, is a rell modification of é (3), Notice by intergrating by
parts that consequently, the process é (3) is a semimartingale, this will be needed in Section 4.4.3.
To prove the second claim, remark that by the observation right after (4.13), it suffices to work
on the time interval [0, 1]. Moreover, by Proposition 4.4, for each ¢ > 0, the process

M© = (s7PE (5)) seo]

with Még) =0, is a L,(P) rcll martingale in [0, 1], for r chosen according to (4.23). Since r > 1,
by Doob’s inequality at time ¢ = 1 we have

E [sup 62060 | < B [sup 762000 | < G [i620r]
s<t s<t

for some constant C, > 0, and it remains to show that the right-hand side converges to 0 as € | 0.
However, this is a consequence of (4.22). More precisely, recalling the construction detailed in
(4.20), note that élg?’) - 5231) (t) has the same distribution as é(()gs) (t) for every t € [0,1] and € > 0.
Since the convergence (4.22) still holds in L, (IP), the result follows by taking the limit ase | 0. O

Now that we have established that a NRLP is a rcll process, in the next section we study the
structure of its jump process (Aét). Since it will share striking similarities with the jump process
of a Lévy process, before concluding the section we recall well known results on (A&;). Namely,
if £ is a Lévy process with Lévy measure A, its jump measure

p(dt, dz) = > Tag.2010(s,a¢.) (A2, dz), (4.28)

is a homogeneous Poisson point process (abbreviated PPP) with characteristic measure A(dz).
Such a PPP can be constructed by decorating the point process of jumps of a Poisson process,
and it is classic that (4.28) is determined by the following two properties:

(i) For any Borelian A with A(A) < oo, the counting process of jumps A{; € A occurring until
time ¢, defined as

Nu(t) = #{(s,A&) € [0,t] x A},  t=0,

is a Poisson process with rate A(A).

(ii) If Ayp,... Ay are disjoint Borelians with A(A4;) < o for all i € {1,...,k}, the processes
Ny4,,..., N4, are independent.

In particular, from (i), it follows that (N4 (t) — A(A)t)er+ is a martingale.
4.4 Reinforced Lévy-It6 decomposition

This section is devoted to the study of the jump process (Afs) ser+ and the associated jump
measure in RT x R, viz.

f(dt,dz) == > 1 (26.20)0(s. A, (At d2). (4.29)
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In this direction, we shall introduce in Definition 4.9 below a family of random measures in
R* x R under the name noise reinforced Poisson point processes — abbreviated NRPPPs — that
will play the analogous role of PPPs for the jump measure of Lévy processes. Each element of
this family of measures is parametrized by a sigma finite measure A in R, that we refer to as its
characteristic measure, and a positive value p € (0,1), that we call its reinforcement parameter.
The construction of NRPPPs consists essentially in the reinforced version of the one of PPPs.
More precisely, we shall construct them by decorating the point process of jumps of a reinforced
Poisson process. The main result of this section is the reinforced version of the celebrated Lévy-Ito
decomposition:

Theorem 4.5. (Reinforced Lévy-1t6 decomposition)
The jump measure i of & is a noise reinforced Poisson point process with characteristic measure
A(dz) and reinforcement parameter p.

The rest of the section is organised as follows: In Section 4.4.1 we restrict our study to the jump
process of reinforced Poisson processes. In Section 4.4.2, we construct NRPPPs by decorating the
jump process of reinforced Poisson processes and then study its basic properties. For instance, in
Proposition 4.12 we prove a characterisation in the same vein as the one holding for PPPs, recalled
at the end of Section 4.3. Finally, in Section 4.4.3 we prove Theorem 4.5 and in Proposition 4.15
we identify the predictable compensator of fi.

4.4.1 The jumps of noise reinforced Poisson processes

Let us start by introducing the basic building block of this section.

o Noise reinforced Poisson process: When £ is a Poisson process N with rate ¢, any reinforcement
parameter p € (0,1) is admissible and recall from the discussion following (4.19) that N is a
counting process. Moreover, the corresponding noise reinforced Poisson process (abbreviated
NRPP) with rate p has finite dimensional distributions characterised, for any 0 < s7 < -+ <
s, < tand \j € R, by the identity

k k
E [exp {z Z AilNG, }] = exp {(1 —p)ctE [(exp {i Z )\iY(si/t)} - 1)] } : (4.30)
i=1 i=1

A Poisson process with rate ¢ has associated to it the random measure d N, also called its point
process of jumps. This is a Poisson random measure in R* with intensity cdt and it has a natural
reinforced counterpart: namely, the random measure dNg, that we shall now study in detail.

To do so, we start by introducing some standard notation for point processes. We shall identify
discrete random sets D = {t1,%2,...} < R with counting measures ), . d; and for f : R — R,
we use the notation (D, f) for >, f(t). The collection of counting measures in R is denoted
by M.. We will make use of the following two basic transformations: for x € R, we denote by
T.D the translated point process {t + x : t € D} and for f : R +— R, we write D o f~1 the
push-forwarded point process {f(t) : t € D}.

Now, consider an increasing sequence of random times 0 = Ty < 17 < I3 < ..., such that the
increments (T, — T,,—1 : n > 1) are independent and for any n > 1, T,, — T),—1 is exponentially
distributed with parameter pn. Write D := {0,771, T3, ...} the point process associated to this
family and we denote its law in M, by D(du). From these ingredients, we define a decorated
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measure as follows: first, consider & a Poisson point process with intensity ¢(1 — p)efdt in R and,
for each atom u € &, let D,, be an independent copy of D. Then, we set

L(ds):= > > duss = ), TuDu. (4.31)

ued teD,, UES

Remark that if (Z;) is a standard Yule process started from 1, D has the same law as the point
process induced by the jump-times of (Z;y), with a Dirac mass at 0. The next proposition shows
that the law of the point process of jumps of a noise reinforced Poisson process with rate c is
precisely £ o exp~!, the pushforward of £ by the exponential function.

Proposition 4.6. The following properties hold:

(i) Let N bea noise-reinforced Poisson process with rate ¢ and write P = dN; the point process
of its jump-times in RT. Then, we have the equality in distribution 2Z o exp~l. We
will still refer to & as a reinforced Poisson process with rate ¢ and reinforcement parameter
.

(i) IfY is a Yule-Simon process with parameter 1/p, for any f: R*T — R* we have
“logE [exp{ (2, 11(0,t]f>}] —tc- (1-p)E [1 - e—Séﬂst)dY(S)] . (4.32)

In particular, from (4.31) and (i) we deduce the following identity in distribution: if &2 is a
Poisson process in R} with intensity ¢(1 — p)dt, we have

P =3 g 02 Y D duer (4.33)

seR+ ueZ teD,,

Roughly speaking, the jumps of N consist in Poissonian jumps u € & which — in analogy with
the discrete setting — we refer to as innovations, and each u has attached to it a family {ue’ : t
Dy, t # 0} which should be interpreted as repetitions of the original u through time.

oO—O o O—3%—O—06 oO—o—oO

3¢ % OO (a) O—3¢ o0
* © *HOO © O—X¢ © ©O—0OX \S4 ASAS

y/@

Figure 4.1: Sketch of the jumps of a noise reinforced Poisson process. We marked by x the
jumps corresponding to innovations, while each linked o is a repetition of the former.

Notice that the time at which u occurs affects the rate of the subsequent repetitions, slowing
the rate down as w grows. This is closely related to what happens to the rate at which a step is
repeated in a step reinforced random walk, depending on its first time of appearance. For later
use, remark that for fixed v € R*, the atoms of >, d,et are distributed as the jump times of
the counting process

Liu<s)Zpn(s)-n(w) »  $=0. (4.34)
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Proof. To establish the identity in distribution stated in (i), we compute the respective Laplace
functional of both random measures. Starting with &2, fix t > 0 and recall from the identity in
distribution (4.13) that (NVis)ge[o,1] has the same law as a noise reinforced Poisson process with

same reinforcement parameter p and rate tc, say (N s(t)) sef0,1]- This NRLP is defined in [0,1] and
hence admits a simple representation in terms of Poisson random measures: by (4.19), if >, dy; is
a Poisson random measure in D[0, 1] with intensity tc(1 — p)@Q, the process (3; Yi(s) : s € [0,1])

has the same distribution as (N, ét)) sefo,1]- In particular, we have

Lt f(s)dNg = fol f(st)dNy Z Z fol f(st)dYi(s)

Putting everything together, we deduce (4.32) by making use of the Laplace formula for integrals
with respect to Poisson random measures — we invite the reader to compare (4.32) with the
identity (4.10) for the finite-dimensional distributions of NRLPs — and it remains to show that

~1 coincide with this expression.

the Laplace functional of £ o exp

In this direction, recall the observation made in (4.34) and denote by Z the law of the standard
Yule process Z. It follows that the law of (£ o exp~!, Lo, f) can be expressed in terms of the
Poisson random measure M := 3}, ¢, zo) in RT x D[0,1], with intensity c(1 — p)dt ® Z, by

considering the functional

(4)
Zi] J(O,t] f(s)d (1{U¢SS}Zp(ln(s)—ln(m))) ’

where the integrals in the previous expression are respectively with respect to the Stieltjes mea-

(4)

sure associated to the counting process s — ]l{ui<3}Zp(ln(s)fln(u~))’ It now follows also by the
exponential formula that

t
—logE [e—<£oexp‘ ,1{.<t}f>] = (1 —p)cf dulE [1 - exp{ - f f(s)d ]l{u<5}Z In(s H
R 0

:(1—p)cftduEl1—eXp{—th(s) (Lgussi Zpn(s H
<

t(l - )CZ (1 — €Xp {f f St (]l{u<st}Z (In(st)—In(u }‘u t

—~
,.p

.35)

where we denoted in the last line by Z°(-|u < t) the integral in RT x D[0, ) with respect to
the probability measure

1
Z°(Ju<t) = @du Z(d2).
Now, we deduce by Lemma 4.47 - (ii) in the Appendix that (4.35) is precisely (4.32). O

Finally, for later use we state the following equivalent expression for the Laplace functional

associated to the random measure £ o exp~!.

Lemma 4.7. For any measurable f : Rt — R™, we have

Q0
—logE [exp{ —(Loexp !, f>}] = (1-p J duf 1 — e~ TlostwmSoexOID(dy).  (4.36)
0 c
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Proof. The proof follows from the equality (£ oexp~!, f) = (L, f o exp) and the identity:

o0
“log E [exp {—(L, m)}] = (1 — p)e j du j 1 — e Toxtr DD (dy),
0 M

holding for any measurable h : R* — R*. The proof of the later is just a straightforward
consequence of (4.31) and the exponential formula for Poisson random measures. O

Remark 4.8. Notice from (4.33) that the reinforced Poisson process with rate ¢ can be inter-
preted as a Yule-Simon process with immigration: this is, a process modelling the evolution of a
population where new independent immigrants arrive according to a Poisson point process with
intensity (1 — p)c-dt and reproduce according to a time changed Yule process, independent of the
rest.

4.4.2 Construction of noise reinforced Poisson point processes by decoration

This section is devoted to the construction of noise reinforced Poisson point processes and to
establishing their first properties. From here, we fix p € (0,1).

e Step 1: Suppose first that 0 < A(R) < co. With the same notation of Section 4.4.1, denote by
& a Poisson random measure in R with intensity A(R)(1 — p)e’dt and consider the Poisson point
process Yyeg(ye,) 0 R x R with intensity (1 — p)eldt ® A(dz). Now, for each u € &, consider
an independent copy D, of D and set

f(ds,dz) = > D> Surten) (4.37)

ueé teD,,

This is just the point process £ from (4.31) with ¢ := A(R), marked by a collection of i.i.d.
random variables with law A(dx)/A(R). Formula (4.37) defines a random measure in R x R and
if we consider its push forward by (¢,z) — (exp(t),z), that we denote as N := £ o (exp,Id) !,
we obtain the measure in R™ x R given by

N (ds, dz) = Z Z O(uet ) (4.38)

ue P teD,

where & 1= & oexp™!

is a Poisson point process in R, with intensity A(R)(1 — p)d¢t. We refer
to the measure in the previous display as a NRPPP with (finite) characteristic measure A and
reinforcement parameter p.

e Step 2: If we no longer assume A(RR) < oo, we proceed by superposition. More precisely,
let (Aj)jez be a disjoint partition of R\{0} such that A(A;) < co. Consider a collection of
independent NRPPPs (/\A/'j(ds, dz) : j € T) with respective characteristic measures (A(- N A;) :

j € Z) constructed as in (4.38), respectively in terms of:

- independent Poisson random measures >}, ¢ 5 0(u,z,) With intensities (1 — p)dt @ A(- n A;).
- independent collections (Dy)ye, of i.i.d. copies of D.

Finally, set & := Zj Z;. Now we are in position to introduce NRPPPs with sigma-finite
characteristic measures:
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Definition 4.9. (Noise Reinforced Poisson Point Process - NRPPP)
The random measure N'(ds, dz) = Zjez./\A/}(ds,dx) is called a reinforced Poisson point process

with reinforcement (or memory) parameter p and characteristic measure A. Moreover, N writes

N(ds,dz) = >0 > Suetz,)- (4.39)

ue 2 teD,

From the identity in the previous display and recalling that the first element of D is just
0, the measure A naturally decomposes as N' = N’ + N where N’ is a PPP with intensity
(1 — p)dt ® A. Moreover, the following properties readily follow from our construction:

Lemma 4.10. Let N be a NRPPP with characteristic measure A and reinforcement parameter
.
(i) If Ae B(R), the restriction 1 4(x)N (ds, dx) is a NRPPP with characteristic measure 1 4A

and parameter p.
(ii) If Ay, As € B(R) are disjoints, then 1 4, (z)N(ds,dz), 14,(z)N (ds,dz) are independent.

(iii) If/\71, /\72 are independent NRPPPs with respective characteristic measures A1, Ay and same
reinforcement parameter p, then Nl + N5 is a NRPPP with characteristic measure A1 + Ag
and parameter p.

The following lemma shows that the intensity measure of a NRPPP with characteristic measure
A and parameter p, coincides with the one of a PPP with characteristic measure A.

Lemma 4.11. Let N be a NRPPP with characteristic measure A and reinforcement parameter
p. For any measurable f : RT x R — R, we have E[{f,N)] = Sgo ds §p A(dz) f(s, ).

Proof. Suppose first that A(R) < oo and recall from (4.34) that for fixed u € R, the atoms of
the measure ), ) dyet are precisely the jumps of the time-changed Yule process (4.34). Hence, if
2 ue 2 O(uw,) 18 @ Poisson random measure with intensity (1 — p)dt ® A(dz) and (Z"W) e is an
independent collection with law Z, it is then clear from our construction in the finite case (4.38)
that we can write

- (u)
E [N(O, T) x A] =K [Z Lusry 210 (r) - n(uy)) Lewea)
ue P

where the random measure ) 7 O(ua,zw) is Poisson with intensity (1 —p)dt ® A ® Z. Conse-
quently, recalling that E[Z;] = €', by Campbell’s formula we obtain that

E N0, 7] x A| = T A(4),
and we deduce that the intensity measure of A is given by dt @ A. When A(R) = o0, we can
proceed by superposition. O]
We now identify the law of A" by computing its exponential functionals.

Proposition 4.12. Let N be a NRPPP with characteristic measure A and reinforcement param-
eter p.



Chapter 4. Noise Reinforced Lévy Processes: Lévy-Ité Decomposition and Applications 116

(i) For every measurable f : RT x R — R™ and t > 0 we have

E [exp{ - f( . f(s,2)N (ds,dx)}] (4.40)

_ exp{ 41— p) JR A(d2)E l1 ~exp <_ Ll f(st,x)dY(s))] }

(ii) If we no longer assume that f is non-negative, under the condition Sé ds §p A(dz)|f(s,z)] <
o0 we have:

E [exp {szﬂXRf(s,x)/(/(ds,dx)}] (4.41)

_ exp {t(l _p) JRA(dx)E {exp (z L st :c)dY(s)) - 1] }

Proof. (i) We start by considering the finite case A(R) < oo and we make use of the notations
introduced in (4.37); for instance, recall that (N, f) = (L%, f o (exp,1d)). We start showing the
result for f of the form f(s,z) = h(s)g(z), for non-negatives h : RT — RT and g : R — R* in
which case we can write

(L (hoexp)g) = Z Z hoexp(u+t)g(xy) = Z 9(2){TyuDy, h o exp). (4.42)

ueé teD,, UES

Now, we deduce from the formula for the Laplace transform of Poisson integrals and a change of
variable that

—logE [e—<£”,(hoexp)g>] (1— J (dz) fRJr duf <Tog<u>u,hoexp>]]])(du)

If we now replace h by h1 ., making use of the equivalent identities (4.36) and (4.32), we obtain
that the previous display writes:

t.(l—p)JRA(dx)E[l_eg )52 (st)dY (s ]

proving the claim. Now, still under the hypothesis A(R") < oo, fix arbitrary «; ; € R™, consider
0=t < <ty <t as well as disjoint subsets Aq,..., A, of RT. Further, suppose that f is
of the form

n k
f(s,z) = Z Z Tty (8)1a,(2) and write Za” (titira] (8) L4, ().
j=1i=1

(4.43)
Recall from Lemma 4.10 that the restrictions 1 A1N AU | AnN are independent NRPPPs with
respective characteristic measures A(- N A;). By independence and applying the previous case to
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each g;j, we deduce that

E [exp { — (N, ]1{.<t}f>}]
- jle [exp { — W, ]1{-<t}9j>}]

_ jﬁlexp {t(l ~ p)A(A)E [1 ~exp { - Ll é ai,j]l(ti<st<ti+1](S)dY(S)}] }

~ o {t(1 =) [ A@DE [1-exp{ - Ll v} |}

and once again we recover (4.40). Finally, if f is non-negative and bounded with support in
[0,¢] x R, it can be approximated by a bounded sequence of functions (f,,) of the form (4.43),
the convergence holding d¢A(dz) a.e. For each n, we have

E {exp{ — (N, fn>}] — exp {t(l —p) JR A(dz)E [1 - exp{ - Ll fn(st,:c)dY(s)H } (4.44)

and by Lipschitz-continuity, it follows that

0,t]xR

E [[exp{ B <~/\77 f>} o exp{ o <N7 fn>}’] <E [J[ |f(8,l’) - fn(5,$)|fv<d$,dx)]

t
:f dsf A(dz)|f(s,2) — fals,2)| — 0 asn 1 .
0 R

In the last equality we used Lemma 4.11. From the same arguments we also obtain that
1
JA(dx)]E [|6—S$ flsta)dY(s) _ =5 fn(st,a?)dY(S)‘] < JA(dx)E U | (st,2) — falst, x)\dY(s)]
0

1
e —prlfo s fRA<dx>|f<st,x> ~ fulst,2)|

which converges to 0 as n 1 0. Now, we deduce from taking the limit as n 1 o0 in (4.44) that the
identity (4.40) also holds for f.

If we suppose that A(R) = oo, the proof follows by superposition. Namely, with the same
notation used for constructing (4.39), the random measures (A;) jez are independent NRPPPs
with respective finite characteristic measures A(- n A;) and by definition we have N = Z]J\Af]
From the formula for the Laplace transform we just proved in the finite case and independence
it follows that

E [e—</\7,f]1(~<t)>] — H]E |:€_<~/\A/’]'af]l{'<t)>:|
jeT
— Hexp{ —t-(1-p) f A(dz)E [(1 - e—Xéf(stw)dY(s))] }
jeT 4
proving (i). Now (ii) follows from similar arguments, by making use of the formula for the

characteristic function for Poissonian integrals and the inequality |e® — e| < |a — b| for a,b € R,
we omit the details. O
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The following result is the reinforced analogue of the well known characterisation result for
Poisson point processes. The arguments we use are similar to the ones in the non-reinforced case.

Proposition 4.13. Let N bea point process in RT x R and for any Borelian A = R, set

A

NA(t) = N([Ovt] X A)> t=0.

Then, N is a noise reinforced Poisson point process with characteristic measure A and parameter
p if and only if the two following conditions are satisfied:

(i) For any Borelian A with A(A) < oo, the process N4 is a noise reinforced Poisson process
with rate A(A) and reinforcement parameter p.

(ii) If Ay,...Ag are disjoint Borelians with A(A;) < oo for all i € {1,...,k}, the processes

Na,,...,Nga, are independent.

Proof. First, let us prove that NRPPP do satisfy (i) and (ii). Remark that (ii) is just a consequence
of Lemma 4.10 - (ii) and we focus on (i). Fix A as in (i) as well as times 0 < t; < --- <t} < ¢,
and we proceed by computing the characteristic function of the finite dimensional distributions
of Ny. This can now be done by considering the function f(s,z) := Zle Ailgg<iyTa(z) and
applying the exponential formula (4.41), yielding

[exp{ 2/\ NA ti }]
ko sl
— exp {t(l —p) JR A(dz)E [exp G;L )\i]l{stgti}]lA(x)dY(s)> - 1] }

k
= exp {t(l —p)A(A)E [(exp {z Z )\iY(ti/t)} - 1) ] } .
i=1

Recalling the identity (4.30), we deduce that N4 is a noise reinforced Poisson process with rate
A(A) and reinforcement p.

Now, we argue that if A is a random measure satisfying (i) and (i), then it is a NRPPP. We
will establish this claim by showing that N satisfies the exponential formula (4.41). First, observe
that (i) implies that E[N4(¢)] = tA(A), for example by making use of Lemma 4.11 and the fact
that if M is a NRPPP with characteristic measure A and parameter p, then (M([0,¢]x A) : t = 0)
is a reinforced Poisson process with rate A(A) and parameter p. We deduce by a monotone class
argument that N satisfies, for any measurable f : RT x R +— R™, the identity:

EUWﬂ N (ds dx] st [ At s, (4.45)

Still for A as in (i) and for an arbitrary collection of times 0 = t] <ty < -+ < {lpy1 < t, we set

ZO&Z tz7tz+1 A( ) (4.46)
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Since by hypothesis (N4(t))er+ is a NRPP with rate A(A), by the formula (4.30) for the charac-
teristic function of the finite dimensional distributions of reinforced Poisson processes, we obtain
that

E lexp {’L<N, ]1{.<t}g>}]
k
=K [exp {Z Z i(Na(tiv1) — NA(ti))}]

i=1

k
exp {t(l —p)A(A [exp (Z 2 i(Y (tiv1/t) — (tz/t))> -

2 }

1 k
= exp {t(l —p) fR [exp < ; ai]l{ti<st<ti+1}]lA(x)dY(3)) — 1] }

Remark that this is precisely the 1dent1ty ii) of Proposition 4.12 for our choice of g. Making
use of the independence hypothesis of NA17 . NAk for disjoints Ay, ..., Ax with A(A;) < o0, we
can also show that the identity holds for f as in (4.43) for such collection of sets. Now, if f is
non-negative, bounded and supported on [0,¢] x A with A(A) < oo, making use of (4.45), we can

proceed as in (4.44) for the proof of Proposition 4.12; approximating f by a bounded sequence of
the form (4.43), and show that the exponential formula (4.41) still holds. The general case follows
by sigma finiteness of A and we deduce that N is a NRPPP with the desired parameters. O]

4.4.3 Proof of Theorem 4.5 and compensator of the jump measure

Let us now establish Theorem 4.5. Remark that paired with Proposition 4.13, it entails that
the role of the counting process of jumps A¢s € A for fixed A € AB(R) is played precisely by
noise-reinforced Poisson processes, in analogy with the non-reinforced setting.

Proof of Theorem 4.5. The result will follow as soon as we establish (i) and (ii) of Proposition
4.13 for
= #{(s,A&) e [0,t] x A}, t=0, (4.47)

where A is an arbitrary Borelian satisfying A(A) < oo. By the identity in distribution (4.13),
we can restrict our arguments to the unit interval and hence we can make use of the explicit
construction of NRLPs in [0, 1] that we recalled in Section 4.2.3, in terms of Yule-Simon series.
Denote by M := }.; §(,, v;) the Poisson random measure with intensity (1—p)A®Q and recall

the discussion following Theorem 4.3. If (x;,Y;) is an atom of M, then at time U; = inf{t >
0 : Y;(t) = 1}, the process ¢ performs the jump x; for the first time, i.e. AéUi = z; and this
precise jump z; is repeated in the interval [0, 1] at each jump time of Y. It follows that for any
f:R— R* we have:

DUAAL) = fla)Yi(t), (4.48)

s<t %

and in particular, we get:

t) = > LipeaYi(t).

Hence, by the independence property of Poisson random measures, the processes N Agse- s N A,
are independent as soon as A; N A; = J for all 7 # j. Now, if we fix A\,...,\; e R, 0 < <
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- <t < 1, we deduce from the formula for the characteristic function for Poisson integrals the
equahty.

exp {z ilAjNA(tj)} — exp {(1 — p)A(A) exp{ Z A Y (t5) } }
iz

Comparing with (4.30), we get that the right-hand side in the previous display is precisely the
characteristic function of the finite dimensional distributions at times t1,...,¢; of a reinforced
Poisson process with rate A(A) and parameter p. O

Recalling the explicit construction of NRPPPs from Definition 4.9, we stress that Theorem 4.5
formalises the idea that the jumps of NRLPs are jumps that are repeated through time, similarly
to the dynamics of noise reinforced random walks — we refer to the beginning of Section 4.5.2
for a brief introduction to the later. Our terminology and notation for the reinforced measure
il can now be justiﬁed by the following: if p is the jump measure of &, the counting process
(u([0,t] x A) : t = 0) is a Poisson process with rate A(A) while (4([0,¢] x A) : t = 0) is a reinforced
Poisson process Wlth rate A(A). Said otherwise, the following identity holds in dlstrlbutlon.

(0,1 x A) £ p([0,-] x A). (4.49)

Now that the key result of the section has been established, we continue our study of the jump
process of NRLPs. In this direction, we start by briefly recalling notions of semi-martingale theory
that will be needed. Let X be a semimartingale defined on a probability space (2, %, (%), P).
Its jump measure px is an integer valued random measure on (R™ x R, Z(R") ® 4(R)), in the
sense of [54, Chapter 1I-1.13]. Denote the predictable sigma-field on  x RT by Zr. If H is a
Pr R B(RT)-measurable function, we simply write H = ux for the process defined at each t € RT
as

(H + o () ::J jix(wids, do)Hy(wiz), i f ix (@ ds, da)| Hy(w: 2)] < 0,
(Ot]xR (0,¢]xR

(4.50)
and oo otherwise. Both notations for the integral will be used indifferently. Further, we denote
by /" the class of increasing, adapted rcll finite-variation processes (A¢), with Ag = 0 such
that [E[Ay] < oo, and by szfljc its localisation class. The jump measure py posses a predictable
compensator, this is, a random measure 15 on (R* x R, Z(R*) @ Z(R)) unique up to a P-null
set, characterised by being the unique predictable random measure (in the sense of [54, Chapter
I1-1.6]) satisfying that for any non-negative H € Zr ® #(R), the equality

E[(H*px)n] =E [(H * Ng()oo]
holds. Equivalently, for any H € Zr®%(R) such that |H|+ux € <"

loc?

to o/ and H * ,ug( is the predictable compensator of H * pux. Said otherwise, H * ux — H = p&

loc
is a local martingale.

the process |H|xp5 belongs

Recall that by Proposition 4.4, the process é is a semimartingale. Hence, we can consider jiP,
the predictable compensator of its jump measure fi, and our purpose is to identify explicitly jiP.
In contrast, it might be worth mentioning that if £ is a Lévy process with Lévy measure A, the
compensator of its jump measure p is just the deterministic measure pP = dt ® A(dx). The first
step consists in observing the following:
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Lemma 4.14. Let A € B(R) be a Borel set that doesn’t intersect some open neighbourhood of the
origin. If we denote by (F{) the natural filtration of Na, then the process My = (Ma(t))ier+
defined as M4(0) =0 and

\Y
o

Mu(t) = 7P (NA(t) - tA(A)) .t

is a finite variation (F{)-martingale.

Remark that this is just a special case of Proposition 4.4 for a Lévy measure of the form
A(A)dy with ¢ = 0. Now we can state:

Proposition 4.15. (Compensation formula)
Denote by (F;) the natural filtration of & and by [ its jump measure. The predictable compensator
P of i is given by
dt
(P (w;dt,dx) = (1 — p)dt ® A(dz) + p?é"t(w; dz), (4.51)

where &;(dx) = Y,
t.

5=t 0 Aés(da:) 1s the empirical measure of jumps that occurred strictly before time

Consequently, for any predictable process H € Zr ® $(R) such that [H| = i € Jz/l;“c, we have
|H| « [iP € o and the following process is a local martingale:

t t
M; = Y Ho(-,A8) — (1 —p)f dsf A(dz)Hy (-, x) —f > Hy(-, A& Eds, t=>0. (4.52)
s<t 0 R 0 p<s §

The first compensating term appearing in (4.52) is compensating innovations, i.e. atoms appearing
for the first time, while the second one should be interpreted as the compensator of the memory
part of fi. Notice that Proposition 4.15 holds if p = 0. Indeed, in that case é is a Lévy process
and its jump process p is the Poisson point process (4.28). The compensator (4.51) is just
the deterministic compensator dt ® A(dz) for the Poisson point processes with characteristic
measure A and in (4.52) we recover the celebrated compensation formula, see e.g. [17, Chapter
1]. Remark that since the intensity of both p and i is dt ® A(dx), we have, for both X a Lévy
process and its associated NRLP, the equality E[>, _, f(s, AX)] = Sé ds §p A(dz)f(s,z) for any
f:R xR+~ R*. When X := £, by the compensation formula, this identity holds also if we
replace f by a non-negative predictable process H € Zr ® #A(R), viz.

E [2 H A8 | = F Uot ds JRA(dx)HS(-,x)] | (4.53)

s<t

However, we point out that if we replace in (4.53) the Lévy process by its reinforced version
¢, the identity no longer holds. Indeed, if such formula was satisfied, the exact same proof for
the exponential formula of PPPs of XII-1.12 in [81] would hold in our reinforced setting, and
since random measures are characterised by their Laplace functional, this would lead us to the
conclusion that the law of i coincides with the law of u.

Proof. (i) In order to establish (4.51), by (i) of Theorem II-1.8 of [54], it suffices to show that for
any nonnegative predictable process H € Zr ® #(R),

E[(H * )] = E[(H * iP)oo] , (4.54)
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and the first step consists in showing the result for deterministic H(w, ) = 1g(x) for B € Z(R).
Maintaining the notation introduced in Lemma 4.5 for the process Np, consider B an arbitrary
interval not containing a neighbourhood of the origin as well as the associated martingale,

Mp(t) =t PN (1) = P (NB(t) - tA(B)) .

Integrating by parts, we get

t t

tPMp(t) = J sPAMp(s) + fo pMp(s)sP~ ds,

0
and consequently,

t t

Np(t) —tA(B) = J sPAdMp(s) + JO pMp(s)sP~tds

0

- Lt sPAMp(s) + Lt (NB(S) - sA(B)) ps~tds-

Said otherwise,

t t
Np(t) —t(1 —p)A(B) — f Np(s)ps—tds = J sPdMp(s),

0 0
is a martingale. Since (Np(w;$))ser+ and (Np(w;s—))ser+ differ in a set of null Lebesgue mea-
sure, the equality still holds replacing Sé Np(s)ps~tds by Xé Np(s—)ps~'ds and we obtain precisely
(4.52) for Hg(w,z) = L g(x). Now we can proceed as in the proof of 1I-2.21 from [54]. Concretely,
pick any positive Borel-measurable deterministic function A = h(x), x € R such that h =i — h = P

is a local martingale and let 7" be an arbitrary stopping time. With the same terminology as in
1.1.22 of [54] denote by [0, 7] the subset of Q x R* defined by

[0, 7] = {(w,s) : 0 < s <T(w)}.

In particular, (h* )T = Ljo,rph = it where the process 1 7y is predictable (since left continuous)

and moreover, by Theorem I 2.2 of [54], the sigma field generated by the collection
{A x {0} where A € %), and [0,T] where T is any (.%#;)-stopping time }

is precisely the predictable sigma field &r. Then, if (T}) is a localising sequence for the local
martingale h = i — h = fiP, it follows from Doob’s stopping theorem that for each n,

E|(hs @) | =B (hs i®)50 7]
Consequently, taking the limit as n 1 o0, we deduce by monotone convergence that

E[(Lporh* i)w] = E [ (Lo rph * iP)oo |

which in turn implies that (4.54) holds for any predictable process H = 1 Blo,r) where B is any
closed interval not containing the origin and 7" an arbitrary stopping time. Now the claim follows
by a monotone class argument. O]
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We close our discussion on the jump process of NRLPs with the property at the heart of the
infinite divisibility of £ as a stochastic process, a topic that will be studied in Section 4.6.2. We
claim that, for A € Z(R) with A(A) < oo the point process of jumps

ZICOED I VIS (4.55)

is an infinitely divisible point process. More precisely, the measure v4 is a reinforced Poisson
point process & with rate A(A) in R* and if we consider n independent copies v, ..., 1% of the
reinforced Poisson process (4.55) but with rate n=tA(A), we have the equality in distribution

G

va= v+ (4.56)
To see this, consider f: RT — RT a positive function with support in [0,¢], and observe that

(frvay = Y Ta(A&) f(s).

s<t

Now the claim follows by computing the Laplace functional of v 4, Vf4 respectively, by applying
the exponential formula (4.40) and from comparing with (4.32). For a more detailed discussion
on infinitely divisible point processes we refer to page 5 of [73].

4.5 Weak convergence of the pair of skeletons

Before stating the first result of the section, let us briefly recall the statement of the Lévy-Ito
synthesis for Lévy processes: a Lévy process & with triplet (a,¢?, A) can be written as £ = ¢ @) 4
@160 where €M) = (at+¢B; : t = 0) is a Brownian motion with drift while £ +£®) is a purely
discontinuous process that can be explicitly built from the jump measure p defined in (4.28). More
precisely, if we denote by u(sc) the compensated measure of jumps u(sc) = p — dtA(dz), we can
write

§t=at+th+f

xp(ds, dx) + f 29 (ds, dz), t>0. (4.57)
[0, (—1,1)¢

[O,t]X(*l,l)

The reinforced Lévy-Ito6 synthesis, which is the first main result of the section, states that the
analogous result holds for NRLPs where now, the PPP 4 in (4.57) has been replaced by the
reinforced version /i, and the Brownian motion B by its reinforced version B (if p < 1/2). More
precisely, after properly defining the ”space-compensated” measure [L(SC), we prove:

Theorem 4.16. (Reinforced It6’s synthesis)
Let i be the jump measure of a NRLP & of characteristics (a,q?, A,p). Then, a.s. we have

gt:at~|—q§t+f

zp(ds, dz) + J 250 (ds, dx), t =0,
[0,¢]x(=1,1)¢

[0,¢]x(—=1,1)

for some noise reinforced Brownian motion B, with the convention that if p = 1/2 the process B
1s null. Moreover, the integrals in the previous display are NRLPs with respective characteristics

(07 0, ]l(—l,l)CAvp)7 (07 0, ]l(—l,l)A7p)'
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Remark 4.17. Beware of the notation, ,&(SC) stands for the space-compensated jump measure
f and should not be confused with the time-compensated measure (u — pP) in the sense of [54,
Chapter 1I-1.27]. For instance, we stress that 5(3) 1s not a local martingale. Remark that for Lévy
processes, the time and space compensation of its jump measure coincide, since the compensating
measure is the same.

After proving this result, we start settling the ground for the main result of the section. First,
making use of Theorem 4.16, we define the joint law, of a Lévy process and its reinforced version,
by introducing an appropriate coupling (£ ,é) We then characterise its law by computing the
characteristic function of its finite dimensional distributions:

Proposition 4.18. There exists a pair (€, é), where é has the law of a NRLP with characteristics
(a,q?, A, p), with law determined by the following: for allk = 1, \1,..., A, 1, ... Br real numbers,
and 0 < t; < --- <t <t, we have

k
exp{ Z Aftjsz}j)} =
k k
{1 o S | 440~ (Z oo + A0 |

j=1
(4.58)

where U is a uniform random variable in [0,1]. A pair of processes with such distribution will
always be denoted by (,€).

Now, we connect the distribution of the pair (¢, f ) with the discrete setting. In this direction,
consider the Lévy process £ and for each fixed n € N we set

XM= A = € — Epryms for k> 1 (4.59)

For each n, the sequence (X ,in) ) is identically distributed with law ;/, and the random walk

S,gn) = X{n) +--+ X ,En) for k > 1, Sén) = 0 built from these increments for a mesh of length
1/n is referred to as the n—skeleton of the Lévy process £. This process consists in the positions
of £ observed at discrete time intervals and, if we write D(R;) for the space of R, indexed rcll

functions into R with the Skorokhod topology, we have S[(:LL)J D&y &asn 1 oo. Now, fix a memory

A(”))

parameter p € (0,1) and for each n, consider the associated noise reinforced random walk (.S;
with parameter p built from the same collection of increments:

S XMW XM ok =1, (4.60)

&(n)

where we set S, 7 := 0. For a detailed account on the noise reinforced random walk, we refer to

the beginning of Section 4.5.2. The main result in [19] states that Sln, | 1ag f , the convergence
holding in the sense of finite-dimensional distributions, and we shall now strength this result. To
simplify notation, write D?(R,) the product space D(R) x D(R) endowed with the product
topology. Now we can state the main result of the section:
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Theorem 4.19. Let £ be a Lévy process with characteristic triplet (a,q?, A), fix p € (0,1/2) an
admissible memory parameter and for each n, let (S]gn), glin)) be the pair of the n-skeleton of &
and its reinforced version. Then, there is weak convergence in D*(R,) asn 1 o

(n) o)) &£ 3
(St ) =5 (€., (4.61)
where (€,€) is a pair of processes with law (4.58).

The section is organised as follows: In Section 4.5.1, after introducing the (space) compensated
integral with respect to NRPPPs, we shall establish Theorem 4.16. Making use of this result,
in Section 4.5.2 we define the joint law of a Lévy process and its reinforced version (¢, é ). More
precisely, by Lévy-Ito Synthesis and its reinforced version of Theorem 4.16, it will suffice to define
the joint law of (i, i) and (B, B). This is respectively the content of the construction detailed in
4.5.1 and Definition 4.23. The construction of ji is done explicitly in terms of the jump measure of
¢ by a procedure that should be interpreted as the continuous-time reinforcement analogue of the
reinforcement algorithm for random walks. We then introduce the joint law (£ ,f) in Definition
4.25 and prove Proposition 4.18. Finally, Section 4.5.3 is devoted to the proof of Theorem 4.19.

4.5.1 Proof of Theorem 4.16

Let us start by introducing the (space)-compensated integral with respect to NRPPPs. Recall
the identity of Lemma 4.11 for the intensity measure of NRPPPs and for fixed t € R, let f :
R* x R +— R be a measurable function satisfying, for all 0 < a < b, the integrability condition

f |f(s,2)|dsA(dz) < oo.
(0,t]x {a<|z|<b}

Next, we set

f f(s, I)N(SC) (ds, dz)
[0,t] x {a<|x|<b}

~

f(s,x)N(ds,dx) — f(s,z)dsA(dz).

. J[O,t]x{a<|x<b} J(O,t]x{a<|x|<b}

This is a centred random variable and if we denote it by EELC())( f,t), from Proposition 4.9 - (ii)

we deduce that (ch_)T »(fs1))re[= log(b),x0) has independent increments, and hence is a martingale.
When the limit of this martingale exists, we will write

J F(s,2)N)(ds, dz) := lim f(s,2)N©) (ds, dx). (4.62)
[0,¢]x (—b,b) 190 J[0,t] x {e~"<|x|<b}

Recall that the characteristics of a NRLP are being considered with respect to the cutoff function
21l {j;<1y as well as the notation f A from (4.50). The following lemma shows that the sums of
atoms of NRPPPs are precisely purely discontinuous NRLPs:

Lemma 4.20. Fiz a Lévy measure A, a parameter p € (0,1) such that S(A)p < 1 and let N be a
NRPPP with characteristic measure A and reinforcement parameter p.

(i) For any 0 < a < b, the process ]l{a<|x|<b}x « N is a noise reinforced compound Poisson
process with characteristics (A(1{a<||<137), 0, Lia)e|<t} A, P)-
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(ii) For each t € R the compensated integral

f N9 (ds, dz) := lim 2N (ds, dx) (4.63)
[0,¢]x(—1,1)

7190 J[0,t] x {e-<|x|<1}

exists. The process ]1(_171)9(: « N9 4s o NRLP with characteristics (0,0,]l(_l’l)A,p) and
hence has a rcll modification. Moreover, the convergence (4.63) holds towards its rcll modi-
fication uniformly in compact intervals for some subsequence (ry,), and we shall consider it
and denote it in the same way without further comments.

Proof. (i) If we consider f a reinforced compound Poisson process with such characteristics and [ is
its jump measure, it is a pure jump process and we can write it as the sum of its jumps. Our claim
can now be proved directly from the identity & = (= f1) Z (Lag|a|<t)® */\7), since by Proposition
4.10 - (i), the restriction ]l(a§|x|<b)/\7 has the same distribution as fi. Alternatively, this can be
established by means of the exponential formulas we obtained in Proposition 4.12, by fixing 0 <
t1 < --- <t <tand computing the characteristic function of the finite-dimensional distributions
at times t1,..., 1 of Lypqpzapy * N, noticing that for f(s,z) := <Z§=1 Aj]l{sgtj}> 1 o))<t}
we have

~

k
DN (Lagjaj<ppr * Ny, = f f(s,2)N(ds,dz).
j=1 [O,t]XR
The claim follows by comparing with the identity for the characteristic function of the finite-
dimensional distributions (4.13) of £ .
(ii) Recall the notation introduced before (4.62) for the martingale (E(C) (f,t))r=0- In our case,

e "1
we have f(s,z) = x and we just write (Eic_)T 1(t))r=0. The fact that the martingale (Eic_)r L(t))r=0
converges as v T o and that the limit is a NRLP with characteristics (0, 0,]1(_1’1)/\) can be
achieved by similar arguments as in [19] after a couple of observations. Starting with the former,

recall the definition of A from (4.39), and remark that for each r > 0 we have

f ]l{efrg‘xkl}x/f/(ds, dz) = 2 ]l{ugt}]l{eﬂgmukl}xu . #{{ues :s€ Dy} n [0, t]}
[OJ]XR ueP

From the discussion right after Proposition 4.9, we infer that if we we consider (Z"),c% an
independent collection of independent, standard Yule processes, the family {ue® : s € D,} has

the same distribution as the collection of jump times of the counting process ]l{uit}Zg(ln(t)—ln(u)y

t = 0. Hence the previous display can also be written as

D Verefon<tyul fusty Zpin () -tn(u)):
uey

(c)
e "1
as in [19, Lemma 2.6]. Alternatively, one can make use of (4.13) to restrict our arguments to the

and now the proof of the convergence as r 1 0 of (X7, . (t))r>0 follows by the same arguments

interval [0, 1] and apply [19, Lemma 2.6]. Next, to see that the process 1(_; 1)z « N9 defines a
NRLP with characteristics (0,0, 1(_; 1)A), fix 0 <t <--- <t <t and fore >0, A € R set

3 ()) = f (erE 1 m) A(dz).
fe<ll<1)
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Recalling the formula (4.41) for the characteristic function of integrals with respect to NRPPPs,
we deduce from considering the function f(s,z) := (Z§:1 )\j]l{sgtj}) 1 (c<|z)<1y that we have

k k
exp{ Z (L o<1y * NG ))} zexp{t(l—p)E o | S nv(ty/1) }
j=1

Now we can apply the exact same reasoning as in the proof of Corollary 2.8 in [19] by writing
s;j = t;/t € [0,1] and taking the limit as ¢ | 0. The uniform convergence in compact intervals
towards the rcll modification of 1(_y 1) = N9 follows from the second statement of Theorem
4.3, since for every € € (0,1), the process

J 2 N0) (ds,dz), t=0,
[0,¢] x{0<|z[<e}
is a NRLP with characteristics (0,0, Tyj;j<cA). O

It immediately follows from the previous lemma that if N is a NRPPP with characteristic
measure A, parameter p and, if p < 1/2, we consider W an independent NRBM with same
parameter, then

Xt = at + th + f

[0,¢]x(—=1,1)
defines a NRLP with characteristics (a,q? A,p). To obtain the a.s. statement of Theorem 4.16
we still need a short argument.

N (ds, dz) + f N9 (ds, dz), t =0, (4.64)
[0,¢]x(—1,1)

Proof of Theorem 4.16. The result will be deduced from the equality in distribution é Z X for
X defined as in (4.64) with same characteristics as £. In this direction, wlog we assume p < 1/2,
g = 1 and we set

. . e 2« R
=& — Z ﬂ{\A£S\>1}Afs and [= £t< - <Z 1{6<|A£s|<1}A€S - tJ xA(dx))
s<t {e<|z|<1}

s<t
Notice that for every € > 0, we can write

&= (Z ]1{e<|A§s|<1}A€S - tf

xA(dx)) + €@, (4.65)
s<t {e<lz|<1}
Since [ is a reinforced PPP, by Lemma 4.20 the process (4 65) converges uniformly in compact
1ntervals for some subsequence (gy,) as €, | 0 towards C + 5 5 , for some process C -

f § § continuous by construction. Since [ is a reinforced PPP, by the independence
properties of its restriction we know that é (2),5 () are independent. Hence, it remains to show
that (€@, £3)) is independent of C' and that C'—at =: B is a NRBM. Fix arbitrary 0 < u < v < o
and maintain the notation for W, N used in the representation (4.64). Since N is the clearly the

jump measure of X, we have the equality in distribution:
. N\ 2 [ R
(5’ Z 1{u<\A£S\<U}A5s> = <X> Liugiz)<oy * N) : (4.66)
s<-

Moreover, since W is independent of N , from the independence of restrictions of NRPPP and
(4.66) we deduce that ]l{€<|x|<1}:v * [L(SC) + ]l{1<|w|}93 * ﬂ and é - ]l{€<|x|<1}:v * ﬂ(sc) - ]1{1<|x|}$ * [L
are independent, the later having the same distribution as at + Wi + ]1(75,5)35 « N. Now the claim
follows by taking the limit as € | 0. O



Chapter 4. Noise Reinforced Lévy Processes: Lévy-Ité Decomposition and Applications 128

4.5.2 The joint law (f,f) of a Lévy process and its reinforced version

In this section we construct explicitly, for an arbitrary fixed Lévy process &, the process é
in terms of ¢ that will be referred to as the noise reinforced version of £&. This will yield a
definition for the joint law (¢, é) Our construction will be justified by the weak convergence of
Theorem 4.19. Let us start by recalling the discrete setting, since our construction is essentially
the continuous-time analogue of the dynamics that we now describe.

o The noise reinforced random walk. Given a collection of identically distributed random variables
(Xp,) with law X, denote by S, := X1+ -+ X,,, for n > 1 the corresponding random walk. We
construct, simultaneously to (Sy,), a noise reinforced version using the same sample of random
variables and performing the reinforcement algorithm at each discrete time step. In this direction,
consider (e,) and (U[n]) independent sequences of Bernoulli random variables with parameter
pe (0,1) and uniform random variables on {1,...,n} respectively. Set X; := X and, for n > 1,
define

Xvn—i—l = Xn+1]l{sn+1:0} + XU[n]]l{gnH:l}'

Finally, we denote the corresponding partial sums by Spi= X1 4+ Xn, n = 1. The process

~

(Sp) is the so-called noise reinforced random walk with memory parameter p, and we refer to this
particular construction of (Sy) as the noise reinforced version of (S,). The process (Sp) can be
written in terms of the individual contributions made by each one of the steps. In this direction,
let us introduce a counting process keeping track of the number of times each step X}, is repeated
up to time n. Since if the law of X has atoms, we have P(X; = X3) > 0, and we need to perform
a slight modification to our algorithm. Namely, for each n > 1 we write X/ := (X,,n) and we
perform the reinforcement algorithm to the pairs (X/). This yields a sequence that, with a slight

abuse of notation, we denote by (X”). If for every k,n > 1 we set:

Nip(n):=#{1 <i<n: X, =X}, (4.67)
we can write:
~ o0
Sp =D Ng(n) Xy, forn>1. (4.68)
k=1

For convenience, we always set Sy = 0 = Sy, and when working with pairs of the form (S, S’) it
will always be implicitly assumed that the noise reinforced version has been constructed by the
algorithm we described. For instance, it is clear that at each discrete time step n, with probability
1—p, S, and S,, share the same increment, while with complementary probability p, they perform
different steps.

Roughly speaking, in the continuum, the steps (X,,) are replaced by jumps A& of the Lévy
process £&. With probability 1 — p, the jump is shared with its reinforced version é while with
complementary probability p it is discarded and remains independent of é . The jumps that are
not discarded by this procedure are then repeated at each jump time of an independent counting
process that will be attached to it. The process of discarding jumps with probability p is traduced
in a thinning of the jump measure of £&. Let us now give a formal description of this heuristic
discussion.
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Construction of the pair (N, )

For the rest of the section, we fix a Lévy process £ with non-trivial Lévy measure A, denote the
set of its jump times by % := {ue RT : A¢, # 0} and let

N(ds,dz) := Z O(u,Aw)s
ue S

be its jump measure. By the Lévy-1t6 decomposition, this is a PPP with characteristic measure
A and we can write £ = €1 + J, where £€1) is a continuous process while J is a process that can
be explicitly recovered from N, as we recalled in (4.57).

If é has the law of its reinforced version, by Theorem 4.16 it can also be written as é = é W47,
where J is a functional of a NRPPP A with characteristic measure A. Hence, the main step for
defining the law of the pair (J,.J) consists in appropriately defining (A, ). However, recalling
the construction of NRPPPs by superposition detailed before Definition 4.9, this can be achieved
as follows: first, set Ag := {1 < |z|} and for each j > 1, let A; := {1/(j + 1) < |z| < 1/j}. Next,
for 7 = 0 consider the point process

={ueR": A € Aj},

remark that .#; is a PPP with intensity A(A;)dt and write . := u;.#;. Maintaining the notation
of Section 4.4, consider (D, )ues a collection of i.i.d. copies of D and for each j = 0 we set

dS dl’ Z Z 5uet AL

ueI; teDy,

The measure Nj is a NRPPP with characteristic measure (1 — p)"*A(- n 4;), and we can now
proceed as in Section 4.4.2 to construct the following NRPPP with parameter p by superposition

of (Nj)j=1,
Z Z O(uet ALL)- (4.69)

ue.f teD,,

Notice however that its characteristic measure is (1 — p)~'A. In this direction, we consider a
sequence of independent Bernoulli random variables (g,),e.» with parameter 1 — p and apply a
thinning:

N(ds,dz) == > Loy D, Suer,acy)- (4.70)
ue.g teD,,

Now, N is a NRPPP with characteristic measure A and reinforcement parameter p built explicitly
from the jump process of & From the construction, if a jump A&, occurs at time u, with
probability 1 — p it is kept and repeated at each ue! for t € D,, while with complementary
probability p, it is discarded and remains independent of N. From now on, we always consider
the pair (N, ) constructed by this procedure. Then, by definition of N we can write

Jy =€ e 2 f zN(ds, dz) + f NI (ds,dz),  t=0,
[0,¢]x{|x[>1} [0,2]x(=1,1)
while on the other hand, by Theorem 4.16 the process defined as

Jy = ét@) + ét(g) = J aN(ds, dz) + J xN(SC)(ds, dz), t =0, (4.71)
[0,¢]x{|z|>1} [0,¢]x(—1,1)
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is a NRLP with characteristics (0,0, A, p). From our construction, the random measures N, N
can be encoded in terms of a single Poisson random measure ), . , O(1, A, Dasea)s 2llOWing us to

compute explicitly the characteristic function of the finite dimensional distributions of (€2),£®2))
and (¢€3) £3)). In this direction, for A € R recall the notation

R (\) = L | |>1}(6W — 1)A(dz). (4.72)

Lemma 4.21. For all k > 1, let \y,..., \p and B, ... By be real numbers and fix times 0 < t1 <
- <t <t. Then, we have

exp{ ZA +5]§t )} =

k k
exp {tpE o) Z Ny m=n || +t1 - Z N Ly, m=1y + BiY (t/1)) }a

j=1
(4.73)

where we denote by Y a Yule-Simon process with parameter 1/p.

Let us briefly comment on this expression. The first exponential term in (4.73) corresponds
to the characteristic function of the finite dimensional distributions of a Lévy process with law

(5](;) )tER+ ) Viz.

k
exp{ Z Aj fpt } = exp {tpE oM ( 2 )\j]l{Ustj/t}> }’
j=1

where U is a uniform random variable in [0, 1] (recall that the first jump time of a Yule-Simon
process is uniformly distributed in [0, 1]). More precisely, this Lévy process is built from the dis-
carded jumps >, T(.,—019(u a¢,) and consequently is independent of £@ and 2o Leu=130(u,a8.)
which explains the form of the identity (4.73).

Proof. We can assume that ¢ < 1 by working with ¢/t < --- < t;/t and with the pair
(gst,ést) sef0,1]> Which now has Lévy measure tA. Now, the proof follows by a rather long but
straightforward application of the formula for the characteristic function of integrals with respect
to Poisson random measures. O

We now turn our attention to the characteristic function of the finite dimensional distributions
of (£€3),£3)). In this direction, for A € R, recall the notation

(1) = f{ | <1}<em C 1 - ia)A(de). (4.74)
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Lemma 4.22. For all k > 1, let \i,..., \p and B, ... B be real numbers and fix times 0 < t1 <
- <t <t. Then, we have

k
exp{ Z A§§§>+6jé§f’>)} -

k k
exp {tpE oG Z Aj]l{Y(tj/t)zl} +t(1 — 2 (A ]l{y (t;/t)=1} T BiY (t;/t)) },

j=1
(4.75)

where we denote by Y a Yule-Simon process with parameter 1/p.

Proof. By the usual scaling argument we can suppose that ¢z < 1 = ¢. Now, the proof is similar to
the one of Corollary 2.8 in [19]. In this direction, notice that the processes £(3) = Tz » N(5)

and 5(3) = ]l(_l’l)a: « N9 are respectively the limit as ¢ | 0 of
& = Teappgenya + N = Loy + dE @ A, (4.76)

és)l) = ]l{sg\m|<1}x s N — ]l{sg\m|<1}x «dt ® A, (4.77)

the convergence holding uniformly in compact intervals. The characteristic function of the finite-
dimensional distributions of the pair (1|1} N, Liegizj<1yT * N) can be computed by the
same arguments as in Lemma 4.21 and we obtain for each 0 < & < 1 that

k
eXP{ Z Ayfé? (t5) +51551(t1))}

k k
= exp {pE q) Z )\ ]l{Y t] >1} + (1 - Z )\ ]l{y t] >1} + /81 ( ))
J=1 J=1

(4.78)

In order to establish that this expression converges as € | 0 towards (4.75), we recall that since
le® —1 —iz| is O(|z?|) as |z| | 0 and O(|z|) as |z| 1 oo, for any r € (B(A) v 1,1/p A 2) if B(A) < 2
and r = 2 if (A) = 2, we have

C := sup |z| "€ — 1 —iz| < .
xeR

It follows that for all 0 < e < 1, A € R, we can bound
2P\ < f €2 — 1 — iAz|A(dz) < cwf |27 A(dz).
{lz|<1} {lz|<1}

Moreover, by the remark following Lemma 4.1, the random variable Y (t) € L, (IP) for any r < 1/p
and it follows that the term

k
Z /\ ]l{y >1} + BZY(t])),

is in L,(IP). Hence, by dominated convergence, (4.78) converges towards (4.75) as € | 0. On the
other hand, since ({S’l) (t5), éS’l) (tj)) — (ft(j), fg’)) as € | 0, we obtain the desired result. O
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The distribution of (B, B) and proof of Proposition 4.18

The last ingredient needed to define the joint distribution of (£ ,é ) is the joint distribution of a
Brownian motion B and its reinforced version B, that we denote as (B, B). Recall from [21] that
B has the same law as the solution to the SDE

dX; = dB; + gXtdt, (4.79)

and that X can be written explicitly in terms of the stochastic integral (4.18) with respect to the
driving Brownian motion B. We also recall from (4.17) that for 0 < s,¢ < T the covariance of B
can be expressed in terms of the Yule Simon process as follows:

(t v s)P(t A s)t7P

E [BtBS] - — = T(1 - p)E[Y#/T)Y (s/T)], (4.80)

and for later use, we observe that
(t A s)PsP = T(1 —p)E []l{Y(t/T)Zl}Y(S/T)] . (4.81)

We stress that the right-hand side in the previous display do not depend on the choice of T'. The
proof of this identity is a consequence of the representation (4.2) of Y in terms of a standard Yule
process and an independent uniform random variable.

Definition 4.23. Let (B,E) be a pair of Gaussian processes and fix a parameter 0 < p < 1/2.
We say that the pair (B, B) has the law of a Brownian motion with its reinforced version if the
respective covariances are given by

(t v s)P(t As)l—P
1—-2p

E[B,B,] = (tns), E [BtBS] — (tas)i7PsP, E [Btés] - . (4.82)

for any s, t € RT.

Let us briefly explain where this definition comes from: for fixed p, by [16, Theorem 1.1] the
law of the pair (B, B) is universal, in the sense that it is the weak joint scaling limit of random
walks paired with its reinforced version with parameter p for p < 1/2, when the typical step is in
Lo(IP). For more details, we refer to [21, 16].

Given a fixed Brownian motion B, it is clear that we can not expect to have an explicit
construction of the reinforced version B in terms of B similar to the one performed for (.J,.J).
However, we can make use of the SDE (4.79) to get an explicit construct of (B, B) with the right
covariance structure. This can be easily achieved as follows: first, let W be an independent copy
of B; if we set

Bi = (1 —p)Br +4/1— (1 —p)2Wy, (4.83)

then, B and f are two Brownian motions with E[B;8s] = (1 — p)(t A s). If we let B be the
solution to the SDE,
dBt = dﬁt + %?Btdta (484)

B has the law of a noise reinforced Brownian motion with reinforcement parameter p, and can
be written explicitly as By = tP Sé s~Pdfs. Moreover, it readily follows that the covariance of the
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pair of Gaussian processes (B, B) satisfies (4.82). The decorrelation applied for constructing /3 is
playing the role of the thinning in the construction of (J, J ).

Finally, we will need for the proof of Proposition 4.18 the following representation of the
characteristic function of the finite-dimensional distributions of the pair (B, B) in terms of the
Yule-Simon process:

Lemma 4.24. Let (B, B) be a Brownian motion with its reinforced version for a memory pa-
rameter p < 1/2. For all k =1, A\1,..., A\, B1, ... Bk real numbers and 0 < t; < -+ <t <t, we
have

k
E exp {Z Z ()\jBt]— + ﬂjBtj)}
j=1

2 2 P& tj i
exp{—tpE E(;Aj]l{y(ttj)zl}> —t(1—p) <Z {Y TJ >1}+ biY <t>)> }
(4.85)

Proof. Since NRBM satisfies the same scaling property of Brownian Motion (see page 3 of [21]),

from (4.82) we deduce (B, Btc)teR+ = ( 12B, ¢/ 2Bt)teR+ Hence, as usual we can suppose that
tr. < 1 and we take t := 1. To simplify notation we also suppose that ¢ = 1. Now, the left hand
side of (4.85) writes

k
E | exp {2 2 (A\jBy, + 53'3%')}

= exp{ Z)\ \jCov(By,, B ZBZBJC’OU Bt ,Bt Z NiBiCov(By,, Btj)}
i,J i,J
. 2 2
1
= eXp{ —5E 32—1 Nl =1y |+ (1= Z BiY (t5) | +2(1 - p)%:)‘iﬁj]l{Y(ti)Zl}Y(tj> }

where we used respectively for each one of the covariances in order of appearance that: the first
jump time of a Yule-Simon process is uniformly distributed, (4.80) and (4.81). However, this is
precisely the right hand side of (4.85). ]

Now that all the ingredients have been introduced, we define the law of (¢, é ).

O Recipe for reinforcing Lévy processes: consider a starting Lévy process ¢ with triplet (a, ¢%, A)
and denote by & = at + ¢B; + J; for t = 0 its Lévy It6 decomposition, where B and J are
respectively a Brownian motion and a Lévy process with triplet (0,0, A). Further, fix p € (0,1) an
admissible parameter for the triplet, denote the jump measure of £ by N = >} 5(% Ag,) and consider
the NRPPP N with characteristic measure A and reinforcement parameter p as constructed in
(4.70) in terms of A/. Denote by J = Ty * N(5) 4 L1y « N the corresponding NRLP of
characteristics (0,0, A, p) and finally, consider a NRBM B independent of (J, j), such that (B, B)
has the law of a Brownian motion with its reinforced version — for example by proceeding as in

(4.84).
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Definition 4.25. We call the noise reinforced Lévy process ét = at + th +J; fort =0 of char-
acteristics (a,q%, A, p) the noise reinforced version of €, the unicity only holding in distribution.
From now on, every time we consider a pair (ﬁ,é), it will be implicitly assumed that f has been
constructed by the procedure we just described in terms of &.

Let us now conclude the proof of Proposition 4.18.

Proof of Proposition 4.18. 1f U is the characteristic exponent of £, we can write
: L a2, 4@ (3)
U(N) =ia\ — 54 AT+ QY (N) + D (N),

for 2, ®®) defined respectively by (4.72) and (4.74). Recalling the independence between the
pairs (B, 3), (€@, €@ (£B) £6)), the proof of Proposition 4.18 now follows from Lemmas 4.21,
4.22, 4.24 and the previous decomposition for the characteristic exponent W. O

From the construction of (N, N ), we can sketch a sample path of (¢, é ), where the jumps that
are not appearing on the path of £ are precisely the ones deleted by the thinning:

0 ty ta 0 t1 to

Figure 4.2: Sample path of a Lévy process and its reinforced version.

4.5.3 Proof of Theorem 4.19

Let us outline the proof of Theorem 4.19. First, by (4.13), it suffices to prove the convergence
in [0,1] and we therefore work with § = (&t)se[0,1]. Next, since we are working in D?[0,1], it
suffices to establish tightness coordinate-wise to obtain tightness for the sequence of pairs. The
first coordinate in (4.61) converges a.s. towards ¢ in D0, 1] (and in particular is tight) and hence
it remains to establish tightness for the sequence of reinforced n-skeletons. This is the content of
Section 4.5.3 and more precisely, of Proposition 4.28. This is achieved by means of the celebrated
Aldous tightness criterion and our arguments rely on the discrete counterpart of the remarkable
martingale from Proposition 4.4. This discrete martingale is introduced in Lemma 4.26 and we
recall from [16, 15] its main features. This is the content of Section 4.5.3. Finally, the joint
convergence in the sense of finite-dimensional distributions towards (¢, ¢ ) is proved in Proposition
4.31, by establishing the convergence of the corresponding characteristic functions.

The martingale associated with a noise reinforced random walk

o The elephant random walk and its associated martingale. Let us start with some historical con-
text. In [11], Bercu was interested in establishing asymptotic convergence results for a particular
random walk with memory, called the elephant random walk. This process is defined as follows:
for a fixed g € (0,1) that we still call the reinforcement parameter, we set & := 0 and let Y] be
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a random variable with Y; € {—1,1}. Then, the position of our elephant at time n = 1 is given
by £ = Y7 and for n > 2, it is defined recursively by the relation &,+1 := &, + Y41, for Y41
constructed by selecting uniformly at random one of the previous increments {Y7 ... Yy}, and
changing its sign with probability 1 — ¢q. The analysis of Bercu relies on a martingale associated
to the elephant random walk, defined as M; = &; and for n > 2, as
'(n)I'(29)
I'(n+2¢—1)

and where I' stands for the Euler-Gamma function. This martingale had already made its appear-

M, = ap&p, for a,, = (4.86)

ance in the literature in Coletti, Gava, Schiitz [34]. As was pointed out by Kiirsten [60], the key
is that when ¢ € [1/2,1), the elephant random walk is a version of the noise reinforced random
walk when the typical step X has distribution P (X =1) = P (X = —1) = 1/2 with memory
parameter p = 2qg — 1.

Getting back to our setting, we maintain the notation introduced at the beginning of Section
4.5.2 for the noise reinforced random walk for a memory parameter p € (0,1). Our first observa-
tion is that the martingale (4.86) associated to the elephant random walk is still a martingale in
our setting — we stress that the reinforcement parameter ¢ in [11] corresponds to the parameter
p = 2¢g — 1 in our context. This martingale plays a fundamental role in our reasoning, and also
played a central role in [16, 15]. More precisely, let a1 := 1 and for n > 2 we set

['(n)

n—1
-1
Qp = —————— = Y, 4.87
" T(n+p) ]!_[1 k (4.87)

A~

for 7, = %. We write %, = J(Xl, ..., Xy) the filtration generated by the reinforced steps.
The following lemma is taken from [16].

Lemma 4.26. [16, Proposition 2.1] Suppose that the typical step X is centred and in La(P). Then,
the process M defined by My = 0 and M, = a,S, for n = 1 is a square-integrable martingale
with respect to the filtration (Fy,).

In order to establish tightness for our sequence of reinforced skeletons, we will make use of
the explicit form of the predictable quadratic variation (M, M) of this martingale, which is the
process defined as (M, M )p = 0 and

\%
—_

n
(M, My, = D E[AM) |1 Fia|,  n
k=1
In this direction, we introduce:

Vo= X24+... 4+ X2 n>1,

with Vg = 0. The following lemma is also taken from [16] and was the main tool for establishing
the invariance principles proven in that work.

Lemma 4.27. [16, Proposition 2.1] The predictable quadratic variation process (M, M) is given
by (M, M)y =0 and forn =1,

" S Vi
(M, M)y, =+ aj ((1—19)02—1?2( Al pt 1>, (4.88)
k=2

where the sum should be considered null forn = 1.
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Proof of tightness

We stress that the f.d.d. convergence of the sequence of reinforced skeletons towards a NRLP é
of characteristics (a, ¢, A, p) was already established in Theorem 3.1 of [19].

Proposition 4.28. Let p < 1/2 be an admissible memory parameter for the triplet (a,q?, A).
Then, the sequence of laws associated to the reinforced skeletons

{(S[(:gj)te[o,l] :neN} s tight in D[0, 1]. (4.89)

~

Therefore, the convergence (Sl(n)J>

g F .
nt|/tef0,1] ~ (&t)te[o,1] holds in DO, 1].

The reason behind the restriction p < 1/2 and why we don’t expect our proof to work for p > 1/2
is explained in Remark 4.30, at the end of the proof.

Proof of Proposition 4.28 for centred ¢ with compactly supported Lévy measure.

Until further notice, we restrict our reasoning to the case when £ is a centred Lévy process,
with Lévy measure A concentrated in [—K, K] for some K > 0, and without loss of generality
we suppose that K = 1. In consequence, £ has finite moments of any order and we set a,% =
E[f%/n] = E[(X{”)V] Notice that under our standing hypothesis, £ writes

t
th sPdB, + €9, telo,1],
0

for some Brownian motion B independent of é (3). Further, remark that under our restrictions,
the family of discrete skeletons (S’]gn)), for n € N, have typical steps centred and in Lo(IP).
Consequently, we can make use of Lemma 4.26.

