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˚Universität Zürich, Institute of Mathematics, Switzerland. jean.bertoin@math.uzh.ch
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Abstract

Self-similar Markov trees constitute a remarkable family of random compact real trees carry-

ing a decoration function that is positive on the skeleton. As the terminology suggests, they are

self-similar objects that further satisfy a Markov branching property. They are built from the

combination of the recursive construction of real trees by gluing line segments with the seminal

observation of Lamperti, which relates positive self-similar Markov processes and Lévy processes

via a time change. They carry natural length and harmonic measures, which can be used to

perform explicit spinal decompositions. Self-similar Markov trees encompass a large variety of

random real trees that have been studied over the last decades, such as the Brownian CRT,

stable Lévy trees, fragmentation trees, and growth-fragmentation trees. We establish general

invariance principles for multi-type Galton–Watson trees with integer types and illustrate them

with many combinatorial classes of random trees that have been studied in the literature, in-

cluding (possibly dissipative) discrete fragmentation trees, peeling trees of Boltzmann (possibly

Opnq-decorated) planar maps, or even the more recent fully parked trees.



Chapter 1

Introduction

Since the early 1990s and the introduction of the ubiquitous Brownian Continuum Random

Tree (CRT) by Aldous [8], random real trees have become central objects in probability theory.

Apart from their obvious applications to scaling limits of population models, they emerge in

a variety of areas ranging from superprocesses, combinatorial optimization (minimal spanning

trees), and analysis of algorithms to Liouville Quantum Gravity and the construction of the

Brownian sphere [93]. For standard textbooks on the subject, see [69, 65, 96]. In particular,

two important classes of random real trees have been known for a long time: the Lévy trees of

Duquesne–Le Gall–Le Jan [63, 101], which are the scaling limits of discrete Bienaymé–Galton–

Watson trees, and the fragmentation trees of Haas–Miermont [79], which are the genealogical

trees underlying self-similar fragmentation processes [18]. The intersection of these two classes

consists of the one-parameter family of stable trees, which generalize the Brownian CRT and

have proved to be crucial objects in random geometry [52]. In this work, we considerably broaden

the former and introduce the self-similar Markov trees. We prove that they appear as scaling

limits of many natural discrete models of trees that already popped-up in the literature, and

pave the way for their systematic study.

Chapter 1

Topology of decorated real trees

Decorated real trees are central objects in this work. They consist of a compact real tree T

equipped with a root ⇢ and a finite Borel measure µ, and some function g : T Ñ R`, which

we refer to as a decoration and is typically discontinuous at branch points. We are interested

in the convergence of sequences of such objects, and therefore, we first have to define a notion

of closeness for two functions on two di↵erent domains. The purpose of this chapter is to

briefly introduce a convenient formalism, and to stay on safe ground as soon as randomness

and measurability will be involved, we represent these as elements of some Polish space. In

this direction, we shall always impose that the function g is upper semi-continuous (usc in the

sequel), that is the superlevel sets tx : gpxq • ru are closed for every r • 0.

Figure 1.1: Illustration of a tree (embedded in the plane R2) decorated by the hypograph

of an usc function in the third (vertical) dimension.
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Figure 1.1: Illustration of a self-similar Markov tree (embedded in the plane R2) where

its decoration function is represented in the third (vertical) dimension.
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I. Self-Similar Markov Trees

The goal of this monography is to define and study the random rooted real trees pT, dT , ρq, where
ρ P T is a distinguished point called the root, which further support a function g : T Ñ R`,
positive on its skeleton and referred to as a decoration. See Figure 1.1 for an illustration. Infor-

mally, a self-similar Markov tree (ssMt in short) is a family of laws pQxqxą0 on the Polish space

of decorated compact random trees (see Chapter 2 for a presentation of the topology) together

with a real number α ą 0, called the self-similarity index, so that the following properties hold:

• Initial decoration. Under Qx, the decoration at the root is gpρq “ x.

• Self-similarity. For every x ą 0, the law under Q1 of the rescaled version pT, xα ¨dT , ρ, x ¨gq
is Qx.

• Markov property. For any height h ě 0, conditionally on the subtree tu P T : dT pρ, uq ď hu
up to height h and on its decoration, the decorated subtrees above height h are independent

and each has the law Qy, where y is the decoration at the root of the subtree (see Chapter 5

for proper statements and Figure 1.2 for an illustration).

Figure 1.2: Illustration of the Markov property (left) and the self-similar property

(right). The color of the root of a tree is meant for its decoration. Left: Conditionally

on the black structure of the tree up to height h and on the decoration (colors) of the

root vertices, the dangling subtrees (in gray) are independent.

A related Markov property (without decoration) was employed in [137] to characterize Lévy

trees. Of course, random real trees carrying functions have been considered before in the litera-

ture. One may think e.g. of the genealogical trees underlying superprocesses [108] as constructed

in [65]. One important difference though, is that usually for superprocesses, the spatial displace-

ments is merely superposed on the branching structure, whereas in our case, the branching and

the decoration are intimately tighten. Still, we borrow a lot from this theory, in particular in our

rigorous treatment of the Markov property. When the tree is merely a segment, the decoration
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is given by a positive self-similar Markov process (pssMp). The latter have been studied in the

pioneer work of Lamperti [91], who notably identified positive self-similar Markov processes as

being time changed of exponential of Lévy processes, see [89, Chapter 5] and our Section 3.2.

It follows from the well-known Lévy–Khintchine–Itô decomposition of Lévy processes that the

distribution of pssMp is hence determined by a self-similarity exponent α P R together with

the characteristic triplet pσ2 ě 0, a P R,Λq of the underlying Lévy process ξ. More precisely,

Λ is the so-called Lévy measure on R Y t´8u, it integrates 1 ^ x2 and its mass at ´8 de-

noted by k :“ Λpt´8uq, serves as killing rate. The drift depends on the choice of cutoff in the

Lévy–Khintchine formula, and in this work we use the standard cutoff y ÞÑ y1|y|ď1. We have

E
`

exppγξtq
˘ “ exp

`

tψpγq˘,

where

ψpγq :“ ´k ` 1

2
σ2γ2 ` aγ `

ż

R˚

`

eγy ´ 1 ´ γy1|y|ď1

˘

Λpdyq.

Furthermore, to ensure that the pssMp gets absorbed at 0 in finite time a.s., α must be positive

and the Lévy process ξ must either drift to ´8 or be killed.

The first part of this work can be seen as the branching analog of the seminal contribution

of Lamperti that we just sketched. We provide a rigorous setting (in particular a topology on

the space decorated real trees, see Chapter 2) and construct what we believe are essentially the

most general (positive) self-similar Markov trees. In a nutshell, we shall see a decorated tree

pT, gq as a closed subset Hyppgq of the space T ˆ R` where the base space is the tree T , via its

hypograph

Hyppgq :“ ␣pu, xq P T ˆ R` : x ď gpuq(.
To ensure compactness of the latter, we shall impose that T is compact and g is upper-semi

continuous. See the numerous illustrations below for a visualization of this concept. As for

pssMp, ssMt are characterized by their self-similarity index α ą 0 together with a Gaussian

coefficient σ2 ě 0, a drift coefficent a P R, and what we call a generalized Lévy measure Λ

which is a measure on the product space S “ r´8,8q ˆ S1, where S1 is the space of non-

increasing sequences

S1 :“
␣

y “ pyiqiě1 : y1 ě y2 ě ... P R Y t´8u(.

We also require that the image measure Λ0 of Λ by the first projection py,yq Ñ y is a usual

Lévy measure, that is, integrates 1 ^ y2. We then refer to pσ2, a,Λ;αq as a characteristic

quadruplet. Roughly speaking, we extend the idea of Lamperti and construct ssMt through a

time change of the exponential of branching Lévy processes, which have been introduced and

studied recently by Bertoin–Mallein [26]. Heuristically, the evolution of the decoration along

distinguished branches of the tree are pssMp given as the time-change exponential of the Lévy

process ξ with characteristics pσ2, a,Λ0q. Let us give an informal interpretation of the generalized

Lévy measure. Recall first that in the pssMp case, if the process is at state x ą 0, then it jumps
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to state x ¨ ey with a rate xα ¨ Λ0pdyq. If one then imagines a ssMt as the genealogical tree of

a cloud of independent particles, then each particle of mass x ą 0 becomes a particle of x ¨ ey
and in the same time gives rise to a cloud of new particles of mass x ¨ pey1 , ey2 , ...q at a rate

xα ¨ Λpdy,dpyiqiě1q.
Many properties of ssMt are encapsulated by the so-called cumulant function defined by

κpγq :“ ψpγq `
ż

S
Λpdy,dyq

˜ 8
ÿ

i“1

eγyi

¸

,

which can also be seen as the Biggins transform or moment generating function of the underlying

branching Lévy process. To ensure non-explosion, we assume that κ takes negative values, which

will sometimes be referred to as sub-criticality, and we leave open the construction of ssMt in

the critical case minκ “ 0, see Section 3.4.

Informal Result (Construction of self-similar Markov trees). For every characteristic quadruplet

pσ2, a,Λ;αq such that κpγq ă 0 for some γ ą 0, there exists a family of laws pQxqxą0 of decorated

random trees T “ pT, dT , ρ, gq which are self-similar with exponent α ą 0 and fulfill the Markov

property.

As already mentioned, the decoration g along branches of T evolves according to a pssMp

with characteristics pσ2, a,Λ0;αq, and the generalized Lévy measure Λ induces a way to“explore”

branches within T . However, contrary to the case of pssMp, different characteristic quadruplets

can produce the same ssMt, and we identify precisely when this happens in Section 6.3, using a

concept of bifurcators that is adapted from [123, 131].

Properties of ssMt and their random measures

Regarding the Markov property, we will in fact describe various Markov decompositions in

Chapter 5. We then establish several basic properties of ssMt, including the computation of

their Hausdorff dimension, by studying natural finite measures on ssMt. Real trees are naturally

equipped with the length measure, i.e. the 1-dimensional Hausdorff measure, which may be

thought of as the Lebesgue measure on T and is therefore denoted by λ. Although λ is not even

locally finite in most cases of interest, the decoration function g enables us to circumvent this

issue. We consider the measures dλγ :“ gγ´αdλ supported by the skeleton of T and which we

call weighted length measures. We show that the latter has a finite total mass provided κ takes

negative values before γ, see Proposition 3.11. In particular, by self-similarity, we have

λγpT q “
ż

T
dλ gγ´α under Qx

pdq“ xγ
ż

T
dλ gγ´α “ xγλγpT q under Q1,

so that the weighted length measures λγ are self-similar with exponent γ. In most situations,

there is yet another natural finite measure on T , denoted by µ, which is supported by the leaves

of T . Its construction requires a more stringent hypothesis on κ, that we call the first Cramér

hypothesis. This requires the existence of ω´ P p0,8q so that

κpω´q “ 0 and κpqq ă 0 for some q ą ω´.
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The formal slightly more restrictive condition is given by Assumption 3.12.

Informal Result (Harmonic measure). Suppose pσ2, a,Λ;αq satisfies the first Cramér hypothesis.

Then, as γ Ñ ω´ the renormalized length measure ´κpγq ¨ λγ converge in probability towards a

measure µ supported by the leaves of T .

The measure µ is called the harmonic measure since it is connected to the so-called har-

monic or additive martingale in the branching random walk underlying our construction of

T “ pT, dT , ρ, gq. Alike the weighted length measures, the harmonic measure is self-similar with

exponent ω´. The harmonic measure is natural in many respects and it is for example used as

a Frostman measure to compute the Hausdorff dimension of T :

Informal Result (Hausdorff dimension). Suppose pσ2, a,Λ;αq satisfies the first Cramér hypoth-

esis. Then almost surely, T has Hausdorff dimension

dimHpT q “
´

1 _ ω´
α

¯

, a.s.

This result considerably extends the fragmentation case [78] or the growth-fragmentation

case [124]. We then use those finite measures to provide spine decompositions of our decorated

random trees. Roughly speaking, we use ´κpγq ¨ λγ , for γ such that κpγq ă 0, or µ, which can

thought as the extremal case γ “ ω´, to distinguish a point ρ‚ at random in T . The branch

rrρ, ρ‚ss connecting ρ and ρ‚ is then called the spine. Using the Markov property, we shall see

that the decorated trees dangling from the spine are, conditionally on their initial decoration,

independent ssMt with characteristics pσ2, a,Λ;αq. However, the evolution of the decoration

along the spine is now governed by another set of characteristics pσ2, aγ ,Λγ ;αq explicitly given

in terms of pσ2, a,Λ;αq, and in particular, the Lévy Khintchine exponent ψγ of the Lévy process

underlying the pssMp evolution along the tagged branch is simply given by

ψγpzq :“ κpγ ` zq.

As the reader may know, spinal decompositions are essential tools in branching process theory

and are also instrumental in many of our proofs. The spinal decomposition can also be seen

as a more intrinsic and geometric description of the law of the ssMt. Indeed, as we alluded to

above, several characteristic quadruplets pσ2, a,Λ;αq can yield to the same ssMt. However we

shall see in Corollary 6.13 that the quadruplet pσ2, aγ ,Λγ ;αq generically uniquely specifies the

law pQxqxą0 of the ssMt. Furthermore, although the pssMp associated to pσ2, a,Λ;αq is quite

arbitrary, those appearing as the decoration along the tagged branch of a ssMt have special

properties, see Section 6.5 for details.

II. Examples

Self-similar Markov trees include many examples of important random (undecorated) real trees

that have appeared in the literature. They encompass in particular the fragmentations trees
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constructed by Haas and Miermont [78] as the genealogical trees underlying self-similar conser-

vative fragmentations processes [17], and the generalized fragmentation trees introduced recently

by Stephenson [134] to cover the dissipative case. If one considers ssMt as branching analogs of

Lévy processes, then the (generalized) fragmentation trees would correspond to the subordinator

case. More precisely, they consist of ssMt for which the decoration along branches is decreasing.

The fragmentation trees of Haas and Miermont had “no erosion” and were conservative: the

mass of particles is conserved in splitting events which in our case means that

Λ
´!

`

y0, py1, ...q
˘ P S :

8
ÿ

j“0

eyj ‰ 1
)¯

“ 0.

In such situations, it is plain that the first Cramér hypothesis is always satisfied with ω´ “ 1,

and in fact the decoration gpuq corresponds to the harmonic mass of the fringe subtree above

point u P T . In particular, we have µpT q “ x under Qx, so that the total harmonic mass

is deterministic. Fragmentation trees already include many interesting examples such as the

Brownian Continuum Random Tree (CRT) or more generally the stable trees. Specifically, it is

well known that the Brownian CRT T1 can be seen as the real tree constructed from a standard

Brownian excursion of length 1, say pe1psqq0ďsď1 as in [66, 97]. We denote its contour measure

by γe1 and endow T1 with the decoration which assigns to each vertex v P T1 the contour-mass

γe1pT1,vq of the fringe-subtree above point v, see Figure 1.3.

Figure 1.3: A simulation of a Brownian CRT. The tree is embedded (non-isometrically

in R2) and the decoration function representing the µ-mass above each point is depicted

in the vertical coordinate.

It follows then from [17, 135] that the decorated Brownian CRT is indeed a self-similar

Markov tree with self-similar with index α “ 1{2, no erosion, no Gaussian part and generalized

Lévy measure given by
ż

S
F
`

ey0 , pey1 , . . .q˘ ΛBropdy0, dpyiqiě1q :“
c

2

π

ż 1

1{2
F px, 1 ´ x, 0, 0, ...q dx

pxp1 ´ xqq3{2 ,

where F stands for a generic nonnegative functional on S. See Example 4.6. This well-known

and useful interpretation has already been used many times in the literature see e.g. [38].
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Perhaps more surprisingly, there are other representations of (a small variant of the) Brown-

ian CRT as a self-similar Markov tree which is not anymore a fragmentation tree. Consider this

time the Brownian CRT T p1q of height 1, i.e. the tree Tep1q coded by an Brownian excursion ep1q

of height 1.

We can endow T p1q with the deterministic decoration which assigns to each vertex v P T p1q

the height of the fringe-subtree T p1q
v rooted at v. See Figure 1.4 for an illustration. It follows

Figure 1.4: A simulation of a Brownian CRT normalized by the height. The tree is

embedded non-isometrically in R2; the decoration function represents the height of fringe

subtrees and is depicted in the vertical coordinate.

then by a classical decomposition of ep1q due to David Williams, that the decorated tree T p1q

is indeed a self-similar Markov tree with index α “ 1, no Brownian part, constant erosion and

generalized Lévy measure given by

ż

S
F
`

ey0 , pey1 , . . .q˘ΛHeightpdy,dyq “ 2

ż 1

0
F p1, px, 0, 0, . . .qqdx

x2
,

where F denotes a generic nonnegative functional on S. The cumulant function is easy to

compute and equals κHeightpγq “ ´γ ` 2{pγ ´ 1q for γ ą 1. In particular, Cramér assumption

holds with ω´ “ 2. As the reader may expect, the harmonic measure µ then coincides with (a

multiple of) the contour measure γep1q on T p1q, and in particular its total mass is now random. See

Example 4.5. These are not the only representations of – variations of – the Brownian CRT that

can be obtained using ssMt. In particular, in Example 4.12, we present another representation

based on the recent work of Aidekon and Da Silva [6], which connects growth-fragmentations

to planar Brownian excursions. In this example, the Brownian CRT is, roughly speaking, seen

as a ssMt where the decoration processes along branches are variants of the symmetric Cauchy

process, see Figure 1.5. We refer to Example 4.12 for details.

Luckily, there is more to life than variations on the Brownian CRT. The primary incentive for

developing the general theory of ssMt is its connection with random planar geometry. Motivated
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Figure 1.5: The decorated random tree Te associated with a half-planar Brownian

excursion. The tree is embedded non-isometrically in R2; the decoration function rep-

resents the horizontal X displacement in fringe subtrees and is depicted in the vertical

coordinate.

in part by 2-dimensional quantum gravity, the last few decades have witness spectacular devel-

opments in this field, notably around the Brownian sphere. This is a random compact metric

space almost surely homeomorphic to the 2-sphere [103] but with fractal dimension 4 [98]. It

has first been constructed as the scaling limit of random planar quadrangulations by Le Gall

[99] and Miermont [114] and since then appeared as a universal scaling limit model for many

planar graphs models see e.g. [99, 54, 31, 7]. The Brownian sphere has also been shown to be

the random metric induced by exponentiating a planar Gaussian Free Field (GFF) to the proper

power, see the works of Miller & Sheffield [116, 117] yielding to a so-called Liouville Quantum

Gravity metric [61, 75]. The Brownian sphere has a cousin, the Brownian disk [32], which, as

the name suggests, has the topology of a disk and is better suited to make the connection with

ssMt. Informally, the Brownian disk is a random compact metric space pS, dq homeomorphic to

the closed unit disk of the complex plane, and can be obtained as the scaling limit of generic

random planar maps with a large boundary [32]. In particular, we can define its boundary BS
as the set of all points that have no neighborhood homeomorphic to the open unit disk. We can

then consider, for every r ě 0, the ball Br “ tx P S : dpx, BSq ď ru. The topological boundary

BBr of these balls generically has infinitely many connected components pCir : i ě 1q, which all

have the topology of a circle and have fractal dimension 2. However it is possible to associate

a natural notion of “boundary length” p|Cir| : i ě 1q to them extending the classical notion of

perimeter, see [104]. Furthermore, as r grows, the connected components pCir : i ě 1q describe

a tree structure , see Figure 1.6 for an illustration and Example 4.9 for details. This tree is
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called the Brownian cactus and was first studied in [55]. We can then decorate each point of the

Brownian cactus with the associated boundary length.

r

Figure 1.6: Illustration of the Cactus of a surface S with a boundary BS. The ball

of radius r (measured from BS) is depicted in light gray and it has several boundary

components. When each of these components has a“size”, this enables us to decorated

the cactus tree (on the right).

It follows from the recent work [104] (see e.g. [23, 22]) that the resulting decorated tree is1

a (multiple of the) self-similar Markov tree called Brownian growth-fragmentation tree. This is

the ssMt with exponent 1
2 , with no Brownian part and generalized Lévy measure given by

ż

S
F
`

ey0 , pey1 , ...q˘ ΛBroGFpdy0, dyq :“ 3

4
?
π

ż 1

1{2
F px, 1 ´ x, 0, 0, ...q dx

pxp1 ´ xqq5{2 .

Notice that the Lévy measure ΛBroGF,0pdyq does not integrate y in the vicinity of 0 and so

compensation is involved in the definition. In particular, the drift term is non-trivial (and

explicit) and the cumulant function is equal to κBroGFpγq “ Γpγ´3{2q
Γpγ´3q , for γ ą 3{2. So that

ω´ “ 2 and the first Cramér hypothesis holds. We refer again to Example 4.9. The same ssMt

but with self-similarity exponent α “ 3{2 also appears as the scaling limits of many labeled trees

arising in the combinatorial literature associated with polynomial equations with one catalytic

variable [40], we refer to the forthcoming Part II for examples. We also refer to Chapter 4 for

other examples of ssMt related to α-stable processes for α P p1, 3{2s and which appear in random

planar geometry as well.

III. Invariance principles for multi-type Galton–Watson processes

The second main objective of our work is to develop robust invariance principles under which

multi-type Galton–Watson trees converge towards a self-similar Markov tree. These are devel-

oped in Part II of this work which shall be available soon. More formally, suppose that we

have a collection of particles which evolve as a multi-type Galton–Watson process with types in

N “ t1, 2, ...u. We denote the law of the process, starting from a single particle of type j ě 1,

1In the case when the base surface is a free Brownian disk, see [32]
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Figure 1.7: A simulation of the Brownian growth-fragmentation tree. The self-similar

Markov tree is binary and conservative: at each splitting event, the total mass is con-

served and split between two children.

by PGW
j and suppose aperiodicity for simplicity. Here also we stress that the type is intimately

tighten to the branching mechanism and should not be thought as a superposed spatial displace-

ment as for many superprocesses. It is easy to interpret such a branching system as a random

decorated tree pTGW, dTGW
, ρ, gq, see Figure 1.8 below.

In this direction, it will be convenient to systematically distinguish one child particle in each

non-empty progeny, for instance the child with the largest type, and then gather the remaining

children as a non-increasing sequence. Then, a reproduction event can be represented in the

form j ÞÑ pk0, pk1, . . . , kℓqq, meaning that a particle of type j gives birth to ℓ ` 1 particles with

types k0 ě k1 ě ... ě kℓ, and the first one with type k0 has been distinguished. The reproduction

law of the Galton–Watson process induces a family of (sub)probability measures pπjqjě1, where

πj ppk0, pk1, . . . , kℓqq

is the probability of the reproduction event j ÞÑ pk0, pk1, . . . , kℓqq for any given non-increasing

finite sequence k0 ě k1 ě ... ě kℓ in N. We now present the conditions on the reproduction kernel

pπjqjě1 ensuring the convergence of the rescaled discrete decorated trees towards a pσ2, a,Λ;αq-
ssMt. Recall that P1 is then the law of T “ pT, dT , ρ, gq when the decoration at the root is 1. The

most obvious necessary condition is the vague convergence of the renormalized kernel towards

the generalized Lévy measure Λ, namely

lim
nÑ8n

α ¨
ÿ

k0ě¨¨¨ěkℓ
πn

`

k0, pk1, . . . , kℓq
˘

f

ˆ

log
k0
n
,

ˆ

log
k1
n
, ..., log

kℓ
n

˙˙

“
ż

S
Λpdy0,dyqfpy0,yq, (♡)
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Figure 1.8: A representation of a Galton–Watson process with integer types as a random

decorated tree, see the forthcoming Part II for more details.

for continuous functionals f : S Ñ R` with compact support avoiding p0, p´8, . . .qq. In par-

ticular, the above assumption gives a clear meaning to the generalized Lévy measure: typically

a particle of large type n gives birth to an essentially single particle of type close to n, but

with probability of order n´α ¨ Λpdsq it gives rise to several particles pney0 , ney1 , . . .q of type

comparable to n. We further need a control on the drift and variance of the first coordinate,

see Part II for the proper definition and denote those assumptions by p♠q in this introduc-

tion. Extending a result of Bertoin & Kortchemski [24], the previous two conditions implies the

convergence of rescaled decoration-reproduction processes over long branches of TGW towards

the Markov decoration-reproduction process X associated with the characteristic quadruplet

pσ2, a,Λ;αq defined in Section 3.2. However, these two conditions are only asymptotic in the

particle-type and cannot account alone for the convergence of rescaled trees and does not even

guarantee that the tree TGW is finite under PGW
j . The latter is ensured by requiring the existence

of a super-harmonic function for the multi-type Galton–Watson process and the integrability

condition

lim sup
nÑ8

nα ¨
ÿ

pk1,...,kℓq
πnpk1, ..., kℓq

˜

ℓ
ÿ

i“1

ˆ

ki
n

˙q

´ 1

¸

ă 0, (♢)

in some open interval of p0,8q for the parameter q. The latter assumption is the discrete

counterpart to the sub-criticality assumption minκ ă 0 in the continuous. We prove that the

previous set of three assumptions is sufficient to imply the convergence of the rescaled decorated

tree in the Gromov–Hausdorff decorated sense, see Part II for the proper statement.

Informal Result (Scaling limits without mass measure). Suppose (♡),(♠) and (♢). Then as

n Ñ 8, we have the following convergence for the decorated Gromov–Hausdorff topology

ˆ

TGW,
dTGW

nα
, ρ,

g

n

˙

under PGW
n

pdqÝÝÝÑ
nÑ8 pT, dT , ρ, gq under P1.

11



The topology for this convergence is that developed in Chapter 2; it is adapted from the

classical Gromov–Hausdorff topology to involve the decoration as well. Let us now consider

more delicate versions of this result that incorporate measures. We fix a non-zero weight function

ϖ : N Ñ R` regular varying with exponent γ ´ α and write µϖ for the measure on TGW that

assigns a mass ϖpkq to each particle with type k. We let lϖGWpnq denote the expected mass of a

multi-type tree starting from a single particle of type n, i.e.

lϖGWpnq :“ EGW
n

`

µϖ
`

TGW
˘˘

.

We naturally aim for a scaling limit result of the measure decorated tree
´

TGW
nα , dTGW

, ρ, gn ,
µϖ

lϖGWpnq
¯

.

As in the continuous case, there is a big difference between the case γ ą ω´ and γ ď ω´. More

precisely, if γ ą ω´, the measure µϖ is essentially carried by the branches of TGW and converge

after renormalization towards the weighted length measure λγ (jointly with the converge in the

above result). However, in the case when γ ď ω´ the measure µϖ is now carried by the “leaves”

of TGW and converges towards the harmonic measure µ. Actually, proving this convergence

requires the discrete counterpart of the first Cramér hypothesis, that we denote by p♣q, see
the forthcoming Part II for details. Our discrete invariance principles recover those of Haas–

Miermont [79] in the fragmentation case. This was actually one of the main source of inspiration

for our convergence results. In particular, the requirement p♡q is the analog of the fundamental

hypothesis (H) of Haas–Miermont [79]. But the most interesting, by far, applications of our

invariance principles concern the discrete multi-type Galton–Watson trees converging to ssMt

where the decoration can exhibit growth. An important example in this direction is given by the

peeling trees underlying Boltzmann stable maps already considered in [22, Section 6] (see [23] in

the triangulation case). Let us describe that setting more precisely. Given a non-zero sequence

q :“ pqkqkě1 of non-negative numbers we define a measure w on the set of all bipartite planar

maps m (finite graph embedded in the sphere up to homeomorphisms, given with a distinguished

oriented edge) by the formula

wpmq :“
ź

fPFacespmq
qdegpfq{2.

We shall suppose that the weight sequence is admissible (the above measure is finite) and critical

(roughly speaking, the weights cannot be increased while staying admissible), see [50, Chapter 5].

We shall furthermore suppose that q is non-generic, in the sense that it satisfies

qk „ c κk´1 k´β as k Ñ 8, for β P
ˆ

3

2
,
5

2

˙

,

for some c, κ ą 0.2 For this choice of q, a random q-Boltzmann Mn conditioned on having n

faces (provided that the conditioning make sense) possesses “large faces” and converge in the

scaling limit

pMn, n
´ 1

2β´1 ¨ dgrq pdqÝÝÝÑ
nÑ8 Sβ,

2Actually, we will establish the result for a slightly more general form of non-generic maps.
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in law for the Gromov–Hausdorff distance, where Sβ is the β-stable carpet/gasket introduced

implicitly by Le Gall and Miermont in [102] and whose uniqueness has been very recently proved

in [56]. In particular, the limiting case β “ 2 corresponds to the Brownian sphere, see [112].

On the other hand, the dual maps M:
n (with large degree vertices) are much less understood3.