Next, to establish Proposition 4.28 under our current restrictions, we claim that it would be

enough to show that the following convergence holds,

n PR
(" aguus i) wor oy (4.90)

where now, the sequence on the left-hand side of (4.90) is a sequence of martingales, while the
process on the right hand side is the martingale introduced in Proposition 4.4, viz.

t
N; = f sPdB, +t PP telo,1].
0

Indeed, for each n, let M" be the continuous time version of martingale of Lemma 4.26 associated
with the n-reinforced skeleton (S ](cn)) keN, 1.€.

~

n o _ (n)
M[ntj = alntJS

nt)r 120

n

and remark that by Lemma 4.27, the predictable quadratic variation of M, (-] is given by

S (5% W
n n 2 2 2 2 - —
<M , M >[ntj = ]1{1/n<t}0n+kz_:2ak <(1—p)an—p (k—1)2 TP ) ’
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It follows that for each n € N, the following process

Nyt = an[ZLtJ = npa[ntjgl(ggj, t =0,

is also a martingale, and its predictable quadratic variation writes:

[nt] (g(n) 2 ™)
n n 2 n n 2p 2 2 2 2 2 \"k—1 k—1
(N™ N™) =nP(M" M >lntJ = g1 /m<yn pan+np2 aj, <(1—p)an—p =17 +p _1> .

k=2 k
(4.91)
Moreover, by Stirling’s formula, we have
r
an=i~n_p, asn 1 oo,
I'(n+p)

which gives:
nPaj, ~tP,  asn 1o

This yields the claimed equivalence between (4.89) and (4.90) under our current restrictions for &.
For technical reasons, we shall prove first that the convergence of the martingales (N") towards
N holds in the interval [, 1], for any € > 0. This leads us to the following lemma:

Lemma 4.29. For any € > 0, the sequence (N{')se[c 1] for n € N is tight.

Proof. We denote by (.#/") the natural filtration of N”. By Aldous’s tightness criterion (see for
e.g. Kallenberg [57] Theorem 16.11), it is enough to show that for any sequence (7,) of (bounded)
(#")-stopping times in [¢, 1] and any sequence of positive real numbers (hy,) converging to 0, we
have

lim [N ., — Np | =0, in probability.

n1oo

By Rebolledo’s Theorem (see e.g. Theorem 2.3.2 in Joffre and Metivier [56] ) it’s enough to show
that the sequence of associated predictable quadratic variations ((N™, N™)) satisfies Aldous’s
tightness criterion, i.e. that

Hm(N"™ N, o —(N" N"). =0, in probability.

ntoo

In this direction, by (4.91), we have

2 elnfn)] 2 2 2 (S(Igtn)l)z Vk(n)l
n n - n n — p _ _ — —
k=|ntn]+1
) [n(Tn+hn)| ) ) | (Tn+hn)| ) ‘A/k(n)1
< (1—p)n® Z agoy, +p-nP Z U (4.92)
k=|ntn]+1 k=|nt,|+1

and it remains to show that both terms in the right hand side converge to 0 in probability as
n 1 oo. The key now is in the asymptotic behaviour of the series ZZ:l az. As was already pointed
out in [11], for p € (0,1/2), we have

n

. _ 1

1im nQp 1 Z ai = 1— o) (493)
k=1 p

ntoo
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Furthermore, since the Lévy measure of £ is compactly supported, it holds that

o2 =E|(X")?| =E|&, | =0/n), asnte (4.94)
Now, from (4.93) and (4.94) it follows that
lim (1 — p)n?~1 [”(Tih”” a2 =0 as
ne g k=|n7,]+1 b B

and a fortiori in probability, which entails that the first term in (4.92) converges in probability
to 0

as n 1 o0. In order to show that the second term in (4.92) also converges in probability to 0, we
need to proceed more carefully. First, since 7, € [, 1], we can bound the second term in (4.92)
by

_ SUP|pe <k<n
n2p Z azk - < 2P i J[néj k Z a%
k=|n7n|+1 k=|n7n|+1
. 2 —_— —_ .
Next, since fn—; ~ n?P~1e=1 in order to proceed as before we need to show that

sup Vk(n) = O(1), in probability as n 1 oo,

|ne|<k<n

i.e. that the sequence is stochastically bounded. To do so we proceed as follows: for each n,

notice that the process
VI = (X2 4 (X2 k=,

is the reinforced version of the random walk
VY = (X2 4 (xR k=1

where (Xi(n))2 are 1.i.d. variables with law & /- Inorder to have a centred noise reinforced

random walk, for k > 1 set Yk(n) = (X’én))Q — E[f%/n] and we introduce:
o v,g ) g [gl/n]
= (7 -Elg,]) + o (R -E|g,]) =7 e,

Now, the process (W,g )) reN 1S the noise reinforced version of the centred random walk defined
for k > 1 as

ngn) _ Vk(n) _ R [ff/n]
(xR -E[&,]) 4 (P -E[2,]) = v v,

where (Y;(n))ieN are i.i.d. with law f%/ - [ff/n] We can now apply Corollary 4.3 from [21] to
W™ recalling that o2 = E[¢2 /n] O(1/n), we have

E [sup (f/k(")>2] =E [sup (Wén) + k‘ai)j < CE [sup <W]£”)>Q] + O(1)

k<n k<n k<n

'E l(i%/n -k [5%/n]>2] n+0(1).
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Once again, since £ has compactly supported Lévy measure, E[{% /n] and [E[ f /n] are both O(1/n)
as n 1 o0 and we deduce that

E lsup (Vk(n))Q] =0(1), asn?too.

k<n
Hence, by Markov’s inequality the sequence (sup<, Vk(n))n is O(1) in probability and we can
conclude as before by bounding as follows for L > 0:

Vk(n) |_7’L(T" +hn)J

doai >

k=|nrn]+1

SUP[nsjsksn

[ne]

P [ n?

R n2p I_n(Tn"th)J
<IP<suka(n)>L>+IP L— Z ai >

ks<n [nsj k=|ntn]+1

O

We shall now conclude the proof of Proportion 4.28 under our standing assumptions, and
in this direction recall our discussion prior to Lemma 4.29. To extend the convergence to the

interval [0, 1] we shall use a truncation argument similar to the one employed in Section 4.3 of
& .

[21]. For each € > 0, we have (N{")ie[c,1] = (Nt)e[e,1] and since (Nite)ieoa] = (NVt)ieo,1] by

right continuity (extending N.i. for ¢t € [1 — ¢, 1] identically as the constant N; ), we deduce by

metrisability of the weak convergence that there exists some sequence (£(n)),en, converging to 0

slowly enough as n 1 o0 such that (N{*)se(n),1] = (IVt)ie[o,1] and we only need to show:

sup npa[nsJS[(;;)J — 0, in probability as n 1 oo. (4.95)

s<e(n)

In this direction, notice the inequality

|ns| V(n)
(N™ N™¢ < n*Po? +n? Z a2 ((1 —p)o2 +pkk1> .
k=2 N

Since ]E[V,{Sn)] = ko2, an application of Doob’s inequality and the previous display yield that, for
any 0 > 0, we have

P ( sup |npalnsjg[(gij| > 5) <6 °E [<N(”),N(")>€(n)]
s<e(n)

|nt] (™)
<6 2n%Po? + 672K | n? Z a} | (1—p)ol+pt—r
= k—1

[ne(n)]
<6 202 Z az.
n=2

From the asymptotics,

ntoo

n
1
lim 2P~ kz_:l a; = s and o2 =0(1/n),
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we deduce that, as n 1 o0, the convergence (4.95) holds and we can conclude by an application of
Lemma 3.31 - VI from Jacod and Shiryaev [54].

Remark 4.30. Before proceeding, we point out that our proof no longer works for p > 1/2
indeed, one might notice that the change in the asymptotic behaviour of the series >, _, ak for
p = 1/2 makes the preceding reasoning unfruitful. Let us be more precise: these series possess
three different asymptotic regimes depending on p and are the reason behind the different regimes
appearing in the behaviour of the Elephant random walk, see e.g. [11]. More generally, they are
behind the three regimes appearing in the invariance principles [21, 16]. When p > 1/2, there is
no Brownian component and the martingale ¢ 2£®) is no longer in Ly(P) because Y (t) € L,(IP)
for ¢ < 1/p. Since N is converging weakly towards t*pft(?’) by (4.90), working with the sequence
of quadratic variations (N, N™) might not be the right approach to obtain tightness.

Proof of Proposition 4.28, general case.

Let us start by introducing some notation. First, if N is the jump measure of é , we will shorten
our notation for the compensated integrals and simply write &(Li),(t) = (]l{ug\a:|<v}$ * N(Sc))t, for
0 < u < v. Hence, for K > 1, we can write

foK() f +§1K<) tel0,1].

It will also be convenient to introduce the following notation for the sums of jumps: for fixed
0 < a < b, we write

%, Zﬂ{aq%kb} Zﬂxeabxz (t), forte[0,1], (4.96)

so that in particular we have 5(2) = Y1,0. Next, if { can be decomposed into § = LM 4

2)

L@ for independent Lévy processes LW L®) we denote its reinforced skeleton by S ( ) =

(Sv(n)

|nt] <£))te[()71] and we write:
$(g) = §0 (LY 4§ (L)

for the decomposition that is naturally induced. More precisely, the two noise reinforced random
walks in the right-hand side of the previous display are made with the same sequence of Bernoulli
random variables as S(§), and just result from decomposing each increment as

AMg = ALY L A L@

Now, we proceed by lifting progressively our restriction imposed in 4.5.3 as follows:

Step 1: First, if ¢ satisfies that £ = MSK where MSX is the sum of a Brownian motion with
diffusion ¢ and a compensated martingale with jumps smaller than K, by 4.5.3 the following
convergence holds in distribution:

§(n) <M<K) LB+ 583}{ as n 1 . (End of Step 1)

Step 2: 1If bis a deterministic constant, let b- Id := (bt : ¢ > 0) and suppose now that £ can be
written as € = b- Id + M<X. Then, we can write

SMg)y = SN 1d) + S (M=K,



141 4.5. Weak convergence of the pair of skeletons

where the sequence of processes (S (b - Id) : n > 1) is deterministic and converges uniformly to
the continuous function b - Id. Indeed, notice that the reinforcement doesn’t affect the drift term
since S (b - Id); = b|nt|/n. We deduce from [54, Lemma 3.33] that, as n 1 o0, we still have

SO (b 1d+ MSK) = SO (b 1d) + 8O (M=K) Lo 1d+ qB+ (. (497)

(End of Step 2)

From here, we work with the Lévy process & with triplet (a, ¢%, A), with Lévy-Ité decomposition
given by:
E=a-Id+ M +¢®
and we denote its jump measure by A" — in particular, we have ¢B) = Ty 1yex « N. For any

K > 1, we can rearrange the triplet by compensating and modifying appropriately the drift
coefficient, in such a way that we have:

€ =brld+ MK 4 &K,

where ¢2K = Lk Ky * N. Before moving to Step 3, let us make the two following remarks.

e First, notice that for each fixed n, S (£>K ) 5o uniformly in probability as K 1 0.
Indeed, we have

P( sup ]S (fZK)]>5> <P<A5?K¢Ofor somete[O,l]),

te[0,1]

where the right-hand side can be written in terms of the jump process N of £ as
IFD(/\f({(t,fic) e[0,1] x R: |z > K}) > 1) e L (4.98)

The right-hand side in the previous display converges to 0 as K 1 o0 and notice that the bound
does not depend on n.

o Let 5 be the noise reinforced Levy process of characteristics (a, ¢ A ,p) and write its jump
measure by N. Again, we can rewrite § by compensating appropriately and modifying the drift
coefficient, as follows:

€ =brld+qB + ) + Sk .

Arguing as before, we have the uniform convergence in probability bxId + ¢B + éé?’[)( LN é as
K 1 o0, since, by the description of A" given in Definition 4.9, we have

IP( sup |0 (t)] = 5) <P (N({(t,x) e[0,1]xR: |z = K}) = 1) = 1~ (1=P)A((=0. KUK )
te[0,1]

Step 3: To conclude, for K > 1, we write respectively the Lévy process and the corresponding
NRLP without their jumps of size greater than K as

¢<K = preId + M<K, and EK = bgcId + qB + &

In (4.97), we already proved that for each fixed K, we have

~

S (§<K) = K asnt oo,  while by our second remark, it holds that — £SK =4 £, as K 1 .
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Since the convergence in distribution is metrisable, there exists an increasing sequence (K(n) :
n = 1) converging to infinity slowly enough as n 1 o0, such that

~

S(n)(ng(”)) ﬁﬁ, asn 1 oo.

Moreover, we can write

A

S (g) = 5 (féK(n)) + ) (§>K(N))’
where for each € > 0, by (4.98) we have:

' 6(n) (¢=K(n) im 1 — e~ A(=0.K(m)]u[K(n),®)) _
1111{1310P<tes[1(1ﬁ] |SlntJ (5 ) | > 6> < Tlllglol e 0.

We can now apply [54, Lemma 3.31, Chapter VI| to deduce that the convergence S(m) (&) £ ¢
holds.
(End of Step 3)

With this last result we conclude the proof of Proposition 4.28.

Convergence of finite-dimensional distributions

We maintain the notation and setting introduced at the beginning of Section 4.5.

Proposition 4.31. Let & be a Lévy process of characteristic triplet (a,q? A) and denote its
characteristic exponent by V. Fix p € (0,1) an admissible memory parameter, and for each n, let
(Slin), g}in)) be the sequence of n-skeletons and its corresponding reinforced versions as defined in
(4.60). Then, there is the weak convergence in the sense of finite-dimensional distributions,

n a(n f.d.d. A
((S[nt)J)te[O,l]’(S[(nt)J)te[O,l]) - ((ﬁt)te[o,u,(§t)te[o,1]>, (4.99)

~

where we denoted by (§,&) a pair of processes with law characterised by (4.58).

Remark that since the convergence is in the sense of finite dimensional distributions, the
restriction p < 1/2 is dropped. Our proof will rely on two results taken respectively from [19] and
[26]. We state them without proof for ease of reading:

Corollary 3.7 of [19] Let F' be a continuous functional on counting functions such that F(0) = 0
where, with a slight abuse of notation we still write O for the identically O trajectory. Further,
suppose that there ezists ¢ > 0 and 1 < v < 1/p such that |F(w)| < cw(1)Y for every counting
function w : [0,1] — N. Then, if Y is a Yule-Simon process with parameter 1/p, the following
convergence holds in Ly (IP):

T 3 PN (l]) = (1= DE[FO)]. (4.100)
=1

The second result concerns the asymptotic behaviour of .

Lemma 3.1 of [26] The asymptotic behaviour of the characteristic exponent VU as |z| 1 oo is
given by:
o(|z|>*")  when q # 0
1U(2)] = < o(|z]P™M+7)  when ¢ = 0 and S\x|<1 |z|A(dz) =
o(|z|'*")  when ¢ = 0 and S|x|<1 |z|A(dz) < 0.

Now we have all the ingredients needed for the proof of Proposition 4.31.
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Proof. We fix k > 1,0 < A\ < --- < A\ < 1, and let Sq,... 05, be real numbers. In order to
establish the finite dimensional convergence, it suffices to show that

k
exp{ Z XSt + BiSint, )} , (4.101)

converges as n T oo towards (4.58). In this direction, for each n, we write (Né(n)(k))k>17g>1 the
counting process of repetitions of S introduced in (4.67). Recalling the identity (4.68), we can
write,
n
g(n) _ (n) (n) (n) _ (n)
S[ntj = Z Ny (nt]) X, and S[ntj - Z Loy Xy
/=1 /=1

n

with E[ei)‘Xf.gn)] — en YO for every £. Then, by independence of the counting processes (N, L;(n) (k) k=101
(n)

from the sequence (X,")/>0, the characteristic function (4.101) can be written as follows

k
exp{ 2 (AjSpnt,) + 5]5[%1)}

n k
=K exp {z Z Z ()\j]\/'e(n)(lntjj) + ﬁjﬂ{gg[mﬂ}) Xén)}
=1 \j=1

n

1
=K exp{ EZ ZAN nt] +ﬁ]]l{g<ntjj} }

Remark that since the law of (Né(n)u{?))k}l’g;l doesn’t depend on n, we can drop the up-script
(n) in the last display. Next, recall that Ny(|nt]) = 0 for all ¢ € [0, 1] if ey = 1 while on the other
hand, if ey = 1, Ny(|ns|) = 0 for |ns| < I, and Ny(|ns|) = 1 if |ns| =1 . Hence, we have:

Lietnay = U npuspzr) - om {ee =0k

By the previous observations, we can write:

n k
1
- DTU DN N(Ints)) + Bi L,y (4.102)
j=1
1 n 1 n k
=a .Y ZAN?WM+@{MMN}1mm+ 2,0 | 2 Bty | Leomny-
=1 j=1 =1 j=1

Now, let us establish the convergence in probability of both terms in the previous display sep-
arately. Starting with the first one, we introduce the functional F' : D[0,1] — C defined as
follows:

_\11<ZAJW ) + Bi L) []}>, (4.103)

for w : [0,1] — N a generic counting function. This is a Q - a.s. continuous functional, since
w = Ly (s)ef1,00]) can be written as w — w(s) A 1, which is a composition of a Q-a.s. continuous
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functional with the continuous mapping x — x A 1. Moreover, we have F'(0) = 0, and notice that
we can bound:

k k
D INw(ts) + Biliweop| < w(l) ( DAL+ 18] >,
j=1 J=1

by monotonicity of w and the inequality 1, g)ef1,00)y < w(s). Now, by Lemma 3.1 of [26], we
deduce that F satisfies the hypothesis of Corollary 3.7 from [19], since

i ! 2.1/p), ifq+0
!F(w>!<!w(l)l”K<j§W\+!Bj!>, with {zﬁlljg ;fflz& (4.104)

for a constant K that only depends on B(A) and ¢. From an application of Corollary 3.7 of [19],
we obtain the following convergence:

n k
= nl_{%o % Z \I/< Z )\]N ([nt]J) + ﬁj]l{Ne[nt]J>l}>
=1 \j=1
k
= (1 —p)E U ( Z )\jy(tj) + Bj]l{Y(tj)zl}) . (4.105)
j=1

Turning our attention to the second term, similarly, we claim that:

n k n
o1
Jim — > \If< > Bj]l{eqntjj}> Loy =pE (U (; ﬁj]l{Ugtj}> : (4.106)

J=1

Indeed, if for each n we denote by u(n) a uniform random variable on {1,...,n} independent of
the i.i.d. sequence (&), of Bernoulli with parameter p, we have

1 n
—Z <Zﬂﬂl{f<nt )11{a=1} =E (Zﬁﬂl{u )ﬂ{sum 1}

7=1

—E (Zﬁﬂl{u <ty ) P, (4.107)

since €,(,) is independent of u(n) for each n. Further, since u(n)/n converges in law towards

a uniform random variable in [0, 1], the sequence of step processes (1 {u(n)<|n- J})neN converges
weekly towards ]I{Us-}- Consequently, as n 1 c, (4.107) converges towards

k
v ( 2 W{Usm) :
j=1

where we recall that 1<, has the same distribution as 1y (;)>1y by the description (4.2).
Finally, recall the identity of Proposition 4.18 for characteristic function of the finite dimensional
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distributions of the pair (£,€). Tt follows from (4.102) and the limits (4.105), (4.106) that as
n 1 oo, we have the convergence towards the characteristic function of the finite-dimensional
distributions of (¢, &),

k
lim E | exp {z Z (AjS[nt]-J + nglnth)}

ntoo i

k k
— exp {pE m( > Aj]l{y(tj)gl}) +(1-pE|w < D ALy )=y + &Y(si)> }

J=1 J=1

This result paired with the tightness established in Proposition 4.28 proves Theorem 4.19.

4.6 Applications

We conclude this work with three sections devoted to applications.

4.6.1 Rates of growth at the origin

In this section we turn our attention to the trajectorial behaviour of noise reinforced Lévy pro-
cesses at the origin. In this direction let us start by recalling a well known result established
by Blumenthal and Getoor [26] for Lévy processes. Let & be a Lévy process with characteristic
triplet (a,qQ,A) with no Gaussian component, viz. ¢ = 0; in particular S(A) = §. Further, we
make the following hypothesis:

o If S{m <1) |z|A(dz) = oo, the characteristic exponent can be written as follows:

\If)\zf M 1 — izl Ll<1y ) A(dx).
(M) R( {|\\1}> (dz)

Observe that in this case, we have S(A) € [1,2].

o If S{\x|<1} |z|A(dx) < oo, which can happen for S(A) € [0, 1], we suppose ¥ takes the following
form:

T(\) = JR (ei/\x - 1) A(da).

This is, when S[OJ] |z|A(dx) < oo we are supposing that the Lévy process has no linear drift, the
reason being that in that case the behaviour at 0 is dominated by the drift term. We insist in
the fact that when 5(A) = 1 the integral S{\x|<1} |z|A(dx) can be finite or infinite.

We will be working for the rest of the section under these hypothesis, and we will refer to
them as hypothesis (H). It was established by Blumenthal and Getoor in [26] that under (H),
the behaviour at zero of a Lévy process is dictated by the Blumenthal-Getoor index of the Lévy
measure A. More precisely, almost surely, we have:

1}%175_7& =0, ifpfA)<1/y and lirr;lsoup & | =0,  if B(A) > 1/4.
We will show that the same result still holds if we replace the Lévy process & by its noise reinforced
version. Concretely, the main result of the section is the following:
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Proposition 4.32. Let € be a Lévy process with triplet (a,q?, \) satisfying hypothesis (H), and
consider & its noise reinforced version for an admissible parameter p. Then, almost surely, we
have

ltilrgt‘”ét =0, if B(A) < 1/7, (4.108)
while
limsupt|&| = o0, if B(A) > 1/7. (4.109)
tl0

The rest of the section is devoted to the proof of Proposition 4.32 and it is achieved in several
steps. We start by proving the second statement (4.109), in Lemma 4.33 we prove (4.108) for
B(A) = 1, S|x|<1 |z|A(dz) = oo and the case B(A) < 1, S\x|<1 |z|A(dz) < oo is treated separately
in Lemma 4.35.

Proof of (4.108). Tt suffice to prove that for some r > 0 and € > 0 a.s. there exists a sequence of
jumps occurring in [0, ] at times, that we denote by (¢;), satisfying

|A§tz | > t;y—r.

Now, recall from the discussion following (4.39) that the jump measure N of é dominates a
Poisson point process with intensity (1 — p)(du ® A), say N’. If we denote the atoms of N by
(ui, z;), we deduce that

#{(ui, z;) e N u; € [0,¢e] and |z;] > 2u] "},

is distributed Poisson with parameter

(1—p)du® A <(u,x) e0,e] x R : 2]/ > 2. u) - f (2—1|x|1/<v—r> A 5> A(dz)(1 — p).
8 (4.110)

Now, take r > 0 small enough such that the inequality 1/(y —r) < S(A) still holds. For such a
choice of r, the integral (4.110) is infinite by definition of the index 5(A) and the claim follows. [

Now we focus on showing that lim, | t*7|§t = 0 for v € (0,1/8(A)). In this direction, let us
start introducing some notation and with some preliminary remarks. First, notice that since we
are interested in the behaviour of é at the origin, we can rely on the original construction in [19] in
terms of Poissonian sums of Yule-Simon processes that we recalled in Section 4.2.3. Next, under
(H), é can be written either as a sum of a compensated integral é (3) and a reinforced compound
Poisson process é @) viz.

£ =60 4 £0) if BA) > 1, (4.111)
or as an absolutely convergent series of jumps,
£=YAE, te(o1], if B(A) < 1. (4.112)
s<t

We stress that if S(A) = 1, € takes the form (4.111) or (4.112) depending respectively on if
S{le <1} |z|A(dx) is infinite or not, and remark that 7 can be strictly larger than one only when
B(A) < 1. Since f (2) is a finite sum of weighted Yule processes and f(gz) = 0, independently of

the value of 3(A) it holds that limy g t_7§§2) = 0 and we can consequently restrict our study of
(4.111) resp. (4.112) to the case where & = £B) resp. € has Lévy measure concentrated in [0,1]
— and hence is a reinforced, driftless subordinator.
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Lemma 4.33. Suppose that B(A) =1 and let v e (0,1 A 1/5(A)). Then,

IimE |sups™” A(g)] = 0.
0 Lég |§s |

In particular, if 5(A) = 1 with S{\x|<1} |z|A(dx) = o, we have limy t_7|é£3)\ =0 a.s.

Proof. Recall from Proposition 4.4 that (t_pét(g))te[m] is a martingale. We start by fixing s < u
two times in [0, 1] and notice that for any r € (8(A),1/p A 2) (or r = 2 if B(A) = 2 ), by Doob’s
inequality in L, (IP) we have

E [ sup t_7]€§3)|] < s OPR| sup t_p\ét(g)|]

te[s,ul | t€[s,u]
- 1/r
. N 1/r
< S_(fy_p)E Sup t_pr‘flgg)’T] < C- 8_(7_p)u_pE [‘&(LP’)’T] y (4113)
| te[s,u]

for some constant c. In order to bound the expectation on the right hand side, we recall from the
proof of Lemma 2.6 in Bertoin [19] that the following bound holds ? for some constant C' large

enough:
1/r
N 1/r
E[E0]" < CE | S viwrlalr| (1.114)
J
Next, by Campbell’s formula we have
E | YY)l | =B @] A <. (4.115)
j {lzl<1}
J

and remark that E[Y (u)"] = u - E[n"] where n stands for a Yule-Simon random variable with

) 1/r 1 .
\T] < K -u/" for a positive constant

parameter 1/p. It now follows that we can bound E [|é£3

K depending only on r. This observation paired with the bound we obtained in (4.113), yields:

E | sup t_7]§:§3)\ < s 0Py K (4.116)
te[s,u]

for a finite constant K that only depends on the choice of r. Now, set tg:=1,t, :=27", forn>1

and fix N € N. Applying the bound (4.116) to each interval [2~("*+1D) 277] we get:

E lsup t”\ft(g)q < 2 E[ sup t7]£t(3)|] <27P Z on(y=1/r), (4.117)
t<tn n>N t€[tn+1,tn] n=N

and to conclude it suffices to show that, for an appropriate choice of r, the inequality v —1/r < 0

is satisfied. Since r € (5(A),1/p A2), we can always choose € small enough such that r := 5(A)+e

belongs to (B(A),1/p A 2) and v < 1/(B(A) + €), since we recall that v < 1/5(A). For such a

particular choice of r, the series (4.117) converge and we obtain the desired result. In particular,

this proves the statement of Proposition 4.32 when S{\x|<1} |z|A(dx) = oo, which is when £ =

~

£, ]

2The bound was first established for non-atomic Lévy measures A, but it was later shown that a similar bound holds if
A has atoms by an approximation argument.
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The statement (4.108) of Proposition 4.32 is incomplete only when the Lévy measure fulfils
the integrability condition S{m <1} |z|A(dz) < 0. Recalling the discussion prior to Lemma 4.33,
we henceforth assume that the Lévy process is a driftless subordinator with jumps smaller than
one, say (73), and we denote by (Tt) the corresponding reinforced version for a memory parameter
p € (0,1). It is then convenient to work with its Laplace transform at time ¢ € [0, 1],

E [e_ATt] — exp ( ~E[(Y (£)N)] ) for A = 0,

for ®(\) := (1 —p) g, (1 — e ™) A(dz) and Y is a Yule-Simon process with parameter 1/p. The
following result from [26] will be needed and we state it for the reader’s convenience:

Theorem 4.34. [Blumenthal, Getoor][26] If ®(\) is the Laplace exponent of a driftless subordi-
nator with Lévy measure A, then for any e > 0,

B(N) = oA WFe) g At o,

Let ¢ > 0, fix A > 0 and observe from Theorem 4.34 that for ¢t € (0,1), there exists positive
constants K and R such that

By < K it nA\t77 < R,
n <
(gt~ "N i > R,

Consequently, for ¢ € (0,1) the following bound holds:

1oAY <t (K + (Agt)” (A)“) — tK + ()P +el—B0) e, (4.118)

Lemma 4.35. Let T be a reinforced subordinator of memory parameter p and Lévy measure A.
Then, for any v € R such that v < 1/8(A),

limt 7, =0 a.s.
t|0

The proof relies on the same techniques used for subordinators, see [17, Proposition 10 - II1.4].

T

Proof. Consider t € [0, 1] and fix a > 0. An application of Markov’s inequality for g(r) =1 —e~
and the inequality g(r) < r for r = 0 yield

~

P(Ty > a) < (1 - e )7t (1-exp{-E[® (a_lY(t))]})
<l-eH'Ef[@(a Y (®)].

Since ®(0) = 0 and Y(¢) conditioned to Y(¢) > 1 follows the Yule-Simon distribution with

parameter 1/p, for a constant C' we deduce the bound:

P(7; > a) < CtE[® (n/a)], (4.119)

where we denoted by 7 a Yule Simon random variable with parameter 1/p. Now, let h be an
increasing function with lim; g h(¢) = 0, and consider a = h(27"), t = 2-(»=1) Then, by (4.119)
and from summing over n € N, we deduce

i P (Tg_(n_l) > h(2_”)> < 20E [i 27"® (n/h(2_”))] : (4.120)
n=1

n=1
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In order to apply a Borel-Cantelli argument, we specialise in our case of interest: we set h(t) := t7
and we show that the right hand side of (4.120) is finite. From the first inequality in (4.118) with
A =1, we get

o0 0 "
D27 (n/h(27) < K Y 27 4 P WTE Y (27t mA e,
n=1 =

n=1

For & small enough, we have both nf(M+e ¢ Li(P) (since n is in Ly(P) for any ¢ < 1/p and
B(A) < 1/p) and 1 —vyB(A) — ve > 0, by our standing assumption 1 > v/3(A). Consequently, we

have
Q0

P (T2—<n—1> > (Q_n)v) < o,

n=1
which entails by Borel-Cantelli that TQ—(n—l) < (27™)7 holds for all n large enough, a.s. From
a monotony argument, it follows that a.s. T, < 7 for all ¢ small enough and in consequence
lim supy t=T; < 1. If we now take h(t) = 6t for 6 € (0,1), by the same reasoning we obtain
limsupy o ¢~ 7T} < 0 which leads to the desired result. ]

Finally, our proof of Proposition 4.32 is complete.

4.6.2 Noise reinforced Lévy processes as infinitely divisible processes

As was already mentioned in Section 4.4.3, NRLPs are infinitely divisible processes — abbreviated
ID processes. In this final section, we study their properties under this new scope. In this
direction, we start by giving a brief overview of the theory; our exposition mainly follows Rosinksi
[86] and Chapter 3 of Samorodnitsky [87]. Then, we identify the features of NRLPs in this setting
and more precisely, we identify the functional triplet of NRLPs, in the sense of ID processes. The
objective here is hence to put Lévy processes and their NRLPs counterparts in the context of
ID processes and compare then through this new lens. As an application, making use of the
Isomorphism Theorem for ID processes [86, Theorem 4.4] we establish the following result:

Proposition 4.36. Leté be a noise reinforced Lévy process with characteristics (a,0,A,p). Let
f:R — R* be a bounded, continuous function with f(x) = O(z?) at 0. Then, we have

h|0

lim h_l]E[f(fh)] —p Y1 -p) fR A(dx) Z f(kx)B(k,1/p +1).
k=1

Note that the probability distribution appearing in the previous display is the Yule-Simon
distribution (4.3). For an analogous result in the setting of Lévy processes, we refer to [86,
Proposition 4.13] and we shall use in our proof similar type of arguments. To simplify notation,
for the rest of the section we work with NRLPs in [0, 1], but our exposition can be adapted
to RT with some slight changes. Hence, we can make use of the construction of NRLPs from
[19] in terms of Poissonian Yule-Simon series that we recalled at the end of Section 4.3. This
construction will be used for the rest of the section.

Preliminaries on infinitely divisible processes

Let us introduce some standard notation mostly taken from [86]. For 7" a nonempty set, we
denote by R” the set of R-valued functions indexed by ¢t € T. If S < T is an arbitrary subset
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and e = (e(t))ser € RT, we write eg for the restriction of e to S. Further, let 7g be the canonical
projection 7g : RT — R from R” into R, viz. the function defined as 7g(e) := eg. For finite
subsets of T of the form I := {t1,...,t;} = T, the space R’ is identified with R* and we write:

er = (e(t1),... e(ty)) e RL.

As usual, the space R is equipped with the cylindrical sigma field B7 := o(r; : t € T) generated
by the projection mappings. For any arbitrary S c T, we denote by Og the 0 element of R and
we write %’g = {Ae $B°:0g¢ A}. Consequently,

7r§1(05) —{eeRT:e(t)=0forallte S} =: 05 c RT.

Notice however that this subset is not %! measurable when S is uncountable. Finally, for
z € R we set [z] := 2l <py and if 2 = (21,...,2%) € R*, the term [z] should be interpreted
component-wise, viz. [z] := ([z1], ..., [zx]). Now let us start with the following definition:

Definition 4.37. An R-valued stochastic process X = (Xy)wer is said to be infinitely divisible (in
law) if for any n € N, there exist independent and identically distributed processes y®h |y ®n)
such that

xZywd o ywon)

When T' = {1} is a singleton, this is just the definition of a real valued infinitely-divisible
random variable, in which case, the characteristic function of X takes the Lévy-Khintchine form:
. 2 .
E [ezexl] = exp {i@b - %92 + f <ewz -1- 29[95]]) I/(d:z;)},
R
for q,b € R, v a Lévy measure. Further, it is well known that the set of infinitely divisible random

variables and distributions of Lévy processes are in bijection and it is clear that if X is a Lévy
process with characteristic exponent as in the previous display, we have

xZy®nl) .. 4y

where for each i € {1,...,n}, Y (™) is an independent copy of a Lévy process with characteristic
triplet (b/n, q/n,v/n). Said otherwise, Lévy processes are infinitely divisible processes. Moreover,
from the formula for the characteristic function of Proposition 4.2, it is clear that NRLPs are in
turn infinitely divisible.

Now, recall that a Gaussian process X = (X;)er is a T-indexed process satisfying that, for any
I ={ty,...,t} < T, the vector X1 = (X4,,...,X3,) is Gaussian. In the sequel we also assume
that the Gaussian processes we work with are centred. Gaussian processes are characterised
by their covariance function, in the sense that the law of X is completely determined by the
semi-definite positive function I' : 7" x T" — R defined by

['(t,s) :=E[X;X,], fort,seT. (4.121)

The following characterisation of infinitely divisible stochastic processes shows that they are the
natural generalisation of Gaussian processes:

Proposition 4.38. [Proposition 3.1.3][87] An R-valued stochastic process X = (Xi)er is in-
finitely divisible if and only if for any finite collection of indices I = {t1,...tp} = T, the random
vector X1 = (Xy,,... Xy,) is infinitely divisible.
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Hence, if X is an infinitely divisible process, by Lévy-Kintchine representation and the previous
proposition, for every I = {t1,..., t} there exists: an R¥-valued measure v;(dz) verifying

J 1 A |z?vp(dz) < oo, and vr ({0r}) =0,
Rk

a semi-definite positive I x I matrix I'; and an R* vector, that we denote as b(I), satisfying for
every § € R’ the identity:

tel RY

E [exp {Z 9%}] = exp {i<b([), 0y — %<6 I'7,60)+ f (ei<0,x> — 11—, [[37]]>) Vj(d:c)} _
(4.122)

It is possible to show that one can recover the collection of triplets ((b(I),Ty,vy): I < T, |I| < o)
from a so called functional triplet (b,I',7), consisting in a path b € R”, a covariance function
I':T x T — R and a path-valued measure 7 defined in R”, satisfying for any finite / < T, that

b(I) = mr(b) Iy =T, vi(dz) =von;'(dz) in A,
where v satisfies some regularity and integrability conditions that we now introduce:

Definition 4.39. A measure 7 on RT is called a path Lévy measure if it satisfies the following
two conditions:

(i) Sprle@®)|* Ali(de) <o forallteT.
(ii) For every Ae BT, there exists a countable subset Ty = T such that 7(A) = ﬂ(A\ij(OTA»'

Moreover, we consider the following third condition:
(i) There exists a countable subset Ty < T such that 17(7?}01(0%)) =0.

Then, (iii) is a stronger statement than (ii) and it has been shown that a path Lévy measure
is o-finite if and only if (iii) holds — see e.g. [86]. Condition (ii) states roughly speaking that
v "does not charge the origin”. As we already mentioned, in general O is not measurable and
hence we can not state this condition as in the finite-dimensional case of Lévy measures. One
of the main results of the theory states that infinitely divisible processes are in bijection with
functional triplets (b, I', 7), we refer to [86] for the proof:

Theorem 4.40. For every infinitely divisible stochastic process X = (Xi)wer there exists a unique
generating triplet (b,I', ) consisting of a path b € RT, a covariance function T in T x T and a
path Lévy measure v in RT such that for any finite I < T,

E [exp {iZQtXt}] = exp {z’<bj, 0y — %<6 I'7,60)+ J (ei<9,ez> —1— 8, [[e[]]>) p(de)} .

tel RT
(4.123)
Conversely, for every generating triplet (b,I', ) there exists an infinitely divisible process satisfying

(4.123).
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Maintaining the notation of Theorem 4.40, it follows in particular that the law of any ID
process X can be written as a sum of two independent processes X Za + P, where G is Gaussian
with covariance I' and P is a so-called Poissonian ID process. When the equality X = G + P
holds almost surely, we call respectively G and P the Gaussian part and the Poissonian part of
X. Let us conclude our presentation with the following notion that will be of use:

Definition 4.41. A process V. = (Vy)er defined in a measure space (S,.,n) is called a repre-
sentant of a path Lévy measure v if for any finite I < T, we have

n(sesS : Vi(s)e B) =vr(B), for every B € AL.
The representation is called exact if no V=" = 1.

This is, if V is only a representant, the measure v o V! might not be a Lévy measure since
it might ”charge the origin”. In the situations we will be interested in the representations will
always be exact, and we only enunciate the weaker definition to write the results we need in their
full generality. Representants allow to build explicitly Poissonian ID processes in terms of Poisson
random measure, for more details we refer to [86], see also our brief discussion before the proof
of Proposition 4.36 below.

The characteristic triplet of a NRLP

We can now start investigating Lévy processes and their reinforced counterparts as ID processes,
and we start with a basic analysis of the former. More precisely, we identify the path Lévy measure
of Lévy processes as well as an exact representant. These results are known [86, Example 2.23
] and the statements are only included to contrast with the analogous results for NRLPs — see
Lemma 4.44 below.

Lemma 4.42. The following assertions hold:

(i) Let & be a Lévy process with characteristic triplet (a,q,\). The path Lévy measure v of £ is
given by,
7(de) := (At @A) o V" 1(de),

where we denoted by V' the mapping V : Rt x R — RR" defined as V (s,r) 1= ol
(ii) Consider a measure A on R with A(0) = 0 and let V' be defined as in (i). Then, the condition

§1 A |z]2A(dz) < o0 holds if and only if v := (At @A) o VL is a path Lévy measure in RR",
Moreover, if the later holds, the path Lévy measure v is o-finite.

In particular, from (i) we get that V is an exact representant of 7, on (S,.,n) := (R x
R, Z(R*) ® Z(R),dt ® A). We now turn our attention to noise reinforced Lévy processes and
we start with the following technical lemma:

Lemma 4.43. Let & be an NRLP of characteristic triplet (a,0,A,p) and let T = [0,1]. Then,
for any t € T, we have

E [ JR [V (t)a] — Y(t)[[x]HA(da:)] < . (4.124)
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Proof. First, recalling that [z] = z1,<1y, we can write

E[|[Y(t)2] =Y (O)z]]] = E[[Y O[] Ly @y>13] + E[[Y Oz =Y O[] | Loy ¢y<1y] - (4.125)

Remark that since Y takes values in {0, 1,2, ...}, the second term in the right-hand side vanishes.
On the other hand, for any g € (8(A) v 1,1/p), we have

JRE Y O[] 1 gjay (> 13] Aldz) = L|x|<1}E Y () Loy (1)>13] |2 A(de)

SEYI@) | P =1/ )
) (4.126)

where we recall that Y € LY(IP) for any ¢ < 1/p. To conclude, recall the asymptotic behaviour
from (10) in [19],
P(Y(t)>1/|z|) ~ tD(1/p+ )|z|'/?, asz | 0.

It now follows that we can take g close enough to 1/p such that the integral in (4.126) is finite
and we deduce (4.124). O

Now, we identify the path Lévy measure of NRLPs.
Lemma 4.44. The following assertions hold:

(i) Let € be a NRLP with characteristic triplet (a,q?,\,p). The path Lévy measure v of € is
given by,

7= (1-p)(A®Q) oV,
where V : D[0,1] x R — RI% is defined by V(z,y) := zy.

(ii) Let (a,0,A) be the characteristic triplet of a Lévy Process and let V be defined as in (i).
Then, if a memory parameter p € (0,1) is admissible for the triplet (a,0,A), the measure
7= (A®Q) oVl is a o-finite path Lévy measure in RO On the other hand, if
1/p < B(A), then the integrability condition 4.39 - (i) fails.

In particular, from (i) we get that V' is an exact representant of 7, in (S,.%,n) = (D]0, 1] x
R, B(D[0,1]) ® Z(R),Q® A(1 — p)). On other hand, (ii) gives a natural interpretation in the
terminology of ID processes for the admissibility of p for A.

Proof. To identify the Lévy measure, let us write the characteristic function of the finite dimen-
sional distributions of ¢ in the form (4.123) and to simplify notation, we suppose that a,q = 0.
In this direction, consider a finite I = T, @ = (64,,...,60;,) € R, and denote by y = (Y (t))te[o,1]

an arbitrary counting function. Recall the formula for the finite dimensional distributions of &
from Proposition 4.2, for t = 1. It now follows by Lemma 4.43 and the triangle inequality that

JR A(de)E [

we have:

dOYDT 1 g [[W,]DH <. (4.127)
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Now, we can write

[exp { ; Htft}] = exp {(1 —p) JR A(dx)E [e<9’Y’>I —1 -0, YD[[x]]]}
- {(1 ~7) JRXD[O 1] (6@7(%)0 - 11—, ny[]b) A®Q(dz, dy)
wif D - 0.upllA @ Ol )1 )|

I

where all the terms in the previous expression are well defined by Lemma 4.43 and (4.127). Since

(xy)r =m(V(z,y)) and v = (1 —p)(A®RQ) o , we obtain for a clear choice of by that
E [exp 0,¢ }] = exp{ ey — 1 — i, [er])) w(de) + <6, b >} :
BT [ ") I

Next, notice that condition (iii) of Definition 4.39 is satisfied by (A® Q) o V1. Indeed, if we let
Ty := {1} and O, := {e e RT : ¢(1) = 0}, recalling that Y (1) > 1 a.s., we deduce that

ARQ((z,y) : xy € {05, }) = A({0}) =

To conclude, let us show that v satisfies the integrability condition (i) of Definition 4.39 if p is an
admissible memory parameter for A, viz. if 5(A) < 1/p, while when S(A) > 1/p, the condition
fails. By definition of 7, we have

J (le®) A 1) p(de) :j E [|a¥i|? A 1] A(de), (4.128)
RT R

and write:

E[|l2Yil* A 1] = [2PE Ve Livic1/ep ] + P (Ve > 1/]2]) . (4.129)
Now, recalling from (10) of [19] the asymptotic behaviour,
P (Y; > 1/[z]) ~ 4T (p~" + 2|7, as [z] L0,

it follows that if 5(A) < 1/p, the term P (Y; > 1/|x|) is integrable with respect to A and infinite
if B(A) > 1/p. Let us now show that the same holds for

f B[P Ly o Alda). (4.130)
Recalling Lemma 4.1, we get:
11/lal] e
E[YiPLycifep] = D5 P (Yi=n)=tp” Z (np' +1),
n=1 n=1

where we denoted by B the Beta function. Now, from the asymptotic behaviour
B(n,p~' +1) ~n~UP/PP(p~l 4 1), asnt o,

it follows that (4.130) is finite if S(A) < 1/p and infinite if 5(A) > 1/p. O
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Let us state the two last result that we need for the proof of Proposition 4.36. First, the
Poissonian part of ID processes consists, roughly speaking, in Poissonian sums of i.i.d. trajectories
— for instance, remark that for NRLPs those trajectories are the weighted Yule-Simon processes
— for more examples see e.g. [86, Section 3]. More precisely, let X = (X)ier be an infinitely
divisible process with characteristic triplet (b, 3, 7) and suppose that V' = (V})ser is a representant
of v defined on a o-finite measure space (5, .%,n). To simplify notation, set x(u) := 1, <1} and
consider M a Poisson random measure in (S,.7) with intensity n. Then, the following process
has the same distribution as X,

bi + Gy + JS Vi(s)(M(ds) — x(Vi(s))n(ds)), teT, (4.131)
where G = (Gy)er is an independent Gaussian process with covariance Y. The integration in
the previous display should read as a compensated integral, and for a detailed statement we refer
to [86, Proposition 3.1]. For example, notice that if X is a Lévy process, M is Poisson with
intensity dt ® A(dx) and replacing V by =1 (s<.} yields a Lévy-Ito representation. Finally, we give
one of the statements that we use of the Isomorphism Theorem of infinitely divisible processes
needed for our proof.

Theorem 4.45. [Isomorphism Theorem|[86, 4.4] Let X = (X¢)wer be an infinitely divisible process
given by (4.131). Choose an arbitrary measurable function q : S — RT such that {4 q(s)n(ds) = 1
and set N(q) := {ga(s)M(ds). Then, for any measurable functional F : RT — R, we have

B (X0 o] = [ B [F (06 + 1iher) (V@) +0(6) " Ja(oIntas)

S

This allows for instance to study the law of X under different conditionings, for appropriate
elections of q. This will be used in our reasoning below. Now, let us conclude the proof of
Proposition 4.36.

Proof of Proposition 4.36. To simplify notation, we will perform a slight abuse of notation by
writing A instead of (1 — p)A. We start by fixing 0 € (0, 1) small enough such that m = A(|z| >
6) > 0. Now, let h > 0 and as usual, write y = (y(t))se[0,1] for a generic counting trajectory in
D[0,1]. Recall the result of Lemma 4.44 and consider a Poisson random measure M = > d(,, v;)
with intensity A ® Q. Next, we set

1
A, 2) == — L1z Liy(n=1y

and take . .
N(q) = — 1 M(dx,dy) =: —9},.
(a) JDX{:C|>5} wmznM(dz, dy) =: — Sy

mh

Then, from the definition of S} we have
Sp = #{(2i, i) « [ail > 6 and Yi(h) > 1} < #{|A&] > 6 for s < h},

where the inequality stands since a jump x; is repeated at each jump time of its respective Yj,
and consequently might be repeated multiple times in [0, h]. However, we do have #{|A&| =
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d for s < h} = 0 when Sy, = 0. Finally, we consider the functional F'(e) := f(e(h)) for e € D[0, 1].
An application of Theorem 4.45 yields:

r

B[f@sea] = [ E|[s@ s nm)

- Gr(zy(h) 1y n)=1,Q(dy)A(dz),
JD x{|z|=5}

1
51 | Lo QA

for Gp(z) = E [f(fh + z)ﬁ and notice that limy o Gp,(2) = f(z) by right-continuity — remark

that the previous display can be interpreted as the law of éh conditioned at having at least one
jump before time h of size greater than §. If we let 7 be a random variable distributed Yule-Simon
with parameter 1/p under [P, this entails that we can write:

B[ 760 = 7B [£@ s, + 1B [ @1 15.50
— TE[£(E)1 (5,0 + j{ oy ElGaaml A

where in the last equality we used that the law of y(h) under

Liyny=1y
Q) > 1) 2 W)

is the Yule-Simon distribution with parameter 1/p by Lemma 4.1 and that Q(y(h) = 1) = h.
Consequently, we deduce that

hEL/E)] - | Bl @] A)

<IOE[ @]+ | ESen]AG + || RG] - Elfen) A

=: Kl(h,(5) + Kg((S) + Kg(h,é).

Now, we study the limit as h | 0 of these three terms separately and we start with K7 (h, ). Recall
the notation introduced in 4.5.3 for the compensated integrals as well as X5 1= 1(_g ) N
for the process obtained by adding jumps of size greater that 6 > 0. Recall that on {S} = 0}, the
process é doesn’t have jumps of seize greater than ¢ before time h. It now follows that, restricted
to {Sy = 0}, the following equality holds:

gh = éh - inYi(h)]l{lmilzé} =a-h+ g(()i)(h) + E1,oo(h) - Eé,oo(m = A(()i; (h) —cs-h, (4132)

for c5 := —a + (1 —p)~! S{(5<|x|<1} xA(dx) and denote the right hand side of (4.132) by 52 Now
let us first consider the case 3(A) < 2. Since f is bounded and O(|z|?) at the origin, for any
q € (B(A) v 1,1/p A 2) satisfying ¢ < r we can bound |f(z)| < C|z|? for all z € R, for some
constant C' large enough. Then, for a constant C’ that only depends on ¢ we have

Ki(h,6) = h'E 1611 15,0y
<Ch 'E [\52\‘1] < C'h'E [\ }g?g(h)yq] + ORI A,



157 4.6. Applications

Now, arguing as in (4.114), (4.115), recall that for ¢ € (B(A) v 1,1/p A 2) we have the following
bound for the compensated sum of Yule-Simon processes:

E[ |60 m1] < Ely e |

l2|7A(dz) = & - E [17] J 2|?A(dz) < oo, (4.133)
{lz/<d}

{|z[<0}

Since ¢ — 1 > 0, we have limsupy, o K1(h,0) < E[19] S{\$|<5} |z|9A(dx) which can be made arbi-
trarily small for an appropriate choice of §. Remark that the same reasoning applies for K2(9), by
making use once again of the bound |f(x)| < C|z|?. Finally, since for any choice of 0, K3(h,d) | 0
as h | 0, we obtain the desired result.

If B(A) = 2, we set ¢ = 2 and once again recall from page 9 of Bertoin [19] that the inequality
(4.133) still holds. In this case, since pB(A) < 1, p must be smaller than 1/2 and consequently
E [n*] < oo, while of course S{\w|<5} |z|?A(dx) < oo by definition of a Lévy measure. We can then
proceed as before. n

4.6.3 Convergence towards reinforced a-stable Lévy process

Before closing the section, we establish a complementary result that is well known in the setting
of Lévy processes and exploits the explicit form of the finite-dimensional distributions (4.10). We
start with some necessary background on the theory of convergence towards stable distributions
and Lévy processes. We say that a sequence of iid random variables is in the domain of attraction
of an a stable distribution for o € (0,2) if for some sequence a, = n'/®h(n) with h(n) slowly
varying at infinity in the sense of Karamata, the following sequence of normalised sums converges

weakly

Xy 4.4 X
LTt e 2y (4.134)

Qp,
towards a non-degenerate random variable. For simplicity, we exclude the more delicate case of
a = 1 and from now on, a belongs to (0,1)u(1,2). In that case, Y is an a-stable random variable
and its characteristic exponent ¥, can be written as

Uy (u) = clul® (1 - wﬁ tan(m1/2))
u
for some constants ¢ and 8. If we denote by ¢(u) the characteristic function of X7, since p(0) = 1
and ¢ is continuous, a branch of the logarithm log p(u) =: ¥(u) with ¥(0) = 0 is defined in a
neighbourhood of the origin for |u| < r, for » small enough. The condition of X; being in the
domain of attraction of Y can then be equivalently phrased by asking W to be of the form

W(u) = iyu — c|ul*h(u) <1 - zﬂ% tan (a7r1/2)) (4.135)
u

in some neighbourhood of the origin, for B(u) some slow varying function as u | 0 (see for e.g.

Theorem 2.6.5 in Ibragimov and Linnik [52]). Since we will work in the case without centring,

1/0‘, we say that X is in

7 is null when « € (1,2). Further, when the scaling constants a,, are n
the normal domain of attraction of a stable law Y and in that case, h(u) is just constant. The
condition (4.134) can be then written, for n large enough, as

lim n®(u/n"®) = Uy (u) for all u € R.

n—ao
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Notice that in fact, since A in (4.135) is constant, the stronger convergence holds:
tlim 10 (u /YY) = Wy (u) for all u € R,
—0

which entails that
U(u) = O(u®) as u | 0. (4.136)

Now we specialise in our case of interest: suppose that X is infinitely divisible and denote
by W its corresponding characteristic exponent. In order to establish weak convergence, in the
sense of Skorokhod, of a sequence of Lévy processes (") towards another Lévy process &, it is
enough to show that the sequence of random variables (£]') converges weakly towards &; (see for
e.g. Jacod and Shiryaev [54] VII, Corollary 3.6). For instance, if £ is a Lévy process and X = &
is in the domain of normal attraction of an a-stable law ¥ and if we denote by Y (®) a Lévyprocess
with V) £V then

(n_l/o‘fm> Ly« asn 1 oo.
teR+

The conditions under which £; is in the domain of attraction of a stable law Y can be expressed
explicitly in terms of the characteristic triplet of &, see for example proposition 1 in Rosenbaum
and Tankov [85]. Our following result shows that in the context of noise reinforced Lévy process, if
&1 is in the domain of attraction of a stable law Y and p is an admissible memory parameter for the
Blumenthal-Getoor index of the Lévy measure A, that we denote as usual as S(A), then we also
have weak convergence of the sequence of rescaled reinforced processes (n_l/ aént)te]g+ towards
the corresponding reinforced alpha-stable Lévy process V(@) in the sense of finite dimensional
distributions, as long as o < 5(A). Now we state our result:

Proposition 4.46. Consider & a Lévy process and suppose that & is in the domain of normal
attraction of an a-stable distribution Y, for a < B(A). We denote by Y* a Lévy process with

Y® Ly, [fé is the reinforced version of & for an admissible memory parameter p, then p is an
admissible memory parameter for Y and

_ 2 dd
(n 1/a§nt)teR+ e Yy« asn 1 oo

where YO stands for the noise reinforced version of Y* with memory parameter p.

Proof. Recall that by definition of an admissible memory parameter, we have S(A)p < 1. The
first assertion then follows by noticing that the Blumenthal-Getoor index of the Lévy measure
A, of an a-stable Lévy process is (Aq) = a and in consequence 5(Aq)p < 1. We consider times
0<t <-- <ty eR" and we fix ¢ with ¢;, < t. By Proposition 4.10, since nt; < nt for all j,

E [exp {@ Z: A~ Y, }] — exp {nt(l —pE [qf <n1/a é )\iY(ti/t)> ] }

while the finite dimensional distribution of the a-stable reinforced process Y are given by

E [exp {z i AthEO‘)} — exp {t(l —pE [xpa (i )\iY(ti/t)> ] }




159 4.7. Appendix

If we denote by Q(dy) the law of a Yule-Simon process in D[0, 1], y = (y(t))se[0,1] @ generic count-
ing trajectory and we set f(y) = Zle Aiy(t;/t), by hypothesis we have the pointwise convergence

nU(f(y)/n"*) - Va(f(y) asntowo (4.137)
and the result will be established by showing that
Q(ne(f(y)/n') > QWalf(y))  asniow. (4.138)

This convergence will follow from the asymptotic behaviour of ¥ at the origin and at infinity.
First, from (4.136), we deduce that for all |u| < e for € small enough and for some positive
constant C, |®(u)| < Clu|* and in consequence

W (f(y) /YL ) pmivaj <y | < CLF ()]

Since ap < 1, Y(t) has moments for order o and we conclude from (4.137) that
im @ (n¥(F ()" )y o125 ) = @ (LalF))). (4.139)

On the other hand, we recall from Blumenthal and Getoor [26] that, since the Gaussian component
is null, the asymptotic behaviour at infinity of W is dictated by the integrablity of the Lévy measure
at 0 as follows: for any ¢ > 0,

) {o(|u|B(A)+6) when §_, [o[A(dz) = %

o([ul"*%)  when S|x|<1 lz|A(dz) < 0.

If we first suppose that S{|x|<1} |z|A(dx) = oo, since ¥ is bounded on any neighbourhood of the
origin, we deduce that for a constant C’ large enough

n|U(f (1) /0 )Ly g el ey < C'1F ()P ol PR o/ (4.140)

where S(A)/a = 1 Once again, since S(A)p < 1 and Y (t) € Ly(IP) for any ¢ < 1/p, for § small
enough [f(y)|/?™+9 is in L;(Q) and

tim Q@ (nW(F()/n" )L ) v ) = O (4.141)

n—oo

Finally, from (4.141) and (4.139) we deduce the desired limit (4.138). If we now suppose that
S{|x|<l} |z|A(dx) < o0, the bound established in (4.140) is in this case

n\\ll(f(y)/n )|]l{‘f VST < ' f(y )|1+§n1—1/a—5/a

and since S(A) < 1 under the stronger integrability condition {1 A [z|A(dz) < o0, we can proceed
as we did before. O

4.7 Appendix

This short section is devoted to proving a technical identity needed for the proof of Lemma 4.6.
The proof was omitted from the main discussion for readability purposes.



Chapter 4. Noise Reinforced Lévy Processes: Lévy-Ité Decomposition and Applications 160

Fix a Lévy measure A in R, p € (0,1) and denote the law of the standard Yule process Z =
(Z(t))ser+ started at Zg = 1 by Z. We write D[0, ) the space of RT indexed, R-valued rcll
functions. Since Z is supported on the subset of D[0, o0) of counting functions, z = (z;)er+ in the
sequel stands for a generic counting function. Moreover, if F': Rt x D[0, 00) — R* is a measurable
function, we write Z* for the measure in R* x D[0,0) defined as Z°*(F) := {p, duE[F(u, Z)].
Roughly speaking, the objective is to describe the law of the following ”process”:

(u,2) = (Liu<tyZpan(t)—nw)) : t€RT) € D[0, ) (4.142)

defined on the measure space (R x D[0,0),Z*), under different restrictions of the measure Z°.
In this direction, for T' > 0 we write

1
Z°(|u<T):= %duzmz),

N

which is now a probability measure on R™ x D[0, o). The main properties of interest are stated
in the following lemma, and shares obvious similarities with Lemma 4.1.

Lemma 4.47. The following properties hold:
(1) For each fized t > 0, the random variable
(ua Z) - ]l{uét}zpln(t/u) under Z.(' |u < t)v
has the same distribution as the Yule Simon random variable n with parameter 1/p.
(ii) For every T > 0, the process
(u,2) = (Ljy<riyZpin(rey = t€[0,1])  under Z°(-|u<T),
has the same law as the Yule-Simon process (Y (1))sefo,1] with parameter 1/p.

Notice that the conditioning {u < t} is playing the exact same role as the conditioning on
{Y(t) = 1} in Lemma 4.1. Heuristically, (4.142) is then a Yule-Simon process started at a time
chosen according to du in R*.

Proof. (i) Since for each fixed ¢, du ® Z(u < t) = t, for every bounded measurable function
f: R — R, we have

Z* (f (L jueny2pingeju)) lu < t) = £ fo t duE[ f(Z(p(ln(t) - 1n(u))))], (4.143)

where we denoted by Z a standard Yule process. Since Z, is distributed geometric with parameter
e ", it follows from the change of variable y = (u/t)P and (4.3) that (4.143) equals

P F(R)BR 1+ 1/p),
k=1

and the claim follows from (4.3).

(ii) In order to show the second claim, we fix an arbitrary collection of bounded measurable
functions (f;);<x with f; : R — R, and an increasing sequence of times 0 < t; < --- <} < 1,
and notice that

i 1
VA (H Ji Lusrinzpim(re ) v < T> = Jo duE !
i=1

The claim now follows from the description (4.2) by independence between U and Z. O]

k
fi (Mu<e 2 (p(In(t;) — In(u))))
1

1=
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Chapter 5

The structure of the local time of Markov
processes indexed by Lévy trees

THE CONTENT OF THIS CHAPTER IS TAKEN FROM THE PAPER [82], WRITTEN IN COLLABORA-
TION WITH ARMAND RIERA, AND HAS BEEN ACCEPTED FOR PUBLICATION, WITH REVISIONS
PENDING, IN THE JOURNAL Probability Theory and Related Fields.

Abstract. We construct an additive functional playing the role of the local time — at a fixed
point x — for Markov processes indexed by Lévy trees. We start by proving that Markov processes
indexed by Lévy trees satisfy a special Markov property which can be thought as a spatial version
of the classical Markov property. Then, we construct our additive functional by an approximation
procedure and we characterize the support of its Lebesgue-Stieltjes measure. We also give an
equivalent construction in terms of a special family of exit local times. Finally, combining these
results, we show that the points at which the Markov process takes the value x encode a new
Lévy tree and we construct explicitly its height process. In particular, we recover a recent result
of Le Gall concerning the subordinate tree of the Brownian tree where the subordination function
is given by the past maximum process of Brownian motion indexed by the Brownian tree.

Acknowledgments. We thank Jean-Francgois Le Gall for stimulating conversations.
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5.1 Introduction

Excursion theory plays a fundamental role in the study of R, ~indexed Markov processes dating
back to Itd’s work [53]. The purpose of this theory is to describe the evolution of a Markov
process between visits to a fixed point in the state space. To be more precise, consider a Polish
space E, a strong E-valued continuous Markov process ¢ and fix a point x € E, regular and
instantaneous for £&. The paths of £ can be decomposed in excursions away from x, where an
excursion is a piece of path of random length, starting and ending at x, such that in between &
stays away from x. Formally, they consist of the restrictions of £ to the connected components of
Ri\{t e R} : & = x}. In order to keep track of the ordering induced by the time, the family of
excursions is indexed by means of a remarkable additive functional of £, called its local time at
x, and denoted throughout this work by L. It is well known that £ is a continuous process with
Lebesgue-Stieltjes measure supported on the random set:

{teR; : & =z}, (5.1)

and that the trajectories of & can be recovered from the family of indexed excursions by gluing
them together, taking into account the time spent by & at x. For technical reasons, we will also
assume that the point z is recurrent for £&. We stress that excursion theory holds under broader
assumptions on the Markov process £, and we refer to e.g. [17, Chapter VI and [25] for a complete
account.

The purpose of this work is to set the first milestone towards introducing an excursion theory
for Markov processes indexed by random trees. The random trees that we consider are the so-
called Lévy trees. This family is canonical, in the sense that Lévy trees are scaling limits of Galton-
Watson trees [43, Chapter 2] and are characterized by a branching property in the same vein as
their discrete counterparts [66, 91]. At this point, let us mention that Markov processes indexed
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by Lévy trees are fundamental objects in probability theory — for instance, they are intimately
linked to the theory of superprocesses [43, 64]. More recently, Brownian motion indexed by the
Brownian tree has been used as the essential building block in the construction of the universal
model of random geometry called the Brownian map [65, 76], as well as in the construction of
other related random surfaces [10, 72]. We also stress that Brownian motion indexed by a stable
tree is also a universal object, due to the fact that it arises as scaling limit of discrete models [75].
For the sake of completeness, we shall start with a brief and informal account of our objects of
interest.

A Lévy tree can be encoded by a continuous R -valued process H = (H;) called its height
process; and for this reason we denote the associated tree by 7. Roughly speaking, the tree
Ty has a root and H encodes the distances to it when the tree is explored in ”clockwise order”.
Under appropriate assumptions, we consider the pair consisting of the Markov process £ and its
local time L, indexed by a Lévy tree Tr. With a slight abuse of notation, this process will be
denoted in the rest of this work by:

((S’Ua Ly):ve TH) (5.2)

In short, this process can be thought as a random motion defined on top of Tz and following the
law of ((&, L) : t € Ry), but splitting at every branching point of 7z into independent copies.
The role played by {t € R} : & = z} is taken over in this setting by the following random subset
of Ty

Y ={veTy: & =z}, (5.3)

The definition of the excursions of (§y)ver; away from x should then be clear at an intuitive
level — since it suffices to consider the restrictions of (&,)pe7; to the connected components of
Tu\Z . Notice however that we lack a proper indexing for this family of excursions that would
allow to recover the whole path, as in classical excursion theory. Moreover, one can expect the
gluing of these excursions to be more delicate in our setting, since in the time-indexed case the
extremities of an excursion consist of only two points, while in the present case, the extremities
are subsets of Ty of significantly more intricate nature. In the same vein, since the set 2 is a
subset of Ty, it inherits its tree structure and therefore it possesses richer spatial properties than
the subset of the real line (5.1). More precisely, we consider the equivalence relation ~, on Tg
which identifies the components of Ty where (L,),e7;, stays constant. The resulting quotient
space 7}§ :=Th/ ~r is also a tree, encoding the set 2 and endowing it with an additional tree
structure. In the terminology of [66], the tree 7}? is the so-called subordinate tree of Ty by L.
Since each component of Ty where L stays constant is naturally identified with an excursion of &
away from z, a proper understanding of 7}? is crucial to develop an excursion theory for (£,)ue7s; -
This work is devoted to both:

1. Introducing a continuous process suitable to index the excursion of (§,),e7;, away from z;
2. Studying the structure of the random set Z.

As we shall explain, both questions are intimately related and, as we mentioned before, they
lay the foundations for the development of an excursion theory for (£,).e7;,- In the case of
Brownian motion indexed by the Brownian tree, an excursion theory has already been developed
in [1] and has turned out to have multiple applications in Brownian geometry, see e.g. [67, 70].
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However, we stress that in [1] the excursions are not indexed and, in particular, a reconstruction
of the Brownian motion indexed by the Brownian tree in terms of its excursions is still out of
reach. Let us now present the general framework of this work.

In order to formally define the tree indexed process (5.2), we rely on the theory of Lévy snakes
and we shall now give a brief account. The theory of Lévy snakes has mainly been developed in
the monograph of Duquesne and Le Gall [43], and a detailed presentation of the results that we
need is given in Section 5.2. The process (5.2) is built from two layers of randomness. First, as
we already mentioned, the family of random trees that we work with are called Lévy trees. If
is the Laplace exponent of a spectrally positive Lévy process X, under appropriate assumptions
on v, one can define the height process H as a functional of X. In order to explain how Ty is
encoded by H, we work under the excursion measure of X above its running infimum and we
write o for the duration of an excursion. The relation:

dp(s,t) == H+ H —2- inf  H,, forall (s,t)€[0,0]%
snt<u<svt

defines a pseudo-distance on [0, o], and the associated equivalence relation ~ g is defined by setting
s ~p tif and only if dg(s,t) = 0. The pointed metric space T := ([0,0x1]/ ~m,dm,0) is a Lévy
tree!, where for simplicity we keep the notation 0 for the equivalence class of 0. We also write
pH : [0,0] — Tg for the canonical projection on Tg and we refer to Section 5.2.2 for more details
about this encoding. The point 0 is called the root of Tz and, by construction, the height process
encodes the distances to it. We stress that the distribution of 7Tz is characterized by the exponent
¥, and we say that Ty is a ¢-Lévy tree. One of the main technical difficulties of this work is that,
except when X is a Brownian motion with drift, the process H is not Markovian and we will
need to introduce a measure-valued process — called the exploration process — which heuristically,
carries the information needed to make H Markovian. This process will be denoted throughout
this work by p = (p; : t = 0) and its nature has a crucial impact on the geometry of Ty. For
instance, p allows to characterize the multiplicity and genealogy of points of Tz. More precisely,
recall that the multiplicity of a point v in T is defined as the number of connected components
of Tr\{v}. For i e N* U {o0}, we write Multi;(7z) for the set of points of Tz of multiplicity 7, and
the points of multiplicity strictly larger than 2 are called branching points. For instance, if X does
not have jumps, the measures (p; : t = 0) are atomless and all branching points have multiplicity
3. In contrast, as soon as the Lévy measure of X is non-null, the measures (p; : ¢ = 0) have atoms
and the set Multiy, (77) is non-empty. We also refer to [69] for the construction of the exploration
process. The second layer of randomness consists in defining, given 7z, a spatial motion indexed
by Tu that roughly speaking behaves like the Markov process (§¢)tcr, — When restricted to an
injective path connecting the root of 7Ty to a leaf. This informal description can be formalized
by making use of the theory of random snakes [43, Section 5]. More precisely, one can define a
process (Ws, Ag : s € [0,0]) taking values in the collection of finite E' x R —valued continuous
paths, each (Ws, Ag) having lifetime Hy and such that, for each s € R4 and conditionally on Hj,
the path (Ws, As) has the same distribution as (£, Ls : s € [0, Hs]). The second main property
of (W, A) is that it satisfies the snake property, viz.

(Wt<Ht)aAt(Ht)) = (WS(HS>7AS(HS>)7 for every s ~p t.

"More precisely, since the duration ¢ is random, Ty is referred to as a free Lévy tree.
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For simplicity, from now on, we will write (Wt, //it) = (Wi(Hy), A¢(Hy)) for the tip of (W, A¢). By
the snake property, it follows that the process (Wt, Arite [0,0]) is well defined in the quotient
space Tr, and hence it defines a random function indexed by Tz which will be denoted by (5.2).
The triplet (p, W, A) is the so-called 1-Lévy snake with spatial motion (¢, £), a Markov process
that will be extensively studied throughout this work.

Let us now present the statements of our main results. These are stated under the excursion
measure of (p, W, A), but let us mention that we will obtain similar results under the underlying
probability measure. By construction, the study of 2 is closely related to the understanding of

the random set:
{te[0,0] : Wi = x}, (5.4)

since Z is precisely its image under the canonical projection py on Tz. However, note that these
two sets are of radically different natures. As in classical excursion theory for Markov processes,
we shall start by constructing an additive functional A = (At)se[0,+] of the Lévy snake (p, W, A)
with suitable properties and Lebesgue-Stieltjes measure dA supported on (5.4). The first main
result of this work is obtained in Section 5.4 and is divided in two parts:

(i) The construction of the additive functional A [Proposition 5.22];
(ii) The characterization of the support of dA [Theorem 5.30].

See also Theorem 5.15 for an equivalent formulation of (ii) in the terminology of the tree indexed
process (&)veTy,; - Recalling our initial discussion, the process (A¢)er, is the natural candidate to
index the excursions away from z of (&,),e7;,. We are not yet in position in this introduction to
formally state the content of (i) and (ii), but we can give a general description. Our construction
of (A¢)wer, relies on the so-called exit local times of the Lévy snake (p, W, A). More precisely,
if we consider the family of domains {E x [0,r) : r € (0,0)}, for each fixed r > 0, there exists
an additive functional of (p, W, A) that heuristically measures, at every ¢ > 0, the number of
connected components of Tg\{v € Ty : L, < r} visited up to time ¢. This description is informal
and we refer to Section 5.3 for details. We establish in Section 5.4.1 that the corresponding family
of exit local times possesses a jointly measurable version (£} : ¢ = 0,7 > 0), and in Section 5.4.2
we define our continuous additive A by setting:

0
At::J dTD%r, t=0.
0

After establishing that there is no branching point with label x, we give in Section 5.4.3 a precise
characterization of the support of the measure dA. Formally, we prove that:

supp dA = {t € [0,0]: Epu(t) = T, pr(t) € Multia(Tg) U {O}}

We also show in Theorem 5.30 that, equivalently, the support of dA is the complement of the
constancy intervals of (A; : ¢ = 0). In particular, if we denote the right inverse of A by (A; ! :
t = 0), the relation:
A._ QA
Ht — AAt_l’ t 2 O,

defines a continuous non-negative process that plays a crucial role in the second part of our work.
In Section 5.5, we turn our attention to the study of % or, equivalently, to the structure of
the subordinate tree Tlf. Even if this is an object of very different nature, our analysis relies
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deeply on the results and the machinery developed in Section 5.4. The second main result of this
work consists in showing that the process H satisfies the following properties:

(") It encodes the subordinate tree T4 [Theorem 5.31 (i)];

(ii’) It is the height function of a Lévy tree, with an exponent 7:& that we identify [Theorem 5.31
(ii)].

In particular, this shows that 7}? is a Lévy tree with exponent 1; We stress that a continuous

function can fulfill (i’) without satisfying (ii’), and it is remarkable that H A follows the exploration

order of a Lévy tree. We also mention that the previous two points were established — although

with a different construction of the height process H4 — in [66, Theorem 1] for the subordination

of the Brownian tree by the running maximum of the Brownian motion indexed by the Brownian

2. These approaches are complementary, since the techniques employed in [66] rely on a

tree
discrete approximation of the height function, while we shall argue directly in the continuum.
We also mention that one of the strengths of our method is that it gives an explicit definition
of HA which is suitable for computations. This point is crucial in order to study the excursions
of (&)veTs; from z. Our result shows that the height function of the subordinate tree 754 can
be constructed in terms of functionals of (p, W, A), and that A~! defines an exploration of 7}?
compatible with the order induced by H. Property (i’) will be a consequence of our previous results
(i), (ii) and Section 5.5 is mainly devoted to the proof of (ii’). The main difficulty to establish
(ii’) comes from the fact that, as we already mentioned, the height process of a Lévy tree is not
always Markovian. To circumvent this difficulty, the proof of (ii’) relies on the computation of the
so-called marginals of the tree associated with H4. In particular, it makes use of all the machinery
developed in previous sections as well as standard properties of Poisson random measures.

Let us now close the presentation of our work with a result of independent interest which is
used extensively throughout this paper. In Section 5.3, we state and prove the so-called Special
Markov property of the Lévy snake. This section is independent of the setting of Sections 5.4
and 5.5, and we work with an arbitrary (¢, £)-Lévy snake under general assumptions on the pair
(v, €). Roughly speaking, the special Markov property is a spatial version of the classical Markov
property for time-indexed Markov processes. The precise statement is the content of Theorem
5.10, see also Corollary 5.12. This result was established in [66, Theorem 20] for continuous
Markov processes indexed by the Brownian tree, and a particular case was proved for the first
time in [64]. Our result is a generalisation of [66, Theorem 20| holding in the broader setting
of continuous Markov processes indexed by 1-Lévy trees. The special Markov property of the
Brownian motion indexed by the Brownian tree has already played a crucial role in multiple
contexts, see for instance [37, 70, 72] and we expect this result to be useful outside the scope
of this work. We also mention that the special Markov property of the Lévy snake is closely
related to the one established by Dynkin in the context of superprocesses, see [45, Theorem
1.6]. However, we stress that the formulation in terms of the Lévy snake, although less general,
gives additional and crucial information for our purposes. In particular, it takes into account the
genealogy induced by the Lévy tree, and hence it caries geometrical information.

We conclude this introduction non-exhaustive summary of related works. First, as we already
mentioned, we extend to the general framework of Markov processes indexed by Lévy snakes the

2When considering the process (&v, Lo)veTy indexed by the Brownian tree, the fact that the subordinate tree T4 is a
1)—Lévy tree is also proved in [66, Theorem 16] but the construction of its height process is lacking.
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work of Le Gall on subordination in the case of the Brownian motion indexed by the Brownian
tree [66]. Moreover, our results on subordination of trees with respect to the local time are closely
related, in the terminology of Lévy snakes, to Theorem 4 in [23] stated in the setting of super-
processes — the main difference being that in our work we encode the associated genealogy. For
instance, we recover [23, Theorem 4] in a more precise form in our case of interest. We also note
that we expect our results to be useful beyond the scope of this work, for instance in Brownian
geometry. Finally, in the case of Brownian motion indexed by the Brownian tree and when x = 0,
our functional A is closely related to the so-called integrated super-Brownian excursion [5] — a
random measure arising in multiple limit theorems for discrete probability models, but also in
the theory of interacting particle systems [30, 36] and in a variety of models of statistical physics
[40, 51]. More precisely, the total mass Ay is the density of the integrated super-Brownian excur-
sion at 0, see [71, Proposition 3]. In particular, we hope that our construction of the functional
A will be useful to obtain new explicit computations regarding the integrated super-Brownian
excursion and to generalize these computations to related models.

The work s organised as follows: Section 2 gives an overview of the theory of Lévy trees and
snakes. In Section 3, we state and prove the special Markov property for Lévy snakes and we
explore some of its consequences. This section is independent of the rest of the work but is key for
the development of Section 4 and 5. The preliminary results needed for its proof are covered in
Section 5.3.1, and mainly concern approximation results for exit local times. Section 4 is devoted
to first, constructing in Section 4.2 the additive functional A [Proposition 5.22], and afterwards
to the characterization of the support of the measure dA [Theorem 5.30] in Section 4.3. We
shall give two equivalent descriptions for the support of dA, one in terms of the pair (H, W),
and a second one only depending on A. The latter will be needed in Section 5.5 and we expect
the former to be useful to develop an excursion theory — we plan to pursue this goal in future
works. The preliminary results needed for our constructions are covered in Section 4.1. Finally,
in Section 5, after recalling preliminary results on subordination of trees by continuous functions,
we explore the tree structure of the set {v € Ty : & = x} by considering the subordinate tree of
Tr with respect to the local time £. The main result of the section is stated in Theorem 5.31,
and consists in proving (i) and (ii’).

5.2 Preliminaries

5.2.1 The height process and the exploration process

Let us start by introducing the class of Lévy processes that we will consider throughout this
work. We set X a Lévy process on R, and we denote its law started from 0 by P. It will be
convenient to assume that X is the canonical process on the Skorokhod space D(R,,R) of rcll
(right—continuous with left limits) real-valued paths equipped with the probability measure P.
We denote the canonical filtration by (G; : ¢t = 0), completed as usual by the class of P—negligible
sets of G, = \/t>0 G:. We henceforth assume that X verifies P-a.s. the following properties:

e (Al) X does not have negative jumps;

e (A2) The paths of X are of infinite variation;
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e (A3) X does not drift to +oo.

Since X has no negative jumps the mapping A — E[exp(—AX7)] is well defined in Ry and we
denote the Laplace exponent of X by v, viz. the function defined by:

Elexp(—=AX1)] = exp(¢p(N)), for all A = 0.

The function 1 can be written in the Lévy-Khintchine form:

PY(A) = apA + BAZ + f m(dz) (exp(—Az) — 1+ Azl<qy),
(0,00)

where ap € R, f € Ry and 7 is a sigma-finite measure on R* satisfying S(o ) m(dx)(1 A 2?) < .
Moreover, it is well known that condition (A2) holds if and only if we have:

B#0 or J m(dx) x = o0.
(0,1)

The Laplace exponent 1 is infinitely differentiable and strictly convex in (0, 00) (see e.g. Chapter
8 in [61]). Since X does not drift towards oo one has —1)'(0+) = E[X1] < 0 which, in turn, implies
that X oscillates, or drifts towards —oo and that X; has a finite first moment for any ¢. In terms
of the Lévy measure, this ensures that the additional integrability condition S(l, %) m(dz) © < o
holds. Consequently, ¥ can and will be supposed to be of the following form:

Y(\) = aX + A2 + f(o )W(d:p)(exp(—)\m) — 14 A\x),

where now 7 satisfies S(O,oo) 7(dx)(z A 2?) < o0 and «, f € R, since a = ¢/(0+). From now on,
we will denote the infimum of X by I and remark that, under our current hypothesis, 0 is regular
and instantaneous for the Markov process X — I = (X; — infjgy X5 : ¢ > 0). Moreover, it is
standard to see that P —a.s., the Lebesgue measure of {t € Ry : X; = [;} is null. The process
—1I is a local time of X — I and we denote the associated excursion measure from 0 by N. To
simplify notation, we write o, for the lifetime of an excursion e. Finally, we impose the following

additional assumption on :
RS < (A4)
1 YA '

From now on, we will be working under (A1) — (A4).

Let us now briefly discuss the main implications of our assumptions. The condition (A4) is
twofold: on the one hand, it ensures that limy_,., A~ '¢()\) = co which implies that X has paths of
infinite variation [17, VII-5] (the redundancy in our hypothesis is on purpose for ease of reading).
On the other hand, under our hypothesis (A1) — (A3), it is well known that there exists a con-
tinuous state branching process with branching mechanism () (abbreviated ¢-CSBP) and that
(A4) is equivalent to its a.s. extinction. The -Lévy tree can be interpreted as the genealogical
tree of this branching process and is defined in terms of a fundamental functional of X, called
the height process, that we now introduce.
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The height and exploration processes. Let us turn our attention to the so-called height
process — the main ingredient needed to define Lévy trees. Our presentation follows [43, Chapter
1] and we start by introducing some standard notation. For every 0 < s < t, we set

the infimum of X in [s,¢] and remark that when s = 0 we have I; = Ip;. Moreover, since X
drifts towards —oo or oscillates, we must have [y — —oo when ¢ 1 0. By [43, Lemma 1.2.1], for
every fixed ¢ > 0, the limit:

1
Hy = lim - dr 1 5.5
t 61_{% e Jjon T X, <I i4e} ( )

exists in probability. Roughly speaking, for every fixed ¢, the quantity H; measures the size of
the set:
{7’ < t . Xfr_ g Ir’t}7

and we refer to H = (Hy : t = 0) as the height process of X. By [43, Theorem 1.4.3], condition
(A4) ensures that H possesses a continuous modification that we consider from now on and that
we still denote by H.

The process H will be the building block to define Lévy trees. However, H is not Markovian
as soon as m # 0 and we will need to introduce a process — called the exploration process —
which roughly speaking carries the needed information to make H Markovian. More precisely,
the exploration process is a Markov process and we will write H as a functional of it. In this
direction, we write M ¢(IR ) for the set of finite measures on R equipped with the topology of
weak convergence and with a slight abuse of notation we write 0 for the null measure on R . The
exploration process p = (py : t = 0) is the random measure defined as:

<Pt7 f> = J dsls,t f(Hs), t = 0, (56)

[0,]

where dsI,; stands for the measure associated with the non-decreasing function s — I ;. Equiv-
alently, p can be defined as:

pu(dr) i= Bl gy (r)dr + >0 (Ig — Xoo) 6, (dr), £>0, (5.7)
O0<s<t
X57<Isyt

and remark that (5.6) implies that
o, 1y =Ty —Ioy = X¢ — I, t=0.

In particular, p; takes values in M (R ). By [43, Proposition 1.2.3], the process (p; : t = 0) is
an M (R, )-valued rcll strong Markov process, and we briefly recall some of its main properties
for later use. For every e My(R,), we write supp(u) for the topological support of ;1 and we
set H () := supsupp(p) with the convention H(0) = 0.

The following properties hold:

(i) Almost surely, for every ¢ > 0, we have supp p; = [0, Hy| if p; # 0.

(ii) The process t — py is rcll with respect to the total variation distance.
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(iii) Almost surely, the following sets are equal:

{t?intZO}Z{t>OiXt—[t=0}Z{t202Ht=0}. (58)

In particular, note that we have (H(p¢))t=0 = (Hy)t>0 and that point (ii) implies that the excursion
intervals away from 0 of X — I, H and p coincide. Moreover, since I; — —oo when ¢ 1 oo, the
excursion intervals have finite length and by [43, Lemma 1.3.2] and the monotonicity of t — I;
we have:

lim E[ sup

1 S
e—0 [0,¢] ’gf du Ly, <cy + [SH =0, foreveryt>0. (5.9)
- se[0,t

0
By the previous display, —/ can be thought as the local time of H at 0.

The Markov process p in our previous definition starts at pg = 0 and, in order to make use of
the Markov property, we need to recall how to define it’s distribution starting from an arbitrary
measure j € M (R, ). In this direction, we will need to introduce the following two operations:

Pruning. For every pe My(Ry) and 0 < a < {u, 1), we set rqpu the unique measure on R such
that for every r = 0:

Rap([0,7]) = p([0,7]) A (s 1) = a).

If a = {u, 1) we simply set rqpu := 0. The operation p +— Kqpu corresponds to a pruning operation
"from the right” and note that, for every a > 0 and € M (R, ), the measure £qp has compact
support. In particular, one has H(kqu) < oo for every a > 0, even for u with unbounded support.

Concatenation. Consider p1,v € M (R ) such that H(p) < oo. The concatenation of the measure
p with v is again an element of M (R ), denoted by [, v] and defined by the relation:

Gt )= | ) o) + | ol dr) () + 1)

Finally, for every € M¢(Ry), the exploration process started from p is denoted by p and
defined as:

Pffl = [li_[“u, pt]v l> Oa (510)

with the convention pfj := p. In this definition we used the fact that, P-a.s., Iy < 0 for every
t > 0, since we are not imposing the condition H(u) < o on p. Remark that the process
(M, 1) == ({p}',1) : t = 0) has the same distribution as X started from (y, 1), this fact will be
used frequently.

For later use we also need to introduce the dual process of p, this is, the M (R, )-valued
process (1 : t = 0) defined by the formula

ne(dr) := Bl gy (r)dr + Y (Xy = Ioy) dpr,(dr), >0, (5.11)
O<s<t
Xs—<[s,t
This process will be only needed for some computations and the terminology will be justified by
the identity (5.13) below. Moreover, 7 is rcll with respect to the total variation distance and the
pair (p,n) is a Markov process. We refer to [43, Section 3.1] for a complete account on (1 : t = 0).

Before concluding this section, it will be crucial for our purposes to define the height process
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and the exploration process under the excursion measure N of X — I. In this direction, if for
an arbitrary fixed r we set ¢ = sup{s < r : Xy — Iy = 0} and d = inf{s > r : X; — [, = 0},
it is straightforward to see that (Hy : t € [g,d]) can be written in terms of a functional of the
excursion of X — I that straddles r, say e; = (X(g4)ra — Iy : t = 0), and this functional does
not depend on the choice of r. Informally, from the initial definition (5.5) this should not come
as a surprise since the integral (5.5) for ¢ € [g,d] vanishes on [0, g], we refer to the discussion
appearing before Lemma 1.2.4 in [43] for more details. We denote this functional by H(e;) and it
satisfies that P-a.s., Hy = H;—4(e;) for every t € [g,d]. Furthermore, if we denote the connected
components of {t = 0: X; — I; = 0} by ((as,b;) : i € N) and the corresponding excursions by
(ei 1 i € N), then we have H g, 4ynp, = Ht(ei), for all t = 0. By considering the first excursion e
of X — I with duration o, > ¢ for every € > 0, it follows that the functional H(e) in D(R;, R)
under N(de |o, > ¢) is well defined, and hence it is also well defined under the excursion measure
N.

Turning now our attention to the exploration process and its dual, observe that for t € [a;, b;]
the mass of the atoms in (5.7) and (5.11) only depend on the corresponding excursion e;. We
deduce by our previous considerations on H that we can also write p(g,1i)ap = pt(e;) and
Mai+t) b, = Me(ei), for all ¢ > 0, where the functionals p(e), n(e) are still defined by (5.7) and
(5.11) respectively, but replacing X by e; and H by H(e;) — translated in time appropriately.
By the same arguments as before, we deduce that p(e) and n(e) under N(de) are well defined
M (R )-valued functionals. From now on, when working under N, the dependency on e is omit-
ted from H, p and n. Remark that under N, we still have H(p;) = Hy and (ps, 1) = Xy, for every
t = 0, where now X is an excursion of the reflected process. By excursion theory for the reflected
Lévy process X — I we deduce that the random measure in Ry x M (R ) defined as

Z 5(_]%7p(ai+')Abz"77(ai+')Abz‘) <512)
€N
is a Poisson point measure with intensity 1,50d¢ N(dp,dn). Finally, we recall for later use the
equality in distribution under N:

—

d)

((prsme) 1t = 0) = ((No—t)—> Plo—t)—) : T = 0), (5.13)
and we refer to [43, Corollary 3.1.6] for a proof. This identity is the reason why 7 is called the
dual process of p.

5.2.2 Trees coded by excursions and Lévy trees

The height process H under N is the main ingredient needed to define Lévy trees, one of the
central objects studied in this work. Before giving a formal definition, we shall briefly recall some
standard notation and notions related to (deterministic) pointed R-trees.

Real trees. In the same vein as the construction of planar (discrete) trees in terms of their
contour functions, there exists a canonical construction of pointed R-trees in terms of positive
continuous functions. In order to be more precise, we introduce some notation. Let e : Ry — R
be a continuous function, set o, the functional o, := inf{t > 0: e(s) = 0, for every s > t} with
the usual convention inf{f} := co. In particular, when e(0) = 0, 0. < o0 and e(s) > 0 for all
s € (0,0¢), the function e is called an excursion with lifetime o.. Note that these notations are
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compatible with the ones introduced in the previous section. For convenience, we take [0, o] :=
[0,0) if 0. = c0. For every s,t € [0, 0| with s < ¢ set

mels,t) i= it e(u),

and consider the pseudo-distance on [0, o] defined by:
do(s,t) == e(s) +e(t) —2-me(s At,svt), forall (s,t) € [0,0]*

The pseudo-distance d, induces an equivalence relation ~. in [0, 0] according to the follow-
ing simple rule: for every (s,t) € [0,0.]? we write s ~ t if and only if d.(s,t) = 0, and we
keep the notation 0 for the equivalency class of the real number 0. The pointed metric space
Te := ([0,0¢]/ ~e,de,0) is an R-tree, called the tree encoded by e and we denote its canonical
projection by pe : [0, 0¢] — Te. We stress that if o, < o, then T¢ is a compact R—tree.

Let us now give some standard properties and notations. We recall that in an R-tree there
is only one continuous injective path connecting any two points u, v € 7, and we denote its image
in 7e by [u,v]7.. We say that u is an ancestor of v if u € [0, v]7, and we write u <7. v. One can
check directly from the definition that we have u <7- v if and only if there exists (s,t) € [0, 0¢]?
such that (pe(s),pe(t)) = (u,v) and e(s) = me(s A t,s v t). In other words, we have:

[0,v]7, = pe({s€[0,0¢] : e(s) =me(s nt,svi)}),

where ¢ is any preimage of v by p.. To simplify notation, we write u A7, v for the unique element
on the tree verifying [0,u A7 v]7. = [0,u]7. N [0,v]7.. The element u A7 v is known as the
common ancestor of u and v. Finally, if u € T¢, the number of connected components of Tc\{u}
is called the multiplicity of u. For every i € N* U {o0}, we will denote the set of points u € T, of
multiplicity equal to ¢ by Mult;(7). The points of multiplicity larger than 2 are called branching
points, and the points of multiplicity 1 are called leaves.

Lévy trees. We are now in position to introduce:

Definition 5.1. The random metric space Ty under the excursion measure N is the (free) 1-Lévy
tree.

The term free refers to the fact that the lifetime of H is not fixed under N and it will be omitted
from now on. Note that the metric space Ty can be considered under P without any modifica-
tions. Since, under P, we have o = o0, the tree Ty stands for the space (R;/ ~p,dg,0), and
in particular it is no longer a compact space. The rest of the properties however remain valid
and we will use the same notations indifferently under P and N. Moreover, since the point 0 is
recurrent for the process X — I, it is also recurrent for H by point (ii) of the previous section. This
gives a natural interpretation of Ty as the concatenation at the root of infinitely many trees 7Ty,
where (H%);eny = (H(e;))ien are the excursions of H away from 0, and where the concatenation
follows the order induced by the local time —I. For this reason, we will say that 7Ty under P is
a -forest (made of ¢-Lévy trees). In particular, remark that under P (resp. V), the root pg(0)
is a branching point of multiplicity oo (resp. a leaf).
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Before concluding the discussion on R-trees, we recall that, under P or N, Mult;(7y) = &
for every i ¢ {1,2,3,0}. Moreover, we have Multo, (7Tx)\{pr(0)} = & if and only if 7 = 0
or, equivalently, if X does not have jumps. More precisely, py realizes a bijection between

{t =>0: AX; > 0} and Multe, (7T)\{pm(0)}.

5.2.3 The Lévy snake

In this section, we give a short introduction to the so-called Lévy snake, a path-valued Markov
process that allows to formalize the notion of a "Markov process indexed by a Lévy tree”. We
follow the presentation of [43, Chapter 4]. However, beware that in this work we consider con-
tinuous paths defined in closed intervals, and hence our framework differs slightly with the one
considered in [43, Chapter 4]3.

Snakes driven by continuous functions. Fix a Polish space E equipped with a distance dg
inducing its topology and we let Wg be the set of E-valued killed continuous functions. Each
w € Wg is a continuous path w : [0, (w]| — E, defined in a compact interval [0, (y]. The functional
Cw € [0,00) is called the lifetime of w and it will be convenient to denote the endpoint of w by
W := w((w). Further, we write Wg , 1= {w € Wg : w(0) = «} for the subcollection of paths in
W starting at x, and we identify the trivial element of W, with zero lifetime with the point z.
We equip Wg with the distance

dyy, (w,w') == |Cw — G| + sg]ng(w(r A Cw), W (r A CW/)),
r=
and it is straightforward to check that (Wg, dyy,,) is a Polish space. Let us insist that the notation
e is exclusively used for continuous R, -valued functions defined in R, and w is reserved for E-
valued continuous paths defined in compact intervals [0, (], viz. for the elements of Wg.

We will now endow WE* with a probability measure. In this direction, consider an E-valued
Markov process £ = (& : ¢t = 0) with continuous sample paths. For every z € E, let I, denote
the distribution of ¢ started at x and also assume that £ is time-homogeneous (it is implicitly
assumed in our definition that the mapping = — II, is measurable). Now, fix a deterministic
continuous function A : Ry — R,. The first step towards defining the Lévy snake consists in
introducing a Wpg-valued process referred as the snake driven by h with spatial motion &. In this
direction, we also fix a point € £/ and a path w € Wg ;.. For every a,b such that 0 < a < ¢ and
b > a, there exists a unique probability measure R, ;(w,dw’) on Wg , satisfying the following
properties:

(i) Rap(w,dw’)-as., w'(s) = w(s) for every s € [0, a].
(ii) Rgp(w,dw’)-a.s., Gw = b.
(iti) Under Ry p(w,dw’), (wW'(s + @))se[o,p—q] 15 distributed as (&s)seo,5—a] under My ().

Denoting the canonical process on WS* by (Ws)s=0, it is easy to see by Kolmogorov’s extension
theorem that, for every wg € Wg, with (w, = h(0), there exists a unique probability measure

3The paths considered in [43, Section 4.1] are rcll and defined in intervals of the form [0, ¢), for ¢ € (0, ).
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Q@O on W§+ satisfying that
Q&’O (WSO € AO, W51 € A]_, ceny WSn € An)

= Liwoedo) JA XARth(so,sl),h(sl) (W0, dW1) Ry (51,50),h(s2) (W1, AW2) . By (60 sy h(sn) (Wn—1, dWip).

XA,

for every 0 = sg < s1 < ... < s, and Ao, ..., A, Borelian sets of Wg. The canonical process W in
Wg* under QQO is called the snake driven by h with spatial motion £ started from wg. The value
Wy = (Ws(t) : t € [0,h(s)]) of the Lévy snake at time s coincides with wo for 0 < ¢ < my(0, s)
while for my (0, s) < t < h(s), it is distributed as the Markov process £ started at wo(mp(0, s)) and
stopped at time h(s) — mp(0,s). Furthermore, informally, when h decreases, the path is erased
from its tip and, when h increases, the path is extended by adding “little pieces” of trajectories
of £ at the tip. The term snake refers to the fact that, the definition of fovo entails that for every
s < s’ we have:

Ws(r) = Wy(r), re[0,mp(s,s)], fovofa.s. (5.14)

Note however that this property only holds for fixed s, s’ Q@O—a.s. A priori, under QQLVO, the process
W does not have a continuous modification with respect to the metric dyy,, but it will be crucial
for our work to find suitable conditions guaranteeing the existence of such modification. This
question will be addressed in the following proposition. We start by introducing some notation.
First recall the convention [a,®] := [a,00) for a < 0. Next, consider a J— indexed family
a;,b; € Ry {0}, J < N, with a; < b; and suppose that the intervals ([a;, b;],7 € J) are disjoint.
A continuous function h : Ry — Ry is said to be locally r-Hélder continuous in ([a;, bi],i € J)
if, for every n € N, there exists a constant C,, satisfying that |h(s) — h(t)| < Cy|s — t|", for every
ie J and s,t € [a;,b;] n[0,n]. We insist on the fact that the constant C,, does not depend on
the index 1.

Proposition 5.2. Suppose that there exists a constant Cp > 0 and two positive numbers p,q > 0
such that, for every x € E and t = 0, we have:

I ( sup dp(&u,)?) < Cpr-t9. (5.15)
O<u<t
Further, consider a continuous function h : Ry — Ry and denote by ((a;,b;) : i € J) the
excursion intervals above its running infimum. If h is locally r-Hélder continuous in ([a;,b;] :
i€ J) with qr > 1 then, for every w € Wg with ¢y = h(0), the process W has a continuous
modification under QM .

Proof. With the notation introduced in the statement of the proposition, we fix a continuous
driving function h : Ry — R, locally r-Hélder continuous in ([a;,b;] : @ € J), an initial
condition w € Wg with (, = h(0), and we consider an arbitrary n € N. By definition, for any
s,t € [ai, bi] " [0,n], we have |h(s)—h(t)| < Cy-|s—t|" for a constant C), that does not depend on
1. Next, we consider W, the snake driven by h under Qf}v(dW). The first step of the proof consists
in showing that the process (Ws : s € ;e s[ai, bi]) has a locally Hélder-continuous modification
on ([a;, b;] : i€ J). In this direction, we remark that the definition of dyy, gives:

QM (dwy (W, Wp)P) <20 - Q1 (1 sup  dp(Ws(u A h(s)), Wi(u A h(t)))p> + 2P - |h(s) — h(t)[P,

mp(s,t)<u
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for every s,t € [ai,bj] n [0,n]. Next, note that the first term on the right hand side can be
bounded above by:

QQ( sup dE(WS(u A h(s)), Wi(u A h(t)))p)

mp(s,t)<u

<2 Qb s dp(Walu n h()), Walm(s,1)))")

mp(s,t)<u

+ 2P Q@( sup  d (Wi(ma(s, 1)), Wi(u A h(t)))p>

mp(s,t)<u

<2"-Ql <HWS(mh(s,t))( sup  dp(&u, &o)? ))

u<<h(s)—mn(s,t)

+ 2" Qu (wa(mh(s’t” (u<h(t?l_151 (5. az(&o, 5“)p>>

< 2°Cy - (\h(s) —mp(s, )" + |h(t) — mp(s, t)\q),

where in the second inequality we applied the Markov property at time my(s,t), and in the last
one we used the upper bound (5.15). By our assumptions on h we derive that, for every n > 0,
there exists a constant CJ such that:

Qb (A (Wes W?) < Oy - ([t — | + [t — ™), for any s,t € [ai, b] A [0,n],

and we stress that the constant CJ, does not depend on i. Recall that ¢gr > 1 and note that
we can assume as well that pr > 1, since by replacing the distance dyy, by 1 A dyy,, we can
take p as large as wanted. Now, fix rg € (0,(¢qr — 1)/p). We deduce by a standard Borel-
Cantelli argument, similar to the proof of Kolmogorov’s lemma, that there exists a modification
of (Ws :s€[0,n] nUicrlai, bi]), say (W7 :se[0,n] nJcrlai, bi]), satisfying that Q" a.s., for
every 1 € J

dw, (W W) < Kyls —t]™, for every s,t € [a;, bi] N [0,n], (5.16)

where the (random) quantity K, does not depend on i. Set V := Ry\[J,cs[ai, bi] and remark
that if ¢ € V, then h(t) = inf{h(u) : w € [0,t]}. Foreveryte V, weset W/ := (w(u) : u € [0, h(t)])
and we consider the process (W} : ¢t € [0,n]). Notice that by the very construction of W*, we
have QI (W, = W) = 1 for every t € [0, n], which shows that W* is a modification of W in [0, n].
Let us now show that W* is continuous on [0,7]. The continuity for ¢ € [0,n] N ;e 7(ai, bi)
follows by (5.16) and we henceforth fix ¢ € [0,n]\J;c7(ai,b;). In particular, we have h(t) =
inf{h(u) : w € [0,t]}. On one hand, if (sy : k > 1) is a sequence with s — t as k 1 o,
the continuity of w and h ensures that (w(u) : u € [0,h(sg)]) — W} with respect to dyy,.
Consequently, if the subsequence (sj, : k > 1) takes values in [0, n]\|J;c7(ai, b;), it holds that:

lim dyy, (W3, W) = lim v ((w(w) : we [0,h(si)]), W7 ) = 0.

k—o0
On the other hand, for every s € [aj,b;] N [0,n] for some j € J with s < ¢, we have
dWE (Ws*v Wt*) < dWE (Ws*7 Wbi) + dWE (Wbﬂ;? Wt*)
< Kpls — t]" + dyy, ((W(u A Co) 1w e [0,h(s)]), W:),
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which goes to 0 as s 1 ¢ since W;* = (w(u) : we [0, h(t)]). The case s > t can be treated similarly
by replacing b; with a; and it follows that, for any subsequence (s : k = 1) with s, — ¢, we
have dyy, (W

o, W§) — 0. Consequently, W* is continuous on [0,7]. Since this holds for any n,

we can define a continuous modification of W in R. m

Under the conditions of Proposition 5.2, the measure Qf}v can be defined in the Skorokhod
space of Wg-valued right-continuous paths D(R, Wg) and, with a slight abuse of notation, we
still denote it by Qéﬁ, From now on, we shall work under these conditions and Qé‘v will always be
considered as a measure in D(R, Wg). In particular, remark that if we write W for the canonical
process in D(Ry, Wg), then W is Q" -a.s. continuous. Finally, we point out that the regularity
of W was partially addressed in the proof of [43, Proposition 4.4.1], for initial conditions of the
form z with = € F, when working with paths w defined in the half open interval [0, ().

The Lévy snake with spatial motion £. The driving function A of the random snake that we
have considered so far was deterministic, and the next step consists in randomising h. We write

M?c for the subset of M (IR ) defined as
MO = {ye My(R,): H(u) < and supp = [0, H(m)]} U {0},

and we introduce O the collection of pairs (u, w) € M(} x Wg such that H(u) = (. Fix a Laplace
exponent 1 satisfying (A1) — (A4), and set

T:=sup{r=>0: )\lim ATTP(N) = o0} (5.17)
—0

In particular, by the convexity of ¢ we must have T > 1. For every u € ./\/l?c, write P, for
the distribution of the exploration process started from p in D(R;, M;(R;)) — the space of
right-continuous M ¢(R . )-valued paths. With a slight abuse of notation we denote the canonical
process in D(Ry, M (R} )) by p and observe that, by Definition 5.10, the process p under P,
takes values in M?c. Notice that H(p) under P, is continuous since p € /\/l(}. We can now state
the hypothesis we will be working with.

In the rest of this work, we will always assume that:

Hypothesis (Hp). There exists a constant Cp > 0 and two positive numbers p, ¢ > 0 such
that,
for every x € E and t > 0, we have:

I ( sup dp(éu,7)’) <Cp-t?,  and ¢ -(1-T"1)>1 (Ho)

O<u<t

For instance, it can be checked that condition (Hg) is fulfilled if the Lévy tree has exponent
P(A) = A for a € (1,2] and £ is a Brownian motion. Let us discuss the implications of (Hp).
Under P, denote the excursion intervals of H above its running infimum by («, 8;). Recall from
(5.10) that (p}' := [k—r,p, pt] : t = 0), under Py, is distributed according to P, and note that
Hi(pt) = H(k_r,1) + H(pt), for t = 0. By [43, Theorem 1.4.4], under Pg the process H(p) is
locally Holder continuous of exponent m for any m e (0,1 — Y~1). In particular, this holds for
some m := r verifying gr > 1 by the second condition in (Hp). Since (H (k_pu) : t = 0) is
constant on each excursion interval («y, 5;) and (H(pt) : t = 0) is locally r-Holder continuous, we
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deduce that H(p*) is locally r-Hélder continuous on ([a;, 3] : ¢ € N). Said otherwise, P,-a.s.,
the paths of H(p) satisfy the conditions of Proposition 5.2 and we will henceforth assume that
the condition is satisfied for every path, and not only outside of a negligible set.

Finally, consider the canonical process (p, W) in D(R, M (R ) xWg), the space of M ¢(R ) x
Weg-valued, right continuous paths. By our previous discussion we deduce that we can define a
probability measure in D(R, M¢(Ry) x Wg) by setting

P (dp, dW) := P, (dp) Qo ¥ (dW),

for every (u,w) € ©. The process (p, W) under P, ,, is called the v¢-Lévy snake with spatial
motion ¢ started from (u, w). We denote its canonical filtration by (F; : ¢ > 0) and observe that
by construction, P, w—a.s., W has continuous paths. Now, the proof of [43, Theorem 4.1.2] applies
without any change to our framework and gives that the process ((p, W), (Puw : (1, W) € ©)) is
a strong Markov process with respect to the filtration (F4 ). It should be noted that assumption
(Hp) is the same as the one appearing in [43, Proposition 4.4.1], for paths defined in [0, (y) and
started from 2 € E. In the particular case 1/(\) = A2/2, the path regularity of W was already
addressed in [62, Theorem 1.1].

Let us conclude our discussion concerning regularity issues by introducing the notion of snake
paths, which summarises the regularity properties of (p, W) as well as some related notation that
will be used throughout this work. Recall that M (R, ), equipped with the topology of weak
convergence, is a Polish space [58, Lemma 4.5]. We denote systematically the elements of the
path space D(R, M;(Ry) x Wg) by:

(P,w) = ((Ps,ws) : s€RY),

and by definition, we have (ps(p), Ws(w)) = (ps, ws) for s € R4. For each fixed s, ws is an element
of Wg with lifetime (,,, and the R -valued process ((w) := ((,, : s = 0) is called the lifetime
process of w. We will occasionally use the notation (s(w) instead of (,,,, and in such cases we will
drop the dependence on w if there is no risk of confusion.

Definition 5.3. A snake path started from (pu,w) € © is an element (p,w) € D(Ry, M;(R;) x
WE) such that the mapping s — ws is continuous, and satisfying the following properties:

(i) (Po,wo) = (p, w).
(i) (ps,ws) € © for all s =0, in particular H(p) = ((w).

(ili) w satisfies the snake property: for any 0 < s < &,

ws(t) = wy(t) forall 0<t < [inf] C(w).

s,s’
A continuous Wg-valued path w satisfying (iii) is called a snake trajectory. We point out that
this notion had already been introduced in the context of the Brownian snake [1, Definition 6.
However, in the Brownian case the process W is Markovian and there is no need of working with
pairs (p,w) — this is the reason why we have to introduce the notion of snake paths. We denote
the collection of snake paths started from (p, w) € © by S, and simply write S, instead of Sp .
Finally, we set:



Chapter 5. The structure of the local time 180

For any given (p,w) € S, we denote indifferently its duration by
OH(p) = o(w) =sup{t = 0: (u, # 0}.

Remark that, by continuity and the definition of Q”, the process ((p, W), (Puw : (1, w) € ©))
takes values in & — it satisfies the snake property by (5.14) and the continuity of W. Said
otherwise, P, w-a.s., we have

(s = H(ps), forevery s =0,

and for any ¢t < ¢/
Wi(s) = Wy(s), forall s <mpg(t,t).

We stress that when working on S the equivalent notations (s, H(ps) and Hg will be used indif-
ferently. The snake property implies that, for every ¢, > 0 such that pg(t) = pg(t'), we have
Wiy = Wy. In particular, for such times it holds that Wt = I//[\/t/ and hence (Wt : t = 0) can be
defined in the quotient space Tz. More precisely, under PP, v, the function defined with a slight

abuse of notation for all v € Ty as
¢ :=W;, where ¢ is any element of Py (v),

is well defined and leads us to the notion of tree indexed processes. When (u,w) = (0,z), the
process (£,)veTs, is known as the Markov process ¢ indexed by the tree 7z and started from z.4
In this work, we will need to consider the restriction of (p, W) to different intervals and therefore,

it will be convenient to introduce a formal notion of subtrajectories.

Subtrajectories. Fix s < ¢ such that Hy; = H; and H, > Hg for all r € (s,t). The sub-
trajectory of (p, W) in [s,t] is the process taking values in D(R;, M;(R}) x W), denoted by
(s Wi)repo,t—s and defined as follows: for every r € [0, — s], set

{ops [ i= Jpwrs(dh)f(h - HS)H{h>HS} and Wi (o) == Wi (Hs + ).
In particular, we have
C(W])=Hgyr — Hs = H(pl), forallrel0,t—s].

Remark that if (p, W) is a snake path, then the subtrajectory (o', W’) is also in S. Informally,
W' encodes the labels (&, : v € pg([s,t])).

5.2.4 Excursion measures of the Lévy snake

Fix € E and consider the Lévy snake (p, W) under Py . By (5.8), the measure 0 is a regular
recurrent point for the Markov process p, which implies that (0, x) is on its turn regular and
recurrent for the Markov process (p, W). Moreover, (—1I; : t = 0) is a local time at 0 for p and
hence it is a local time at (0, z) for (p, W). We set N, the excursion measure of (p, W) away from
(0, z) associated with the local time —I. We stress that N, is a measure in the canonical space
DRy, Mf(Ry) x WE). By excursion theory of the Markov process (p, W), if {(as, 3;) : i € I}

“With the terminology introduced in [1, Definition 7], the pair of processes (H, I//I\/) is called a treelike-path.
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stands for the excursion intervals of (p, W) and (p', W?) are the corresponding subtrajectories
then, under Py ., the measure
D0 W, (5.18)
1€l
is a Poisson point measure with intensity 1y o) (¢)d¢ Ny (dp, dw). Recalling the interpretation of
the restrictions Ny (- |0 > €) as the law of the first excursion with length greater than e, it follows
that under N, W satisfies the snake property and (p, W) € S. In particular, we can still make
use of the definition of subtrajectories and (&,),e7;, under the excursion measure N, and for
simplicity we will use the same notation.
By the previous discussion, it is straightforward to verify that

Na(dp, dn, dW) = N(dp, dn) Q¢ (@w). (5.19)
Said otherwise, under N:

e The distribution of (p,n) is N(dp, dn);

e The conditional distribution of W knowing (p,n) is Qf(p ),

Remark that by construction and (5.13), under N, we have

(ot W) : £ € 0,01) D (Mot Plo—t)— Wort) 1 € [0,0]), (5.20)

where we used that by continuity, we have W,_; = W(,_;_ for every t € [0, 0].

When starting from an arbitrary (g, w) € ©, the following variant of (5.18) will be used
frequently in our computations: let PLW be the distribution of (p, W) killed at time o := inf{t >
0: H(ps) = 0 for every s > t}. For instance, it will be worth noting that by (5.10), the process
{p,1) is a Lévy process started from {u, 1) and stopped when reaching 0. Write ((ozi, Bi): i€
N) for the excursion intervals over the running infimum of (p,1) under ]P’LW and denote the
corresponding subtrajectory associated with [as, 8;] by (p°, W?). If for t = 0 we write I; :=
infs<¢(ps, 1) — (i, 1), the measure

2.0t (5:21)
ieN
is a Poisson point measure with intensity 1o ¢, 1y)(v) du Ny (g, ) (dp, dW). Moreover, if h; :=
Ha, = Hg,, by (5.10) we have h; = H(k_y, pu) and since the image measure of Lyg , 1y)(u) du
under the mapping u — H (k) is precisely u, we deduce that under PLW the measure
D () (5.22)
1eN
is a Poisson point measure with intensity 1(dh)Ny ) (dp, dW). We refer to [43, Lemma 4.2.4] for
additional details.

We close this section by recalling a many-to-one formula that will be used frequently to ob-
tain explicit computations. We start with some preliminary notations: consider a 2-dimensional
subordinator (UM, U®?)) defined in some auxiliary probability space (Qo, Fo, PY) with Laplace
exponent given by

p(M)=p(A2) o if A # Ao

0 (1) @y ._ DR
—log B [exp (=07 = XUy )] = {1//(&) : £ - (5.23)
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where E¥ stands for the expectation taken with respect to P?. Notice that in particular U @
and U®) are subordinators with Laplace exponent A — (\)/A — a. Let (J,, J,) be the pair or
random measures defined by

(Jar Ja) = (Ljo,a)(t) oY, Ljo,q)(?) av?),

with the convention (Ju, Joo) := (10,000 (%) dUt(l), Lj0,00)(t) dUt(Q)). The following many-to-one
equation will play a central role in all this work:

Lemma 5.4. For every x € E and every non-negative measurable functional ® taking values in
Mf(R+)2 x WEg, we have:

NJC(LJ ds@(ps,ns,W5)> - LOO da exp (- aa) - ' @11, <<I>(Ja, T (&t < a))>. (5.24)

Proof. First, remark that we have

N, ( JOU ds @ (ps, s, Ws)) = f:o ds N, (ﬂ{N—H} D (s, 1, Ws))-

Next, we use (5.19) to write the previous display in the form:

Loods Nx(ﬂ{s«m} 1, [é(ps,ns, (& :r < H(ps)))D = N(J:ds Hx[cb(ps,ns, (&7 < H(ps)))D.

Since now I, [®(ps, ms, (& : 7 < H(ps)))] is a functional of (ps,7s), it suffices to establish (5.24)
for a functional only depending on the pair (ps,ns). However, this is precisely formula (18) in
[44]. O

5.3 Special Markov property

In this section we state and prove the (strong) special Markov property for the Lévy snake. This
result was originally introduced in [63, Section 2] in the special case of the Brownian motion
indexed by the Brownian tree, viz. when the Lévy exponent of the tree is of the form 1(\) = SA?
and the spatial motion £ is a Brownian motion. This result plays a fundamental role in the study
of Brownian motion indexed by the Brownian tree, see for example [63, 66, 70, 72]. More recently,
a stronger version was proved in [66] still for 1»(\) = B8A? but holding for more general spatial
motions £. In this section we extend this result to an arbitrary exponent ¢ of a Lévy tree. Even
if we follow a similar strategy to the one introduced in [66], general Lévy trees are significantly
less regular than the Brownian tree — in particular the height process H is not Markovian. The
arguments need to be carefully reworked and for instance, the existence of points with infinite
multiplicity hinder considerably the proof.

We start by introducing some standard notation that will be used in the rest of the section
and recalling the preliminaries needed for our purpose. Fix z € E and for an arbitrary open
subset D < E containing x and w € Wg ,, set

mp(w) :=inf {t € [0, (] + w(t) ¢ D},
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with the usual convention inf{J} = co. Similarly, we will write 7p(§) := inf{t > 0: & ¢ D} for
the exit time from D of the spatial motion £&. When considering the later, the dependency on &
is usually dropped when there is no risk of confusion. In the rest of the section, we will always
assume that:

IL.(rp < ®) > 0. (Hy)

The special Markov property is roughly speaking a spatial version of the Markov property. In
order to state it, we need to properly define the notion of paths ”inside D” and ”excursions
outside D”, as well as a notion of measurability with respect to the information generated by the
trajectories staying inside of D. Section 5.3.1 is devoted to the study of paths inside D and to a
fundamental functional of the Lévy snake, called the exit local time. The study of the excursions
outside D is postponed to Section 5.3.2.

5.3.1 The exit local time

Let us begin by introducing some useful operations and notation.

Truncation. We start by defining the truncation of a path (p,w) € D(R;, M (R} ) x WE ) to
D — we stress that we have wg(0) = z for every s > 0. In this direction, define the functional

t

VP (p,w) = L ds Iic, . <rp(w.y  t=0, (5.25)

measuring the amount of time spent by w without leaving D up to time ¢. Let us be more precise:
at time s, we will say that ws doesn’t leave D (or stays in D) if w4([0,{s)) = D (notice that &g
might be in ¢D) and on the other hand, we say that the trajectory exits D if ws([0, (s)) N D¢ # .
Observe that a trajectory (ws(t) : t € [0, (s]) might exit the domain D and return to it before the
lifetime (s, but such a trajectory will not be accounted by V2. Write Yp(p,w) := Valzw)(p, w) for
the total amount of time spent in D, and for every s € [0, Vp(p,w)) set

I'P(p,w) := inf {t=0: VP (p,w) > s},

with the convention TP (p,w) := o(w), if s = Yp(p,w). The truncation of (p,w) to D is the
element of D(R;, M;(R;) x Wg ) with lifetime Vp(p,w) defined as follows:

trp (P, w) == (Pro(pw)s Wro(pw))seR. -

Indeed, observe that the trajectory (pro,wrn) is rell since p,w and I'P are rcll. For simplicity, we
set trp(w) = (wrp(w))ser, and we write trp(&) for bpp. Roughly speaking, trp(w) removes the
trajectories wg from w leaving D, glues the remaining endpoints, and hence encodes the trajectories
ws that stay in D. Let us stress that when (p,w) is an element of Sy, the truncation trp(p,w)
is still in S, since trp(w) is a snake trajectory taking values in D u dD by [1, Proposition 10],
and condition (ii) in Definition 5.3 is clearly satisfied. Recall that (p, W) stands for the canonical
process in D(R, M¢(Ry) x WE ), and that it takes values in S, under P,y for (1, w) € © or
under Ny, for y € E. We will also need to introduce the sigma field

Fb .= o(trp(p, W)s 1 5= 0) (5.26)

in D(R;, M;(R;) x Wg), which roughly speaking, contains the information generated by the
trajectories that stay in D. The following technical lemma will be often useful. It states that,
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under N, when a trajectory W; exits the domain D, then the measure ps does not have an atom
at level 7p(Ws). More precisely:

Lemma 5.5. Let D be an arbitrary open subset D < E containing x. Then, N,—a.e.
ps({tp(Ws)}) =0,  foralls=0.

Proof. First, remark that the many-to-one formula (5.24) gives:
g
N ([ s Ty cmpes (b))

0
- jo da exp(~aa) E® @ 1Ly (1 (¢, uza)) <o) Ta {70 (6w < @),

which vanishes by the independence between ¢ and J,. This shows that N,—a.e., the Lebesgue
measure of the set {s € [0,0] : ps({Tp(W5)}) # 0} is null and now we claim that this implies that
Ny—-a.e. ps({Tp(Ws)}) = 0 for all s = 0. We argue by contradiction to prove this claim. Suppose
that for some s > 0, we have ps({Tp(Ws)}) > 0. In this case, recalling that the exploration
process p is rcll with respect to the total variation distance, we must have

lim ’/)8({TD(WS)}) - ,03+5({7'D(W3)})‘ < lim sup ‘,05(14) - Ps+s(A)‘ = 0.

el0 l0 AeB(R)
We infer that for some § > 0, it holds that p,({7p(Ws)}) > 0 for all u € [s,s+6). In particular, we
have H, > H, for all u € [s,s+0). By the snake property, we deduce that, for every u € [s, s+ ),
mp(Ws) = 7p(W,) and consequently:

pu{TD(W)}) = pu({TD(Ws)}) > 0.

However, this is in contradiction with the first part of the proof and the desired result follows. [J

Exit local time. As in classical excursion theory, we will need to properly index the excursions
outside D but we will also ask the indexing to be compatible with the order induced by H. To
achieve it, we will make use of the ezit local time from D. We briefly recall its definition and
main properties and we refer to [43, Section 4.3] for a more detailed account. By Propositions
4.3.1 and 4.3.2 in [43], under N, and Py, the limit

S

1
LE = ;E}%g 0 drﬂ{TD(Wr)<Hr<TD(Wr)+E}7 (5.27)

exists for every s > 0, where the convergence holds uniformly in compact intervals in L;(IPg ;)
and L1(N,). This defines a continuous non-decreasing process L called the exit local time from
D of (p,W). We insist that, under N, and Py ;, the process (p, W) takes values in S, which
yields that Hs = (s for every s > 0. We also recall the first moment formula:

~

g
N, (f dL? D(ps, ns, WS)) = E'®TIIL, (IL{TD<OO} exp(—aTD)CI)(JTD, Jrp, (& it < TD))), (5.28)
0
see [43, Proposition 4.3.2] for a proof of this identity. In particular, remark that we have

supp ALY < {s = 0: 7p(W,) = H,}, N, ae.
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We stress that L is constant at every interval at which W stays in D and in each connected
component of

{s=0: Tp(Ws) < Hg}.

We call such a connected component an excursion interval from D. This family of intervals will
be studied in detail in the next section. The process L is not measurable with respect to FP2,
the informal reason being that it contains the information on the lengths of the excursions from
D. However, as we are going to show in Proposition 5.7, the time-changed process
LY := (Lfh) sep,

is FP-measurable — notice that we removed precisely from L” by means of the time change the
constancy intervals generated by excursions from D. This measurability property will be crucial
for the proof of the special Markov property and the rest of this section is devoted to its proof.

First remark that we have only defined the exit local time under the measures Py, and N,
for x € D. In order to be able to apply the Markov property, we need to extend the definition to
more general initial conditions (i, w) € ©. This construction will also be essential for the results
of Section 5.4. The precise statement is given in the following proposition:

Proposition 5.6. Fiz (u,w) € © such that w(0) € D and suppose that u({Tp(w)}) = 0. Then,
under P, w there exists a continuous, non-decreasing process LP with associated Lebesque-Stieltjes
measure ALY supported on {te Ry : Wy € 0D}, such that, for everyt =0

t

1
D .
Ly = lim ), ds Ly (W) < H,<rp(W,)+2} s (5.29)

where the convergence holds uniformly in compact intervals in Ll(PMW). Moreover:
(i) Under Py, if Tp(w) < o0, we have LY =0 for every t < inf{s > 0: Hy < 7p(w)}.

(ii) <Unde)r IP’LW, recall the definition of the random point measure ;N O(n, i) defined in
5.22). Then we have:

LE(p, W)= >, LE( W), Pl -as (5.30)

hi<tp(w)

Proof. Let us start with preliminary remarks and introducing some needed notation. Fix (u, w) €
© with w(0) € D satisfying u({rp(w)}) = 0. We write

T, :=inf{t >0: Hy=r}, forevery r >0, and T, :=inf{t >0: {p,1) =0}

+
By (5.27) and the strong Markov property, we already know that g1 Sg} s L (W) <Hy<7p (W) +¢}

converges as € | 0 uniformly in compact intervals in Ll(IP’%W) towards a non-decreasing continu-
ous process supported on {t = TO+ : Wy € 0D}. Consequently, it suffices to prove the proposition
under IP’L’W. In this direction, we set

1 t
I<t7 6) = E L ds I]-{TD(WS)<H3<TD(WS)+€}7
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for every € > 0. Recall now that under ]P’L,W, the process {p, 1) is a killed Lévy process started
at (u,1) and stopped at its first hitting time of 0. Write ((ay,3;) : ¢ € N), for the excursion
intervals of {p,1) over its running infimum, and let (p’,W*) be the subtrajectory associated
with the excursion interval [a;, 5;]. To simplify notation, we also set h; := H(q;) and recall
from (5.22) that the measure M := >y 9, p:w+) is a Poisson point measure with intensity
u(dh)NW(h) (dp, dW).
We suppose first that 7p(w) > (. We shall prove that the collection (I(t,€),t = 0) for € >0
is Cauchy in Ll(PL,w) uniformly in compact intervals as € | 0, viz.
lim ELW[sup [I(s,e) —I(s,6)|] = 0. (5.31)
§,e—0 s<t
This implies directly the existence of L” defined as in (5.29) as well as point (i). We shall then
deduce (ii), and the remaining case 7p(w) < (y is treated afterwards. Let us proceed with the
proof of (5.31). Since the Lebesgue measure of {t € [0,0] : {p,1) = infs<;(ps, 1)} is null, we can
write

1 ﬂi/\t
I(t,e) = - Z J ds H{TD(WS)<HS<TD(W3)+E}7
< jenJaint

which yields the following upper bound:

EL,W[iuIt) |](87 5) - ](Sa 6)|:|

<

1 (Pins 1 [Pirs
< EL,W[E sup |_ f du ]]-{TD(WU)<HM<TD(WM)+8} - 5 J du I]'{TD(WU)<HU<TD(WU)+5} ‘:|

ieN s<t € Jajns QNS

1 snt 1 snt
< ET - 1 i i i — = 1 i i i .
u,w[;N Sup i)!JO du Ly, (W) <H(ph) < (Wi)-+2) 5L QL vy < ) <))

Since p({rp(w)}) = 0, the last display is given by

J () Ny (sup (5. ) — I(5,)]). (5.32)
[0,7p(w)) st
Let us now show that (5.32) converges towards 0 when ¢,0 | 0. Since for every h € [0,7p(w))
we have w(h) € D, the term inside the integral in (5.32) converges towards 0 as £, | 0 by the
approximation of exit local times under the excursion measure given in (5.27). Knowing that u
is a finite measure, it suffices to show that the term,

Ny (sup 1(s.2) = I(s,9)]),

s<t

can be bounded uniformly in e,. However, still under Nw(h), we have the simple upper bound:

sup |I(s,e) — I(s,0)| < I(0,¢) + I(0,0),

s<t

and by the many-to-one formula (5.24), we deduce that

0

Nw(h) (I(O’, 8)) = 5_1E0 ® Hw(h)[f da eXp(—OéCL)H{TD(£)<H(JG)<TD(£)+5}] < 1,

0
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for every € > 0, where to obtain the previous inequality we use that H(J,) = a. In particular,
we have Ny ) (I(0,¢) + I(0,6)) < 2 and (5.31) follows. Still under our assumption 7p(w) > Cy
we now turn our attention to (5.30). We know that for any (h;, W, p') € M we have the limit in

probability:
bi

L, (p', W) = lim e~ f ASL (7 (W,) < H, < (W, ) 42}

a;

It then follows from our definitions that for every r > 0,
D D Dy i ]
LO’ - LTCW_T = Z Lai (pl7 WZ)?
hiéCW_r
observing that the number of non-zero terms on the right-hand side is finite. By taking the limit

as r | 0, we deduce (5.30) by monotonicity.
Let us now assume that 7p(w) < (. To simplify notation, set a := 7p(w) and notice that

(p1., Wr,) = (11{0,1p(w)), (W(R) = B€ [0, 7p(W)])),

where we recall that u({7p(w)}) = 0. By our previous discussion and the strong Markov property,
we deduce that (I(t,e) — [(Ty,¢) : t = T,) converges as € | 0 uniformly in compact intervals in
LY(IP, ) towards a continuous process. To conclude our proof, it suffices to show that:

' 1 T Ta
lim ZEl | fo 05 T (1) <o) 2} = 0

To obtain the previous display, write

T, Bi

J ds IL{TD(WS)<H5<TD(WS)+8} = 2 f ds :H'{TD(WS)<HS<TD(W5)+5}7
0 h,7,>(l Q

where we have h; # a for every i € N, since p({a}) = 0. Moreover, for every i with h; > a notice

that 7p(Ws) = a. This implies:

T, a(W")
J ds Lz (W) <H,<rp(W.)+e) < Z J ds Lig<p(pi)<e)s
0 a<hi<ate Y

and we can now use that M is a Poisson point measure with intensity u(dh)Nyp)(dp,dW) to
obtain:

(oa

Ta
EL,W[L A5 Ly 30y < <rp (v ey] < il a + )N jo AsLiocsr(p)<c)). (5.33)

Finally, by the many-to-one formula (5.24), the previous display is equal to ¢ - u([a, a+¢€]), giving:

1 Ta
lllsnj(l)lp €EM,W[L ds ﬂ{TD(WS)<HS<TD(WS)+g}] p({a}) =0,

where in the last equality we use that u € © which ensures that p({a}) = 0. O

Now that we have defined the exit local time under more general initial conditions, let us turn
our attention to the measurabliliy properties of LP. From now on, when working under P,
or N, the sigma field 72 should be completed with the Py ,-negligible and N,-negligible sets
respectively — for simplicity we use the same notation.
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Proposition 5.7. Under Py, and N, the process LP is FP _measurable.

In particular, the proposition implies that, under N, the total mass L? = Zg is FP-measurable.
The proof will mainly rely on the two following technical lemmas.

Lemma 5.8. Consider an open subset D < E containing x. Fix an arbitrary (u, w) € © with
w(0) = = and satisfying p({Tp(w)}) = 0 if Tp(w) < 0. Then, for every K > 0, we have:

T u([0.7p ()
Eu,w[LdLs S fo QB @ (115, (Lo oo} 5P(=0TD) L0 10— )-

Proof. Recall that, under IP’LW, the process (p, 1) is a Lévy process started at {(u, 1) and stopped
at its first hitting time of 0. As usual, write {(«a;, 5;) : @ € N} for the excursion intervals of
{p,1) — {u, 1) over its running infimum, that we still denote by I. We write (p’, W?) for the
subtrajectory associated with [a;, 8;]. As explained in (5.18), the measure:

D 0Tt W)

1eN

is a Poisson point measure with intensity 1Ly ¢, 1y](2)du Ny (g, u))(dp, dW). Furthermore, for
every i € N, we have H (k_ Iaiﬂ) = H,, = Hg, and to simplify notation we denote this quantity by
h;. Next, we notice that, by Proposition 5.6, we have Sg dLSDII'{<p.971>_<M71>=Is} = 0 and L? =0,
for every t < inf{s > 0: H; < 7p(w)}. From our previous observations, we get:

, s,
D
L dLPLy,, 1yer) = Z J ALY Ty, 19<K)

h <TD
/B’L (677

= 2 J AL (0", W) Lot 1y< K1y I}
H (k10 1) <7p(w) "

where we used in the second identity that {psia,, 1) = (oL, 1) + {pa;, 1) = (&, 1) + Lo, + {p, 1),
for every s € [0, B; — «;]. This implies that:

Bi—ou
EL,W[ > f AL (0", W)L 1y<ie a1y 1, }]
H(K—1q,11)<TD(W

{p,1) .
D

p([rp(w),0

and the desired result now follows by performing the change of variable u «—{u,1) — u and
applying the many-to-one formula (5.28). O

Lemma 5.9. Consider an increasing sequence of open subsets (Dy, : n = 1) containing x, such
that UpD,, = D and D,, € D. There exists a subsequence (ng = k = 0) converging towards
infinity, such that

lim sup |L ~LP1=0, N;a.e (5.34)

k=% s¢(0,0]
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Proof. The proof of this lemma will be achieved by using similar techniques as in [63, Proposition

2.3] in the Brownian setting. We start by showing that, for a suitable subsequence, the total

D

5, Ng-a.e. The uniform convergence will then be deduced by

mass LP» converges towards L
standard techniques. Notice however that in [63], this is mainly done by establishing an La(N;)

convergence of LP» towards LP, and that we do not have a priori moments of order 2 in our

o)

setting. In order to overcome this difficulty, we need to localize the tree by the use of a truncation
argument. We start by showing that, for any fixed K > 0, we have:

lim dLSD"1{<pS71><K} = L dLsD]les,l)SK}? in Lz(Nx) (535)

n—oo 0

In this direction, we write N, <} So dL?ﬂ{@sJKK} -5 dLSD"ILKpS’lKK}‘z) in the following form

- << JOU dL?leS’IKK})z) +No <( LU dL£n1{<ps,1><K})2)

_ 2Nx((J0 dL£n1{<Ps,1><K}> : (JO dL£1{<ps,1><K})>7 (536)

and the proof of (5.35) will follow by computing each term separately and by taking the limit as
n 1 co. First, we remark that

g D 2 7 D 7 D
(L ALV, k) = QL dL; ]1{<ps,1><K}L AL’ Lgpu 1<Ky,

and the idea now is to apply the Markov property. For convenience, we let ©p be the subset
of © of all the pairs (u,w) satisfying the condition p({rp(w)}) = 0 when 7p(w) < oo, and
we define ©p, similarly replacing D by D,. Notice that by Lemma 5.5, we have, Ny-a.e.,
(pt, W) € ©p N (np=10p,) for every t = 0. For (u, w) € ©p, we set

¢p(p, W) 1= E’T"’W[Jo dLsDﬂ{<ps»1><K}]

JM([O’TD(W)))

0 A B @ W11y, (Lirp<co) XD(~0TD) Litr, i)

where in the second equality we used Lemma 5.8. Note that the dependence of ¢p on K is
being omitted to simplify the notation. By our previous discussion, an application of the Markov
property gives:

a 2 o
N, ((L dL?ﬂ{<ps,1><K}> > = 2N, (fo dL?ﬂ{<p5,1><K}¢D(PS,W5))

- 2E0 ® Hx (IL{TD<OO} eXp(_aTD)1{<JTD71><K}¢D(JTDafTD)> )
(5.37)

where to simplify notation, we write {7 := (& : 0 < t < 7p). Observe that (J,,£™) € Op since
by independence, we have 1, -y Jr, ({TD}) = 0, PY®IlI,-a.s. Replacing D by D,,, we also have
(Jrp, ;§™Pn) € ©p, and we obtain

N‘”«L dLSDnHKPSJKK})?) = 2E" @1, (1{7Dn<00} eXP(_O‘TDn)]l{QTDn,1><K}¢Dn(Jan,§TD")> ,
(5.38)
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where for (4, w) € ©p,, we write

1([0,7D,, (W)

¢p, (1, W) = J

0 du B @ (514 1-010) (ﬂ{mn@o} eXP(—MDn)ﬂwTDn’1><K—u}> -

Our goal now is to take the limit in (5.38) as n 1 o0 and to show that this limit is precisely
(5.37). In this direction, we remark that under {(J, ,1) < K}, we have the trivial bound
¢p, (Jrp, ) < K. Thanks to the dominated convergence theorem, it is then enough to show
that, PY ® II;-a.s., the following convergence holds:

i Ty, cooye™ ™ L, 1<kyOD, (i, €77) = Lrp<aye™ ™ Licr, 1<y (Jr, €77).