Although the typical distances in M:
n are known to be of order n

β´2
β´1{2 when β ą 2, see [42],

it is not known whether the metrics spaces pM:
n, n

´ β´2
β´1{2 ¨ dgrq are tight. One important tool

in the theory of random planar maps is the so-called peeling process, which is a Markovian

exploration procedure that discovers a map step-by-step, see [50]. This exploration actually

encodes a planar map into a binary labeled plane tree, which under the q-Boltzmann measure

is a multi-type Galton–Watson tree, see the forthcoming Part II for details. In the critical non-

generic case above, we prove that those trees satisfy our standing assumptions (♡,♠,♢,♣q with
α “ pβ ´ 1q for an explicit subcritical characteristic quadruplet pσ2, a,Λ;αq. As an immediate

corollary of this convergence, we deduce that the diameter of pM:
n, n

´ β´2
β´1{2 ¨ dgrq is tight. The

corresponding ssMt should play the role of the cactus tree in the potential scaling limits of M:
n

and this convergence thus lays the foundations for the definition of their scaling limits when

β ą 2.

Relation to previous works

As we said above, the main source of inspiration for this monography is the work of Haas–

Miermont [78, 79], where they constructed the self-similar fragmentation trees and established

invariance principles, see [77] for a beautiful set of lecture notes. To be more specific, the

fragmentation trees of Haas–Miermont [78], later generalized by Stephenson [134] correspond to

the family of self-similar Markov trees where the decoration g is decreasing along branches. A

powerful invariance principle for discrete fragmentation was established in [79] for the Gromov-

Hausdorff topology (using quite different tools as ours) and proved to be very useful in the study

of random trees [27, 129].

The definition of growth-fragmentation processes was given by Bertoin [20, 21] first in the

binary conservative case. The properties of growth-fragmentation processes were then studied

in much details, see e.g. [131, 136, 57, 29, 28] (the list is by no mean exhaustive). It was soon

realized that these processes encode the genealogy of real trees, and they were constructed by

Rembart–Winkel using the“string of beads” construction [124], which also inspired the construc-

tion of Chapter 3. In the self-similar case, those (decorated) trees are indeed examples of ssMt.

Growth-fragmentation processes were shown to appear in peeling exploration of random planar

maps [23, 22], directly within Brownian geometry [104] and in random plane Brownian excursions

[6]. We revisit these results in light of the ssMt theory. Let us in particular point to the paper

of Dadoun [58] which builds upon the techniques of [23] to establish an invariance principles

in the Gromov–Hausdorff topology for discrete (binary, conservative) self-similar Markov trees,

3For readers familiar with the theory of random maps, this is due to the lack of suitable bijective encodings à

la Schaeffer.
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appropriately truncated. As stated above, much of these works focus on the binary conservative

case until Bertoin–Mallein layed the foundations of general branching Lévy processes [25, 26]

which are closely related to our construction of self-similar Markov trees.

An important caveat, is that in many of the previous works the random mass measures and

the decorations on random continuous and discrete trees was neglected (it is “trivial” in the frag-

mentation case of Haas–Miermont). Establishing invariance principle for measured decorated

random trees pushed us to introduce an appropriate topology, find the appropriate assumptions

and develop new and wider proofs ideas. Most of our approach relies on construction of trees via

“stick-breaking” construction, i.e. by the recursive gluing of (decorated) branches. This is old

technique pioneered by Aldous [8] and which was revived recently [51, 124, 37] as an alternative

to the “contour function approach” [66].
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Index of important notations

To state our results, we use the standard Landau notation O, o and „ to compare the asymptotic

behavior of sequences at infinity. To help the reader navigate through these pages, we make a

list of some of the most important notation that are used across several sections.

Chapter 2

T “ pT, dT , ρ, gq a decorated tree where pT, dT , ρq is a real tree with root ρ

and g : T Ñ R` is the usc decoration.

rrx, yss segment between x, y P T
Tx fringe subtree above the point x P T
BT leaves (points of degree 1) of T

pfuquPU, ptuquPU˚ building blocks serving for the construction of T in Theorem 2.5

fu : r0, zus Ñ R` given decoration along rρpu, tq : 0 ď t ď zus
identifications at ρpu, tuiq “ ρpui, 0q “ ρpuiq

pmuquPU µ-mass of the subtree above ρpuq in Proposition 2.10

Tn tree obtained by gluing the first n generations in Theorem 2.5

λT Lebesgue measure on the skeleton of T

T a measured decorated tree, also denoted pT, dT , ρ, g, νq..
Tm space of equivalence classes of measured decorated compact metric spaces

T space of equivalence classes of (non-measured) decorated compact metric spaces

T‚,T‚I space equivalence classes of pointed decorated compact metric spaces

Chapter 3

pfu, ηuquPU decoration-reproduction processes of the individuals

pPxqxą0 decoration-reproduction kernels

pχpuqquPU types of the individuals

Px law of pfu, ηuquPU when χp∅q “ x

pPq one can apply Theorem 2.5 to the building blocks pfuquPU, ptuquPU˚

constructed from pfu, ηuquPU in Section 3.1

S1 space of non-increasing sequences in r´8,8q
S space of elements py,yq P r´8,8q ˆ S1

Λ generalized Lévy measure on S
Λ0 first marginal of Λ which is required to be a Lévy measure

Λ1 second marginal of Λ

k killing rate, i.e. “ Λpt´8u ˆ S1q
pσ2, a,Λ;αq characteristic quadruplet

ψ Lévy-Khintchine exponent associated to pσ2, a,Λ0q via (3.11)
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pξptqqtě0 Lévy process with Lévy–Khintchine exponent ψ

pXptqqtě0 pssMp associated with ξ via Lamperti transformation with index α ą 0

κ cumulant function defined via (3.19)

λγ weighted length measure gγ´αλT defined in Proposition 3.11

µ harmonic measure defined in Lemma 3.13 under Assumption 3.12

pω´, ω`q intervalle over which κ is negative

Chapter 4

acan “ a ´ ş

Λ0pdyqy1|y|ď1 canonical drift, well-defined when Λ0pdyq integrates 1 ^ |y|
finite branching activity Λ1

`

S1ztp´8,´8, . . .qu˘ ă 8
non-increasing acan ď 0 and Λptpy0, pyiqiě1q : Dyj ą 0uq “ 0

conservative Λ
´!

py0, py1, ...qq : ř8
j“0 e

yj ‰ 1
)¯

“ 0

fragmentation non-increasing conservative, acan “ 0 and k “ 0

binary Λ ptpy0, py1, ...qq : y3 ‰ ´8uq “ 0

growth-fragmentation conservative, binary and k “ 0

Chapter 5

Qx laws of the equivalence class of T P T under Px
pτqiPI subtrees dangling from a base subtree

T rεs tree obtained by keeping only individuals for which χpuq “ fup0q ě ε

BapT q ball of radius a centered at ρ P T

Chapter 6

pσ2, aγ ,Λγ ;αq γ-tilted characteristic quadruplet defined in Lemma 6.4

pXγ , ηγq decoration-reproduction process along the tagged branch

ψγpzq “ κpγ ` zq Lévy–Khintichine exponent of Xγ

T‚ “ pT, ρ‚q a pointed decorated tree

prQγ
xqxą0 laws of pointed decorated tree defined in (6.9)

ord the map py, pyiqiě1q P S ÞÑ pyj : j ě 0qÓ P S1

pσ2, a˚,Λ˚;αq the locally largest bifurcator
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Part I

Self-similar Markov trees
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Chapter 2

Decorated real trees and their topologies

Random decorated real trees are the central objects in this work. A decorated real tree consists

of a compact real tree T equipped with a root ρ and nonnegative function g on T , which we

refer to as a decoration and is typically discontinuous at branching points. Often, decorated

trees will further be measured, i.e. endowed with a finite Borel measure.

After recalling some basic background on real trees, we present in the first section a natural

gluing operation, using marks on the base tree to specify locations where the other trees are

glued. This enables us in the second section to present a recursive construction of decorated

real trees from so-called building blocks, indexed by the Ulam tree, by gluing iteratively line

segments on which some functions have been defined (Theorem 2.5).

Chapter 1

Topology of decorated real trees

Decorated real trees are central objects in this work. They consist of a compact real tree T

equipped with a root ⇢ and a finite Borel measure µ, and some function g : T Ñ R`, which

we refer to as a decoration and is typically discontinuous at branch points. We are interested

in the convergence of sequences of such objects, and therefore, we first have to define a notion

of closeness for two functions on two di↵erent domains. The purpose of this chapter is to

briefly introduce a convenient formalism, and to stay on safe ground as soon as randomness

and measurability will be involved, we represent these as elements of some Polish space. In

this direction, we shall always impose that the function g is upper semi-continuous (usc in the

sequel), that is the superlevel sets tx : gpxq • ru are closed for every r • 0.

Figure 1.1: Illustration of a tree (embedded in the plane R2) decorated by the hypograph

of an usc function in the third (vertical) dimension.

6

Figure 2.1: Hypograph of a tree (embedded in the plane) decorated by an usc function

in the third (vertical) dimension.

We will be interested in the convergence of sequences of such decorated real trees, which

incites us to define a notion of closeness for two decorations on two different domains. One of the

purposes of this chapter is thus to introduce a convenient formalism and, to stay on safe ground
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as soon as randomness and measurability will be involved, we represent these as elements of

some Polish space. The topological framework that is needed to define a notion of convergence

for sequences of decorated real trees is developed in the third section. In this direction, we

shall always impose that the decoration g is upper semi-continuous, i.e., the superlevel sets

tx : gpxq ě ru are closed for every r ě 0. The main idea there is to represent usc functions by

their hypographs; see Figure 2.1. In the situation where the domains can be viewed as subsets

of a same metric space, the Hausdorff metric yields a natural distance in terms of hypographs.

We then adapt an idea of Gromov and consider isometric embeddings to measure the distance

between the structures induced by two usc decorations with unrelated domains (Theorem 2.15).

2.1 Decorated real trees and a gluing operator

We start by recalling a few basic features on real compact trees. The reader is referred to the

lecture notes by Evans [69], by Le Gall [96], or to the manuscript by Duquesne [64] for detailed

accounts and further properties.

A real tree is a metric space pT, dT q such that for any x, y P T , there exists a unique isometry

ϕx,y : r0, dT px, yqs ãÑ T with ϕx,yp0q “ x and ϕx,y
`

dT px, yq˘ “ y;

we shall refer to ϕx,y as the path from x to y in T . Furthermore, the image of any continuous

injective map ψ : r0, 1s Ñ T with ψp0q “ x and ψp1q “ y coincides with ϕx,ypr0, dT px, yqsq. The
image of ϕx,y is called the segment from x to y in T and is denoted by rrx, yss in the sequel.

A useful characterization is that a connected metric space pT, dT q is a real tree if and only if

the so-called four point condition holds, that is:

dT px1, x2q ` dT px3, x4q ď pdT px1, x3q ` dT px2, x4qq _ pdT px1, x4q ` dT px2, x3qq, (2.1)

for every x1, x2, x3, x4 in T . The real trees appearing in this work are typically compact and

rooted at some distinguished point ρ P T , even though for the sake of simplicity we shall often

omit the distance dT and the root ρ from the notation. The distance dT pρ, xq of a point x P T
to the root is called the height of x, and then the height of T , denoted by HeightpT q, is the

maximal height of points in T . The root enables us to endow T with a partial order: for any two

points x, y P T we write x ĺ y and we say that x is an ancestor of y, or that y is a descendant

of x, if x belongs to the segment rrρ, yss. The fringe subtree Tx “ ty P T : x ĺ yu induced by

a point x P T is the subset of T consisting of all the descendants of x (including x itself). This

fringe subtree is naturally equipped with the metric induced by the restriction of dT , and rooted

at x. We also use the following standard nomenclature and notation for points in a real tree.

The degree of a point x P T is the number (possibly infinite) of connected components of T ztxu,
and then:

• A point x P T is a leaf if it has degree 1. We denote the set of leaves of T by BT .
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• The skeleton of T is the subset T zBT .
• A point x P T is a branching point if it has degree at least 3.

We will further equip real trees with some upper semi-continuous (usc in the sequel) functions1.

Definition 2.1. A decorated real tree is a quadruplet

T “ pT, dT , ρ, gq
where pT, dT , ρq is a rooted compact real tree and g : T Ñ R` an usc function referred to as the

decoration.

Let us give a couple of simple examples. Consider a rooted compact real tree pT, dT , ρq. The
function g : T Ñ R` that assigns to every x P T its height, that is gpxq “ dT pρ, xq, is continuous
and can thus be taken as a decoration. If we further equip pT, dT , ρq with a finite measure ν,

then the function g1 : T Ñ R` that assigns to every x P T the ν-mass of the fringe subtree

induced by this vertex, g1pxq “ νpTxq, is clearly usc, and can also be used as a decoration of T .

In the sequel, it will sometimes be convenient to consider decorated compact trees not just

with a single distinguished point (the root), but more generally endowed with a further finite or

countable family of distinguished points in T , referred to as marks. Specifically, marks consist

of a family priqiPI of points in T , where I is a finite or countable set of indices. We stress that we

do not request ri ‰ rj for i ‰ j, and the same mark may arise for different indices. In particular,

the notion of marks allow us to introduce the gluing operation which will lie at the heart of the

construction of decorated compact real trees from building blocks in the next section.

Let us clarify what we mean by gluing decorated trees. In this direction, consider a rooted

compact real tree pT 1, dT 1 , ρ1q with marks priqiPI . The tree T 1 serves as a base, marks specify the

locations on T 1 where gluing will be performed. Let further pTi, dTi , ρiqiPI be a family of rooted

compact real trees which are pairwise disjoint, and also disjoint from T 1. Roughly speaking, we

will glue each Ti on T
1 by identifying the mark ri and the root ρi of Ti, and equip the resulting

space with the distance induced by dT 1 and the dTi on each component. See Figure 2.2 for an

illustration.

In order to describe rigorously this operation, we first introduce the (disjoint) union of those

trees

T\ – T 1 \
˜

ğ

iPI
Ti

¸

.

We next define d˝ : T\ ˆ T\ Ñ R` by

d˝px, yq –

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dT 1px, yq if x, y P T 1,
dTipx, yq if x, y P Ti for some i P I,

dT 1px, riq ` dTipρi, yq if x P T 1 and y P Ti for some i P I,
dTipx, ρiq ` dT 1pri, yq if x P Ti for some i P I and y P T 1,

dTipx, ρiq ` dT 1pri, rjq ` dTj pρj , yq if x P Ti and y P Tj for some i ‰ j P I.
1We enforce this requirement because usc-functions are well-behaved when gluing trees (see below), and also

for their compatibility with Gromov-type topologies (see Section 2.4).
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Figure 2.2: Gluing three subtrees on a base tree with three marked points.

It is immediately seen that d˝ is a pseudo-distance on T\ such that for any distinct points x, y

in T\, we have d˝px, yq “ 0 if and only if, either x “ ri and y “ ρi for some i P I, or vice versa,

or x “ ρi and y “ ρj for some i ‰ j P I such that ri “ rj .

We write T for the quotient space of T\ for the equivalence relation

x „ y ðñ d˝px, yq “ 0,

and equip this quotient space with the metric dT induced by d˝, that is

dT px̃, ỹq “ d˝px, yq, x̃, ỹ P T,
for any representatives x P x̃ and y P ỹ of these equivalence classes. In other words, pT, dT q is

obtained from pT\, d˝q by identifying ri and ρi for every i P I.
Lemma 2.2. Suppose that

pHeightpTiqqiPI is a null family, (2.2)

meaning that for any h ą 0, the set of indices i P I with HeightpTiq ě h is finite. Then pT, dT q
is a compact real tree. We further use the equivalence class of ρ1 as the root ρ of T .

Proof. We argued above that pT, dT q is a metric space; let us now check that it is a real tree, which

should be intuitively clear. We use the obvious notation z̃ for the equivalence class of a point z

in T\. Pick any x, y in T\. If both points belong to the same tree before the gluing, say x, y P Ti
for some i P I, then d˝px, yq “ dTipx, yq “ dT px̃, ỹq, and the path ϕi : r0, dTipx, yqs ãÑ Ti from

ϕip0q “ x to ϕipdTipx, yqq “ y in Ti yields in the obvious notation a path ϕ̃i : r0, dT px̃, ỹqs ãÑ T

from ϕ̃ip0q “ x̃ to ϕ̃ipdT px̃, ỹqq “ ỹ in T . The case when, say x P T 1 and y P Ti (or vice versa),

is treated by concatenating two paths, the first from x to ri in T
1 and the second from ρi to y

in Ti. Finally the case when x P Ti and y P Tj with i ‰ j involves the concatenation of three

paths, the first from x to ρi in Ti, the second (possibly degenerate) from ri to rj in T
1, and the

third from ρj to y in Tj .
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The initial trees being pairwise disjoint, uniqueness of the path ϕ̃ from x̃ to ỹ in T should

be plain. Specifically, we may assume without loss of generality that x̃ ‰ ỹ, pick an element in

each equivalence class, say x P x̃ and y P ỹ. Suppose first that both x and y can be chosen in the

same tree, say for simplicity x, y P T 1. Write rT 1 Ă T for the set of equivalence classes of points

in T 1. If ϕ̃ entered T z rT 1, then by continuity we could find two times 0 ď s ă t ď dT px̃, ỹq such

that ϕ̃psq “ ϕ̃ptq “ ρ̃i, which is absurd. Thus ϕ̃ stays in rT 1 and hence defines unambiguously a

path ϕ from x to y in T 1. By uniqueness of the latter, we conclude that ϕ̃ is also unique. The

case when x and y belong to different initial trees can be treated similarly. Essentially the same

argument also shows that if ψ : r0, 1s Ñ T is a continuous injective map, then its image must

coincides with the segment from ψp0q to ψp1q in T .

Finally, we check (sequential) compactness. Let pỹnqně1 be a sequence in T ; pick for each

n an element yn P ỹn. In the case when there exists some tree, say Ti, such that yn P Ti for

infinitely many n’s, then, since Ti is compact, we can extract from pynqně1 a subsequence which

converges in Ti, say towards y, and it follows that there is a subsequence extract from pỹnqně1

that converges towards the equivalence class ỹ of y. Next consider the complementary case when

for all trees Ti, there are only finitely many n’s with yn P Ti, and the same also holds for T 1. We

can then extract from pynqně1 a subsequence such that each yn (along this subsequence) belongs

to a different tree, say yn P Tipnq. The assumption (2.2) entails that dTipnq
pyn, ρipnqq converges to

0 as n Ñ 8 along this subsequence. By compactness of T 1, we can extract a further subsequence

from pripnqq that converges to a point x P T 1. We conclude that pỹnqně1 contains a subsequence

that converges towards the equivalence class x̃ of x, and hence T is compact.

We next extend the gluing operation to decorations; recall that these must be given by usc

functions on trees. Specifically, we consider a decorated real tree T1 “ pT 1, dT 1 , ρ1, g1q with marks

priqiPI and a family of decorated real trees, Ti “ pTi, dTi , ρi, giq for i P I, such that the Ti,

i P I, are pairwise disjoint and also disjoint from T 1. We define a function g on the glued tree

T which coincides of course with g1 on T 1ztri : i P Iu, with gi on Tiztρiu, and is adjusted at

the glued points in order to ensure upper semi-continuity. More precisely, define first the map

g\ : T\ Ñ R` by g\pyq “ g1pyq if y P T 1 and g\pyq “ gipyq if y P Ti for i P I, and then

gpỹq :“ sup
yPỹ

g\pyq, ỹ P T.

Lemma 2.3. Suppose (2.2) and further that
ˆ

max
yPTi

gipyq
˙

iPI
is a null family. (2.3)

Then T :“ pT, dT , ρ, gq is a decorated real tree.

Proof. We have to verify that g is usc. Let ỹ P T and a ą gpỹq. We distinguish three possible

situations.

The simplest is when ỹ “ tyiu for some yi P Ti, with i P I. Then gpỹq “ gipyiq, and since

necessarily yi ‰ ρi, we can find a small neighborhood Vi of yi in Ti such that ρi R Vi and
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gipzq ď a for all z P Vi. In particular the equivalence class z̃ of any z P Vi is reduced to tzu, so
gpz̃q “ gipzq ď a. In the obvious notation, rVi is a neighborhood of ỹ in T , and we conclude that

g is usc at ỹ. The same argument applies when ỹ “ tyu for some y P T 1 which does not belong

to the closure of tri : i P Iu in T 1.
Next suppose that ỹ is the equivalence class of a marked point in T 1, that is

ỹ “ txu \ tρj : j P Ju,

where x is one of the marked points in T 1 and J “ tj P I : rj “ xu ‰ H. Let V be a

neighborhood of x in T 1 such that g1pzq ď a for all z P V . Similarly, for every j P J , there is a

neighborhood Vj of ρj in Tj such that gjpzq ď a for all z P Vj . The assumption (2.3) ensures

that the set Ja :“ tj P J : maxzPTj gjpzq ą au is finite. We deduce that

G :“ V \
˜

ğ

jPJa
Vj

¸

\
¨

˝

ğ

jPJzJa
Tj

˛

‚

is a neighborhood of x in T\ for the pseudo-distance d˝ and g\pzq ď a for all z P G. If we

write rG for the set of equivalence classes that G induces in T , then rG is a neighborhood of ỹ

and gpz̃q ď a for all z̃ P rG.

The last case is when ỹ “ txu for some x P T 1 which is not marked, but adherent in T 1 to
the family of marked points. Recall from (2.3) that Ia :“ ti P I : maxzPTi gipzq ą au is finite.

Since x is not marked, we can find a neighborhood V 1 of x in T 1 that avoid the mark ri for every

i P Ia, and then a possibly smaller neighborhood V 2 Ă V 1 such that g1pzq ď a for all z P V 2.
The set

U :“ V 2 \
˜

ğ

iRIa
Ti

¸

is then a neighborhood of x in T\ for the pseudo-distance d˝, and we have g\pzq ď a for all

z P U . If we write rU for the set of equivalence classes z̃ for z P U , then rU is a neighborhood of

ỹ in T , and gpz̃q ď a for all z̃ P rU .

We have thus verified that g is indeed usc on T . An appeal to Lemma 2.2 completes the

proof.

When we want to record specifically all the elements involved in the gluing operator, we shall

use the notation

T “ Gluing
´

T1, priqiPI ,
`

Ti
˘

iPI
¯

.

It will be convenient to call degenerate a decorated real tree Ti “ pTi, dTi , ρi, giq such that

Ti “ tρiu is merely a singleton decorated with gipρiq “ 0; in that case we shall use the notation

Ti „ :. Plainly, gluing a degenerate tree Ti on a decorated real tree T1 is a neutral operation

without incidence on the outcome (apart from removing the associated mark), and we may as

well discard degenerate elements in gluing operations. We also stress that if the decorated real

trees Ti, which are glued onto on T1, are themselves marked, say pri,jqjPJi on Ti for every i P I,
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where we use pairwise disjoint set of indices Ji for i P I, then slightly more generally the gluing

process yields a decorated real tree with marks indexed by J “ Ů

iPI Ji. The latter is naturally

denoted by

Gluing
´

T1, priqiPI ,
`

Ti, pri,jqjPJi
˘

iPI
¯

.

In particular, this enables us to iterate the gluing operation, notably as it will be done in the

next section.

2.2 Construction of decorated real trees by gluing building blocks

We first introduce some standard notation related to the Ulam tree, whose set of vertices2

consists of finite sequence of positive integers,

U –
ď

kě0

Nk,

with the convention N0 – t∅u. The vertices are sometimes referred to as individuals, since one

may think of U as a population structured by its genealogy, where each individual has an infinite

offspring. We use related vocabulary; for instance the edges of the Ulam tree connect parents to

their children. We write |u| for the generation of u P U (the length of the sequence u), upjq for

the ancestor at generation j of u (that is the prefix of u with length j) whenever |u| ě j, and

uv for the sequence of length |u| ` |v| resulting from appending v to u (in particular, for i P N,
ui is viewed as the i-th child of u). We also write U˚ “ Uzt∅u for the set of nonempty finite

sequences of positive integers and u´ for the parent of u P U˚, i.e. u´ “ up|u| ´ 1q.
The Ulam tree will be used to index the building blocks appearing in the construction of

decorated real trees through successive gluing. In order to unify the presentation, it is convenient

to allow certain of these building blocks to be degenerate, where, as in Section 2.1, degenerate

elements can always be discarded in the construction. For simplicity, we also call a vertex u

fictitious if it indexes a degenerate block and then write u „ : for a fictitious vertex. We agree

that only fictitious vertices uv appear in the descent of a fictitious vertex u; as a consequence

the subspace of non-fictitious vertices forms a subtree of U.
For the sake of simplicity, we shall present first the construction of decorated real trees by

recursive gluing without measures, and then later on discuss natural Borel measures on such

spaces. The building blocks for the construction by gluing consist of a pair of families

pfuquPU , ptuquPU˚

that satisfy the following properties for any non-fictitious u P U:

• fu : r0, zus Ñ R` is a rcll (right-continuous with left limits) function with zu ą 0;

• either tui P r0, zus or tui „ :;
2U is not a real tree, but rather a tree in the sense of combinatorics.
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• If tui „ : then the vertex ui is also fictitious.

We further use the notation

sup fu – sup
0ďxďzu

fupxq and }fu} – zu ` sup fu.

We also agree for definitiveness that if u „ : is fictitious, then fu is degenerate (recall that this

means zu “ 0 and fup0q “ 0), }fu} “ 0, and tui „ : for all i ě 1 as well.

We always assume that
`}fu} : u P U

˘

is a null family. (2.4)

Before we formally define the gluing construction, let us provide an informal explanation

of the roles of the building blocks. A (non-fictitious) interval r0, zus will become a segment of

the resulting real tree T , and the real number tui ‰ : will be used in the gluing construction

to specify the location on the parent segment where the i-th child segment labeled by ui is

glued. In particular, tui will yield a branching point of the real tree whenever 0 ă tui ă zu

and zui ą 0. When u has only fictitious children, the construction regarding the subtree rooted

at u stops at that point, in the sense that no segments are glued on the segment labeled by

u. Finally, the family pfuquPU will correspond to the usc-decoration. In this direction, we

must address a technical issue regarding the regularity of trajectories. When dealing with most

random processes in continuous time (e.g. a Feller process), one usually works with rcll versions,

which is the reason why we requested the functions fu above to be rcll. Nonetheless, we have to

consider rather their ucs versions in order to conform to the framework introduced in Section 2.1.

Formally, if f : r0, zs Ñ R` is rcll function, then its usc version f̌ is defined by the relation:

f̌ptq – max
␣

fpt´q, fptq(, for t P r0, zs, (2.5)

with the convention fp0´q “ fp0q. This only affects the values of the function at times when it

has a negative jump (including possibly at lifetime).

We also agree to write simply d for the usual distance on any interval. For every non-fictitious

u P U, we view fu as a decorated compact interval
`r0, zus, d, 0, f̌u

˘

, and the family of non-

fictitious times tui for i ě 1 as marks on r0, zus. The gluing operation described in the preceding

section uses pairwise disjoint real trees, and we shall therefore introduce disjoint isomorphic

copies of the preceding for different u P U. Namely, we use the Ulam tree to differentiate these

segments, and, in the notation of Definition 2.1, we consider for every non-fictitious u P U the

decorated segment

Su :“ pSu, du, ρu, f̂uq,
where Su :“ ␣pu, tq : t P r0, zus(, ρu :“ pu, 0q, and the metric du and usc decoration f̂u are

defined by

duppu, sq, pu, tqq :“ dps, tq and f̂upu, tq :“ f̌uptq, for s, t P r0, zus.
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In particular, the segments Su are pairwise disjoint sets and Su is isomorphic to
`r0, zus, d, 0, f̌u

˘

,

in the sense that there is a bijective isometry φu : r0, zus Ñ Su with φup0q “ ρu, and f̂ is the

usc version of f ˝ φ´1
u . We stress that φu is actually unique, since we are dealing with oriented

segments. Last but not least, we further mark each segment using the family of (non-fictitious)

tui with i ě 1. More precisely, if we let Iu “ tuj : uj ‰ :u for the non-fictitious offspring of the

individual u (introducing this notation is needed as we want to use different set of indices for the

marks arising from different blocks), then the family of marks on Su is given by pt̂v :“ pu, tvqqvPIu .
We can now proceed with the formal construction of a decorated real tree from building

blocks, where at first, measures are discarded. We introduce first the disjoint union of segments

T\ :“
ğ

uȷ:
Su,

where the union is taken over the set of non-fictitious vertices u P U. We use ρ∅ as root, and

write d0 for the natural distance on T\ which is given by du on each segment Su and such that

d0px, yq “ 8 when x and y belong to different segments (i.e. x and y are in different connected

components). We also define unambiguously the map g\ : T\ Ñ R` by

g\pxq :“ f̂upxq, for every x P Su and u ȷ :.
We then construct recursively3 a sequence pdnqně1 of pseudo-distances on T\, using the

gluing operator of Section 2.1; note that (2.4) ensures the requirements (2.2) and (2.3) in this

setting. Specifically, d1 is the pseudo-distance on T\ obtained by identifying ρi and the marked

point t̂i for each non-fictitious vertex i at the first generation, that is i P I∅. Segments at

generations 2 and more are not affected, in particular d1px, yq “ 8 for any x P Su and y P Sv
with u ‰ v and |u|_|v| ě 2. Next d2 is the pseudo-distance on T\ obtained by further identifying

ρij and the marked point t̂ij for each vertex ij P Ii and each i P I∅. And so on, and so forth,

generation after generation.