In order to prove it, we start noticing that we always have 7p 1 7p as n — oo. In particular,
since (Jy, 1) = o0, we see that the limit in the previous display is 0 under {rp = oo}. Let us
focus now on the event {Tp < o0}. First remark that

KJ(JTDn 71>—uJTDn = RJ,p, 71>—u‘]7'D )

for every u < (J1p,,1). This combined with the independence between J and £ ensures that,
under {7p < oo}, the quantities (J7p,, 1) and ¢p, (J5, ,£™P~) convergence respectively to (J7p, 1)
and ¢p(Jr,,E™), giving the desired convergence under {Tp < o}. Consequently, we get:

nlEI;ONx<(J0 dLsDn1{<ps,1><K}) ) :Nw<(L dLsD1{<ps,1><K}) )

Turning our attention to the cross-term, we can apply similar steps and the Markov property
as before to obtain

N () P2 gem) - (| 4LP 11 000)

- Nw(fo AL Ly, p<k) J ALY Yo, <ry) + Na (L AL Ly, 1<K} f ALY L <)
= E' Q1L (ﬂ{mn@o} exp(—atp, )Lz, 1<ry®D(Jm, 5”’”)
+ EO ® Hm (IL{TD<OO} eXp(_aTD)]l{<J7—D,1><K}¢Dn(‘]TD7 gTD)> )

and using the same method as before we get:

) g g g 9
i Nf<(f0 ALY Ly, 1y<k) - (L ALY Ly, 1<) ) = Nx((JO ALl 1, 12k)”):

n—o

Taking the limit as n 1 oo in (5.36) we deduce the claimed Lo(N,) convergence (5.35). Now that
the convergence of the truncated total mass has been established, to derive the statement of the
proposition we proceed as follows. First, we introduce the processes

+ t
Af = fo AL Ly, 1<k} and At::LdLEH{@SJKK}’

which are continuous additive functionals of the Markov process (p, W). Then using the Markov
property, we get

Nl‘ (AQO‘FS) = A?/\U + ¢Dn (105/\07 WS/\O‘) and Nx (Aoo|f3) = As/\g + QbD(pS/\g, WSA(f), (539)
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since ¢p, (u, w) = IE)LW[A&], op(p,w) = EL,W[AOO] and ¢p, (po, Wo) = ¢p(po, Ws) = 0, Ny-ace.
To simplify notation, we denote respectively by M = N (A% |Fs) and My = N, (Ayx|Fs) for
s = 0 the martingales in (5.39). Next, we apply Doob’s inequality to derive:

N, (sup |[MJ — M| > 6) < 6N, (A — Ao[). (5.40)
s>0
Indeed, even if N, is not a finite measure, we can argue as follows: fix ¢ > 0 and observe that
(Ma+t)i=0, (M}, ,)i=0 under Ny (-|o > a) are uniformly integrable martingales, from which we
obtain
Ny (sup |M}' — M| > 6 |0 >a) < 5_2Nx(\Ag — Ag? | 0> a),
sza
and we deduce (5.40) by multiplying both sides by N, (¢ > a) and by taking the limit as a | 0 —
using monotone convergence.
By (5.35), the right-hand side of (5.40) converges towards 0 as n 1 o0 and we deduce that

lim sup |[M* — Mg| =0, N, -a.e.

k—o0 ¢>0

for a suitable subsequence (ny : k > 1) increasing towards infinity. Since lim ¢p (ps, Ws) =
n—0oo

. D,
¢p(ps, Ws), we obtain that Ny-a.e., for every ¢t > 0, Sé dLs "™ Typ, 1y<k) — Sé dL?1{<ps,1><K}
as k — oo. By continuity, monotonicity and the fact that o < o N —a.e., we can apply Dini’s
theorem to get:

t t
. D, D
1 dLs ™1 — | dLJ1 =0, N, a.e.
e \L s Hps D<K} JO s Lo 1<y g .0
Consequently, we deduce that on the event {sup,-{ps,1) < K} = {supX < K}, the N -a.e.
uniform convergence (5.34) holds under a subsequence (ny), which depends on K. Since this
holds for arbitrary K, we can use a diagonal argument to find a deterministic subsequence that
we still denote by (ng : £ > 1) converging towards infinity such that

: Dy
lim sup |L, ™ — LP| =0, N, a.e.
k=00 te[0,0]

We are now in position to prove that the process LP is FP_measurable.

Proof of Proposition 5.7. Until further notice, we argue under Py . By (5.27) and monotonicity,
a diagonal argument gives that we can find a subsequence (e : k = 1), with g | 0 as k — oo,
such that:

It
LP» — lim — drl
FSD k—00 €k 0 {TDn(WT)<HT<TDn(WT)+Ek}’

for every n > 1 and s > 0. Our goal is now to show that:

1 S
D’!L p— M
LFSD - kh—{goa JO dTI].{TDn(WFTD)<HFP<TDn(WFP)+Ek}7 (541)
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which will imply that (L?g) s=0 18 FP-measurable for every n € N. In order to establish (5.41)
we argue for w fixed and observe that for k large enough, we have:

Lirp, (W) <Hy<rp, (Wo)ter) = Lirp, (Wo)<H,<rp. (Wo)+ex} Lt <rp(wh)},  for all r e [0,T'7].

To see it, remark that if the previous display did not hold, by a compactness argument and
continuity we would have 7p (W) = 7p(W,,) < H, for some 7o in [0,I'P]. This gives a
contradiction since D, = D and (W,, (t))te[0,H,,] 18 continuous. Recalling the notation VP given
in (5.25), we deduce that

FD
LP» — lim — drl
re k—o0 € 0 {TD”(WT)<HT<TDH (WT)+51€}

) 1 FS D ' 1 S
= lim afo AV Loy, (W) <H, <7, (Wy)+er} = HI afg ArLirp, (Wyp)<Hpp <7, (Wop)ter)s

giving us (5.41). The same arguments can be applied under N, and, to complete the proof of the
proposition, it suffices to show that for every t > 0

lim sup |L1?g — LIJ?D =0, under Py, and N, (5.42)

N0 se[0,t]

at least along a suitable subsequence. However, note that when working under N, this conver-
gence follows by Lemma 5.9. Now, the result under [Py, is a standard consequence of excursion
theory. More precisely, recall that —1I is the local time of (p, W) at (0,x) and, for fixed r > 0,
set T :=inf{t > 0: —I; > r}. If welet Tp := inf{t = 0 : 7p(W}) < oo}, by continuity there
exists a finite number of excursions (p*, W?) of (p, W) in [0, T},] satisfying Tp(W?*) < oo, and their
distribution is Ny o(-|Tp < 90). Since T} 1 o0, the approximation (5.42) under [P, o now follows
from the result under N, . This completes the proof of Proposition 5.7. n

5.3.2 Proof of special Markov property

Now that we have already studied the trajectories staying in D, we turn our attention to the
complementary side of the picture and we start by introducing formally the notion of excursions
from D.

Excursions from D. Observe that (5.24) and assumption (Hy) imply that

Nw(f: ds Tirpw,)<cy > O) > 0.

Hence, the set {s € [0,0]: Tp(Ws) < (s} is non-empty with non null measure under N, and P ;.
If we define

VP = (¢ - o (Ws)) .., s >0,

it is straightforward to show by the snake property and the continuity of ¢ that v is continuous.
Set

s
(TtD = inf {8 =>0: f d?”]l{%p>0} > t},
0

and consider the process (pP)i=0 taking values in M ¢(IRy) defined by:

OP. 1= [ op @) (= T (W) Lpimri, (.43
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Then, by Proposition 4.3.1 in [43], p? and p have the same distribution under Py . In particular,
{pP,1) has the same law as the reflected Lévy process X — I and we denote its local time at 0
by (¢P(s) : s = 0). Moreover, it is shown in [43, Section 4.3] that the process L” is related to
the local time ¢P by the identity:

t
LtD = ED (J dS 1{’y§>0}) . (544)

0

The proof of Proposition 4.3.1 in [43] shows that p? can be obtained as limit of functions which
are independent of FP implying that p” is on its turn independent of FP. Now, denote the
connected components of the open set

{t=0: 1p(W) < G} ={t=0:7 >0},

by ((a;,b;) : i € I), where Z is an indexing set that might be empty. By construction, for any
s € (aj, b;), the trajectory Wy is a trajectory leaving D. Remark that H,, = H, < H, for every
r € (a;,b;) and let (p°, W) be the subtrajectory of (p, W) associated with [a;, b;] as defined in
Section 5.2.3. Observe that in our setting, (p?, W?) is defined for each s € [0, b; — a;] and for any
measurable function f: R, — R, as

B ) = [ P10 = o Wa) o,

and
W; = W(ai+s)/\b,- (t + 7p(Wy,)) for t e [0, C(ai+5)/\bi —7p(Wa,)],

with respective lifetime process given by

C,é = C(ai‘f's)/\bi — 0 (Wa,),

where 7p(Ws) = 7p(Wa,) = (o,. We say that (p', W?) is an excursion of (p, W) from D. Observe
that W!(0) = W/ (0) for all s € [a;,b;] by the snake property and that we have W¢ (0) € dD.
This is the point of D used by the subtrajectory W? to escape from D.

In order to state the special Markov property we need to introduce one last notation. Let 6
be the right inverse of Lp , viz. the FP-measurable function defined as

Oy :==inf{s >0 : LIQ? >r}, forallre |0, LDy,

Recall that we are considering some fixed x € D, the notation ((p?, W?) : i € Z) for the excursions
outside D, and that we are working under the hypothesis (Hj). We are now going to state
and prove the special Markov property under Py ., and we will deduce by standard arguments a
version under the excursion measure N,. Under Py, we use the same notation as under N, but
observing that o = o0 and noticing that Py ,-a.s., we have Yp = SSC dSIL{HsgrD(WS)} = o0 and
LY = oo, In particular, this implies that T' and 6, are finite for every s < oo.

Theorem 5.10 (Special Markov property). Under Po@, conditionally on .7:D, the point measure
25(LaDi’pi7Wi)(d€, dp, dw)
i€l

15 a Poisson point process with intensity

1[0700) (f) d¢ Ntrp(l//l?)gz (dp, dw).
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Recall that we have established in Proposition 5.7 that LP is FP-measurable. It might also be
worth observing that if F' = F(p,w) is a measurable function, when integrating with respect to

the intensity measure 1o o) (¢)d/ NtI'D(I//(\/)e (dp, dw) we can re-write the expression in the following
14

more tractable form:

JO AN, o, (F) = L dIPN,, g, (F) :fo dLP Ny (F)

where in the last equality, we applied a change of variable for Lebesgue-Stieltjes integrals using
the fact that L is constant on the excursion intervals [['?  T'P] when T2 < T'P. Let us now
prove Theorem 5.10.

Proof. In this proof, we work with (p, W) under Py ,. Let us start with some preliminary con-
structions and remarks. First, we introduce the S;-valued process (p, W*) defined at each t = 0
as

(o1, W7 (5)) = <pt(dh), Wi(s A TD(Wt))>, for s € [0, G,

and let FP be its generated sigma-field on DRy, Mf(Ry) x WE ). The snake (p, W*) can be
interpreted as the Lévy snake associated with (i, £*), where £* is the stopped Markov process
(& t=0) = (§arp(e) : t=0). Since, for every t > 0,

(Cw, —p(W1)), = (Cwzr — (D7) .,

we derive that the process 72 = (Cw, — 7p(Wi))+ is FP—measurable. Consequently, we have
FP <= FP since VP — the functional measuring the time spent in D defined in (5.25) — is F2-
measurable and by definition trp(p, W) = trp(p, W*). Recalling that ((a;,b;) : i € Z) stands for
the connected components of the open set

{t=0: 7p(Wy) < Cw,} = {t =0:~7P >0},
we deduce by the previous discussion and the identity 7p(W,) = (q,, that the variables
Wai = 17[\/;, ¢t = Clai+-)ab; — Ca; and a fortiori pt are FP — measurable.

Informally, FP encodes the information of the trajectories staying in D and the tree structure.
We claim that conditionally on FP, the excursions (W*: i e N) are independent, and that the

conditional distribution of W* is Q%\/ .» Where we recall from Section 5.2.3 that we denote the

distribution of the snake driven by h started at x by Q.

In order to prove this claim, consider a collection of snake trajectories (Wi” (1€ I) such that,

conditionally on (p_, W*), they are independent and each one is respectively distributed according
to the measure Qg\ . Next let W’ be the process defined as follows: for every ¢ such that %D =0
Wi

set W/ = W}, and if v > 0 we set:

Wils) = {w;@ if s € [0,7p (7))
: Wi (s = (W) if s € [rp (W), (W7,
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where i is the unique index such that ¢ € (a4, b;). By construction, (p, W’) is in D(Ry, M f(R;) x
WE.,) and a straightforward computation of its finite marginals shows that its distribution is
Py, proving our claim.

Notice that (5.27) implies that LP is constant on the intervals [['?  T'P] when I'?. < T'D.
Hence, Lf = EQD for all s > 0 and in particular LD = L‘ZBD, the latter being FP-measurable.

Consider now U a bounded FP-measurable random Varlable and remark that to obtain the
desired result, it is enough to show that:

o0
Eo.o|Uexp(~ Y, F(LE, o', )| :EO,w[Uexp(—fO AN, G, (1= exp(=F (L0, )) |
i€l ¢

for every non-negative measurable function F'in Ry x D(Ry, Mf(R) x Wg). In order to prove
this identity, we start by projecting the left term on F2: by the previous discussion and recalling
that FP < FP we get

Eo [U exp(— Z F(Lﬁ_, o, WZ))] Eo m[U H @C exp F(Lg, o, W))]

i€l €L “i

Moreover, it is straightforward to see that

—

W;z == Wai = trD(W)eLD.,

we omit the details of this identity since the argument used in (23) of [66, Theorem 20] for the
Brownian snake applies directly to our framework. Consequently, we have:

Eoe | U] [ Q, (exp(—F (L. W)) | = BouU]]QF o

i€ i€l Ws, LD

(exp(~F(LE. ', W) .

Now, we need to take the projection on FP. Recalling that H(p') = ¢?, observe that for every
1€Z, _
@C e, (eXp(_F(Lgaplaw))

trD(W)eLD

is a measurable function of the pair (L2, p*) and the process (trp(W)g, : r = 0), the latter being

T

FP_measurable. We are going to conclude by showing that the point measure

208 0)

i€l

is a Poisson point measure with intensity 1o .)(¢)d¢ N(dp) independent of F D Remark that
once this has been established, an application of the exponential formula for functionals of Poisson
random measures yields

EO,x[ HQC exp( F(LD,p W))] =Ko, [Uexp (—LSOENtrD(/W\)le—eXp(—F(ﬁ, 0, W)))]

a"L

giving the desired result. In this direction, recall the definition of p” given in (5.43), and that
¢P stands for the local time of p” at 0. We denote the connected component of the open set

{t=0: (P, 1) # 0} ={t >0: H(pP) > 0} by ((¢j,d;) : j € N) — the latter equality holding
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since pP({0}) = 0 — and observe that these are precisely the excursion intervals of (p?,1) from
0. It follows by (5.12) and the discussion before the proof that

Z 6(£D(Cj)7p(ch+.)/\d]-)

7eN
is a Poisson point measure with intensity 1y .)(¢)d¢ N(dp) and observe that this measure is
independent of FP — since p is independent of FP. Furthermore, by (5.44) we have:

g

D
LUDSD = £D<JO dr ]l{%p>0}> = ED(S),

for every s > 0. It is now straightforward to deduce from our last observations that:

(LR 7) ie T} = {(°(e)) o o yna) 15 € N,

concluding the proof.
O

Setting Tp = inf{t = 0 : 7p(W};) < 0}, we infer from our previous result a version of the
special Markov property holding under the probability measure

NP .= N, (- |Tp < o).

T

Observe that N, (Tp < o0) is finite: if this quantity was infinite, by excursion theory, the process
(p, W) under Py ,, would have infinitely many excursions exiting D on compact intervals, contra-
dicting the continuity of its paths. Finally, note that (p, W) under N2 has the distribution of
the first excursion exiting the domain D. As a straightforward consequence of Theorem 5.10, this
observation allows us to deduce:

Theorem 5.11. Under N? and conditionally on FP, the point measure:
2 0wp i (de, dp, dw)
1€l

15 a Poisson point process with intensity

]1[0711?] (f) d¢ Ntrp dp, dLU)

@m(

Recall that the measure dL? is supported on {s = 0 : Ws € 0D} and consider a measurable
function ¢ : 0D — R,. Under N, we define the exit measure from D, denoted by ZP as:

(2P gy = JU dLP g(Wy).
0

The total mass of ZP is LY and, in particular, Z” is non-null only in {Tph < o}. Again by a
standard change of variable, we get

o Ly .
<ZD,g> = L dLSDg(trD(WS)) = fo dl g(trpWy,), N,-a.e.

and this implies that ZP is FP-measurable since Lf,) e FP by Proposition 5.7. In this work,
we shall frequently make use of the following simpler version of the special Markov property. By
Theorem 5.11, we have
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Corollary 5.12. Under NJZ? and conditionally on FP, the point measure

D 8wy (dp, dw) (5.45)
i€l

is a Poisson random measure with intensity § ZP(dy)N,(dp, dw).

Let us close this section by recalling some well-known properties of Z that will be needed, and
by introducing some useful notations. Remark by (5.28) that, for any measurable g : 0D — Ry
and for every y € D, we have

Ny (<ZD’ g>> = Hy <1{7'D<OO} exp(_aTD)g(STD)>>

and for such g, we set:

ugD(y) = Ny(l — exp(—<ZD,g>)), for all y € D. (5.46)

Theorem 4.3.3 in [43] states that for every g : D — R, bounded measurable function, ugD solves

the integral equation:

TD

B 0) 10 (| 7t @) = Ty (14 <yl (5.47)
By convention, we set uf]) (y) := g(y) for every y € 0D, and we stress that this convention is

compatible with (5.47).

5.4 Construction of a measure supported on {t e R, : W; = x}
From now on, we fix x € F and we consider the random set:
{te R, : W, = x}, as well as its image on the tree Ty, viz. {veTyg:& =z} (5.48)

In order to study the latter, we shall construct an additive functional A := (A;)cr, of the Lévy
snake supported on {t € Ry : Wt = z}. The present section is devoted to the construction of A
and to develop the machinery needed for our analysis. The study of {v € Ty : & = z} is delayed
to Section 5.5 and will heavily rely on the results of this section. Let us discuss now in detail the
framework we will consider in the rest of this work.

Framework of Section 5.4 and 5.5: With the same notations as in previous sections, consider
a strong Markov process ¢ taking values in £ with a.s. continuous sample paths and we make
the following assumptions:

x is regular, instantaneous and recurrent for ¢, (H2)
and
Q0
f dt H{Et:m} = 0, Hw — a.Ss. (Hg)
0

Under (Hz) the local time of £ at x is well defined up to a multiplicative constant (that we fix
arbitrarily) and we denote it by £. The recurrence hypothesis is assumed for convenience and we
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expect our results to hold with minor modifications without it. Set E, := E\{z} and for w € Wpg,
with the notation of Section 5.3 write

7g, (W) = inf{h € [0, (] : w(h) = =},
for the exit time of w from the open set F,. Observe that since x is recurrent for &, we have
Iy(1p, <) =1 (5.49)

for every y € E,, and in particular (Hj) holds. This will allow us to make use of the special
Markov property established in the previous section. Assumption (Hg) might seem a technicality
but it plays a crucial role in our study: it will ensure, under N, and [Py ,, that the set of branching
points of T and {v € Ty\{0} : & = z} are disjoint. We will explain properly this point after
concluding the presentation of the section.

Let A be the excursion measure of £ at z associated with £ and, with a slight abuse of
notation, still write o¢ for the lifetime of £ under N. The pair

fs = (£S7£s)> s =0,

is a strong Markov process taking values in the Polish space E := E x R, equipped with the
product metric dz. We set II,,, for its law started from an arbitrary point (y,7) € E. Recall that
we always work under the assumptions (Hg), which for (1, ) takes the following form:

Hypothesis (H{)). There exists a constant Cp; > 0 and two positive numbers p, ¢ > 0 such
that,
for every y € ¥ and t > 0, we have:

Hy,()( — dE((fu,Eu),(y,O))p) <Cn-t%,  and  ¢-(1-TH>1, (H,)

O<u<t

where we recall the definition of T from (5.17). We will use respectively the notation ©, S for the
sets defined as ©, S in Section 5.2.3 but replacing the Polish space F by E. It will be convenient to
write the elements of W as pairs W = (w, £), where w € Wg and ¢ : [0, (] — R is a continuous
function. Recall that under (Hp), the family of measures (P, w : (4, W) € ©) are defined in the
canonical space D(R, M¢(R) x W) and we denote the canonical process by (p, W, A), where
Ws : [0,(s(Ws)] — E and As : [0,(s(Ws)] — R4. Said otherwise, for each (u, W) € O, under
P, the process
(p87W87AS>7 s =0,

is the ¢-Lévy snake with spatial motion € started from (y, W) and we simply write W, := (W, As).
For every (y,7¢) € E, we denote the excursion measure of (p, W) starting from (0,y,70) by Ny .
Recall that under Pg ., or Ny ., for each s > 0 and conditionally on (, the pair

(Ws, As) = (Ws(h), Ag(h)) - h e [0,¢))

has the distribution of (¢, £) under I, ,, killed at (s. In particular, the associated Lebesgue-
Stieltjes measure of Ay is supported on the closure of {h € [0, () : Ws(h) = z}, Pg 4y, and Ny~
a.e. We will restrict our analysis to the collection of initial conditions (u, W) := (u,w,¢) € ©
satisfying that:
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(i) ¢ is a non-decreasing continuous function and the support of its Lebesgue-Stieltjes measure
is

{he0,(y) s w(h) =z}

(ii)) The measure p does not charge the set {h € [0, (w] : w(h) = z}, viz.
M(dh) 1 w(h)=z} — 0.
J[O,Cw] {w(h)=x}

This subcollection of © is denoted by ©, and we will work with the process ((p, W), (P, :
(1, W) € ©y)). Conditions (i) and (ii) are natural, since as a particular consequence of the next
lemma, under Py, and Ny, the Lévy snake (p, W) takes values in ©,.

Lemma 5.13. For every (1, W) € ©, and (y,ro) € E, the process (p, W) under P, and N,
takes values in O.

Proof. First, we argue that Ny, —a.e. the pair (p¢, W) satisfies (i) and (ii) for each ¢ € [0,0]. On
the one hand, by formula (5.24), for every (y,r9) € E we have :

a

Ny, ( L At o, {h e [0, Hi] s Wih) ;c}>> f "da exp(—aa) E0®Hy,m[f0 Ju(dh) Ty, _o)]

which vanishes. In the last claim we used that, by (Hg) and the independence between & and
Jo, Campbell’s formula yields E ® Hy,ro[ggo Joo(dh) Tyg, —a ] = 0. On the other hand, by
construction of the Lévy snake, for each fixed t > 0 the support of A;(dh) is the closure of
{h €0, Ht): Wi(h) =z} in [0, H], Ny, —a.e.

Consequently, N, . —a.e. , we can find a countable dense set D < [0, o] such that we have

{pt,{h € [0, H¢] : Wi(h) = x}) = 0 and supp A¢(dh) is the closure of {h € [0, Hy) : Wi(h) = z}

for every t € D. For instance, one can construct the set D by taking an infinite sequence of
independent uniform points in [0,0]. We now claim that p satisfies that N, . —a.e., for every
s < t, we have psLiomy(s,) = PtL[0mu(s,t)), Where we recall the notation mp(s,t) = ming, ;) H.
Indeed, remark that for fixed s < ¢, this holds by the Markov property and we can extend this
property to all 0 < s < t < o since p is right-continuous with respect to the total variation
distance. Now, by the snake property we deduce that N, , —a.e, for every ¢ € [0, 0], we have

(pt,{h € [0,H;) : Wi(h) =x}y=0 and {he|[0,H;): Wi(h) =z} = supp A¢(dh) n [0, Hy).
(5.50)
Taking the closure in the second equality we deduce that the closure of {h € [0, Hy) : Wi(h) = x}
is exactly supp Ay(dh). However, to conclude that N, . -a.e.

{pe,{h € [0, H¢] : Wi(h) = x}) =0, for all t € [0, 0], (5.51)

we still need an additional step. Arguing by contradiction, suppose that for some t > 0 the
quantity (5.51) is non-null. Then, by (5.50) we must have p;({H;}) > 0 and W;(H;) = z. By
right-continuity of p with respect to the total variation metric, we get

;i_{]% \pt({He}) — prac({Hi})| =
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and we deduce that for e small enough, p,({H:}) > 0 for all uw € [¢,t + ¢); in particular H(p,) >
H(py) for all w € [t,t + ). Since Wi(Hy) = x, the snake property ensures that Wy, (H;) = x for all
u € [t,t + ¢) and, since py({H;}) > 0 for every u € [t,t + €), we obtain a contradiction with the
fact that (py, {h € [0, Hy,] : Wy(h) = z}) = 0 for every u € D.

Let us now deduce this result under IP, . First, observe that the statement of the lemma
follows directly under Py, ,, by excursion theory. Next, fix (1, W) € O, with W(0) = (y,70),
consider (p, W) under P, and set Ty := inf{t > 0: {p;,1) = 0}. The strong Markov property
gives us that ((pT0+ +t>WTO+ 4¢) ¢t = 0) is distributed according to Pg, , and consequently,

(pTD+ +t7WTO+ +¢)t=0 takes values in ©,. To conclude, it remains to prove the statement of the
i

11, _
intervals of {p, 1) from its running infimum. Then, write (p%, W") for the subtrajectories of (p, W)
associated with [a, ;] and set h; := H,,. We recall from (5.22) that the measure:

Z 5(h17p17W1) ’
1eN

lemma under ]P’L «- In this direction, under PP consider ((ai,ﬁi) D= O) the excursion

is a Poisson point measure with intensity u(dh) Ng)(dp, dW). Since (1, W) € Oy, it follows by
the result Lglder the excursion measures (N, : (y,70) € E) that PL,Wfa.s. the pair (p;, Wy)
belongs to O, for every ¢ € [0, 7], as wanted. O

Finally, recall that the snake property ensures that the function (WS, /AXS) s>0 is well defined in
the quotient space Tp. Hence, we can think of W as a tree-indexed process, that we write with
the usual abuse of notation as

(S’U ; 'C’U)UETH .

Main results of Section 4: Now that we have introduced our framework, we can state the main
results of this section. Much of our effort is devoted to the construction of a measure supported
on the set {t e Ry : Wt = x} and satisfying suitable properties. In this direction, for every r > 0,
we set 7,.(W) := inf{h = 0: W(h) = (x,7)} and remark that, for every (i, W) € O,, it holds that
p({r(W)}) = 0, with the convention p(o0) = 0. We can now state the main result of this section:

Theorem 5.14. Fiz (y,19) € E and (u, W) € ©,. The convergence

1
A=dpc ) f& VL, () <Hu<r, (W) +) (5:52)

holds uniformly in compact intervals in measure under PP, and Ny, (- n {0 > z}) for every
z > 0. Moreover, (5.52) defines a continuous additive functional A = (A¢) for the Lévy snake

—~~

(p, W) whose Lebesgue-Stieltjes measure dA is supported on {t € Ry : W, = x}.

We will give another equivalent construction of the additive functional A in Proposition 5.22
but we are not yet in position to formulate the precise statement. Both constructions will be
needed for our work. Next, the second main result of the section characterizes the support of the
measure dA as follows:

Theorem 5.15. Fiz (y,79) € E, (1, W) € O, and denote the support of the Stieltjets measure of
A by supp dA. Under Ny, and P, &, we have:

supp dA = {t € [0,0] : &,,1) = = and pg(t) € Multis(Tz) L {0}}. (5.53)
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Observe that under PP, i with w(0) = z, the root of Tx has infinite multiplicity and this is
why we had to consider it separately in the previous display. This result is stated in a slightly
different but equivalent form in Theorem 5.30. The identity (5.53) can be also formulated in
terms of constancy intervals of A. More precisely, we will also establish in Theorem 5.30 that
under N ., and P, &, we have:

supp dA = [0,0]\{t € [0,0] :  sup As= inf A,, for somee > 0}. (5.54)
(t—e,t+e) (t—e,t+e)
We conclude the presentation of our framework with a consequence of Lemma 5.13. Roughly
speaking it states that, with the exception of the root under Py, o, the process ({,)ve7;, can not
take the value = at the branching points of 7z. The precise statement is the following:

Proposition 5.16. For every (y,70) € E and (1, W) € O, we have:
{tel0,0]: W, =a}n{te]0,0]:pu(t) e Multis(Ty) U Multin(Tx), pu(t) # 0} = &,
under Ny ,, and P, 5.

Proof. We start by proving our result under N o. First, introduce the measure N;O(dp, dW, ds)
supported on D(R4, M¢(Ry) x Wg) x Ry defined by N} o = Ny o(dp, dw) dsli,<,y and write
U: Ry — Ry for the identity function U(s) = s. The law under N}  of (p,W,U) is therefore
given by

7.0 (q)(P,W, U)) =Ny ( LU ds ®(p, W, s)> .

The measure N;/,O can be seen as a pointed version of Ny g. In particular, conditionally on (p, W),
the random variable U is a uniform point in [0,0]. Under N}  we still write X; := {(p;, 1) and
H; := H(pt). Furthermore, we set X := Xy — Xy and I := infs<; X* | for every ¢ > 0, and
we denote the excursion intervals over the running infimum of X* by ((ai, Bi) ;i€ N). The
dependence on U is dropped to simplify notation. Finally, set

h; = H(K—[&ipU)a
and write (p"i,W.’z) for the corresponding subtrajectory associated with (o, 3;) occurring at
height 2. Under N;ho, the Markov property applied at time U and (5.22) gives that, conditionally
on (py, W), the random measure

o Pyp— .
M=) Oihe. o TP
1eN

is a Poisson point measure with intensity py(dh) NWU(h)(dp, dW). In particular, the functional
FOM®) = #{ (87,07, T € M2 Woi(0) = o,

conditionally on (py, W), is a Poisson random variable with parameter SpU(dh)ﬂ{WU(h)=x}-
However, by Lemma 5.13, we have § pi7(dh) 1y, (n)=s} = 0 and we derive that, Ny o —a.e., F[(M®)
is null. Heuristically, the previous argument shows that if we take — conditionally on ¢ — a point
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uniformly at random in 7z, there is no branching point v with label z on the right of the branch
connecting the root to v. Let us now show that this ensures that

{te[0,0]: Wy = z} n{te[0,0]: pr(t) € Multis(Tg) U Multie(Tr)} = &, Nyo-ae.

Since N;’O((I)(p,W)) =Ny o(0-®(p,W)), it suffices to prove the previous display under Ny o Let
(vi : i € N) be an indexation of the branching points of 7z — an indexation measurable with
respect to H. Pick a branching point v; € Multis(Tz) U Multloo(TH) and let ¢; be the smallest

element of p, (UZ) Arguing by contradiction, suppose that W a(t;) = . Still under N¢

.07 since

v; is a branching point, we can find 0 < s. < tx < 0 in py ({’UZ}) such that the event
Wony) =2} 0 {se <U <t}

is included in {F(MY) > 0}. However F(MY) =0, N; o-a.e. and we deduce that N} ( pu(t) =
T8 < U < t*) = 0. Next, since conditionally on (p, W), the variable U is umformly distributed
on [0,0], we conclude that N? (WPH(ti) = z) = 0. The desired result now follows, since the
collection of branching points (v; : i € N) is countable. Finally, we deduce the statement under
Ny ., by the translation invariance of the local time and under [P, i by excursion theory — we omit
the details since this is standard and one can apply the method described in Lemma 5.13. O

The section is organised as follows: In Section 5.4.1 we address several preliminary results needed
to prove Theorems 5.14 and 5.15 and our results of Section 5.5. More precisely, Section 5.4.1 is
essentially devoted to the study of a family of exit local times of (p, W) that will be used as
building block for our second construction of A. Then in Section 5.4.2 we shall prove Theorem
5.14 and establish our second construction of A in terms of the family of exit times studied in
Section 5.4.1. The rest of the section is dedicated to the study of basic properties of A that we
will frequently use in our computations. Finally, in Section 5.4.3 we turn our attention to the
study of the support of the measure dA and it will lead us to the proof of Theorem 5.15 and the
characterisation (5.54).

5.4.1 Special Markov property of the local time

The first step towards constructing our additive functional A, with associated Lebesgue-Stieltjes
measure dA supported in {t € R, : Wt = x}, consists in the study of a particular family of
[0, 20)-indexed exit local times of (p, W). More precisely, for each 7 > 0, let D, ¢ E := E x R,
be the open domain

D, := E\{(z,7)}  and recall the notation 7.(W):=inf{h = 0: W(h) = (x,7)},

for every W € Wy Notice that 7,.(W) is the exit time from D, and we write 7, instead of making use
of the more cumbersome notation 7p,_. We also recall that since 7,(W) € {h € [0, (w] : w(h) = z}
as soon as (W) < o, for (u, W) € O, we have u({7,(W)}) = 0. Proposition 5.6 now yields that
for any (1, W) € O, with W(0) # (x,7) we have

¢

LtDr<p’ W) = llm - dS ﬂ{TT(W )<H <T'r(

im = |, (5.55)

s)+ep

where the convergence holds uniformly in compact intervals in L(P, ) and Ll(NW(O)). Let us be
more precise: recalling the notation W = (w, £), first remark that if £(0) < r, for any w(0) € E we
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have ITy ) ¢0)(7r < 00) = 1 and in consequence (Hyp) holds. On the other hand, if » < £(0), we
simply have LP = 0 since 7.(W) = oo for every s > 0. Finally, if w(0) # 2 and r > 0, we have
7p,(Ws) = 75, (Ws) for every s > 0, and recalling (5.49) it follows that L (p, W) = L (p, W).
It will be usefully for our purposes to extend the definition to the remaining case W(0) = (x,r),
and that is precisely the content of the following lemma:

Lemma 5.17. Forr > 0, fir (1, W) = (u, w,£) € O, with W(0) = (z,7). Then, the limit (5.55)
exists for everyt = 0, where the convergence holds uniformly in compact intervals in LI(PMW) and

Ll(Nw,r), and defines a continuous non-decreasing process that we still denote by LPr. Moreover,
under IP’LW and Ny ., we have LD = 0.

Proof. We work under PP, & since the result under N, follows directly by excursion theory. For
every a = 0 we set T, := inf{t > 0: Hy = a} and let T := inf{t > 0 : {p;,1) = 0}. Since
7-(Ws) = 0 for every s = 0, we have

t t Ty At T At
JO ds IL{‘rqn(Ws)<Hs<7—74(Ws)+g} = L ds Lo<r,<e} = JTEAt ds Lio<h,<ey + fTJ/\t ds Lio<m,<e}-

+
Furthermore, by the strong Markov property and (5.9), we already know that e~ S;‘L as1 (0<H, <)
0

converges as € | 0 uniformly in compact intervals in Ll(IP’M’W). To conclude, it suffices to show
that:

e—0

7
lim e B, JT ds1gopr -] = 0. (5.56)

Write (o, ;) for i € N the excursion intervals of the killed process ((p¢,1) : ¢ € [0,T,]) over
its running infimum and let (pi,WZ) be the subtrajectory associated with the excursion interval
[, Bi]. To simplify notation, we also set h; = H(«a;) and recall from (5.22) that the measure
./\;l = D ieN (S(hi’pi7Wi) is a Poisson point measure with intensity y(dh)Ng ) (dp, dW). Next, notice
that:

T, o(W")
fT dsLjpepr,<c} < ) L ds Lo<r (pt)<e}s

0<hi<e

and we can now use that M is a Poisson point measure with intensity u(dh)Ngp)(dp, dW) to
get that:

o

Ty
E, L ds Liorr,oy] < ([0,])N( fo AsLig<rr(py<c))-

Finally, by the many-to-one formula (5.24), the previous display is € - u([0, €]), which gives:

TO+
fimsupe! Bl | [ dsLon <] = n((0D,

e—0 A

Now (5.56) follows since we have p({0}) = 0, which holds since w(0) = z and (1, W) € O,. O

Now, we give a regularity result for the double-indexed family (LP+ : (s,r) € R%) that will be
needed in the next section.
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Lemma 5.18. Let (y, W) € O, with W = (w, (). There exists a B(R,) ® B(R,) ® F-measurable
function (L7 : (r,t) e R2) satisfying the following properties:

(i) For every r =0, the processes LPr and L7 are indistinguishables under P, w.
(ii) Puw almost surely, the mapping t — £ is continuous for every r = 0.

The result also holds under the measure Ny, for every (y,70) € E, by the same type of
arguments and we omit the details.

Proof. Fix an initial condition (y, W) = (u,w,f) € ©,. Since under P, w,e¢, the distribution of
(p, W, A — £(0)) is exactly P,  s—s(0), without loss of generality we might assume that £(0) = 0.
Next, by (5.55) and Lemma 5.17, for every r = 0 we have

S
i D, -1 B
151&)1 EMW[SUP Ly — € L duﬂ{TT(WM)<HM<TT(WU)+E}|] =0,

s<t

and hence for any subsequence (g5,) converging to 0, the sequence of processes

t
Yn(T, t) = Enlfo du ]l{TT(Wu)<Hu<Tr(Wu)+€n}7 t 2 0,

converges uniformly in compact intervals in probability towards L”~. Now, to simplify notation
write w := (p,w) for the elements of D(R, Mf(Ry) x Wg). Remark now that the mapping
(u,r,w) — 7-(Wy(w)) is jointly measurable since for each (u,w) it is rcll in 7, while for each fixed
r the mapping (u,w) — 7.(W,(w)) is measurable. Consequently, by Fubini, for every fixed ¢ the
application

t
(r,w) — JO du ]l{TT(Wu)<Hu<TT(Wu)+€n}(w>

is measurable while for fixed (r, w) it is continuous in ¢, and we deduce that Y}, is jointly measurable
in (r,t,w). It is now standard — see e.g. [80, Theorem 62| and its proof — to deduce that
there exits a jointly measurable process (r,t,w) — Y (r,t,w) such that for every (r,w) € R} x
DR, M (Ry) x W), the mapping ¢ — Y(r,{,w) is continuous and for each fixed r > 0,
Yu(r,-) — Y(r,-) as n 1 oo uniformly in compact intervals in probability. In particular for each
r = 0, the process (Y (r,t) : t > 0) is indistinguishable from (L : ¢ > 0) and we shall write
(L t=0,r>0) instead of (Y(r,t): t =0, r > 0). O

We now turn our attention to the Markovian properties of (£ : r > 0) under the excursion
measure N, g. To simplify notation, for every y # x, we set:

ur(y) := Nyo (1 — exp(-\.Z))), for y € E,, (5.57)

and remark that with the notation of (5.46) we have uy(y) = uf*(y) We shall use the usual
convention uy(x) = A.

Before stating our next result, we briefly recall from [64, Chapter II-1] that an R —valued
Markov process with semigroup (P(y,dz) : t,y € R, ) is called a branching process if its semi-
group satisfies the branching property, viz. if for any y,4y" € R, we have Pi(y, ) = P,(y,-) =
Pi(y +¢,-). In order to fall in the framework of [64, Chapter II- Theorem 1] we also assume
that SR+ Pi(y,dz)z < y for every t,y € R;. By the branching property it follows that for any
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t,y € Ry the distribution P;(y,dz) is infinitely divisible and non-negative, and consequently, for
every t,y € R, the Laplace transform of P;(y,dz) takes the Lévy-Khintchine form:

f Py(y, dz) exp(—Az) = exp (= yar(N)), for A = 0,
R4

for some function (a;(A) : ¢, A = 0). By [64, Chapter II- Theorem 1], the function (a¢(\) : t, A = 0)
is the unique non-negative solution of the integral equation

ar(\) + fo duT(ag(\) = A, (5.58)

for a function (W(A) : A = 0) of the form,

T(N) = cih + e\ + f v(dy) (exp(=Ay) — 1 + A\y), for A > 0,
R,

where ¢1, co € Ry and v is a Lévy measure supported on (0, o0) satisfying S(o ) v(dy)(y ~y?) < 0.
By (5.58), it follows that a¢(\) is the unique function that satisfies

A
d
J S )
a:(n) Y(s)

The Markov process with semigroup (F;) is then called a CSBP with branching mechanism W,
or in short a W-CSBP. The exponent ¥ clearly fulfils (A1) and so does (A3) by [17, Corollary 2.
So to fall in our framework, it only need to satisfy (A4) — since as explained in the preliminaries
(A4) implies (A2).

Proposition 5.19. Under Ny, the process (£, : r > 0) is a branching process with entrance
measure vy (dx) = Ny o(Z) € dx), for r > 0, and branching mechanism

g

D) = N(f dh ¢(u,\(§h))), for A= 0. (5.59)
0

Moreover, 1; satisfies the assumptions (Al) — (A4) introduced in Section 5.2.1 and consequently

we can associate to it a Lévy tree.

Our result is a particular case, in the terminology of Lévy snakes, of Theorem 4 in [23] stated
in the setting of superprocesses. Theorem 4 in [23] is more general and the family (Z)),~o in
our result correspond precisely to the total mass process of the superprocess considered in [23],
for the same branching mechanism @E

Proof. The proof is structured as follows: we start by introducing a family of probability kernels
(P;) and by showing that they form a semigroup of operators associated with a branching process.
We then establish that (£ : r > 0) is a Markov process associated with the semigroup (), with
entrance measure (v, : r > 0). Finally, we conclude the proof by establishing that its branching
mechanism is ¢ and that it fulfils (A4).

We stress that we are only interested in the finite-dimensional distributions of (£ : r > 0).
Recalling the notation (5.46), for any r > 0 and A > 0, we write

B (2,0) = Na(1 - exp(-AZ))) = | ) (1 = exp(-Ay)).
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Moreover, since Ny (£ > 0) < N%o(sup/A\ > r) < o0, we have S(O,oo) vr(dy)(1 A y) < o0, and we
deduce that the function A — u)l\) "(x,0) is the Laplace exponent of an infinitely divisible random
variable with Lévy measure v,(- n (0,00)). For each ¢ > 0 and y € R, denote by P;(y,dz) the
probability measure with Laplace transform

fPt(y, dz) exp(—Az) =exp (—y- u)\Dt(a:, 0)), A= 0. (5.60)

Remark now that the translation invariance of the local time of £ implies that, under Pg ;. , (resp.
N, ,) for r > 0, the distribution of (W,A —r) is Py 0 (resp. Ngo). In particular, for every
s,t = 0, we have

uf”s(a:, s) = uADt (x,0).
We deduce that the family (P;(y,dz),t > 0,y € R;) is a semigroup since, by the special Markov
property applied at the domain Dy, it holds that

which coincides with the Laplace transform of the measure SueR+ Py(y, du) Py(u,dz). Since we have
N, o(Z)) <1by (5.28) and 1 — exp(—A\.Z)) < AL, we deduce by dominated convergence and
(5.60) that SR+ Pi(y,dz) z = y - N, o(Z)) < y. Since the semigroup clearly fulfils the branching
property, it follows that there exits a CSBP associated with the semigroup (7).

Recall the notation T, := inf{t > 0 : 7.(W;) < o} as well as the definition of the sigma
field FP= from (5.26). We will now show that for any € > 0, the process (£ : r = 0) under
the probability measure Ngf) = Ny o(-|Tp. < o0) has transition kernel (P). Fix ¢ < a < b; by
considering the point process of excursions (5.45) outside D,, we deduce by an application of the
special Markov property that N D 5a.e.

z,

Nﬁa (exp (—Aﬁf) ’}"D“> = exp (—ZU“NLG (1 — exp(—A.i”f))) = exp (—gaa : uf\)b’“(:c, 0))

where in the last equality we used the translation invariance of the local time of £&. We have
obtained that, for every ¢ > 0, (£ : r = 0) under Nf § is a CSBP with Laplace functional

(u)\D’" (,0) : 7> 0) and initial distribution Nfa (£F e dx) with respect to the filtration (FP=+ :
r = 0) (recall that £ is FPr-measurable by Proposition 5.7 and Lemma 5.18). Now, we

claim that for any 0 < r; < --- < r; and any collection of non-negative measurable functions
fi : R—i— — R-i—a

k
Noo (14627 ) = [ @) [ PacnGrdza)fatea) o | P (ror d i)

(5.61)
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This follows from the previous result, by observing that for any ¢ < r; we have

k
Nz.0 (H fi<$ari)1{TDE<oo}>
i=1

= Na o <:H'{TD5<OO}f1 (ga”)f

Ry

P20 o) - [ P dzk>fk<zk>) |

R,
and we conclude taking the limit as € | 0. The fact that the family (1 : ¢ = 0) satisfies that
Virs = VsPy for t, s = 0 now follows from (5.61). Let us now identify 1. Recall from our discussion
in (5.58) that the Laplace exponent (ufr(x, 0) : r,A = 0) is the unique solution to the equation

u)\DT (x,0) + LT du \If(uf"(x, 0)) = A, (5.62)

where ¥ is the branching mechanism associated with (P;), and that it is defined in a unique way
by (5.62). In particular, ¥ characterizes completely the semigroup (P;). To identify the branching
mechanism we argue as follows: first, observe that the identity (5.47) applied at the domain D,
yields
TD,
u)\DT(x, 0) + 1,0 <J dt Q/J(U)\Dr(ft, ﬁzﬁ))) =\, (5.63)

0
for every A > 0 and r > 0. Next, by excursion theory and (Hg) we get:

M, ( L 7 at w6, ct))) - L Y (J: at v (ud u)>>
_ L du N (LU dt o @f”“(@,@))) ,

where in the last equality we use the invariance by translation of the local time of £. Moreover,
the special Markov property applied at the domain Dg gives

u)\DT' (y7 0) = uuf"'(x’o) (y)7

for every y € E\{z} and A = 0 — and the identity also holds for y = x. Putting everything
together, by definition of 1, the identity (5.63) can be re-written as follows:

ulr (x,0) + L ' dup(ul (x,0)) = A, (5.64)

Consequently, we deduce that the branching mechanism associated with the Laplace functional
u)\D "(x,0) is @Z It remains to show that the conditions stated in Section 5.2.1 are satisfied by
1;. As we already mentioned, it only remains to verify (A4). In this direction and recalling the
notation Tp, = inf{t > 0: A > r}, also by (5.64) we obtain that f(\,r) := u?r (x,0) satisfies for

every r, )

J &, (5.65)
FOur) ()

where the limit f(o0,r) = N, o(LP" > 0) is finite, since {LD* > 0} = {Tp, < 0} and N, o(Tp, <

) < o« by the same argument used before Theorem 5.11. Hence, taking the limit as A 1 o0 in

(5.65), we infer that the following conditions are fulfilled:

U(0) = and JW%<w.
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To derive the exact form of (A4), recall that ¢ is convex and that we have ¥ (0) = 0 and
P (0+) > 0. O

Now that we have established that QZ is the Laplace exponent of a Lévy tree, let us briefly
introduce some related notation and a few facts that will be used frequently in the upcoming
sections. From now on, we set X a @Z—Lévy process and we write T for the running infimum of X.
We also denote the excursion measure of the reflected process X-1 by N — where the associated
local time is —I. The usual notation introduced in Section 5.2.1 applied to X are indicated
with a ~. For instance, we denote the height process and the exploration process issued from X
respectively by H and p.

By convexity and the fact that J’((H) > 0, the only solution to ?Z( A) =01is A = 0. This
implies that the mappmg A — 9()) is invertible in [0,0). By classical results in the theory of
Lévy processes, w is the Laplace exponent of the right-inverse of "y and, since X — I does not
spend time at 0, the former is a subordinator with no drift. So, recalling the relation between
excursion lengths and jumps of the right-inverse of "y , we derive that:

7' (\) = N(1 — exp(=Aa)), A =0. (5.66)

For a more detailed discussion, we refer to Chapters IV and VII of [17].

We close this section with some useful identities in the same vein of (5.59), that will be used
frequently in our computations. These identities allow to express some Laplace-like transforms
concerning the process (1/1(U>\(ft)) t= O), under the excursion measure N, in terms of the 12
As an application of these computations, we will identify the drift and Brownian coefficients of
1;. We summarise these identities in the following lemma.

Lemma 5.20. For every A, Aa € Ry with A1 # A\a, we have

_ _ 7 w(ukl(fs)) - w(ukz(@)) B J(Al) — TZ(>\2)
N <1 eXp< JO ds UAl(gs) —u,\Q(fs) >) o M — o . (5.67)

Recalling the identities (5.23), remark that Lemma 8 allows to express the Laplace exponent
of (UM, U®) in terms of N and ).

Proof. First note that the functions A — u)(y) and A — ¥ (u)(y)) are non-decreasing. So without
loss of generality we can and will assume that A} > \o. We set T, := inf{t > 0: & = x} and we
write

M (Es) U,
N(l TP ( J ds ( U, (fs)) - u)\(g (25) )>)

_ 7o L&) —v(wu(&)) ¥ (un, (6) — ¥ (ur, (&)
N (JO ds uy, (§s) — ur, (&s) p( L a uy, (&) —ur, (&) )>
(
5)

&) -
(7 P €)= (&) (o ([ g L&) — (1 (&)
=N (J;) ds U), (és) ( Hfs ( P ( J{) dt Uy, (ft) — U, (&) )))

where in the last equality we applied the Markov property. On the other hand, the definition of
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¢ given in (5.59) yields

o) —90) _ ( f 1 (&) - w(%(&s)))

)\1 — )\2 0 )\1 - )\2
. 7 w(u)q (58)) - ¢(U>\z (gs)) . Uxy (fs) — U), (55)
=N (L o ux, (§s) — uay (&s) AL = A2 ) '

Consequently, the lemma will follow as soon as we establish the identity:

uy, () —ux,(y) B T ah(un (&) — v (un, (&)
s et Gl fo &) — (&) )

In this direction, recall that under Ny, o with y # = the processes .2 °(p, W) and L¥*(p, W) are
well defined and indistinguishables, and remark that

ux, () — ur,(v) = Nyo(exp (— A L 420) — exp (= Ao L )
= (M = \a) - Ny,o(f d.20exp (— Alf d.20) - exp (- AQJ d.i”uo)).
0 0 s

Then, an application of the Markov property gives:

ux, (¥) = uny(y) = (A1 = A2) - Nyo (L Azl exp (- ML) E;ﬁws[exp (- A?afao)])-

—
~

We can now apply the duality identity ((p(c,_t)_, n(g_t)_,Wg,t) : tel0,0]) = ((nt,pt,Wt) cte
[0, a]) under Ny o, to get that the previous display is equal to

(A — Ag)-Nyp(L d.20 exp (=M J dciﬂto) Ef 7 [exp (- AQXUO)D

Ns, s

= (A1 — o) 'Ny,o(fo 4.z, ELSWS[GXP (- M) 'EI,SWS[GXP (- AZXUO)])-

Remark that (), W) takes values in ©, by duality and right-continuity of 7 with respect to the
total variation distance. We are now in position to apply the many-to-one equation (5.24). In
this direction, for (u, W) € ©, with W(0) = (y,0) and y # = we notice that

TDyg (W)

E} o [exp (< 127)| = exp (= [ (ah) Ny (1 - exp(-12)))

0

— exp < - JTDO(W) w(dh) W(W(M));

0
for every A > 0. Consequently, (5.24) gives:

Ty

~

u)‘l(ii : 1;;‘2 ) =E'® Hy(exp ( — osz) exp ( — JOTI J(ds) uy, (&) — fo J(ds) uy, (fs)))

Finally an application of (5.23) yields exactly the desired result (5.4.1). O
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As an immediate consequence, we obtain two other useful identities taking Ao = 0 and letting
A2 | A1 respectively. For every A > 0, we have

g ~ g ~
N (1= (= | b wun(@)) /(@) ) = S0/ A (1-exp (= | db o tunn)) = TV
0 0
(5.68)
where for the first one we used that up(y) = 0 since Ny(Lg* = ) = 0. We also stress that (5.68)
can be proved independently directly by the same arguments as the ones applied in the proof of
(5.67).
Since by Proposition 5.19 the exponent @Z satisfies (A1) — (A4), it can be written in the
following form

D) = FX+ BAZ + f #(dz) (exp(—Az) — 1 + Az),
R+

where & 8 > 0 and % is a measure in R, satisfying {7(dz)(z A 2%) < oo. In the following
corollary, we identify the coefficients & and f.

Corollary 5.21. We have & = N (1 — exp(—ao)) and 3=0.

Proof. To simplify notation, for A = 0 set ¢¥*(A) := (A)/A, ¥*(A) := (A\)/A. Since ¢ satisfies
(A1)—(A4), by Fubini we derive that 1* is the Laplace exponent of a subordinator with exponent:

a4 BA+ JR dr 7 ([r, 0)) (1 — exp(—Ar)). (5.69)

Next, introduce the measure N*(d¢) := N (exp(—aoc)d€) and observe that by (5.68), U*(\) can
also be written in the form

N(l—exp (—J dhy* (u;&f;ﬁ))) = N(1—exp(—ao))+N* (1—exp (—f dh (v* (ur(én)) —a))).

’ ’ (5.70)
Comparing with (5.69), our result will follow by showing that the second term on the right-hand
side of (5.70) is the Laplace exponent of some pure-jump subordinator. In this direction, introduce
under E° @ N* and conditionally on (Jy, & ), a Poisson point measure

M(dh, dp, dW) = 2 et T
ieN
with intensity Jg(dh)Ng(h),o (dp, dW). This is always possible up to enlarging the measure space

and for simplicity we still denote the underlying measure by EY®@N*. Next, define the functional
DieN Z9(p", W") and denote its distribution by v(dz). By definition, we have:

o @/\/*(1 —exp ( A Wi)» _ g0 ®N*(1 —exp ( - r Jg(dh)uA(f'(h))»
ieN

- (1= (- [ an 0 n(6) - o)) )

where in the last equality we used that J, is the Lebesgue-Stieltjes measure of a subordinator
with exponent )*(\) —a. Since the latter expression is finite, we deduce that v is a Lévy measure
satisfying {v(dr) (1 A ) < o, and that the second term on the right-hand side of (5.70) is the
Laplace exponent of a driftless subordinator with Lévy measure given by v. m
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5.4.2 Construction of the additive functional (A;)

We are finally in position to introduce our additive function:

Proposition 5.22. Fiz (y,r0) € E and (1, W) € ©,. Under N, ,, and P, w, the process defined
as

Ay = J dr&", fort =0,
R,

is a continuous additive functional of the Lévy snake taking finite values. Furthermore, we have

1 t
Ay =lim— | du dr1l, — 5.71

! Elo g 0 fR+ {TT(WU)<HU<TT(W7J,)+E}7 ( )
where the convergence holds uniformly in compact intervals in measure under P, 5 and Ny ., (- N
{o > z}) for every z > 0.

Proof. We start proving the proposition under P, 7, where (11, W) := (11, w, () € ©,. Remark that
by the translation invariance of the local time we might assume that ¢(0) = 0 without loss of
generality. For simplicity, we set y := w(0). Next, we write ,/A\z‘ = SUPggy A, and we note that it
suffices to show that for any ¢, K > 0

1 S
E“’W[iilt) . dr EL du Lo a7 )< H, <7 (Wa)4e) JI& drZ| - Il{j\;k<K}] — 0,

as € | 0. In this direction, we remark that the previous expression is bounded above by

1 r
J& @ Emw[i‘ilf \EL A L, 57, )<ty ey e~ 20 Vs iy

1 (*
< d E W - d 1 504 — _ZT 7
(0,K] T [iig) |€f0 Y {rr(Wu)<Hu<rr(Wy)+e} s |]

since on the event {/AX;‘ < K} we have " = 0 for every r > K. Now, by Lemma 5.18, it
suffices to show that the expectation under PP, w in the previous display is uniformly bounded
on g,7 > 0 since the desired result then follows by dominated convergence. To do so, we set
T0+ = inf {t =>0:{p, 1) =_0} and we notice that by thes_trong Markov property, under P, w,
the distribution of (pTO++S, WT0++S : 52 0)is Pgyo(dp,dW). In particular we have the upper
bound:

1 S r
EM,W[SUP |_f du b W) <Ho<r (Wa)+e} ~ s ﬂ

s<t € Jo
1(° - 1 (% -
< EL,W[E Jodun{7-7.(Wu)<Hu<T,.(Wu)+E} + ng ] + EO,%O [Sup |g Ldun{r,.(Wu)<Hu<7-,.(Wu)+a} - gs ‘]

s<t

So to conclude we need to prove both:

(i) supsupEqgy0

e>0 r>0

| —

1 S
Sup|gJ du ﬂ{Tr(Wu)<Hu<n(Wu)+5} _Zsr|] <

s<t 0

3 I r
(ii)) sup suP]Eva[EL du Lo W )<Ho<r, (Wa)+e} T 92”0] < .

e>0 r>0
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Let us start showing (i). We are going to apply similar techniques to the ones used in the proof
of Theorem 5.10. In this direction, we work under Py, 0 and we fix r,e > 0. Now, recall the
definition of vPr, o and pPr introduced in Section 5.3.2 (keeping in mind the fact that here we
work with (p, W)) and set

t
D, . _
Ry = L ds]l{%pr>0}, for t = 0,
which is the right inverse of oP. Next, for every r > 0, by definition we have 7,.(ps, W;) =
0, (pt, W) and we derive that

S RET
L du ]1{7%( W) <Hu<t(Wu)+e} — L du ]1{0<H(pfr)<5}’

since on {u > 0: H(p,p.) > TT(WO_ET)}, we have H(pPr) = H(p,p.) — TT(WUE,-). Recall from
(5.43) that {pPr, 1) is distributed as {(p, 1) under Py ¢, which is a reflected 1)-Lévy process, and
that we denote its local time at 0 by ¢P7. In particular, the distribution of ((pPr, 1), ¢P") is the
same as ((X; — I;,—I;) : ¢t > 0). Recalling from (5.44) that .Z," = ¢Pr(RP) and noticing that
RPr < s, we derive the following inequality:

Eos, O[Sup Z f Qu L (W) <Hure (W) e} ~ ZJ|]

s<t € Jo
[ 1R D, ( D
=Eoy0 _Ssliltﬂgm du L py(pory<ey = €7 (s )|]
_ 1 rsS D
< Eogo|swp|Z | du Lo prpprycey — ()]
By sup |~ [
= sup |— | du 1 + 1 ],
09,0 S<1;) ’5 ) {0<H (p.)<e} s|

where in the first line we used that for each fixed r > 0, the processes .Z" and LPr are indis-
tinguishable. The latter quantity does not depend on r and by (5.9) it converges to 0 as € | 0,
giving (i).

We now turn our attention to the proof of (ii). On the one hand, by Proposition 5.6 - (ii) and
(5.28), for every r > 0 we have

B [2] - f( . ah) Nug (27)

= ﬁo @) ﬂ(dh) EO ® HW(h) [H{Tr(§,£)<w} exp ( — OZTT(S; E))] < <M7 1>

On the other hand, the remaining term

1 _
EN’W[EJ du ]1{7-T( W) <H, <Tr(Wu)+E}:|

can be bounded similarly as we did in (5.33). More precisely, consider under IEDT - the random
measure )y 5(h- T defined in (5.22), set T := inf{t > 0: H; = 7.(W)}, w1th the convention

T = 0 if 7,(W) = o0, and remark that for every s € [0,T] we have 7,.(W,) = 7,.(W). Recalling
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p({m-(W)}) = 0, it follows by considering the excursion intervals of H over its running infimum
and our previous remark, that the integral SO du 1 (7 (W) < Ha <TT(WU) te} Ccan be written as

Z J du L, (w)<hi+-H(p) <ro(w)+e} T Z J l{Tr(WfL)<H(pg)<TT(Wz)}’

h >7_7‘ h <T»p

where the first term is now bounded above by Zh 7 () 0( ) du Tgo<pr(pi)<e)- Consequently, by
(5.24) we have

i [ - -
EM:W[L du ]]'{Tr(Wu)<Hu<Tr(Wu)+5}:|

<l o) N [ ’

0

g

dsﬂ{o<H<ps><s})+f(O ())Mdh)Nw(h)(L s 1 (W) <t <r, (W) +2))

and again by the many-to-one formula (5.24), the previous display is bounded by ¢-{u, 1). Putting
everything together we deduce the upper bound

r [ - Ao
EH»W[EL du H{TT(W V<Hu<7 (W) + }+$ ] <2 <,u, 1>’

which does not depend on the pair r,e > 0 and concludes the proof of (ii).
Finally, we extend the result under the excursion measure N, ,,. Working under Pg, , fix

2z > 0 and denote by (p’,W/) = (p(g+.),\d,W(g+,)Ad) the first excursion with length ¢ > z. By
the previous result, the quantity

_ ro 1 7
iiltj J duf d,rﬂ W, <H(pu)<7'r(W )+5} JR+ d?“gs (p7W> ’
g+s
r T
- 8<tSAuEi) 9) f du Jﬂh dr]l{T w)<Hu<rr(Wu)+e} JR dr(Zyss — Zy)

converges in probability to 0, and it then follows that (5.71) holds in measure under N (- n{o >

]

As a straight consequence of the definition of A we deduce the following many-to-one formula:

Lemma 5.23. For any non-negative measurable function ® on Mp(R,) x My(Ry) x Wg and
(y,r0) € E, we have

g o0

Ny.ro (J dAs @ (,0577757Ws)> = f dr E° ® Iy 7, (exp ( — om-r) . CIJ(JT,,, Jvﬁ, (&, Lyt < TT))> )
0 T0

(5.72)

Proof. By the translation invariance of the local time it is enough to prove the Lemma for ry = 0.
Now recall that, under Ny g, for every fixed r > 0 the processes .Z" and LP are indistinguishable.
Consequently, the left-hand side of (5.72) can be written in the form:

o] o -
f drNy o (J dLP @ (ps,nS,Ws)> ,
0 0

and hence we arrive at (5.72) applying (5.28). O
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A first consequence of Lemma 5.23 is that for any (y,79) € E, we have
suppdA c {te R, : W, = r}, Ny~ ae. (5.73)

Indeed, it suffices to observe that by (5.72), for any € > 0, it holds that

Ny.ro (L dAs]l{dE(Ws,x)>5}) =0,

where we recall that dg stands for the metric of E. Let us comment on a few useful identities
that will be used frequently in our computations:

Remark. Fix (y,79) € E with y # 2. Under Ny, or Py, let (g,d) be an interval such
that Hy, > Hy, = Hg, for every s € (g,d), and _/A\g = rg — remark that in particular we have
pr(9) = pr(d). We denote the corresponding subtrajectory, in the sense of Section 5.2.3, by
(p’,W/) and its duration by o’ = o(W’). Since for any ¢ > r and s = 0:

H(g+s)Ad = Hg + H(ﬂi/\@) and TQ(W(ngS)/\d) = Hg + Tq(Wls/\ai%

we deduce by the approximation (5.71) that the process (A(gipna — Ag : ¢ = 0) only depends
on (p/, W/) and it will be denoted by (As(p/, W,) : s = 0). Now we make the following observations:

(i) Working under N, ,,, we denote the connected components of the open set {( Hs—7,(Ws))+ >

0} by ((as, 8;) : i € Z) and we set o := i — o its duration. We also write (p', W") for the excur-
sions from D, corresponding to the interval (o, 3;). By Proposition 5.22, the measure dA does
not charge the set {s > 0: Hs < 7,,,(W)} and we derive that:

Aa = ZJ dAs = Z Ao-i (pZ,W,L), Nyﬂ»ofa.e. (574)
iez (@i, 5] ieT

(ii) We will now make similar remarks holding under ]P’L = for (4, W) € ©,. Under PL « denote

the connected components of {s > 0: Hs > infygq H} by ((a;,b;) : i € N) and write (pi,Wi)
for the subtrajectory associated with [a;, b;]. We also set h; = H,, and recall that the measure

M= 6(h~ ST is the Poisson point measure (5.22) associated with (p, W). Moreover, we
have: o

E) [l — 3, A6 W] < [ ar L o[l - 3.2 )]
ieN R+ ieN
Consequently, by Proposition 5.6 - (ii), the previous quantity is null and it follows that we still
have _
A, = Z Ax(ph, W, ]P’L’W— a.s. (5.75)
ieN
Recall now the definition (5.59) of ¢ and the notation w, introduced in (5.57). The following
proposition relates the Laplace transform of the total mass A, under N, . and the Laplace
exponent 1. This identity will be needed to characterize the support of dA and will also play a
central role in Section 5.5.
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Proposition 5.24. For every ro, A = 0 and y € E, we have
Nyﬂ"o <1 — €Xp ( - /\AOO)> = uifl()\) (y)a

where we recall the convention uy(x) = A, for every A = 0. Moreover, for (1, W) € ©,, we have:
ELW[eXp (- )\Aoo)] = exp ( - J,u(dh) U1y (W(h))>

The proposition has the following consequence: since ¢~ 1(\) = N(1 — exp(—Ac)), the total mass
Ay under N g and o under N have the same distribution. This connection is the tip of the
iceberg of the results that will be established in the upcoming section, where we establish that
the tree structure of the set {v € T : & = z} is encoded by a ¢-Lévy tree.

Proof. Under N, ,,, with y # x and 9 > 0, set
T* .= inf{t > 0: 7,,(W}) < 0},
which is just the first hitting time of x by (Wt)te[(),a]' Notice that by (5.73), Ay vanishes on
{T* = o} Ny ,-a.e.. We set Gy = Ny o(1 — exp(—AAy)), and remark that the identity (5.74)
and the special Markov property applied to the domain D, yields:
Ny (1 —exp (- )\Aoo)) = Ny, (1 — exp ( — L7 Ny (1 —exp (- )\Aoo))>>

Next, by the translation invariance of the local time £, we derive that the previous display is
equal to:

Ny.0 (1 — exp ( — .,Z? : N%o(l — exp ( — )\Aoo))>> = ug, (y).

Moreover, for (i, W) € O, if we denote under IP’L’W the Poisson process introduced in (5.22) by
we get :

ELW[exp (- )\Aoo)] = Elﬁ[exp (- )‘ZAoo(pi,Wi))]
1€

= exp < — JM dh) N (1—exp (- AAOO)))
J

ZzeI 5(h ,W )

( )
u(dh) ug, (w(h))).

where in the first equality we applied (5.75), and in the second we used that ), ;¢

oo
(hepr T 152
Poisson point measure with intensity p(dh)Ng ) (dp, dW). Consequently, the statement of the

proposition will now follow if we establish that G = zz_l()\). In this direction, for A > 0, notice
that the Markov property implies that

Gy = A.NW(L"MS exp(_)\deAu)> - A.pr(f dA, EL’WS[eXp(_ALUdAU)]).

. . . T . :
By the previous discussion under IP’M’W and the many-to-one formula of A given in Lemma (5.23),
we get:

GEAL ar @tz (exp (—ar)exp (- [ (ah) ue () )

© ug, (§(h))
:)\fo dr Hm,0<exp(—f0 wiGA(f(h)))»’
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where we recall that 7.(¢,£) := inf{s > 0: Ls; > r} and in the second equality we used that
Jw(dh) is the Lebesgue-Stieltjets measure of a subordinator with exponent (\)/A — a. Next,
under II,; o, we consider (s;,;);>1 the connected components of {s = 0: & # z} and we remark

that:
o P(ue, (E(h)) UGA (h)))
J, @ we () ‘M;J e Em)

since SSO dhlg,—zy = 0 by assumption (Hg). Consequently, by excursion theory we get:
" (uc, (€M) \y _ 7 ¥(uG, (&)
Hx70(exp(—f() dhw>>—exp(—r]\/’<l—exp(—fodh W))),

and hence

Gy = A-N(1—exp<—fdh M»_l.
0

uG, (&)

However, by the first identity in (5.68), we have

V(e (=[G -

and we derive that QZ(G,\) = )\ for A > 0 and equivalently G\ = 1;_1()\). Finally, since Gy = 0
the identity also holds for A = 0. [

5.4.3 Characterization of the support of dA

The rest of the section is devoted to the characterisation, under N, ,; and P, w, of the support
of the measure dA. Our characterisation is given in terms of the constancy intervals of /AX, and of
a family of special times for the Lévy snake that will be named exit times from x. Before giving
a precise statement we will need several preliminary results under N o. First recall that under
N, o, for every r > 0 the processes " and LPr are indistinguishables — and in particular, by
Proposition 5.7, 2 is FPr measurable. Fix r > 0, recall the notation 7..(p;, Wy) = 7p, (ps, W)
for ¢ > 0, and denote the connected components of the open set {t € [0,0] : 7.(Wy) < Hy} by
{(a],b]) : i€ I.}. We write {(p"", W"") : i € I} for the corresponding subtrajectories, where as

usual W' = (W% Ai"). Next, recall the notation I'D .= inf {t=0: VP > s} for VP defined
by (5.25) and we set:

0y, :=inf {s >0 : L, > u, foralluel0,Z)).

Remark that trp, (ﬁ/,\/\)gz = (x,r), for every u € [0,.£)). An application of the special Markov
property applied at the domain D, gives that, conditionally on FPr, the point measure of the

M Zdiﬂr,p”w ")
€l

excursions from D,

is a Poisson point measure with intensity 1o o,j(u)du Ny, (dp, dW).