Then consider any x, y P T\, say x P Su and y P Sv. Plainly, if u “ v, then dnpx, yq “ d0px, yq
for all n ě 0. If u ‰ v, then dnpx, yq “ 8 when n ă |u| _ |v|, whereas dnpx, yq “ dn

1px, yq ă 8
for all n, n1 ě |u| _ |v|. We can then set

d˝px, yq :“ lim
nÑ8 d

npx, yq,
and d˝ defines a pseudo-distance on T\ which is now everywhere finite (this can be interpreted

as connectivity). Alternatively, we could also define directly d˝ as the largest pseudo-distance

on T\ which coincides with du on each segment Su, and such that d˝pt̂v, ρvq “ 0 for every

non-fictitious v P U˚.
We next define T ˝ as the quotient space for equivalence relation

x „ y ðñ d˝px, yq “ 0, x, y P T\.
3Instead of developing a recursive construction, one could have given directly an explicit formula for dn in

terms of distances dw for all the vertices w on the segment from u to v in U. However the formula would be a bit

cumbersome to state precisely and not quite transparent, at least for the first reading.
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We write dT ˝ for the distance on T ˝ induced by d˝ and also define the map g˝ : T ˝ Ñ R` given

by

g˝px̃q :“ sup
xPx̃

g\pxq, x̃ P T ˝.

Note that g˝ is actually bounded, thanks to (2.4).

The following claim can be viewed as the analog of Lemma 2.3 for infinite iterations of the

gluing operation, and its proof relies heavily on this lemma. Recall that a metric space is called

pre-compact if, for every ε ą 0, it can be covered by finitely many balls with radius ε.

Lemma 2.4. Assume (2.4) and

lim
kÑ8 sup

!

8
ÿ

n“k
zūpnq : ū P NN

)

“ 0, (2.6)

where ūpnq P U stands for the prefix at generation n of an infinite sequence ū P NN of positive

integers. Then pT ˝, dT ˝q is a pre-compact real tree and g˝ an usc function.

We briefly postpone the proof of Lemma 2.4 and mention that since plainly

sup
!

8
ÿ

n“k
zūpnq : ū P NN

)

ď
8
ÿ

n“k
sup

␣

zu : u P Nn
(

,

we shall often use in the sequel the simpler but stronger requirement

8
ÿ

n“0

sup
␣

zu : u P Nn
( ă 8, (2.7)

which implies (2.6).

Taking Lemma 2.4 for granted, we can easily finalize the construction of decorated real trees

from building blocks as follows. We let pT, dT q be the completion of the metric space pT ˝, dT ˝q
and write simply ρ for the equivalence class of ρ∅ in T ˝. We also extend g˝ to the boundary

T zT ˝ and define the map g : T Ñ R` by gpyq “ g˝pỹq if y “ ỹ P T ˝, and gpyq “ 0 if y P T zT ˝.

Theorem 2.5. Assume that the building blocks fulfill (2.4) and (2.6). Then T “ pT, dT , ρ, gq is a

decorated real tree.

Proof. The completed space pT, dT q plainly inherits connectivity and the four point condition

(2.1) from pT ˝, dT ˝q, and is therefore a real tree. We also know from Lemma 2.4 that pT ˝, dT ˝q is
a pre-compact space, so its completion pT, dq is compact. We turn our attention to the extension

g of g˝. Take first x P T ˝ and a real number a ą g˝pxq. Since g˝ is usc at x, we can choose ε ą 0

small enough such that gpyq “ g˝pyq ă a for all y P T ˝ such that dT px, yq ă ε. Since gpyq “ 0,

for every y P T zT ˝, it follows that g is usc at x. Suppose finally that x P T zT ˝, and take any

a ą 0. The distance from x to any segment Su with }fu} ě a is bounded away from 0, since by

(2.4), there is only finitely many such segments. We can again choose ε ą 0 small enough such

that gpyq “ g˝pyq ă a for all y P T ˝ such that dT px, yq ă ε, which shows that g is usc at x. So

g is an usc function on T , and the proof is complete.
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Remark 2.6. Beware that, in spite of what the notation might suggest, T ˝ should not be thought

of as the interior of T . It should be plain that every boundary point of T ˝ is always a leaf of T ,

but the converse usually fails. In other word, we have

T zT ˝ Ď BT,

and the inclusion can be strict in general.

Let us now establish Lemma 2.4.

Proof of Lemma 2.4. By construction, pT ˝, dT ˝q is a connected metric space; let us show that it

is a real tree by checking the four point condition (2.1). Pick any x1, x2, x3, x4 in T\, and let k

denote the maximal generation of the indices u P U such that the segment Su contains at least

one of those points. Since we know by iteration from Lemma 2.2 that gluing the segments up

to the k-th generation produces a tree and that trees satisfy the four point condition, we have

dkpx1, x2q ` dkpx3, x4q ď pdkpx1, x3q ` dkpx2, x4qq _ pdkpx1, x4q ` dkpx2, x3qq.

Recall that d˝px, yq “ dkpx, yq for any points x, y in segments indexed by vertices at generations

at most k, so we have as well

d˝px1, x2q ` d˝px3, x4q ď pd˝px1, x3q ` d˝px2, x4qq _ pd˝px1, x4q ` d˝px2, x3qq.

Denote by x̃i the equivalence class of xi for the pseudo-distance d˝, with i “ 1, 2, 3, 4. We can

rewrite the above inequality as

dT ˝px̃1, x̃2q ` dT ˝px̃3, x̃4q ď `

dT ˝px̃1, x̃3q ` dT ˝px̃2, x̃4q˘ _ `

dT ˝px̃1, x̃4q ` dT ˝px̃2, x̃3q˘,

and we conclude that pT ˝, dT ˝q is a real tree.

We next turn our attention the pre-compactness assertion. Fix ε ą 0 arbitrarily small; the

Assumption 2.6 allows us to pick k ě 1 sufficiently large so that

8
ÿ

n“k`1

zūpnq ă ε{2,

for any infinite sequence ū P NN. It follows from the construction by gluing that for every

y P T\, we can find some xpyq P T\k :“ Ů

|u|ďk Su such that

d˝py, xpyqq ď ε{2.

Indeed, this claim is trivial if y P Sv for some vertex v at generation |v| ď k, and otherwise we

can take for xpyq the marked point t̂vpk`1q on Svpkq (recall that vpℓq denotes the ancestor of the
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vertex v P U at generation ℓ ď |v|) so that then

d˝pxpyq, yq ď
|v|´1
ÿ

n“k`1

dvpnqpρvpnq, t̂vpn`1qq ` dvpρv, yq

ď
|v|´1
ÿ

n“k`1

tvpn`1q ` zv

ď
|v|
ÿ

n“k`1

zvpnq.

Denote by T ˝k Ă T ˝ the subset of the equivalence classes of points in T\k and infer from above

that for any ỹ P T ˝, there is some x̃pỹq P T ˝k such that

dT ˝pỹ, x̃pỹqq ď ε{2.

On the other hand, we deduce by induction from Lemma 2.2 that T ˝k endowed with the distance

dT ˝ is compact. Thus there exists a finite sequence in T ˝k, say x̃1, . . . , x̃n such that the sequence

of balls with radius ε{2 centered at those points cover T ˝k. We conclude from the triangle

inequality that the sequence of balls with radius ε and centered at the x̃i now cover the whole

T ˝, and T ˝ is hence pre-compact.

We finally check that g˝ is an usc function on T ˝. Fix ε ą 0; from (2.4) we can choose k ě 1

sufficiently large so that sup fu ď ε for any u P U at generation |u| ą k. Define the function gk̋
on T ˝k by

gk̋px̃q “ sup
!

g\pyq : y P x̃X T\k
)

.

We know from Lemma 2.3 and an iteration argument that gk̋ is an usc function on T ˝k.
Therefore, for any x̃ P T ˝k, there is ε1 ą 0 such that

gk̋px̃1q ď gk̋px̃q ` ε, for every x̃1 P T ˝k with dT ˝px̃, x̃1q ă ε1.

It then follows from the choice of k that

g˝px̃1q ď g˝px̃q ` ε, for every x̃1 P T ˝ with dT ˝px̃, x̃1q ă ε1,

proving that g˝ is indeed an usc function at any x̃ P T ˝.

It will be convenient to introduce a notation for points in T ˝ given by equivalence classes

of marks (possibly fictitious) on the initial segments. For every vertex v P U˚, consider the

mark t̂v on the segment Sv´ (recall that v´ stands for the parent of the vertex v). We then

write ρpvq P T for the equivalence class of t̂v, that is also the equivalence class of the root ρv of

the segment Sv as those two points are identified in T , and by convention set ρp∅q :“ ρ. The

reader will easily check that any branching point of T , say b, is of the form b “ ρpvq for some

non-fictitious vertex v P U. We also stress that in the converse direction, ρpvq is not necessarily

a branching point of T (counter-examples arise in the situation where tv “ zv´ and there are no
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other non-fictitious vertices aside v in the offspring of the parent v´). A bit more generally, we

will sometimes use the following notation to identify points in T ˝ even when they have not been

marked. Consider any vertex v P U and any t P r0, zvs. We write ρvptq for the unique point on

the segment Sv at distance t from the root ρv, and then ρpv, tq for the corresponding point in

T ˝ (strictly speaking, ρpv, tq is the equivalence class of ρvptq, which is actually reduced to the

singleton tρvptqu except if ρvptq has been marked).

We also point out that the proof of Lemma 2.4 also yields some useful information, notably

about the height of T and the maximum of the decoration g, which we record in the next

statement. In this direction, recall that we wrote there T ˝k for the subset of T ˝ given by the

equivalence classes of points in T\k “ Ů

|u|ďk Su. On the other hand, we infer from Lemma

2.2 that T\k is sequentially compact for the pseudo-distance dk, that is we can always extract

from any sequence in T\k a subsequence which converges in T\k for the pseudo-distance d˝. A
fortiori, this holds as well for the pseudo-distance dk, and we deduce that T ˝k is actually closed

for the distance dT ˝ . We shall henceforth use the simpler notation T k “ T ˝k, and view T k as a

closed subset of T .

Proposition 2.7. Assuming (2.4) and (2.6), we have for every k ě 0 that

dT py, T kq ď sup
!

8
ÿ

n“k`1

zūpnq : ū P NN
)

, for all y P T

and

HeightpT q ď sup
!

8
ÿ

n“0

zūpnq : ū P NN
)

.

Moreover, we have also

sup
yPT zTk

gpyq ď max
␣

sup fu : u P U, |u| ě k ` 1
(

.

We also note the following direct consequence concerning Hausdorff dimensions.

Lemma 2.8. Assume (2.4) and (2.6), and write

B0T – tx P BT : gpxq “ 0u, (2.8)

for the set of leaves with decoration 0. Then, we have

dimHpT q ď dimHpB0T q _ 1.

Proof. Recall that for any n ě 0, the subset Tn Ă T induced by the countable collection of

segments Su with generation |u| ď n is a closed subtree. Therefore its Hausdorff dimension

cannot exceed 1. Moreover, T ˝ “ Ť

ně0 T
n obviously contains the skeleton T zBT of T , and by

definition we have gpxq “ 0 for every x P T zT ˝.
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We now conclude this section and record notation for two important families of (decorated)

subtrees. The second and third have already appeared in this chapter, whereas the first will be

used later.

Notation 2.9. Let T “ pT, dT , ρ, gq denote the decorated real tree constructed from the building

blocks pfuquPU and ptuquPU˚ in Theorem 2.5.

(i) For every non-fictitious vertex u P U, the building blocks indexed by descendants of u,

namely pfuvqvPU, ptuvqvPU˚ and pmuvqvPU also fulfill the requirements of Theorem 2.5. We

write Tu “ pTu, dTu , ρpuq, guq for the decorated real tree constructed from the latter by

gluing4.

(ii) For every generation n ě 0, we write Tn “ pTn, dTn , ρ, gnq for the decorated real tree

constructed by gluing the building blocks up to generation n only, that is from the building

blocks pfnu quPU and ptnuquPU˚ , where fnu “ fu and tnu “ tu when |u| ď n, whereas these

quantities are fictitious when |u| ą n.

(iii) We write T ˝ “ Ť

ně1 T
n. The set T zT ˝ of adherence points of T ˝ is included into the set

of leaves BT .

We stress that Tu is always a subtree of the fringe subtree Tρpuq rooted at ρpuq P T , and that

the inclusion is strict in general. Last, note also that although gn is always dominated by the

restriction of g to Tn, these two functions may be different only at marked points.

2.3 Measured decorated trees

We will now equip the compact real tree T constructed in Theorem 2.5 with some finite measures.

First, as any compact real tree, our tree T is naturally equipped with the length measure λT ,

which is given by the one-dimensional Hausdorff measure on the skeleton, see [70, Section 2.4].

In words, λT mirrors on each segment of T the Lebesgue measure on intervals, where we recall

that segments of T are isometric to intervals of R`. We stress that λT is usually only a sigma-

finite measure. However, we can consider a density function f : T Ñ R` in L1pλT q and then

take νpdxq “ fpxqλT pdxq. Densities that will appear naturally in this work depend on the

decoration, that is, they are of the type f “ ϖ ˝ g, where ϖ : R` Ñ R` is a measurable

function. The resulting measure on T is then denoted by ϖ ˝g ¨λT and often called the weighted

length measure. We stress that the length measure, and therefore a fortiori ϖ ˝ g ¨ λT as well,

gives no mass to the set of leaves BT . We also stress that, since the set of points tρpvq : v P Uu
4We make here a slight abuse in order to view Tu as a subtree of T : we have previously defined ρpuq P T as the

equivalence class of the root ρu of the segment Su, which is actually larger than the equivalence class obtained

when the gluing construction restricted to descendants of u. A similar minor abuse is made for the same reason

in (ii).
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is countable and thus receives no mass from λT , we have
ż

T
ϖ ˝ gpxqλT pdxq “

ÿ

u

ż zu

0
ϖ ˝ fuptqdt, (2.9)

where the sum in the right-hand side is implicitly taken over non-fictitious vertices. In particular,

the requirement ϖ ˝ g P L1pλT q is equivalent to the finiteness of the previous display.

We shall now construct another class of measures on T , which, at the opposite, are typically

carried by BT . This requires to introduce, on top of the building blocks, a further family

pmuquPU

where mu ě 0, mu “ 0 when u „ : is a fictitious vertex, and most importantly,

8
ÿ

i“1

mui “ mu for all u P U. (2.10)

Note that if mu ą 0, then (2.10) implies that u has at least one infinite line of descent with only

non-fictitious vertices. Next recall that ρpuq denotes the point in T associated to a mark tu. We

then define for every n ě 0 the purely atomic measure µn on T given by

µn :“
ÿ

|u|“n
mu ¨ δρpuq, (2.11)

where the notation δx is used for the Dirac point mass at x, and we implicitly agree to ignore

fictitious vertices in the sum. It is immediately seen by induction from the requirement (2.10)

that µnpT q “ m∅ for any n ě 0.

Proposition 2.10. Assume that the building blocks fulfill (2.4), (2.6) and (2.10). The sequence

pµnqně1 converges in the sense of Prokhorov towards a Borel measure on T denoted by µ. One

has µpT q “ m∅.

Proof. Recall that for any n ě 0, the set Tn denotes the subtree of T obtained by gluing the

collection of segments Su with generation |u| ď n. We write pn : T Ñ Tn for the projection on

Tn, that is for any y P T , pnpyq is the right endpoint of the segment rrρ, yss X Tn. On the one

hand, the first claim in Proposition 2.7 entails

dT
`

y, pnpyq˘ ď sup
!

8
ÿ

k“n`1

zūpkq : ū P NN
)

.

On the other hand, we infer by iteration from (2.10) that for any n1 ě n, the push-forward of

µn
1

by pn coincides with µn.

We deduce from these two observations that the Prokhorov distance between µn and µn
1

is

at most

dProkpµn,µn1q ď sup
!

8
ÿ

k“n`1

zūpkq : ū P NN
)

.

Since (2.6) requests the right-hand side to converge to 0 as n Ñ 8, the sequence pµnqně1 is

Cauchy on the space of measures on T with total mass m∅, and our claim follows.
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We also point out that, under a minor additional hypothesis, the measure µ constructed

above is carried by the boundary points of the pre-compact tree T ˝. Recall that the latter

denotes the equivalence class of T\; see also Remark 2.6.

Proposition 2.11. Assume (2.4), (2.6) and (2.10). Suppose further that for any non-fictitious

vertex v P U˚, the mark tv is strictly positive. Then we have µpT ˝q “ 0, and as a consequence,

µ is carried by the subset of leaves T zT ˝.

Proof. We shall check first that the root ρ is not an atom of µ, which should be intuitively

clear. In this direction, write S̃∅ :“ tρp∅, tq : t P r0, z∅su for the segment in T induced by the

equivalence class of the ancestral segment S∅. Then for any a ą 0, consider the subset Tăa of

points x P T such that the length (i.e. the λT measure) of the segment S̃∅ X rrρ, xss is less than
a. By (2.10) and the construction by gluing, we have

µpTăaq “
ÿ

jě1

1tjăamj ,

and since we assumed that the (non-fictitious) marks tj are strictly positive, we have

lim
aÑ0`µpTăaq “ 0.

Also by construction, the open ball in T centered at ρ and with radius a is contained in Tăa.
Letting a Ñ 0`, we conclude that µptρuq “ 0.

Next, recall that for every non-fictitious vertex j ě 1 at the first generation, ρpjq P S̃∅

denotes the equivalence class of the mark t̂j on the ancestral segment S∅. On the one hand, the

argument above shows that we have also µptρpjquq “ 0. On the other hand, the requirement

(2.10) entails that the entire mass of µ is carried by the union for j ě 1 of the fringe subtrees

rooted at the ρpjq. This shows that µ assigns zero mass to the equivalence class of ancestral

segment, µpS̃∅q “ 0. We conclude by iteration on generations that µ assigns zero mass to T ˝,
and a fortiori to the skeleton T zBT .

2.4 Hypographs, topologies, and isomorphic identifications

We have developed so far general material on (measured) decorated real trees and their construc-

tion, and roughly speaking, we now would like to compare two different decorated real trees one

with the other. More precisely, our main motivation is to give a rigorous definition of a notion

of convergence for sequences of these objects. Actually, although dealing with usc functions on

compact metric spaces is fundamental to our approach, tree structures are essentially irrelevant

for this question, and we shall develop first a more general framework that could also be used

for other purposes. It will be only at the end of this section that the special case of real trees

will be addressed more specifically.

Let pY, dY q be a Polish space and KpY q denote the set of non-empty compact subspaces in Y .

Consider an usc function g : K Ñ R` for some K P KpY q which we refer to as the domain of
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g. Upper semi-continuity enables us to view g as a compact subspace of the larger Polish space

Y ˆ R` by introducing the hypograph

Hyppgq –
␣px, rq : x P K and 0 ď r ď gpxq( Ă Y ˆ R`.

Specifically, the product space Y ˆ R` is naturally equipped with the distance

dY ˆR`

`py, rq, py1, r1q˘ :“ dY py, y1q _ |r ´ r1|, (2.12)

and Hyppgq is then a compact subspace5 of the Polish space pY ˆ R`, dY ˆR`
q. Plainly, the

hypograph Hyppgq determines g : K Ñ R`. Namely, the domain K is the base of the hypograph,

that is the image of Hyppgq by the first projection p1 : Y ˆ R` Ñ Y , and

gpxq “ max
␣

r ě 0 : px, rq P Hyppgq(, for every x P K.

In this work, we will interpret a decorated tree through its hypograph. Before continuing

with the general study of hypographs and defining a suitable metric for comparing them, let

us highlight the following consequence of Lemma 2.8 and establish a bound for the Hausdorff

dimension of the hypograph of the decoration g.

Corollary 2.12. Assume (2.4) and (2.6), and recall from (2.8) that B0T denotes the subset of

leaves of T on which the decoration g vanishes. Then, the Hausdorff dimension of the hypograph

of g can be bounded by

dimHpHyppgqq ď dimHpB0T q _ 2,

where dimHpB0T q stands for the Hausdorff dimension of B0T equipped with the restriction of

dT .

Proof. Recall from Notation 2.9, that for every n ě 1, the notation Tn stands for the subtree

of T built by gluing segments up to generation n only. Both T and Tn are rooted at ρ and T

is decorated with the usc function g, while Tn is decorated with gn which verifies gn ď g on

Tn. The hypograph Hyppgnq can be constructed by gluing a countable family of hypographs of

decorated segments, each having Hausdorff dimension smaller than 2, and therefore

dimH

´

ď

ně0

Hyppgnq
¯

ď 2.

Since the family p}fu quPU is null, we infer that
Ť

ně0Hyppgnq “ Ť

ně0HyppgTnq, where gTn

stands for the restriction of g to Tn. Finally, recall also from the proof of Lemma 2.8 that

T zŤně0 T
n is a subset of B0T , so we can write

Hyppgq “
˜

ď

ně0

Hyppg|Tnq
¸

Y
´

B0T ˆ t0u
¯

,

and the desired bound follows.
5This is one of the main reasons why we considered usc functions.
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Our goal now is to define a metric to compare general hypographs. In this direction, consider

two usc functions g : K Ñ R` and g1 : K 1 Ñ R` with respective domains K and K 1 in KpY q.
Their hypographs Hyppgq and Hyppg1q are thus two elements of KpY ˆ R`q, and we can define

dHyppg, g1q – dHaus

`

Hyppgq,Hyppg1q˘ ,
where in the right-hand side, dHaus denotes the Hausdorff distance between two compact subsets

in Y ˆ R`. In words, the hypograph distance dHyp between two usc functions g : K Ñ R` and

g1 : K 1 Ñ R` is at most ε ą 0 if and only if for every x P K we can find x1 P K 1 such that

dY px, x1q ď ε and gpxq ď g1px1q ` ε, and vice versa when the roles of g and g1 are permuted.

The hypograph convergence for sequences of usc functions can be characterized as a kind of

pointwise convergence, see [13] for details.

Remark 2.13. In the case when Y “ R, it is natural to compare the distance between two

functions in the sense of hypographs with other notions à la Skorohod; see [82, Chapter VI] for

background. Specifically, take a ă z and a1 ă z1, and let g : ra, zs Ñ R` and g1 : ra1, z1s Ñ R` be

two usc functions. It is then readily checked that for any increasing bijection β : ra, zs Ñ ra1, z1s,
one has

dHyppg, g1q ď max
␣}g ´ g1 ˝ β}, }β ´ Idra,zs}

(

,

where we use the notation } ¨ } for the supremum norm on the space of bounded functions on

ra, zs and Idra,zs for the identity function on ra, zs. As a consequence, convergence in the sense

of Skorohod for sequences of rcll (right-continuous with left limits) functions defined on compact

intervals entails convergence of the sequence of usc versions6 in the sense of hypographs. Of

course, the converse fails. For instance, consider gn : r0, 1s Ñ R` given by gnpxq “ 1 ` cospnxq
for n ě 1. Then the sequence pgnqně1 converges as n Ñ 8 to the constant function 2 on r0, 1s
for the distance dHyp, but does not converge in the sense of Skorohod.

Let us now extend the main nomenclature and notations introduced for real trees to the

setting of general compact metric spaces. In this direction, consider K P KpY q, and note that

this set is naturally endowed with the distance dK induced by the restriction of dY to K ˆ K.

We say that pK, dKq is rooted if it is equipped with a distinguished point ρ in K, also referred

to as the root. Similarly, the compact space pK, dKq is said decorated (resp. measured) if it is

equipped with an usc function g : K Ñ R` (resp. with a finite Borel measure ν on K).We use

short hand notations K – pK, dK , ρ, gq for a decorated compact space and K “ pK, dK , ρ, g,νq
for a measured decorated compact space. Obviously, a decorated compact space can always be

seen as a measured decorated compact space once equipped with the null measure, so that we

directly develop the formalism in the more general case.

We write HmpY q for the space of measured decorated compact spaces on Y , that is formally

HmpY q –
ğ

KPKpY q

!

pK, dK , ρ, g,νq : ρ P K, g : K Ñ R` usc, and ν P Mf pKq
)

,

6Recall that if g : ra, zs Ñ R` is a rcll function, its usc version is the function defined by ǧptq – maxtgpt´q, gptqu

for t P ra, zs, with the convention gpa´q “ gpaq.
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where Mf pKq denotes the space of finite Borel measures on K. We endow HmpY q with a

natural metric defined for any K,K1 P HmpY q in the obvious notation by

dHmpY qpK,K1q – dY
`

ρ, ρ1˘ _ dHyp

`

g, g1˘ _ dProk
`

ν,ν1˘,

where dProk stands for the Prokhorov distance on Mf pY q.

Proposition 2.14. The space HmpY q of measured decorated compact spaces on a Polish space

pY, dY q and equipped with the distance dHmpY q is also Polish.

Proof. The heart of the argument is the observation, which is doubtless well-known, that the

space of hypographs of usc functions with compact domains in Y is closed in KpY ˆR`q. More

precisely, we claim that if pgn : Kn Ñ R`qně1 is a sequence of usc functions with Kn P KpY q,
such that the sequence of hypographs pHyppgnqqně1 converges as n Ñ 8 to some H for the

Hausdorff distance in KpY ˆ R`q, then the sequence pKnqně1 converges to some K for the

Hausdorff distance in KpY q. Furthermore, there exists an usc function g : K Ñ R` such that

H “ Hyppgq, and hence the sequence of usc functions pgnqně1 converges to g as n Ñ 8 for the

hypograph distance dHyp.

Indeed, the projection on the first component p1 : Y ˆ R` Ñ Y is a 1-Lipschitz map. Set

K “ p1pHq for the image of H by p1, so K is a nonempty compact set. We now also regard

p1 as a map from KpY ˆ R`q to KpY q; plainly this still is a 1-Lipschitz map, and therefore

Kn “ p1pHyppgnqq converges to K for the Hausdorff distance in KpY q. Then take any x P K

and r ě 0 such that px, rq P H. There exists some sequence pxn, rnqně1 with pxn, rnq P Hyppgnq
which converges to px, rq in Y ˆ R`. Since gnpxnq ě rn, the segment txnu ˆ r0, rns belongs to

Hyppgnq, and therefore txu ˆ r0, rs Ă H. We set gpxq “ suptr ě 0 : txu ˆ r0, rs Ă Hu. Since H
is compact, px, gpxqq P H, and we conclude that H “ tpx, rq : x P K and 0 ď r ď gpxqu. Now

using that H is closed, we infer that the function g : K Ñ R` is usc, and H “ Hyppgq.
Next, let E denote the space of rooted measured compact space on pY ˆR`, dY ˆR`

q endowed
with the Hausdorff–Prokhorov distance, say dHPpEq. Identifying the usc function g with its

hypograph Hyppgq, the root ρ with pρ, 0q P Hyppgq and similarly ν with a measure ν̄ on Y ˆR`
supported by the base K ˆ t0u of Hyppgq, yields a natural isometric embedding, say

Φ :
`

HmpY q,dHmpY q
˘

ãÑ `

E,dHPpEq
˘

.

Since it is well-known that pE,dHPpEqq is a Polish space, all that is needed to establish Propo-

sition 2.14 is to verify that the image ΦpHmpY qq of HmpY q under this embedding is closed

in pE,dHPpEqq. So, consider a sequence
`

Kn

˘

ně1
in HmpY q such that the embedded sequence

pΦpKnqqně1 converges in pE,dHPpEqq, say to pH, dH , ρ̄, ν̄q, where H P KpY ˆ R`q, dH denotes

the restriction of dY ˆR`
to H, ρ̄ P Y ˆ R` and ν̄ P Mf pY ˆ R`q. We have just seen above

that Kn converges to K for the Hausdorff distance on KpY q and that H “ Hyppgq for some usc

function g : K Ñ R`. Plainly, since ρ̄ is the limit of pρn, 0q in Y ˆ R` and ρn P Kn for all

n ě 1, we have ρ̄ “ pρ, 0q for some ρ P K. Similarly, by the Portemanteau theorem, the measure
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ν̄ must be supported by K ˆ t0u, and can thus be identified as a finite measure ν on K. Last,

dH coincides with the restriction of dKˆR`
to H “ Hyppgq. Putting the pieces together, we get

pH, dH , ρ̄, ν̄q “ ΦpKq for some K “ pK, dK , ρ, g,νq P HmpY q, as we wanted to check.

Roughly speaking, we are only interested in the general structure induced by a decorated

compact space rather than by a specific realization. More precisely, two decorated compact

spaces, say K “ pK, dK , ρ, g,νq P HmpY q and K1 “ pK 1, dK1 , ρ1, g1,ν1q P HmpY 1q have the same

structure and then are viewed as equivalent (or isomorphic) if there exists a bijective isometry

ϕ : pK, dKq Ñ pK 1, dK1q with inverse denoted by ϕ´1, such that ρ1 “ ϕpρq, g1 “ g ˝ ϕ´1

and ν1 “ ν ˝ ϕ´1 is the pushed forward of ν by ϕ. We then simply write K « K1. Note

that the underlying Polish spaces pY, dY q and pY 1, dY 1q play no role in this definition and we

may simply take pY, dY q “ pK, dKq and pY 1, dY 1q “ pK 1, dK1q for definitiveness. Let us also

make some comments concerning decorated trees and the general construction presented in

Section 2.2. First, note that due to the 4-point criterion, it is clear that a decorated real

tree can only be isomorphic to another decorated real tree. Moreover, we emphasize that the

gluing construction described in Section 2.2 is not unique in the sense that different building

blocks, ppfuquPU, ptuquPU˚q can produce isomorphic trees. For instance, one may apply a bijective

isometry (for the graph distance) ς : U Ñ U that fixes the root. More complex rearrangements

are also possible; for example, during a birth event, a mother particle might switch identities

with one of its daughters. Such modifications, called bifurcations, are studied in depth in the

self-similar Markov setting in Chapter 6. Informally, each bifurcation provides a different way

to decompose the associated decorated tree in building blocks.

Figure 2.3: Illustration of a bifurcation event where the identity of two particles is

exchanged during a birth event. Obviously the underlying decorated tree is unchanged.

Our goal now is to define a notion of distance between equivalence classes. In this direction,

we denote the set of all equivalence classes of measured decorated compact spaces by Hm. Our

goal now is to endow Hm with a natural distance and make it a Polish space. In this direction,

recall that the Gromov–Hausdorff–Prokhorov distance between two rooted measured compact

spaces pK, dK , ρ,νq and pK 1, dK1 , ρ1,ν1q is defined as

dGHP

`pK, dK , ρ,νq, pK 1, dK1 , ρ1,ν1q˘

– inf
Y,ϕ,ψ

dHPpY q
´

`

ϕpKq, dϕpKq, ϕpρq,ν ˝ ϕ´1
˘

,
`

ψpK 1q, dψpK1q, ψpρ1q,ν1 ˝ ψ´1
˘

¯

,
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where in the right-hand side, dHPpY q stands for the Hausdorff–Prokhorov distance between rooted

measured compact spaces in Y , the infimum is over all the metric spaces pY, dY q and all the

isometric embeddings ϕ : pK, dKq ãÑ pY, dY q and ψ : pK 1, dK1q ãÑ pY, dY q, and ν ˝ ϕ´1 is the

pushforward measure of ν by ϕ. The quantity dGHP

`pK, dK , ρ,νq, pK 1, dK1 , ρ1,ν1q˘ is null if and

only if there exists an isomorphism between pK, dK , ρ,νq and pK 1, dK1 , ρ1,ν1q, and dGHP defines

a distance in the space of equivalence classes of rooted measured compact spaces, see [3].

This incites us to make the following definition. First, for any measured decorated compact

space K “ pK,νq “ pK, dK , ρ, g,νq and any isometric embedding ϕ : pK, dKq ãÑ pY, dY q, we
define

g ˝ ϕ´1 : ϕpKq Ñ R` , g ˝ ϕ´1pϕpxqq – gpxq for all x P K.
Plainly, ϕpKq is a compact subset of Y and g ˝ ϕ´1 is usc. We further write

ϕpKq –
`

ϕpKq,ν ˝ ϕ´1
˘ “ `

ϕpKq, dϕpKq, ϕpρq, g ˝ ϕ´1,ν ˝ ϕ´1
˘

.

For every K and K1 measured decorated compact spaces, we then set

dHm

`

K,K1˘ – inf
Y,ϕ,ψ

dHmpY q
`

ϕpKq, ψpK1q˘, (2.13)

where again the infimum is taken over all the Polish spaces pY, dY q and all the isometric

embeddings ϕ : pK, dKq ãÑ pY, dY q and ψ : pK 1, dK1q ãÑ pY, dY q. We point out that in

the special case where g and g1 are identically zero on their respective domains, the dis-

tances dHm

`pK, dK , ρ, 0,νq, pK 1, dK1 , ρ1, 0,ν1q˘ and dGHPppK, dK , ρ,νq, pK 1, dK1 , ρ1,ν1qq coincide.

Of course dHm pK,K1q is invariant by isomorphisms, and therefore can be viewed as a function

Hm ˆ Hm Ñ R` which we still denote by dHm for simplicity. Our goal now is to establish the

following result.

Theorem 2.15. The map dHm : Hm ˆ Hm Ñ R` defines a distance on Hm and pHm, dHmq is

Polish.

We prepare the proof of the theorem with a technical lemma. Roughly speaking, it states

that given an arbitrary sequence pKnqně1 of equivalence classes in Hm, we can always find

some Polish space pZ, dZq and representatives of the equivalence classes in HmpZq, such that

the distance in HmpZq between the representatives of two consecutive equivalence classes of the

sequence is never significantly larger than the distance between the equivalence classes pKnqně1

in Hm. Here is the formal statement.

Lemma 2.16. Let pεnqně1 be a sequence in R` and pKnqně1 – pKn, dKn , ρn, gn,ν
nqně1 a se-

quence of measured decorated compact spaces with

dHmpKn,Kn`1q ă εn, for all n ě 1.

Then there exist a Polish space pZ, dZq and isometric embeddings ϕ1, ϕ2, . . . respectively from

K1,K2, . . . into Z such that

dHmpZq
`

ϕnpKnq, ϕn`1pKn`1q˘ ă εn, for all n ě 1.
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Let us mention that similar results have already appeared in the literature for different

variants of the Gromov–Hausdorff–Prokhorov distance. In this work, we adapt the proof of

Lemma 5.7 in [74], which establishes the analog of our Lemma 2.16 for the Gromov–Prokhorov

distance.

Proof. Without loss of generality, we may suppose that the compact spaces Kn are pairwise

disjoint. First, by definition, we can find for every n ě 1 a Polish space pYn, dYnq and two

isometric embeddings ϕn : Kn ãÑ Yn and ψn : Kn`1 ãÑ Yn such that:

ηn – dHmpYnq
`

ϕnpKnq, ψnpKn`1q˘ ă εn.

Then, we introduce the disjoint union Z –
Ů

ně1Kn, and we endow Z with the metric dZ

defined as the largest distance that coincides with dKn on KnˆKn for each n ě 1 and such that

dZpx, yq “ dYn
`

ϕnpxq, ψnpyq˘ ` pεn ´ ηnq{2, for x P Kn and y P Kn`1,

where the term pεn ´ ηnq{2 ensures that dZpx, yq ą 0 when x P Kn and y P Kn`1. Specifically,

for xj P Kj and xj`k P Kj`k with 1 ď j, k, we have

dZpxj , xj`kq – inf
!

j`k
ÿ

ℓ“j`1

dZpxℓ´1, xℓq : xℓ P Kℓ for every ℓ “ j ` 1, . . . , k ´ 1
)

.

Since the spaces Kn are separable, pZ, dZq is also separable. By a slight abuse of notation,

we still write pZ, dZq for its completion, which is a Polish space. We claim that pZ, dZq and the

sequence ppnqně1, where pn : Kn ãÑ Z is a canonical embedding, satisfy the conclusion of the

statement.

To begin with, note from the very definition of dZ that, for every n ě 1, the distance in Z

between the roots of Kn and Kn`1 satisfies

dZpρn, ρn`1q “ dYn
`

ϕnpρnq, ψnpρn`1q˘ ` pεn ´ ηnq{2 ď ηn ` pεn ´ ηnq{2 ă εn.

Then, recall that the Prokhorov distance between νn ˝ ϕ´1
n and νn`1 ˝ψ´1

n is at most ηn. Take

any η ą ηn and let A be an arbitrary Borel subset of Yn. Writing Aη for the η-neighborhood of

A in Yn, we have

νn ˝ ϕ´1
n pAq ď νn`1 ˝ ψ´1

n pAηq ` η.

Let B be an arbitrary Borel subset of Z, take A “ ϕnpp´1
n pBqq, and set η1 “ η ` pεn ´ ηnq{2.

Since ϕn and ψn are isometries, ψ´1
n pAηq is contained into the pre-image by pn`1 of Bη1

, the

η1-neighborhood of B in Z. So the last displayed inequality shows that

νn ˝ p´1
n pBq ď νn`1 ˝ p´1

n`1pBη1q ` η.

The very same argument also shows that

νn`1 ˝ p´1
n`1pBq ď νn ˝ p´1

n pBη1q ` η.
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Since η can be chosen arbitrarily close to ηn, this entails that

dProkpνn ˝ p´1
n ,νn`1 ˝ p´1

n`1q ď ηn ` pεn ´ ηnq{2 ă εn.

Finally, we deal with the hypographs and check that

dHyp

´

gn ˝ p´1
n , gn`1 ˝ p´1

n`1

¯

ă εn. (2.14)

Indeed, for every px, rq P Hyppgn ˝ p´1
n q, we have

inf
!

dZpx, yq _ |r ´ s| : py, sq P Hyppgn`1 ˝ p´1
n`1q

)

ď pεn ´ ηnq{2 ` inf
!

dYn
`

ϕnpxq, ψnpyq˘ _ |r ´ s| : py, sq P Hyppgn`1q
)

.

The second term in the sum above is bounded by

dHyp

`

gn ˝ ϕ´1
n , gn`1 ˝ ψ´1

n

˘ ď dHmpZq
´

ϕnpKn,νnq, ψnpKn`1,ν
n`1q

¯

“ ηn,

and therefore

sup
␣

dZˆR`

`px, rq,Hyppgn`1 ˝ p´1
n`1q˘ : px, rq P Hyppgn ˝ p´1

n q( ă εn.

The same argument shows that

sup
␣

dZˆR`

`py, sq,Hyppgn ˝ p´1
n q˘ : py, sq P Hyppgn`1 ˝ p´1

n`1q( ă εn.

This establishes (2.14) and completes the proof of the lemma.

We can now proceed with the proof of Theorem 2.15.

Proof Theorem 2.15. The proof relies heavily on Proposition 2.14 and Lemma 2.16. We shall

use Lemma 2.16 to represent measured decorated compact spaces in the same well-chosen Polish

space pZ, dZq. It is convenient for this purpose to let Z systematically appear as an exponent

in the notation, writing e.g. dZHyp for the hypograph distance on HmpZq, rather than using Z as

an index or omitting it like in Lemma 2.16 and its proof.

We first establish that dHm is a distance. Symmetry is clear; we now check the triangle

inequality. Let K1,K2,K3 three measured decorated compact spaces and ε1, ε2 ą 0 such that

dHm

`

K1,K2

˘ ă ε1 and dHm

`

K2,K3

˘ ă ε2.

By Lemma 2.16, there exist a Polish space Z and isometric embeddings ϕ1, ϕ2 and ϕ3, respec-

tively from K1,K2 and K3 into Z, such that

dHmpZq
`

ϕnpKnq, ϕn`1pKn`1q˘ ă εn, for n “ 1, 2.

By Proposition 2.15, dHmpZq is a distance on HmpZq and then the triangle inequality gives

dHm

`

K1,K3

˘ ď dHmpZq
`

ϕ1pK1q, ϕ3pK3q˘ ă ε1 ` ε2.
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Passing to equivalent classes, we infer that dHm : HmˆHm Ñ R` satisfies the triangle inequality.

We then check positivity. To this end we need to show that if K and K1 are two measured

decorated compact spaces such that dHmpK,K1q “ 0, then they have to be equivalent. Let

us proceed. For every n ě 0, set Kn “ K if n is odd and Kn “ K1 if n is even. Again by

Lemma 2.16, we can find a Polish space pZ, dZq and isometric embeddings ϕ2n´1 : K ãÑ Z and

ϕ2n : K 1 ãÑ Z, for all n ě 1, such that

dHmpZq
`

ϕnpKnq, ϕn`1pKn`1q˘ ă 2´n.

It follows that the sequence pϕnpKnqqně1 is Cauchy, and by Proposition 2.14, converges in

HmpZq to, say, KZ . Specifying this for odd integers, we get in the obvious notation,

lim
nÑ8 d

Zpϕ2n´1pρq, ρZq “ 0 , lim
nÑ8 dZHyppg ˝ ϕ´1

2n´1, g
Zq “ 0 , lim

nÑ8 dZProkpν ˝ ϕ´1
2n´1,ν

Zq “ 0.

Recall now from the proof of Proposition 2.14 that the convergence of usc functions for the

hypograph distance dZHyp entails the convergence of the domains for the Hausdorff distance, so

lim
nÑ8dZHauspϕ2n´1pKq,KZq “ 0.

This implies that for any x P K, the sequence pϕ2n´1pxqqně0 is relatively compact in Z. On

the other hand, the sequence of isometries pϕ2n´1qně0 is of course equicontinuous. These ob-

servations enable us to apply the Arzelà-Ascoli theorem, and we infer that there is a strictly

increasing sequence of odd integers pnkqkě1 such that pϕnk
qkě1 converges uniformly to an iso-

metric embedding ϕ : K ãÑ Z. It is now immediate to check that KZ “ ϕpKq, ρZ “ ϕpρq,
gZ “ g ˝ϕ´1, and νZ “ ν ˝ϕ´1, so K and KZ belong to the same equivalence class in Hm. The

same argument shows that K1 and KZ also belong to the same equivalence class in Hm, and

establish positivity.

Finally, we check that the space pHm,dHmq is Polish. Separability should be plain since the

set – of isometry classes – of measured decorated rooted compact spaces with a finite cardinality

and associated distances, measures and usc functions taking only rational values is dense in

pHm, dHmq. Completeness is also immediate from Lemma 2.16 and Proposition 2.14. Indeed, if

pKnqně1 is a sequence of measured decorated compact spaces such that:

lim
nÑ8 sup

ℓě1
dHmpKn,Kn`ℓq “ 0,

then Lemma 2.16 enables us to embed pKnqně1 into a Cauchy sequence pKZ
n qně1 in pHmpZq, dHmpZqq

for some Polish space pZ, dZq. We know from Proposition 2.14 that the latter converges, say

to some KZ P HmpZq. We now see from the definition (2.13) that the equivalent class of Kn

converges to the equivalent class of K in Hm as n Ñ 8.

Finally, we turn back our attention to measured decorated real trees; recall Definition 2.1.

Corollary 2.17. The set Tm of equivalence (up to isomorphisms) classes of decorated compact

real trees is closed in pHm, dHmq.
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Proof. Let pTnqně1 be a sequence of decorated compact real trees converging to some T in Hm.

We already know that T must be a decorated compact space. We just need to check that the

metric space associated to the latter is a real tree, which is immediate, using e.g. the four point

condition. See also [70, Theorem 1].

In the remainder of this work, we write dTm for the restriction of dHm to Tm and equip

Tm with the Borel sigma-field. Let us mention that the class of decorated trees, with a trivial

measure, can be viewed as a closed subclass of pTm,dTmq. This allow us to identify the set T
of equivalence of (non-measured) decorated trees with the closed subset of Tm of equivalence

classes equipped with the null measure. We denote by dT the induced distance so that pT, dTq
is also a Polish space which we similarly equip with the Borel sigma-field. We will often abuse

terminology and refer to a decorated real tree T “ pT, dT , ρ, gq or a measured decorated tree

T “ pT, dT , ρ, g,νq instead of their equivalence class, implicitly identifying a decorated real tree

and its equivalence class. When doing so, one must consider only notions that are invariant under

isomorphisms, such as weighted length measures (if ϖ ˝ g P L1pλT q). Other examples of notions

well-defined in Tm include the functions that associate to a decorated real tree its diameter, the

maximal value of the upper semi-continuous decoration, and its total mass. These functions

are all continuous with respect to dTm and are particularly well-defined on Tm. We also stress

that by definition the map from pTm, dTmq to pT,dTq, defined by pT, dT , ρ, g, νq ÞÑ pT, dT , ρ, gq,
is continuous. It will also be convenient to write 0 (resp. 0) for the element of T (resp. Tm)
corresponding to a degenerate real tree reduced to a singleton with zero decoration (and zero

measure).

In the sequel, we will sometimes have to consider equivalence classes of measured decorated

real trees with marks. A minor difficulty however is that marking a decorated real tree is not

unambiguously defined for equivalence classes, and as a remedy, we need to work with an exten-

sion of Tm and T for marked (measured) decorated real trees. This extension is straightforward

and let us present the measured decorated case.

Let T “ pT, dT , ρ, g,νq be a fixed measured decorated tree and pxiqiPI a family of points in

T , where I is a finite or countable set of indices. We then say that two pairs pT, pxiqiPIq and

pT1, px1
iqiPIq are equivalent and then write

`

T, pxiqiPI
˘ « `

T, px1
iqiPI

˘

, if there exists an isometric

bijection φ : T Ñ T 1 which induces an isomorphism between T and T1, such that furthermore

φpxiq “ x1
i for all i P I. We denote the set of such equivalence classes by TI‚

m , and simply T‚
m

when I “ t1u. In order to extend the distance dTm to the set TI‚
m of equivalence classes of

decorated real trees with marks, we fix some null family paiqiPI of positive real numbers. First,

when pT, pxiqiPIq and pT1, px1
iqiPIq are two marked decorated real spaces in some Polish space

pY,dY q, we set first

dHI‚
m pY q

`pT, pxiqiPIq, pT1, px1
iqiPIq

˘

:“ dHmpY q
`

T,T1q _
´

sup
iPI

´

dY
`

xi, x
1
i

˘ ^ ai

¯¯

,
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Then, in the general case, one defines

dTI‚
m

`pT, pxiqiPIq, pT1, px1
iqiPIq˘

– inf
φ:T ãÑY

φ1:T 1ãÑY

dHmpY q
`

φpTq, φ1pT1q˘ _
´

sup
iPI

´

dY
`

φpxiq, φ1pxiq
˘ ^ ai

¯¯

, (2.15)

where the infimum is over all the Polish spaces pY, dY q and all the isometric embeddings φ :

T ãÑ Y and φ1 : T 1 ãÑ Y .

By definition, dTI‚
m

induces a well defined function from TI‚
m ˆ TI‚

m to R`, which we still

denote by dTI‚
m

by a slight abuse of notation. It is straightforward to check that the space

pTI‚
m ,dTI‚

m
q is Polish, and we stress that the resulting topology on TI‚

m does not depend on the

specific choice of paiqiPI . Specifically, Lemma 2.16 can be extended to this context using the

exact same proof, and then the proof of Theorem 2.15 can easily be adapted; we leave the details

to the reader. Just as in the unmarked case, we write TI‚ for the set of equivalence classes of

marked, non-measured, decorated compact trees, and when no confusion is possible, we identify

a marked (measured) decorated compact tree with its equivalence class in TI‚
m or TI‚ and we use

the notation pT, pxiqiPIq and pT, pxiqiPIq. Later on, when we will deal with random decorated

trees, we shall always implicitly work on the canonical space T,Tm,TI‚ or TI‚
m equipped with

their Borel sigma-fields, which will be endowed with different laws.

As an important example, we point out that the gluing operator defined in Section 2.1,

which uses marks to specify the locations where gluing takes place on the base tree, can be

made compatible with isomorphisms. Here is a formal statement.

Lemma 2.18. Let T1 be a decorated real tree with marks pxiqiPI and pTiqiPI a family of decorated

real trees such that the domains of pTiqiPI are pairwise disjoint and also disjoint from the one of

T1. Assume that (2.2) and (2.3) hold.

Let also T̆1 be another decorated real tree with marks px̆iqiPI and pT̆iqiPI another family of

decorated real trees such that the the domains of pT̆iqiPI are pairwise disjoint and also disjoint

from the one of T̆1. Suppose that

`

T1, pxiqiPI
˘ « `

T̆1, px̆iqiPI
˘

and Ti « T̆i for all i P I.

Then (2.2) and (2.3) also hold for the second family of decorated real trees, and we have

Gluing
´

`

T1, pxiqiPI
˘

,
`

Ti
˘

iPI
¯

« Gluing
´

`

T̆1, px̆iqiPI
˘

,
`

T̆i
˘

iPI
¯

.

Proof. With the obvious notation, let φ1 : T 1 Ñ T̆ 1 and φi : Ti Ñ T̆i, for i P I, denote

bijective isomorphisms underlying the assumptions of the Lemma. By gluing these isomorphisms

at the marks pxiqiPI in an obvious way, we can construct a function φ from the domain of

Gluing
``

T1, pxiqiPI
˘

,
`

Ti
˘

iPI
˘

to the one of Gluing
``

T̆1, px̆iqiPI
˘

,
`

T̆i
˘

iPI
˘

. One readily checks that

φ is in turn a bijective isomorphism for the glued decorated real trees.
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As a consequence, we can henceforth view the gluing operator as a map from a sub-domain

of TI‚ ˆ pTqI to T; and as usual we keep the same notation for the latter as for the former.

By convention, we can extend the definition when conditions (2.2) and (2.3) are not fulfilled by

simply setting Gluing
``

T1, pxiqiPI
˘

,
`

Ti
˘

iPI
˘ “ 0.

2.5 Comments and bibliographical notes

The formalism presented here is chiefly inspired by the recursive construction of continuum

random trees performed by Rembart and Winkel [124] in terms of so-called strings of beads and

by the general gluing of metric spaces along points performed by Senizergues, see [130, Section

2]. Note in particular that gluing of real trees along points is a folklore operation in the literature

on random real trees, see e.g. [4, Section 2.4], which can at least be traced back to Aldous [9]

and the famous stick breaking construction of the Brownian Continuum Random Tree.

Let us conclude with a discussion, for readers familiar with “Gromov-type” topologies, on

possible alternative topologies for decorated trees, and explain our choice. It is possible to define

a complete separable topology on the set of compact metric spaces endowed with a continuous

function taking values in a fixed Polish space and with a controlled regularity (e.g. a Lipschitz

condition), see [12, Section 3] and especially Remark 3.2 there. However, since we aim to consider

functions that are typically discontinuous on trees, finding an adaptation “à la Skorokhod” for

trees decorated with rcll functions in the spirit of [86] or [120] seemed complicated. Another

approach inspired by the Brownian and Lévy snake constructions of Duquesne & Le Gall [65],

involves viewing the label of a point x of a “decorated” tree as a rcll path:

ζx : r0, dT pρ, xqq Ñ R,

representing the entire history of the “decoration” from the root of T to x. By doing so, the

labeling becomes Lipschitz over the real tree (for the appropriate topology of space of paths), al-

lowing us to define a Gromov-type topology for such structures. The resulting “snake” topology7

differs from the topology discussed in this chapter: snake convergence roughly corresponds to the

convergence of the (measured) rooted tree in the Gromov-Hausdorff-Prokhorov sense, combined

with a Skorokhod convergence of the decorations along the macroscopic branches, but it does

not cover the decorations near the leaves. Conversely, our hypograph convergence uniformly

controls the supremum of our function over any non trivial interval of the tree, but the topology

is weaker “in the interior of branches”, see Remark 2.13. We chose the hypograph-type topology

because, besides the fact that functions are defined on leaves, it also works well with the gluing

operation and is particularly suited for studying Markov properties and spinal decompositions

in the context of decorated trees, see Chapters 5 and 6.

7Snake trajectories [1, 65, 126] encode more structure than just the tree and the labels. Roughly speaking,

they also encode a canonical contour function of the underlying tree. The analogy with snake trajectories here is

that we consider the entire ancestral path as a label. This is also reminiscent of the notion of historical processes

in the theory of superprocesses [68].
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Chapter 3

Branching processes with real types

Motivated by the evolution in continuous time of a population of individuals, Jagers [83] intro-

duced general branching processes as Markov random fields indexed by the Ulam tree. Roughly

speaking, each individual is labeled according to its ancestral lineage, and receives at birth a

type in some abstract space which determines the statistics of a so-called life career. The life-

time, the reproduction process and further traits of an individual (which typically may evolve

with the age of the individual) are all viewed as measurable functions of its life career. The

branching property requests that conditionally on their types, the life careers of individuals at

generation n are independent, and also independent of the life careers of individuals from the

previous generations.

For the applications we have in mind, here types are positive real numbers1. Any individual

may beget infinitely many children2, but only finitely many with types greater than ε for every

ε ą 0. We apply results of the preceding chapter to construct, under fairly general assumptions,

a random real tree that encodes the evolution of such a branching process, and such that lengths

of branches correspond to time durations. We decorate the latter with a nonnegative usc function

to represent some trait of every individual which may vary with the age. We further endow the

resulting tree with different weighted length measures, and, assuming further the existence of a

harmonic function on the space of types, we also define a natural Borel measure carried by the

set of leaves of the genealogical tree.

The framework is made simpler when one further requests self-similarity and the Markov

property in time. More precisely, it is well-known feature that general branching processes are

Markovian when viewed as processes indexed by generations; however the Markov property

in the time variable fails, except in the very special case when lifetimes have an exponential

1In Chapter 6, we shall also consider a bit more generally models with distinguished individuals, so that

formally the type of an individual has then two components: a positive real number together with a distinction

or an absence of distinction.
2This situation is usually excluded in the setting of general branching processes, as it would be awkward

from a biological point of view. It is nonetheless relevant when populations and types have rather a geometric

interpretation as we shall see later on.
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distribution and reproduction processes are homogeneous Poisson processes. Nevertheless, the

fact that we do not only consider the evolution of a branching population with types, but also

endow individuals with a random decoration, will enable us to retrieve the Markov property

in the time variable for a large family of self-similar models. Self-similar Markov branching

processes are introduced in Section 3.3 and will be shown to arise as scaling limits of a variety of

discrete Markov branching models in Part II. The construction relies on the so-called Lamperti

transformation, which is classically applied to connect real Lévy processes to positive self-similar

Markov processes, and we shall also provide some necessary background in this setting.

3.1 General branching processes as random decorated real trees

In this section, we shall apply general results from the preceding chapter and define the decorated

real tree that depicts a general branching process endowed with some random decoration for

individuals. In this direction, we will have to specify the distribution of the building blocks, and

to start with, we recall more precisely how a general branching process with types in p0,8q can

be constructed.

We call decoration-reproduction process a pair pf, ηq with f : r0, zs Ñ R` a random rcll

function on a random interval r0, zs, and η “ ηpdt,dyq a point process on p0, zs ˆ p0,8q. Strictly
speaking, we mean by this that η is a point process on R` ˆ p0,8q such that

ηpt0u ˆ p0,8qq “ 0 and ηppz,8q ˆ p0,8qq “ 0, almost surely. (3.1)

See Figure 3.1 below. We refer to f , respectively to η, as the decoration process, respectively the

reproduction process. We should think of z as the lifetime of an individual, of fptq as some trait

of this individual at age t, and of η as a reproduction process, in the sense that each atom of η,

say pt, yq, is interpreted as a birth event of a child of type y occurring when the individual has

reached age t (notice that an individual can produce multiple offspring at the same time). The

requirement (3.1) means that the individual cannot beget at birth nor after its death which is a

natural restriction (however it may happen that an individual produces offsprings at the exact

time when it dies). Needless to say, decoration and reproduction are generally not independent.

We then call a decoration-reproduction kernel a family of probability laws pPxqxą0, where

for every x ą 0, the distribution Px is the law of a random decoration-reproduction process pf, ηq
for an individual with type x. We shall implicitly assume that map x ÞÑ Px is a measurable3

function of the type x and we use the notation Ex for the mathematical expectation under Px.

We always assume that for every ε ą 0, any individual has finitely many children with type

greater than ε, almost surely for Px for all x ą 0. In other words, the types of the progeny of

an individual always form a null family, even though the total progeny may be infinite.

We now describe formally the construction of a general branching process with a given

decoration-reproduction kernel, using the Ulam tree U to encode the genealogy of individuals.

3This requirement will be automatically satisfied in the self-similar case.
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Figure 3.1: Decoration and reproduction point process pf, ηq. The centers of the small

circles represent the locations of the atoms of η; observe that several atoms may share

the same time-coordinate, and also that the time-coordinates of these atoms may or not

be the time of a jump of the decoration. In the above case, there is a reproduction at

the exact time of death of the individual.

Let us first explain how to assign to every individual a type, a reproduction process, and a

random decoration. By assigning types to individuals, we mean a random process pχpuqquPU on

the Ulam tree, so that χpuq is the type of the individual labeled by u. In this direction, it is

convenient to add 0 to the space of types; the type 0 will be assigned to fictitious individuals,

that do not appear in the branching process, but nonetheless have to be represented by some

vertex u P U for definitiveness.