Lemma 5.25. N, g-a.e., we have {0,0} € supp dA.
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Proof. We are going to show that for any € > 0, we have N g(A:rs = 0) = 0 — the Lemma will
follow since the symmetric statement N, (A,_. = 0) = 0 will then hold by the duality identity
(5.20). As previously we write

Gy = Ny(1—exp (= M) = 7H(N),

where the second equality holds by Proposition 5.19. For every positive rational numbers r and
¢, we introduce the stopping time T} := inf {s >0:2" > q}, with the convention Tj = o, if
Z < q. Let us prove that
Ngo(Ary = 0,2 > 0) = 0. (5.76)
In this direction, set N} ; := N7 ;(dp, dW|.Z" > 0) and using the fact that M) is a Poisson
point measure with intensity 1o g,(u)du Ny, (dp, dW), remark that

Q,o(exp (- AAT;)> <N (eXp A2 Aslp W 1{3“‘1}))

€L,
— N;,O(exp ( —(qn L)) - Ny(1— eXp(_AAOO))))
— N;O(exp (—(ang)) 'GA))’

and hence:
N;O(AT(; =0)+ Nao(exp ( — )\AT;)H{ATJ>0}) <N (exp ( —(gnZ))- G,\)) .

Now (5.76) follows taking the limit as A 1 <o, since we are working under {-Z > 0} and by
Proposition 5.19 the function zZ satisfies (A4), which gives that G goes to o0 when A 1 0. We
stress that (5.76) holds for any positive rational numbers 7 and ¢. Now fix € > 0, and notice that
by the monotonicity of A, we have

{AE/\U:OQT;<5}C{AT;=0;T(;<€;$UT>O},

where the last set has null N, g measure by (5.76). The identity N, o(A:rs = 0) = 0 now will
follow as soon as we show that, N, g-a.e. , there exists two positive rational numbers r and ¢
satisfying that T, < e. Said otherwise, we need to establish that the origin is an accumulation
point of {77 : r,q € Q% }. Arguing by contradiction, write

N {Trzet= (V1 {Ty=e:vg>0}= ) {& =0

r,qeQ% reQ* reQ¥

where in the last equality we used (5.76), and suppose that N; 0(€29) > 0. To simplify notation,
set C(r) := inf{s = 0 : A; > r}, and remark that the special Markov property, as stated in
Theorem 5.11, applied to the domain D, gives {Z." = 0} = {C(r) = €}. We then derive that

0< Nm( N ) = g}) - Nx,o(f\s —0,¥se[0,e A a]).
reQ¥
However, recalling the definition (5.19) of the excursion measure N, ¢ this is in contradiction with
the fact that for every s € (0,0), Ny a.e., Ay > 0. Indeed, by definition of the Lévy snake under
N 0, for any fixed s the process (Ws(t), As(t) : t < (5) has the distribution of a trajectory of the
Markov process (&, L : t = 0) under II, o killed at (5. We then have Ay(t) > 0, for every ¢ > 0,
since £y > 0, I o a.s., and (s = H(ps) does not vanish on (0, 0). H
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Define:
C*:= {t e [0,0] : sup A= inf A, for some e > 0},
(t—e,t+£)n[0,0] (t—et+e)n[0,0]
and remark that — the closure of the — connected components of C* are exactly the constancy
intervals of A. We will show that the support of dA is precisely the complement of C*. In this
direction, our goal now is to give an equivalent definition of C* in terms of H and W, and for this
purpose we introduce the notion of exit times.

Definition 5.26. (Exit times from z) A non negative number t is said to be an exit time from
the point x for the process (p, W) if Wy = x and there exists s > 0 such that

Hy < Hyyy,  for all ue (0,s).

The collection of exit times from x is denoted by Exit(z).

Remark 5.27. Note that, for every ¢ € Exit(z), the point pg(t) corresponds by definition to an
interior point of the Lévy tree and in fact, recalling the result of Proposition 5.16, pg(t) is a point
of multiplicity 2 in Tz. In particular, for every ¢ € Exit(x), there exists a unique s > t such that
pr(t) = pr(s) and satisfying that:

—~

Ws=x and Hg_ > Hy=H; forall ue(0,v),

for some v > 0 — in this case, we can take v := ¢ — s. By analogy, we write +Exit(z) for
the collection of times in [0, o] satisfying the previous display. Remark that the correspondence
described above between Exit(x) and +Exit(z) defines a bijection. We also stress that the inclusion

Exit(x) u +Exit(z) < {t e Ry : Wy = x} is a priori strict since we are excluding in our definition
potential times that will be mapped by pg into leaves with label x.

Let us now prove the following technical lemma:

Lemma 5.28. For every fized r > 0, under Ny o, we have:

supp d.L" = {al, b} : i€ I} = Exit(z) n {s € [0,0] : A = r}, (5.77)

177

and the same identity holds if we replace Exit(x) by vExit(x). In particular, the measure dA gives

no mass to the complement of Exit(x) (or +Exit(z)).

Proof. First remark that if £ = 0, by the special Markov property applied to the domain D, all
the sets appearing in (5.77) are empty. Hence, it suffices to show (5.77) under N, := N, (- |.Z) >
0). Moreover, notice that by definition we have:

{af i€ T} = Exit(z)n{s € [0,0] : Ay = r}, and {b] : i€ T} = «Exit(z)n{s € [0,0]: Ay = r.
To deduce (5.77), it is then enough to show that:
supp d.Z" = {a] : i € 1},

since the same equality will hold for {a] : i € Z,} replaced by {b] : i € Z,}, using the duality
identity (5.20) under N, o.
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So let us prove the previous display. We start showing the inclusion supp d.2" < {a] : i € Z,}.
In this direction, consider s € supp d-Z". By the special Markov property the set {92” "ieZy}is
dense in [0, 2], which gives that for every ¢ there exists i € Z, such that ‘iﬂ(; o+ < .,2” <Ll

This ensures that a] € (s — ¢, s + ¢) by monotonicity of Z". Consequently, the set supp dz"
is included in the closure of {a] : i € Z,}. Let us now establish the reverse inclusion by showing

that for every j € Z,., we have a” € supp d-Z". In order to prove it, set R; := Zgr <t J(Ww) for

J
> ( and notice that it is a rcll process since Ry, < 0 < o0. Now remark that by definition, for
every k € Z, with aj < a , we have:

a; — az < Rgarr__ — Rgag_ + chfﬁn — 9%57

J k @3 “k
Since A" is monotone, it has a countable number of discontinuities and it follows by the special
Markov property — using that " is FP -measurable — that all the points {Z} : i € I} are
continuity points of 6”. Since R is rcll, this implies that for every € > 0 there exists k € 7T, such
that a} —e < aj, < aj. All the values {.,2”7” . i € Z,} being distinct we derive that a’ € supp d.L7,

as Wanted As a Consequence of (5.77), it follows that:

o o o
Nz.0 (J;) dASILsQéExit(m)) = JO drNy (J;) d"g’ﬂsrﬂsgéExit(m)) =0,

and we deduce by duality that dA gives no mass to the complement of Exit(z) — the same result
holding for +Exit(z). O

The next proposition establishes the connection between the constancy intervals of /AX, the exit
times from z and the excursion intervals from D,. This is the last result needed to characterise
the support of dA.

Proposition 5.29. N, g-a.e., we have:

Exit(z) = +Exit(z) = {a],b] : 7€ Q% and i€ Z,} = [0,0]\C". (5.78)

Proof. The first step consists in showing

Exit(z) c {al, b : 7€ Q% and i€ Z,}. (5.79)

R

Remark that by Lemma 5.28 the other inclusion is satisfied and still holds if we replace Exit(x)
by +Exit(x). In this direction, recall that by Lemma 5.13 the process (p, W) takes values in ©,.
In particular, we have

Ny o-ae., forall e (0,0), {h < Hy: Wy(h) =z} = supp Ay(dh), (x)
where we recall that supp A4(dh) is precisely the set
{t €[0,¢q] : Ag(t+h) > Ay(t) for any 0 < h < (Hy—1t) or Ay(t) > Ay(t —h) for any 0 < h < t}.

We let Qo < D(R,, M¢(R;) x W5) be a measurable subset with N o(€2§) = 0 at which property
(*) holds for every (p,w) € €y and we argue for fixed (p,w) € Q. Fix ¢t € Exit(x); by definition,
for any € > 0 we can find t < ¢ <t + ¢ such that H; < H, for every r € (t,q]. By our choice of
Qo and the snake property, it must hold either that:
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(i) Hy is a time of right-increase for A, (and in particular /A\q > Ng(Hy) = /A\t), or
(ii) Hy is not a time of right-increase for Ay, (and hence Ay(Hy) > Ay(Hy — 5), VO < s < Hy).

If (i) holds, set s := sup{s € [t,q] : As < 27%|2%A;| + 2%} and remark that we have s; €
Ure@j {a] b} :i €1}, as soon as ./A\sk < /A\q. However, this is satisfied for &k large enough. On the
other hand, if (ii) holds we must have inf|,_. ;) H < H; since ¢ can not be a local infimum for H
(otherwise, pg(t) would be a branching point with label I//IZ: = x, in contradiction with Proposition
5.16). Now, the argument of case (i) holds by working with s} := sup{s € [0,7] : Ag < 27F|2FA, ]}
This implies that ¢ belongs to the closure of Ure@jmg, bl i€ Z} giving (5.79). Moreover, by
duality the contention (5.79) holds replacing Exit(z) by +Exit(x), proving the first two equalities
in (5.78). Consequently, to conclude it is enough to show that:

{al, 0] -7 e Q% and i € Z,} < [0,0]\C* < Exit(x) u +Exit(x). (5.80)

1771

In this direction, notice that for every r € Q% , under N, ,., we have /AXt > r for every t € (0,0).
Now, an application of the special Markov property applied to the domain D, gives that:
{aj, b - i€} < [0,0]\C*, Ngo—ae.,

1771

for every r € Q% , and the first inclusion < in (5.80) follows. In order to obtain the remaining
inclusion, let ¢ € [0,0]\C*. By definition, for every € > 0 there exists t —¢ < t] <to <t+¢
such that /A\tl < /A\t2 or /Ath > /A\tQ. If the first holds, then sup{s € [t — ¢, 2] : /A\S < /A\tl} is an exit
time and the other case follows by taking inf{s € [t1, t2] : Ks < /AXtQ}. This ensures that ¢ is in the
closure of Exit(z) u +Exit(z) concluding our proof. O

Now, we are in position to state and prove the main result of the section:

Theorem 5.30. Fiz (y,79) € E and (u, W) € ©,. Under P, and Ny, we have

supp dA = Exit(z) = «Exit(x) = [0, 0]\C¥,
where we recall the convention [0, 0] = [0, ).

Proof. First remark that by the special Markov property combined with (5.74) and (5.75), it is
enough to prove the theorem under N o and Py ;0. We start by proving the theorem under N g
and remark that by Proposition 5.29 we only have to establish the first equality. Moreover, by
Lemma 5.28 it only remains to show that under N, o:

supp dA o Exit(z). (5.81)

However, by Lemma 5.25 we know that Ny ¢({0,0} nsupp dA = ¢J) = 0, and then using that
conditionally on FPr the measure M) is a Poisson point measure with intensity measure given
by Lo, 2s1(€)dl Ny » (dp,dW), we derive that:

Nyo—ae., foralreQ, {af,b] :i€Z.} supp dA.

Consequently, Proposition 5.29 implies (5.81). Finally, let us briefly explain how to obtain the
result under Py , 9. In this direction, under Py, ¢, denote the connected components of {s e R :
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Xs — Is # 0} by ((ozi, Bi) i€ I). Excursion theory and our results under N ¢, give that, under
Po,2,0, we have:

supp dA N uj(ag, i) = Exit(z) 0 vila, §;) = Exit(z) 0 uilai, Bi) = ([0,0]\C*) n ui(es, Bi),

a; € supp dA n Exit(z) n ([0,00)\C*) and B; € supp dA n «Exit(z) n ([0,0)\C*) for every
i € Z. The desired result now follows since the set {co; : i € Z} and {f; : i € Z} are dense in

5.5 The tree structure of {ve Ty : & =z}

In this section, we work under the framework introduced at the beginning of Section 5.4. Our
goal now is to study the structure of the set {v € Ty : & = 2} and to do so, we encode it by the
subordinate tree of Tg with respect to the local time (L, : v € Tygr). In this direction, we need to
briefly recall the notion of subordination of trees defined in [66].

Subordination of trees by increasing functions. Let (7,d7,vp) be an R-tree and recall
the standard notation <7 and A7 for the ancestor order and the first common ancestor. Next,
consider g : T — R, a non-negative continuous function. We say that ¢ is non-decreasing if for
every u,v € T

u <7 v implies that g(u) < g(v).

When the later holds, we can define a pseudo-distance on T by setting
d7-(u,v) := g(u) + g(v) = 2- g(u A1 v), (u,v) e T xT. (5.82)
The pseudo-distance dgT induces the following equivalence relation on 7T for u,v € T we write
u ~°‘77_ v o= d?r(u,v) =0,

and it was shown in [66] that 79 := (T/ ~%, d7-,vg) is a compact pointed R-tree, where we still
denoted the equivalency class of the root of 7Y by vg. The tree 7Y is called the subordinate tree
of T with respect to g and we write pgT : T — T for the canonical projection which associates
every u € T with its ~g-—equivalency class. Observe that any two points u,v € T are identified if
and only if ¢ stays constant on [u,v]7 and consequently the subordinate tree is obtained from 7
by identifying in a single point the components of 7 where ¢ is constant.

Getting back to our setting, recall that under N, g, (£, : v € Ty ) corresponds to (/AX,; 1t =0)

in the quotient space Ty = [0,0]/ ~pg. This entails that the local time (£, : v € Tg) is a
non-decreasing function on 7y and we denote the induced subordinate tree by 7}? . Recall that
the exponent

g

J0) = ([ anvtnen)). orazo,

0
is the exponent of a Lévy tree by Proposition 5.19. Hence, it satisfies (A1)—(A4) and by Corollary
5.21 it can be written in the following form:

~

P(A) = QA+ J(o . 7(dz)(exp(—Ax) — 1 + Az),
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where o = N(l—exp(—aa)) and 7 is a sigma-finite measure on R \{0} satisfying S(O,oo) 7(dx)(z A
22) < o0. We will also use the notation H and N introduced prior to (5.66) for the height process
and the excursion measure of a QZfLévy tree. Finally, we recall that A stands for the additive
functional introduced in Proposition 5.22 and we denote its right inverse by A, b.— inf{s >
0: As > t}, with the convention A, ' — o for every t > Ay, = A,. Remark that the constancy
intervals of A in [0, o] are the connected components of [0, c]\supp dA, which by Theorem 5.30 are
precisely the connected components of C* — the constancy intervals of the process (//it : te[0,0]).
In particular, (/A\ AL t = 0) is a continuous non-negative process, with lifetime A,,. We can now
state the main result of this section:

Theorem 5.31. The following properties hold:

(i) Under Ny, the subordinate tree of Ty with respect to the local time L, that we denote by
T, is isometric to the tree coded by the continuous function (AAt—l : t=0).

(ii) Moreover, we have the equality in distribution

((}NL& 1 t>=0), under N) @ ((KA;1 :t>0), under N;{;,o). (5.83)

In particular, 'T[f 1s a Lévy tree with exponent @Z

Remark 5.32. Let us mention that when 1()\) = A2/2 and the underlying spatial motion € is a
Brownian motion in R, the previous theorem implies that under Ny o the subordinate tree of Tx
with respect to the local time £ at 0 is a Lévy tree and — as a direct consequence of the scaling
invariance of the Brownian motion — its exponent is of the form J (A) = eA3/2, for some constant
¢ > 0. This result was already obtained by other methods in [66, Theorem 2].

We stress that the key result in (ii) is the identity in distribution (5.83): it entails that not

~

only the function (A Atz 0) encodes the subordinate tree, but it is also the height process of a

Lévy tree. The fact that 7/ is a -Lévy tree is then a direct consequence of (i) and (5.83). By a
straightforward application of excursion theory one can deduce a version under Py , ¢ of Theorem
5.31, where now ’ij is a Lévy forest with exponent 1. The details are left to the reader.

The rest of the section is organised as follows: The section is devoted to the proof of Theorem
5.31. In Section 5.5.1 we start by showing (i) and we present the strategy that we follow to prove
(ii). The proof of (ii) relies in all the machinery developed in previous sections combined with
standard properties of Poisson point measures and is the content of Section 5.5.2.

5.5.1 The height process of the subordinate tree

In this short section we establish the first claim of Theorem 5.31 and settle the ground for the
second part of the result. For every u € Ty, recall that £, := A, where s is any element of pl_fl ({u})
(note that the definition is non ambiguous by the snake property) and that £ is non-decreasing
on Tyr. To simplify notation, we set:

Hf = ?\A;l, t>0,

which is a continuous process — as it was already mentioned in the discussion before Theorem
5.31. Let us start with the proof of Theorem 5.31-(i).
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Proof of Theorem 5.31-(i). Our goal is to show that, under N, the trees 7Tya and 7}? are
isometric. In this direction, we start by introducing the pseudo-distance:

J(s,t) = A+ Ay — 2+ min /A\, s, t€0,0],

sAt,svi

~

and we write s ~ t if and only if d(s,t) = 0. By the snake property, we have s ~ t for every
s ~p t. Moreover, since L is increasing on Tz, we get

d(s,t) = Lpyt) + Lopu(s) = 2 Loy(s)arypu(t):

for every s,t € [0,0]. The right-hand side of the previous display is exactly the definition of
the pseudo-distance associated with the subordinate tree T/ between py(s) and pg(t) given in
(5.82). We deduce that ([0, 0]/ ~, d, 0) is isometric to T/ Tt remains to show that ([0, 0]/ ~, d,0)
is also isometric to (Tga,dga,0). In order to prove it, we notice that:

~

d(AYATY = dya(ry, ),

71 ? T2

for every ri,ry € [0, As]. Furthermore, for every ¢ € [0,0] there exists r € [0, A,;] such that
A;_l <t< Ap I since by Lemma 5.25 the points 0 and o are in the support of dA. Moreover we
have J(A; 1#) = 0, since by Theorem 5.30 the process A stays constant on every interval of the
form [A,; !, A-1]. This implies that [0,0]/ ~ = {41 : 7 € [0, Ax]}/ ~ and we deduce by the

previous display that ([0, 0]/ ~,d,0) and (T4, dga,0) are isometric giving the desired result. [

The main difficulty to establish Theorem 5.31 (ii) comes from the fact that H is not a Markov
process. To circumvent this, we are going to use the notion of marked trees embedded in a func-
tion.

Marked trees embedded in a function. A marked tree is a pair T := (T,{h, : v € T}),
where T is a finite rooted ordered tree and h, = 0 for every v € T — the number h, is called the
label of the individual v. For completeness let us give the formal definition of a rooted ordered
tree. First, introduce Ulam’s tree:

o8]
U = szo{l,z,...}"

where by convention {1,2,..}° = @. If u = (uq,...us,) and v = (vy,...,v,) belong to U, we
write uv for the concatenation of u and v, viz. (u1,...um,v1,...,v,) . In particular, we have
ud = Du = u. A (finite) rooted ordered tree T is a finite subset of U such that:

(i) @ eT;
(ii) If v e T and v = wj for some u e U and j € {1,2,...}, then u € T;

(iii) For every u € T, there exists a number k,(T) > 0 such that uj € T if and only if 1 < j <
ko (T).

If u € T can be written as u = vj for some v € T, 1 < j < ky(T), we say that v is the parent of w.
More generally, if u = vy for some v € T and y € U with y # J, we say that v is an ancestor of u
or equivalently that u is a descendant of v. On the other hand, if u € T satisfies that k,(T) = 0,
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u is called a leaf. The element & is interpreted as the root of the tree and if v is a vertex of T, the
branch connecting the root and v is the set of prefixes of v — considered with its corresponding
family of labels.

Let us also introduce the concatenation of marked trees. If Ty, ..., T} are k marked trees and
h is a non-negative real number, we write [Ty, ..., T]p for the marked tree defined as follows.
The lifetime of & is h, kg = k, and for 1 < j < k the point ju belongs to the tree structure of
[T1,..., T]p if and only if v € T; and its label is the label of u in T;. For convenience, we will
identity a marked tree T := (T, {h, : v € T}) with the set {(v, hy): ve T}.

We are now in position to define the embedded marked tree associated with a continuous func-
tion (e(t))e[a,p) and a given finite collection of times. We fix a finite sequence of times a < #; <

.. tp < b and we recall the notation me(s,t) = inf[,,; ¢ €. The embedded tree associated with
the marks ¢1,...,t, and the function e, (e, t1,...,t,), is defined inductively, according to the
following steps:

o If n =1, set O(e,t1) = (I, {e(t1)}).

e If n > 2, suppose that we know how to construct marked trees with less than n marks. Let
i1,...,4; be the distinct indices satisfying that me(t; ,t;,+1) = me(t1,t,), and define the
following restrictions for 1 < ¢ <k —1

eO(t) 1= (e(t) : t € [t1,ts,]), € D(t) := (e(t) : t € [tiy11,ti 1)), P (E) := (e(t) < t € [Lips1,tn))-
Next, consider the associated finite labelled trees,
0@ 1y, ti), 0D i, tin), 0™ i1, t),  for 1 <g<k—1,
and finally, concatenate them with a common ancestor with label m(¢;,t,), by setting

9(6, tl, e ,tn) = [0(6(0), tl, e 7ti1>7 e ,9(6(k), tik+1, e 7tn)]me(t17tn)7
and completing the recursion.

We say that the label h, is the height of v in (e, t1,...,t,) = (T,{hy : v € T}). Let
us justify this terminology. First assume that e(0) = 0 and consider 7. the compact R-
tree induced by e. Then if vy,...,v, are the leaves of T in lexicographic order, we have
(hoyy -y he,) = (e(t1),...,e(tn)). Moreover, if we write v; A7 vj for the common ancestor of
vi and vj in T, it holds that huy, xqv, = Il Ay 10 8;] e.?

Statements and main steps for the proof of Theorem 5.31 (ii). Our argument relies
in identifying the distribution of the discrete embedded tree associated with (//i A0t < Ayp)
when the collection of marks are Poissonian. In this direction, we denote the law of a Poisson
process (P; : t = 0) with intensity A by Q* and we work with the pair (H,P;)<a,,, under
the product measure N, o ® Q*. For convenience, we denote the law of (p, W, P.,4,) under
Nz o0 ® Q* by N:)c\,o and we let 0 < ) < -+ < tjy < Ay be the jumping times of (P;) falling in
the excursion interval [0, Ay |, where M := Py . Finally, consider the associated embedded tree

TA = G(HA,’q, ..,ty), under N;"O( M =1).

5The definition of (e, t1,...,t,) is directly connected with the classical notion of marginals trees — where the label of a
point is the increment between its height and the height of its parent.
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Remark that the probability measure N ; o(-|M = 1) is well defined since by Proposition 5.24 we
have

N o (M > 1) = Np (1 = exp(—AAg)) = &1 (A).

Our goal is to show that T4 is distributed as the discrete embedded tree of a @Z—Lévy tree
associated with Poissonian marks with intensity A. To state this formally, recall the notation
N for the excursion measure of a J—Lévy process, and that H stands for the associated height
process. We write N? for the law of (P, PME) under N ® Q" and remark that M = Py is the
number of Poissonian marks in [0, aﬁ]. For simplicity, we denote the jumping times of P under
N by t, ..ty

Proposition 5.33. The discrete tree T under N2 (- |M = 1) has the same distribution as

~

T = Q(ﬁ,‘q,...,tﬂ) under N*(-|M > 1).

The proof of Proposition 5.33 is rather technical and will be postponed to Section 5.5.2. The
reason behind considering Poissonian marks to identify the distribution of H# is to take advantage
of the memoryless of Poissonian marks; this flexibility will allow us to make extensive use of the
Markov property and excursion theory. Let us now explain how to deduce Theorem 5.31 (ii) from
Proposition 5.33.

Proof of Theorem 5.31 (ii). First remark that the fact that 7}? is a 1-Lévy tree is a direct conse-
quence of Theorem 5.31 (i) and (5.83). To conclude it remains to prove (5.83). In this direction,
notice that the marked trees considered are ordered trees — the order of the vertices being the
one induced by the marks. Recall that for every 1 < ¢ < M, the quantity H{? is the label

of the i-th leaf in lexicographical order, and the same remark holds replacing (H 4 M, TA) by

~ ~ ~ d) ~
(H, M, T). Consequently, the identity T4 @) T of Proposition 5.33 yields the following equality

in distribution

((VF . ) - NAC IR = 1) @ (M H, o HLY - Ny [M = 1))
Recall from Proposition 5.24 and the discussion after it, that A, under N, g and o under N
have the same distribution. This ensures that, up to enlarging the measure space, we can define
the height process H under the measure N 270 in such a way that its lifetime is precisely Ao, viz.
o = Ao, and then we might and will consider the same collection of Poisson marks t1, ..., tys to
mark the processes H4 and H. In the rest of the proof, we work with this coupling. In particular,

under N2 (- |M > 1), our previous discussion entails

~ ~ N\ (d
(M, Htl,...,H{M> @) (M,H{},...,H@).

Let (U; : i = 1) be a collection of independent identically distributed uniform random variables
in [0, Ax] — and independent of all the rest. Remark that, conditionally on A, (P : t < Agp)
is independent of H and H4, and the random variable M is Poisson with intensity (M), By
conditioning on Ay, we deduce that for any m > 1 and any measurable function f : R" — R, |
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we have
> N Y C
N;\,O (f(HU(“;)a cey HU@))T.? exp ( — AAOO)
A A A (AAR)™
= Nl’,() (f(HU(T),...,HU(Tn))T exp(—)\Aoo) s (584)
where (Ua””), e U(”T;‘%)) stands for the order statistics of {U1,...,Uy}. Since the previous display
holds for every A > 0 we get that

~ ~ (d)
<AOO,HU<?),...,HU%> < (A@,Hgg),...,ngn)),

for every m > 1. Denote the unique continuous function vanishing at R4 \(0, Ay ) and linearly
interpolating between the points {(Aq - im_l,HU_(m)) s i€ {1,...,m}} u {(0,0),(Ax,0)} by
(ﬁ]{” : t = 0). Similarly, let H Am he the analogous function defined by replacing H by HA.
Next we remark that (5.84) ensures that, for every continuous bounded function F : R¥ — R
and any fixed set of times 0 < t; < --- < t, we have

N2, (F(ﬁzgf, LHMY (- eXp(—Aoo))> - N}, (F(H;j"m,. HA™ (1 - eXp(—Aoo))> .

<oy 1y,

Using the fact that U le 1~ Ax-t as. forevery t € [0, 1], we derive that the pointwise convergences
H™ — H and HA™ — H* as m 1 oo. Finally since N;"O(l —exp(—Ay)) < o0, we deduce (5.83)

by dominated convergence. O

5.5.2 Trees embedded in the subordinate tree

This section is devoted to the proof of Proposition 5.33. In short, the idea is to decompose induc-
tively T and T4 starting from their respective ”left-most branches” — viz. the path connecting
the root @ and the first leaf with the corresponding labels — and to show that they have the
same law. Next, if we remove the left-most branch of T and T4, we are left with two ordered
collections of independent subtrees and we shall establish that they have respectively the same
law as T and T, This will allow us to iterate this left-most branch decomposition in such a
way that the branches discovered at step n in T and T have the same law. Proposition 5.33
will follow since this procedure leads respectively to discover T and TA. In order to state this
formally let us introduce some notation.

If T := (T,(hy : veT))is a discrete labelled tree and n = 0, we let T(n) be the set of all
couples (u, hy) € T such that u has at most n entries in {2, 3, ...}. In particular T(0) is the branch
connecting the root and the first leaf. Next, we introduce the collection

S(T) := ((hy, ky(T) — 1) : v is a vertex of T(0)),

where the elements are listed in increasing order with respect to the height and we recall that
k,(T) stands for the number of children of v. For simplicity, set R := #T(0)—1, write v1, ..., Vg1
for the vertices of T(0) in lexicographic order and observe that v; is the root while vpy1 is the
first leaf — in particular ky,,,(T) = 0. Heuristically, S(T) — or more precisely the measure



227 5.5. The tree structure of {v e Ty : & = x}

2.i(ky(T) = 1)ép,, — is a discrete version of the exploration process when visiting the first leaf of
T and for this reason S(T) will be called the left-most spine of T. Now, for every 1 < j < R, set

= Z(kv (T) -
i=1

with the convention Ko(T) = 0 and remark that K(T) := Kg(T) stands for the number of
subtrees attached ”to the right” of T(0) in T. To define these subtrees when K(T) > 1, we need
to introduce the following: for every 1 < i < Kg(T) = K(T), let a(i) be the unique index such
that Kq()—1(T) <i < Ky()(T). Then, we 1ntroduce the marked tree

T == {(u,hy) © (vay(Kop) + 2 — i)u, by, + hi,) € T} (5.85)

Va(i)

Remark that the labels in each subtree T; have been shifted by their relative height in S(T') and
that the collection (T; : 1 < i < K(T)) is listed in counterclockwise order.

We now apply this decomposition to T and T#. For simplicity, we write K = (’T‘) (resp
K := K(T%)) for the number of subtrees attached to the right of T(0) (resp. TA(0 )) en
K >1 (resp. K > 1), we let T; (resp. T) be the marked trees defined by (5.85) using T (resp
TA). Proposition 5.33 can now be reduced to the following result:

Proposition 5.34. (i) We have
~ ~y o~ d
(S(F) « RAIT = 1) @ (S(T4) = Nyo(1M = 1)),

(ii) Under N*(-|K, M > 1) and conditionally on S(T), the subtrees Ty, . .. ’f‘f( are distributed as
K independent copies distributed as T under N(- M > 1). Similarly, under Nép(dW, dP|K, M >
1) and conditionally on S(TA), the subtrees TA, e ,Tff are distributed as K independent copies
distributed as T under N£7O(dW, dP|M = 1).

Let us explain why Proposition 5.33 is a consequence of the previous result.

Proof of Proposition 5.33. We are going to show by induction that for every n > 0:
T(n) under N (-|M >1) is distributed as ~ T“(n) under N;’O(-\M > 1). (5.86)

First notice that Proposition 5.34 - (i) gives the previous identity in the case n = 0. Assume now
that (5.86) holds for n > 0 and let us prove the identity for n + 1. First, remark that it is enough
to argue with T(n + 1) under N*(-| K, M >1) and TA(n + 1) under Nfb,o( |K, M > 1) — since by
Proposition 5.34, the variable K under N*(- ]]\7 > 1) is distributed as K under Né’o(-\M > 1).
Next, we see that T(n + 1) can be obtained by gluing the trees T;(n) to T(0) at their respective
positions after translating the labels by the associated heights. Moreover, these positions and
heights are precisely the entries of S('f‘) Since the same discussion holds when replacing T by
TA, the case n + 1 follows by Proposition 5.34 and the case n. Finally, since the trees T and T4
are finite, (5.86) implies the desired result. O
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Our goal now is to prove Proposition 5.34. In this direction, we will first encode the spines
S(T), S(T4) as well as the corresponding subtrees T;, T2 in terms of p, (p, W) and P. This
will allow us to identify their law by making use of the machinery developed in previous sections.
While S(’T‘) can be constructed directly in terms of (py, 4+ : t = 0) and the Poisson marks, the
construction of S(T*) is more technical. Roughly speaking, the strategy consists in defining in
terms of (p, W) the exploration process for the subordinate tree at time ti, say py,» and then
show — see Lemma 5.38 below — that py, and pi, have the same distribution. Needless to say that
this statement is informal, since we have not yet shown that the subordinate tree is a Lévy tree.
We will then deduce (i) by considering S( ), S(T#) and conditioning respectively on p¢, and o
Point (ii) will then follow easily by construction. For simplicity, from now on we write t := {;.

We first start working under N*(-|M > 1) and we introduce the following notation: let ((au, i) :
ieN ) be the connected components of the open set

{s=t: Hy> inf H}.
[t:]

As usual, we write p* for the associated subtrajectory of the exploratlon process in the interval
[&, 3;]. We also consider H' : (H(aﬁs)Aﬂi Hz : s=0), P (P(ai‘i’t)Aﬂi Py, : t=0)
and note that in particular we have H(p%) = H®. Write h; := H(&;), and consider the marked

measure:
M Z hi,pt P
€N

By the Markov property and (5 22), conditionally on F¢, the measure M is a Poisson point
measure with intensity pt(dh)N Adp, dP) Now we can identify S(T) in terms of functionals of
M and Hy. First, set (hO . 1 < p < R) the collection of the different heights — in increasing

order — among (?L : 1 € N) at which pi o (51) = > 1. In particular, R gives the number of different

helghts h at which we can find at least one marked excursion above the runmng infimum of
(Ht+t :t > 0). Next, we write M for the number of atoms at level h in M with at least one
Poissonian mark. Now, remark that by construction we have:

S(T) = ((h3, M), ..., (W%, M), (Hy, —1)), (5.87)

and in particular K = 213:1 ]\zo. Finally, for later use denote the corresponding marked excursions
arranged in counterclockwise order by & := ((p1, HY,PY) : 1 < g < K). Notice that the subtrees
(T; : 1 <i < K) are precisely the respective embedded marked trees associated with ((HY, PY) :
1<q¢<K).

The main step remaining in our analysis under N A |]\7 > 1) consists in characterizing the
law of (H, (), and this is the content of the following lemma. Since M conditionally on F
is a Poisson point measure with intensity pi(dh)N*(dp, dP), this will suffice to identify the
distribution of S(’T‘) In this direction, Corollary 5.21 ensures that the measure p;¢ is purely

atomic and consequently by (5.7) it is of the form:

ﬁ122515ﬁ1

€N
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We stress that we have {711 c1e N} = {szZ : 1 € N} — even though the latter set has repeated
elements.

Lemma 5.35. Under Kf)‘(| M > 1), the random variable Hy is exponentially distributed with
intensity )\/1;_1()\). Moreover, conditionally on Hy, the measure 25(7#7&) is a Poisson point
measure with intensity ﬂ[oﬁt](dh)ﬁ(dz), where v(dz) is the measure supported on Ry charac-
terised by:

Jﬂ(dz)(l — exp(—pz)) = p=0. (5.88)
p —

Proof. Recall that by Proposition 5.24, we have $1(\) = N(1 — exp(—Ao)) = ]V’\(M > 1).

Consider two measurable functions g : Ry — Ry, F': Mf(Ry) — R, and remark that

o
~

RN g F (0L gra,) = M- N ( fo ds exp(—As)g(H,) F(7)).

By duality (5.20) and the Markov property, the previous expression can be written in the form:

loa

NN [ ds gB) G exp(-Mo = 9)) = A F( [ ds o(B) G By fexpl-Aa)

AR s gl P expl(=07 NG D).
where in the last line we use the identity ¥ 1(\) = N(1 — exp(—\o)). Consider under P° the
pair of subordinators (UM, U (2)) with Laplace exponent (5.23), defined replacing ¢ by 1, and
denote its Lévy measure by F(dui,dus). We stress that since ¢ does not have Brownian part,
the subordinators (UM, U®)) does not have drift. The many-to-one formula (5.24) applied to )
gives:

e~ A o R N -
RGP G| 2 1) = = [, 0 exp(-a0)g(@ B[ (110,00 exp(~I7 V)]

(5.89)

We shall now deduce from the later identity that the pair (ITL‘, > 5(712. 5_)) has the desired distri-

bution. In this direction, let f : R2 — R, be a measurable function satisfying f(h,0) = 0, for
every h = 0. By (5.89), we derive that

]V/\(g(ﬁt) exp ( — Z f(%i, ﬁz)) |]\7 > 1)
1eN
= a 7Oy &g ~(2)
— 1;_10\) L da g(a) eXp(—Oéa)EO[exp ( - };a (f(h,AUhl )40 I(A)AUhQ )>]

Moreover, by the exponential formula it follows that the expectation under E° in the previous
display equals

exp < - La dhf%(dul, dug) (1 — exp(—f(h,u1) — 1;_1()\)@))>,
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and notice that we can write:

Jﬁ(dul, duz)(l —exp(—f(h,u1) — Qz_l()\)m))

~

— Jﬁ(dul, dug) eXp(—zZJ_l()\)uQ) (1 —exp(—f(h, ul))) + J’Ny(dul, dug) (1 — exp(—zz_l()\)m)).

To simplify this expression, introduce the measure 5'(duy) := SuQER”NY(dUb dug) exp(—qz_l()\)uQ)

and observe that (5.23) entails {7 (du, duz)(1 — exp(—1 1 (N)ug)) = AP HN) — &, We deduce
that (5.90) can be written in the following form:

QZ_?(A) Jo dag(a) exp(—zz_i\()\)a) exp ( — Jo dhfﬁ’(dul) (1 —exp (= f(h, ul))>>,

and to conclude it suffices to remark that 7' = 7, since by (5.23) we have

~ ~

fﬁ’(dm)(l — exp(—pu1)) = fﬁ(dm, dug) (exp(—~ " (A)ug) — exp(—pus — ¢~ (A)ug))

U(p) — A A

~ ~ 9

for every p > 0. O]

We now turn our attention to the other side of the picture, and we now work under N2 (:|M >

1). The objective is to obtain analogue results for the spine S(TA). In this direction, recall the
notation G' := ¢ ~}(\) and we start with the following technical lemma characterizing the law of
(p, W) at time A; .

Lemma 5.36. For any non-negative measurable function f in Mp(Ry) x Wg, we have:
Ni\,o <f(PA;1=WA;1)1{M>1}>
o0
| de B @I (exp(-am) (U (6 Loren) exo (- |

0 0
Proof. Since {M > 1} = {t < Ay}, we have:

Ta

T (@h) ug, (€))).

As o
N;)p\,o (f(PA;% WA;1>1{M>1}> =\ Nx,O (JO ds f(PA;1> WAs—l) exp(—As))

3N ( [ a0 exp(—AAs>)

=—A- Nx,O <J dAs s f(pU—S7WU—S> eXp(_)\Aa—s)> .
0

Moreover, by time reversal (5.20), we know that:

—

(Plo—s)— Woms, Agos : 0 < s < 0) 9 (s, Ws, Ay — Ag 1 0< s < 0),

and we remark that {s € [0,0] : ps # ps—} < {s € [0,0] : ps({Hs}) > 0} which has null dA

measure N, g— a.e by the many-to-one formula of Lemma 5.23. This implies:

—N.o (f dAa_sf(pa_s,Wg_s)exp(—)\A(,_s)) =Nzo (J dAsf(ns,Ws)eXp(—)\J dAS)) .

0 0 s
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Next, by making use of the strong Markov property, we derive that

Mo (F(pac War) Liarsny) = A~ Nag ( |, a4 s g (<2 | dAs)>

S

N N%O <J: a4, f(nS’WS)EZS,WS [exp ( -\ fo df%)})

- (La A, F(e. TV ) exp (— Jps(dh) UGOA(Ws(h)))> :

where in the last line we used Proposition 5.24. The statement of the lemma now follows applying

(5.72) and recalling that (Ju, Joo) @ (Juo, Joo), under PO, O

For simplicity, in the rest of the section we write:
A 774 T
(pt 7Wt ) = (pA,?l?WAt_l%

—A . . ~ —A
and Wi = (W&, A{) - remark that in particular we have H = A{!. Let us now decompose W
in terms of its excursion intervals away from x. To be more precise, we need to introduce some
notation. For every r > 0 and W := (w, () € Wy, we set:

(@) = inf {h = 0: ((h) > r}.

Remark that since ¢ is continuous, r — 7,7 (W) is right-continuous. Moreover, 7(W) and 77 (W)

.
are related by the relation 7,(W) = 7,7 (W). Similarly, under II,o for y € E, we will write

7,7(€) ;= inf{t = 0: L; > r}. The advantage of working with 77 () instead of 7(&) is that, under
I, 0, the process 77 (&) is a subordinator. Moreover, by excursion theory, it is well known that

its Lévy-It6 decomposition is given by
T€) =) AT,  r=0,
ST

since (Hg) ensures that the process 77 () does not have drift part — equivalently 77 (&) is purely
discontinuous. For simplicity, when there is no risk of confusion the dependency on ¢ is dropped.
Getting back to our discussion, under Né,o(' M > 1), let (rj : j € J) be an enumeration of

—A
the jumping times of the right-continuous process (7,7 (W ) : 0 < r < H{') - for technical reasons

the indexing is assumed to be measurable with respect to Wt . For each j € J, set
—Aj —A —A —A —A —A
Wy = ((WtA(m%(Wt ) AL (47, (W) = A7, (W) - he [0,75 (W) — 70, (W )]),

and
Aj oo | A o wd
<pt )= th (dh) f(h Tr; (Wy >)]1{77'j(Wf)<h<Tﬁ;(Wf)}'
The first coordinates of the family (W Tijed ) correspond to the excursion of W away from
x while the second coordinate is identically zero. We also stress that since (z,0) € ©,, by Lemma
—A —A

5.13 the support of p{* is included in Ujes (7o, W), 7 (W) Our goal now is to identify the
law of >}.c 7 (5(Tj PERIt As we shall see, the restriction to the first two coordinates of this

measure is, roughly speaking, a biased version of the excursion point measure of { under II, g.
More precisely, let (E° ® N).(dJ,d€) be the measure in M ;(Ry) @ D(R4, E) defined by

(E° @M. [F(1.6)] = B ® N exp (- fjg(dh)u@ (€) — a0) F(J,.6)|.
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Lemma 5.37. Under N} ((:|M > 1), the random variable HY is exponentially distributed with
parameter \/v~1(\). Moreover, conditionally on H{', the measure:

Z 6 r]7p( J7WAJ

jeJ
is a Poisson point measure with intensity 1[07H{x](r)dr(EO RN« (dJ, dE).

Proof. First, we fix two measurable functions g : Ry — Ry and f: Ry x Mf(Ry) xD(R,, E) —
R, . The statement of the lemma will follow by establishing that:

N2 o (g(HE) exp(= Y f(rj, 7 W) [ M = 1)
jed

_ oorex -7 A r)ex —TSO —exp (— f(s
_J_l(/\)fod b (=7 et e ( [ asEe @A exp (— £5.2.9)]).

(5.91)

To simplify notation, for every p € M(R,) and a,b > 0, we write ¢(u,a,b) for the measure v
defined by:

f}/(dh)F(h) = J; ) pu(dh)F(h — a).

Next, under II, g, denote the excursion point measure of by >, j d(r, ¢7)- Now an application of
Lemma 5.36 gives

N (( AeXp Zfrj,pt’JW’J))’M>1)
jeg

= o Jy AroOE @ o (esp(an)exp (= 3] 00000, 7).€)

ri<r

- exp ( — fjn (dh)ug, (fh)))
7 )\)\) dergw)EO@Hx,o(eXp(— > {5 (600,70, 7). )

ri<r

™
+ |7 e () + ao(e)})),
Tr;
where in the last equality we used the fact that 77 is purely discontinuous and that thanks to
(H3), under P°®TII, o, we can write Jo(dh) = 2 Joo(dh) [, Tt](h)' We are going to conclude
using standard techniques of excursion theory. Flrst remark that if we introduce an i.i.d. collection
of measures (Jgo, jgg)jeN distributed as (Jo, joo) under PY, the previous display can be written
in the form:

{/;_i\()\) JOOO dr 9(7“>E0 ® Hx,()(exp ( - Z {f(f?’? Ji(gj), fj) + fjg(gj)(dh)uGA (fi) + @U(fj>}>>-

(5.92)

Since by excursion theory Zr <r (T T8 €9) is a Poisson point measure with intensity measure
79100

given by 1o, T](ds)EO Q N (dJy, dJys, d€), we deduce that the expectation under E® ® ;0 in
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(5.92) writes:
exp(—for dsEO®N[1 —exp (= f(5,Js,€) —fja(dh)uGA(gh) —aa)]).
Next, we remark that the previous display equals:
exp ( . JOT ds (E° ®N)*[1 —exp (— f(s, J, £>)]>
. exp ( — B ®N[1 —exp (- fjg(dh)u@(gh) . aa)]).

Moreover, by (5.23) the measure joo is the Lebesgue-Stieltjes measure of a subordinator with
Laplace exponent p — 1(p)/p — a, which yields

o[- - (1o [ D) - 2

where in the first equality we applied (5.23) and in last one we used (5.68). Putting everything
together we obtain the desired identity (5.91). O

To identify the law of S(T*), we now define the natural candidate of the exploration process
of the subordinate tree at time t — as we already mentioned, this statement is purely heuristic.
Let us start by introducing some notations. Still under N ((-[M > 1) denote the connected
components of the open set

{SZA;li Hy > inf H}
[Ac" 8]
by ((ai, 5;) - i € N), and as usual write (p!, W') := (p', W A?) for the subtrajectory associated
with the excursion interval [y, §;]. Further, set h; := H,, and consider the measure:

Z 5(hhpi’Wi) . (5.93)
€N

By the strong Markov property and (5.22), conditionally on (pf‘,W?), the measure (5.93) is a

Poisson point measure with intensity p{l(dh)NWA (h)(dp, dW). Next, for every j € J we set:
t

1

D= ) LW, (5.94)
T (W) <hi<rt (W)

v
which is the total amount of exit local time from the domain D, generated by the excursions

—A —A —A
glued on the right-spine of W, at the interval (7, (W), 7 (W )). Finally, we introduce the

measure pf == Y, L/ -6,
jed

Lemma 5.38. We have the following identity in distribution:

(Fo 5« NACIRT = 1)) @ ((HA, pt) - N2 (1M = 1)).

In particular, Lemma 5.38 implies that H(p;) = HtA.
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Proof. We start noticing that, by Lemmas 5.35 and 5.37, we already have:
~ Ny~ d
(e N 2 1) @ (HA D N2 (M = 1)),
Consequently, again by Lemma 5.35 the desired result will follow by showing that, under N;‘ oM =

Z Or;,L7)

jed

1) and conditionally on H{, the measure

is a Poisson point measure with intensity Ljg yaj(dh)P(dz), where the measure ¥ is charac-
terised by (5.88). In this direction, we work in the rest of the proof under Né’o(-\M > 1)

—A
and recall that, conditionally on (pf', W, ), the measure (5.93) is a Poisson point measure with

intensity pf‘(dh)NWA n (dp,dW). In particular, (5.94) entails that conditionally on (pf‘,Wf‘),
t .

the random variables (L7 : j € J) are independent. Moreover, since by definition u,(y) =

Ny 0(1 — exp(—pZY)), the translation invariance of the local time £ gives
7 (W0

. —A j
N2 (exp(—pL) | 7 =exp (- 7

Tr; (Wl )

= exp < B JP?J (dh)up (WtAJ(h)))’

for every j € J. It will be then convenient to introduce, for (u,w) € M¢(Ry) x Wg, the

ol (dhyuy (W (1))

probability measure m,, v in Ry defined through its Laplace transform:

Jmmw(dz) exp(—pz) = exp ( — Ju(dh)up (W(h))>;

if H(p) = ¢(w) and my, w = 0 otherwise. The map (1, w) — my,  takes values in M (R ) and it
is straightforward to see that it is measurable. Next, remark that by our previous discussion we

have:
N < eXp Zfr], |M>1>
jel
:N;‘ﬁ( (H{) HJm A]WA](dZ)eXp( f(rj,2) ‘M >
JET
- N} < (H{) exp(— Zf rj,pt’] Wt’]))‘M>1>,
jeJ
where f*(r, u,w) := —log (Sm,hw(dz) exp(—f(r, z))) Now, we can apply Lemma 5.37 to get:
N2 ( M) exp(— Zfrj, j))‘M?l)
JeT
H{
— Ni\,o (G(H,‘A) exp < - L dr (EO ®N)*[J‘mj7£(d2)(1 —exp — f(r, z))])) ,

and it follows that conditionally on HtA the measure )’ O(r;,L7) 18 a Poisson point measure with
intensity:

Lo, gray(r)dr (E°®@N). [me(dz)].
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To conclude, we need to show that the measure (E? @ NV),[m¢(dz)] is precisely 7(dz). In this
direction, remark that:

(E°®A[ [ 1m1¢(d)(1 ~ exp(—p2))] = (B @N).[1  exp(~ | T(ahyup(c(h)]
— B @ N (1= exp (= [ Jnldh) up(e(h) ~ [ Joldh)uc, (€(h) - ac)
~ B oN (1o (- Jjg(dh)u@(g(h)) ~a0)).

Then, (5.23) entails that the previous display is equal to

N PplER) — By €M)\ ofy (7 Pl (E()
N (1=exp (- f = ) e ey )~ (e J, @ ae ) ))

However, by Lemma 5.20 the previous display is precisely (5.88). ]

We can now identify S(TA) in terms of our functionals. In this direction, for every i € N,
we introduce (p™F, Wik ABK), i the excursions from Dy = E \{(x,0)} of (p!, W? A? — A}). In
particular, the family (p"* ,W’k) kek; 18 in one-to-one correspondence with the connected com-
ponents [a; i, b; 1], k € K;, of the open set {s € [0,0(W")] : TAS(WZS) < ¢(W)}, in such a way
that (pbF, Wik ABF AY) is the subtrajectory of (pi,Wi) associated with the interval [a; k, b; k|-
In the time scale of ((ps, Ws) : s = 0), the excursion (pF, Wik A#F + AZ) corresponds to the
subtrajectory associated with [ g, B; k], where o := o + a; and S, := a; + b; ;. Next, for
each k € K;, we introduce the point process PZ’k = P(Ao‘i,k +)AAg, P4, and we set:

@k
M=), ), (44 (0), T Py’
ieN kelC;

An application of the Markov property at time A;l and the special Markov property applied to
the domain Dy shows that, conditionally on pj, the measure M is a Poisson point measure with
intensity pf (dr)N;}vo(dp? dW,dP). For every j € J, consider
My 1= #{ (Ah(0), g, T, PHE) € M AG(0) = 7y and Pt 2 1,
and denote the elements of {(rj, M;),j € J : M; > 1} arranged in increasing order with respect
to r; by ((r{, My),..., (r%, My)). We now remark that by construction we have:
A o o o o A
S(T ) = ((TlaMl)w"a(rR’MR)?(Ht 7_1))7 (595)

and, in particular, K = 2521 M,, which is the number of atoms (Aé(O),pi’k,WZ’k,Pi’k) e M
with at least one Poissonian mark. Finally, we write & := ((p¢, W, P%) : 1 < ¢ < K) for the
collection of these marked excursions enumerated in counterclockwise order. Remark that, for
every 1 < ¢ < K, T/ is the embedded tree associated with AZ — time changed by A(p?, WY) —
and marked by PZ. We are now in position to prove Proposition 5.34.

Proof of Proposition 5.34. For every h > 0 with pi({h}) > 0, we write M) = /W]l{%i:h}.
Similarly, for every r > 0 satisfying pi({r}) > 0, we set M) := M1 {A(0)=r}- Next, we introduce
the following families respectively under N A(\M > 1) and N;’O(-\M >1):

{(h oo 72 1y21y MPAT = 1)) 00 =0, pi({h}) > 0}u{(Hy, 1)}, (5.96)
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and

{(rL o arsnys1y, MO(M = 1)) 17 =0, g ({r}) > 0} o{(H, - 1)}, (5.97)

where by Lemma 5.38, we have respectively that H(pf') = H{, H(p;) = H;. Recall that, under
NA(U\AJ > 1,pt), the measure M is a Poisson point measure with intensity p(dh) N (dp, dP)
and similarly, under N;"O(-\M > 1, p{), the measure M is a Poisson point measure with inten-
sity pf (dr)N;),O(dp, dW,dP). Consequently, by restriction properties of Poisson measures, under
N -IM = 1,py), the variables (MM (M = 1) : pu({h}) > 0) are independent Poisson ran-
dom variables with intensity p(({h})N*(M > 1) and, under Né,()("M > 1,p{), the variables
(MM = 1) : pr({r}) > 0) are also independent Poisson random variables, this time with
intensity pf({r})N§70(M > 1). Now, recall from Lemma 5.38 the identity

(Fe: ML 2 1) D (pp - N2g(1M > 1)).

Since N/\(M > 1) = NQ,O(M > 1), this ensures that the families (5.96) and (5.97) have the
same distribution. Moreover, the measures py and pf being atomic, the families (5.87), (5.95)
correspond respectively to the subset of elements of (5.96) and (5.97) with non-null entries. This
gives the first statement of the proposition.

To establish (ii), it suffices to show that conditionally on S(T), the marked excursions & are
distributed as K independent copies with law N MdH, dP\M > 1) and that, conditionally on

S(T4), the excursions & are distributed as K independent copies with law Ni"o(dW, dP|M = 1).
Remark that our previous reasoning already implies that & and & satisfy the desired property if
we do not take into account the ordering. However, this is not enough and to keep track of the
ordering we proceed as follows: N

We start studying & under N ”\(\M > 1) and we introduce (& : s > t), the running infimum
of ((ps, 1) — Py, 1) : s = t). Next, we consider the measure

259%ﬁw (5.98)
ieN

and we stress that, by the strong Markov property and the discussion below (5.21), condition-
ally on Fy this measure is a Poisson point measure with intensity 1o, 1y(v)du N Adp, dP).
Moreover, its image by the transformation s — H(ksp¢) on its first coordinate gives precisely
M. In particular, the collection ((hf,Mf),...,(h%,M}%), (Hi,—1)) only depends on p¢ and
(j: : i > 0 with P
precisely to the atoms H(p*) of (5.98) with ﬁé(ﬁi) > 1, when considered in decreasing order with

o(5) = 1). Remark that the ordered marked excursions & correspond

respect to —ﬂ&i. Since H (py) = Ht, we deduce by restriction properties of Poisson measures that,
conditionally on (px, K ), the collection & is independent of S(’I‘) and formed by K i.i.d. variables
with distribution N*(dp, d73|]\7 > 1), as wanted.

Let us now turn our attention to the distribution of & under N:i;\,o('|M > 1). Similarly, under
Né,o("M > 1) we consider (Z; : s > A;'), the running infimum of (ps, 1>_<’0Af1’ s> A
as well as the measure

D (i W)- (5.99)

€N
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Once again, by the strong Markov property and (5.21), conditionally on F A the measure
. . . . . . >\ Tr7
(5.99) is a Poisson point measure with intensity 11y (ja 1y)(u)du NW? " A))(dp, dW). We now

. ( RupPi
introduce the process:

V};:szAé

t/\ﬂi—t/\ai(lozv WZ)? t=0,
1eN

where Vi, = (pi,1) < o by Lemma 5.38. Recall that (pi’k,Wl’k)ke;gi stands for the excursions
of (p', W' A" — A}) outside Dy and we stress that in the time scale of ((ps, Ws) : s = 0),
the excursion (piF, WHk AGF A}) corresponds to the subtrajectory associated with [0 s Bi k]
where o , 1= a; +a; 1 and 5 i, := a; +b; ;.. To simplify notation set Tr(pi, WZ) for the truncation
of (pi,Wz) to the domain Dy;. An application of the strong Markov property combined with
the special Markov property in the form given in Theorem 5.11 implies that, conditionally on
, the measure:

230 Tt )

> S o T ity (5.100)
1€eN,kelC; ok

is a Poisson point measure with intensity L (,x 1y](p)dp N;\%O(dp, dW,dP). The conclusion is

~

now similar to the previous discussion on &. First, remark that the collection of variables
((r], M7), ..., (rg, Mp), (H{4, —1)) can be recovered from
and (Vo i€ Nk e K with P > 1)

' As (W)

Z O S e )
1eN

by making use of the mapping r +— Z(—fai)ér fé\%’ (pi,W) and the fact that A}(0) can be read

from Tr(pi,Wi). In our last claim we used that fUAé (pi,Wi) is measurable with respect to
Tr(p', W") — by Proposition 5.7 — as well as the equality H{" = sup;eny A4 (0) — which holds since
M conditionally on pi is Poisson pi (dr)N2 , and H(p}) = H{ by Lemma 5.38. Furthermore, the

ordered marked excursions & correspond precisely to the atoms of (5.100) with PT(W““) > 1in

o

decreasing order with respect to the process V' —since V' is non-decreasing and all the values {Vj, , :
i€ Nk € K;} are distinct. Putting everything together, we deduce by restriction properties of

Poisson measures that, conditionally on »] 0 ( and K, the collection & is independent
7

_jawTr(pini))
of S(T4) and composed by K i.i.d. variables with distribution Ng’o(dp, dW,dP|M > 1). This
completes the proof of Proposition 5.34. n
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Chapter 6

The excursion theory

THE CONTENT OF THIS CHAPTER IS TAKEN FROM THE WORK IN PROGRESS [16], WRITTEN
IN COLLABORATION WITH ARMAND RIERA. THIS VERSION CONSTITUTES AN EARLY PRELIM-
INARY VERSION AND THE CONTENT IS SUBJECT TO MODIFICATIONS. OCCASIONALLY, ONLY
SKETCHES OF PROOF ARE PROVIDED AND SOME MEASURABLY QUESTIONS HAVE NOT BEEN
PROPERLY ADDRESSED YET.

Abstract. We develop an excursion theory for Markov processes indexed by Lévy trees, away
from a regular instantaneous point x. Excursion components are defined as the connected compo-
nents of the complement of the set of points in the tree with label x. The excursion corresponding
to an excursion component is the restriction to the motion to such component. The family of
excursion are indexed by means of the additive functional introduced in [82, Section 4]. We prove
that, as in classical excursion theory, the excursion process is a Poisson point process with inten-
sity dt®@NZ%. We refer to the measure N7 as the excursion measure away from z, and we provide a
precise description of the latter. Finally, we address the reconstruction of the tree-indexed process
in terms of its excursion process.

239
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6.1 Introduction

The content of this chapter is work in progress, and this short introduction serves the sole purpose
of giving a brief outline of the results obtained in [83].

Excursion theory for time-indexed Markov processes has been an active topic of research for
decades, and has shown to be a powerful tool in settings of very different natures. In short, it is
classic that if z is a regular, instantaneous point for a time-indexed Markov process (& )swr taking
values in a Polish space E with rcll paths, one can decompose the path in a family of excursions
away from x. More precisely, set Z°° for the set of times at which the Markov process visits x,
and write (a;, b;);ey for the connected components of the open set R\ Z°. We shall call the
piece of path ¢ := (g(ai-i-t)/\bi : t = 0) the excursion associated with the excursion interval (a;, b;).
The family of excursions (£");ey can be then studied by means of a remarkable additive functional
L = (Lt)er, called the local time at  of the Markov process £&. Namely, the point process of
excursions indexed by their respective local time ), o Lo, £ often referred to as the excursion
process, is a Poisson point process in Ry x D(R,, E) with intensity d¢ ® . The (infinite)
measure N is the so-called excursion measure away from x of the Markov process. Moreover, the
path (§)ter, can be recovered from the excursion process, making use of the fact that the order
induced by L is precisely the temporal order.

In this work, and in contrast with the time-indexed setting, the Markov processes we consider
are indexed by a random set. Namely, the indexing set is now a so-called Lévy tree. The purpose
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of this work is to develop an excursion theory for continuous Markov processes indexed by a Lévy
tree away from a regular and instantaneous point x for the Markov process. When the tree is
the Brownian tree, the Markov process a Brownian motion and x = 0, an excursion theory was
developed in [1] by different methods. The results we obtain both complement and extend the
results from the work [1] to arbitrary Lévy trees and more general continuous spatial motions.
Let us give a brief overview of the object we shall be working with.

Lévy trees are a family of rooted, compact R-trees introduced in [43]. These can be constructed
canonically by considering the tree coded by the height function H under the excursion measure
N away from 0 of a spectraly positive Lévy process, with Laplace exponent v, reflected at its
infimum. Namely, if we write o for the duration of an excursion under N and for every s,t € R,
we set s ~y tif Hs = Hy = minf, s H, the ¢-Lévy tree Ty is defined as the quotient space
T = [0,0]/ ~pg, and we write py for the projection mapping every element ¢ € [0, 0] to its
equivalence class. One can think of (pg(t) : ¢ = 0) as a clockwise exploration of Ty, starting at
the root J := pg(0). If we denote the law of the ¥-Lévy process by Py, this construction can still
be performed under Py but the resulting tree Tz is no longer compact, and is referred instead as
a 1-Lévy forest. The height function H is in general not a Markov process, and its study often
relies in a measure valued strong Markov process p = (p; : t = 0) called the exploration process
taking values in the space of finite measure in R, that we denote by M ¢(R, ). Roughly speaking,
the exploration process p encodes the branching structure of Ty ; moreover, if for an arbitrary
pe Mp(Ry) we write H(u) := supsupp p for the topological support of j, the exploration
process and H are linked by the relation p; = H(p) for ¢ = 0. We refer to Section 6.2.1 for
a detailed discussion. Now, informally, the Markov process (£, £) indexed by the Lévy tree Ty
can be understood as follows. We start the Markov process &, paired with its local time at z, at
some point (y,r) € E x R at the root & of Ty. Then, the pair travels along the branches of
T away from the root, and at each branching point it splits in independent copies with same
law. We shall henceforth denote this process by (£a, L4)acT;;- We stress that this description is
informal, and to define this process formally we rely in the formalism of Lévy snakes in the sense
of [43]. In this direction, we write Wg«g, the space of finite £ x R -valued paths; every element
(w,£) € Wg consists in a pair of continuous functions w : [0,(w] — E, £ : [0, (] — Ry with
finite lifetime 0 < Gy < 0. We write (W, () for the tip of the path (w,0), viz. (w(Cw), €(Cw)).
In short, the ¢-Lévy snake with spatial motion (£, £) is a time indexed strong Markov process
(p, W, A), taking values in M (R ) x Wgyr, and such that for every ¢t > 0, (W}, A;) encodes
the labels of (&4, L4)aeT;, along the geodesic path [, pr(t)] = Ty, connecting the root to pg(t).
If with a slight abuse of notation, for (y,r) € E x R we still write (y,r) for the path with null
lifetime started at (y,r), we denote by Py, , the law of the Lévy snake started from (0,y,r). For
an overview of the Lévy snake, we refer to Section 6.2.4.

The notions of excursion components and excursions away from z of (§,)4e7;, should be heuris-
tically clear. Namely, if we set 2 for the set of points with label x in Tz, the excursion components
(C9ep consist in the connected components of the open set T\, and the excursion &% associ-
ated to the excursion component CV is the restriction of the motion to the closure of C0, say C,,.
The point in C, closest to the root J shall be denoted by u, and we refer to it as the debut point
of the excursion . For every £", one can construct a M;(R;) x Wg valued process (p*, W*")
in terms of deterministic operations on (p, W) encoding both C, and “. We refer to Definition
6.8 for a precise definition. The study of the collection of excursions ({%),ep is preformed in the
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sequel through the family of processes (p*, W"),cp, and with a slight abuse of notation we shall
refer to them still as the excursions away from x.

From our previous discussion, there are two main objects of interest: on the one hand, the
random subset set 2, and on the other hand the family of excursions away from z. The study of
the set 2 was conducted in [82], and it strongly relies in an additive functional A = (A¢)er, of
(p, W) introduced in [82, Proposition 6], with Stieltjes measure dA supported in a (well identified)
subset of {t = 0 : W, = x} - we refer to [82, Theorem 4.3] for a precise statement. The set 2°
possesses a natural genealogical structure as it is a subset of Ty. It has been shown in [82] that
this genealogy can be encoded in the random tree obtained from subordinating - in the sense of
[66] - the tree T by the continuous non-decreasing function ! (L£4)ae7;,- The resulting tree, that
we denote by T1§> is a Lévy tree with explicit exponent QZ , see [82, Theorem 4.1]. Since the tree Tlf,:
has been explicitly constructed in terms of (p, W, A), it is natural to look for explicit constructions
of the functionals related to 7}? in terms of (p, W). A first result in this direction was obtained
in [82]. Namely, Theorem [82, Theorem 4.1] yields that the tree coded by the continuous function

AA;17 t>07

is isometric to T1§> and has the law of the height process of a @Z—Lévy tree. We shall henceforth
denote the process in the last display by H , and write X for the Lévy process associated with
such height process - we refer to Proposition 6.1 for a precise statement.

This work is devoted to the study of the family of excursions (p%, W"),ep; let us give an
overview of our main results. First, in Section 6.4 we introduce an infinite measure N} in
DR, M¢(Ry) x Wg) that corresponds, roughly speaking, to the law of the t-Lévy snake with
spatial motion and excursion under N, trimmed at its first return time to z. This description is
informal since the excursion measure A is an infinite measure. This explicit description allows to
construct, making use of the theory of exit local times - see e.g. Section 6.6.1 for a brief overview
- a notion of fractal measure for the set of points {t > 0 : Wt = x} under NZ%. More precisely,
under N} we introduce a continuous non-decreasing process (Lj)r, that at each time ¢ > 0,
measures the fractal size of the set {s € [0,1] : W, = x}.

We now turn our attention to the intricate relationship between the measure N7 and the
family of excursions away from x. In analogy with the time-indexed setting, to index this family
we shall rely in the additive functional A. Write D(R, F x Ry ) for the space of E x R -valued
rcll paths equipped with the Skorokhod topology. We can now introduce the main result of this
work. Theorem 6.28 states that if we set g(u) := inf{t = 0 : pgy(t) = u} for the first time the
exploration py visits the debut point u, for any (y,7) € £ x Ry and under Py, ,, the point
measure

&= Z O(Ayguy W)
ueD
is a Poisson point process in Ry x D(R,, £ x R, ) with intensity df ® N*. For this reason, we
baptise N* the excursion measure away from z of (§4)se7 - We refer to Theorem 6.28 for a more
precise and general statement. As a byproduct of our results, we deduce that when the tree is
the Brownian tree, the motion a Brownian motion and # = 0, the measure N coincides with
the excursion measure introduced, by different methods, by C. Abraham and J.-F. Le Gall in [1].
The proof of Theorem 6.28 is achieved in two steps.

lwith respect to the genealogical order
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Step 1: We show in Proposition 6.30 and Corollary 6.31 that the measure £ is a Poisson measure
with intensity dt ® N}, where N} is a sigma-finite measure in D(R, M¢(Ry) x Wg).

Step 2: Proving that N; is precisely the measure N¥ introduced in Section 6.4. This identifi-
cation is made in Proposition 6.33 by making use of spinal decompositions of the Lévy
snake under N, o and NZ.

Theorem 6.28 shares striking similarities with the results we stated in the setting of time-indexed
Markov processes.

Finally, Section 6.8 is devoted to reconstruction related questions, as we obtain explicit de-
scriptions for the different functionals of 75 and (p, W) in terms of the excursion process £. More
precisely, we prove the following results.

(R2) The jump measure of X is given by 2ueD s O(Aguy L% (o0 WH))-

(R3) The local times at the branching points of 7 (in the sense of Lemma 6.2) and the family
of process (L*(p", W) : uw e D) differ by an explicit time-change

(R4) The Lévy snake (p, W), an therefore the tree-indexed process (£;)qe7s;, can be recovered
from the excursion process &.

As a corollary of (R2), we identify the law of (p“, W"),cp conditionally on H. We stress that the
content of this last section is at an early stage and is subject to change.