Given the type of the ancestor, say χp∅q “ x ą 0, we pick a pair pf∅, η∅q with law Px

as above. We enumerate the atoms pt1, y1q, pt2, y2q, . . . of η∅ using some deterministic rule,

for instance the co-lexicographical order4. In the case when η∅ has only finitely many atoms,

we complete with fictitious individuals of the form p:, 0q to get an infinite sequence. We then

set χpjq “ yj for every individual j P N at the first generation. Once the types of the indi-

viduals (fictitious or not) at the first generation have been assigned, we iterate the construc-

tion using the branching property. That is, conditionally on pf∅, η∅q, we consider a sequence

pf1, η1q, pf2, η2q, . . . of independent pairs distributed according to Py1 , Py2 , . . ., where yj “ χpjq,
and, for definitiveness, P0 denotes the law of the trivial pair pf, ηq corresponding to z “ 0,

fp0q “ 0 and η “ 0. The construction by iteration for the next generations should now be ob-

vious, using independent decoration-reproduction processes for different individuals. We stress

that the type χpuq of an individual any generation |u| ě 1 is determined by the reproduction

process ηu´ of its parent u´.

We write Px for the probability law of the family of decoration-reproduction processes

pfu, ηuquPU which results when the ancestor ∅ has the type x ą 0; then we naturally write

also Ex for the mathematical expectation under Px. Let us spell out in this setting what we

shall refer to as the branching property in the sequel. For any initial type x ą 0 and for every

4That is in non-increasing order of the types and ties are broken in non-increasing of the times.
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n ě 1, the families pfu, ηuq|u|ăn and pfv, ηvq|v|ěn are conditionally independent under the law

Px given the family pχpwqq|w|“n of the types at generation n. Specifically, the conditional law

of each subfamily pfwv, ηwvqvPU for a vertex w at generation n is Pχpwq, and to different vertices

at generation n correspond conditionally independent subfamilies. The proof of this branching

property is immediate from the construction by a recursive argument.

Every vertex u P U has now been assigned not only a type χpuq, but also a decoration

fu : r0, zus Ñ R`, and a reproduction process ηu. The latter encodes the age tuj of the individual

labeled by u at which its j-th child is born, and the type yuj “ χpujq of this child, for every

j P N. We have therefore the building blocks needed for the gluing construction of Section 2.2,

namely the families pfuquPU and ptuquPU˚ :

We stress that even though the decoration and reproduction processes above have been

defined as random variables under Px, the setting still makes sense more generally for arbitrary

(deterministic) family pfu, ηuquPU of decoration-reproduction pairs and we can always consider

their associated building blocks pfuquPU and ptuiquiPU˚ .

Definition 3.1 (Property pPq). We say that such a family

pfu, ηuquPU

verifies Property pPq if the associated building blocks pfuquPU and ptuiquiPU˚ satisfy the require-

ments (2.4) and (2.6).

When Property pPq is satisfied, we write generically T “ pT, dT , ρ, gq for the decorated real

tree which then stems from an application of Theorem 2.5. For the sake of notational simplicity,

we still write T for the respective equivalence class up to isomorphisms (see Section 2.4), which

enables us to view the latter as random variables with values in the Polish space T of equivalence

classes of (non-measured) decorated compact trees; see Corollary 2.17 and the discussion below

it. In this direction, we point out that the function which maps a family pfu, ηuquPU satisfying

Property pPq into a decorated real tree T “ pT, dT , ρ, gq is measurable when the set of such

families indexed by U is equipped with the cylindrical sigma-algebra.5 It may be tempting to

think of T as the genealogical tree of the general branching process, and then the decoration

g encodes some trait of individuals which may evolve with age. We stress however that if T1

is another random decorated real tree which is a.s. isomorphic to T, then one cannot fully

recover the general branching process from T1 as the precise genealogy of individuals may have

been lost6. Nonetheless T1 does keep track of evolution as time passes of the point process that

records the values of traits of individuals in the population at any given time, which is sufficient

for many applications. In general, we use the notation P to refer to distributions on families

5In short, measurability is straightforward when we restrict our attention to families having only finitely many

non-fictitious elements, and the general setting follows by approximation, we leave details to scrupulous readers

familiar with Gromov-Hausdorff-Prokhorov topologies.
6Recall the discussion around Figure 2.3.
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of decoration-reproduction processes, and we use Q instead for distributions on the space of

equivalence relations of decorated trees T.
Our goal now is to introduce simple assumptions on the decoration-reproduction kernel

pPxqxą0 to ensure that Property pPq is verified Px-a.s., for every x ą 0. These assumptions will

become even more transparent in the case when the kernel pPxqxą0 is self-similar, as we will see

at the end of the section.

In this direction, we consider first the total intensity of children of given types which an

individual of type x begets, i.e. the measure ıx on p0,8q defined by

ıxpBq – Ex pηpr0, zs ˆBqq , B P Bpp0,8qq.

We shall henceforth suppose the existence of a function ϕ : r0,8q Ñ R` with ϕp0q “ 0 and a

positive constant cı ă 1, such that for all x ą 0:
ż

p0,8q
ϕpyqıxpdyq ď cıϕpxq. (3.2)

The function ϕ will be referred to as a strictly excessive function. We shall also suppose that

there exist γ0, α ą 0 and finite constants cz, cf such that:

Expzγ0{αq ď czϕpxq,
Expsup fγ0q ď cfϕpxq,

+

(3.3)

for all x ą 0. The role of the first assumption (3.2) is enlightened by the following elementary

result.

Lemma 3.2. Assuming (3.2), we have for every x ą 0

Ex

˜

ÿ

uPU
ϕpχpuqq

¸

ď ϕpxq{p1 ´ cıq.

As a consequence, the family pϕpχpuqqquPU is null, Px-a.s.

Proof. By the definition of the intensity measure ıx, there is the identity

Ex

˜ 8
ÿ

j“1

ϕpχpjqq
¸

“
ż

p0,8q
ϕpyqıxpdyq.

We deduce from the branching property and (3.2) that for n ě 1 we have

Ex

¨

˝

ÿ

|u|“n
ϕpχpuqq

˛

‚ď cnı ϕpxq, (3.4)

and since cı ă 1, the first claim follows. In particular, the family pϕpχpuqqquPU is summable and

a fortiori null, Px-a.s.

We are now able to state the main result of this section:
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Theorem 3.3. Suppose that (3.3) is fulfilled for some strictly excessive function ϕ (i.e. ϕ verifies

(3.2)) and some exponents α, γ0 ą 0. Then Property pPq is satisfied by the family pfu, ηuquPU,
Px-a.s. for every x ą 0.

Proof. Fix x ą 0 and recall the notation from Section 2.2, and notably that zu ě 0 is the length

of the interval on which fu is defined. As a warm-up, we observe from the branching property,

(3.2), the first bound in (3.3), and Lemma 3.2, that

Ex

˜

ÿ

uPU
zγ0{α
u

¸

ď czEx

˜

ÿ

uPU
ϕpχpuqq

¸

ď cz
1 ´ ci

ϕpxq ă 8. (3.5)

In particular,
ÿ

uPU
zγ0{α
u ă 8, Px-a.s.,

and a fortiori pzuquPU is a null family, Px-a.s.
We check similarly that (2.7) (recall that this is a stronger requirement than (2.6)) holds

Px-a.s. We distinguish two cases, depending on whether γ0 ă α or γ0 ě α. In the first case

where γ0 ă α, we simply write

˜ 8
ÿ

n“0

sup
|u|“n

zu

¸γ0{α
ď

8
ÿ

n“0

sup
|u|“n

zγ0{α
u ď

ÿ

uPU
zγ0{α
u .

We then take the expectation and invoke (3.5) to see that (2.7) holds Px-a.s.
In the second case where γ0 ě α, we write from Minkovski’s inequality

Ex

¨

˝

˜ 8
ÿ

n“0

sup
|u|“n

zu

¸γ0{α˛

‚

α{γ0
ď

8
ÿ

n“0

Ex

˜

sup
|u|“n

zγ0{α
u

¸α{γ0
.

and then, from (3.3) and the branching property

Ex

˜

sup
|u|“n

zγ0{α
u

¸

ď
ÿ

|u|“n
Expzγ0{α

u q ď cz
ÿ

|u|“n
Ex pϕpχpuqqq .

Thanks to (3.4), we can bound the right-hand side by czc
n
ı ϕpxq and infer

Ex

¨

˝

˜ 8
ÿ

n“0

sup
|u|“n

zu

¸γ0{α˛

‚ď
˜ 8
ÿ

n“0

cα{γ0
z cnα{γ0

ı ϕpxqα{γ0
¸γ0{α

ď czϕpxqp1 ´ cα{γ0
ı q´γ0{α,

and again (2.7) holds Px-a.s.
We check likewise that the requirement (2.4) holds Px-a.s. Namely, we deduce from the

branching property, the second bound in (3.3), and Lemma 3.2, that

ÿ

uPU
Expsup fγ0u q ď cf

ÿ

uPU
Ex pϕpχpuqqq ď cz

1 ´ ci
ϕpxq ă 8, (3.6)

This ensures that psup fuquPU is a null family, Px-a.s. Since we have already observed that

pzuquPU is a null family, Px-a.s., the same holds for p}fu}quPU as well.
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When the conditions of Theorem 3.3 are fulfilled, we can consider the random decorated real

tree T “ pT, dT , ρ, gq which then stems from an application of Theorem 2.5. The above proof

also shows:

Corollary 3.4. Under the assumptions of Theorem 3.3, the random variables

HeightpT qγ0{α and max
T

gγ0

belong to L1pPxq.
The assumptions of Theorem 3.3 are more transparent when the decoration-reproduction

kernel pPxqxą0 satisfies a scaling property. Fix some α ą 0. We start defining, for any c ą 0

and a (rcll) function f : r0, zs Ñ R`, the rescaled function

f pcq : r0, cαzs Ñ R`, f pcqptq – cfpc´αtq,

and also, for any measure η on r0, zs ˆ p0,8q, the rescaled measure ηpcq given by the push

forward image of η by the map

r0, zs ˆ p0,8q Ñ r0, cαzs ˆ p0,8q , pt, yq ÞÑ pcαt, cyq.

Definition 3.5. We say that a decoration-reproduction kernel pPxqxą0 is self-similar with ex-

ponent α ą 0 if for every x ą 0, the law Px coincides with the distribution of the rescaled pair

pf pxq, ηpxqq under P1. Then we also say that the general branching process is self-similar.

The self-similarity of the decoration-reproduction kernel pPxqxą0 enables us to focus on the

type x “ 1. Indeed it is immediate from the self-similarity assumption and the construction of

general branching processes that the distribution of the family of rescaled pairs
´

f pxq
u , ηpxq

u

¯

uPU
under P1 is the same as that of pfu, ηuquPU under Px. We write for simplicity P – P1 and ı – ı1

for the total intensity of children of given types beget by an individual of type 1.

We first point out that the self-similarity assumption has a simple and important consequence

for the process pχpuqquPU that assigns types to individuals. For every x ą 0, the distribution

under Px of the family of the logarithms of types plogχpjqqjě1 of the individuals at the first

generation, is identical to the law under P of the same family shifted by log x. Therefore, if we

consider the point process on R induced by the logarithms of types at each generation,

ÿ

|u|“n
δlogχpuq, n ě 0, (3.7)

(implicitly the fictitious individuals with type 0 are discarded in the sum), then we obtain a

branching random walk; see e.g. [132]. This observation has simple consequences regarding the

existence of the strictly excessive function ϕ of (3.2) (and later on of harmonic function) that

we now explain.
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We introduce first the function

Mpγq –

ż

p0,8q
yγıpdyq, γ ě 0. (3.8)

In words, γ ÞÑ Mpγ ´ 1q is the Mellin transform of the intensity measure ı. Note also that the

push forward of ı by the logarithm function yields the reproduction intensity of the branching

random walk (3.7), that is the intensity measure of the point process at the first generation,
ř8
j“1 δlogχpjq. Therefore M can also be viewed as the moment generating function of the latter.

Except in the degenerate case where the reproduction process η is merely a Dirac point mass

with a fixed type P -a.s., this function is strictly log-convex and takes its values in R Y t8u. By
convexity logM has at most two zeros. Notice that (3.2) is satisfied for ϕpyq “ yγ0 as soon as

Mpγ0q ă 1.

In the self-similar case, one can also easily bound from above the Hausdorff dimension of the

set of leaves BT .

Lemma 3.6 (Upper-bound on the Hausdorff dimension of leaves). Suppose that the decoration-

reproduction kernel pPxqxą0 is self-similar with exponent α. Assume that there exist ω ă γ0 with

Mpωq “ 1 and Mpγ0q ă 1, and furthermore that the assumptions of Theorem 3.2 are satisfied

with ϕpyq “ yγ0. If we write T “ pT, dT , ρ, gq for the resulting random decorated tree, then we

have for every x ą 0 that

dimHpBT q ď ω{α, Px-a.s.,

where dimHpBT q stands for the Hausdorff dimension of BT equipped with the restriction of dT .

In particular, combining Lemma 3.6 with Lemma 2.8 and Corollary 2.12, we infer that

dimHpT q ď maxp1, ω{αq and dimHpHyppgqq ď maxp2, ω{αq, Px-a.s., for every x ą 0.

Proof. By Lemma 2.8 and self-similarity, it suffices to prove the bound on the Hausdorff dimen-

sion of BT under P1. In this direction, recall the notation Tn for the tree obtained by performing

the gluing of the first n generation along Ulam’s tree. We see Tn as a subset of T . In the proof

of Lemma 2.8 we showed that Tn is a countable union of segments and as a consequence of the

gluing construction Tn X BT is included in the union of the extremities of those segments. We

deduce that Tn X BT is a countable set of points and thus Yně0T
n X BT has Hausdorff dimen-

sion 0. It remains to show that the Hausdorff dimension of B˚T “ BT z Yně0 T
n is bounded

above by ω{α. To this end, for every u P U, consider the subtree Tu obtained by performing the

gluing in the subtree above u in Ulam’s tree, seen as a subset of T , and write DiampTuq for its

diameter in pT, dT q. Then, for every n ě 0, the collection
␣

Tu : u P Nn
(

is a covering of B˚T
and note that, for every u P Nn, we have DiampTuq ď 2 ¨HeightpTuq. Moreover, for every u P Nn,
the self-similarity of the decoration-reproduction process entails that

E1

´

DiampTuqγ{α
¯

ď 2γ{α ¨ E1 pχpuqγq ¨ E1

´

HeightpT qγ{α
¯

,
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for every γ P pω, γ0q. Now remark that by Corollary 3.4, the quantity E1

`

HeightpT qγ{α˘ ď
1 ` E1

`

HeightpT qγ0{α˘ is finite and by log-convexity of M we also have Mpγq ă 1, for every

γ P pω, γ0q. Hence, by the branching property, we infer that

E1

˜

ÿ

uPNn

DiampTuqγ{α
¸

“ 2γ{α ¨ Mpγqn ¨ E1

´

HeightpT qγ{α
¯

ÝÝÝÑ
nÑ8 0, for γ P pω, γ0q.

This proves that the Hausdorff dimension of B˚T is bounded above by γ{α, for every γ P pω, γ0q,
and so by ω{α.

3.2 Lévy, Itô, Lamperti, and self-similar Markov trees

We now proceed with the self-similar Markov case. Our objective is to construct a general

branching process endowed with a decoration that satisfies both self-similarity and temporal

Markov properties. For this purpose, we first discuss pairs pX, ηq, where X is a self-similar

Markov process started from 1, which we interpret as a decoration-reproduction process in the

sense of Section 3.1. We then define the kernel pPxqxą0 through a scaling transformation of the

law P “ P1 of pX, ηq; in particular the decoration under Px has the law of the self-similar Markov

process X started from x. Note that the type of an individual now coincides with the initial

value of its decoration; this was not necessarily so in the more general setting of Section 3.1.

We stress that the decoration-reproduction kernel pPxqxą0 is de facto self-similar in the sense

of Definition 3.5, and that Markovian aspects will be analyzed in greater details in Chapter 5.

The framework that we develop here lies at the heart of the construction of self-similar Markov

trees in the next Section 3.3, which constitute one of the primary objects of this work.

Introduce first the space S1 of non-increasing sequences y “ py1, ...q in r´8,8q with

limnÑ8 yn “ ´8, and then set S :“ r´8,8q ˆ S1. Agreeing that log 0 “ ´8 and e´8 “ 0, we

view log : r0,8q Ñ r´8,8q as a bijection with reciprocal given by the exponential function.

Transforming an element py,yq of S by the exponential function yields a sequence pey, ey1 , ey2 , . . .q
in r0,8q, whose first term ey is distinguished and the next ones form a non-increasing sequence

that converges to 0. Hence, applying the exponential function to each term of the sequence

enables us to endow S with the distance induced by the supremum norm on the space of real

sequences converging to 0. Then S equipped with this distance is a Polish space.

We can now introduce the following important terminology.

Definition 3.7. Consider a measure Λ “ Λpdy,dyq on S. Write Λ0 “ Λ0pdyq and Λ1 “ Λ1pdyq
for its push-forward images by the first projection py,yq ÞÑ y from S to r´8,8q and by the second

projection py,yq ÞÑ y from S to S1, respectively. We call Λ a generalized Lévy measure

provided that

ż

R
p1 ^ y2qΛ0pdyq ă 8 and Λ1

`␣

y P S1 : e
y1 ą ε

(˘ ă 8 for all ε ą 0.
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We then further call pσ2, a,Λ;αq a characteristic quadruplet, where α ą 0 is a self-

similarity exponent, σ2 ě 0 a Gaussian coefficient, a P R a drift coefficient. We also

refer to k :“ Λpt´8u ˆ S1q ă 8 as the killing rate.

We will next associate a decoration process to a characteristic quadruplet pσ2, a,Λ;αq. We

rely for this on the classical Lamperti construction of positive self-similar Markov processes

from (possibly killed) real Lévy processes and refer the reader to [91] and Chapter 13 in [88]

for a complete account. We introduce a standard Brownian motion B and a Poisson random

measure N “ Npdt,dy,dyq on r0,8q ˆS with intensity measure dtΛpdy,dyq. If the killing rate

k is strictly positive, then we denote the time coordinate of the first atom of N belonging to

t´8u ˆ S1 by ζ ă 8, so that ζ is then an exponential variable with parameter the killing rate

k. If k “ 0, then we agree that ζ “ 8. We assume that B and N are independent.

Let us quickly recall the construction of real Lévy processes by the Lévy-Itô decomposition.

Consider the first projection of N on r0,8qˆR and write N0 “ N0pdt,dyq for the resulting point

process. By the mapping theorem for Poisson random measures, N0 is a Poisson point process

with intensity 1yPRdtΛ0pdyq. Additionally, we introduce the compensated Poisson measure

N
pcq
0 pds, dyq – N0pds, dyq ´ dsΛ0pdyq.

As a consequence of the conditions fulfilled by Λ, the process ξ defined for 0 ď t ă ζ by

ξptq :“ σBptq ` at`
ż

r0,tsˆR
N0pds, dyq y1|y|ą1 `

ż

r0,tsˆR
N

pcq
0 pds, dyq y1|y|ď1 (3.9)

is a Lévy process. Furthermore, in the case k ą 0, it will be convenient to declare that ξptq “ ´8
for t ě ζ, so that exppγξptqq “ 0 whenever γ ą 0 and t ě ζ. In other words, k is the killing rate

of the Lévy process ξ. For every t ě 0, we have

E
`

exppγξptqq˘ “ E
`

exppγξptqq, t ă ζ
˘ “ exp

`

tψpγq˘, (3.10)

where ψ is known as the Laplace exponent of ξ and given by the Lévy-Khintchine formula

ψpγq :“ ´k ` 1

2
σ2γ2 ` aγ `

ż

R˚

`

eγy ´ 1 ´ γy1|y|ď1

˘

Λ0pdyq. (3.11)

Slightly more generally, one can start the Lévy process from any arbitrary y P R by translating

the entire process, i.e., by considering y ` ξ.

We now present the Lamperti transformation which allows to construct a (positive) self-

similar Markov process, for which the acronym pssMp is often used, from a real Lévy process ξ

and a positive7 exponent of self-similarity, α ą 0. We introduce first the exponential functional8

ϵptq :“
ż t

0
exppαξpsqqds for 0 ď t ă ζ, z :“ ϵpζ´q “

ż ζ

0
exppαξpsqqds, (3.12)

7The case of a negative exponent can then be obtained by applying the simple inverse x ÞÑ 1{x transformation

to a pssMp.
8We shall soon view the random interval r0, zs as the domain of a rcll function; then the notation z has the

same interpretation as in the preceding chapters. The reader should therefore not be worried about a possible

confusion of notation.
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and note that ϵ : r0, ζq Ñ r0, zq is an increasing bijection a.s. We then define τ as the reciprocal

bijection, so that
ż τptq

0
exppαξpsqqds “ t, for any 0 ď t ă z. (3.13)

Lamperti [91] pointed out that the process

Xptq “ exp
`

ξpτptqq˘, 0 ď t ă z, (3.14)

obtained from the exponential of the Lévy process by time-substitution based on τ , is both

Markovian and self-similar with scaling exponent α (in the literature, one often calls 1{α the

Hurst exponent). More precisely, X starts from 1, and for every x ą 0, the rescaled process

xXpx´αtq, for 0 ď t ă xαz, (3.15)

is a version of X started from x (that is, the underlying Lévy process ξ starts from log x).

Conversely, any pssMp with a positive exponent α can be realized from some real Lévy process

by this transformation. We stress that the lifetime z of X is finite a.s. if and only if either

ζ ă 8 a.s. or the Lévy process drifts to ´8 (i.e. ζ “ 8 a.s. and limtÑ8 ξptq “ ´8 a.s.). More

precisely, the boundary point 0 serves as a cemetery state for the self-similar Markov process X,

it is reached by a jump when ζ ă 8 (i.e. then Xpz´q ą 0 a.s.) and continuously when ξ drifts

to ´8 (i.e. then Xpz´q “ 0 a.s.). By convention we take Xpzq :“ 0, when z ă 8, to see X as

a rcll process on the segment r0, zs.
For later use, we also observe that for any c ą 0, the Lévy process, say ξ̃, constructed from

the scaled characteristics pc2σ2, ca, cΛq has the same law as pξctqtě0. Therefore, if we write X̃

for the pssMp induced by the Lamperti transformation applied to ξ̃, then there is the identity

in distribution

`

X̃t : t ě 0
˘ “ `

Xct : t ě 0
˘

. (3.16)

We now turn our attention to the reproduction process η. For convenience, we use the

notation r0, ζs “ r0,8q, if ζ “ 8. The reproduction process η is going to be defined using the

second projection of N on r0, ζs ˆ S1 that we denote by N1 “ N1pdt,dyq. To this end, we

expand each atom of the latter, say ps,yq, as a sequence ps, yℓqℓě1 in r0, ζs ˆ r´8,8q and, as a

first step, introduce a point process on r0, ζs ˆ R` by

η̃ :“
ÿ

1tsďζuδps,exppξps´q`yℓqq, (3.17)

where the sum is taken over all the pairs ps, yℓq obtained by developing the atoms ps,yq of N1,

possibly repeated according to their multiplicities, with y ‰ t´8,´8, . . . u. In words, η̃ has

an atom at ps, xq for some s ď ζ and x ą 0 if and only if the Poisson random measure N1 has

an atom at ps,yq, with y ‰ t´8,´8, . . . u, such that log x ´ ξps´q is a component of y. As

a second step, we perform the Lamperti transformation and consider the push-forward of the
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measure η̃ by the Lamperti time-change. Namely, recall that τ is defined by (3.13) as the inverse

of the exponential functional ϵ (in particular ϵpζq “ z is the lifetime of X), and set

η :“
ÿ

1tϵpsqďzuδpϵpsq,exppξps´q`yℓqq, (3.18)

where the same convention for the summation as above applies. In particular several atoms may

occur at the same time.

We now write P “ P1 for the law of the pair pX, ηq constructed above and recall that α ą 0

denotes the self–similarity exponent. For every x ą 0, we denote by Px the image of P by

the scaling transformation ps, yq ÞÑ pxαs, xyq on R` ˆ R`, which, by (3.15), transforms X into

the version of the self-similar Markov process started from x, and the atoms δps,yq of η into

δpxαs,xyq. We call pPxqxą0 the self-similar Markov decoration-reproduction kernel with charac-

teristic quadruplet pσ2, a,Λ;αq; the qualifier self-similar is taken in the sense of Definition 3.5.

Note passing by that ηpt0u ˆ p0,8qq “ 0 and that, in absence of killing, i.e. when k “ 0, the

reproduction process also satisfies ηptzu ˆ p0,8qq “ 0, i.e. that no birth event can happen at

the death of an individual.

Our goal now is to associate a decorated compact real tree to every characteristic quadruplet

pσ2, a,Λ;αq satisfying some additional requirements. In this direction, we start by computing

the moment generating function of the branching random walk associated with the self-similar

Markov decoration-reproduction kernel pPxqxą0 with characteristic quadruplet pσ2, a,Λ;αq. Re-
call that for simplicity, the index for the starting point x is omitted from the notation when

x “ 1, and following (3.8), we write

Mpγq “ E

˜

ż

r0,zsˆp0,8q
yγηpdt,dyq

¸

“ E

˜ 8
ÿ

j“1

χpjqγ
¸

“
ż

p0,8q
ıpdyqyγ , γ ě 0,

for the Mellin transform of the total intensity measure ı of children of given types. Then,

recalling the Lévy-Khintchine formula (3.11) for the Laplace exponent ψ of ξ, we introduce the

quantity

κpγq :“ ψpγq `
ż

S
Λpdy,dyq

´

8
ÿ

i“1

eγyi
¯

“ 1

2
σ2γ2 ` aγ `

ż

S
Λpdy,dyq

´

eγy ´ 1 ´ γy1|y|ď1 `
8
ÿ

i“1

eγyi
¯

, (3.19)

where we use again the convention e´8 “ 0, so that the possible killing rate k is incorporated in

the integral with respect to Λ. The function κ is called the cumulant function of pσ2, a,Λ;αq.
We stress that the cumulant does not depend on the exponent of self-similarity α, and that

the functions ψ and κ are convex with ψ ď κ. We will always assume that the cumulant is

finite at least at some point γ ą 0 (we will actually soon impose more, see the forthcoming

Assumption 3.12). The cumulant function κ enables us to compute the Mellin transform M.

Lemma 3.8. The Mellin transform M in (3.8) is given by

Mpγq “ 1 ´ κpγq{ψpγq, whenever ψpγq ă 0. (3.20)
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Proof. Recall that ı is the measure on p0,8q that describes the total intensity of the children

with given types that an individual with type 1 begets throughout its life. Note first that the

connexion between η and η̃ via the Lamperti transformation yields, using the same convention

for the summations as in (3.18),

ÿ

1tϵpsqďzu pXpϵpsq´q exppyℓqqγ “
ÿ

1tsďζu exp pγpξps´q ` yℓqq .

Next, the construction of η̃ in terms of the random measure N1 and the Lévy process ξ shows

that:

ÿ

1tsďζu exppγpξps´q ` yℓqq “
ż

r0,ζsˆS1

exppγξps´qq
˜ 8
ÿ

i“1

exppγyiq
¸

N1pds, dyq.

Taking expectations using (3.10), we get by compensation whenever ψpγq ă 0 that

ż

p0,8q
yγıpdyq “ E

ˆ
ż ζ

0
exppγξps´qqds

˙

˜

ż

S1

8
ÿ

i“1

eγyiΛ1pdyq
¸

“ ´ 1

ψpγq

˜

ż

S1

8
ÿ

i“1

eγyiΛ1pdyq
¸

“ 1 ´ κpγq{ψpγq.

We now have all the ingredients to properly define the self-similar Markov trees (for short,

ssMt). We fix a characteristic quadruplet pσ2, a,Λ;αq and we write pPxqxą0 for the associated

self-similar Markov decoration-reproduction kernel. We also write Px for the distribution of

the family pfu, ηuquPU of decoration-reproduction processes of individuals in a general branching

process governed by this kernel when the ancestral individual has type x ą 0, that is such

that pf∅, η∅q has the law Px. Let κ denote the cumulant function associated by (3.19) to the

characteristic quadruplet pσ2, a,Λ;αq. We make the following crucial assumption:

Assumption 3.9. We say that a cumulant κ is subcritical if there exists γ0 ą 0 such that

κpγ0q ă 0.

Subcriticality of the cumulant is the only assumption on the characteristic quadruplet needed

to define self-similar Markov trees as random variables with values in the space T of equivalence

classes up to isomorphisms of decorated real trees (see Section 2.4, and more specifically Corol-

lary 2.17).

Proposition 3.10 (Construction of self-similar Markov trees). Let Assumption 3.9 be satisfied for

some γ0 ą 0. Then the following assertions hold:

(i) The function ϕpxq “ xγ0 is strictly excessive in the sense of (3.2). Assumption 3.3 is

verified, and as a consequence, so does Property pPq, Px-a.s. for all x ą 0.
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(ii) The equivalence class (up to isomorphism) of the random decorated tree T “ pT, dT , ρ, gq
without measures constructed in Theorem 2.5 is called a self-similar Markov tree with

characteristic quadruplet pσ2, a,Λ;αq. One has

gpρq “ lim sup
rÑρ
r‰ρ

gprq “ x, Px-a.s. for all x ą 0.

In this framework, self-similarity means that for every x ą 0, the law of T under Px is identical

to that of the rescaled version pT, xα ¨ dT , ρ, x ¨ gq under P1, where the notation xα ¨ dT is for the

distance on T given by xα ¨ dT py, y1q “ xαdT py, y1q, and x ¨ g denotes similarly the decoration

with x ¨ gpyq “ xgpyq.
Proof. Let us check the assumptions of Theorem 3.3, for the exponents α, γ0 and the function

ϕpyq “ yγ0 . In this direction, recall that κ is convex, and since ψ ď κ, we have ψpγ0q ă 0.

Hence, κpγ0q{ψpγ0q P p0, 1q and we infer from Lemma 3.8 that

ż

p0,8q
yγ0ıpdyq “ Mpγ0q ă 1,

so (3.2) holds with ϕpyq “ yγ0 . By self-similarity, it suffices now to verify that E1 psupXγ0q ă 8
and E1pzγ0{αq ă 8, and by the Lamperti transformation, this boils down to establishing that

E1

ˆ

sup
tě0

exp pγ0ξptqq
˙

ă 8 and E1

˜

ˆ
ż ζ

0
exppαξptqqdt

˙γ0{α¸

ă 8.

These kinds of results are part of the folklore of the theory of Lévy processes. For example,

see Lemma 3 of Rivero [128] for the second assertion when the killing rate is zero. Unfortunately,

we have not been able to find a suitable reference that holds when killing is allowed. Since the

display above follows from standard techniques, and because we believe it may be of independent

interest, we provide details of the proof in the Appendix; see Lemma 7.1 there.

The assertion that the value of the decoration at the root is x, Px-a.s. follows readily

from (2.4) and the fact that f∅ is rcll with f∅p0q “ x, Px-a.s. Last, by construction, the

random decorated tree T plainly inherits the self-similarity property from the kernel pPxqxą0;

see Definition 3.5 and the discussion thereafter.

Let us point right now at an important feature, which is closely related to the discussion

around Figure 2.3. We have argued here that one can associate a self-similar Markov tree to

any subcritical characteristic quadruplet, and the characteristic quadruplet then determines the

distribution of this self-similar Markov tree. Nonetheless we stress that different characteristic

quadruplets may yield self-similar Markov trees with the same distribution, just as in Section

2.2 where different families of building blocks could produce isomorphic decorated trees. In

that case, one says that the characteristic quadruplets belong to the same equivalence class

of bifurcators. Thus, in short, a characteristic quadruplet determines the law of a self-similar

Markov tree, and in the converse direction, a self-similar Markov tree determines an equivalence

58



class of bifurcators, where each such bifurcator corresponds to a unique characteristic quadruplet.

This matter will be discussed in details in Chapter 6.

We also point out from (3.16) that for any c ą 0, the self-similar Markov tree pT̃ , dT̃ , ρ̃, g̃q with
dilated characteristic quadruplet pc2σ2, ca, cΛ;αq has the same distribution as

`

T, c´1 ¨ dT , ρ, g
˘

where T “ pT, dT , ρ, gq denotes the ssMt with characteristics pσ2, a,Λ;αq.

3.3 Weighted length and harmonic measures

Now that we have defined self-similar Markov trees, our next purpose is to endow the latter with

certain natural measures. We are interested in measures compatible with self-similarity, and

which are also consistent with the Markov property of the decoration. This leads us to consider

power functions with adequate exponents as weight functions for weighted length measures. To

define a natural measure on the leaves, we will require a stronger assumption, which ensures

the existence of a simple harmonic function for the decoration-reproduction kernel. By analogy

with the literature on branching random walk, we refer to this assumption as the first Cramér’s

condition9, and its statement and implications will be addressed in the second part of this section.

Finally, we point out that the harmonic measure on leaves can also be obtained as a limit of

weighted length measures (Proposition 3.14). Throughout this section, we use the notation of

Sections 3.1 and 3.2. In particular, we fix a characteristic quadruplet pσ2, a,Λ;αq and we write

pPxqxą0 for the associated self-similar Markov decoration-reproduction kernel which has been

defined in the preceding section. We also write Px for the distribution of the family pfu, ηuquPU
of decoration-reproduction processes of individuals in a general branching process governed by

this kernel when the ancestral individual has type x ą 0, that is such that pf∅, η∅q has the

law Px.

3.3.1 Weighted length measures

We start with weighted length measures which are simpler to construct. Recall Section 2.3 and

focus on the case where ϖ is a power function.

Proposition 3.11 (Weighted length measures). Let Assumption 3.9 hold. Then for every x ą 0,

there is the identity

Ex

˜

ÿ

uPU

ż 8

0
fuptqγ0´αdt

¸

“ ´ xγ0

κpγ0q . (3.21)

As a consequence, for every γ ě γ0, the measure ϖ ˝ g ¨ λT induced by the weight function10

ϖpxq “ xγ´α is finite, Px-a.s. We denote it by λγ and then pT, dT , ρ, g, λγq is a random measured

decorated compact tree.

9The second Cramér’s condition will appear when defining conditional versions of ssMt.
10Our choice of using γ ´ α instead of γ as exponent is related to the Lamperti transformation. As we will see

shortly, this will simplify notation thereafter.
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Proof. Let us start establishing (3.21). Thanks to self-similarity, it is enough to treat the case

x “ 1. We have

ÿ

uPU
E1

ˆ
ż zu

0
fuptqγ0´αdt

˙

“ E1

˜

ÿ

uPU
χpuqγ0

¸

E1

ˆ
ż z

0
fptqγ0´αdt

˙

.

By Assumption 3.9, ψpγ0q ă κpγ0q ă 0, and Lemma 3.8 gives Mpγ0q “ 1 ´ κpγ0q{ψpγ0q. Then
by the very construction of the family pfu, ηuquPU, we get

E1

˜

ÿ

uPNn

χpuqγ0
¸

“
´

1 ´ κpγ0q{ψpγ0q
¯n
, for n ě 0.

Since 1 ´ κpγ0q{ψpγ0q P p0, 1q, we deduce that

E1

˜

ÿ

uPU
χpuqγ0

¸

“ ψpγ0q{κpγ0q.

Next, we have by the Lamperti transformation,

E1

ˆ
ż z

0
fptqγ0´αdt

˙

“ E1

ˆ
ż z

0
exp ppγ0 ´ αqξpτptqqqdt

˙

“ E1

ˆ
ż 8

0
exp pγ0ξpsqqds

˙

“
ż 8

0
exp pψpγ0qsqds

“ ´ 1

ψpγ0q ,

where in the second equality we used that exppγξpsqq “ 0, for every s ě ζ, and in the ultimate

equality, that ψpγ0q ď κpγ0q ă 0. This completes the proof of (3.21).

Let us now deduce the remaining claim. Recalling Section 2.3 and in particular (2.9), by

Proposition 3.10 and self-similarity, it suffices to verify that for every γ ą γ0, we have

ÿ

uPU

ż zu

0
fuptqγ´αdt ă 8, P1-a.s.

In this direction, we notice that for every γ1 ą γ0,

sup
γPrγ0,γ1s

ÿ

uPU

ż zu

0
fuptqγ´αdt ď sup

!

1 ` fuptqγ1´γ0 : u P U, t P r0, zus
)

¨
˜

ÿ

uPU

ż zu

0
fuptqγ0´αdt

¸

.

Recalling from Proposition 3.10 that p}fu}quPU is a null family; we infer from (3.21) that:

sup
γPrγ0,γ1s

ÿ

uPU

ż zu

0
fuptqγ´αdt ă 8, P1-a.s.

This completes the proof of the proposition.
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In the setup of the above proposition, we have λγpT q ă 8, Px-a.s. for every x ą 0, and we

even have

Ex
`

λγpT q˘ “ ´ xγ

κpγq , as soon as κpγq ă 0. (3.22)

We further stress that the self-similarity asserted in Proposition 3.10 then extends to these

weighted length measures. Specifically, for every x ą 0, the distribution of the equivalence class

in Tm of pT, dT , ρ, g, λγq under Px is the same as that of pT, xα ¨ dT , ρ, x ¨ g, xγ ¨ λγq under P1.

For this reason, we say that λγ is self-similar with exponent γ, which motivates a posteriori our

choice for the parameter for the weight functions ϖ in Proposition 3.11.

3.3.2 First Cramér’s condition and the harmonic measure on leaves

In this section, we define the natural measure on leaves for self-similar Markov trees. To do so,

we shall rely on the constructed presented in Section 2.3 using an additional family pmuquPU
verifying (2.10). Those mu will be constructed using a harmonic function for the underly-

ing branching random walk. Specifically, recall from Section 3.1 the notation pfu, ηuquPU for

the general branching process index by Ulam’s tree, where the decoration-reproduction kernel

pPxqxą0 is self-similar and associated with the characteristic quadruplet pσ2, a,Λ;αq. In this

particular case, we have fup0q “ χpuq, and, as noticed in (3.7), the process

ÿ

|u|“n
δlogχpuq, n ě 0

is a branching random-walk with moment generating function M given by Lemma 3.8. We

deduce that if ω ą 0 is such that κpωq “ 0, then the function hpxq “ xω is a harmonic function

of types, namely that hp0q “ 0 and

hpxq “ Ex

˜ 8
ÿ

j“1

hpχpjqq
¸

“
ż

p0,8q
hpyqıxpdyq, for all x ą 0. (3.23)

It follows readily that by the branching property that the process

Mn –
ÿ

|u|“n
hpχpuqq, n ě 0, (3.24)

is then a positive martingale, which is usually referred to as an additive martingale; it converges

to its terminal value Px almost surely. We have more generally for any vertex u P U

mu :“ lim
nÑ8

ÿ

|v|“n
hpχpuvqq, in Px ´ a.s. (3.25)

Verifying the spread of mass condition (2.10) is intimately connected to ensuring that the pre-

vious convergence also holds in mean. Whether or not the additive martingale (3.24) converges

in L1pPq is well understood in the literature on branching random walks, see e.g. [33]. In our

setup, this will be implied by the following assumption:
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Assumption 3.12 (First Cramér’s condition). Suppose that there exist ω´ ą 0 and p P p1, 2s such
that

piq κpω´q “ 0, κppω´q ă 0, and piiq
ż

S1

Λ1pdyq
˜ 8
ÿ

i“1

eyiω´

¸p

ă 8.

From now on, under Assumption 3.12, we set:

ω` :“ inf
␣

t ą ω´ : κptq ě 0
(

, (3.26)

with the usual convention inf ∅ “ 8. Observe that, by convexity of the cumulant, we have

pω´ ă ω`. Furthermore, Assumption 3.12 ensures that both κ and ψ are negative over the

interval pω´, ω`q. In particular, Assumption 3.9 holds for every γ0 P pω´, ω`q and therefore we

can define the associated ssMt as well as the measures λγ , γ ą ω´. Also, because of convexity, κ
possesses a negative right-derivative at ω´ that we denote for simplicity by κ1pω´q, see Figure 3.2
for an illustration. We are going to use the function hpxq “ xω´ to define our measure on leaves.

ω−

κ

ω+
0

pω−

Figure 3.2: Illustration of the typical shape of the cumulant function κ. Assumption

3.12 requires that κ becomes strictly negative after its first zero (like in the gray region).

For this purpose, we need the following result:

Lemma 3.13. Let Assumption 3.12 hold. Then the function hpxq “ xω´ is harmonic in the sense

(3.23), and the process

Mnpω´q :“
ÿ

uPNn

χpuqω´ , n ě 0,

is a martingale bounded in LppPxq for every x ą 0. As a consequence, the spread of mass

condition (2.10) is fulfilled for the family the pmuquPU defined by (3.25).

Proof. Lemma 3.8 and Assumption 3.12 entail that Mpω´q “ 1, so hpxq “ xω´ is a har-

monic function, and we have already seen that Mnpω´q, n ě 0, is then an additive martin-

gale of a branching random walk with moment generating function M. Since Mppω´q “ 1 ´
κppω´q{ψppω´q ă 1, it is known that boundedness in Lp will follow provided that EpM1pω´qpq ă
8; see e.g. Theorem 3.1 of Alsmeyer and Kuhlbusch [10].

In this direction, we write

M1pω´q “
8
ÿ

j“1

χpjqω´ “
ÿ

1tsďζu exp ppξps´q ` yℓqω´q ,
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where the last sum is taken over all the pairs ps, yℓq obtained by expanding the atoms ps,yq of

N1. This shows that M1pω´q is a so-called Lévy-type perpetuity in the sense of Iksanov and

Mallein [81], see Section 2 there. Specifying Theorem 3.1 of [81] in our setting, all that we need

to verify are, first

E pexppξp1qpω´qq “ exppψppω´qq ă 1,

and second,
ż

S1

Λ1pdyq
˜ 8
ÿ

i“1

eyiω´

¸p

1tř8
i“1 e

yiω´ ą1u ă 8.11

The first requirement holds since ψppω´q ă κppω´q ă 0, and the second is part of Assump-

tion 3.12. Let us now prove the spread of mass condition (2.10). Introduce for any u P U,

Mnpuq –
ÿ

|v|“n
hpχpuvqq. (3.27)

Note from the Markov property that conditionally on χpuq “ y, the martingale pMnpuqqně0 has

the same law as pMnqně0 under Py. Plainly, we have on the one hand,

Mn`1puq “
8
ÿ

j“1

Mnpujq, (3.28)

and on the other hand, there are the convergences a.s. under Px,

mu “ lim
nÑ8Mnpuq and muj “ lim

nÑ8Mnpujq for all j ě 1.

Hence Fatou’s lemma yields

mu ě
8
ÿ

j“1

muj , Px-a.s. (3.29)

Moreover, we also know from the first point of the lemma that these martingales converge in

L1pPxq, which implies

Expmuq “ ExpM0puqq “ Ex phpχpuqqq and Expmujq “ ExpM0pujqq “ Ex phpχpujqqq ,

for all j ě 1. Taking the expectation in (3.28) for n “ 0, we deduce that both sides in (3.29)

have the same mean, and are thus almost surely equal.

In the sequel, we shall refer to pMnpω´qqně0 as the intrinsic martingale. Under Assumption

3.12 and using Proposition 2.10, we can endow the self-similar Markov tree T “ pT, dT , ρ, gq with
the measure induced by the pmuquPU; recall that the latter is supported by the set BT of leaves

of T . From now on, we will use the notation µ for this measure and recall that it is referred to

as the harmonic measure. Observe that the total mass µpT q of the harmonic measure coincides

11Theorem 3.1 in [81] assumes that the killing rate is 0. However, since the proof can be extended for a positive

killing without modifications, we leave the details to the reader.
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with the terminal value m∅ of the intrinsic martingale. Plainly, the self-similarity stated in

Proposition 3.10 extends to µ as follows. For any x ą 0, the distribution, the equivalence class

in Tm, of pT, xα ¨ dT , ρ, x ¨ g, xω´ ¨ µq, under P1, coincides with that of pT, dT , ρ, g,µq, under Px.
We say that µ is self-similar with exponent ω´; note also that

ExpµpT qq “ xω´ , for x ą 0. (3.30)

We mention that when the second root ω` in (3.26) is finite, Mnpω`q, n ě 0 is also a

martingale. Nonetheless it follows by general results on branching random walks, see [132], that

its terminal value is always 0 a.s. Even though the martingale Mnpω`q has also interesting

applications (see Part III), it cannot be used to construct a non-degenerate measure on self-

similar Markov trees.

Proposition 3.11 also allows us to endow T with the weighted length measures λγ for any

γ ą ω´, as it was discussed at the end of Section 3.2. In this direction, one can infer from

Lemma 3.13, that for every γ1 ď ω´, one has

ż

T
gγ

1´αpvq λT pdvq “
ÿ

uPU

ż zu

0
fuptqγ1´α dt “ 8, P1-a.s.

In other words, the measures c ¨λγ , for γ ą ω´ and some c ą 0, are the sole self-similar weighted

length measures with a finite total mass. Additionally, since all the measures µ and λγ , γ ą ω´,
have distinct self-similarity exponents, a nontrivial linear combination cannot be self-similar.

Consequently, up to an unimportant factor, µ and λγ , γ ą ω´, are the only self-similar measures

consistent with our framework. They constitute the family of measures that we will work with

in the sequel, and will also naturally appear as scaling limits of discrete models in Part II.

3.3.3 The harmonic measure as limit of weighted length measures

The purpose of this section is to point out that the harmonic measure µ on leaves can also

be obtained as a limit of re-scaled versions of weighted length measures λγ , as γ decreases

towards ω´. One important motivation for establishing such a result stems from the following

observation. Weighted length measures are given intrinsically in terms of the decorated real tree

T “ pT, dT , ρ, gq rather than in terms of a specific construction of T, such as by gluing building

blocks in Section 2.2. As a consequence, if pT 1, dT 1 , ρ1, g1q “ T1 is another decorated real tree

isomorphic to T, then for any weight function ϖ with ϖ˝g P L1pλT q, we have also in the notation

of Definition 2.1 that

pT, dT , ρ, g,ϖ ˝ g ¨ λT q « pT 1, dT 1 , ρ1, g1, ϖ ˝ g1 ¨ λT 1q.

At the opposite, the harmonic measure µ on a self-similar Markov tree has been defined in

terms the family pmuquPU in (3.25), and it is not clear a priori whether µ can be given directly

in terms of T only. Therefore, it is also unclear whether the compatibility with isomorphisms

that we just stressed for weighted length measures remains valid for µ. Proposition 3.14 below
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implies that actually, this is indeed the case, and the harmonic measure on leaves is also an

intrinsic quantity for self-similar Markov trees.

Proposition 3.14. Let Assumption 3.12 hold. Then there exists a sequence pγnqně1 with γn ą ω´
and limnÑ8 γn “ ω´, such that P1-a.s.,

lim
nÑ8 ´κpγnq ¨ λγn “ µ,

in the sense of weak convergence for finite measures on T .

Recall that κpγq ă 0 for γ P pω´, ω`q so that ´κpγq ¨ λγ is a positive finite measure, and by

(3.22), the factor ´κpγq ą 0 is simply chosen so that

E1

` ´ κpγq ¨ λγpT q˘ “ E1pµpT qq “ 1.

For technical reasons and to avoid extending the section unnecessarily, we restricted ourselves

to convergence along a sequence pγnqně1 in Proposition 3.14, which suffices for our purpose. We

are nonetheless confident that the convergence should hold as γ Ó ω´.
The rest of this section is devoted to the proof of Proposition 3.14; we implicitly take As-

sumption 3.12 for granted. As a first step, we establish the convergence of the total mass.

Lemma 3.15. There is the convergence

lim
γÓω´

κpγqλγpT q “ ´µpT q, in L1pP1q.

Proof. Recall from Lemma 3.8 that the Mellin transform of the reproduction intensity is given

by Mpγq “ 1 ´ κpγq{ψpγq P p0, 1s for every γ P rω´, ω`s. From the branching property,

Mnpγq :“ Mpγq´n ÿ

uPNn

χpuqγ “ Mpγq´n ÿ

uPNn

fup0qγ , n ě 0,

is then a nonnegative martingale, and we denote its terminal value by M8pγq. We are going to

establish:

piq M8pγq converges in L1pP1q to M8pω´q as γ Ó ω´,

piiq M8pγq ` κpγq ¨ λγpT q converges in L1pP1q to 0 as γ Ó ω´.

Combining these two claims implies the lemma, since, by definition µpT q “ M8pω´q. We start

by proving the first item which follows by standard branching random walk technics12.

(i) Recall from Lemma 3.13 that Mnpω´q P LppP1q for some p ą 1 appearing in Assumption

3.12 and every fixed n ě 0. We deduce readily from dominated convergence that

lim
γÓω´

Mnpγq “ Mnpω´q, in L1pP1q. (3.31)

12Similar results appeared in the theory of branching random walks, see notably [34]. Unfortunately, we have

not been able to find a reference covering our specific situation.
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The idea now is to control the difference M8pγq ´ Mnpγq for γ close enough of ω´. In this

direction, fix q P p1, pq and take γ1 P pω´, pω´{qq such that

c :“ sup
γPrω´,γ1s

Mpqγq{Mpγqq ă 1.

This is indeed feasible since κpω´q “ 0 and κppω´q ă 0.

For every γ P rω´, γ1s, a direct computation gives:

M1pγqq ď Mpγq´q
ˆ

sup
uPN

χpuqpγ´ω´qq
˙

M1pω´qq ď Mpγq´q `1 `M1pω´qp´q˘M1pω´qq.

Since by Lemma 3.13, the variable M1pω´q is in LppP1q and infrω´,γ1s Mpγq ą 0, we deduce

from Hölder’s inequality that

sup
γPrω´,γ1s

E1pM1pγqqq :“ K ă 8.

We can now apply [34, Lemma 2(i)], combined with Jensen inequality, to infer that for every

n ě 0 and γ P rω´, γ1s, we have

E1 p|M8pγq ´Mnpγq|q ď 23K1{qcn{q. (3.32)

Using (3.31) and (3.32), we arrive at

lim sup
γÑω´

E1 p|M8pγq ´M8pω´q|q ď 24K1{qcn{q.

Finally, taking the limit as n Ñ 8 in the right-hand side, we obtain (i).

(ii) From the very definition of the weighted length measure λγ and the canonical decompo-

sition (2.9) of T into line segments indexed by U, we get for every γ P pω´, γ1s,

κpγqλγpT q “ κpγq
ψpγq

ÿ

uPU
χpuqγAupγq,

where for non-fictitious vertex u, we write

Aupγq “ ψpγqχpuq´γ
ż zu

0
fuptqγ´αdt,

and by convention we take Au “ 0 if u is fictitious. Next from (3.32) that

E1

˜ˇ

ˇ

ˇ

ˇ

ˇ

M8pγq ´ κpγq
ψpγq

ÿ

ně0

ÿ

uPNn

χpuqγ
ˇ

ˇ

ˇ

ˇ

ˇ

¸

ď κpγq
ψpγq

ÿ

ně0

MpγqnE1 p|Mnpγq ´M8pγq|q

ď 24K1{qκpγq
ψpγqp1 ´ Mpγqc1{qq ,

and the right-hand side converges to 0 as γ Ó ω´. Therefore, it suffices to show that

lim
γÓω´

E1

˜ˇ

ˇ

ˇ

ˇ

ˇ

κpγq
ψpγq

ÿ

ně0

ÿ

uPNn

χpuqγpAupγq ` 1q
ˇ

ˇ

ˇ

ˇ

ˇ

¸

“ 0. (3.33)
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In this direction, recalling that q P p1, 2q and using the triangle and then the Jensen inequal-

ities, we bound from above the expectation in (3.33) by

κpγq
ψpγq

ÿ

ně0

E1

˜˜

ÿ

uPNn

χpuqγ |Aupγq ` 1|
¸q¸1{q

. (3.34)

Now an application of the branching and the self-similarity properties, combined with the Lam-

perti transformation, shows that, for n ě 0, under P1 and conditionally on the types at generation

n, pχpuqquPNn , the variables Aupγq, for u P Nn with χpuq ‰ 0, are i.i.d with the same law as

ψpγq
ż ζ

0
exppγξptqqdt, under P1.

We know from Tonelli’s theorem that

E1

ˆ
ż ζ

0
exppγξptqqdt

˙

“
ż 8

0
E1 pexppγξptq, t ă ζq dt “ ´1{ψpγq,

and we can apply the Marcinkiewicz-Zygmund inequality to infer that (3.34) is bounded above

by

cpqqκpγq
ψpγq

ÿ

ně0

E1

˜

ÿ

uPNn

χpuqγq
¸1{q

¨ E1

ˆ

ˇ

ˇ

ˇ
ψpγq ¨

ż 8

0
exppγξptqqdt` 1

ˇ

ˇ

ˇ

q
˙1{q

“ cpqq κpγq
ψpγq`1 ´ Mpqγq1{q˘E1

ˆ

ˇ

ˇ

ˇ
ψpγq

ż 8

0
exppγξptqqdt` 1

ˇ

ˇ

ˇ

q
˙1{q

,

where cpqq ă 8 is some constant depending on q only.

On the one hand, cpqqκpγq{`ψpγq`1 ´ Mpqγq1{q˘˘ converges to 0 as γ Ó ω´. On the other

hand, the bound eyγ ď eyω´ ` eyγ1 for all y P R and γ P rω´, γ1s yields

sup
γPrω´,γ1s

E1

ˆˆ
ż 8

0
exppγξptqqdt

˙q˙

ď 2qE1

ˆˆ
ż

exppω´ξptqqdt
˙q˙

` 2qE1

ˆˆ
ż

exppγ1ξptqqdt
˙q˙

,

and since ψpqω´q ă 0 and ψpqγ1q ă 0, the finiteness of the right-hand side above follows from

standard properties of Lévy processes, see Lemma 7.1 in the Appendix. Putting the pieces

together, we have checked (3.33), and the proof of (ii) is complete.

We can now establish Proposition 3.14.

Proof of Proposition 3.14. We work under P1 and equip the ssMt T “ pT, dT , ρ, gq with the

measures µ and λ̃γ :“ ´κpγq ¨ λγ for γ P pω´, ω`q. We infer from Lemma 3.15 that there exists

a sequence pγnqně1 in pω´, pω´q which converges to ω´ and such that λ̃γnpT q Ñ µpT q a.s. Our

goal is to show that limnÑ8 dProkpλ̃γn ,µq “ 0 a.s. Since the convergence for the total masses is
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already know from Lemma 3.15, it suffices to establish that, for every δ ą 0 and every Borel set

A Ă T , we have

µpAq ď λ̃γnpAδq ` δ, for all n sufficiently large, (3.35)

where we use the standard notation Aδ to denote the δ-neighborhood of A in T .

In this direction, recall Notation 2.9, and in particular that for every v P U, pTv, dTv , ρpvq, gv,µvq
stands for the subtree encoded by the sub-family pfvu, ηvuquPU. By the branching property, the

conditional law of pTv, dTv , ρpvq, gv,µvq, in T, given the type χpuq “ y is that of the ssMt under

Py. Therefore, by self-similarity, we get

lim
nÑ8 λ̃γnpTvq “ µvpTvq “ µpTvq, for every v P U, a.s. (3.36)

Using again Notation 2.9, we can decompose the tree T at a generation k ě 1 as

T “ T k Y
¨

˝

ď

|v|“k
Tv

˛

‚.

We stress that for any two distinct vertices at the same generation, say v ‰ w with |v| “ |w| “ k,

the subtrees Tv and Tw are either disjoint, or they share the same root and their intersection is

then reduced to the latter. In both cases, we have µpTv X Twq “ 0. Combining this observation

with the fact from Corollary 3.4, that for any k ě 1, the harmonic measure assigns no mass to

T k, we conclude that there is the identity

µpAq “
ÿ

vPNk

µpAX Tvq.

We then recall (from Propositions 2.7 and 3.10, and Property (P)) that

lim
kÑ8 suptHeightpTvq : v P Nku “ 0;

we can therefore almost surely find a (random) integer k sufficiently large such that

HeightpTvq ă δ{2, for all v P Nk. (3.37)

Next, since µpT q “ ř

|v|“kmv and mv “ µpTvq, we can select finitely many distinct vertices

v1, . . . , vM at generation k, such that

ÿ

1ďiďM
µ pTviq ě µpT q ´ δ{2.

As a consequence of (3.36), we can now find an integer N ě 1, such that

µ pTviq ď λ̃γn pTviq ` δ{p2Mq, for every 1 ď i ď M and n ě N .

Take any Borel subset A of T and combine the preceding observation. We get

µpAq ď
ÿ

1ďiďM
µ pAX Tviq ` δ{2 ď

ÿ

1ďiďM
AXTvi‰H

λ̃γn pTviq ` δ.
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Finally, (3.37) entails that for any vertex v P Nk with A X Tv ‰ H, Tv is included into the

δ-neighborhood of A, and the previous display is therefore bounded from above by λ̃γnpAδq ` δ;

here we used the facts that λ̃γn has no atoms and that the intersection of two different subtrees

at the same generation is either empty or a singleton. This completes the proof of our claim.