6.2 Preliminaries

6.2.1 The height process and the exploration process

In this section, we introduce the framework that we will be working with for the rest of this
study. We begin with standard considerations on Lévy processes, deferring the construction of
the corresponding Lévy trees to the next section. In this direction, we write X for the canonical
process on (R, R), the space of right-continuous paths with left limits endowed with the
Skorokhod topology, and we denote the law of an arbitrary Lévy process started from 0 by P.
We write (F; : t € [0,0]) for the canonical filtration, completed as usual by the class of all
P-negligible sets of F5. In what follows, we shall always assume that under P, the following
assumptions hold:

(A1) X does not have negative jumps;
(A2) The paths of X are of infinite variation;
(A3) X does not drift to +oo.

We shall write 1 : Ry — R for the Laplace exponent of X, viz. the function defined by the
relation

Elexp(—=AX1)] = exp(¥(N)), for every A = 0.

We recall that v is well defined since X is spectrally positive. If we denote the Lévy measure of
X by m, condition (A1) ensures that 7 is supported on (0,00). Further, it is straightforward to



Chapter 6. The excursion theory 244

see that (A2) holds if and only if ¢ has Gaussian component or

J 7(dz) z = oo,
(0,1)

while (A3) yields that the Lévy measure satisfies the integrability condition S(o ) m(do)(z Ax?) <
o0. Now, it is not difficult to check that under (A1)-(A3), the Laplace exponent 1) can be written
in the following form:

1MM=aA+ﬂV+f 7(dz)(exp(—=Az) — 1 + A\x), (6.1)
(0,00)

for some o, f € R;. As discussed in [43], for every such function 1, it is possible to construct a
random tree out of a fundamental functional of X called the height process associated with X.
To this end, we shall as well impose the following additional condition on the Laplace exponent:

(A4)
©dA
1 YA =
As we will explain below, (A4) is a necessary and sufficient condition for the continuity of the
height process. This in turn will ensure the compactness of the corresponding tree. For the rest
of this work, we shall work under assumptions (A1)-(A4). Examples of processes that verify these
assumptions include Brownian motion and spectrally positive a-stable processes with « € (1,2).
Let us now give a brief introduction to the height process; our presentation follows [43, Section
1.2]. Inspired by its discrete analogue for Galton-Watson trees (see Section 0.2 in [9]), the height
process H := (H; : t > 0) is a functional of X defined in such a way that, at each fixed ¢, the
variable H; measures the size of the set:
{se0,t]: X,- < Sg;fthr}. (6.2)
To make our description precise, we shall make use of local times and a time-reversal argument.
Let us start by introducing some notation. For each ¢ > 0, we consider the time-reversed process

)?'ét) = Xt _ X(tfs)f and ggt) 1= sup )?(t)’ fOr O <s < t, (63)
[0,5]

with the convention )A(t(t) = Xy. Then, it is well known that (X5 : 0 < s < t) has the same
distribution as the time-reversed process ()/(\' s(t) : 0 < s < t). Further, the point 0 is instantaneous
and regular for the strong Markov process S — X = (sup[o’s] X — X5 : s = 0). Now, for every
s = 0, let us consider the functional I'y : D(R;,R) — R, defined for every e € D(R,,R) by the

relation: )

|
Fs(e) = h]?_l)logf 5 0 dr 1{sup[0m] e—e(r)<er}s

for some arbitrary fixed decreasing sequence (gj)r>o of positive numbers converging to 0. Under
P one can find a sub-sequence, that we still write (ex)x>0, such that for each fixed t the process
T(X®):= (My(X®) : 0 < s < t) exists a.s. The process I'(X®) is a local time at 0 for $*) — X (®),
and note that the set

(sefo,t]: 8% - X = o)
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is precisely (6.2) under the mapping s — ¢t — s. Now, for every ¢t > 0 we set:

A~

Hy = Ty(X®). (6.4)

We shall refer to H = (H¢ : t = 0) as the height process of X. Condition (A4) ensures that H
possesses a continuous modification [43, Theorem 1.4.3], that we consider from now on and that
we still denote by H. Let us stress that despite the fact that H can be defined when condition
(A4) fails, in that case the behaviour of H is highly irregular: in any interval [r,s] < R, the
image of H contains a half-line [a, o) for some a = 0.

One of the main difficulties arising in the study of the height process is that it is not Markovian
as soon as m # 0. To circumvent this difficulty, we will need to introduce a measure-valued Markov
process — called the exploration process — which roughly speaking carries the information needed
to make H markovian. Let us start by introducing some notation. For every 0 < s < ¢, we set

I := inf X,
s<u<t
and write d,/ ; for the Lebesgue-Stieltjets measure associated with the non-decreasing, continuous
mapping u — I, ; for v € [0,¢]. We denote the space of finite measures in Ry equipped with the
topology of weak convergence by M (R, ) and we still write 0 for the identically nul measure.
The exploration process is the M;(R;) — valued process p = (p; : t = 0) defined, for every
nonnegative measurable function f, by the relation

fnfyi= | il S, 20
Note that in particular, the total mass (p¢, 1) of p; is Xy —I;. Despite its rather technical definition,
the exploration process possesses crucial properties making its study viable. For instance, by [43,
Proposition 1.2.3], (ps : t = 0) is an M (R, )-valued cadlag strong Markov process and the
decomposition of the measure p; on its continuous and purely discontinuous parts is given by:

pe(dr) = Bl g (r)dr + > (Lg — Xso) 6, (dr), £ >0. (6.5)
O<s<t
XS_<IS7t

It was later established in [2] that the exploration process is a Feller process. Let us now briefly
explain the connection between p and H. To this end, we use the notation p for an arbitrary
element of M (R, ) and we denote the supremum of its topological support by H (), viz. H(u) :=
sup(suppp), with the convention H(0) = 0. The following properties hold P - a.s.

(i

) We have the equality between the processes (H; :t = 0) = (H(p) : t = 0).
(ii) The process t — p; is cadlag with respect to the total variation distance.
)

(iii) Almost surely, the following sets are equal:

{t?O:ptZO}Z{tBOiXt—[tZO}Z{t>02Ht=0}. (66)

From our previous discussion, under P the exploration process starts from pg = 0. We shall now
explain introduce the law of p started from an arbitrary y € M¢(R,). To this end, we shall make
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use of two deterministic operations on the elements of M ¢(R).

Pruning. For e M¢(R,) and a > 0, we write rqpu for the element of M ¢(IR.) characterised by
the relation:

Haﬂ([()?T]) = M([O,T]) A (<:u7 1> - a>’ (67>

with the convention kqpu = 0 if @ = (i, 1). Roughly speaking, the operation p — kg prunes the
measure p from the tip of its topological support so that the remaining mass is (i1, 1) —a. Remark
that despite the fact that H(u) might be infinite, the measure kqu has compact support for every
a > 0. Further, if © has compact support and supp p = [0, H(u)], the mapping Ry 3 a — H(kqp)
is continuous.

Concatenation. Consider p,v two element of M (R ) and assume H(u) < co. We write [u, /]
for the element of M (R ) defined as follows:

Gush = |

[0,H ()]

u(dr) £(r) + f o(dr) f(H () + 1),

R,

where f is an arbitrary, non-negative measurable function on R, .

We are now in position to define the law of the exploration process started from an arbitrary
measure (1 € My(Ry). Under P, we write p* = (p}' : ¢ = 0) for the My(R) — valued process
defined at time ¢ = 0 as pfy := p and for ¢t > 0 by

o= [Kop, pr)- (6.8)
Remark that the right-hand side is well defined since k4 has compact support for every a > 0.
We will use the notation P, to denote the law of p* in D(R;, M;(R})), the space of right-
continuous M (R, )-valued paths. If for r > 0 we set T}, := inf{t > 0 : —I; > r}, it follows
that

P 1) = X+, 1), for 0 <t < Tyuny,  and 1) =Xy — I, for t > Ty

Said otherwise, the process ((p),1) : 0 < t < Ty, yy) is distributed as the Lévy process X
started from (u, 1) and stopped when reaching 0, and (<pff+T< . 1) : t = 0) has the same law as
I

({pt,1): t = 0) under P. We shall write PL for the law of (,off/\T< Ltz 0) under P.
Let us now introduce a closely related process to p that will be used frequently in this work.
Under P, we write i := (1 : t = 0) for the measure-valued process defined as

ne(dr) == Bl gy (r)dr + Y (Xy = Ioy) Opr,(dr), >0, (6.9)
O<s<t
X57<15,t

The process 7 is cadlag with respect to the total variation distance of measures [43, Corollary
3.1.6] and takes values in M (R} ) [43, Lemma 3.1.1]. Further, we have H(n;) = H(p;) for every
t = 0 and the set {t = 0 : 7 = 0} coincides with (6.6). The process 7 is often referred to as the
dual of p — the terminology is justified by the identity in distribution (6.11) below — and the pair
(p,m), is a strong Markov process [43, Proposition 3.1.2]. For a complete account on (1 : t = 0)
we refer to [43, Section 3.1].

For our purposes, it will be crucial to define the height process H and a fortiori, the pair (p,n),
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under the excursion measure of the reflected process X — I = (X; —infg ) X5 : ¢ > 0). Let us be
more precise: under our current hypothesis, 0 is regular and instantaneous for the Markov process
X — I, and it is well known that P —a.s. the Lebesgue measure of the set {t € Ry : X; = [;} is
null. The process —1I is a local time of X — [ and we denote the associated excursion measure
from 0 by N. For e € D(R;,R), we write o, for the lifetime of e, viz. o, := sup{t = 0 : e(t) # 0},
with the usual convention inf{¢f} = o. Now, denote the excursion intervals of X — I away from
0 by (ai,bi)ien — we recall that these are defined as the connected components of the open set
{t=>0:X; — Iy > 0}. For every i € N, we set e; = (X(4,4¢)np, — La; : t = 0) for the corresponding
excursion. Remark that since —I; — o0 ast 1 « by (A3), every excursion interval has finite length.
Moreover by (iii), the intervals (a;, b;);en are precisely the excursion intervals away from 0 of p
and H. The key observation is that H, and therefore (p,n), restricted to an arbitrary excursion
interval [a;, b;] can be written in terms of a functional that only depends on the corresponding
excursion e;. Informally, this should not come as a surprise: note that the definition of H in (6.4)
only depends on the excursion straddling ¢, we refer to the discussion preceding Lemma 1.2.4 in
[43] for a more detailed account. This implies that the same holds for the measures defined in (6.5)
and (6.9), and with some abuse of notation, we write (p(e),n(e)) for the corresponding functional
on D(Ry,R). In particular, it holds that (p(q,44)ab,s Mai+t)ab) = (pe(ei), ne(ei)) for every ¢ = 0.
Now, by considering the first excursion e; = (X(g44jra — Iy : t = 0) with duration o, > ¢, we
can define the law of (p,n) under N(delo, > ¢) as the law of (pi(ej),ni(ej) : t = 0) under P.
By repeating this procedure for every € > 0, defines the law of (p,n) under N. Similarly, the
functional e — H(p(e)) on D(R4,R) extends the construction of H under N and we often write
H(e) for H(p(e)). Note that in particular, P-a.s. for every i € N, we have H g, 4,0, = Hi(e;) for
t > 0. As a straightforward consequence of our previous discussion and excursion theory for the
reflected Lévy process X — I, we deduce that the random measure in Ry x M f(R+)2 defined as

Z 5(_Iaiap(ai+~)/\bi777(ai+~)/\bi) (61())

ieN
is a Poisson point measure with intensity 1g, (u)du N(dp,dn). Note that (iii) and our discussion
on the process 1 immediately yields that under P, the measure (0, 0) is regular and instantaneous
for the Markov process (p,n), and that —1I is a local time. Therefore, by (6.10) the excursion
measure of (p,n), associated with —1, is precisely N(dp,dn). We also recall for later use the
identity in distribution:

. (@) .

((ptsme) = 0) = ((o—t)—> P(o—)—) : T = 0), under N, (6.11)
and we refer to [43, Corollary 3.1.6] for a proof. Clearly —I is as well a local time for p and
the corresponding excursion measure is given by N(dp). The strong Markov property of the
exploration process under N takes the following form. Let T" be a (F;) stopping time and ¢ a
bounded Fr-measurable function. For every bounded functional F' on (R, Mf(R,)), we have

N(1{0<T<oo}q) F(pris s> O)) = N(1{0<T<oo}q) : ELT[F]) (6.12)

We stress that under N, we still have H(p¢) = H; and that (ps, 1) = Xy, for every ¢t > 0.
Let us close our discussion with some reconstruction related questions concerning H, p and X.
Namely, we shall be interested in addressing when does one can reconstruct, given one of these
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tree processes, the remaining two. We argue under P but analogous arguments hold under N.
First, by (i) the height process is a functional of p and since we have that (p,1) = X — I where —I
is a local time for p, it readily follows that one can recover the Lévy process X out of p. Further,
by construction both H and p are functionals of X, so it remains to check if one can recover X
(and therefore p) from the height process. To this end, let us recall that by [43, Lemma 1.3.2]
and the monotonicity of t — I; we have:

1 S

lim E[ sup }—f dulyg, <o + ISH =0, foreveryt>=0. (6.13)
=0 g0 € Jo

The convergence in the previous display yields that —I can also be thought of as the local time

at 0 of H. This leads us to the following important result:

Proposition 6.1. Under P and N, the processes p and X are measurable functions of H.

Proof. Let us start arguing under P. Observe from our previous discussion and (6.13) that it
plenty suffices to show that we can construct the reflected Lévy process X — I from H. Therefore,
by right continuity, this will follow as soon as we show that for every rational ¢, we have the
convergence in probability

1 t+T009t
X —I; = glIT(l) e f ds 1{H5<min[t’s] H+e}s
- t

where in the last display we write Tp o 0y := inf{s > 0: X;4s — I;+s = 0}. By conditioning on F;
and applying the Markov property it suffices to establish that for every pu e MY, under PL the
following convergence holds in probability

o
<N7 1> = ;I_I)% e’ J;) ds 1{H5§min[07s] H+e}

where o = inf{t > 0 : ps = 0 for every s > t}. Since under P, by (6.8) we can write H(p5) =
H(k—ppt) + H(ps) and mingg g H(p") = H(k_p,pt), this is equivalent to showing that the conver-
gence in the last display holds in probability under P, replacing o by inf{t = 0: —I; = (u, 1)}.
However, this follows from (6.13). Now, the result under N can be obtained by similar arguments
by applying the Markov property under the excursion measure (6.12). O]

6.2.2 Trees coded by excursions and Lévy trees

In this section, we introduce the notion of a Lévy tree with branching mechanism 1 (or, in short,
a ©-Lévy tree), in the sense of [43]. We start by briefly recalling standard notation and basic
properties of R-trees. An R-tree (7,d) is a uniquely arcwise connected metric space, in which
each arc is isometric to a compact interval of R. In this work we shall exclusively work with
rooted R-trees, which further imposes that 7 possesses a distinguished point p € T, called the
root. In this work, trees are considered modulo isometries preserving the root, and with a slight
abuse of notation we shall still denote them by (7T, d).

For every u,v € T, we write [u,v] for the unique injective path connecting u and v, and
we denote their common ancestor by u A v, viz. the unique element of 7 verifying the relation
[p,urv] = [p,u] n[p,v]. It is therefore natural to define a partial order < encoding the genealogy
of 7. Namely, we shall write u < v if u € [p,v], and when the latter holds we say that u is an
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ancestor of v. The multiplicity of u is defined as the (possibly infinite) number of connected
components of T\{u}. For every k € N* U o0, we write Multig(7") for the family of points in 7
with multiplicity k. This allows us to extend classic notions from discrete trees to the framework
of R-trees. For instance, we shall make use of the following standard nomenclature:

e The elements of Multi;(7) are the leaves of T;
e The elements with multiplicity at least 2 are the skeleton of T;
e The elements with multiplicity at least 3 are the branching points of T.

Let us now present a canonical way to construct R-trees using continuous, non-negative functions.
This method is standard and we refer to [43] for a thorough study on coding of R-trees. Fix a
continuous, non-negative function e : Ry — R, recall the notation o, = sup{t > 0: e(t) # 0}
and that by convention, we write [0, o) for [0, 0¢] if o, = 0. For every s,t € [0,0.] with s < ¢,
let

me(s,t) := si%fq Cus

and define the pseudometric d in [0, o] by setting
de(s,t) :=es+e—2-me(s At,sv i), fors,tel0, o]

For every s,t € [0, 0] such that d.(s,t) = 0, we write s ~. t and note that this is equivalent to
the condition me(s A t,s v t) = 0. Now, we set T¢ := [0, 0]/ ~c for the corresponding quotient
space and let p. : [0, 0¢] — Te be the canonical projection. The metric space (T¢, d.) is an R-tree,
and the function e is referred to as the coding function of 7.. If we further assume that o, < oo,
the resulting tree 7T is compact. By convention, 7¢ is rooted at p.(0) and with a slight abuse
of notation we still denote its root by 0. We stress that a priori, the coding function e can not
be recovered in general from 7.. Roughly speaking, e encodes the tree 7T, as well as a canonical
orientation of it.

We are now in position to introduce Lévy trees. These are precisely the (random) trees
obtained from using as coding function the height process H of a Lévy process under the excursion
measure V. Let us be more precise. Let X be a Lévy process with Laplace exponent ¢ and, under
the excursion measure N of X — I, consider the height process H. The random tree (7w, dp)
coded by H under N is called the Lévy tree with branching mechanism 1 (or in short, -Lévy
tree). We mention that when 1(\) = A\2/2 for A > 0, the corresponding tree Tz is the so-called
Brownian tree, and Ty under N(-|og = 1) is the celebrated Brownian continuum random tree.
If we work instead under P, the height process H is still a continuous, non-negative function on
R, and thus (Tg,dp) is still well defined under P. Recall the equality between the sets (6.6),
write (a;, b;)sen for the excursion intervals of H away from 0 and for every i € N, set H' := H(e;).
The tree 7Ty under P can be interpreted as the concatenation at the root, with respect to the
order induced by the local time —1I, of the collection of trees (7 : ¢ € N). For this reason, under
P we refer to Ty as a forest of ¢ - Lévy trees.

Let us now briefly discuss some geometric properties of T under the excursion measure N. By
[44, Theorem 4.6.], for every non-negative integer k ¢ {1,2, 3, 00}, the sets Multiy(7x) are empty
- in particular, branching points in a Lévy tree are either of multiplicity 3 or infinite. Moreover,
Multie (7z) is nonempty if and only if the Lévy measure 7 is non-null, and every element of
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{t = 0: AX; > 0} is in bijection by the projection py with an point of Multiy (77). If AX > 0,
it can be argued that AXj is the fractal mass of the corresponding branching point pg(t) and
that it encodes the number of trees rooted at pg(t). In this work we shall need a more precise
notion of mass, measuring at any time ¢ the number of sub-trees in 7z rooted at py(t) attached
to the left and to the right of the geodesic path [0, pg(¢)]. To this end, we introduce a pair of
continuous processes that we shall refer to as the local times at the branching point pg(t). Let
us be more precise.

The local time at a branching point. First, under NV or P and for every v € {t > 0 : AX; > 0},
we set z(v) := inf{t = v : Hy < H,}. Note that by the strong Markov property of the exploration
process and the fact that 0 is regular for (—o0,0) under P for the Lévy process X, the latter
coincides with inf{t > v : X; < X,_}. Now, we define a continuous non-decreasing process
AU = (APt > 0) by the relation:

)\f’é = Xy — Iy, forte v, z(v)],

with Af’g =0if0<t<wvand )\f’g = AX, if t > z(v). We refer to A%t or equivalently AX,, as
the mass at the branching point pg(v). Next, for ¢ = 0 we let " := AX,, — )\f’e. In particular,
this gives that

N =1y — Xy, forte|v,z(v)]

where now )\fm = AX; for t <wv and )\f” = 0 if t > z(v). We shall now justify our terminology.
Consider the connected components of {v <t < 2(v) : Hy > min, ;) H} as well as the correspond-
ing excursions of (Hy : v < t < z(v)) over its running infimum. If (a,b) < Ry is an arbitrary
interval, we set n,((a,b),e) for the number of these excursions starting in (a,b) and reaching a
height greater than . Observe that every excursion interval is mapped by py in a sub-tree of Ty
rooted at pgr(t).

Lemma 6.2. For every € > 0, we set V(¢) := N(supH > ¢). Under P and N, a.e. for every
ve{s=0:AX; >0} and t = 0, we have the following point-wise convergences:

. nv((O,t),e) . nv<(t,Z<U)),€)
)\U,e _ 1 )\U7T — 1 .
t T Ve t T2 Ve

(6.14)

Moreover, the family (AVf, XV : v € [0, 0] with AX, > 0) is H-measurable, and will be referred
to as the local times at the branching points of Ty .

Proof. We shall only argue under the excursion measure N. Let T be an arbitrary stopping
time satisfying that on the event {T" < o}, we have AXp > 0. On {T < o}, we introduce the
notations X7 := (Xp,y — X : t = 0), I(D) = inf (g 4 X for the running infimum and note

that by standard properties of Lévy processes we can write 2(7T) = T + inf{t > 0 : —1 t(T) —

AXrp}. Consider (aj,b;);en the connected components of {t > 0 : Xt(T) > It(T)}, write (€;)ien
the corresponding excursions of X7 and set H' := H(e;). By the strong Markov property and
excursion theory for the reflected Lévy process, on the event {T" < ¢} and conditionally on Fr, the
measure fip 1= ), 5(—I§f>,Hi)1{—I§f)<AXT} is a Poisson measure with intensity 1jg A x,jdu N(dH).
Remark that (H*);ey are precisely the excursions of (H; : v < t < z(v)) over its running infimum.
Still on the event {T" < o}, we set v := T and to simplify notation, for ¢,e > 0 we write
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N(q,e) := #{(—[C(LiT), HY) e pp IC(”T) < q, sup,, H!, > ¢}. Now, the first convergence of the lemma

will follows as soon as we prove that a.e. for every 0 < ¢ < inf{u > 0 : —[L(LT) = AXrp} we have
the pointwise convergence:

T

0 gy NEL 0

¢ e—0 VXS) '

To this end, we work on {T" < ¢} and conditionally on AXp. We recall from Corollary 1.4.2

of [43] that the function V' = (V(a) : @ > 0) is determined by the relation S;)(a) d\yp(\)~! = a.

Since ¢ is strictly convex with ¢ (0) = 0 and ¢/(0) > 0, it follows that V is continuous and

lim. 0V (e) = oo. Now, this yields that for every fixed r > 0, the process P; := N(q,e™?) for

(6.15)

t > 0 is a counting process with independent increments and continuous predicable compensator
v i= qV(e™t) for t = 0. By Corollary 25.26 of [57], the time-changed process (Pt >=0)
is a standard Poisson process and by the law of large numbers of Poisson processes we get that
N(q,e)/V(e) — q a.e. as ¢ | 0. Furthermore, by monotonicity the convergence holds a.e. for
every 0 < ¢ < AXyp. Taking ¢ = It(T) for 0 <t <inf{u=>0: —II(LT) = AXr} yields (6.15). Now,
since the set {s = 0 : AXg > 0} can be exhausted by a collection of stopping times, each one of
them satisfying that 1yp_,,AX7 > 0, we infer that the first desired convergence of the lemma
holds. The second convergence follows by similar arguments, we skip the details.

Finally, observe that the family of jump-times {t > 0 : AX; > 0} is H measurable by Lemma
6.50, and that the same holds for n,((a,b),e) for every (a,b) = Ry and € > 0 by definition
of ny,. Now, the approximation (6.14) show that (A% X" : v € [0,0] with AX, > 0) is H-
measurable. O

Observe that the exploration process p as defined in (6.5) can be written in terms of the family
(A" v e [0,0] with AX, > 0). Namely, under P and N, we have

pi(dh) := Bl gy (h)dh + > A"p,(dh), >0 (6.16)
O<s<t
AX:>0
We are now in position to introduce the notion of a Markov process indexed by a Lévy tree. To
do so we shall rely in the formalism of Lévy snakes.

6.2.3 Snake driven by a function

This section provides an overview of the theory of Lévy snakes, which are a class of time-indexed
Markov processes first introduced in [43] and further developed in [82]. After a brief introduction
to this remarkable family of time-indexed processes, we fix the framework that we shall be working
with for the rest of this work. Our presentation draws upon [43, 82].

Let us start by fixing a Polish space (F, dg). We write Wpg for the collection of FE-valued finite
paths in E. More precisely, every element w of Wg is a continuous mapping w : [0, (w]| — E,
where (y is a finite non-negative number called the lifetime of w. The endpoint or tip of the
path of w is denoted by W := w((w). For every y € E, we write Wg,, € Wg for the collection of
continuous finite paths starting from y. With a slight abuse of notation, we still denote by y the
unique element of Wg , with lifetime ¢ = 0. If for every w, w' € Wg we set

dyy, (W, w') = |Gy — G| + Sl>118 dE(W(T A Cw), W (r A CW/)),
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the mapping dyy, : Wg x Wg — R is a metric on Wg and (Wg, dyy,,) is a Polish space.

The first step towards defining the Lévy snake consists in introducing the notion of a snake
driven by a continuous (deterministic) function, with spatial motion a continuous Markov process
with values E. In this direction, we denote the space of all continuous E-valued functions endowed
with the uniform metric by C(R, E), and we write £ = (& : ¢t = 0) for the canonical process on
C(R4, E). We next fix an E-valued strong Markov process with continuous sample paths and
for every y € E, we let II,, be its law in C(R, E) started from y. Finally, we set II := (II,)ep-

Now, fix an arbitrary finite path w € Wg. For every a,b € R, with a < { and a < b, we let
Rgp(w,dw’) be the probability measure on Wy characterised by the following properties:

o Ryp(w,dw’)-as., w'(s) = w(s) for every s € [0, a].
o Ryp(w,dw')-as., G = b.
o Under Ryp(w,dw’), (W'(s + a))se(o,p—a) is distributed as (£s)ge[0,p—q) under Tl (q).

Namely, w' under R, ;(w,dw’) coincides with w up to time @, and then it is distributed as the
Markov process (§¢: 0 <t < b— a) under Ily(g).

We will now endow WE* with a probability measure. In this direction, write W = (W, : t = 0)
for the canonical process on WEW We next fix a continuous, non-negative function h such that
Gw = h(0), and for s,t = 0 recall the notation my,(s,t) for the infimum of h on [s A t,s v t]. We
let Qé‘v(dW) be the probability measure on W%r characterised, for everyn > 1 and 0 = tg < t; <
lg < --- < ty, by the relation:

ng <Wt0 € A(), ceey th € An> = ILAO (W) f Rmh(O,tl),h(h)(W’ dWl) ce Rmh(tnfl,tn)gh(tn) (Wn—la de).

A1><'-~><An

The canonical process W under Qf}v is a time-inhomogenous Wg-valued Markov process, referred
to as the snake driven by h, with spatial motion Il started from w. The function h is called the
driving function since for every ¢t > 0, Qf}v—a.s. it holds that (y, = h(t). Furthermore, the term
snake stems from the following key property: for every fixed 0 < s < t, Q"-a.s. we have

Ws(r) = Wi(r), for every 0 < r < mp(s,t). (6.17)

We stress that this property only holds Qéﬁ,—a.s. for fixed s,t € Ry . In the sequel, we will refer to
it as the (weak) snake property. Turning now our attention to the path regularity of W, let us
recall from [82] sufficient conditions on the pair (h, IT) ensuring that W under Q” has a continuous
modification under the metric dyy,. To this end, we recall the convention [a,®] := [a, ) for
a < o and we proceed to introduce some relevant terminology. Consider a family of disjoint
intervals ([a;, b;],7 € J) indexed by an arbitrary subset J < N, with a; < b;, for a;,b; € Ry U {c0}.
A continuous, non-negative function h : R, — R, is said to be locally r-Hoélder-continuous in
([ai, bi] : 1 € J) for some r € (0,1] if, for every n > 0, there exists a constant C, > 0 we have:

|h(s) — h(t)| < Cpls —t|", for every s,t € [a; An,bj An], i€ J.
Now, let us consider the following assumptions on the pair (h, IT).

(i) There exists a constant Cr; > 0 and two positive numbers p, ¢ > 0 such that, for every y € F
and t > 0, we have:

I, ( sup dp(&u,y)?) < Cn -t

O<u<t
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(ii) If we let ((aj,b;) : i € J) be the excursion intervals of h above its running infimum, the
function h is locally r-Holder continuous in ([a;, b;] : i € J), with gr > 1.

Proposition 1 in [82] states that under conditions (i) and (ii) on (II, k), for every w € Wg with
Cw = h(0), the process W under Qf,f, possesses a continuous modification. Therefore, the measure
Q" can be defined in the Skorokhod space of Wg-valued right-continuous paths D(R, Wg) and,
with a slight abuse of notation, we still denote it by Q. From now on, when (i) and (ii) hold, the
measure Q" will always be considered as a measure in D(R,, Wg). One crucial consequence is
that, under (i) - (ii), the identity (6.17) now holds Q”-a.s simultaneously for every 0 < s < t < o,
by continuity of W. This key property will be used frequently and we refer to it as the (strong)
snake property. Crucially, it allows to define W= (Wt :t > 0) as a process indexed by Ty, the
tree coded by h. Let us be more precise. Since h is a continuous, non-negative function in R,
we can consider the corresponding tree 7, = [0, ah] / ~p. The snake property entails that the
continuous, R, x E-valued process (h, I//I?) = ((hs, W, ) : s = 0) satisfies that,

for every 0 < s < t such that, s ~, ¢ we have W, = W,. (6.18)

Said otherwise, the function W is compatible with the equivalence relation ~; and therefore, is
well defined in the quotient space T,. With a slight abuse of notation, we write (W, : a € Tg) for
the E-valued function in 7z defined, for every a € T}, by the relation

o~ o~

Wq := W, where s is an arbitrary element of pﬁl (a).

Remark: Let us briefly comment on our definitions. In the terminology of [1], a continuous Wg-
valued mapping w = (ws,s > 0) fulfilling the (strong) snake property and with finite lifetime
o(w) = sup{t = 0 : (,, # 0}, is called a snake trajectory. A continuous R, x FE-valued pair
(h,@) with finite lifetime satisfying (6.18), is a so-called tree-like path. These two families are
in bijection, see e.g. Section 2.2 in [1] for a more detailed discussion - keeping in mind that the
paths w considered in [1] start at wy = y, for some y € E.

In this work, the driving function of the snakes we consider is random, and more precisely
consists in the height process H(p) of a Lévy process. However, the corresponding snake is
not in general a Markov process. This can be solved by working with the pair, conformed by
the exploration process p and the respective snake driven by H(p). In order to give a precise
description of this process, we shall now introduce the notion of a snake path. First, write

j\/l?c = {pe Ms(Ry): H(p) < oo and supp p = [0, H(p)]} U {0},
and let © be the collection of pairs (u, w) € ./\/l(} x Wpg satisfying that H(u) = (.

Definition 6.3. A pair (p,w) € DRy, M;(Ry) x Wg) is called a snake path started from
(1, w) € © if the mapping s — ws is continuous in (Wg, dy,) and the following properties hold:

(S1) (po,wo) = (p, w).
(S2) For every s = 0, we have (ps,ws) € O - in particular H(p) = ((w).
(S3) w satisfies the snake property: for every 0 < s < t,

ws(r) = wy(r), for every 0 <r < [mf] C(w).
s,t
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The family of snake paths started from some fixed (u, w) € © is denoted by S, v, and when
(@, w) is of the form (0, y) for some y € E, we simply write S,. Note that the snake property (S3)
yields that for every (p,w) € Sy, the mapping & is well defined in Ti(p)- Now, we set

S := U Sp,w-

(1,w)e©

The elements of S are simply referred to as snake paths and the duration of an arbitrary (p,w) € S
is indifferently denoted by

OH(p) = 0(w) =sup{t = 0: (y, # 0}.

We will frequently consider restrictions of snake paths (p,w) € S to intervals [a,b] = R at which
H(pa) = H(pp) with H(p,) < H(py) for every t € (a,b) — note that this condition ensures that
PH(p)(@) = Pr(p)(b). To this end, we introduce the notion of subtrajectories.

Subtrajectories. Let us start by introducing some notation. First, for (u,w) € © and fixed
0<z<H(u), welet 0,(u,w) = (6,u,0,w) be the element of © defined by the relations:

Oy [ = f,u(dr)f(r — 2 s, O,w:=w(z+r), rel0,( — 2], (6.19)

where f : Ry — R is an arbitrary measurable bounded function. Now, consider an arbitrary
(p,w) € S and fix 0 < a < b such that H(p,) = H(pp) with H(p,) < H(p:) for every t € (a,b).
The subtrajectory of (p,w) in [a, b] is the element of S, , defined by

%(p,w) = HH(pa)(p(a—i-t)/\baw(a+t)/\b)a for ¢ = 0.

More precisely, if we let (p’,w’) = F,(p,w), for every t € [0,b — a] we have

Oh )i [ Pusdldn)fr = HOD Loy and ol = wsa(H(pa) + )
with (p},w;) = (0,w,) for every ¢ = b — a. In particular, the lifetime of (p’,w’) writes
C(wp) = H(pa+t) = H(pa) = H(py), for every t € [0,b—al.
Notice that the subtrajectory ,(p,w) is an element of Sy , and that it encodes the labels

(Wy 1 v € prp)([s;t])) in the sub-tree py(p)([a,b]) = Tr(p)-

6.2.4 The Lévy snake with spatial motion (¢, £)

In this work, we will be interested mostly in spatial motions consisting of pairs formed by an E-
valued continuous strong Markov process coupled with its local time at some fixed point x € E.
Let us be more precise: for the rest of this work, we consider a continuous strong Markov process
¢ taking values in F, and satisfying the following assumptions:

x is regular, instantaneous and recurrent for ¢, (Hy)
and
0
f dt ]l{&:m} =0, II, — a.s. (Hz)
0
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Let us briefly comment on these assumptions. Hypothesis (H7) ensures the existence of a local
time for £ at x, that we denote by £ = (£; : t = 0). Since z is recurrent we have L, = o . Recall
that £ is unique up to a multiplicative constant, that we fix arbitrarily, and we write N for the
corresponding (infinite) excursion measure. The pair

55 = (587‘68)7 5= 07

is a strong Markov process taking values in the Polish space E := E x R, equipped with the
product metric dz. We set II,, , for its law in C(Ry, E) started from an arbitrary point (y,r) € E
and it will be convenient to assume that £ is the canonical process in C(R,, E). With a slight
abuse of notation, Under II, , and NV, we write o¢ for the lifetime of £ defined as o¢ := sup{t >
0: & # x}. The main implications of (Hz) are postponed. Let us just note for latter use
that, if we write (a;, b;);en for the excursion intervals away from  of ¢ and we let (£%);en be the
corresponding excursions with respective (finite) durations o; := o, condition (Hg) ensures that
for any non-negative function f : E'— R, we have S(O)O dsf(&) = Dien S0 ds f(€L), Ty 0-a.s. This
fact will be used frequently in our computations.

Getting back to the setting of snakes driven by continuous functions, the role of the Polish space
F is taken-over in our framework by the product space E. Therefore, every element of W writes
W = (w,{) for some w € Wg and ¢ € Wy, with identical lifetimes. Letting IT = (H%T)(y,r)eE’
we stress that as soon conditions (i) and (ii) from Section 6.2.3 are fulfilled by (II, h), for every
W € Wy with Gz = h(0) the measure QL is well defined in D(R., Wy).

The Lévy snake. We are now in position to introduce the -Lévy Snake with spacial motion
II (abbreviated as the (i, II)-Lévy snake). In short, this process is defined by considering as
(random) driving function for the snake with spacial motion II, the height process of a 1-Lévy
process. Fix a Laplace exponent ¢ satisfying (A1) — (A4) and for u € MY, recall the notation P,
for the law in D(R;, M;(IR;)) of the exploration process started from p. With a slight abuse
of notation, we still write p for the canonical process in (R, M (IR, )). Recall that under Py,
the exploration process p takes values in ./\/l(}. From the definition of P, given in (6.9), we get
that for every u € ./\/l(}, the exploration process under P, takes values as well in MY, and that
H(p) is continuous P,-a.s. To ensure the continuity of the spacial positions of the (¢, I)-Lévy

snake, we still need to impose one last condition on the pair (¢, II). In this direction, we set
T:=sup{r=>0: lim A"¢(\) = o}
A—00
and remark that T > 1 by convexity of ¥. For the rest of this work, we impose the following
assumption on the pair (1, II):

Hypothesis (H3). There exists a constant C; > 0 and two positive numbers p, ¢ > 0 such
that,
for every y € £ and t > 0, we have:

Hy70< sup dg((Eu Lu), (y,()))p> < O -t and ¢-1-—"7T"YH>1, (Hs)

O<u<t

This last assumption has the following implication. Write © for the collection of pairs (u, W) €
./\/l(} x Wy satisfying the condition H(u) = Gw. If for (u, W) € © and under P, we write (a;, b;)en
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for the excursion intervals of H(p) over its running infimum, the second condition in (Hg) com-
bined with [43, Theorem 1.4.4] ensures that for some r € (0,1] with gr > 1, the height process
H(p) is a.s. locally r-Holder continuous in (a;, b;);en. Therefore, for every such r, P,-a.s. con-
dition (ii) from Section 6.2.3 is satisfied; for a detailed discussion we refer to Section 2.3 in [82].
We infer that for every (i, W) € ©, P,—a.s. the measure Qg ) is well defined in DR, Wg).

Now, consider the canonical process (p, W, A) in D(R, M ¢(R ) x W), the space of M (R ) x
Wg-valued, right continuous paths, where W, : [0,(w,] — E and Ag : [0,¢w,] — R4 With a
slight abuse of notation, we denote its canonical filtration by (F; : ¢t = 0) and to simplify no-
tation, we write W := (W, A). For every, (u, W) € ©, we let P, be the probability measure in
DRy, Mf(Ry) x Wg) defined by the relation

P (dp, dW) := P, (dp) Q" (dTT).

In other terms, the law of (p, W) under P, & is characterised by the following conditions:

e Under P, w, the law of p is P,.
e Conditionally on p, the distribution of W is Qg 28

The process
((0.T7), (Puse : (.)€ ®))

is a strong Markov process with respect to the filtration (F;4 ), known as the ¢-Lévy snake with
spatial motion II. Note that under P, w, the process (H, W) has continuous paths. This entails
that the strong snake property holds in the following sense: P, w-a.s., for every s < ¢, we have

Ws(r) = Wi(r), for 0 <r < mg(s,t).

Moreover, P, -a.s.
Cw, = H(ps), for every s > 0.

To simplify notation we often write (, for (y,. Note from the definition of P, that for every
(y,r) € E and under Po,y,, for each fixed s > 0 and conditionally on (s, the pair (Ws, Ay) =
(Ws(h),As(R)) : h e [0,{]) has the distribution of (¢, £) under II,, killed at ¢s. In particular,
the associated Lebesgue-Stieltjes measure of Ag is supported on the closure of {h € [0,(s) :
Ws(h) = x}, Pg,y—a.e. Note however that the later property might fail if we work under P,
for an arbitrary (i, w) € ©. Therefore, it will be convenient for our purposes to impose further
restrictions on the initial conditions (1, W) € © that we shall work with. In this direction, we
let ©, be the subset of © conformed by pairs (i, W), with W = (w, ¢), satisfying the following
conditions:

(i) ¢ is a non-decreasing continuous function and the support of its Lebesgue-Stieltjes measure
is

{he[0,¢w) : w(h) = x}.

(ii") The measure u does not charge the set {h € [0, (] : w(h) = z}, viz.

U(dh)ﬂwh:x = 0.
J[O,Cw] {w(h)=z}
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The following lemma taken from [82] justifies our definition for the subset ©,.

Lemma 6.4. [82, Lemma 5] For every (u, W) € Oy, the process (p, W) under P, takes values
in the subset O,.

Since this hold for instance for initial conditions of the form (0,y,r) for (y,r) € E, the space
O, is the natural subset of initial condition to work with. From now on, we will work with (p, W)
under P, 5 for (14, W) € O,.

It now follows from our definitions and our previous discussion on the regularity of the Lévy
snake that for every (u, W) € O, the process (p, W) under P, w takes vales in S, w. In particular, if
we write T for the Lévy tree coded by H (p), the snake property yields that (WS, As:se0,0p])
under P, i is well defined in the quotient space Tg. With a slight abuse of notation, we write

((gaa Ea) ‘ae TH)

for the Tg-valued function defined, for every a € Ty, as (&4, Lq) := (WS, As) for any s € p;il(a).
When working under Py, , for some (y,r) € I, we refer to the process in the previous display as
the Markov process (£, £) indexed by the 1)-Lévy tree Ty, started from (y,r). At this point, let
us mention the crucial role played by assumption (Hg). By [82, Proposition 4], it ensures that
the set of branching points of Ty and {v € Ty\{0} : & = x} are disjoint. More precisely, for
every (i, W) € Oy, P, w—a.e. we have:

{t € [0,0]: W, = 93} N {t € [0,0] : pr(t) € Multiz(Ty) v Multic(Tx), pr(t) # 0} = . (6.20)

Excursion measures of the Lévy snake. The identity (6.6) combined with the snake property
yield_s that for every (y,r) € E, the point (& (y,7)) € M?c x Wy is instantaneous and regular for
(p, W) and that —1I is a local time for (p, W) at (0, (y,r)). We write N, , for the corresponding
excursion measure in D(R, M ¢(R,) x Wg). Let (o, f)ien be the connected components of the
complement of {t > 0 : p; = 0} and for every i € N, write (p*, W") for the subtrajectory of (p, W)

corresponding to the excursion interval (o, 8;). By excursion theory, under Py, , the measure
M = Z S (6.21)
i€l

is a Poisson point measure with intensity 1g, (u)duN, . (dp, dW).
Since the excursion measure of (p,n) under Py, , is N(dp, dn), it readily follows from the form
of the conditional law of W given (p,n) that the measure N, writes:

Ny.(dp, dy, dW) = N(dp, dn) Q" (dW).

In other words, (p,n) under N, is distributed as (p,7) under the excursion measure N and,
conditionally on the pair, W has the law of a snake driven by H(p) with spatial motion £. Under
the excursion measure N, ,., we have the following identity in distribution:

—
=

((ptv nt:Wt) te [07 U]) = ((n(a—t)—v p(U—t)—7WU—t) te [07 U]) (6'22>

We refer to the identity in the previous display as the duality property of the Lévy snake.
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The strong Markov property under the excursion measure N, , takes the following form. Let
T > 0 be an arbitrary F;;-stopping time and ® be a bounded F7,-measurable function. For
every nonegative measurable functional F' on D(R, /\/lg)f x W), we have

Ny,r(l{T<oo}q) Fpris,Wris: s> O)) = Ny77‘(1{T<oo}(D ' ELW[F])a

where we denoted by IP’LW the law of ((psng, Wsno) @ s = 0) under P, w. We will be henceforth

frequently interested in computing quantities of the form ELW[F | for different functionals of
interest F' of the Lévy snake. To this end, the following observation will be of use. Recall
that (p, 1) under IP’LW is distributed as the Lévy process X under P started from {(u,1) and
killed at its first passage time at 0. If under IP’L,W and with a slight abuse of notation, we write
Iy = infjy 4{p,1) — {i1, 1) for t > 0, the measure M under IP’LW is a Poisson point measure with
intensity

1[07<M»1>] (u)du NW((H(nuu))(dp7 dW) (6.23)

We refer to [43, Lemma 4.2.4] and its proof for details on these statements. The strong Markov
property will be often combined with this fact.

We conclude the section with a reconstruction lemma, which states that the Lévy snake can
be recovered solely from its lifetime process and the tip of the snake path.

Corollary 6.5. For every (y,r) € E, under Po,y,r and Ny, the process (p, W) can be recovered
from (H,W).

This corollary is an immediate consequence of Corollary 6.1 and the snake property, we leave
the details to the reader.

6.3 Debut points, debut times and excursions

In this section, we shall introduce the notion of an excursion away from z for the tree-indexed
process (£4)aeT; - In contrast with the classic setting of time-indexed Markov processes, the family
of excursions away from z of (£;)qe7;, POssesses a significantly richer geometric structure. For
latter use, we shall now address some of its basic geometric properties. More precise versions
of the results that we present had already been established for the Brownian motion indexed by
the Brownian tree in [1], and we shall rely on similar arguments. Recall that a point of Ty with
multiplicity at least 3 is called a branching point, and that the collection of branching points of
Tr and the set {a € Ty : &, = x} are disjoint by (6.20). We recall as well that for every a,b e Ty,
we write [a, b] for the unique geodesic path connecting the points a, b.

Definition 6.6. Under Py, , or Ny, for (y,r) € E, a point w e Ty is called an excursion debut
for (&a)aeTy if the following properties hold:

(i) We have &, = x.
(ii) We can find v > u such that &, # x for every a in Ju,v].

We denote the collection of excursion debuts by D. For every u € D, we write Cy, for the subset
of points v € Ty fulfilling that v > u with &, # x for every a € |u,v[. In particular, if u is a debut
point, then it belongs to C,.
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For the rest of the section, we work under N, and Pg,, for (y,r) € E but our results are
often only established under the excursion measure N, ,. We start our discussion with some
elementary geometric properties of the set {a € Ty : & = z}.

Lemma 6.7. For every u e D, set C0:= Cy n{a e Ty : &, # x}. Then, the family (C2)yep are
the connected components of the open set {a € Ty : &, # x}.

In particular, this yields that the collection D is countable, since for every w € D, the non-
empty subset pﬁl (Cy) of (0,0) is open and consequently has non-null Lebesgue measure. Remark
that a priori, and in contrast with the Brownian case treated in [1], we do not have Int(C,) = CY.
Indeed, remark that for instance, we can not rule out the existence of an isolated point w of the
set Cy N {a € Ty : & = x} satisfying w € Multiy (7). For such w, we have both w € Int(C,) and
&w = x. This scenario can not occur for the Brownian motion indexed by the Brownian tree by
Lemma 16 of [1].

Proof. Since (Wt)te[o,a] is continuous and compatible with the equivalence relation ~ ., we infer
that (£4)aeT;, is also continuous. In particular, the set {a € T : & # x} is open in Ty and for every
u € D, the connected component Cg is open. Next, we claim that UUGDC’S ={xeTy:& # z}.
Note that the inclusion U,epCY < {x € Ty : €, # 2} follows by definition. To obtain the reverse
inclusion, consider w € Ty such that &, # = and remark that the set [0,w] n {a € Ty : & # =}
is nonempty. Then by continuity of (£,)ae7;,, We can find a unique u € [0, w] satisfying &, = =
and such that for every a €]u, w], we have &, # x. It now follows from our definitions that u is
an excursion debut and that w € CY, which proves the reverse inclusion. It remains to prove that
the sets C0, u € D, are disjoint and connected. The latter follows directly from the fact that for
any wy,wz € OV, we have [wy, ws] = CY since u is not a branching point, and thus u ¢ [wy, ws].
Finally, let us check that if u,u are distinct debut points, then C, and C,, are disjoint. Arguing
by contradiction, if we had v € Cy, N Cy, then it must hold that u < v/ < v or v/ < u < v. In any
case, we get respectively that «’ € Ju, v[ with £ = x and u € ]/, v[ with &, = z, in contradiction
with the fact that v belongs to C, n Cy . m

For uw e D, we set
g(u) :==inf{t > 0:py(t) =u}, and d(u):=sup{t=g(u):pu(t) =u}. (6.24)

Note that p;ll(u) = {g(u),d(u)} since u is not a branching point. Every u € D can be identified
with a snake path (p%, W") started from (0, z), that we shall refer to as an excursion away from
x of (p, W). In short, it consists in the sub-trajectory associated to [g(u),d(u)] truncated at its
first return time to z. To give a precise definition we first need to introduce some deterministic
operations. For W = (w, () € W, we write 71 (W) := inf{t > 0 : w(t) = x} for the hitting time of x
by w and for (i, w) € O, 0 < z < (y, recall from Section 6.2.3 the notation 6, (u, w) = (6,1, 0, w)
for the translation of (1, w) to time z. Fix (p,w) € D(R;, M;(R) x Wg) and for ¢ > 0, we set
t
Vi (p,w) = L ds L(pr(p.)<rt (wo)y-

We denote the right-inverse of (V;*(p,w) : 0 <t <o) by (I'(p,w) : 0 <t <V} (p,w)), viz.

I (p,w) =inf{s = 0: V] (p,w) > t} (6.25)
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with the convention I'} (p,w) = o(w) if t = V;(p,w). We shall write tr,(p,w) for the element of
DR, M¢(R) x Wg) defined by the relation:

tr*(pv w)t = (pff(p,w)a wFf(p,w))v for ¢ = 0. (626)

Informally, tr,(w) removes the trajectories wy from w hitting x and glues the remaining end-
points. Note that if (p,w) is an element of S, then we have tr,(p,w) € S;. We can now introduce
the notion of an excursion away from . Under N, recall that for every u € D, there exits exactly
two times g(u) < d(u) such that py(g(u)) = pg(d(u)) = u, and note that for s € [g(u),d(u)] we
have Hy > Hgy(,). Finally, for every u € D, we set:

<pu’ Wu) = tI‘* (‘%(u) (/), W))

Definition 6.8. The family ((p“, W") : u € D) is referred to as the family of excursion away
from x of (p,W).

The excursions of (§,)qe7;, away from z, that we denote by (£")uep, can now be defined for
every ue Das (WY :ace Tr( pu)). The following lemma shows that the family of excursions away
from x can be indexed by the value of the local time at the respective connected component.

Lemma 6.9. For every u € D, the process (Lq)aeTs 18 constant on C,, and we denote its value
by Cy. Moreover, if u' is another arbitrary element of D with u # u’, we have £, # ().

Proof. For every debut u € D, we set ¢, = L,,. We recall from Lemma 5 in [82] that N, a.e., the
Lévy snake (p, W) takes values in ©,. Therefore, we can consider a measurable subset )y of full
N, o-measure such that for every (p,w) € Q, the process (p¢(p), Wi(w))=0 stays in ©,. Without
loss of generality, we work under €)y. Let us now prove that, on every C,, the local time L is
constant and identically equal to ¢,,. To this end, let u € D and consider a € Cy,\{u}. Recall that
by definition, it holds that &, # x for every v €]u, a[. Next, consider ¢ := inf{s > 0 : py(s) = a}
and note that we have g(u) < t with H; > infy), H = Hy(y)- Since the image under py of
I:={re(g(u),?): infp. ) H = H,} is Ju,a[, it must hold that W, # x for every s € I. By the
snake property, we get that Wy(h) # x for every h € (Hg,, Ht) and since (p, W¢) € Oy, we infer
that A, = At(Hywy) = /A\g(u). This shows that £, = L, and since a is arbitrary, we infer that £
is identically equal to £, on C,.

Let us now show that if u # o/, then ¢, # ¢,. For t,t' € Q, we write t A t’ for the smallest
element of p]:,1 (pr(t) A pr(t')). Note from the definition of N ¢ that conditionally on (W¢(h) :
0 < h < Hy,p), the processes

L := (A(Hinp + h) = Mp(Hyaw) - h e [0, Hy — Hyapr])
L' = (Ay(Hpap + h) — Ay (Hyap) t he [0, Hy — Hyupr])

are independent, and distributed as the local time £ under Iy, g, )0 stopped respectively at
Hy — Hy,p and Hy — Hy,p. Further, set Z°:={t >0 : 171\/,5 =z} and for ¢t € (Z°)¢, write u(t) for
the unique element u € D such that pg(t) € C, - in particular remark that Cyg) = /A\t = Lyu(t)
and note that the unicity is guaranteed by Lemma 6.7. Consider another arbitrary ¢ € Z°. The
lemma will shortly follow as soon as we prove that we have £,y # £,y if L' or L is not identically
null; in this direction, we shall make use of the following remark.
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Under I1,, if for r = 0 we let 7,7 (£) = inf{t = 0 : £; > r}, recall that (,7(£) : 7 = 0) is a
subordinator. Under II, o for y € E, consider an independent copy (&', L) of (£, £) and note that
under I, o, the family of jump-times of the independent subordinators 7+ (L), 7% (L) are disjoint.
If we write (a;,b;)ier and (af, b.);ers for the excursion intervals away from z of £ and & under II, o
and we fix tg > 0, it follows that the collections {Lq, : 1€ 1,0 < a; < to}, {£, i€ I',0 < a] < to}
are disjoint on the event {7,(§) < to or 72.(£') < to}. l

Let us then conclude the statement of the lemma. If we consider two arbitrary u,u’ € D with
u # u', we can find ¢, € Q n (2°)¢ such that py(t) € Cy, py(t') € Cy; note that by definition
u(t) = uwand u(t’) = u'. I u(t) < u(t'), since {4y = = we get from the fact that L,, ) = Lyw)
the inequality £, ;) < Ly, ) - we stress that in the last assertion we used that under Ny g,
the Lévy snake (p, W) takes values in ©,. The case u(t') < u(t) follows by analogous reasoning,
and it remains to address when the common ancestor u(t') A u(t) is neither w(¢") nor u(t). When
this holds, we must have u(t) € [pg(t') A pg(t), pa(t)[ since u(t) is not a branching point. Since
u(t) = x, with the same notation as before, we get that the process L is not identically equal to

0 and from our previous discussion we infer that £, # (.

]

6.4 The excursion measure N away from z

Now that we have defined the notion of an excursion away from z for (p, W), the next step
consists in constructing a candidate for the corresponding (infinite) excursion measure, that we
shall denote by N*. We shall use the notation H;r/ for the law of ¢ started from y and stopped
at its first passage time to z. For every driving function h and w € Wg with {, = h(0), we
denote by Q! the law of the snake driven by h with spatial motion IIT := (HL)ye p. For every
w € Wg, we consider the family of measures R, (w,dw’) for 0 < a < (w and b > @ introduced
in Section 6.2.3 associated to the spatial motion IIT. For 0 < t < 0y, we write vl'(dw) for the law
of (£ : 0 < s < h(t)) under the excursion measure A - note that /' is a measure on Wg. The
interest on the family (v} : t > 0) stems from the following property.

Proposition 6.10. Fix a driving function h with o, < © and hg = hs, = 0. There exists

h
Qj(/(dW) a unique probability measure on WE* such that, for everyn =1 and 0 =ty < t; <
t2 el < tn;

Qe (Wi, € A0, Wi € Av,... Wi, € Ay)
= ]lAO (:C) J:4 ljihi (dwl)Rmh(tl,tz),h(tg) (W17 dWZ) LR Rmh(tn_l,tn),h(tn)(W’I’L*l? dwn)

Proof. First remark that for every 0 < s <t and f measurable function f on Wpg, we have
| @) | R ) o) = M (16 0 < 1 < B0) = (1),
E E

where in the second equality we used the Markov property at time my,(s,t). Therefore, we have:

Vth (dW’) = JW Vg (dw) R, (s.0) (w,dw’).
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This entails that the family of measures Q%(Wto e dwg,..., Wy, € dwn), forn > 1and 0 =
to < t; < --- < t, satisfy Kolmogorov’s consistency criterion. The proposition now follows by
Kolmogorov’s theorem. O]

Informally, the canonical process W under ij\/ can be interpreted as the snake driven by h
with spatial motion an excursion under A/. We now turn our attention to some basic properties

of Qf\/.

Lemma 6.11. Fiz a driving function h with o, < o, hg = hg, = 0 and set hy-. := (hg,—t : 0 <
t < op,). The following properties hold:

(i) The distribution of (Wy—s : 0
op) under Qj‘\‘;

N

t < op) under Qk/ coincides with the law of (W : 0 <t <

(ii) Let ¢ > 0 be as in (Hg). If we suppose that h is r-Hdélder-continuous with qr > 1, then the
canonical process W under le\/ possesses a continuous modification.

Proof. For 0 < s <t < oy, we shall write PS’ft and P;‘{ - for the transition semigroup from time s

to time ¢ of the time-inhomogenous Markov process W under Q?\/ and Q%‘" respectively. Turning
our attention to (i), first note that the result will follow as soon as we establish that

Vg—thPo}rL—t,a—sfl = V‘?o_'flpsifgﬁf% (627)

for every 0 < s <t < op, and bounded measurable functions fi, fo on Wg. Indeed, if the previous
identity holds, then by inductively applying (6.27) and noting that Vth"" =l

~_, we infer

h h h ho-. ho-. ho-.
VU—tkkaU—thU—tkAfk*l T PU—tz,U—tlfl =V flptl,tzfz ce Ptk—l,tkfk’

for every 0 < t; < --- <t} < op and bounded measurable functions fi, ..., fr on Wg. The latter
equality yields that (W,_; : 0 < t < op) under Qj‘v and (W; : 0 <t < op) under Q7\7 have the
same finite-dimensional distributions, proving (i). Now, note that the left-hand side of (6.27) is
given by

v (dw) fo(w) fw R (o—t.r) o—s) (> AW f1 ().

Vg—thP;L—tp—sfl = f

We
Said otherwise, the law of (W,_;, W,_s) under Q/hv is characterised by the following: up to time
mp(o — s,0 —t), the paths (W,_, Wy_s) coincide and are distributed as an excursion under A/
restricted to the time-interval [0, my (0 — t,0 — s)]. Moreover, by the Markov property under A/
and the definition of the measures (R, ,(w,dw’) : w e Wg,0 < a < {w and b > a), conditionally
on (Wy_t(u) : 0 <r <mp(oc —t,0—s)), the restrictions

Wo—t(mp(o —t,oc—s)+7r), rel0,hlc—t)—mylc—to—s)]

and
Wo—s(mp(oc —t,o —s)+r), re[0,h(c—s)—mylc—to—s)]

are independent with distributions & under HLV(mh (o—t.0—5)) stopped at time h(oc —t) — mp(0 —

t,o —s) and h(oc —s) — myp(0 — t,0 — s) respectively. A similar inspection of the right-hand side
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of (6.27) gives that this is precisely the law of (Ws, W;) under Q/](‘[’", and concludes the proof of
(i).

Now let us prove (ii). Recall that we are working under (Hg) and observe that, since
((Hz)ye B, h) satisfies conditions (i) and (ii) of Section 6.2.3, under Qk/ the process W possesses a
continuous modification on (0},/3, 0p). Furthermore, by (ii) we have the equality in distribution,

—
=

(Ws :e < s < op) under le\‘/’ = (Wy_s : € < s < 0p) under Qk/.

N

This implies that W under QJ’([ possesses as well a continuous modification in [0,20}/3) and
therefore in the interval [0, oy,]. O

Now, we randomise the driving function h by setting:
* H
N (dp, dn, dW) := N(dp, dp)Q " (aw).

Note that N is a sigma-finite measure - consider for example the events {sup{r > 0 : W.(r) #
x} > e}, for ¢ > 0 with the convention that sup{¢} = 0. In order to study the properties of N7
we consider as well the following family of closely related measures. In this direction, we shall
denote the collection of pairs (u,w) € M(} x Wg with H(u) = { verifying condition (i7') from
Section 6.2.4 by ©,.

e For y € F, we let N, be the excursion measure of the (1, TIT)-Lévy snake at (0,y).

e For (u,w) € ©4, we let PL’W be the law of the (1, IIT) - Lévy snake started at (u, w) and
stopped at time inf{s > 0 : ps = 0}.

We stress that N, and N are of drastically different nature; for instance, under N, we have
Wt = z for every t > 0. We shall start investigating the properties of N and then address its
relation with the family of measures we just introduced. Since H(p) under N(dp) is a.e. r-Holder
continuous with gr > 1, by Lemma 6.11-(ii), under N the process W possesses a continuous
modification. Therefore, the measure N7, is well defined in the canonical space D(R, M ¢(R}) x
WE), and from now on it will be implicitly assumed that N7, is a measure on D(Ry, M s(R,) x
Wg). Heuristically, the canonical process (p, W) under N can be interpreted as the ¢ - Lévy
snake with spatial motion distributed according to N. This description is informal, since N is
an infinite measure.

The definition of N}, combined with Lemma 6.11-(i) and (6.22), allows us to recover the
so-called duality property of the Lévy snake under N7 .

Corollary 6.12. Under Ny, the processes (ps, Ws: 0 < s < 0) and (Ng—g)—, Wo—s: 0 < s
have the same distribution.

N

o)

Let us now address the Markovian character of N .

Proposition 6.13. For every (Fiy)-stopping time T > 0, every non-negative Fr-measurable
function ® and non-negative measurable function F on D(Ry, Mf(Ry) x Wg), we have

N;(H{T<oo}(b ‘ F((pT-‘rsa Wrys s> 0))) = NZ(H{T<OO}(D : ELT,WT [F]) (6.28)
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Proof. Our arguments and notation follow closely Section 4.1.3 of [43]. In this direction, it suffices
to prove the result for an arbitrary bounded stopping time 7" > 0, that we fix from now on. For
t = 0 we let [t] be the smallest integer satisfying t < [t] and for every n > 1, we set T := [T'n]/n.
We write dy for the total variation metric on M (R, ) and recall that the Prokhorov metric dp
on M¢(R,) is bounded above by dry, viz. dp < dpy. Consider f : My(Ry) x Wg — R, a
bounded Lipschitz-continuous function with respect to the product metric drv A 1 + dyy, A 1 as
well as a bounded Fp-measurable random variable ®, non-null on a set with finite N, measure.
If we let (QI : t > 0) be the transition semi-group of (p, W) under N, the statement of the
proposition will follow by showing that

NE(@ - f(proe, Wrsr)) = NE(@ - Q) f(pr, Wr)).

In this direction, for every n > 1, by the simple Markov property we have

0

N;((I) ’ f(pT(">+t> WT<n>+t)) = Z N;@ ) 1{T<n>=§}f(PT<n>+t’ WT(")+t))
1

T

[
M8

T

1
= N3 (@ Q] f(prem). Wrwm)) (6.29)

By right-continuity of (p, W) under N7, we have that limy, .o f(prem ¢, Wrmae) = fprse, Writ)
and to conclude, it suffices to prove that limsup,,_,, ]QIf(pT, Wr) — QIf(me), Wrm)| =0 a.e.
To this end, for every ¢ > 0 and (u, w) € ©, set

V- (11, w) ::{(,u’,w') €O : Jeg,e1 € [0,¢) such that ke pu = ke, it
and (w(h) : 0 < h < H(reop)) = (W(h): 0 < h < H(Kﬂu'))}, (6.30)
where we recall that ~ is the cutting operation defined in (6.7). We introduce this set since it is

plain that, N%-a.e., for every s > 0 small enough, the pair (pris, Wr4s) belongs to Ve(pr, Wr).
Therefore, N a.e.,

limsup |Q} £ (o, Wr) — Q) f (o1, Wrem)| < sup Q] flpr. Wr) — Qf (1, w")].
n—o (/L/,W’)EVE (PT 7WT)

Now, it was established in the proof of [43, Lemma 4.1.3] by means of a coupling argument that
that for every (u,w) € ©, we have

lim  sup  |Qf(ww) — QJ (i, w)| = 0. (6.31)
=0 (' w)EVe ()
This completes the proof of the proposition.
O
For (p,w) € D(R4, Mf(R) x Wg), recall the definition of I'*(p, w) and tr.(p,w) given respec-
tively in (6.25) and (6.26).

Definition 6.14. We denote by N the law of Tr.(p, W) under N.. The measure N% is referred
to as the excursion measure of (£4)aeTs away from x.
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The terminology might be slightly misleading and for instance, the measure N7 should not be
confused with N, the excursion measure of (p, W) away from the measure 0 and the path z. As
before, we consider the following family of measures closely related to NZ : we set

o Ny with y € E\{z} the law of Tr.(p, W) under N,
o I}, with ©; the law of Tr.(p, W) under PLW.

Before concluding the section, let us briefly address some properties of N* that will be used
frequently in this work. The time-changed process Tr.(p, W) is adapted to the filtration G; :=
Frs, fort = 0 and (Gy) is right-continuous. If we consider a (G) - stopping time 7" > 0, it readily
follows that I'}. is a (Fi4)-stopping time and that Gp = Frzy. We refer to [27, Exercise 2.11]
for a more detailed discussion. Therefore, with the same notation as in (6.28), we infer from the
strong Markov property of (p, W) under N7 that for every non-negative Gp-measurable function
®, we have

N;(l{T<oo}q) : F((PT+S7 Wrys:s= O))) = N;(l{T<oo}q) : E;T,WT [F]) (6.32)

Now, recall the identity in distribution under N of Corollary 6.12. Let us infer that the same
identity holds under NZ.

A

Corollary 6.15. Under N3, the processes (ps, Ws : 0 < s < o) and (g—g)—,Wo—s5: 0 <'s
have the same distribution.

o)

Proof. Under N7, to simplify notation, we write pj := prs, N o= npx, W= Wrs, oy 1=V and
recall that the lifetime of W* is o*. To prove the corollary it suffices to show that, under N, we
have:

(n?‘g*is)i, s 0<s<o") @ (ps, Wr:0<s<o"). (6.33)

o*—s

In this direction, note that the processes p* and n* are cadlag. Moreover, it is straightforward to
check that for every s > 0, we have the identity

[y =0 —THW,e).

Now, fix s = 0 and let (s,)n>0 be an arbitrary decreasing sequence with s, | s. Then, since

| FE“U*_S)_ as n — o0, we infer that
* . * _ —
77(0*—8)— - nl—I}C}O nU*_sn - n(FZkJ*,S),)_ - n(O'—F;k(ng.))—

as well as the equality W, = W, _prsqy, ). Finally, the duality of N established in Corollary

6.12 yields the identity in distribution

(Mo—r W, y)— Worrtw,.) 0 < s <o) = (o5, Wy :0<s<07).
This concludes the proof of (6.33). O

Let us conclude the section with a lemma that will be used frequently in our computations,
in conjunction with the strong Markov property under N¥.
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Lemma 6.16. Fiz an arbitrary (u, w) € O, satisfying that w(0) = z, and set ug := inf{u > 0 :
To(W(H (kup))) = 0}, Under P, ., write (i, Bi)iez for the excursion intervals of (p,1) — (po, 1)

over its running infimum Iy = infyo 1(pt, 1) — {po,1) and for every i € T let (p', W?) be the
subtrajectory associated to the interval (ay, B;). Then, the measure

M == Z 6(_Iai’pi’Wi) .
i€l

is a Poisson point measure with intensity 1o ¢, 1y—uo) (u)du N:’;V(K M)(dp, div)

Proof. Recall that the law of Tr.(p, W) under PLW is precisely P, .. For the rest of the proof

we argue under PL’W and we shall work with an arbitrary fixed initial condition (u,w) satis-
fying that 7.(w) < oo; when 7.(w) = oo, we have ug = 0 and the arguments are simpler.

We maintain the notation I for the running infimum of {ppx,1) — {prx,1) and (o, Bi)iez for
the corresponding excursion intervals. Next, we write (a;, b;) jeg for the excursion intervals of
{p,1) —{p, 1) over its running infimum I’, set (p?', W9/);c 7 for the corresponding subtrajecto-
ries and recall from Section 6.2.4 that the measure Zjej 5(_Llljpj,/7wj,/) is a Poisson measure with

intensity 1o,¢,,1ydU Ny (,) (dp, dW). Let us start verifying that
L§(p, W) =inf{s > 0: —I. = up}. (6.34)

To see this, recall the definition of the exploration process started from u from (6.8) as well as the
definition of W under Pva, and write Ty, for the stopping time in the right-hand side. Now, on
the one hand, note that for every ¢t < T, it holds that H; > 7.(w) = 7(W}) where the equality
H; = 7,(W;) can only hold if {p;, 1) = I;. Since the set of such time has null Lebesgue measure,
we get that I'(p, W) = T,,. To prove the converse inequality it suffices to show that for every
t > Ty,, we have H(k_pp) < 7«(w). To see this, we first note that H(l{_]/TuO p) = 7(w). Since
(—00,0) is regular for X under P, by the strong Markov property we get that for every t > Ty,
we have I] < ]ITuO and by definition of T, it follows that H(k_pu) < H(k_p, p1) = T«(w).