3.4 Comments and bibliographical notes

Construction of ssMt. As mentioned in the previous chapter, the inspiration for the recursive

random construction of self-similar Markov trees is the work of Rembart &Winkel. In [124] those

authors already constructed the underlying tree structure (but without the decoration) of binary

growth-fragmentation processes (a subclass of our ssMt) and gave a similar upper bound on the

Hausdorff dimension as in Lemma 3.6. After the initial works on self-similar fragmentations

[18, 78], the introduction of branching self-similar Markov processes can be traced back to [21]

(in particular Lemma 3.8 is adapted from [21, Lemma 4]) in the context of (binary) Growth-

Fragmentation and [26] in the context of branching Lévy processes. Most of the framework of

Section 3.2 is adapted from the literature on branching Lévy processes [26]. A branching Lévy

process can be seen as the continuous-time version of a branching random walk which describes

a particle system on the real line in which particles move and reproduce independently in a

Poissonian manner. Just as for Lévy processes, the law of a branching Lévy process is determined

by its characteristic triplet pσ2, a,Λq where the decorated Lévy measure Λ describes the intensity

of the Poisson point process of births and jumps. In a nutshell, the self-similar Markov branching

trees can be interpreted as the random decorated trees obtained after performing a Lamperti

transformation with exponent α ą 0 to the decorated trees coding for the genealogy of branching

Lévy processes.

Critical case. Our construction of ssMt in Proposition 3.10 assumes sub-criticality of the cu-

mulant, i.e. that κpγ0q ă 0 for some γ0 ą 0. Indeed, when κ is strictly positive, the underlying

branching random walk should witness local explosion, see [28], and it is hopeless to define a

random compact tree from it. However, we left aside of this work the critical case when there

exists ω ą 0 for which κpωq “ 0 and otherwise κ ě 0. In this case, we do not believe that our

Theorem 3.3 can apply, since there are cases when
ÿ

ně0

E
`

sup
|u|“n

χpuq˘ “ 8.

However, the application of Theorem 2.5 requires the more flexible assumption (2.6), namely

limkÑ8 sup
!

ř8
n“k zūpnq : ū P NN

)

“ 0 and its associated branching random walk analog

lim
kÑ8 sup

!

8
ÿ

n“k
χpūpnqq : ū P NN

)

“ 0.

In terms of growth-fragmentation process (see Section 4.3 for details), although the particle

system evolving in continuous time makes sense as well in the critical case, we do not know
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in general whether its extinction time is finite a.s. or not (see [21, Corollary 3]) and in turn

whether the construction of Proposition 3.10 yields to a compact decorated random real tree.

A private communication of Elie Aidekon, Yueyun Hu and Zhan Shi reported progress in that

direction and we believe that ssMt could even be defined in the critical case13. See Remark 4.4

and Example 4.12 for instances of critical cases.

On the intrinsic martingale. Our construction of the harmonic measure on ssMt is based on a

natural additive martingale, which is often referred to as the intrinsic martingale in the branching

random walk literature. Biggins [33] and Biggins & Kyprianou [36] have given explicit general

criteria (extending the celebrated Kesten-Stigum theorem) which entail that the convergence

also holds in mean of those martingales. In our case, Assumption 3.12 and Lemma 3.13 which

ensures the convergence in mean builds on the recent works Alsmeyer & Kuhlbusch [10] and

Iksanov & Mallein [81]. Although Lemma 3.13 proves a convergence in LppP1q for some p ą 1,

Proposition 3.10 merely requires the uniform integrability. Even though we employ the condition

of boundedness in LppP1q to streamline some technical arguments, it might be possible to bypass

it. Our results are likely to remain valid under less stringent assumptions ensuring the uniform

integrability of the intrinsic martingale pMnpω´qqně1.

The law of M8́, the limit of the intrinsic martingale is subject of intense study in the

literature: Passing (3.28) to the limit using the convergence in mean, we deduce the following

recursive distributional equation

M8pω´q pdq“
ÿ

uPN
χpuqω´ ¨Mu8pω´q, (3.38)

where on the right hand side the iid copies Mu8pω´q, u P N are independent of the vector

pχpuq : u P Nq. The above fixed point equation, related to the equation “X “ AX ` B” is

sometimes called a smoothing transform and has been studied in depth in recent years, see [59].

Under our assumptions, we infer in particular from results due to Biggins (see Section 2 in [33]),

that this equation has a unique solution with given mean. In our Markovian setup, we can also

write an “infinitesimal version” of the recursive distributional equation (3.38), see [25, bottom

page 4], and deduce that the Laplace transform wpλq “ E
`

e´λM8pω´q˘, λ ě 0 , satisfies the

following integro-differential equation,

0 “ ´ kwpλq ` 1

2
σ2λ2w2pλq ` a λw1pλq

`
ż

νpdyq
˜

ź

iě0

wpλyω´

i q ´ wpλq ´ y0λw
1pλq1e´1ďy0ďe

¸

, (3.39)

where ν is the image measure of Λ by x ÞÑ ex. Alas, despite the fact that the law of M8pω´q
satisfies (3.38) and (3.39), it seems to be difficult to identify its distribution in general. We

13Notice then that Assumption 3.12 cannot hold and natural harmonic measure µ must be constructed from

the derivative martingale, [132, Section 3.4].
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shall however be able to identify the law of M8pω´q in some special cases in particular via a

surprising connection with random planar maps, see Chapter 4.
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Chapter 4

Examples

The purpose of this chapter is to illustrate the construction of self-similar Markov trees and

to discuss some distinguished families of examples. Roughly speaking, many of those exam-

ples have the property that the decorations along branches are given by some versions of a

stable Lévy process. We stress here again -see also the end of Section 3.2- that the law of a

self-similar Markov tree is determined by a characteristic quadruplet, and that different char-

acteristic quadruplets in the same equivalence class of bifurcators induce self-similar Markov

trees with the same distribution. Choosing one characteristic quadruplet rather than another

one within an equivalence class of bifurcators is often only a matter of preferences. The reader

may wish to have first a glance at the forthcoming Section 6.3 that will provide a detailed ac-

count on bifurcators; notably Theorem 6.3 there describes these equivalence classes explicitly.

Nonetheless, the examples treated in this chapter do not require any result from Section 6.3.

Before starting our list of examples and in order to give a purely analytic definition in terms

of the characteristic quadruplet, we also need to make some comments on the concept of drift.

The notion of drift coefficient for a Lévy process ξ can be defined canonically when the Lévy

measure Λ0pdyq integrates 1 ^ |y|, but depends otherwise of the arbitrary choice of the cutoff

function in the Lévy-Khintchin formula (3.11). More precisely, if
şp1 ^ |y|qΛ0pdyq ă 8, then

no compensation is needed to make sense of the Poisson integral there and we can re-write the

Lévy-Itô decomposition (3.9) in the simpler form

ξptq :“ σBptq ` acant`
ż

r0,tsˆR
N0pds, dyq y, acan :“ a ´

ż

Λ0pdyqy1|y|ď1.

Note that acan “ a when all the jumps of ξ have size greater than 1 (i.e. when Λ0pr´1, 1sq “ 0),

but otherwise these two coefficients are usually different. It is well-known that acan is then a

much more relevant quantity for the Lévy process ξ than the rather artificial a, and we shall

therefore call acan the canonic drift coefficient. Notice that in this case, the cumulant function

takes the following simpler form

κpγq “ 1

2
σ2γ2 ` acanγ `

ż

S
Λpdy0, dyq

˜

`

8
ÿ

i“0

eγyi
˘ ´ 1

¸

. (4.1)
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4.1 Finite branching activity

One often says that a Lévy process has a finite activity when almost surely, its sample paths

have only a finite number of jumps along any time interval of finite duration; this is equivalent

to the finiteness of the Lévy measure. In the setting of Section 3.2, recall that Λ1 denotes the

image of the generalized Lévy measure Λ by the second projection from S “ r´8,8q ˆ S1

to S1, and that Λ1 bears a close relation to the reproduction process η; see (3.17) and (3.18).

Recall also that in a reproduction event, the degenerate sequence p´8,´8, . . .q P S1 should be

interpreted as empty. So strictly speaking, an atom of the Poisson random measure N of the

form pt, y, p´8,´8, . . .qq is not associated to any reproduction event, but only to a jump of the

decoration at time t.

We say that a self-similar Markov tree with characteristic quadruplet pσ2, a,Λ;αq has a finite

branching activity when

Λ1

`

S1ztp´8,´8, . . .qu˘ ă 8.

This is the case precisely when the first atom of the reproduction process η occurs at a (strictly)

positive time a.s., and as a consequence, reproduction events for an individual can only (possibly)

accumulate at the end of its lifetime. The tree has then essentially a discrete structure and its

branching points do not pile up, except possibly at leaves; see Figures 4.1 and 4.2. Note also

that since the killing rate k “ Λpt´8u ˆ S1q is always finite, a self-similar Markov tree has a

finite branching activity if and only if its generalized Lévy measure satisfies

Λ
`tpy,yq P S : y “ ´8 or y ‰ p´8,´8, . . .qu˘ ă 8. (4.2)

Having or not a finite branching activity is an intrinsic property of a self-similar Markov

tree, hence it does not depend on the choice of the characteristic quadruplet within a family of

bifurcators. Moreover, if a characteristic quadruplet pσ2, a,Λ;αq has a finite branching activity,

then we can always choose an equivalent bifurcator, which we denote again by pσ2, a,Λ;αq for

the sake of simplicity, such that the generalized Lévy measure now fulfills

Λ
`tpy,yq P S : y ‰ ´8 and y ‰ p´8,´8, . . .qu˘ “ 0. (4.3)

This requirement means that reproduction events can only occur at the death of the parent,

which makes the reproduction process especially simple to depict. In terms of general branching

processes, considering such an equivalent bifurcator amounts to the following somewhat artificial

transformation. We decide to kill each individual at the first instant when it begets, and declare

that at its death, it gives birth to an additional child then viewed as its reincarnation and whose

decoration is thus defined by shifting the decoration of the parent. Although this transformation

affects some genealogical aspects of the branching process, it has no impact on the decorated

real tree which is induced.

We assume throughout the rest of this section that the generalized Lévy measure Λ satisfies1

1Of course, (4.2) and (4.3) alone do not grant Assumption (3.9) and the latter is also needed to ensure the

existence of the self-similar Markov tree.
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(4.2) and (4.3). Then the self-similar Markov tree can be seen as the result of Lamperti’s trans-

formation applied to the decorated genealogical tree that records the evolution of a continuous

time branching random walk in the sense of Biggins [34, Section 5]. More precisely, the latter

depicts a population of individuals living in R, starting at time 0 from a single ancestor located

at the origin, and such that each individual lives for an exponentially distributed duration with

a fixed parameter. During their lifetimes, individuals move according to independent copies of

a Lévy process with characteristic triplet pσ2, a,Λ0q and are thus killed with rate

k “ Λ0pt´8uq “ Λ
`t´8u ˆ S1

˘ “ Λ
`tpy,yq P S : y “ ´8 or y ‰ p´8,´8, . . .qu˘,

where the second identity stems from (4.3). In particular, when a death event occurs, the

individual which dies is chosen uniformly at random in the current population, independently

of its location.

At the time of its death, the parent is replaced by its offspring. The distribution of the

children positions relative to the parent is given by the normalized sub-probability measure

k´1Λ1 on S1ztp´8,´8, . . .qu, where the default of mass is the probability that an individual

dies without begetting any child. The self-similar Markov tree is then obtained by interpreting

the location of an individual in the continuous time branching random walk as a value of the

(real) decoration on the genealogical tree, and then performing the Lamperti transformation

on each line of descent. Last, we need to take the completion in order to deal with a compact

structure.

We will now describe in more detail three examples in which the motions of individuals and

their reproductions for the continuous time branching random walk are particularly simple. In

the first example, individuals are static and the sole motion occurs at birth. In the second,

the motion of individuals is merely a linear drift and children are born at the same location

as their parents. In the third, the displacements of individuals are governed by independent

Brownian motions with drift, and again children are born at the same location as their parents.

For the sake of simplicity, we mostly focus on binary branching, meaning that an individual

begets exactly two children when it dies.

Example 4.1 (Static, after Haas [77]). Consider the characteristic quadruplet with σ2 “ 0, acan “
0, Λhalf “ δp´8,p´ log 2,´ log 2,´8,...qq and an arbitrary α ą 0. In the continuous time branching

random walk, each individual lives for a standard exponential duration and does not move until

it dies. At death, each parent given birth to two children, both located at distance log 2 at the left

of the parent.

The self-similar Markov tree is then obtained by performing the Lamperti transformation,

which is elementary. Its structure is very simple to described iteratively: it consists of a branch

having a standard exponential length and decorated with the constant function 1, at the extremity

of which two branches of independent exponential lengths with mean 2´α, each decorated with

the constant function 1{2 are grafted, and so on and so forth. Finally we take the closure; see

Figure 4.1 for an illustration.

74



The cumulant is simply

κpγq “ 21´γ ´ 1, for γ ą 0.

Assumption 3.12 holds with ω´ “ 1 and ω` “ 8, and since the sum of the decoration of the two

children always equals the decoration of the parent, the intrinsic martingale is constant and the

total mass of the tree for the harmonic measure is merely 1. Turning our attention to weighted

length measures, we observe from Proposition 3.11 that λγ is finite for any γ ą 1. An application

of the branching property shows that the total mass λγpT q satisfies the fixed-point equation in

distribution

λγpT q pdq“ Ep1q ` 2´γpλ1 ` λ2q
where λ1 and λ2 are two independent copies of λγpT q also independent of the exponential random

variable Ep1q. ˛

Figure 4.1: A simulation of the self-similar Markov tree in Example 4.1 for α “ 0.4. The

tree T is embedded (non-isometrically) in the plane, and the decoration is represented

in the vertical dimension. The root is at the bottom of the right hand side, marked by

an arrow.

The second example is a simple variation of the Yule process, which has also a natural

interpretation in terms of reduced stable trees, as it will be discussed afterwards.

Example 4.2 (Binary branching and drift). Consider here the characteristics σ2 “ 0, acan “ ´1,

Λtwo “ δp´8,p0,0,´8,...qq and α “ 1. In the continuous time branching random walk, individuals

live in R´ and drift continuously with velocity ´1; they die at rate k “ 1 and then are replaced

by two children at the same location. This is an elementary spatial version of the Yule process

(see [11, Chapter III.5]); in particular, the number of individuals at any given time t ě 0 has
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the geometric distribution with parameter e´t and all these individuals are located at ´t. The

sequence of times at which birth events occur is given by the partial sums ϵ1 ` ¨ ¨ ¨ ` ϵn for

n ě 1, where the variables ϵi’s are independent and each ϵi has the exponential distribution with

parameter i. As a consequence, the variables βi “ expp´ϵiq are independent betapi, 1q variables

with distribution functions Ppβi ď rq “ ri for r P r0, 1s. In the present case, the Lamperti

transformation amounts to combining the time-change τprq “ ´ logp1 ´ rq for r P r0, β1q and

the exponential map y Ñ ey in space. In particular, the decoration process is simply given by

Xprq “ expp´τprqq “ 1´ r, for r P r0, β1q and Xpβ1q “ 0. Furthermore, the ranked sequence of

the heights of the branching points in the self-similar Markov tree is 1 ´ β1 ¨ ¨ ¨βn, for n ě 1.

Equivalently, the self-similar Markov tree can then be constructed recursively as follows; see

Figure 4.2 for an illustration. We start with the line segment with unit length. As a first step,

we glue at height 1 ´ β1 a segment with length β1. Next we choose one of the two points at

height 1 ´ β1β2 uniformly at random and glue there a segment with length β1β2, and so on, and

so forth. That it, at the n-th step, we pick on the tree constructed so far one of its n points at

height 1´ β1 ¨ ¨ ¨βn uniformly at random and glue there a segment with length β1 ¨ ¨ ¨βn. We end

the construction by completing the tree and define the decoration as 1 minus the height function.

The decoration gpxq at vertex x is then the height of the fringe subtree that stems from x.

We next turn our attention to the intrinsic martingale and the harmonic measure µ. By

(3.19), we have

κpγq “ 1 ´ γ, for γ ą 0,

so that Assumption 3.12 holds with ω´ “ 1 and ω` “ `8. On the other hand, we see from

(3.18) that reproduction process simply given by

η “ 2δpU,Uq,

where U “ 1 ´ expp´ϵ1q has the uniform distribution on r0, 1s. Recall that the harmonic mass

µpT q is given by the terminal value of the intrinsic martingale, and we see from the branching

property that the latter satisfies the distributional identity

µpT qpdq“ Upµ1 ` µ2q,

where in the right-hand side, the variables µ1 and µ2 are independent copies of µpT q, also

independent of U . It is easy to deduce (for instance, by considering Laplace transforms) that

µpT q has the standard exponential distribution, as we may expect from a well-known result on

Yule processes (see, e.g. [11, Problem 2 on page 136]).

We consider as well the weighted length λγpT q for γ ą 1, and get similarly the identity in

distribution

λγpT qpdq“γ´1p1 ´ Uγq ` Uγpλ1 ` λ2q,
where in the right-hand side, the variables λ1 and λ2 are independent copies of λγpT q, also

independent of the uniform variable U . ˛
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Figure 4.2: A simulation of reduced tree at height 1 in the Brownian CRT. The re-

duced tree is embedded in the plane and the decoration (corresponding to the height

of subtrees) corresponds to the vertical dimension. The root is placed on the right and

marked with an arrow.

The self-similar Markov tree in Example 4.2 is well-known in the literature and notably

appeared in connection with the Brownian motion and the Brownian CRT. In this direction, let

us first briefly recall basics about Itô’s measure of Brownian excursions and the coding of real

trees by excursions since this will serve in several examples below.

We consider the Itô measure NIto of positive Brownian excursions, which can be constructed

using Itô or William’s decomposition, see [125, Chapter XII, Theorem 4.2 and 4.5]. Specifically,

there exist a family of probability distributions pNℓqℓą0 on excursions of fixed length ℓ, and a

family pNphqqhą0 on excursions of fixed height h, which both inherit self-similarity from Brownian

motion, such that

NIto “
ż 8

0

dh

2h2
Nphq “

ż 8

0

dℓ

2
?
2πℓ3

Nℓ. (4.4)

Next, recall from [66] that any continuous excursion, say e : r0, ℓs Ñ R` with ep0q “ epℓq “ 0,

encodes a rooted planar continuous tree, say Te, via the contour function. The latter is a

continuous surjection ce : r0, ℓs Ñ Te, and it is then natural to endow Te with the push-forward

image of the Lebesgue measure on r0, ℓs by ce, which we call here the contour measure2 on Te
and denote by γe. We shall see in Examples 4.5 and 4.6 that the random tree Te under N1 or

Np1q can be seen as self-similar Markov tree (see also Example 4.12 for a related example).

2The same tree can be encoded by different excursions, and each such excursion induces a contour measure.
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At the heart of the connexions between Example 4.2 and Brownian excursions or CRT lies

the observation that the sequence pβ1 ¨ ¨ ¨βnqně1 of the random lengths used in the construction

by gluing can be obtained as the sequence ranked in the decreasing order of the atoms of a

Poisson point measure on p0, 1q with intensity ℓ´2dℓ. By Brownian excursion theory, the latter

has the same statistics as the ranked sequence of the depths of the family of the excursions

below 1 for a Brownian motion started from 1 and killed when hitting 0. Now imagine that

instead of ranking these lengths in decreasing order, we keep the natural order induced by time)

of occurrences of the excursions of the Brownian motion (informally speaking, this corresponds

to a uniform random shuffling of the ranked sequence), and add a unit length at the right-end

to take into account the final excursion that brings the Brownian motion to 0. By gluing each

length ℓ ă 1 at its bottom point to the first larger length at its right, we recover precisely the

recursive construction devised in Example 4.2.

This construction can also be interpreted as follows. We work under the Itô measure of

positive Brownian excursion conditioned to have height at least 1, which thanks to (4.4) can be

expressed in the form
ż 8

1

dh

h2
Nphq.

Under this conditional probability measure, a sample path can be viewed as the contour process

of a planar continuous tree with height at least 1. Imagine that we reduce this tree by removing

first all the vertices at height greater than 1, and further by pruning all the remaining branches

that do not reach height 1. Then this reduced tree has the same distribution as the self similar

Markov tree in Example 4.2; see e.g. [53, Section 2.1].

This reduction process can be applied to the stable trees of the forthcoming Example 4.7.

In this case we still have α “ 1, the drift is a “ ´1, the Gaussian coefficient σ2 “ 0 and the

generalized Lévy measure is given by

Λ “
ÿ

kě1

δp´8,p0, ..., 0
loomoon

k times

,´8,...qq ¨ βΓpk ´ βq
k!Γp2 ´ βq ,

so that the associated cumulant function is

κpγq “ 1

β ´ 1
´ γ.

In particular Assumption 3.12 still holds with ω´ “ 1
β´1 P r1,8q and ω` “ `8, and in this

case, the total µ-mass has Laplace transform

E
`

e´γM8pω´q˘ “ 1 ´
ˆ

1 ` 1

γβ´1

˙´1{pβ´1q
,

see [109] and the references therein.

We end this subsection with a last example where now the motions of individuals are diffusion

processes.
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Example 4.3 (Branching Bessel processes). Consider the characteristics σ2 “ 1, acan P R, Λtwo “
δp´8,p0,0,´8,...qq, and self-similarity parameter α “ 2. The continuous time branching process

is then the well-known binary branching Brownian motion with drift acan, and the cumulant

function is

κpγq “ γ2

2
` acanγ ` 1.

It satisfies Assumption 3.12 as soon as acan ă ´?
2 and then ω´ “ ´acan ´ ?

acan2 ´ 2 and

ω` “ ´acan ` ?
acan2 ´ 2. By the Lamperti transformation, the self-similar Markov process

X associated to the Brownian motion with drift Bt ` acant is a Bessel process with dimension

d “ 2acan ` 2. See Figure 4.3 for an illustration.

Similarly to Example 4.2, the spatial marginal of the reproduction measure is

ηpR` ˆ dxq “ 2δexppBϵ`acanϵqpdxq,

where ϵ is an exponentially distributed random time independent of the Brownian motion B.

The density of the variable Bϵ ` acanϵ is given by

PpBϵ ` acanϵ P dyq “ p2 ` acan
2q´1{2 exppacany ´ |y|

a

2 ` acan2qdy,

see [39, (1.0.5) on page 256]. The terminal value of the intrinsic martingale, that is the mass

of the harmonic measure, then satisfies the distributional identity

M8pω´qpdq“ exppω´pBϵ ` acanϵqqpM8pω´q `M 18pω´qq,

where in the right-hand side, the variables Bϵ ` acanϵ, M8pω´q and M 18 are independent, and

M 18 is a copy ofM8pω´q. It is not known to us whether an explicit expression for the distribution

of M8pω´q can be derived from this. ˛

Remark 4.4 (Critical case). If we take acan “ ´?
2 in the above example, then the overall

minimum of the cumulant function κ equals 0, which we called the critical case in the comments

section of Chapter 3. In this example, we leave open the fact that the procedure of Chapter 3

actually produces a compact decorated random tree.

4.2 Non-increasing decorations and fragmentations

We say that a decoration on rooted real tree is non-increasing when its restriction to any segment

from the root defines a non-increasing function of the height. We then call a self-similar Markov

tree non-increasing if its decoration is non-increasing, almost-surely. In that case, the self-

similar Markov process X that describes the decoration for a typical individual must plainly

have non-increasing sample paths, that is, equivalently, the underlying Lévy process ξ that gives

X after the Lamperti transformation must be the negative of a subordinator (possibly with

killing). However, this requirement is clearly not sufficient; one needs to impose further that
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Figure 4.3: A simulation of the Branching Bessel process with acan “ ´3. As usual,

the decoration (the values of the Bessel processes) is displayed in the vertical coordinate.

The root of the decorated tree is marked by an arrow.

the reproduction process η has no atom, say at pt, xq, with Xpt´q ă x. The latter translates in

terms of the generalized Lévy measure as

Λ1

` ty “ py1, . . .q P S1 : y1 ą 0u ˘ “ 0. (4.5)

In the converse direction, it is immediately seen that if (4.5) holds and if the underlying Lévy

process ξ is the negative of a subordinator, then the self-similar Markov tree is non-increasing.

For instance, Examples 4.1 and 4.2 are non-increasing self-similar Markov trees (with a finite

branching activity), but not Example 4.3. In particular, a (possibly killed) real Lévy process

is a subordinator – that is, it has non-decreasing sample paths until it eventually dies almost

surely – if and only if its Gaussian coefficient is σ2 “ 0, its Lévy measure Λ0pdyq gives zero

mass to p´8, 0q and integrates the function 1 ^ |y|, and finally, its canonic drift coefficient is

nonnegative, acan ě 0.

Putting the pieces together, we arrive at the following analytic definition in terms of the

characteristic quadruplet3. A self-similar Markov tree is non-increasing if and only if its Gaussian

coefficient is zero, σ2 “ 0, its generalized Lévy measure verifies

Λ
` tpy,yq P S : y ą 0 or y1 ą 0u ˘ “ 0,

and
ż

p´8,0q
p1 ^ |y|qΛ0pdyq ă 8, (4.6)

3Whether or not a self-similar Markov tree is non-increasing is obviously an intrinsic property, which does not

depend of the choice of the characteristic quadruplet within a family of bifurcators.
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and finally, its canonic drift coefficient is non-positive,

acan “ a ´
ż

r´1,0q
yΛ0pdyq ď 0.

We stress however that at this stage, the cumulant function κ in (3.19) could potentially be

infinite everywhere, and a fortiori Assumption (3.9) may fail in general.

We now present an example of a non-increasing self-similar Markov tree with an infinite

branching activity which is related to Example 4.2. Recall the notation regarding Itô excursion

measure and contours of planar trees that was introduced after Example 4.2.

Example 4.5 (Heights of Brownian sub-trees). Let us denote the Brownian CRT of height 1 by

T p1q, i.e. the tree Tep1q where ep1q follows the law Np1q in (4.4). We further endow T p1q with the

deterministic decoration which assigns to each vertex v P T p1q the height of the fringe-subtree T p1q
v

rooted at v as defined in Section 2.1; see Figure 4.4 for an illustration. We shall now argue that

this decorated random real tree is a self-similar Markov tree and determine its characteristics.

Figure 4.4: A simulation of a Brownian CRT normalized by the height. The tree is

embedded non-isometrically in R2; the decoration function represents the height of fringe

subtrees and is depicted in the vertical coordinate.

As a first step, recall from a well-known result of David Williams, that the Brownian ex-

cursion with height 1 can be constructed by gluing back to back the trajectories of two inde-

pendent copies of a 3-dimensional Bessel process started from 0 and killed when hitting 1, say

R “ pRpsqq0ďsďz. See [125, Theorem 4.5 on page 499]. We observe from Brownian excursion

theory and classical relations between the Brownian motion and the 3-dimensional Bessel process
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also due to Williams, that if we set σu :“ supts ě 0 : Rpsq ď uu for the last passage time of R be-

low some level u P p0, 1q, then the following assertion holds. The point process of sub-excursions

of R above its future infimum, whose atoms are given by

`

u, pRσu´`s ´ u : 0 ď s ď σu ´ σu´q˘

for those u such that σu ą σu´, is a Poisson random measure with intensity

1hpeqă1´udu 2NItopdeq.

Here e stands for a generic excursion, hpeq “ max e for the height of e, and the restriction

hpeq ă 1´ u stems from the fact that the maximum of R during the excursion interval rσu´, σus
must be less than 1. See for instance [121], and also [2] for a more general version in the setting

of Lévy’s CRT. If we think of R as the left-contour of T p1q until the highest vertex is reached,

then an atom of this point measure, say at pu, eq, should be interpreted as follows. The vertex at

height u on the branch from the root to the highest vertex is a branchpoint of T p1q, and a contour

function of the left subtree that stems from this vertex is induced by the excursion e.

Now from (4.4) we have 2NItophpeq P dxq “ x´2dx. Since by Williams’ decomposition, the

full contour process of T p1q is obtained from two independent copies of R, one now readily sees

from the Brownian scaling property that the process that records the heights of the collection of

the subtrees of T p1q above height t P r0, 1s is a general branching process in the sense of Section

3.1, whose decoration-reproduction kernel can be described as follows. For every x ą 0, under

Px, the decoration process is simply given by Xptq “ x ´ t for 0 ď t ă x, and the reproduction

process ηpdu,dyq is a Poisson random measure on the triangle tpu, yq : 0 ă y ă x ´ u ă xu
with intensity 2y´2dudy (the factor 2 stems from the fact that two independent copies of R are

needed to construct the contour function of T p1q). One immediately checks that the family of

laws pPxqxą0 is self-similar with exponent α “ 1 in the sense of Definition 3.5, and we shall now

argue that it is actually one of the self-similar Markov decoration-reproduction kernels devised

in Section 3.2.