Now, noting that for every ¢t > Ty, it holds that 7.(w(x_z,u)) = o0, we deduce that for ev-
ery (a7, B) with o} > Ty, we have that 7.(w(r_r, 1)) = o0. It now follows from our previous
observations that the sets {(a},5}) : j € J and o > Ty} and {(I';,,I';) : @ € I} are identi-
cal. Moreover, the subtrajectory of Tr.(p, W) corresponding to the interval («y, ;) is precisely
Try(p? , W7'), where j € J is the unique index satisfying (o}, 8;) = (I'y,, T's,). Since by (6.34)
we can write inf(g 1{prs, 1) — (prx, 1) = I,F;“ — up, we conclude that the measure M under P},

has the same distribution as the following measure under PL’W

2 Lt sughO(—1, o, Tr (o7, Wir))

jej J J
the latter being a Poisson measure with intensity 1(g ¢, 15—uo](4)dUNw (5 (1, ) (Trs(p, W) € ).
Finally, since the push-forward measure of the Lebesgue measure in [0,{u, 1)] by the mapping
u — H(kyp) is precisely p, the condition p({0 < h < Gy : w(h) = z}) = 0 on the pair (p, w)
ensures that the Lebesgue measure of the set {u € (0,{u, 1) —ug] : W(H (kyp)) = x} is null, so we
) (Tra(p, W) € -) by N;‘V(H(MM))(dp, dWw). O

can replace Ny (g (x,u
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6.5 Spinal decompositions

6.5.1 Spinal decomposition of the Lévy snake

On the forthcoming sections, the study of spatial properties of the Lévy snake and its excursions
away from x rely in a precise description of the law of (p,n, W) at a typical time viz. sampled
uniformly in [0,¢]. To this end, for an arbitrary (y,r) € E we introduce the pointed measure
N, = Ny, (dp, dp, dW)ds 1(sepy on D(Rs, (Mf(R4))*x W) xRy and write U : Ry — Ry for
the identity function U(s) = s. Then, the law of the triplet (p,n, W, U) under N} ;. is characterised
by the relation

Ny (@000, T7.0)) = Ny (| s 0(.0.7.)).

Roughly speaking U is a point taken, conditionally on (p, W), uniformly at random with respect
to the Lebesgue measure on [0, ). In particular, (pr, nr, W) under N7 . should be interpreted
as the law of the Lévy snake at a typical time, taken with respect to the Lebesgue measure, under
the biased measure N;,T. It will be crucial for our purposes to not only characterise the law of

(pu,nu, Wrr) under N2 | but to include as well the subtrajectories in the left and right spine

)7
of (prr,nu, Wr); the fli/nctional encoding such information shall be denoted by Sp(p, W)y. The
definition of the latter requires us to introduce some notation.

We argue under N7 . for some arbitrary (y,r) € E. We fix some s € (0,0) and we shall start
by defining a point measure that encodes the right spine of (ps, Ws). Denote by (a;(s), 8i(8))iez.
the connected components of {t > s : {p, 1)1 > inf[, ;(p, 1)1}. For each i € Z;, we let (o', W)
be the subtrajectory associated to the interval («;(s),Si(s)). To simplify notation, when there
is no risk of confusion we write «;, f; instead of «a;(s), Bi(s). Finally, for ¢ > s we let It(r) =

inf[g 1<p, 1) — {pu, 1) and we set

PO (o, W) = Y (10 it T (6.35)

1€Ls

We can now perform an analogous construction to encode the left spine. Namely, we consider
(j(s), B(8))jes. the connected components of {0 <t < s : (g, 1) > infp q(n,1)} and write

(o', ni,WZ) be the corresponding sub-trajectories. Finally, we set ]t(g) = infp, g(n, 1) — (ns, 1) for
0 <t < s. With the same convention as before, we can define an analogous measure

g —_—
ch )<p7 W) = Z 5(7[(€)7pj’nj’Wj) (636)

JjeTs

encoding now the left spine of (ps,ns, Ws). For convenience, the sets Js, Zs are assumed to be

disjoint. In the sequel, to simplify notation we simply write ¢; := —]0(5.), t; = —LSZ.) for j € Js,
1€ L.
The triplet
Sp(p, W) 1= ((ps s, W), P (0, T0), P (0, W), (6.37)

is referred to as the spine decomposition of (p, W) at time s, (ps,ns, Ws) being the spine. Our
goal now is to characterise the distribution of Sp(p, W)y under N7 .. In this direction, in an
auxiliary probability space (Qg, F°, P%), consider a 2-dimensional subordinator (U1, U(?)) with
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Laplace exponent given by:

BO)—p(Aa) A
e (! ] - {0

@D/()\l) — if )\1 = )\2.

In particular, we have the identity in law (U(l), U(2)) @) (U(z), U(l)) and note that both subordi-
nators UM, U2 have Laplace exponent 1)(\)/A — «, for A > 0. Finally, still under P° and for
a € (0,0], we write (Ja, J,) for the measure in R? defined by the relation,

~

(Jar Ja) == (Lo.q(8) AUY, 1pg (1) AUP)

with the usual convention [0, 0] := [0, %0). We shall write M, := M,(R; x M¢(Ry)? x W) for
the collection of point measures in Ry x M ¢(R;)? x Wg. We can now state:

Proposition 6.17. For fized (y,7) € E and under 1, , @ EV, for every a = 0 we let (/\/l((f), Mar))
be a pair of point measure on R x /\/lf(R+)2 x Wy such that conditionally on (Jq, Ja, (& : s <a)),
they are independent Poisson measures with respective intensities

I

du NE (dp,dn,dW), and Lj0,¢7.,0y)du NE(H(&UJG))(dp’ dn,dW).

0:<jaal>] (H(Huja))

For every non-negative measurable functional ® in Mf(R+)2 x Wg X Mg, we have:

e Q0
Ny,r(fo ds ®(Sp(p. ),) ) = fo da exp (—aa) - B @y, (@(Ja, Jo, (€ 15 < a), M, M),
(6.38)

Proof. Our proof follows by similar arguments to the ones used in Proposition 2 of [72]. First,
note that if instead of ® we consider a non-negative measurable function ®; on M f(R+)2 x W,
identity (6.38) follows by [82, Lemma 1]. Namely, we have

loa o0
Ny,r(J ds @ (szIS, Ws)> = J da exp ( - aa) - E° ® Hy,r <CI)(Ja7 Ja, (fs A a’)))
0 0

Returning to the general setting, remark that it suffices to prove the result for an arbitrary func-
tional ® of the form ®;PoP3, for ®; as before and P9, P3 non-negative measurable functionals
on M,. For (;,w) e O, we shall write Qp,w(dP) for the law of a Poisson measure with intensity
measure 1o ¢, 15dUNg( g (5, ) (dp, d7, dW) and recall from Section 6.2.4 that the law of the mea-
sure M defined in (6.21) under IP’L)W is precisely Q,w. By the Markov property at time s under
15«1 Ny, and a change of variable, we get

Ny,r < JO ds @4 (987 Ns, Ws)q)Z (Pég))q)g (ngr))>
= Ny ([ a5 1 (e W) 82PN, 7 (0)

= Nyﬂ” < JO du @y (pcr—u: No—u» Wcr—u) q)Q(P(gQu)Qpa_u’WU_u (@3)) .
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The proof will now follow by carefully applying the duality property of the Lévy snake (6.22).
In this direction, write Rev the time reversal operator, defined by the relation Rev(p,n, W) =
(p(g_.)_, n(g_.)_,WU_.). Recall that by definition, we have:

e JE—
ch'zu(p7W) = 2 5( I(")”OJ n]W )
JETo—u

where (v, 3j)je,_, are the connected components of {t € [0,0 —u] : {m, 1) > infp ;) (n, 1)},
(P, nj,Wj)jejﬁu are the corresponding subtrajectories and It(f) = infy )M, 1) = (o—u, 1) for
€ [0,0 — u]. Let us express this family of functionals of (p,n, W) in terms of the time-reversed

process (p((,_.),, No—)—s W,_.). In what follows, we shall make repeated use of the duality property
(6.22) without explicit mention. With a slight abuse of notation, we let (ar, ;) ez be the con-

nected components of {t € [u, 0] : (N—y—, 1) > infp, (M-, 1)}, and write (pj,,nj/,Wj )jed:

the corresponding subtrajectories of (p(s-.)—, N(g-.)— Woll). Further we set [( )= infpy, g (Mo-—y 1)—
(M(g—u)—> 1), for t € [u,0]. Observe that the set of jump-times of 7 is Countable and under
Ny.r, for every fixed u > 0 the sets {t = u : (pt,ne) # (pe—, =)}, {t = = infp, ) X}
are disjoint. It follows that for du almost every u € (0,0), under Ny, the processes [ (ZI) and
(infpy 1 No-+, 1) = {Mo—u, 1) : t € [u,0]) are indistinguishable. We infer that for du almost every

€ (0,0), there exists a bijection j' <> j between J,, and Jy_, such that we have

(—10, o' W) = (—Iéf.l,),ReV(pjl,n"/,Wj/))-

In the last identity we used that (p,n) are continuous at the extremities of excursion intervals
{aj, B : j € Ju}. Therefore, for du almost every u € (0,0) we can write:

P =>4 -
ool W (—1), Rev(p? ' W)
J'ed

where by the Markov property and duality (6.22), conditionally on o((9y—s)—, p(afs),,Wg_S) :

0 < s < u) the measure in the right-hand side is a Poisson measure with intensity Qm -

)—Eo'fu
We stress that in the last claim we used that under N, ., the distribution of (1(5-.)—, p(5-.)— Wo-.)
is (p,n,W). Putting everything together, we deduce

Ny,r<f0iis D (,05,nS,WS)(I)Q(Py))@g(Py)D = Nym(foads oy (Us,Ps,Ws)Qp W, (CI)2)@ S((I>3)>,

Now, the proof follows from the case we covered initially for & = &1, recalling that (ja, Jg) has
the same distribution as (Jg, Jg). O

We shall now apply the same treatment to the Lévy snake under a pointed version of the
excursion measure N. This will allow us in the next section to obtain a second connection
between the measures N, and N¥ through a spinal decomposition in excursions under N,. Note
that the functional (6.37) is well defined under both N and N7 as soon as we remove the process
A as well as the subtrajectoiries A?, A7 from our definitions. The same notations are maintained,
replacing W by W, and W; by W; for i € I, U Js, for every s = 0. In the same vain as before, we
introduce the pointed measure N;* := N*(dp, dn, dW)ds l{s<o} and we characterise the law of
Sp(p, W)y under N*. We shall write M := My(R; x M (Ry)% x W) for the space of point
measures in Ry x M (R;)? x We.
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Proposition 6.18. Under E° @ N, for a = 0 let (Mﬁ’*,MQ*) be a pair of point measure on
Ry x M¢(Ry)? x Wg such that on the event {o > a} and conditionally to (Jg, Jo, (& : 8 < a)),
they are independent Poisson measures with respective intensities

1[0’<ja71>]du NE(H(/@L))(dp’ dn, dW), and Ljo,¢,, 1y du NE(H(muJa))(dp’ dn, dW).

For every non-negative measurable functional ® in (Mf(R4))* x Wg x (M;)2, we have:

NZ(L ds ®(Sp (p, W)s) =E° ®N<L da exp (— aa) - ®(Jq, Ja, (€50 s < a)va{*7MZ’*)>.
(6.39)

Proof. The proof follows by the same arguments as in Proposition 6.17 after a few considerations.
In this direction, suppose first that ®; is a bounded measurable function on (M f(R4))?* x Wg.
Since for every fixed s = 0, conditionally on (p,n) the variable W is distributed as an excursion
under N stopped at time Hg, we deduce from [43, Proposition 3.1.3] that for every non-negative
measurable functional ® taking values in M f(R+)2 x Wg, we have:

N;(LU ds @1 (ps, ns, Ws)) _ LOO da exp (— aa) - EOQN [® (., Ja, (&:t<a))] (6.40)

Now, by definition of N and a change of variable we have

o Vi
N;(J ds(bl(psﬂ]s’Ws)) :N:ﬂ;c(f dS@l(Prj,Urzf,WFfD
0 0

= NZ(L ds Lo, <rx(w.)) P1(pss s, Ws))-

We deduce from (6.40) that the term in the right-hand side writes

f da exp ( — aa) E'QN [1{G<U}CI>(Ja, ja, (&t < a))]
0

proving the result for our choice of ®. In the last reasoning we used that under A, we have 7(§) =

o(&). To prove the result for an arbitrary functional ® as in the statement of the proposition, we

I
the law of a Poisson point measure with intensity 1pg , 1ydu N:v(H(m M))(dp, dn,dW) . Making

need one last remark. Let @2 be a non-negative measurable functional on M and write for

use of (6.40), by the same arguments as in [82, Lemma 5] we infer that under N, the Lévy snake
takes values in the set ©¢ := {(u,w) € © : w(0) = z, 7 (w) > 0 and u({0,7(w)}) = 0)}, with the
convention that (o) = 0. We deduce from this that under N¥, the process (p, W) takes values
in ©°n {(u,w) € ©: 75(w) € {Gw,0}}. Hence, by Lemma 6.16, for every fixed s = 0 we get that
conditionally on Fs and on {s < o}, the law of 7257“) is precisely Q;s w.- The general case now
follows exactly as in the proof of Proposition 6.17, by making use of the Markov property (6.32)
under N*, and the duality property of Lemma 6.15 under N¥. ]

We maintain the notation

0% :={(n,w) € © : w(0) = , 7,/ (w) > 0 and p({0,7,(w)}) = 0)}.
For latter use, we gather from the previous proof the following result.

Corollary 6.19. Under N, resp. N, the process (p, W) takes values in ©° resp. ©° n {(u,w) €
© : 77 (w) € {Gw, 0} }.
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6.5.2 Spinal relation between N, and N

In this section, we shall relate the measures N, N* through a spinal decomposition in excursion
away from x under N,. Let us start by introducing some notation: for every » > 0 and W :=
(w,£) € W, we set:
77 (W) :=inf {h > 0:((h) > r}.

Under 11, for (y,r) € E, we still write 7,7 (¢) := inf{t > 0: £; > r} and as usual when there is
no risk of confusion the dependence on ¢ is dropped. Until further notice we argue under N, q.
In what follows it will be convenient to index each excursion W* with the value taken by the
local tiAme A in pl}l (Cy)- In other terms, we will work with the family of pairs (¢, W"),cp, where
(" := Ay Recall from Lemma 6.9 that if u,u’ are two excursion debuts with u # u’, we have

g £ N, o —a.e. For fixed t > 0 we set,
T(Ay) = {re[0,A) : 7 (Ay) < 77 (M)}

For uw € D, we say that W*" is present in the spine at time t if (* € J(A¢) U {/AXt} Let us justify
our terminology: for fixed ¢t > 0 and N, g—a.e., when (" is present in the spine at time ¢, the path
(Wi(rgw + ) = s € [0,7,% A Hy — 74u]) is non-trivial and coincides with (&, : a € [0, pg(t)] N Cl).
Moreover and still for fixed ¢ > 0, it follows from the definition of debut points that N, g-a.e. for
every r € J(Ay) U {JA\t}, there exists a unique pair (¢*, W*) with £* = r. In the two last assertions
we used that N g-a.e. it holds that Wt # x by Lemma 6.17. Note that N;,O — a.e. for every
u e D we have ~
{U e lg(u), du)]} = {t" e T(Avy) v {Av}}

since the set {{,, = Ay, U ¢ [g(u), d(u)]} is N} o null - the latter being a consequence of Proposition
6.17 and Lemma 6.9. To study the family of excursions present in the spine at time U, we
decompose (py, nu, Wyr) in terms of the excursion intervals away from x of Wp;. Namely, consider
an enumeration (rj : j € {1,2,...}) of the elements of J(Ay) and for each r; € J(Ay), we set

Wi = (W (b + 7, (W) = e [0,75 (W) = 7, (W),

o [ = pr(dh)f(h — Ty (WU))l{TTj(WUMq; (Wo)}
and

(il ) 1= fﬁU(dh)f(h — T, (WDl (W) <hert (W)

The family (W[JJ : 15 € J(Ay)) are the excursions of Wiy away from z, excluding the excursion
straddling Hy;. It will be crucial for our purposes to also keep track of the latter. To this end,
for w € WEg 5, we recall the notation £,(w) for the last passage time to x of w, viz.

ly(w) :=sup{h < (w : w(h) = z}.
In particular, the excursion straddling Hy writes
(p?fan?pW% = QEZ.(WU)(PU777U7 Wy).

We set rg := /A\U for the corresponding value of the local time at this last excursion. We stress that
since (x,0) € O, by [82, Lemma 5] the support of py is included in the union of the excursion
intervals (7.,(Wy), 7,m(Wy)) for j = 1 and (7, Hy)-
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As in the previous section, to encode the lef’p and right spine of each (p{],n{], Wé) for j >
, we introduce a family of measures 7 Pr?)iso. Let us start introducin e neces-
0, we introd family of P Pi7)j50. Let us start by introducing th
sary notation to define (775’])]-20. First, for every j > 0, we set T, = inf{t > U : Ay =
riyand T.F = inf{t > U : Ay < r;}. Let (ag(ry), Br(rj))kex, be the excursion intervals of
(<PTTJ. 4, 1y — <pTrj, 1):te [O,T;; — T5,]) over its running infimum, a process that we denote
by I3 If we write (/ﬂk, nik, Wj’k,Aj’k)ke;Cj for the corresponding subtrajectories, for & € K;
we set W7 = (Wik ATk — r;j) and consider the point measure:
Pr’j = O ik
U ke%’r] (7Ia]j(rj)7pj’ky/’7j7k7WJ )
Analogously, for every j = 0, we let S, = inf{t > 0 : Ay_s = rj} and S = inf{t > 0 : Ay_y <
r;}. Write (oz}g(rj),ﬂl’g(rj))ke,q for the excursion intervals of (<7]U,5Tj,t, 1y — <77Ufsrj, 1y :te
[0, Sﬁj — Sp,]) over its running infimum I’ ("7) and denote the corresponding sub-trajectories by

(pjfk, Wik, Aj’k)ke,q, where the indexing sets K; and IC;. are supposed disjoint. For k € IC;- we

set W = (WIk AR 7). Note that these subtrajectories are parameterised counterclockwise.
Finally, set:

L, } :
73 7 = 5 T . s =57 .
U (—I,(, ) ,Rev(pﬁ’k,nJvk,Wj’k))
kek;., oy (r5)

Our goal now consists in identifying the law of the pair :
00 17,0
2 Sy 4 G evm, Wo), P PrY).
ri€J (Av)
In this direction, we set Ny (d¢) := N (d€)e™ for the biased excursion measure and under E°QAN
and EY®N we consider (M*, M") a pair of point measures on R x Mf(RQQ x Wy such that,
conditionally on (J,, J,, ), they are independent Poisson measures with respective intensities:
1 (u)du N, dp, dn,dW), and  1jo.s,,15)(w)du Neg(x,1,0),0(dp, dn, dW).
(6.41)
Finally, for every 0 < a < o, we write (M%, M") for the restrictions (MZ1[07<L’1>], M 1o.70.10)

(0,075 1)] (H(ra T )0

and recall the notation & := N (1 — exp(—ao)). Now we can state:

Proposition 6.20. Under N;,m the random variable /AXU has density 1,0y exp(—za) with respect

to the Lebesgue measure in R. Further, the pair
L o ‘ ) ) 0,0 1,0
<OU " 2 5(rj7p§]7n{,,W57P5],Pg’)7 (efz(WU)@U’nU’WU)’PU » Py ))
Tj EJ(AU)
is independent and the joint law is characterised by the following properties:
(i) The measure Oy is a Poisson measure with intensity 1[07&]] (y)dy E°QN ((Js, I, &, M M)
dz).

(ii) The triplet (9£$(WU)(PUJ7U7 WU),PéO,PSO) is independent from /A\U and its law 1s charac-
terised by the relation:

NZ.o (F(Q&C(WU)(PU,UUa WU)JDE’O,P{}O)) = E° ®N(f0 dae "“F(J,, ja,fa,MfL,MZ)>
(6.42)

N

a).

where to simplify notation we write £* 1= (§ : 0 <t
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Observe that the right-hand side of (6.42) is essentially (6.39), the only difference being that
the atoms of M, M" are not truncated at the exit time from E\{z}. We mention that we shall
as well identify the characteristic measure of O in Proposition 6.37 below.

Proof. Let us start by identifying the law of /AXU under N;,o and proving that conditionally on
JA\U, the pair

> O, ot i wiy O owiy (U WU)>
’I“jGj(AU)

is independent, the measure being a Poisson point measure with intensity 1[0 /A\U](r)dr(EO ®

Ni)(dJy,dJ,, d€). In this direction, we fix measurable functions g : Ry — Ry, f : Ry x
Mf(R:)? x Wi — Ry and F : Mf(R})? x Wi — R,. This first statement will follow by
establishing that:

~

;Z,o(g(AU)eXp(— Do Fry ol W) F (6, (WU)(pU,anU)))
TJGJ(Au)

o N y
:J dy e ¥%g(y) exp J ds E0®N)[1—exp( f(s, Jy, Jy, f))])

0 0

-E0®N(J0 dae*aaF(Ja,Ja,ga)). (6.43)

To simplify notation, we shall henceforth suppose that the functions f and F' only depend on
(rj, p;, W), and (pY;, WJ)) respectively, the general case follows by the same type of arguments

we now describe. Under II; g, denote the excursion point measure of £ by > (r;,&9)- With our

]EI
convention, the first moment formula of Lemma 6.17 gives that the left-hand side in the previous

display writes:

L da E0®Hx,o<eXp(—04a)g(ﬁa) cexp (= )] f(%¢(Joo,Trj,Tfj),fj))F(9ez(§a)(Ja,5“))>>

Tj<£a
(6.44)
where we denoted by ¢(Jx, 7, T 7.7) the measure under E° @ II,, .0 defined by the relation

Qb(Jooﬂ'rj, JJOO dh Tri)l{Trj<h<TT+j}‘

Now, since £ is constant on the excursion intervals (7, 7,"), we can write (6.44) as

E0®Hx,0(29(7“z')'exp(— D 8o, 7y 75), ) exp (= Y o(&)

i€l T <Ti 7 <ri

a(£") ‘
: f da exp(—aa)F(¢(Joo, Tryy Try + @), (§ : 0 <t < a))).

0

Hence, if we consider under PY an i.i.d. collection (.J%);e7 with same law as Jo, by an application
of the compensation formula we get that the previous display writes:

Loodyg@)EO@Hx,o(exp(— 3 ao(el) + £y, 7. ¢) ) E o N (| "o exp(—aa)F(J,€")).

Ti<Y 0
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To conclude, by the exponential formula we have

E0®Hx’0 (exp (— 2 aa(ﬁj)—i-f(rj, Jgj,éj))) =exp (—f%s (EO®N)[1—eXp (—aa—f(s, Iy, 5))]),

i<y 0

and since @ = N (1 — exp(—a0)), we deduce the desired identity (6.43).

To conclude the proof of the proposition we still need one argument. Recall that we write
(p%, 77an Wg) := 0y, (wu)(pU,nu, Wy ). It remains to show that conditionally on the pair of vari-
ables(Ay, 3 5(rj7p¥]7%7wj), (pY e, W), the measures (Péj, 738‘7')];0 are independent Pois-

Tj EJ(AU)
son measure with respective intensities:

o, 151 (W VN 1, 0 (s A AW and g gy () duNis g, ), 0(dpy . ‘i(z)s)
With the notations of Proposition 6.17, recall that by the Markov property and (6.23), condi-
(r)

tionally on (prr, W), the measure Py’ is a Poisson measure with intensity measure given by
L0,¢py,1y)du NWU(H(kupU))(dp’ dn,dW). For every j € N we set

mj = J UM )y T = J pu )L, @70) )

It follows that the family of restricted measures 73[(; )1( for 7 € N are, conditionally on

X +
- mjvmj )
(pr, Wy ), independent Poisson measures with respective intensities

1(mj,m‘+) (u)du NWU (H(kupu)) (dp7 d777 dW) .

J

Finally, consider the mapping G; defined by the relation Gj(u, p,n, W, A) = (v —mj, p,n, W, A —
Ag) and remark that P}’ is precisely the image of P[(JT )1(mj7m+) under G;. Noting that {p7;,1) =
+

mj —mj, we get from classic properties of Poisson measures and straightforward computations

that the intensity of ng is given by the second measure in (6.45). The conditional law of (Pfjj )jeN
follows by duality by similar arguments, we skip the details. O]

6.6 The excursion point process

In this section we turn our attention to the study of the family (p“, W"),ep of excursions away
from x. As in classic excursion theory of time-indexed Markov processes, to index this family,
we shall make use of an additive functional of the Lévy snake introduced in [82, Section 4]. To
this end, in this first section we shall recall its definition as well as some of its basic properties.
We state as well the so-called special Markov property, a spacial version of the classic Markov
property crucial for the study of the Lévy snake.

6.6.1 Additive functionals of the Lévy snake and the special Markov property

Let us start by introducing some notations that will be used from now on. Fix (y,r) € E and an
arbitrary open subset D — E containing (y,r). For W e Wy with W(0) = (y,7), set

(W) :=inf {t € [0,(w] + W(t) ¢ D},
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with the usual convention inf{} = co. With a slight abuse of notation, under II, , we write 7p
for 7p(€) :=inf{t = 0: &, ¢ D}. Unless stated otherwise, we will always assume that D fulfils:

I, (Tp < ) > 0. (6.46)

Exit local time. The notions that we are about to present rely on some deterministic operations
on snake paths, that we shall now briefly introduce. For (p,w) € D(R, M¢(Ry) x E), we define

the functional .

‘/%D(paw) = J;) ds H{Cwsérp(ws)}y t > 0. (647)

Roughly speaking, the variable V;D measures the amount of time the snake trajectory w spent
in D up to time t. We write I'P(p,w) for its right-inverse, viz. for the right-continuous process
defined for every s € [0, VJ[()W)(p, w)) as

I'P(p,w) := inf {t=0: VP (p,w) > s},

with the convention I'P(p,w) 1= o(w), if s > Jlgw)(p,w). The truncation of (p,w) to D is the

element of D(R;, M;(R;) x E) defined by the relation:

trp (0, w) == (Pro(pw)r Wro(pw))seR, -

Furthermore, if (p,w) € Sy 4, then trp(p,w) is still in S, - we refer to Section 3.1 of [82] for a
more detailed discussion. Roughly speaking, trp(p,w) encodes the trajectories of (p,w) that stay
in D during their entire lifetime.

Recall that (p, W) stands for the canonical process in D(R4, M¢(R4) x Wg), and that it
takes values in Sy, under Ny, and P, , for (4, W) € ©, with W(0) = (y,7). To encode the
information gathered by the trajectories that stay in D, we introduce the following sigma field in
DR, Mf(Ry) x W)

FP .= o(trp(p, W)s: 5= 0). (6.48)

When working under Py, , and N, ., it will be implicitly assumed that the sigma field F D has
been completed with the respective negligible subsets — to simplify notation, we still denote it by
FP.

Now, consider (i1, W) € O, satisfying that W(0) € D, and further assume that p({7p(%)}) = 0
if 7p(W) < co. Then, under P, % and N, ., there exists a continuous, non-decreasing process Lp
with associated Lebesgue-Stieltjes measure dL” supported on {t € R, : Wt € 0D} defined, for
every t = 0, by the limit

t

o1
LY = lim = | ds Lipp(w.)<Ho<rp (W) +e) (6.49)
e—=0¢ Jy

where the convergence holds uniformly in compact intervals in L'(Ny,) and L}(P, ). We refer
to Propositions 4.3.1 and 4.3.2 in [43] as well as Proposition 3 in [82] for a proof of this statement.
The process L is called the exit local time from D. Heuristically, LtD measures the number of
connected components not containing the root of pg ([0, ¢]))\{pr(s) : Tp(Ws) = (s, s < t}}. In
particular, if inf{t > 0 : 7p(W;) < o0} = oo, we have LY = 0. It was established in Proposition 2
of [82] that under N, ,. and P, the time-changed process

LV .= (LFDSD)

S€R+
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is FP-measurable — note that in particular, this yields that the total mass L? is Fp-measurable.
Finally, for latter use, we recall from [43, Proposition 4.3.2] the first moment formula:

Ny,r (J dLsD (I)(p87 7787WS)) =F° & Hy,r <1{7D<oo} exp(_aTD)CI)(JTDa j/TDv (gt A TD)))'
0

The special Markov property. One of the key properties of the exit local time is that it can

be used to index the subtrajectories of (p, W) that exit the domain D. Let us be more precise:
first, denote the connected components of the open set

{t =>0: TD(Wt) < Ct}

by ((as, b;) : i € I), where Z is an indexing set that might be empty. Condition (6.46) and the first
moment formula of Lemma 6.17 ensure that under N, , and Py, the set in the previous display
is non-empty with non-null measure. Recall that the processes ( and H are indistinguishable and
note that for every i € Z, we have 7p(W,,) = H,, = Hp, with Hg > H,, for every s € (a;, b;).
In fact, Lemma 2 of [82] states that the multiplicity of pg(a;) is exactly 2. For every i € Z, let
(p', W") be the subtrajectory of (p, W) associated with the interval [a;, b;] (in the sense of Section
6.2.3) and with lifetime process given by ¢ = (C(aits)abi — TD (Wa,))s>0. By the snake property,
we have W, (0) ='W;(O) for every s € [0,b; — a;] and note that W,(0) € @D. We refer to the
collection ((p',W") : i € I) as the family of subtrajectories of (p, W) that exit the domain D.
Remark that each subtrajectory (pi,Wl) encodes the labelled sub-tree of Tp rooted at pg(a;)
and starting at the boundary point Wy (0) € 6D. Now, set Tp = inf{t = 0 : 7p(W;) < 0} and
write
0, :=inf {s >0 :LIQ£>7’}, for r e [0, L)

for the right-inverse of LP. Now we can state the special Markov property.

Theorem 6.21. [82, Theorem 3.1, Corolary 1] Under Pq,, and Ny .(-|Tp < ), conditionally
on FP | the point measure

2:5u£4ﬂﬁ7%d€,dp,dw)
1€l
15 a Poisson point measure with intensity

H[O,L?] (u) du Nt (dp7 dw)v

rp(W, ),
where under Py ., we have LY = o a.s.

Note that in the previous statement we are relying crucially in the fact that P is F D mea-
surable.

The local time at = of (Wt : t = 0). Recall conditions (i), (ii’) in the definition of ©, from
Section 6.2.3 and fix an arbitrary (u,w) € O, (y,7) € E. For every r > 0, consider the open
domain D, := E\{(z,7)} and to simplify notation, write

(W) := inf{h > 0: W(h) = (z,7)}

for the exit time from D, of Ww. We stress that in contrast with our previous discussion, W and
(y,r) are arbitrary, and for instance we are no longer assuming that w(0), (y,r) € D,. Under PLW
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and N, ., there exists a continuous, non-decreasing process A = (A;)ier, null at 0 and defined
by the relation

t
A= 15%1 € 0 d f]& & H{Tr(Wu)<Hu<”‘(W“)+5}

where the convergence holds uniformly in compact intervals in measure under P, % and N, (- n
{o > z}) for every z > 0. Moreover, the support of the Stieltjes measure dA, that we denote
by supp dA, satisfies supp dA < {t € [0, 0] : Wt = x}; we refer to [82, Section 4.2] for a proof
of this statements. For this reason, the process A is called the local time at x of W. A useful
consequence of the fact that dA is supported on the subset {t € [0,0] : Wt = x} is that under
PLW’ we can decompose A, in the contributions made by each sub-trajectory attached to the
spine (y, ). More precisely, let I; = infjg{p,1) — (i, 1) for t > 0, and write (a;, B;)ien the
excursion intervals of (p, 1) over its running infimum. We denote the subtrajectory associated
with the interval (v, 8;) by (p', W?). If we set M = >, 5(—]

, We can write

appivWi)
A =N 4,(0 W), Pl as (6.50)
1eN

We refer to the remark following [82, Lemma 9] for a proof of this identity. This identity will
be used in the following setting. For s € [0,0]\{t € [0,0] : W, = x}, we shall write u(s) for the
unique debut u € D satisfying that pg(s) € Cy, - note that the unicity is a consequence of Lemma
6.7 - and for w € Wg,, we recall the notation (,(w) for the last passage time to x of w. As
a consequence of identity (6.50) we infer the following lemma, that we state for latter use, and
whose proof might be skipped in a first lecture:

Lemma 6.22. Under N, o and for s € (0,0), recall the notation Péﬁ),nﬁ") for the left and right
spines at time s in the sense of Section 6.5.1. For every j € Js, i € Iy we write hj := H(k¢,ns),
hi == H(ky,ps) and note that in particular we have h; = He,, hi = Hy,. For any non-negative
measurable functions gi,g2 on R and F on M§(Ry) x Wg, we have

Nz0 ( J ds g1(Ag(u(s)) F(ps, Ws)g2(As — Ad(u(s))))

0
= Nx,O(J dsgl( Z Ag(pi,Wj))F(ps,Ws)gg( 2 AO(:OiaWi)))-

0 h] <€$(W9) hz<€x (Ws)

Note that despite the fact that u(s) is not defined for s in the set {t € [0, 0] : Wy = x}, the
identity in last display is well defined since we have Nm(gg dsl (W :x}) = 0 by Lemma 6.17 and

(Hz).

Proof. First, note that for every fixed s € (0,0), on the event {Ws # x} we can write d(u(s)) =
inf{t > s : Hy = (;(Ws)}. Using the fact that ps({€z(Ws)}) = 0 as well as the strong Markov
property, the latter coincides with inf{t > s : H; < £,(Ws)}. By an application of the strong
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Markov property and the identity (6.50) we infer that

Nzo < L ds g1(Agus)) F(ps, Ws)g2(As — Ad(u(s)))>

=N [ dsn(yue)Floe WY, Aa(s'. 1))
0 hi<ta(Ws)

) <J dsgl(Ag(u(J—s)))F(prS;WJ* ).92( Z AU(pivwi))>'
0 hi<le(Wo—s)

Now, recall the identity in distribution (6.22) and note that we can write

Agu(o—s)) = Ao (=)= W) = Adqu(s) Moy Wo-).

where the of debut in the previous display and the functionals g, d should be considered with
respect to the time reversed process (7y-.—, Wy_.). The proof of the lemma now follows by making
use of the same reasoning as before for the time-reversed process (ny—g—, Wo—s: 0 < s <0). O

We now turn our attention to the support of dA and its connection with the family of debuts.
In this direction, we recall from [82, Proposition 8] that the support of the measure dA can be
fully characterised both in terms of the constancy intervals of A = (A; : ¢ > 0), and in terms
of a family of random times of the Lévy snake called exit times from x. More precisely, a time
t e [0,0] is called an exit time from z for (p, W) if W, = z and there exists some s > ¢ such that

Hy < Hy, forevery re (t,s].

We denote by Exit(x) the collection of exit times from z. On the other hand, we write C* for
the subset of R, defined by the relation: ¢ € C* if and only if A is constant on some open
neighbourhood of ¢. Then, Proposition 8 in [82] states that for every (u, W) € O, (y,7) € E,
under P, w and N, ,, a.e. we have

supp dA = [0,0]\C* = Exit(z). (6.51)

We refer to [82, Proposition 8| for a proof of this statements as well as for equivalent formulations.
In fact, a closer look to the identity in the last display yields the following result:

Corollary 6.23. Under P, and Ny, a time t = 0 is a point of left (resp. right) increase for
A if and only if for every e > 0, we can find s € (t —e,t] (resp. s€ [t,t +¢)) such that Ag # Ay.

In the sequel, we will make use of A to index the family of excursions; namely, we will work
with the family of pairs (Ag(u), (p", W™)). It will be crucial for our purposes to prove that the
set {g(u) : u € D} belongs to supp dA and to have a description of this set in terms of the pair
(H,A). To this end, we introduce the notion of a debut time for the Lévy snake:

Definition 6.24. A time t € [0,0] is called a debut time for (p, W) if it satisfies the following
properties:

(i) There exists s >t such that Hy < H, for every r € (t,s], and Ay = Ay

(ii) For every 6 > 0, we have inf A < A,
((t=0)+.1]
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The family of debut times is denoted by D°.

We stress that under N, ., condition (ii) does not hold for neither 0 nor ¢ and therefore {0, o}
are not a debut times. Analogously, under Py, the point 0 is not a debut time. The following
lemma justifies our terminology.

Lemma 6.25. Under Pg, , and Ny, the mapping g : D — (0,0) is a bijection between excursion
debuts and debut times, and its inverse is given by pr .

Proof. We shall only prove the statement under N, . Recall that under N, o, a.e. the process
(p, W) takes values in ©,. Consider a measurable subset g of D(R, M ¢(R}) x Wy) at which
this property holds for every (p,w) € Qy and work for fixed (p,w) € Q. We shall start by proving
that g(D) < D°, and then proceed to show that the mapping g : D — D° is bijective with inverse
pi - D° — D.

First, consider an arbitrary v € D and let us show that g(u) € D°. Condition (ii) in Definition
6.6 yields that we can find s € (g(u),d(u)) such that we have Wg(h) # x for h € (Hgyy, Hs].
In particular, the path Ay is constant on [H,), Hs] and therefore /AXg(u) = //is. Since v is not
a branching point, it must hold that H, > H; for every r € (¢, s] which shows that Definition
6.24-(i) is fulfilled by g(uw). Still for s as before, by condition (i) in Definition 6.6, we have

x =W () = Ws(Hy(y)) and since W(h) # x for h € (Hgy,), Hs] it must hold that H, is a time

of left gincrease for the path A;. This gives that As((Hyg) — 0)+) < As(Hy,)) for every 6 > 0.
Now, since u is not a branching point, g(u) can not be a local infimum for H and we get that
inf[o,(g(u)—=6),] H < Hgy(y) for every > 0. Now, by the snake property we deduce that (ii) holds.

Let us now prove that the mapping g : D — D° is surjective. In this direction, consider an
arbitrary ¢t € D° and let us show that u := pg(t) is an excursion debut. This proves that the
mapping ¢ is surjective since it is plain that g o pgy(t) = t; indeed, since t fulfils condition (i)
of Definition 6.24, for d : D — (0,0) as in (6.24) we necessarily have d o pg(t) > t. First, by
considering s as in Definition 6.24 - (i) and arguing as before, the snake property yields that
W, = 2 and that Ws(h) # x for h € (Hy, Hg). If we set w := pg(s), we infer that w > u with
Ly = Ly and &, # x for every a €lu, w[. It readily follows from the fact that Hs > H; and the
support properties of local times that we can further find w’ with w > w’ > w such that &, # x
for every a €]u, w'], proving that condition (ii) of Definition 6.6 holds. The fact that g is injective
is clear since pg o g(u) = u by definition of g(u); this concludes the proof of the lemma. O

Note however that in the previous lemma we worked with a restricted subset of initial condi-
tions, which leads us to the following remark.

Remark 6.26. Under P, 5 for an arbitrary starting condition (u, W) € 0, with (y > 0, the
definition of excursion debuts D given in Definition 6.6 still make sense, but a priori we no longer
have a bijection between D and D°. Indeed, for every excursion away from x of the starting
condition w we have an excursion debut u in the sense of Definition 6.6, but now the variables
g(u),d(u) coincide and g(u) is no longer an element of D°. Therefore, it will be convenient to
extend the definition of D under P, , IP’L’W or Ny, by the relation

D :=pu(D°).

In particular, the set D considers only debuts that will be visited twice by the exploration ¢ —
pr(t) - which was always the case under Py , -, N, .. Note that if we take (1, W) = (0,y,7) or (y,7),
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by Lemma 6.25 this definition is consistent with Definition 6.6. Moreover, with this definition
the statement of Lemma 6.25 now holds as well under IP’MW. Under IP’M,W and for every u € D, we
shall still write g(u), d(u) for respectively inf{t = 0 : pg(t) = u} and sup{t = 0 : py(t) = u}, and
we set (p" W) := tr, (%(u) (p,W)) for the respective excursion.

We now turn our attention to a technical lemma summing up two important properties of
debut times.

Lemma 6.27. Under P, and N, for every (u, W) € O, and (y,r) € E, every debut time
t € D° is an element of Exit(z) and a point of left increase for A.

Proof. One easily gets from the arguments employed in the proof Lemma 6.25 (or as a straight
consequence of the latter) that under P, and Ny, for (1, W) € O, (y,r) € E, if t is a debut
time, it must hold that I//I?t = z. Therefore every debut time belongs to Exit(x). Moreover, under
P,w and N, ., by (ii) and Corollary 6.23 any debut time is a point of left-increase for A. O

The genealogy of the excursions (p*, W"),ep can be encoded in a random tree that was studied
in [82]. To this end, we shall now briefly recall its definition as well as some of the main results
obtained in this work. Much of the effort in [82] was directed towards studying the structure of
the following random subset of T

Z={veTy:& =z}

Since the image under pg of {t € [0, 0] : Wt = x} is precisely Z, the study of the latter is closely
related with the additive functional A that we just introduced. First, we shall introduce a random
tree that encodes the genealogical structure of Z. In this direction, since the mapping a — L, in
non-decreasing in Ty, this can be achieved by making use of the notion of subordination of trees
by non decreasing functions introduced in [66]. Namely, we define a pseudodistance in Ty by the
relation

de(a,b) = Lo+ Ly —2L4p, a,be Ty

and we for any a, b € Ty, we shall write a ~, bif and only if dz(a,b) = 0. It readily follows that ~ .
is an equivalence relation on 7. Now, by [66, Proposition 4] the metric space T/ := (Ti/ ~z, dy)
is still a tree. Heuristically, this tree is obtained by contracting the excursion components (Cy,)uep
in Ty in a single point. If we write p, for the canonical projection mapping any element of Ty
to its equivalence class in 774, by convention ’T]f,: is rooted at pr(0). In the terminology of [66],
we refer to T4 as the tree obtained by subordinating 7z by the local time (L4 )q4e7;,- For a more
detailed account, we refer to [66, 82]. By construction, the tree 7}? encodes the genealogy of the
elements in the set Z, and in the sequel we shall argue that it can be used as well to (partially)
encode the genealogy of the excursions away from x. Recalling our discussion on trees coded by
continuous functions, since Tlf,: was constructed explicitly in terms of (p, W), it is then natural to
ask for an explicit coding function for the tree TI—? given in terms of the Lévy snake. This leads
us to the following result:

Theorem 5.1-(i) in [82]. Under Ny, the subordinate tree of Ty with respect to the local time
L, that we denote by T, is isometric to the tree coded by the continuous function (AAt—1 ct=0).



281 6.6. The excursion point process

Let us now turn our attention to the Markovian character of Tff . Set E, := E\{z} x R, for
A = 0 write uy(y) := Ny o(1 —exp(—ALE*)) and we define a function ¢ : Ry ~— R by the relation:

~

DN = N(LU dh w(u)\(gh))), for A > 0. (6.52)

By [82, Proposition 5], the function zZ is the characteristic exponent of a Lévy tree - in the sense
that it is the Laplace exponent of a Lévy process satisfying conditions (A1) - (A4). Therefore, 1;
writes as (6.1) for some coefficient & B e R, and a Lévy measure 7. Further, by [82, Corollary2]
the Gaussian component /3 is null, and the drift is given by & = N(1 — exp(—a ))

Now, consider in another probablhty space a Lévy process X with exponent 1/1 We write N
for its excursion measure and H for the corresponding height process. In particular, the tree Ty

coded by H under N is a w Lévy tree. Finally, we can state the main result of Section 5 in [82].

Theorem 5.1-(ii) in [82]. With the notations introduced above, we have the equality in distri-
bution

<(ﬁ]t : t>=0), under N) @) ((/A\A;1 : t=0), under Nx,()). (6.53)
In particular, 7}? is a Lévy tree with exponent 1;

6.6.2 The Poisson point process of excursions

Recall the (extended) definition for the set of debuts D under P, i and N, ., for (u, W) € ©, and
(y,r) € E from Remark 6.26 as well as the notation g(u) := inf{t € [0,0] : p(t) = u} for u € D,
and write (p*, W*) for the corresponding excursion. Finally, recall the definition of the measure
N* from Section 6.4. We are now in position to state the main result of this work.

Theorem 6.28. For every (i, W) € O, under P, the measure

€= Z O Agguy W)
ueD

is a Poisson measure on Ry x DR, M¢(Ry) x Wg) with intensity dt ® N3,

As a byproduct of our reasoning, we shall deduce that when 1(\) = A?/2, the spatial motion
is a real Brownian motion and = 0, the measure Nj coincides with the excursion measure
introduced in [1]. Theorem 6.28 shares striking similarities with the celebrated result by Ito in
the time-indexed setting, where now the role of the local time is taken over by (A)wegr,. The
measure £ is referred to as the point process of excursions away from z, or in short, the excursion
process of (£4)qeT;- The next two sections are devoted to the proof of this result and its proof is
broken down in two main steps:

Step 1: Showing in Proposition 6.30 and Corollary 6.31 that under [P, w, the measure £ is a
Poisson measure on Ry x D(R, M¢(R) x Wg) with intensity dt ® N}, where N is
a sigma-finite measure on D(R, M (R, ) x Wg) that does not depend on (y,W).

Step 2: Proving that N * is precisely the measure N* introduced in Section 6.4. This identifica-
tion is done in Proposition 6.33.
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In this section, we shall prove the first step and we postpone the proof of the second step to the
next section. In fact, we are going to prove a more precise version of Theorem 6.28: in Proposition
6.30 and Corollary 6.31, we establish that £ is a Poisson measure with respect to a filtration (G,)
that we now introduce.

The filtration of the excursion process. We shall work under [P, w for an arbitrary initial
condition (u, W) € ©,. To simplify notation, for every r = 0 we shall write (pf,Wf) for (p, W)
at time A, Consider (fs(r) s = A1), the running infimum of ((ps,1) — (pA, 1) : s = A1)
and set T := inf{t > A ! : {ps,1) = 0}. Denote the excursion intervals of ((ps,1) — (pA 1)
A7l < s < T) over its running infimum by (o, 3;)ien, write (pi,Wl)ieN for the the corresponding
sub-trajectories, and consider the measure

> St Ty (6.54)

€A

By the strong Markov property, and more precisely the discussion preceding (6.23), conditionally
on F -1, the measure in the previous display is a Poisson measure with intensity given by

Lo,¢pa,15] (s)ds NW?(H(nSp,f‘)) (dp, dW)

Recall the notation tr, (p, W) for the truncation of (p?, W') at its first return time to z and set:

Gr = Fy 1 v 0( Z 5(-%52",tr*(pi,Wi))>'

1€LA

In the sequel, for each (i, W) as before, when working under P, w it will be implicitly assumed
that we work with the filtration (G,) completed with the set of P, i negligible subsets, and we
still denote it the same. Now, let us write E1yg ;] resp. E1fg ) for the restriction of £ to the atoms
(Ag(uy, p*, W) satistying that Ay, <7 resp. Ay <.

Lemma 6.29. For every (1, W) € O, under P,w and for every fivred r > 0, we have that
Eljo) = €1, a.s. Moreover, the measure E1yq ) is Gr - measurable.

Proof. For the rest of the proof, we work for some fixed r > 0. Writing D := D(R, M (R ) x
WE), let us start by showing that P, a.s. we have £({r} x D) = 0. First, remark that
neither A, ! nor AT__1 are debut times: by the strong Markov property at time A1, we have that

infp 1 g H < Hyo for any £ > A 1. which gives that A1 is not an element of Exit(x). In our

reasoning we used that by Lemma 6.4, we have pA({HA}) = 0 since Wf‘ = x; remark that the
same argument holds if we consider instead A;}. Further, since by Lemma 6.25 the point g(u)
is a debut time, Corollary 6.23 yields that g(u) € supp dA and therefore, no debut time g(u)
can fall in the interval (Ar__l, A~1). Now, since A1 is a point of right-increase for A, for every
is a point of left-increase for A

g(u) > A7t we have that Ay, > Ay = r. Analogously, Al

and by a similar reasoning we get that for every g(u) < Ar__l,

we have Ay, < AA: = r. This
proves that for every fixed r > 0, a.s. we have £({r} x D) = 0.

It remains to show that 1y ;) is Gr-measurable - modulo considering another enumeration of
its atoms. We fix one element (Ay(,), p*, W") € 1y .y and observe it must hold that g(u) < ATl
From the definition of excursion debut-times and crucially point 2 of Lemma 6.27 it follows that
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the family {(g(u), Agw)) : g(u) < A'} is G-measurable. The same holds for the family of
excursions (p%, W%) satisfying that d(u) < A! and it remains to prove that the same holds for
those satisfying g(u) < A < d(u) < inf{t > A" : py = 0}. However, this follows from the fact
that in that case, the corresponding excursion can be recovered in terms of (p;, Wy : t < A1)

and the (truncated) right spine > ;.74 6 ( , by making use of the snake property and

— Ty (0 )
standard arguments from excursion theory. We leave the details to the reader. O

We introduce the shift operator 6, on &, defined for every fixed » > 0 by the relation

0 = D Oy W)
'LLGD,Ag(u)>7‘
Note that 6,.€ is (pAT—lth,WAT—lth : t = 0) - measurable, and that by Lemma 6.29, in the last
display one can change the strict inequality Ay, > 7 by Ay =7

Proposition 6.30. Under Py ;o the measure £ is a (G,) - Poisson measure on R xD(R4, M ¢(R4) x
We) with intensity dt ® N}, where N}, is a sigma-finite measure on D(R;, M(Ry) x Wg).

Proof. For every arbitrary measurable subset i < ID(R., M ¢(R) x Wg), we consider the [0, co]-
valued process

Ny(r) == E([0,7] x U) = #{(Ag(u),p“,W“) €& Ay <rand (p",W") e ut, r=0

and we set IQT;(L{) = Eo.4,0(Ny(1)). The proof of the proposition mainly consists in establishing
the two following properties:

(i) For every measurable &/ < D(R;, M¢(Ry) x WEg) such that Ny (t) < oo for t > 0, Ny is a
(Gr) - Poisson process with rate N (U/).

(ii) For every disjoint measurable subsets U1, ..., Uy, of D(R4, M (R4 ) xWE) such that Nj,(i;) <
o0, the processes Ny, ..., Ny, are independent.

It will then follow from classic arguments that ﬁ; is a sigma-finite measure on DR, M (R ) x
Wg) and that € is a Poisson measure in Ry x D(R, M¢(Ry) x Wg) with intensity dt ® N;‘;

Let us start by addressing (i). It suffices to show that Ny is a counting process and that
it is a (G,) - Lévy process; viz. Ny is (Gy)-adapted and for every fixed r > 0, the process
(Nu(t+r)— Ny(r):t = 0) is independent of G, and with same distribution as Nz, under Pg ;0.
Starting with the former, from our definitions it is clear that Ny, is non-decreasing and that it
takes values in the non-negative integers. Therefore, it remains to show that it only has jumps of
unitary size, which boils down to proving that if ui,ug € D are distinct, we have Ag,,) # Ag(u,)-
But now, this fact is an immediate consequence of Lemma 6.27. Let us now show that Ny is a
(Gr)-Lévy process. In this direction, by Lemma 6.29 the process Ny is (G,)-adapted and notice
that for every fixed r > 0, we can write

Ny(r+h) — Ny(r) = E((r,r + h] xU) = 6:E([0,h] xU), for h = 0.

Now, remark that the first point (i) will follow as soon as we prove that the measure 6,€ is
independent from G, and distributed as £ under Py, o, since this gives that for every bounded
G,-measurable function ® we have

Eo,m,o(@ CF(0,£([0,h] x U), h > o))) — Eo.20(®) - Ega0 (F(S([O, R x U),h > o)), (6.55)
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where F'is an arbitrary non-negative measurable function on D(R, R). To achieve this, we shall
encode 6,€ in terms of a point measure independent from G,. Still under Py, o, consider the
measure (6.54) and we introduce the process:

—
=3 Ll BTtz (6.56)

1€TA

Note that Vi, is G.-measurable since for every i € Z2, by [82, Proposition 3] L¥*(pf, W) is
tr*(pi,W@)-measurable, and that Voo < oo by. For every i € 1';4, let (pi’k,WZ’k)ke;gi be the
sub-trajectories of (p’, W’ A" — A}) escaping the domain E. and write (@i k, bik)kek, for the
respective excursion intervals. Note that in the time scale of ((ps, W) : s = 0), the excursion
(pF Wk ABR A%) is the subtrajectory associated to the interval [oy x, i k], where oy =
a; + a;, and ;1 = a; + b; ;. An application of the strong Markov property combined with the
special Markov property [Theorem 6.21] yields that conditionally on G,, the measure:

Z 5(Va kap ik W )
€N, ke,

is a Poisson point measure with intensity 1oy, (p)dp Nz o(dp, dW). Next, set T := inf{t >
A~1:{p;, 1) = 0} and remark that by the strong Markov property, the process (ps, Wy : t = T) is
distributed Py ;o and is independent from Fr - and in particular, independent from the measure
in the previous display. If we write (¢;, d;)ien for the sub-collection of excursion intervals away
from 0 of {p, 1) occurring in [T, ), it follows from our previous observation, excursion theory
and by conditioning with respect to G,, that the measure

Z 0 (Vo 0= W) +Z (Voo—Ie, ,p' W)

1€N,keC; €N

is a Poisson measure independent from G,, with intensity d¢t ® N, . In particular, it has the
same distribution as the measure M defined in (6.21) under Py, ¢. Let us now infer from these
observations that 6,€ is M’-measurable and distributed as & under Py ;. To do so, it suffices
to argue that both measures 6,€ and £ under Py, o can be written in terms of a functional of
M’ and M respectively, this functional being the same for both. First, by classical arguments
from excursion theory we can recover the Lévy Snake (p, W) from M and, since M’ has the same
distribution as M, by the same procedure we can construct from M’ a process (p/, W/) with same
distribution as (p, W). Let D’ be the excursion debuts of (o', W ), write (0", W'*)yyep for the
corresponding family of excursions, and set

Z 5 / W/ p/u W/u)
u'eD’

for the associated excursion process. Note from our construction that there exists a bijection
between {u € D : g(u) = A;'} and D’ satisfying that, for every debut point u in the set
{ue D : glu) = A7}, we can find ' € D' with W* = W’ Moreover, for such a pair u,u’ it
holds that
R —
Ag(u)(p, W) —Tr = Ag(u/)(pl, w )

Let us stress however that the processes (A -1, —7:t > 0) and A(p' ,W/) differ. To obtain the
identity in the previous display we used (6.50) combined with the fact that (p,-1,W,-1) belongs
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to ©,. This shows that 0,& is precisely £(p’, W’), and therefore it is distributed as & under Py .
Since M’ is independent of G,, equality (6.55) holds, concluding the proof of (i).

To establish the second point (ii), note that a slight variation of our previous argument gives
that (Ny,, ..., Ny,) has independent and stationary increments. Hence, to show that the Poisson
processes Ny, ..., Ny, are independent, it suffices to show that they jump at different times.
But once again, this property follows immediately from the fact that if u;,us € D are distinct,
we have Ay, ) # Aguy)-

To conclude that £ under Py ;¢ is a Poisson measure with intensity dt ®N; we still need one
argument. If for arbitrary 0 > 0 we set Us := {(p,w) € DRy, M¢(Ry) x Wg) : 0(w) > d}, we
have Ny, (t) < oo for every ¢ = 0 and therefore Eq ; 0(Ny; (1)) < 0. Indeed, this can be deduced
from observing that

Do (W) a, <y <inf{t > A71: (p, 1) = 0} < 0.

ueD
Since U = Ug-ols, we deduce from standard arguments that N; is a sigma-finite measure on
DRy, Mf(Ry) x Wg) and that under [Py, o, the measure £ is a Poisson measure with charac-

teristic measure dt ® N; O

Let us now extend the previous result under P, .

Corollary 6.31. For every (i, W) € O, under P, the measure € is a (G,)-Poisson measure on
Ry x D(Ry, My (Ry) x Wg) with intensity dt ® N; and therefore, with same distribution as £
under Po 5 0.

We stress that the characteristic measure of £ under P, does not depend on the choice of
(1, W).
Proof. We work for a fixed arbitrary initial condition (u, w) € ©,. The proof follows from very
similar arguments to the ones employed in Proposition 6.30, so we will only give a brief sketch.
Consider two disjoint indexing sets Z, J and denote the excursion intervals of (p, 1) — (i, 1) over
its running infimum I = (I : t > 0) occurring before time 7' = inf{t > 0 : {(p,1) = —{u, 1)} by
(ai, Bi)ier, and by (cs, di)ics those falling in [T}, 00). We write (p', W' )iz, for the corresponding
sub-trajectories. For every i € Z, we denote the excursions of (p’, W% A* — A}) outside E, by
(pi’k,Wi’k)ke;ci. If we let (V;) be the process defined as in (6.56) in terms of (pi,Wi)iez, the

measure
Z 5(Vai7k’pi,k7wi,k)

€N, ke,
is a Poisson point measure with intensity 1yg v, j(p)dp Nz o(dp, dw).

Next, let us first assume that w(0) # x and recall the notation W = (w,¢). Then, by the
strong Markov property, the process ((prit, Wry¢) 1 t = 0) is independent of Fr and has law
Po,y,0. Every (p', W") with i € 7, is then an excursions away from (0,y, £(0)). For every such
excursion, we denote the subtrajectories of (p’, W A" — £(0)) outside E, by (pi’k,WZ’k) ek, and
we write the corresponding excursion intervals by (¢; i, di k)kek,- If we let (V;*) be the process
defined as in (6.56) in terms of (p’, W A? — £(0));c7, the measure

/ —_— . .
M= Ovn, gy + > OV ot T (6.57)
1€L,kek; ’ 1€J kelC; ’
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is a Poisson measure with intensity dt ® N, o. Therefore, if we write (p/ ,W/) for the Lévy snake
constructed in terms of M’; the law of (o’ ,W/) under P, is Pg 4 0. In particular, if we denote
the excursion process of (p’ ,W/) by E(p’ ,W/), we infer that the distribution of &(p/ ,W/) is the
one of £ under Py , 9. Moreover, arguing as in the proof of Proposition 6.30 we deduce that under
P, w we have the a.s. equality & = E(p’,W/).

Let us now assume that w(0) = . Then, the shifted process (prit, Wi : t = 0) is indepen-
dent of Fr, its law is Py , ¢0) and the process (—Iry; + I : t > 0) is a local time. Now, to prove
that £ is a Poisson point process with intensity dt ® N » we can proceed as before by considering
instead of (6.57) the following measure

- > S ) +Z(5Vw Lot It T 000 (6.58)
1€N,keC; bk ieN

which is a Poisson measure with intensity dt ® Ny o.
The fact that & is a (G,)-Poisson point process follows from very similar arguments as in
Proposition 6.30, we skip the details. O]

6.6.3 Identification of the intensity measure

The objective of this section is to show that the measure N; is precisely N%. Recall from Lemma
6.9 that for every fixed u € D, the process (£a)ae7—H is constant on C,, and that we write ¢,, for its
value. Recall as well the notation AA for A at time A7l Under N, the measure € is no longer
a Poisson measure but we still have the following averaging formula:

Proposition 6.32. For every fived (y,v) € E and every non-negative measurable functions ® :

DRy, Mf(R) x Wg) — Ry and g : R? — R, , we have

Aq ~
Ny,r( Z g(Ag(u)’ﬁu)(I)(pu’ WU)) = Ny,?‘ (1{Ag>0} f dTg(h K?)>N:€(¢) (659)
ueD 0

Let us start by commenting on some important consequences of this result. In this direction,
recall the notation N for the excursion measure of a reflected Lévy process with characteristic
exponent @E and write H for the corresponding height process. By the identity in distribution
(6.53) the process (//i;fl : 0 <r < A,) under N g has the same distribution as (Hy: 0< s <o)
under N. Now, it immediately follows from this fact, Corollary 6.32 and 6.17 that for every

measurable non-negative function g on R, we have

0
Nao( 35 9(6)2(", W) = |~ da exp(~Ga)g(aNi(@). (6.60)
ueD 0

where we recall that a stands for the drift coefficient of 1Z When the spatial motion £ is a
Brownian motion, 7y is the Brownian tree and = = 0, identity (6.60) was already obtained in [1,
Theorem 23] by different methods for an excursion measure introduced in [1, Theorem 23], and
(6.60) proves that the latter coincides with IQTS Another important consequence of (6.60) is that
the measure Nj’; is invariant under the time-reversal operation Trev on D(R., M ;(R4)% x W),
defined by the relation Trev : (p,n,w) — (MN(s-)—, P(s-.)—,Wo--). More precisely, by duality
(6.22) under N, ¢ we have :

Nao( D g(t) (W™, p"0")) = Nao( Y g(tu)®(Trev(W", p*,1"))),
ueD ueD
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and an application of (6.60) yields the equality N;’O(F(p, n,W)) = N;’O(F(Trev(p, n, W))).

Proof. First, fix an arbitrary initial condition (11, W) € ©, with (w(0), £(0)) = ( ,r)and H(u) > 0.
The first step consists in showing that (6.59) holds if we replace N, g by Pu -
inf{t > 0: {p,1); = 0}. In this direction, we shall argue under P, % and further assume that the
function ¢ is bounded and compactly supported. Since the process (/AXA)TE]R . is continuous and

and o by Tp :=

adapted to (G,), it is (Gy)-predictable and for every u € D we can write £, = A g(u) = AA

Ag(uy”
Now, by Corollary 6.31 the measure £ is a (G, )-Poisson point process with intensity dt®N;“C and
hence

Eu,W( Z g(Ag(u)a ﬁu)CI)(pu’ Wu)) = Eu,W( Z g(Ag(u)> Kﬁg(u))q}(pu’ Wu))
ueD ueD

- EM,W(J arg(r, A7) )Nz (@). (6.61)
0
The goal now consists in computing
Eu,w< > 9(Agy, ) ®(p", Wu)l{Ag(u)>ATO}>-
ueD
To make our arguments precise it will be convenient to introduce the shift operator 6, for r > 0
on D(Ry, M¢(Ry) x Wg), defined by the relation 0,(p,w) = (Pr1¢,wr4¢ : t = 0). In particular,
the additive property of A writes for every s,t > 0 as Asyy = As + A; 0 05. With our notations,
we can write

,W( ZD D(p*, WH )1{Aq<u)>ATO}>
ue

= EM,W< Do 9(Az, + Aguy 0 Om, A4 0 Bn) (0", W) 0 9%))-

uEDOBTO

Now, note that by the strong Markov property, A, is independent from (p, W) o O, and the
distribution of (p, ) 007, is Py z 0. In particular, the measure € o 07, is a Poisson measure with

intensity dt ® N* Therefore, arguing as before but with the shifted process (p, W) o 07, we get

Euﬁ( D7 9(Aguy: L)@ (0", Wu)l{Ag(u)>ATo}> = Eu,w<

ueD Y

w A~
[ drg(Ag, + 1 Ao 0r,) ) Ni (@)

0 A~
( drg(Ar, +, AAT +T))N;(¢>)

= Euﬁ(
JO
o0

=EH,W( dr g(r )N*( ), (6.62)

J ATO

In the second equality we used that, by the identity A7 | =Ty + Ao O7,, we can write

Agy+r

AA AA
A 001, = Mgy artcor, = Mg 4o
We now infer from (6.61) and (6.62) that we have:

Bl 3 6401206 1) = Bus( [ ar gt 30)R0(@) - By (| ot 32)) @)
ueD
Ar,

~ By jo ar glr A1) )N2(@).
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This proves the identity (6.59) if we replace N g by IP’LW. The result of the corollary will now
follow by applying the Markov property under N, g. More precisely, for every € > 0, note that on
the event {A-! < o0} we can write Ap-ryy = At00 -1 +efort > 0. Hence, from a very similar
reasoning as before, the strong Markov property and the identity in the previous display yield

Ny.» (1{A;1<oo} Z g(Ag(U)’ /A\ﬁgw)q)(pu’ Wu)l{Ag<u>>5}>
ueD

= Ny,r(l{A;@}ELAS_IWAE_l ( fo " argte i )Nz (@)

- N (1 R (c+7,A%0,.))N* (@
= Ny,r |\ HA <0} 0 (/AR AT VA A;l) a:( )
A, e
. P T f ar g(r. A7) N3 (@)
13

where in the last equality we used that /AX,A o0 At = /A\?H. as well as the additive property of A.
By right-continuity we have AZ! | Agt = 0 as e | 0 and note that {451 < w0} = {4, > 0}. In
particular, since by [82, Lemma 10] under N, ,- the point 0 belongs to the support of the measure
dA, we have Ay L'~ 0. Identity (6.59) now follows by monotone convergence taking the limit as
e | 0 noting that N, ,-a.e., £({0} x D) = 0. Indeed, this fact follows if y = z since 0 belongs to
the support of dA and is not a debut time, while for y # x it can be deduced from the fact that
no debut time can occur in [0, Ay ) by the first point of Lemma 6.27 and Ay 'is not a debut
time - by the same reasoning employed in the proof of Lemma 6.29. O

Finally, we are in position to conclude the proof of Theorem 6.28, by proving that the intensity
measure N¥ is precisely the measure N introduced in Section 6.4

Proposition 6.33. The intensity measure N; is precisely the excursion measure NZ.

Proof. Recall the spine decomposition under the measure N* obtained in Proposition 6.18. The
result of the proposition will be obtained by showing that the same identity holds if we replace
N* by N,

Let us start by supposing that this result holds and let us explain how to deduce from it
that the measures N and IQT; are identical. Recall from the discussion of Section 6.5.1 that,
under N* or N;, for every s € (0,0) we can reconstruct by means of some functional F' in
(Mf(R4))? x Wg x (M)? the snake path (p, W) from its spine Sp(ps, W). We stress that F
does not depend on the election of the time s € (0,0). By making use of identity (6.39) and the

analogue version under N;, we get for that choice of functional F' that for every non-negative

function f on D(Ry, M;(Ry) x Wg), we have

g ~ (o ~
No(7(o. W) = Ne( [ ds foP(p(p.W).)) = Re( | ds o F(sp (o)) = Nitr(o. W)
. ’ ’ _ (6.63)
Since both N} and N} are measures in M (R ) x WE, this proves the equality N} = N,
Let us then prove that identity (6.39) holds if we replace N by N;, for an arbitrary non-

negative function F on (M(R4))? x Wg x (M];")z. Fix an arbitrary non-negative function g
on R and consider the functional ® : (R, M¢(Ry) x Wg) — R, defined by the relation
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®(p, W) = {7 ds F(Sp(ps, Ws)). On the one hand, Proposition 6.32 immediately gives:

Noo(| 35 9y, ) = Nuo |

ueD 0

Ao

deglo)) R ( | Cds FSp(on W) (660

We shall now compute the left-hand side of the previous display by making use of Proposition
6.20 and we shall make extensive use of the notations introduced in the latter. For (u, w) € ©,,
recall the notation 6, (u, w) = (6,u,0,w) for the translation of (u, w) to time r defined in (6.19)
and that for s € [0,0]\{t = 0 : Wy = x}, we write u(s) for the unique debut u € D satisfying
that py(s) € CO. Recall from Lemma 6.7 that the family (C9),cp are the connected components
of Ty\Z and therefore, p/ (C,\CY) = {t = 0 : W, = x}. Note that by Proposition 6.17 and
(Hz) yield that N, ({7 dsl{m:x}) = 0. In particular, under N, ¢, the mapping s — u(s) is a.e.
well defined for almost every s € (0,0). Now, by definition of the functional ® and our previous
observations, for every u € D we can write

9(Ag(u)@(p", W) = f e ds g(Agqu(sn) F (O, v, (ps, We), PEY, PE0), Ny ace.
Py (Lu

where in the last display we used that Ay, (,)) is identically equal to Ay, for s € pI_{l(Cu). It

now follows that the left hand side of (6.64) can be written as

Nm,()( > Q(Ag(u))CP(P“,W“ =Nuo Z f ng w(s))F (Oe, ow )(057Ws),735’0,7’§’0)>

ueD ueD

= Nx,O(JdS 1p;(uucg)g(Ag(u( WE (0o, ow )(ps,Ws)ﬂ’f’O,Pg’O))

=Nz ( JO ds g(Ag(u(s)) F (0r, o) (ps, W) ), PEC, P§’0) :

where in the last equality we used again that nyo(gg dsl{w :x}) = 0. To compute the expression

in the last display we shall use the spinal decomposition of (p, W) in excursions under Nz o
obtained in Section 6.5.2. More precisely, recall from Section 6.5.2 the definition of the measure
Oy as well as the family of measures 735‘7 = ZjelC; 5(t3 gk ik T for r; € J(Ay). If for an
obvious choice of functional G, we set
DD A(ph W) = G(Op)
TiEJ(AU) k’E/Cj
we deduce by Lemma 6.22, followed by an application of Proposition 6.20 that

o

Nz.0 ( JO ds g(Ag(u(s)) F (0u, o) (ps: W), PEY, 77?0))
= N2y (9.0 GO F (Br, vy (v, W), P, ) )

= N;70(90G<OU)) ‘N®EO(JU

0

Putting everything together, we have established that (6.65) and (6.64) coincide. Therefore,
comparing with (6.39), it now remains to show that for some function g : R — R, we have

dae—aaF(Ja,Ja,ga,Mﬁ,Mg)). (6.65)

Nx,o( fo ™ g(a:)) — N2 (g0 G(Oy)) < . (6.66)
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In this direction, consider the function g(z) = e=**, for € R, A > 0. First, by Proposition 7 in
[82] the left hand side in the previous display is given by A™!N, (1 — e ?M7) = »~1(A)/A. On
the other hand, if for y # z we set vy(y) := Ny(1 — e*7), by the description of the law of Oy
given in Proposition 6.20 we obtain that the right-hand side of (6.66) writes

g

JOO dr e~ exp (7’ - E°@N. (1 —exp (— J J(dh)vﬁ&(h))))).

0 0
Recalling that J,(dh) under E° ® Ny is the Lebesgue-Stieltiets measure of a subordinator with
Laplace exponent 1(\)/\ — « for A = 0 stopped at time o, as well as the definition of the biased
measure N (d¢) = N (d€)e™?? and @ = N (1 — exp(—ao)), we infer that

Q0

N3 o (g o G(OU)) — fdre_ar exp (r CEO®Q N, <1 — exp ( — oo — Lah¢(v>\(§(h)))/v)\(§(h)))>>

0

= JOOST exp < — T/\/<1 — €xXp ( - Jogh @Z}(UA(gh))/v/\(fh))))

Now, by Proposition 7 of [66] we can write vy (y) = uiZ*l(A)(y)' This fact combined with identity

(4.21) from [66] yields that the last display is precisely ©»~'(\)/X. This concludes the proof of
identity (6.66) and of the proposition. O

This concludes the proof of Theorem 6.28.

6.7 Construction of L*

This section is devoted to introducing an additive functional L* := (L} : ¢ = 0) of the Lévy snake
under the excursion measure N that will be crucial for the development of Section 6.8. Roughly
speaking, at each time ¢, the variable L} measures the number of subtrajectories of W that have
returned to = up to time ¢ and in particular, the total mass L} can be interpreted as measuring
the (fractal) size of the set {t € (0,0) : W, = x} under N%. We stress however that this description
is imprecise. The definition of L* under N is given in Proposition 6.35 and relies on preliminary
constructions under both PLW and N7 that we shall now introduce.

In this direction, recall the notation ©¢ for the subset of © consisting in pairs (u, w) with
w(0) = z, 7} (w) > 0 and satisfying p({0,7(w)}) = 0 . Recall from Lemma 6.19 that (p, W)
under N takes values in ©¢. For any (u,w) € ©¢ and under PL’W , denote by (ay, Bi)ien the
excursion intervals of {p, 1) — (u, 1) over its running infimum (I : ¢t = 0). If we write (p*, n*, W?")
for the subtrajectory associated to the interval (o, 5;), recall that the measure

M = Z 5(_Iai7pz‘7ni7wi) (6.67)
1€l
is a Poisson measure with intensity 1o ¢, 1y1du Ny (g (k) (dp, dn, dW). If for every i € T we set
h; := H(/{'_[ai/“’t) = HOéiv

it is straightforward to check from standard properties of Poisson measures that Y}, .+ Oyt W)
is a Poisson measure with intensity p(dh)Nyp)(dp,dn,dW). In the second equality of the last
display, we used the definition (6.8) of p under P, as well as the identity (6.6). We stress that



291 6.7. Construction of L*

the definition of ©¢ ensures that p does not charge the set {0} U {7«(w)}. This yields that PT —
a.s. there are no excursions W' with starting point W{ = z at height h; € [0, 7.(w)]. Fmally,
recall the notation (I'} : ¢ > 0) for the right-inverse of V;* = Sé ds Lyg, <rx(w,) for t = 0.

Lemma 6.34. For every fized (u,w) € ©° and under PLW, there exits a continuous, mon-

decreasing process (L :t = 0), with L} < o a.e. defined by:

1 S
1 - | dul — L 6.68
sli%si?fa‘aﬁ) ulizr (W) <Hu<rt(Wa)+ey — Ls| (6.68)
the convergence holding for every t > 0 in Ll(PL,w)' Moreover, still under PLW the following
properties hold:

(i) Under N, with y # x, we consider LP* the exit local time from E.. Then, PL’W - a.e., we
have

L= > L (P WY,  fort=0. (6.69)
T (W)>hy, i€

(ii) The process (L;f (0 <t < V})is Tri(p, W) measurable.

Proof. We work under PLW for a fixed arbitrary initial condition (u,w) € ©°¢. We shall first
establish the existence of a continuous, non-decreasing process L* defined by the relation (6.68).
This will be achieved by showing that for any ¢t > 0, the sequence

S
(i L QU (1)< Haerz (W ve) 0 < 8 <) (6.70)
is Cauchy in LI(PL,w) with respect to the uniform norm as ¢ | 0. We will make use of similar
arguments to the ones employed in Proposition 2 of [82]. We shall then infer (i) and (ii) from our
definitions.

We start with some preliminary remarks and constructions. First, this lemma shares obvious
similarities with the theory of exit local times recalled in Section 6.6.1, but we stress that we can
not directly make use of (6.49) in the current setting. Indeed, since for w € ©¢ we have w(0) = «x,
this gives that 7;(w) = inf{h > 0 : w(h) = z} is not an exit time. Let us now explain how
this minor difficulty can be circumvented. For every 0 < r < H(u) A o(w) and (p,w) € S with
(Po,wo) = (i, w), we let (p(’"),w(r)) be the trajectory defined by the relation:

(o W) 0 (pr,wy)  for 0 <t <inf{t >0:{0p, 1) =0},
, W =
P (0,w(r))  otherwise.

In particular, we have o(w() = inf{t > 0 : (f,p;,1) = 0} and (pgn),w[()r)) = 0, (u, w). Now, fix

e (0, H(p) A o(w)) and note that (p(™), W) under PLW is distributed as (p, W) under PZ, ()’

where now, the initial condition fulfils 6, w(0) # x. Therefore, for every ¢t = 0, 7% (Wt(r)) coincides

with TE*(Wt(T)), the exit time from the open set E, by Wt(r). It now follows from (6.49) that
there exists a continuous, non-decreasing process L™" such that for every ¢t > 0,

T - _ 5T =
i%E“W<s<S£<T>|eJ QL (i) <o) < Wiy ~ Lo ’) -
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We stress that L*" is just the exit local time L&*(p("), W), Now, let T} := o(p(")) and remark
that T, = inf{t > 0 : H; = r}. The key now is that we have

t AT t
gfo Qe (W) <tu<rz (W) +e) = gfo L)< (o)) <rz Wiy ey for 020, (6.71)
which gives that the approximation (6.68) holds if we replace o by T setting (L} : 0 <t < T}) :=
(L;" : 0 <t < T). Note that this holds for any 0 < r < H(u) A o(w). Since T} 1 o, by (6.71)
the process (Lf : 0 <t < o) is well defined, and is continuous and non-decreasing.

Let us extend the construction to the closed interval [0,0] by showing that the sequence
(6.70) is Cauchy in LI(PL,W) — in particular this gives that L} < oo, PL}W —a.e. By our previous
discussion, this will follow as soon as we show that

1 o
y - (_J dulss . ):0. 6.72
7“1?0132%) W g Tr " {T:c (VVu)<Hu<T95 (W“)+€} ( )

Under PL’W, recall that the measure »; 70, i w+) is a Poisson measure with intensity given
by p(dh)Nyp)(dp,dW). Since PL’W — a.e. the Lebesgue measure of the set {s = 0 : (ps,1) =

inf,<s{pu, 1)} is null, we infer from basic properties of Poisson measures and Lemma 6.17 that

1(° 1(°
| - * * = - * *
EIMW <€ fTT du 1{7-1 (Wu)<Hu<73 (Wu)+5}> Lo,rf(dh)Nw(h) <€ Jo du 1{7'1 (W) <H, <7’ (Wu)—f—a})

i1
= J[Oﬁi(dh) Hw(h) (gL da eXP(—aa)1{T;k(§)<a<rf(£)+6}>
< 0, 7].

Now, since (u, w) € ©¢, we have u({0}) = 0 and we deduce that the limit as € | 0 in the previous
display is 0. This proves (6.72) and concludes the proof of the existence of L*.

Let us now establish (i) and (ii). First, note that the excursion intervals («a;, 8;) with g; < T,
away from 0 of ({ps, 1) —infs<i(ps, 1) : t = 0) are precisely the ones of (<p§r), 1 — infs<t<pgr), 1):
t = 0). Moreover, the subtrajectory of (p, W) and (p("), W) associated to the interval (ay, 3;)
coincide. By Proposition 2 - (ii) of [82] applied to (p(™), W) at the exit time 7p,, we have that

Ly, =L (W Wy = 3 LB w).

TH(W)>h;>r

Now, the identity (6.69) follows by monotonicity taking the limit as r» | 0 since p({0}) = 0.
Finally, in order to prove (ii), we shall decompose L* o T'* in terms of Tr.(p, W)-measurable
functionals. In this direction, write Z’ for the subset of Z defined by the relation: i € Z’ if
and only if h; < 7i(w). For every i € I" we set (af,3]) = (V;,,V5). Remark that this is
the unique pair satisfying the relation (sz, FE?) = (ay, ;). Indeed, for every i € 7', we have
7(Wy,) = 7(Wp,) = o, which gives that I'* is piece-wise linear in a neighbourhood of V;;. and
V5. The family ((of, ;) : i € I') are precisely the excursion intervals away from 0 of the
time-changed process ((pr#, 1) — infs<i(prs,1) : t = 0) and therefore are Tr«(p, W) measurable.
Further, for every r € {u = 0 : {prs, 1) = infy<,{pr*, 1)} we have 7,.(Wps) = co, which gives that
dI'* does not charge the set {u > 0 : {pp#,1) = inf,<,{pr*, 1)} since the Lebesgue measure of
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{t =0:{p,1) = infei(ps, )} is null. If for every i € T’ we let T} (t) := I} (p’, W?), this gives
that
ry=> T} s = Dhgr = DTt A B —t Aaf)
€L’ 1€’
We infer from the identity in the last display that, still for 7 € 7/, we have
L (0", W*) = Lt (o', W)

* _T* . * * Tk *
PEAB:i—TF Aoy : Arﬂ?" I’} /\Fa}_k
1 K2

and now (6.69) yields that we can write

;;k = Z LE (', W fort = 0.

TEEABF—tral)
hi<t¥(w),i€L

The second point (i) follows from recalling that under Ny, the process (L o Ff 0 <t < V)
is Trp, (p, W) — measurable by Proposition 3 of [82].

We shall now use Lemma 6.34 to extend our construction under the excursion measure Nj.
In this direction, we argue under N, and we start introducing some notation. For fixed 0 <t < o
recall from Section 6.5.2 that we write Sp(p, W): = (p¢, ¢, We, Pt(e), Pt(T)) the spinal decomposition

at time ¢ of (p, W), where Pt(e) = e, 5(—Ié?7pjﬂ7j,Wf) and Pt(r) = DicT, 5(—L§?7Pi,77i,wi)' Set
Tt = inf{s >t : 7.(Ws) = oo}, Tt — ¢ - inf{s = 0 : 7.(Wi—s) = o0} and denote by Z] (resp.
J/) the subset of Z; (resp. J;) defined by the relation: i € Z] (vesp. j € J/) if and only if we have
agr)(t) > 7t (resp. a;@) () < T,St’f)).

Proposition 6.35. Under N}, there exits a continuous, non-decreasing process (L}) defined by

the relation:

. 1 y *
lim 1y Sup - L du Lirs w,)<m, <r# (W) e} — Lg] (6.73)

the convergence holding uniformly in compact intervals in measure for any V € F with N (V) <
0. Moreover, the following holds:

(i) (Ll”i;k 10 <t < V) is Tri(p, W) measurable and under N}, it is simply denoted by (Lj).

(ii) Under N

5, a.s. for every t e (0,0) we have the identities:

Li = ) LZ(o W) and  Li—Lf= > Lo, W"). (6.74)
j€¥7t/ ZeI;

Note that in particular, we get from (ii) that

L= 3 LB, W)+ ) LB+ (W),
jeJ! 1€l
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Proof. Let us start proving the existence of (Lf). In this direction, for every ¢ > 0, 6 > 0 we set

1 t
I(6,¢) := EL tdu Lrrwn)y<Hu<rzWu)+ep =0
AN

It suffices to show that for any 7,¢ > 0 and V € F with N(V) < co — that we fix from now on —
we have

lim N3 ( sup |L(0,e) — I;(0,€")| = n,V) = 0. (6.75)

€,e'—0 S<tAO

For every § > 0, we set V5 := {0 > §,0(W;s) > 6}. Remark that Vj is a Fs-measruable subset
with finite N;-measure, and V5 1 Q as 6 | 0. In particular for every £ > 0, we can find some 6 > 0
small enough such that N (V\Vj) < £. Let us start by showing that for every 6 > 0,

lim N;<sup 115(5,€) — I,(8,€")| > 7, V) —0. (6.76)

e,e'—0 s<t

Remark that it suffices to show that the convergence in the last display holds if we replace V' by
Vs, for every arbitrary small 6 > 0. Now, by the Markov property, we have:

lim N;*;(sup 1,5, €)—1,(8,")| > n, v5> < lim N;‘j(lvéPT o (sup [ 1,(6,8)—I4(6,¢)| > n)) —0,
g,e'—0 s<t e—0 pe,¥ve s<t

where in the last equality we used Lemma 6.34 and the dominated convergence theorem. We
stress that in the last display we used that (ps, Ws) belongs to ©¢, N7 — a.e.

Let us now infer from our previous reasoning the convergence (6.75). Note that for every
0 > 0, we can bound

sup | I5(0,) — Is(0, )| < I5(0,¢) + I5(0, ") + sup | 15(0, ) — I5(0, )]

s<t s<t
Now, (6.75) will follow as soon as we show that
) 0
lim sup N:; <8_ f 1{7';"(Wu)<Hu<T£"(Wu)+E} = n, V) = 0. (677)
6—0¢>0 0
Remark that by duality, we can write
1 ’ 1 ’ 7
N; (87 Jo 1{T§(Wu)<Hu<T£"(Wu)+s} =1, V) = N; (87 f 5 1{T§(W1L)<H1L<T§‘(Wu)+6} =, V)
o

where V is the image of V' by the mapping (p,w) — (pg,t,wg,t 0<t< a(p)). Now, to prove
(6.77) it suffices to check that for every § > 0, it holds that

. L (°
lim N (gL du s (W) <H,<r# (W) +e) =7, Va) = 0. (6.78)

First, by an application of the Markov property we have

* 1 7
Na;(gL du s (w,)<H,<r# (W) +e} = 1 V5> <Nj <P1,5,W(s (I5(0,¢) = 77)1v5>-

Further, for any (u, w) € ©¢, Markov’s inequality and the first-moment formula (6.38) give that

PL,W (1-(0,6) = n) < nflEL,W <€1fo du 1{7';“(Wu)<Hu<T;;"(Wu)+6}> <n ', 1)
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This yields that we have the pointwise convergence:

gi_r)r(l) PL&,Wa (I,(0,e) = n) < %1_{% n Hps,1) =0 N - ae.
and it follows by dominated convergence that (6.78) holds, concluding the proof of (6.75).
Property (i) follows immediately from Lemma 6.34 and we turn our attention to (ii). Let us
start by constructing a version of the family (3,7, LE (o', W) : 0 < s < o) defined outside of a
N> - negligible set. The uniform convergence (6.73) gives that for every V € F measurable with
N, (V) < oo, there exists some sub-sequence (e5,)n>0 such that N, a.s. for every 0 < a < b, we
have the pointwise convergence,

. 1 b * *
lim 1y [= f du 1pes (w,) < Hy<r (W) 42} — (Ly — La)l-

e—0 € Ja

Now, it easily follows from our definition that for every fixed ¢ and N, a.e. for every i € Z;

we have LE*(pi, W) = Lgr(t)

L (pt, Wiy .= L;g'(t) - LZ;‘(t)‘ In particular, the family (3.7 L (o, W) : s € (0,0)) is defined

outside of a N-null set. An analogous reasoning can be applied to (3¢ 7/ LE (' W) :5€(0,0))

— LZ’?(t)’ From now on, for every 0 < t < ¢ and i € Z;, we set

and in therefore, statement (ii) makes sense. By Lemma 6.34-(i), for fixed s > 0 and on the event
{s < o}, the Markov property at time s gives that N —a.s., we have

(L~ L2) = Y LB (o', W), (6.79)

€L,

Consider a measurable subset g < © with full N7 - measure such that for every (p,w) € Qy, the
equality in the last display holds for every rational s. Let us now prove that the equality in the
previous display holds in €y for every s € (0,0). We pick an arbitrary ¢ > 0 and fix arbitrary
rationals s, ¢ such that s < ¢ < t. By continuity of L*, our claim will follow if we prove that we
have

Ly~ Li < Y L (p"\W') < Li - L. (6.80)

1€y,

The second inequality immediately follows from our definitions and we turn our attention to the
first equality. By considering a smaller rational ¢ we can assume that ¢ belongs to an interval of
the form (¢ + ozér) (q9),q + 6](-T)(q)) for some j € Z,. Now, by comparison of the summands we get
that >,z LE (o', W) < Zz‘ezg] LE*(p', W) and by our choice of Qg we infer that (6.80) holds.
Finally, by duality, we get that N;—a.e. for every s € (0,0) we have

Ly = Ly(po-ss Wo-.) = L(po-es Wor-.) = Z Lf*(PiaWi)
N
concluding the proof of the lemma. O]

The identities (6.69) and (6.74) yield analogue results under P and Nj. Let us briefly

comment on this. First, recall that under N, for y # x, the time-changed exit local time
(Lf,,’: :0<t<V,)is Fg, — measurable. With some abuse of notation, under N, we shall write
t

LE*(Te(p,W)) := LEr,  for0<t <V} (6.81)

* 9 o
Pt
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and in particular, we have L‘E;Zi(Tr(p, W)) = LE*. Hence, L®* is defined under Ny and as usual

the dependence on (p, W) is omitted. Further, when working under PLW for (u,w) € ©° with
7X(w) € {Cw, 0} and with the same notation as in Lemma 6.34-(i), it follows from our definitions

that we can write

Lgr = ), L@ wh= X Lyi(T(p W)

hi<t¥(w),i€T hi<t¥(w),i€T

and we set LY*(Tr(p, W)) := Dhi<r(w) L (Tr(p', W), Remark that the truncated measure
MY = Zhi«E* (w) O(— L, Tr(pi,Wi)) 18 Tr.(p, W) — measurable and that since the initial condition
(, w) belongs to ©°¢ with 7(w) € {(y, o0}, for every i € Z we have h; < 7.(w). Finally, under
%\ recall the definition of the measure M introduced in Lemma 6.16 and that (M, Tr.(p, W))

under PL,W has the same distribution as (M, (p, W)) under P}, ;. Now, we can state:
Corollary 6.36. The following identities hold:

(i) Let M =2z (1, powi) be the measure introduced in Lemma 6.16. For (u,w) € ©° with

7y (W) € {Cw, 0} and under P, we have:

LB =Y TLE (o', W), Pi, - ae (6.82)
(=

(ii) Under NX and for every t € (0,0), consider Sp(p, W) the spinal decomposition of (p, W) at
time t. Then, a.e. for everyte (0,0),

Ly = Y LE(p', W) and (L —L7) =) LE<(p",W"). (6.83)
€Tt €1y

The first point (i) follows from our previous observations while (ii) is a consequence of identities
(6.74); we skip the details. We now turn our attention to a description for the law of (p, W)
observed at a typical time taken with respect to the measure dL*.

Proposition 6.37. Under E° @ N, let (MY M™) be a pair of point measures on Ry x
Mf(R4)? x Wg such that conditionally on (Js, Js, (& : s < 0)), they are independent Pois-
son measures with respective intensities

g

du NZ dp,dn, dIV), and Lo, 151du NE(H(nng))(dP7 dn, dW).

0,(Jo,1)] (H(mfa))(

For every non-negative measurable function F on M¢(R})? x Wg x Mp(Ry x M(R1)? x Wg)?,
we have

~

N;‘;(J” dLg F(Sp(p, W>s)) — EOQN (exp(—a0)F(Jy, Jp, (& : 5 < ), MY, MT¥)).
0

Observe that the measure in the right-hand side of the previous display coincides with the
characteristic measure of Op obtained in Proposition 6.20, modulo a truncation of the atoms of
(M, M) at their exit from E\{z}.
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Proof. First, we shall consider a continuous bounded function F' on M (R ) x Wg vanishing on
{1, w) € My(Ry) x W : G < Lo w(l) = 2},

for some fixed arbitrary ¢ > 0. Let us then define

V= {(p,w) e DRy, M;(Ry) x Wg) : for some s € (0,0(w)) it holds that (,, = £, ws(¢) # x}.

Note that F(ps, W) vanishes for every s = 0 on the complement of V" and that N (V) < oo. By
Proposition 6.35, we can find a sub-sequence (e, )nen such that the convergence (6.73) holds a.e.
for every 0 <t < o along (e,,)pen. Therefore, along this sub-sequence, the sequence of measures
ds 17, (W,)<H, <74 (W,)+e,) for n = 0 converge weakly towards dLg. Since the mappings s —
F(ps,Ws) and s — F(ps—, W) are respectively upper-semicontinuous and lower semicontinuous,
we have the N -a.e. convergences:

g g

) 1
limsup — | ds 1w <, <rrWo) e,y F(ps, Ws) < f AL F(ps, W),

n—w &n Jo 0

and

loa o

lim inf i ds 1{7';"(Ws)<Hs<Tf(Ws)+€n}F(p3*? WS) = J dL:F(pS,, WS)

n—o0 &p Jo 0
To conclude, we first need a couple of observations. First, remark that the approximation (6.35)
yields that the measure dL¥ is N —a.e. supported on the set {s € Ry : Hy = 75(Ws)}. On the
other hand, since by Lemma 6.19 the process (p, W) takes vales in ©€¢, it holds that N -a.e. for
every s we have ps({7}(Ws)}) = 0. Putting this two facts together yields that p is continuous at
dL} almost every s. Since the set of discontinuities of p is countable, we infer that we can replace
ps— by ps in both terms of the last display. It now follows from this observation and Proposition
6.35 that we have

N;kc < LU dL: F(ps, Ws)) = N; <1V JOU dL: F(p& Ws))

: « (7
= lim Nw(lV_J ds 1{71;“(WS)<H5<7—,;"(W5)+6”}F(ﬂs»Ws))'

En— En 0

Now, by (6.38) we can write:

N;(L ds 1{7—;(WS)<HS<T§(WS)+E}F(pS7WS))
o¢]

= N@ EO<L da €_aa1{a(§)<a<0(§)+E}F(Ja, (ft 0<t < a))>

where in the last equality we used that 7.5 (§) = () under N. By an application of the dominated
convergence theorem, we infer from the continuity of F' and right-continuity of J, at time a = o
that

N;(LG dL:F(pS7W3)> =N @ E°(exp(—ao)F(Jy, (& : 0 < s < 0))).

We stress that in our last argument we used that the set {oc > ¢} has finite N-measure as well
as our standing hypothesis on the function F'. By the usual approximation methods the previous
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equality holds for any non-negative measurable F' on M s(R,) x Wpg. Since N}, - a.e. the measure
dL¥ is supported on {s € R} : Hy = 7(Wj)}, we get by time-change (see e.g. [81, Proposition
V-1.4]) that
o Vv
JO dLgF(ps, Ws) :JO dLIﬂ:fF(PFvaFZ")a N; ae.

Finally, noting that (V;}, (L1), Tr«(p, W)) under N7 is distributed as (o, (L), (p, W)) under N7,
we deduce the desired result for our choice of F'. The proof when considering an arbitrary F' as
in the statement of the proposition follows by the same type of arguments as in Proposition 6.17,
we skip the details. O

Let us conclude the section with an application of Proposition 6.37.

Corollary 6.38. Recall the definition of the Laplace exponent 1; from (6.52). If we write 7 for
its correspodning Lévy measure on (0,00), we have w(dz) = NX(L% € dz).

Since by [82, Corollary 2] the drift coefficient of ¢ is given by & = N (1 — exp(—ac)) and the
Gaussian component 3 is null, this completely characterises the Lévy-Kintchine triplet of .

Proof. Since the Laplace exponent @E has no Brownian component [82, Corollary 2], this is equiv-
alent to proving that for A > 0, we have the identity

NE(exp(=ALE) — 14+ ALE) = () — @A
We shall follow similar arguments to the ones employed in the proof of Lemma 8 in [66]. In this

N (exp(—=AL}) — 1+ AL}) = AN (J dL} (1 — exp(—)\f dLZ)))
0

S

AN U dL:E;MWQ<1—exp(—)\J dL;’;))). (6.84)
0 0

direction, note that by the Markov property under N%, we have

In order to compute the last expression, fix (i, w) € ©¢ and recall the identity (6.82). The formula
for the Laplace transform for integrals with respect to Poisson random measures yields

7z (W) 7 (W)

EZ’W[eXp(—)\L;)]zeXp (—J p(dh) (W(h>))7

0 p(dh) N:v(h)(l_exp(_)\L;)))zeXp <—J

0

where in the last equality we used that by definition, the distribution of LE* under Ny fory # x

is precisely the one of LE under N,. Getting back to (6.84), we infer from the identity in the
last display and Proposition 6.37 that:

N* (exp(—AL%) — 1+ ALY) = A N;';(LU dLE1 —exp (- fm(dh) u (Ws(h))))
“AN® E0<exp(—a0') (1 —exp (- Jja(dh) UA(fh))))
=2 N® E0<exp(—aa) —exp (- JOG dh ¢(u>\(§h))/u>\<fh))>7
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where in the last equality we used that Jo, under PV is the jump measure of a subordinator with
Laplace exponent 1)(\)/A — «. Finally, we observe that the last display writes:

A N®E° <1 —exp (- L dhw(uA(gh))/uA(&L))) - A N® Eo(l - exp(—aa))).
The result of the corollary now immediately follows from the identity (4.21) in [66]. O

We conclude the section with some technical results that will be needed in Section 6.8. With

the notations of Proposition 6.20 under E° @ N, let us write M’ =3, 6(#) S T M =
k I I

D ke 6(t}(:)7pk7nk7wk) where KO, K are two disjoint indexing sets. Next, for k € KO set

ap 1= Zt§‘><t§f> a(Wh), By = Ztﬁ“gt}f) o(W?*) and introduce the process

VM = N LBy (R, =,

tABr—tAay
kek®

To simplify notation and when there is no risk of confusion, we denote the process in the previous
display by V. Note that this construction is a deterministic function of M? and for instance
can be applied to M”. Analogously, we write V") for V(M").

Lemma 6.39. Under E° ® N, for every ¢ > 0 we have Vo(M?), Vo(M™) >0 a.e.

Proof. Recall from (6.41) the intensity measure of M” conditionally on (&,.J). Since (J,,&, M")
and (J,,& ,./\/le) have the same distribution, it suffices to show that for any ¢ > 0, we have
E'@N. (VA" =0) =0,

Consider a deterministic increasing sequence (ay, : n = 0) with a, 1 1. It suffices to show
that E® @ Ny (L% (p', W') =0, Vie K) such that H(ks,Jy) > cay) = 0. If for y € E, we write
v(y) = Ny(LUE* # 0), this is equivalent to proving that E° ® N, a.e.,

exp (— JU Jo(dh)v(E(h))) = 0. (6.85)

ano
Under P, , and Nj and for every n > 0 we set 1), = inf{t > 0: H; < a,Ho}. Since by Corollary
6.36-(i) for (u, w) € ©¢ with 7(w) = ¢y we have P}, (LE* =0) =exp(— Sancw Jo(w(h))),
by the first moment formula of Proposition 6.37 we get

E0®N<exp(—a0) exp (- f Ja(dh)v(é’(h)))> . N;;( J " arr P* gy (L2 = 0)) (6.86)

ano
— N;(J dL* 1{L5+Tnoe Lf=0}>

where in the last equality we applied the Markov property as well as the identities of Lemma 6.36.
Now, note that the interval (s, s+ T}, 06s) is open and non-empty and therefore the cardinality of
C(n) = {sesupp dL* : dL*(s,s+T,00s) = 0} is countable. Indeed, any element of this set is the
right end of a connected component of the open set R \supp dL*. Therefore, by continuity of L*
it holds that dL*(C'(n)) = 0 and it follows that the formula in the last display is null. We infer
that (6.85) holds, concluding the proof of the lemma. Since J, under Ej is the jump measure

(o2

of a subordinator with Laplace exponent ¢)(\)/\ — «, remark that in particular we deduce from
the fact that (6.86) vanishes that N'— a.e., we have Sgan dh(v(€(h)))/v(€(h)) = oo, a fact that a
priory is not simple to establish directly. O]
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Let us conclude the section with an important consequence of Lemma 6.39. We shall still

make use of the notations of Proposition 6.20. Under Ey ® N consider the measure M¢ =
0 (kg TR .

D kekc® 5(t§f'),pk,nk,Wk) and for every k € KO, write (p™I W )jeICff) for the subtrajectories of

(pk, W) outside E, x R . Denote the corresponding excursion intervals by (ay, ;, ka)jelC,(f) and
(£)

for j € K7 set ap; := i + ap ;. After performing the analogous construction in terms of
the measure M" = >, ) 0

following pair of measures:

(E*(Mé),E*(MT)) 1:< 2 5( © pk’jﬂik’j,Wk’j)’ 2 (5( ) pk’jmk’ijk,j)>. (6.87)

(0 k.57 () k.57
kelC®) jekC;, ke jek;

" —u,, with an obvious choice of notation we introduce the
(tk 7pk717k7W ),

We infer from the special Markov property that, conditionally on (J/,, jg, €) and

( Z 6(tl(f>,Tr*(pk,Wk))’ Z 6(t§€T),Tr*(pk7W’“))>v (6.88)
kek® kekK (™

the pair (E*(Me), E*(M")) are independent Poisson measures with respective intensities

1 (u)duNg o(dp,dW) and 1 (u)du Ny o(dp,dW). (6.89)

[0,V [0,V

Lemma 6.39 ensures that both measures are non trivial E @A *-a.e. Let us now briefly perform
an analogous construction to the tip of the spine, viz. for ((p%, n%, W7, (Péo, 775’0)) under N .
Still from Proposition 6.20 recall that under N? ,  conditionally on (p%,n?],Wg), the pair of

z,07

measures (7350, 73[7}’0) are independent Poisson random measures with respective intensities
Lo, 131 () N a1 e, ),0 (A dn W) and o, 15) () Nuvg s, ) 0(dp, i, V).

Then, if we now consider (V;(P%0), V}(P(Z’O))t}o as well as the pair of measures ( Z* (775’0), = (73[7}0))
we still have that conditionally on (p%;,n%, W) and (Vi (Pfjo), VOO(PZ}O)) the pair of variables
(E*(Péo), E*(P&’O)) are independent Poisson measures with respective intensities (6.89). Note

however that in contrast with our previous case, we might have V, (775’0) =0or VOO(PE’O) =0.

6.8 Reconstructions

THE CONTENT OF THIS SECTION IS AT AN EARLY STAGE.

It is well know from classic excursion theory of time indexed Markov processes that one can
recover the initial path of the Markov process from its excursion measure. This is essentially
achieved by concatenating the excursions, using the fact that the ordering induced by the local
time is precisely the temporal order. In the setting of Markov processes indexed by Lévy trees,
the inherent complexity of these objects gives rise to a several natural analogous questions that
we shall now address. We shall start with an overview of the main results of the section.

In this direction, recall that we write H for the height process A4 of the subordinate tree and
we let X be the Lévy process associated to this height process. The first part of this section is
devoted to proving that one can recover the Lévy process X -or equivalently, the height process
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H - from the excursion process €. To be more precise, let us introduce some notation. Under
Nz and Pz, recall that we write & = > d(4,,,pu,ww) for the excursion process of (p, W)
and consider the following subset of D

Dy :={ueD: L, (W") > 0}.

We shall write },,cp. O(Ayquy LE(pe,wvy) for the image of E1¢7x(, w)>0y under the mapping given
by (Ageuy, p*, W) — (A L (p*, W")). The first main result of the section is the following
theorem:

g(u)>

Theorem 6.40. Under Py o, the measure Zu€D+ 5(Ag(u)7L§(pu7Wu)) is the jump measure of X.

The proof of this result is achieved in two steps:

Step 1: We first prove in Proposition 6.45 that the set {Ag(u) :u € Dy} is precisely the set of

jump-times of X. This is the main content of Section 6.8.1.

Step 2: We then show in Section 6.8.2 that for every u € Dy we have A)N(Agm) = Li(p", W").
The proof of the later will be a straight consequence of Proposition 6.47, which links
the local times at the branching points of 7 with the family of processes (L*(p", W*) :
uw € Dy ) via an explicit time-change. Section 6.8.2 is devoted to the proof of the latter.

As a consequence of Theorem 6.40 we deduce both, the reconstruction of X in terms of € , and
identify the law of the family of excursions (p", W"),cp given H. This result is closely related to
[1, Theorem 40].

Corollary 6.41. The Lévy process X is E-measurable. In particular, if for every u € D we let
zy = LE(p", W™, we have
L) = zu>>

In other words, conditionally on ﬁ], the family (p*, W")yep are independent with respective law

given by N (dp, dW|L: = z,).

Nx,(] <g(ﬁ) exp ( Z f(Ag(u)7 pu7 Wu))) = NJJ,O (g(ﬁ) H N;<exp (f(Ag(u)7 P W))

ueD ueD

We now turn our attention to the reconstruction of the Lévy snake in terms of the excursion
process £. Unsurprisingly, this procedure turns out to be significantly more delicate than in the
classic setting of time-indexed Markov processes, but we still have the following analogue theorem:

Theorem 6.42. Recall the notation & for the excursion process of (p, W). The Lévy snake (p, W)
can be recovered from &.

Remark that by Corollary 6.5, to obtain this result it suffices to show that the pair (H, 17[\/) can
be recovered from £. This is precisely the content of Proposition 6.49. Section 6.8.3 is devoted
to the proof of this result, and relies strongly again in Proposition 6.47.

In what follows, we shall make extensive use of the spinal decomposition in excursions of
Proposition 6.20 as well as the closing remarks of Section 6.5.1. The same notations are maintained
through this section. Roughly speaking, our arguments often rely on proving desired properties
for the excursions on a typical Snake path - viz. by working under N;,O and using Proposition
6.20 - and then transferring such properties to every excursion (p*, W*) of (p, W). This last step
relies on the following lemma:
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Lemma 6.43. Let A € F, B € F® R, and suppose that for some (random) I < B(R,) with
N, o -a.e. positive Lebesgue measure it holds that B¢ n {U € 1} =2 A x {U € I}. If B has full
N°* %0 measure, then A has full N, g-measure.

Proof. Since B has full N} ; measure, then 0 = N} ((B¢) > N}, (B n {U € I}) = Ny o(L(1); A)
where we denoted by £(I) the Lebesgue measure of I. Since £(I) > 0 N, g a.e. this gives that A
has full N, o measure. O

The rest of the section is organised as follows in Section 6.8.1 we study the family of jump-times
of X and prove that the sets {t > 0 : AX; > 0} and {Ag) : u € Dy} coincide [Proposition
6.45]. In Section 6.8.2 we establish that the local times at the branching points of 7 and
(L*(p*, W*) : we Dy) differ by a time change [Proposition 6.92]. In particular, we shall deduce
from this result the identity AX Ay = Ly(p",W*) for u € D which concludes the proof of
Theorem 6.40. Finally, Section 6.8.3 is devoted to the proof of Theorem 6.8. Namely, we shall
prove in Proposition 6.49 that the pair (H, W) can be reconstructed from &.

6.8.1 The jump-times of X

This short section is devoted to proving that the two following sets {t > 0 : A)N(t > 0} and
{Ag) : v € Dy} coincide. This is the first step towards proving Theorem 6.40 and we shall
start by covering some preliminary results. Recall that we write D° for the set of debut times
[Definition 6.24], and that by Lemma 6.25 the relation u — g(u) is a bijection between D and D°.
In particular, the subset D, < D is in bijection with a subset of D° that we now characterise:

Lemma 6.44. Fort e [0,0], we introduce the condition
(i’) There exists s > t such that Hy > H; with inf, o) H = Hy and /A\S > /A\t.

The subset of debut times that satisfy (i) is denoted by DS.. Then, under Ny o and Py o a debut
u € D belongs to D4 if an only if g(u) belongs to DY

Proof. Recall that under Ny o, for every fixed ¢ € (0,0) such that Wt # x, we let u(t) € D be
the unique debut such that £, = A;. Since N} g-a.e. we have Wy # x, we can write u(U)
for the unique debut point satisfying £, ) = /A\U. Let us start arguing under N;p. By the
discussion following Lemma 6.39, condition (i’) is satisfied by ¢g(u(U)) if and only if VOO(PfJ’O) # 0
or VOO(P(Z’O) # 0. Moreover, since by (6.83) we can write L% (p*(U), wu(U)) = VOO(P(KJ’O)—I—VOO(PEO),
it follows that the union of the (disjoint) sets {g(u(U)) € Di,L*( wl) W)y > 0, {g(u(U)) ¢
D, LE(p"U) W)y = 0} has full N} o measure. The statement of the lemma now immediately
follows by an application of Lemma 6.43. Since this type of reasoning will be often used, we shall
provide the details for reader’s convenience, but in the sequel they will be systematically omitted.
Fix an arbitrary u € D. There exists a non-empty interval (¢'(u),d'(u)) < (g(u),d(u)) such that
{Ue€ (g (u),d(u)} = {/AXU = (,}. Therefore, from our previous reasoning we get

0 =N (g(u(U)) € D, L (p"D), wulU >) =0,U € (¢'(u),d (w)))
= Noo((d'(w) = g'(u)); g(u) € DI, Ly (p =0)

and analogously we obtain as well that N, ((d'(u) — ¢'(u)); g(u) ¢ DS, Li(p*, W*) > 0) = 0. Since
N o-a.e. it holds that d'(u) —g¢'(u) > 0, we infer that N, g-a.e. the sets {g(u) € D3, L} (p", W*) >
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0}, {g(u) ¢ DI, L% (p", W*") = 0} are a partition of Q. It follows that N g-a.e. we have that
g(u) € D4 if and only if g(u) belongs to DS. O

We can now prove the remarkable connection between D, and the set of jump-times of X.
Recall the notation H for the height process A4 of the subordinate three ’T~

Proposition 6.45. Under Py, o and N, o, the mapping g : D+ — Ry defined by the relation

g(u) 1= Ay is a bijection between the sets Dy and {t = 0: AX; > 0}.

Proof. 1t suffices to prove the result under N, g and for clarity, we divide the proof in two main
steps. In this direction, fix an arbitrary v € D4 and let us start proving that:

o G(u) is a jump time for X. To achieve this, by Lemma 6.50 it suffices to prove that N, o-a.e.,

1. For every § > 0, we have ” )inf H < 3(u)-

2. For every € > 0 such that inf H = H; ”
[9(u), g(u)+e]

Hiu) = Hr.
To establish this two properties we shall make use of the results of Section 6.5.2. Let us start
with some preliminary remarks. Under Ey ® N, and to simplify notation, write (EZ, = ) for the
pair of measures (6.87) and introduce the processes:

=) L kg T NTA=1 Y N2
At(ug) = Z At/\,Bk’jft/\ak,j(p W )7 At(‘*ﬂ) = Z At/\ﬂkj—t/\ak’j]‘te(akd,ﬂk’j)'
ek (© jek (") ke jek("

Recall that by Lemma 6.39 we have Vog) > 0 and that conditionally on (J,,&) and voﬁf), the

*

measure =7 is a Poisson measure with intensity 1[0 V(z)](u)du Nz o(dp, dW). We infer that con-
ditionally on (J5,€) and (6.88), the pair (A:(E}), /AXt(EZ‘))t>O is distributed as (A, /AXt)t>0 under

Po.z0 stopped at time inf{s > 0 : —I, = Vog)} and in particular, A (Z;) > 0 by Lemma 10
of [82]. In our last argument we used that under Py, o, the measure dA does not charge the
set {t > 0: I; = X;}. This follows noting that Ega0(dA({s = 0 : Hy = 0})) = 0, since
for every r > 0 and writing £" for the exit local time from the domain E x [0,7), we have
dZI({s = 0: Hs = 0}) = 0 were the last assertion follows form the integral representation of A
given in [82, Proposition 6]. Now, we deduce that the origin is regular and instantaneous for the
time changed process /A\A( =), from identity (6.6) combined with the fact that A4 under Po.20
is the height process of a gZ - Lévy tree. Note that the same holds for the time reversed process
TrevAA(_K)

Now we work under N}, ; and recall that we write H for A4, For a fixed arbitrary £, € J (Ap),

let us prove that the correspondmg g(u) = A satisfies conditions 1 and 2. Starting with the

g(u)
latter, recall that by Proposition 6.20, conditionally on Ay the measure Oy is a Poisson measure

O,KU]dSEO ®N*((Ja,jg,f,/\/l£,/\/l’”) € dz) and let (ri,piU,ng,.Wé,Péi,Pgi) b
the unique atom of Oy such that r; = ¢,,. To simplify notation, we write :Z’Z for =* (73“) By

our previous considerations under E° ® N, and (4.27) in [82], we have AOO(P Y= Ap(ZE) Z) > 0
and note that we can write

(Kﬁg(u)'ﬂ‘ 0t < AOO(/P[Z]’Z))> = Trev(/A\{‘(EZ’i) +ri: 0<t< A (~* z)>

with intensity 1[
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Further, from our reasoning under E°®N, the point 0 is regular and instantaneous for the process
in the right-hand side, and we infer that condition 2 is fulfilled by Ay(,). Condition 1 will follow
if we can find an increasing sequence of times (¢, ),>0 with ¢, 1 g(u) and such that ﬁAtn < ﬁAgW)
for every n = 0. Recall that g(u) is a debut time by Lemma 6.25 and in particular, by Definition
6.24-(ii) we have inf (g(,)—¢ g(u)] A< /A\g(u) for every ¢ > 0. Now, it readily follows that we can
find a sequence (t,)n>0 with ¢, 1 ¢ such that ﬁAtn = Ktn < /A\g(u) = ﬁAg(u)~

Our previous reasoning shows that under Nj g, the set B := {Vl, € J(Ap), Ay € {t =
0 : AX; > 0}} has full measure. Let us deduce from this that under N, and for every fixed
u’ € D, the point Ay 18 a jump-time for X. Using the fact that L(’;(p“/, W“/) > 0, it is not
difficult to check that there exists a nonempty interval (¢'(v),d (v")) < (g(u'),d(u’)) such that
{Ue(qdW),dW))} c{f* e T(Ay)}. Now, our claim readily follows by an application of Lemma
6.43 to the sets B, A 1= {Agyqy e {t=0: AX; > 0}} and I := (¢'(u)),d'(«)).

o The mapping g : Dy — {t =0 AX, > 0} is bijective. Let us start proving that g is injective.
Consider u,u’ € D with u # ' and without loss of generality suppose that g(u') < g(u). Since g(u)
is a debut time, we infer from condition (i) in Definition 6.24 and Lemma 6.27 that g(u) is a point
of left increase for A. This gives that Ay, < Ay, and proves that the mapping g is injective.
Let us now check the surjectiviy of §. Fix an arbitrary time ¢ in the set {t > 0 : A)N(t > 0}, so
that conditions (i) and (ii) of Lemma 6.40 are satisfied by H at time ¢. We start checking that
A is an element of D viz. that (H, /A\) at time A, fulfils conditions (i),(ii) of Definition 6.24
as well as (') of Lemma 6.44. We consider two different cases. Suppose first that A, < AL
By condition (i) of Lemma 6.40, we can find an increasing sequence of times s, 1 ¢ such that
H 5 < H, for every n = 0. By left continuity, we have As_n1 1 At__l which yields that At__l satisfies
Definition 6.6-(ii). Further, noting that A is constant on [At__l, Ay 1, by the snake property it
must hold that H, > Ht“i for every r € [At__l < A/ 1]. Since H has no constancy intervals, we
can find some time s on this interval at which Hy > H{ . This proves that A;! satisfies as well
condition (i) and therefore is a debut time. Let us now assume that A_1 = A;'. Arguing as
before, condition Definition 6.24-(ii) is fulfilled by A; ! so let us prove that Definition 6.24-(i) also
holds. Suppose by contradiction that we can not find s > At such that Hy > H{‘ with both
min[ At ] H = Hj A and AA = K Since t is a jump time of }7 we can find a decreasing sequence
Sp |t Satlsfymg that s, € {r > ¢ : H, = H; = min [t,r] H} By right-continuity, A 1 ! A and
for every n, it must hold that Y = HA Tt follows that conditions (i) and (ii) of Lemma 6.40
are satisfied by H at tlme A , which gives that A_ is a jump time for X. Further, since dA is
supported on {t > 0 : Wy = x} we have WA = 2 which contradicts (6.20). This concludes the
proof that A; ! is a debut-time for (p, W). Moreover, clearly condition Lemma 6.44-(i) is fulfilled
as well by H at time A;l proving that A ! belongs to DS . Now, recall from Lemma 6.25 that
the mapping g : u — g(u) for u € D is a bijection between D and D°. If we write u := g_l(At__l)
for the corresponding excursion debut associated to At__l by the bijection g, by Lemma 6.44 we
have that u belongs to D. Finally, since g(u) = Ag(,) = t this proves that the mapping g is
surjective, and concludes the proof of the proposition. O

By Proposition 6.45, the first entries of the atoms on the following pair of measures

2 Szt and Y Lig LAk
UED+ tGRJr
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coincide Py, o and N, ¢ — a.e. To establish Theorem 6.40 it remains to show that for every
ue€ Dy, we have L:(p*, W) = AX Agwy- This fact will be obtained, as we mentioned previously,
as a straight consequence of the crucial relationship linking the local times at the branching points
of T}, and the family of processes (L*(p", W*") :u € D).

6.8.2 The local time at the branching points of T3

For every u € D, write (a;(u), Bi(u))ico, for the connected components of the complement in
(0,0(W*™)) of supp dL*(p*, W*"), with the convention that if L} (p", W*) = 0 we let Q,, := {0}
and therefore (ag(u), Bo(u)) := (0,a(W")). We set X := {(«;(u), Bi(u)) : uwe D, ie Qu}. Next,
for every u € D and t > 0, we introduce the time change

t
ou(t) = Jo d‘Sl{/A\S:eu} as well as o, H(t) := inf{s = 0 : oy (s) > t}.
We write o, }(t—) for the left limit of o, ! at . Roughly speaking, o, (t) measures the amount of
time spent by (pg(s) : s = 0) in C,, up to time ¢. Next, consider the mapping q on X defined for
every (a;(u), Bi(u)) € X by the relation:

alai(u), Bi(u)) := (o (ai(w), 0 (Bi(u)-)).

To simplify notation the interval on the right-hand side is denoted by (g(u, 1), d(u,4)). Finally,
denote the family of connected components of (supp dA)¢ by A”.

Lemma 6.46. Under Ny o and Py 50, the mapping q : X — X' is a bijection between the sets
X, X'. The bijection q is characterised by the following property: for every fized uw € D, i € Q,,
we have

(O, (W00 (2 Wy M) e guipy (i) £ = 0) = (0" W™, )t () nsta) 1 E = 0). (6.90)

Note that (6.90) in particular ensures both that d(u,i) — g(u,7) = a;(u) — B;(u), and that for
t € (g(u,i),d(u,1)), the mapping o, is linearly increasing while every other o, with v’ # wu it
remains constant.

Proof. Recall from (6.51) that the support of dA is precnsely the complement of the constancy
intervals of A. We start arguing under Nxo First, since WU # x a.e., we can find a unique
(g4, dx) € X such that U € (gs,dy). Namely, g, = sup{s < U : A, # /A\U}, dy = inf{s > U :
A, # /A\U} On the other hand, let up := u(U) be the unique excursion such that pg(U) € C,,.
With the notations of Proposition 6.20, note that o, (U) = ZkelC’ro o(Tre(p*, WF)) as well as the
identity

(O, (wo) (w0, W), PG o Tt P o T ) = Sp(p™, W), ) (6.91)

Further, there exist a unique connected component in the complement of supp dL*(p"o, W¥0),
that we denote by (au(up), Bx(up)) € &, such that we have o,,(U) € (ax(ug), Bx(up)). Namely,
ax(up) = sup{s < oy, (U) : s € supp dL*}, Bu(ug) := inf{t = oy, (U) : Lf(p", W) >
L;uo(U) (p"o, W o)} Let us now prove that q(ax(uo), B«(uo)) = (g«,dx). In this direction, with
the notations introduced in Section 6.5.2 and at the end of Section 6.7, we consider the process

50 [ E* k ok =¥ ?O — .
‘/1‘/(7)5 ) = ZLtAﬁk—t/\Oék(p 7W )7 = 07 and — (7)[1} ) - Z 5(‘/()5;) pkj’nk,j7Wk’J)'

kekr, kekry,J€rg i
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Recall from Proposition 6.20 that conditionally on (KU,VOO(P;}O)), the measure E*(P{J’O) is a

Poisson measure with intensity 1[0 Vw(PQO)](r)dTN%O(dpﬂ dn,dW). By the relation (6.83), for

. 0 e
t > 0 we can write V;(P/;") = L* g (U+1) (pto, WhHo) — LZUO(U) (pto, W¥) and we distinguish two
cases. Suppose first that Voo(Pg O) > 0, and for £ = 0 we set

~ —_ k7

At( ::70) = Z AtA]Bk j—tACMk j 1te(ak7jw8k,j)'

kekry €Lk

As a straight consequence of the special Markov property and the fact that under N, o, /AXt > () for
every t € (0,0), we get that inf{t > 0: Ay(E] ) > 0} and inf{t >0 Vt(P;}O) > 0} coincide. This

implies that dx and inf{t > 0: L% (t)(pUO, W) > L* ) (p"o, W)} coincide, and we deduce
that

ot (Be(ug)—) = inf{t = 0: 0y (t) = Bi(ug)} = inf{t >0 L;uo(t) > L:uO(U)(Puoa WU} = d,.

We stress that to derive the second equality we used the special Markov property. Suppose now
that Vi, (Pp; %) = 0. On the one hand, this yields that s (ug) = o(W"), while on the other hand
argumg as before we deduce that A is constant on (U, d(ug)). Noting that nf [g(uo),d(uo)+] A<
Ad(uO) for every £ > 0, this proves both that o '(B.(uo)—) = d(ug) and that the later coincides
with d,.

From our previous reasoning and the relationship between the respective spines (6.91) we infer
as well that (0, ) (p, W, /A\)(HU)Ad* 1t >0) = ((p“o,W“O,ﬁuo)(t+au0(U))Aﬁ*(uO) :t>0). An

analogous inspection of the left spine gives that quol(oz* (ug)) = g« as well as the identity

O, ) (s Wi R) (14 gyt 2 = 0) = (0", WU, L) (4 v () B (ute) © £ = 0).

By making use of Lemma 6.43 it plenty follows from our reasoning that q is a bijection between
the sets X, X' and that it fulfils property (6.90). O

We are now in position to prove the crucial relation between the family of local times at
the branching points of the subordinate tree 7T - in the sense of Lemma 6.2 - and the family
(L*(p",W") : w e D). This will conclude the proof of Theorem 6.40 and will be crucial as well
for establishing Theorem 6.42.

Proposition 6.47. For every u € Dy and with a slight abuse of notation, we write X&“, AT for
the local times at the branching point pg o g(u) in Tg. Then, Ny g-a.e. for every u € Dy we have

Y4 ® N, * *
i = Ly (0" W), Nl = Ly(p*, W) — Ly (" W) (6.92)
and in particular A)?Ag(u) = Li(p", WH*).

Proof. We shall make use of the notations and results of Proposition 6.20 and in this direction
we start arguing under Ey ® N*. Recall that conditionally on the triplet (J,, jg, ¢), the mea-
sures =*(M?), Z*(M") are independent Poisson measures with respective intensities given by
Lio,v (Mo (r)drNg o (dp, dW) and L0,V (M) (1)drNz o(dp, dW). By the exact same argument
employed in the proof of Lemma 6.2, using the fact that Ny (sup, A; > €) = N(sup, Hy > ¢) by
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(6.53), we have

A’w =M AP
Vip (M) — i AT € ZTM ) csupy At = cp (6.93)
Eio (S tAt > 6)
—x N
Vio(M?) = lim #{A’” € ETM) : supy Ay > )
el0 N o(sup; At > )

the convergences holding point-wise Fy ® N*-a.e. On the other hand, by Lemma 6.2 and with
the notations of Lemma 6.2, we have the following a.e. convergence under N?, 0

Rl H#{H a, < Ay, sup; f[f >el . #{Akez (731“) suptA > ¢}
)‘A = lim = lim

i B i} (6.94)
e=0 N (sup; Hy > ¢) el0 N, o(sup; A > ¢)

with an analogous result holding for X%L] Since the measure Oy is a Poisson measure with
intensity 1y 3 ]( PdrE® @ Nu((Jy, Jy, &, MY MT) € dz), this proves that N} o a.e., for every
l, € J(Ay) and if we let (r;, pU,nU, WU,PU ,73 ) be the unique atom of O such that r; = £,
we have the identities )\ = VOO(P 9, )\xj = Vio(P}}'). By making use of a similar reasoning
for the tip (pU,nU, W[(},Péo,?ro) these identities hold as well for ¢ = 0, ¢, = AU as soon as
ue Dy. Since Voo(Py') = L* o) (P W), Vi (P = Ly (o W) = L2 ) (0", W) it follows
that Ny o a.e. for a dense set of times ¢ in (0,0) identity (6.92) holds for every u € D;. The
statement of the lemma now follows by continuity and recalling that for every ¢ > 0, we have
AU X = AKXy 0O

g(u)

The previous proposition concludes the proof of Theorem 6.40.

6.8.3 Reconstruction of the tree-like path (H, I//[\/)

This last section is devoted to proving Theorem 6.42. Recall that to achieve this it suffices to
show that (H,W) can be recovered from the excursion process £. In this direction, with the
notations of Lemma 6.46, for every u € D,i € Q, we let H%" : (HZ‘ (W) +D) ABi() t = 0),
Wi .= (W(ai(u)ﬁ),\ﬁi(u) :t > 0). Recall that {(g(u,),d(u,i)) : we D,i € Q,} are the connected
components of (supp dA)¢ as well as the relation (6.90). Now, we consider the measure

/. .
5 T Z 6(Ag(u,i),H“’i,W“’i).
ueD i€ Q,,

In Proposition 6.49 below we shall provide a reconstruction of the pair (H, 17[\/) written in terms of
& and H. Therefore, the following lemma is the last steeping stone towards establishing Theorem
6.42.

Lemma 6.48. The measure &' can be constructed from .

Proof. Since the family (Ag(u), HwE, I//[\/“”')%D’Z-EQH is £-measurable, it remains to show that the
same still holds if we replace Ay, by Ay ). Now, this will follow as soon as we show that, for
every u € D and i € Q,, it holds that

: CYlu s U U : * U U
i) — infla > 0: Ay = Lai(u)(p , W) | if =lf}m(u)(up ,Vl/ ) >0, (6.95)
Ag(u) if Lai(u)(p , W) =0.

A



Chapter 6. The excursion theory 308

Let us be more precise: the family (Ag(u), X&u)ueD . is a function of H , which on its turn is a
functional of & by Theorem 6.40. Since the family (Agy), in(u) (p", W) uep, ico, can also be
obtained from &, this would prove that Ay, ;) is £-measurable. Fix v € D, i € Q, and let us
assume first that L* () (p*, W*) = 0. Then, it must hold that «;(u) = 0 and by definition of q
we get g(u,i) = q(aj(u)) = g(u). This proves the second equality in (6.95). On the other hand,
if L7, () (p*, W) > 0 the variable Ay, ;) is a time of left increase for M~ see argument below -
and therefore, we have that

A —inf{a >0:\o% = XEAU }.

g(u,3) g(u,i)

Now, by Proposition 6.92 and definition of the bijection q we have the equalities:
= L5 (guiny (P W) = Ly, (0%, W)

proving the first equality in (6.95). This concludes the proof of the corollary and it remains

Yl
)\A

g(u,i)

to show that Ay, is a point of left increase for Mot when in(u)(p“,W“) > 0. Arguing by
contradiction, suppose that the latter does not hold. Then, since g(u, ) is a point of left increase
for A, for some € > 0 small enough it must hold that

Loty (0 W = X0 = A0 = i (0 ).
Since a;(u) is a point of left increase for L*(p", W), the process o, must be constant in the interval
(g9(u,i) —¢, g(u,i)). The hypothesis L:u(g( .))(,0“, W) > 0 ensures that A in such neighbourhood

u,i
must be strictly larger than ¢, and therefore there must exists an excursion of A away from £,
ending at d(u, ). In particular, on the event U € (g(u, ), d(u,i)) we can find an event of positive
measure at which the measure E(Péo) has an atom with first coordinate equal to L (p", WH).
However, this is impossible since the family (in(u)(p“, W) :ie Q,) is measurable with respect

to (p*, W4). O
The following proposition concludes the proof of Theorem 6.42.

Lemma 6.49. The process (Hy, Wt 1t = 0) can be recovered from the excursion process £.

Proof. By Lemma 6.48 and Corollary 6.41, it would suffice to show that we can express (H, W) in
terms of the measure & and H. While the reconstruction of W from &’ does not present additional
difficulties, the one of H still requires of some additional work that we shall now address. In this
direction, we argue under N} ;. For every u € Dy we set T, := inf{t > 0 : Ly(p",W") >
A%“{X}#op
X', say (g(uo, o), d(uo, 7)) € X', so we can replace Ay by Ag(y, ;o) in our definition of T,,. The

while if u € D\D, we simply let T, = 0. Note that U belongs to some element of

bulk of the proof consists in proving that Hy can be decomposed as follows:

Hy= ), Hf +H? (6.96)
ue D, u#uo
with our usual notation ug := u(U). First, recalling the law of (Hy, W) under N} o from

Proposition 6.17, we can write
HU = inf{h =>0: AU(h) = KU} + egz(WU)(HU)
= > @ Wo) = m(Wo)) + HE (1 (6.97)

Ti<AU
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where in the second equality we used (Hz). We next fix an arbitrary ¢, € J(Ay) and let
(i, p%, 77}'], Wé, Pgi, 7381) be the unique atom of O such that r; = £,. Since the characteristic
measure of Oy is precisely EY@N*, Lemma 6.39 ensures that the corresponding debut u belongs
to D,. Further, let us check that the following identities hold:

i (Wo) =70 (Wo) = HE gy = Hi, (6.98)

The first equality follows from observing that o, (U) = X xcpcr o (Try(pF, WF)) - where the atoms

in the right hand side belong to Péi - while the second one is essentially a consequence of
Proposition 6.47 and Lemma 6.39. Let us be more precise on this last point: first, by Proposition
6.47 we have L* pt W) = )\KAZU which gives that T, = ¢, (U). On the other hand, Lemma

ou(U) (
6.39 and an application of the special Markov property yields that

L;H(U)(p“, W) < L:u(U)+5(pu7 W)

for every € > 0. This shows that T,, = 0,,(U) and (6.98) follows. Observe that if ¢, ¢ J(Ay) U
{Ay}, then oy (U) is either null or equal to o(W"). If we further assume that u € D, by
Proposition 6.47 we infer that X%LJ is either null or equal to the total mass L:’;(Wu)(p“, W), and
therefore T, € {0,0}. Noting that if u € D\D4 by definition we have T,, = 0, we infer that in
any case it holds that Hy = 0. Identity (6.96) now follows from combining this fact with (6.98)
and equality (6.97). Our argument under N;,o yields that for a countable dense set of times in
(0,0), we have the identity
H = » Hf+ H,,((f)< t) (6.99)
ueD, uu(t)
where the process on the right-hand side is continuous on (g(u, ), d(u, 1)) for every u € D,i € Q,,.
Let us now finally describe the reconstruction of the pair (H, W) in terms of (&', H ). First,
consider the following caglad process

Z(a):= > o(W")la, . <ap fora=0.
Ag(u7i>65’

We write Z(a+) for its right limit at time a and observe that o(W%!) = d(u,i) — g(u,i). If we
fix an arbitrary (g(u/,i"),d(u’,")) € X', the fact that N, o a.e. the integral SO dsl{Ws
ensures that (Z(Agqy i), Z(Agw.in+)) = (g(u ,~z N,d(u',7")). Let us then construct (Hy, Wt) for
for every ¢ € (g(u/,4"),d(u’,i")) in terms of (', H). In this direction, we let s := ¢t — g(u/,i") and

o) is null

we proceed as follows:
1. Consider the family of local times (;\f’“)ue p. at the branching points of H.

2. For every w € Dy, we set T, := inf{t > 0 : Lf(p", W") = Xilu 3! and let

g(u/,i") {)‘éu >0}
T, =0if ue D\D,.

g(u,i)

3. Making use of identity (6.99), we can write
Hy= Y HY +HYY  and W, =W

ueD u#u’

This concludes the proof of the proposition. n
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6.9 Appendix

In this appendix we include a technical lemma that was excluded from the main discussion for
readability purposes.

Lemma 6.50. Forte R, let z(t) :=inf{s >t : Hy < H;}. Under P and N, a timete€ R, is a
gump time of X if and only if

(i) For every d >0, inf,_5, H < Hy
(ii) For every e > 0, there exists u € (t,t + €) such that Hy = H,, with inf, ;. H = H;.
When these properties hold, z(t) coincides with inf{s >t : Xs = X;_}

Note that since H has no constancy intervals, (ii) implies that for every ¢ > 0, we can also
find u € (t,t + ¢) such that Hy < H,.

Proof. We shall only prove the result under P. The collection of jump-times of X is countable
and can be written as a disjoint union of stopping times. We write T" for an arbitrary stopping
time such that AX7 > 0. We shall also write ) for the collection of times that fulfil both (i) and
(ii).

e Let us start by proving that every fixed stopping time 7" at which AXp > 0 fulfils properties
(i) and (ii). Let us start by establishing the former and in this direction we shall make use
of the notations introduced in (6.3). First, note that since for every fixed ¢ > 0, the process
(Xs : 0 < s < t) has the same distribution as (X; — X;_5)— : 0 < s < t), the strong Markov
property combined with the fact that 0 is regular for (0,00) for X yields 7" can not be a local
infimum. Now, fix an arbitrary rational ¢ > T" such that X7_ < I7;. Note that by the definition
of Hy as the local time at 0 of the time reversed process S® — X® in [0,¢], we have that for any
u1 < ug < ug belonging to the set {s € [0,¢] : X,— < Is;}, it holds that H,, < H,,. Moreover,
since T' is not a local infimum, for any & > 0 we can find some u € (T — ¢, T'] belonging to the set
{s€[0,T]: Xs— < I} It now follows that both u,T € {s € [0,¢] : Xs_ < I5;} and we deduce
that H, < Hp. We now turn our attention to (ii) and in this direction let us start by introducing

some notation. For ¢ > 0 we write Xt(T) = Xryy — X, ]t(T) = inf[g XD and pgT) for the
corresponding exploration process. Further, for r € Ry we set T,.(I) := inf{t > 0: —1; > r}.

Since pr({Hr}) = AXr, it follows by the strong Markov property of the exploration process (see
(1.13) in [43]) that for any 0 < t < Tax, (I'")), we have

H(pryt) = H(k_jopr) + H(p{") = Hr + H(p").

Since X (T) has the same distribution as X, the point 0 is regular and instantaneous for X (1) (™),

and since a.e. we have {t > 0 : X,;(T) - ]t(T) =0} ={t>0: pgT) = 0} we infer that (ii) holds.
Now, the fact that z(T') coincides with T+ inf{r > 0 : 1D = AXr} readily follows again by
the strong Markov property.

e Let us now show that every T € ) is a jump time for X. To achieve this, it suffices to show
that such a time ¢ must be a discontinuity time for p — with respect to the total variation distance
of measures. Indeed, by (1.12) in [43] we know that the discontinuity times of p are precisely of

the form p, = py— + g, AXy, forue {s > 0: AXs > 0}. Now, to show that p is discontinuous at
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time ¢, it plenty suffices to show that p;— ({H:}) = 0 while p;({H¢}) > 0. Starting with the former,
note that by (i), there exists a decreasing sequence of positive numbers (0, )n>0 with d,, | 0 such
that H(p;—s,) < H(pt). Hence, for every n = 0 it holds that p;—_s, ({H:}) = 0, and it follows by
left-continuity that p— ({H;}) = 0. Let us now show that p¢({H;}) > 0. It readily follow from our
definitions that we can construct a non-increasing sequence of stopping times 7, | t satisfying
for every n > 0, that Hy = H,, = minf, ;4 H for some ¢ > 0 which depends on n. Remark
that the condition inf[, . ,, H = Hr, ensures, by the strong Markov property of the exploration
process, that p, ({H,}) > 0 and consequently p. ({H;}) > 0. Moreover, since if s, s’ are distinct
jump-times it must hold that Hg # Hg, the sequence (p, ({H:}) : » = 0) must be non-decreasing
and by right-continuity of p we get p;({H;}) > 0. This proves that ¢ is a jump-time for p and
concludes the proof of the lemma. n
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