In this direction, set σ2 “ 0, acan “ ´1 and α “ 1, and introduce the generalized Lévy

measure ΛHeight on S given by

ż

S
F py0, py1, y2, . . .qqΛHeightpdy,dyq “ 2

ż 0

´8
F p0, py,´8, . . .qqe´ydy,

where F denotes a generic nonnegative functional on S. In particular, notice that we have

acan “ a “ ´1. Just as in Section 3.2, consider a Poisson random measure Npdt,dy,dyq on

r0,8q ˆ S with intensity dtΛHeightpdy,dyq. In this setting, the Lévy process is merely linear,

ξptq “ ´t for t ě 0, and the exponential functional ϵptq “ 1´ e´t has inverse τpsq “ ´ logp1´sq
for 0 ď s ă 1. After the Lamperti transformation, the positive self-similar Markov process is

hence Xptq “ 1 ´ t for 0 ď t ă 1 as we wished. Next observe that the push-forward image

of the measure dte´ydy on R` ˆ p´8, 0q by the map pt, yq ÞÑ pu, xq “ p1 ´ e´t, e´t`yq is the

measure x´2dudx on the triangle tpu, xq : 0 ă x ă 1 ´ u ă 1u. It follows from the mapping
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theorem for Poisson point processes that the reproduction process defined by (3.18) has the same

distribution as the reproduction process η above under P1. Putting the pieces together, we can

now conclude that the decorated tree pT p1q, v Ñ HeightpT p1q
v q, 0q is a self-similar Markov tree

with characteristic quadruplet p0,´1,ΛHeight; 1q.
As a consequence, we compute the cumulant by (4.1), which is simply

κHeightpγq “ ´γ ` 2

ż 0

´8
epγ´1qydy “ ´γ ` 2{pγ ´ 1q, γ ą 1.

It follows that ω´ “ 2 and ω` “ 8 and Assumption 3.12 holds. We will now identify the

harmonic measure µ in terms of the contour measure γep1q on T p1q, which has been defined above

as the push-forward image of the Lebesgue measure by the contour function induced by ep1q. We

claim that there is the identity

µ “ 3

2
γep1q . (4.7)

To establish this assertion, recall that the expectation of the lifetime z of the killed Bessel pro-

cess R equals 1{3. Therefore, the total mass of contour measure has expectation Epγep1qpT p1qqq “
2{3; moreover we have also Varpγep1qpT p1qqq ă 8. Now recall that χpvq denotes the type of the

individual labelled by v P U in the general branching process, so that in the present setting, χpvq
is the height of some sub-excursion of ep1q. We then deduce from the branching property and

self-similarity that

E

˜

ˇ

ˇ

ˇ

ˇ

γep1qpT p1qq ´ 2

3
Mnpω´q

ˇ

ˇ

ˇ

ˇ

2
¸

“ E

¨

˝

ÿ

|v|“n

ˇ

ˇ

ˇ

ˇ

γep1qpT p1q
v q ´ 2

3
χpvq2

ˇ

ˇ

ˇ

ˇ

2
˛

‚

ď c ¨ E
¨

˝

ÿ

|v|“n
χpvq4

˛

‚

ď c ¨ p1 ` κp4q{4qn ,

where the last line stems from Lemma 3.8. Since κp4q ă 0, we deduce that

µpT p1qq “ lim
nÑ8Mnpω´q “ 3

2
γep1qpT p1qq.

Again by the branching property, we have more generally that

µpT p1q
v q “ 3

2
γep1qpT p1q

v q, v P U,

and (4.7) follows. ˛
We next discuss an important family of non-increasing self-similar Markov trees that have

received much attention in the literature; see for instance the survey [18] and references therein.

A self-similar fragmentation process can be thought of as a model for an inert length that splits

as time passes into smaller and smaller pieces called fragments. One assumes the branching

property and self-similarity, in the sense that different fragments evolve independently the ones
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from the others and according to the same dynamics up to a proper rescaling of time and size.

Intuitively speaking, the inertia of the length falling apart yields a natural genealogical structure

of the family of fragments: we view a fragment present at time t as a forebear of another fragment

present at time t1 ą t if the latter was part of the former at time t. Hence a fragmentation can

be depicted by a continuous genealogical tree where branching points represent the sudden

dislocations of a fragment, endowed with a decoration which records sizes.

Roughly speaking, self-similarity entails that the rate at which a fragment with size x ą 0

breaks into a (possibly infinite) sequence of sizes xs1, xs2, . . . is given by x´αΞpdsq, where s “
ps1, s2, . . .q is a non-increasing sequence in r0, 1q and Ξ is known as the dislocation measure.

Beware that the convention for the self-similarity exponent α that we follow in this text has the

opposite sign of the one used in the literature on self-similar fragmentations, see e.g. [77, 78]. So

for α ą 0, small fragments break up at a higher pace than larger ones, hence faster and faster as

time passes. An important consequence is that the entire length becomes fully shattered after

a finite time; in other words, there are no more fragments with positive length present in the

system after a while.

The assumption of inertia of the length falling apart translates into the requirement that

the sum of the sizes of the smaller fragments after a dislocation event never exceeds that of the

fragment before the dislocation, and can even be strictly smaller in the case where some dust

(fragments of infinitesimal sizes) is produced. So more precisely, Ξ is a measure on the space

of non-increasing sequences s “ psiqiě1 in r0, 1q with
ř

iě1 si ď 1, which furthermore fulfills the

integral condition
ż

p1 ´ s1qΞpdsq ă 8. (4.8)

Note that this requirement allows the dislocation measure Ξ to be infinite, that is, the fragmen-

tation to have an infinite activity. If (4.8) failed, then the intensity of dislocations would then

be too strong and any length would be instantaneously reduced to dust.

Self-similar fragmentations naturally yield non-increasing self-similar Markov trees. More

precisely, the dislocation measure Ξ of a fragmentation is related to the generalized Lévy measure

Λ as follows. The former is the push-forward image of the latter by the function which maps

py0,yq P S to psiqiě1, the version ranked in the non-increasing order of sequence pey0 , ey1 , ey2 , . . .q.
Note that (4.8) follows from (4.6) and that

Λ

˜#

py0, py1, ...qq P S :
8
ÿ

j“0

eyj ą 1

+¸

“ Ξ

˜#

s :
8
ÿ

i“1

si ą 1

+¸

“ 0;

one then says that Λ is dissipative. The last parameter of the model is the so-called erosion

coefficient, a non-negative real number which accounts for rate at which fragments continuously

shrink and that is simply identified as the negative of the canonic drift coefficient acan. Putting

the pieces together, a self-similar Markov tree encodes a self-similar fragmentation if and only

if it is non-increasing and its generalized Lévy measure is dissipative. Note from (4.1) that the
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cumulant can also be expressed in terms of the dislocation measure as

κpγq “ acanγ `
ż

Ξpdsq
˜

ÿ

iě1

sγi ´ 1

¸

.

By dissipativity, κ is a non-increasing function with κp1q ď 0, and in particular, Assumption

(3.9) holds for γ ą 1 as soon as Ξ is not degenerated, i.e. Ξ ‰ δp1,0,... q.
The cumulant κ has a simple probabilistic interpretation in terms of the so-called tagged

fragment. The latter is the process that, as time passes, records the size of the fragment that

currently contains a point that has been initially tagged uniformly at random in the length. It

is easily seen from the branching property that this tagged fragment has the Markov property,

and it is also naturally self-similar. The Lévy process that underlies the latter via the Lamperti

transformation is non-increasing, hence the negative of a subordinator. In this framework, the

Laplace exponent of this subordinator is given by the function γ ÞÑ ´κpγ ` 1q; see e.g. [18,

Corollary 3.1]. This observation is in close relation to the forthcoming Lemma 6.4.

A fragmentation is called pure when there is no erosion, that is when the canonic drift

coefficient is acan “ 0, and then conservative when further total sizes are preserved at dislocation

events, that is when the dislocation measure satisfies

Ξ

˜#

s “ psiqiě1 :
8
ÿ

i“1

si ă 1

+¸

“ 0,

or equivalently in terms of the generalized Lévy measure

Λ

˜#

py0, py1, ...qq :
8
ÿ

j“0

eyj ‰ 1

+¸

“ 0. (4.9)

Example 4.1 is an elementary case of a conservative fragmentation.

For any conservative self-similar fragmentation, we have κp1q “ 0, so Assumption 3.12 holds

with ω´ “ 1 and ω` “ `8. Much more precisely, conservativeness readily entails in terms of

the reproduction process η that there is the identity
ż

r0,8qˆp0,8q
xηpdt,dxq “ 1 a.s.,

and therefore the intrinsic martingale is trivial, Mnpω´q ” 1. As a consequence, the decoration

of a self-similar conservative fragmentation simply assigns to any vertex of the tree which is not

a branching point, the µ-mass of the subtree that stems from this vertex.

Genealogical trees of self-similar fragmentations have been constructed first by Haas & Mier-

mont [78] in the conservative setting. They were notably able, under mild hypotheses, to compute

Hausdorff dimensions as well as the maximal Hölder exponents of the height functions. Specifi-

cally, they showed that the Hausdorff dimension of the set of leaves is 1{α. We will extend this

result to our general framework of ssMt in Section 6.4, and specifically in Proposition 6.14 (ac-

tually, [78] has a mild assumption that is not needed Proposition 6.14). Then this was extended
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to more general self-similar fragmentations where the conservativeness condition is dropped by

Stephenson [134]. We also mention that in the case acan “ 0 without erosion, the total length

measure λγpT q has been introduced and studied in [19].

We already dealt in Example 4.5 (see also the discussion after Example 4.2) with a variation

of the most distinguished member of the family of self-similar fragmentation trees, namely the

ubiquitous Brownian Continuum Random Tree [8]. Here is a precise discussion.

Example 4.6 (Brownian CRT and its fragmentation). The real tree T1 constructed from a standard

Brownian excursion of length 1, say pe1psqq0ďsď1 with the law N1 defined in (4.4), is known as

the Brownian CRT 4. We denote by γe1 its contour measure and endow T1 with the decoration

which assigns to each vertex v P T1 the contour-mass γe1pT1,vq of the fringe-subtree above point

v (this is indeed a usc decoration), see Figure 4.5.

Figure 4.5: A simulation of a Brownian CRT. The tree is embedded (non-isometrically

in R2) and the decoration function representing the µ-mass above each point is depicted

in the vertical coordinate.

Just as in Example 4.5, this decorated random real tree is a self-similar Markov tree. By

construction, it encodes a self-similar fragmentation whose state at time t ě 0 is given by the

ranked sequence of decorations on the sphere tv P T1 : dpρ, vq “ tu. Equivalently in terms of the

excursion e1, for every t ě 0, the random open set ts P r0, 1s : e1psq ą tu can be decomposed

into a (possibly empty) sequence of open intervals; the process in the variable t that records

the sequence of the lengths of these intervals ranked in the decreasing order, is the Brownian

fragmentation. The characteristics are found using [17, pages 338-340] and [135].

The Brownian fragmentation tree is self-similar with index α “ 1{2, no erosion, and binary

4Beware that, as in [94] and many works in that field, there is a difference by a factor 2 between our definition

of the Brownian CRT and that in [8].
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conservative dislocation measure ΞBro given by

ż

F ps1, s2, . . .q ΞBropdsq :“
c

2

π

ż 1

1{2
F px, 1 ´ x, 0, 0, ...q dx

pxp1 ´ xqq3{2 , (4.10)

where F stands for a generic nonnegative functional of the sequence of fragments. The cumulant

function can be evaluated using (4.1):

κBropγq “
c

2

π

ż 1

0
pxγ ` p1 ´ xqγ ´ 1q dx

pxp1 ´ xqq3{2 “ ´2
?
2
Γpγ ´ 1{2q
Γpγ ´ 1q , γ ą 1. (4.11)

As for all conservative fragmentations, we have ω´ “ 1 and ω` “ 8, Assumption 3.12 holds

and the total µ-mass is trivially x under Px. In particular, we have the almost sure equality

µ “ γe1 so that the decoration in T1 can be recovered from its harmonic measure and vice-versa.

A possible choice for the generalized Lévy measure in the family of bifurcators is then obtained

by following the largest fragment at each dislocation. This amounts to defining first the measure

ΛBro,max on R´ as the push-forward image of the dislocation measure ΞBro by the map s ÞÑ log x

with s “ px, 1 ´ x, 0, . . .q for x P r1{2, 1q. Concretely, this gives

ż

R´

fpyqΛBro,maxpdyq “
c

2

π

ż 1

1{2
fplog xq dx

pxp1 ´ xqq3{2

“
c

2

π

ż 0

´ log 2
fpyq dy

a

eyp1 ´ eyq3 .

Then the generalized Lévy measure ΛBro,max is simply obtained by

ż

RˆS1

F py0,yqΛBro,maxpdy,dyq “
ż

R´

F py, plogp1 ´ eyq,´8, . . .qqΛBro,maxpdyq,

where now F stands for a generic nonnegative functional on S.
Notice also that using the fact that the Brownian CRT is coded by the Brownian excursion

[94, 16], the quantity λ3{2pT q “ ş

T dλ g can be interpreted as the area under a standard Brownian

excursion, known as the Airy law and whose moments are explicit, see [84] for details. Other

length measures appeared recently in the literature [71, 60, 5].

This Brownian fragmentation has been studied in depth in the literature and we did not try

here to survey all its known properties, see e.g. [38] for a recent application to the study of

increasing subsequences in the Brownian separable permuton. Finally, it is interesting to recall

that Aldous [9] has a construction of the Brownian CRT by recursive gluing of line segments that

is somewhat similar to the construction in Example 4.1. ˛

One says that a conservative self-similar fragmentation is binary if, just like as in Example 4.6,

exactly two fragments are produced at each dislocation event. Specifically, the dislocation mea-

sure must satisfy

Ξ pts “ psiqiě1 : s3 ą 0uq “ 0,
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that is equivalently in terms of the generalized Lévy measure to asking

Λ ptpy0, py1, ...qq : y3 ‰ ´8uq “ 0. (4.12)

We already observed in Example 4.6 that in the binary conservative case, the generalized Lévy

measure Λ is entirely determined by its first marginal Λ0 and the identity
ż

RˆS1

F py0,yqΛpdy,dyq “
ż

R´

F py, plogp1 ´ eyq,´8, . . .qqΛ0pdyq. (4.13)

Moreover, the reproduction process η is determined by the decoration process X since we have

η “
ÿ

tą0

δpt,´∆Xptqq. (4.14)

Pitman and Winkel [122] and [123, Section 3] devised first a recursive construction of binary

conservative self-similar fragmentation trees using a so-called bead splitting processes that gen-

eralizes Aldous’ line-breaking construction of the Brownian CRT.

The stable CRT, introduced by Le Gall – Le Jan & Duquesne [101, 66], form a one-parameter

family indexed by β P p1, 2s of random continuous trees, where the boundary case β “ 2 is the

Brownian CRT. They appear as scaling limits of critical Galton–Watson trees whose offspring

distribution belong to the domain of attraction of a spectrally positive stable law with index β.

They also belong to the family of self-similar fragmentation trees of Haas and Miermont [78],

and satisfy the striking property that their distribution is invariant under re-rooting at a random

µ-point [80]. A notable difference in the case β ă 2 is that branchpoints have infinite degrees

almost surely, whereas branching are always binary for the Brownian CRT.

Example 4.7 (Stable fragmentation trees). Just as in Example 4.6, the stable trees can be in-

terpreted as self-similar Markov trees. More precisely, for β P p1, 2q, if hβ : r0, 1s Ñ R` is the

stable excursion height process introduced in [101], we can consider the random real tree Thβ
decorated by the γhβ -mass of its fringe-subtrees. It then follows from the work of Miermont [113]

that this is a self-similar Markov tree with self-similar exponent α “ 1 ´ 1{β, canonical drift

acan “ 0 and no Brownian component. The generalized Lévy measure Λβ´stable is conservative

but non-binary, and can be related to the Poisson-Dirichlet measure with parameter p1{β,´1q.
More precisely, it can be given by

ż

F
`

ey0 , pey1 , ...q˘ Λβ´stablepdy0,dyq :“
r113,Thm1s

β2Γp2 ´ 1{βq
Γp2 ´ βq ¨ E

„

S1F

ˆ

∆Sti
S1

: i ě 1

˙ȷ

,

where ∆Sti are the jumps of a stable 1{β subordinator pStq0ďtď1 started from 0 on the unit time

interval, ranked in decreasing order.

As for all conservative fragmentations we have ω´ “ 1 and ω` “ `8, Assumption 3.12

holds with trivial total µ mass, and as in the previous example, µ “ γehβ and the decoration gpxq
is the µ-measure of the subtree above point x P T . The length measures on T have also been

considered in [71, 60, 5].
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Figure 4.6: A simulation of a 3{2-stable fragmentation tree embedded in the plane with

the decoration in the third coordinate.

The exact form of the cumulant function was computed in Section 3.4 in [113], which estab-

lished that

κβ´stablepγq “ ´β ¨ Γpγ ´ 1{βq
Γpγ ´ 1q .

In this normalization, the β-stable tree encodes the genealogy of the CSBP with branching

mechanism z ÞÑ zβ, and when β “ 2 the associated random tree is
?
2 times the Brownian CRT

(hence the disappearance of a factor of
?
2 in (4.11), see [51] for careful normalizations). Last,

we also refer to [73] and [124] for constructions of stable CRTs by recursive random gluing of

segments, in the same vein as in Aldous [9] and Example 4.1. ˛

We refer to [79, 77] for other examples of conservative fragmentation trees that we do not

describe in these pages. Let us now present a few natural generalized fragmentation trees that are

not covered by the Haas–Miermont framework. One natural way to obtain them is to consider

dissipative fragmentations obtained by trimming a (conservative) fragmentation using a local

rule to keep only certain particles. Specifically, in the continuous world, a trimming rule is a

function

Trim :

#

S ˆ r0, 1s Ñ S
´

`

y0, py1, y2, ...q
˘

, ω
¯

ÞÑ `

ỹ0, pỹ1, ỹ2, ...q
˘

,

which associates to a point py0, py1, y2, ...qq P S and an additional source of randomness ω P r0, 1s
a random variable pỹ0, pỹ1, ỹ2, ...qq in S where ỹ0 is either y0 or ´8 (we interpret the latter case

as a deletion) together with a -possibly finite5- subsequence pỹ1, ỹ2, ...q excerpted from py1, y2, ...q.
Given a trimming rule, we write

TrimpΛq :“ Trim#pΛ b Lebr0, 1sq,
5In that case, the finite sequence is completed by infinitely many’s ´8 for the sake of definitiveness.
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for the image of a generalized Lévy measure by this rule. We shall furthermore suppose that

the killing rate does not explode after trimming, i.e. that

ktrim “ TrimpΛq pt´8u ˆ S1q ă 8;

plainly TrimpΛq is in turn a generalized Lévy measure. Remark that the cumulant function

associated to pσ2, a,Λ;αq is clearly upper bounded by that of pσ2, a,TrimpΛq;αq so that by

Proposition 3.10, we can construct simultaneously on the same probability space pT, dT , ρT , gq
and pTtrim, dTtrim , ρTtrim , gtrimq with characteristics pσ2, a,Λ;αq and pσ2, a,TrimpΛq;αq so that

Ttrim is a subtree of T with the restriction of the decoration (the trees do not carry any measure).

Let us give a concrete example where explicit computations are doable:

Example 4.8 (k-sampling in the Brownian case). Consider the Brownian fragmentation of Ex-

ample 4.6 which we trim as follows: Fix k ě 2 and for ps0, s1q P S, write x0 “ es0 and x1 “ es1.

Next, using an independent source of randomness, sample k i.i.d. Bernoulli variables ϵ1, ..., ϵk

with Ppξ “ iq “ xi for i “ 0, 1. Then delete xi if and only if none of the Bernoulli variables ϵj for

j “ 1, . . . , k takes the value i. This yields a non-conservative binary self-similar fragmentation

with characteristics pσ2 “ 0, acan “ 0,ΛBro,k;α “ 1{2q, where the generalized Lévy measure is

given by

ż

S
ΛBro,kpdy0,dpyiqiě1qF `ey0 , pey1 , ...q˘

“
c

2

π

ż 1

1{2
dx

pxp1 ´ xqq3{2

¨

˚

˝

F
`

x, p1 ´ x, 0, ...q˘p1 ´ xk ´ p1 ´ xqkq
` F

`

x, p0, 0...q˘xk
` F

`

0, p1 ´ x, 0, ...q˘p1 ´ xqk

˛

‹

‚

.

In this example, we have:

• For k “ 2,

κBro,2pγq “ ?
2 ¨ p1 ´ 2γqΓpγ ` 1{2q

Γpγ ` 1q ,

so that Assumption 3.12 holds with ω´ “ 1{2 and ω` “ `8. We believe that the total

harmonic measure µpT q should be distributed as a multiple of a Rayleigh law with density

xe´x2{2 on R`.

• for k “ 3,

κBro,3pγq “ p3 ´ 2γp1 ` 2γqqΓpγ ` 1{2q?
2Γp2 ` γq ,

so that Assumption 3.12 holds with ω´ “
?
13´1
4 and ω` “ `8. The underlying ssMt is

thus a rather natural subtree of the Brownian CRT with Hausdorff dimension
?
13´1
2 .

˛
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Figure 4.7: An illustration of the Trimmed Brownian tree for k “ 2 (in blue) inside the

standard Brownian tree of Example 4.6. The thickness indicates the labels.

4.3 Conservative binary growth-fragmentations

Markovian growth-fragmentations processes have been introduced in [21] as stochastic models

describing the evolution of a system of living cells, where at any given time cells are simply

determined by their sizes. Imagine that as time passes, cells may grow or shrink continuously

and are further involved in birth events at which a daughter cell split from the mother cell (this

is called mitosis in biology). More precisely, let Xptq be the size of a typical cell at age t; we

suppose that the process X “ pXptqqtě0 is Markovian, has only negative jumps, and reaches 0

continuously after some finite time which we view as the death of the cell. Suppose further that

each jump of X is a birth event, such that if ∆Xpsq “ ´x ă 0, then s is the birthtime of a

daughter cell with size x which then evolves independently and according to the same dynamics,

i.e. giving birth in turn to great-daughters, and so on and so forth. This description fits the

setting of general branching processes of Section 3.1, where the reproduction process η is simply

the point process of the negative of the jumps of the decoration, see (4.14). We point out that

the case when cells are actually inert (i.e. may split but otherwise do not grow nor shrink)

corresponds to bead splitting processes introduced by Pitman and Winkel [122, 123].

Suppose further now that the Markov process X is self-similar with exponent α ą 0, and note

from (4.14) that the reproduction process η inherits self-similarity from X. Recall also that X

should have no positive jumps (to match the assumption that cells grow continuously and hence

have only negative jumps at mitosis events) and die when reaching continuously a size 0. We

are then in the conservative (4.9) and binary (4.12) case. The Lévy process ξ “ pξptqqtě0 that

underlies X in the Lamperti transformation is thus spectrally negative (i.e. its Lévy measure

Λ0 is carried on p´8, 0q), drifts to ´8, and has also killing coefficient k “ 0. Therefore, if we
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write pσ2, a,Λ0q for its characteristic Lévy triplet, then Λ0 is a measure on p´8, 0q with
ż

p´8,0q
p1 ^ y2qΛ0pdyq ă 8 and a `

ż

p´8,´1q
yΛ0pdyq ă 0.

We stress that the integrability condition (4.6) may fail, and that the second requirement above

is the necessary and sufficient condition for ξ to drift to ´8. The generalized Lévy measure is

then given by (4.13) and hence the cumulant by

κpγq “ 1

2
σ2γ2 ` aγ `

ż

p´8,0q
peγy ` p1 ´ eyqγ ´ 1 ´ γy1yě´1qΛ0pdyq.

It can be shown that if κpγq ď 0 for some γ ą 0, then almost-surely, the family of the sizes of

cells is null at any time t ě 0, whereas if κpγq P p0,8s for all γ ą 0, then almost surely, there

exist times t ą 0 at which there are infinitely many cells with size, say, larger than 1. See [21]

and [28]. We stress that on top of the restriction above (binary, conservative, no killing), the

main conceptual difference between the growth-fragmentation point of view and our approach

in these pages is that a growth-fragmentation process is a process pXptq : t ě 0q with values in

the space of point measures on R` (or sequences of non-negative reals), whereas we focus here

on the construction of random decorated trees. Specifically, when κpγq ă 0 for some γ ą 0, that

is in the subcritical case, the self-similar Markov tree with characteristics pσ2, a,Λ;αq where

Λ is given by (4.13) can be thought of as the decorated genealogical tree underlying the self-

similar growth-fragmentation process. This correspondence is similar to the one made between

superprocesses and their encoding by random trees and snake trajectories [65]. It is still open

to decide whether this correspondence also holds in the critical case, see the end of Chapter

3. Rembart and Winkel [124, Section 4.2] were the first to describe a recursive construction of

binary conservative self-similar growth-fragmentation trees that inspired our general construction

by gluing in Section 2.4.

We now describe an interesting family of self-similar Markov trees for which cumulant func-

tions will always be expressed as ratio of Gamma functions (and simple trigonometric functions).

We start with the most important example:

Example 4.9 (Brownian growth-fragmentation tree). The Brownian growth-fragmentation tree

is a self-similar Markov tree related to a remarkable growth-fragmentation that has appeared

as the scaling limit of cactus trees inside random triangulations [23] or directly within the free

Brownian disk [104]. It bears some obvious similarities with the Brownian fragmentation tree of

Example 4.6.

The Brownian growth-fragmentation is self-similar with exponent α “ 1{2, and its cumulant

function is given by

κBroGFpγq “ Γpγ ´ 3{2q
Γpγ ´ 3q , for γ ą 3{2.

Its Gaussian coefficient is σ2 “ 0, its generalized Lévy measure ΛBroGF is binary conservative

and given by
ż

S
F
`

ey0 , pey1 , ...q˘ ΛBroGFpdy0,dyq :“ 3

4
?
π

ż 1

1{2
F
`

x, p1 ´ x, 0, 0, ...q˘ dx

pxp1 ´ xqq5{2 .(4.15)
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Figure 4.8: A simulation of the Brownian growth-fragmentation tree. The process is

binary and conservative: at each splitting event, the total mass is conserved and split

between two children.

Since ΛBroGFpdy0,dyq does not integrate 1 ^ |y0|, the drift coefficient is not canonic; for the

cut-off function as in (3.11) we have

aBroGF “ ´ 2?
π

` 3

4
?
π

ż 1

1{2
log x` 1 ´ x

pxp1 ´ xqq5{2 dx “ 4p7 ´ 3πq
3
?
π

,

see [23, Eq (32)] or [22, Proof of Proposition 5.2] for a different drift using a different cut-off

function.

In particular, we have ω´ “ 2 and ω` “ 3, and Assumption 3.12 holds. The distribution

of the total mass µpT q is known from [22, Corollary 6.7], it satisfies the striking property that

its size-biased transform is a 1{2-stable law. Let us develop in more details the connection with

Brownian geometry since this is one of central motivation for this whole work. The Brownian

sphere is a random compact metric space almost surely homeomorphic to the 2-sphere, and which

has famously proved to be the scaling limit of various classes of random planar maps equipped with

the graph distance [114, 99], or shown to be the random metric space obtained by exponentiating

a planar Gaussian Free Field with the proper parameter
a

8{3, see [116, 118, 75]. The Brownian

sphere has a variant, having the topology of the disk, called the Brownian disk, see [32]. In

particular, the boundary of the Brownian disk may be defined as the set of all points that have

no neighborhood homeomorphic to the open unit disk. Let us denote a free Brownian disk
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with boundary size x (it has a random volume) by Dx and its boundary by BDx. For every point

u P Dx we write Hpuq for the height of u, defined as its distance to BDx, and for every r ą 0, we

r

Figure 4.9: Illustration of the Cactus tree of a Brownian disk. The ball of radius r

(measured from BDx) is depicted in light gray and it has several boundary components.

Each of these components has a“size”which enables us to decorated the cactus tree (on

the right).

consider the “ball” Br “ tu P Dx : Hpxq ď ru. Its boundary BBr is made of several components

homeomorphic to circles. Each of these boundary components C is a fractal curve (of dimension

2) but it is possible to give a meaning to its size |C| by approximation (a.s. simultaneously for

every r ě 0 and for each boundary component), see [104, Theorem 3]. In particular, the boundary

BDx has size x a.s. Furthermore, those boundary components have a natural tree genealogy as r

varies. Specifically, consider the pseudo-metric dCac defined by

dCacpu, vq “ Hpuq `Hpvq ´ 2 sup
γ:uÑv

ˆ

min
0ďtď1

Hpγptqq
˙

,

where the supremum is over all continuous curves γ : r0, 1s Ñ Dx such that γp0q “ u and

γp1q “ v. Then, we introduce CacpDxq the quotient space of Dx for the equivalence relation

defined by setting a „Cac b if and only if dCacpa, bq “ 0. The quotient CacpDxq, equipped with

the metric induced by dCac, is a compact real tree called the cactus of Dx seen from BDx. We

root CacpDxq at ρBDx the equivalence class of BDx, see [55, Section 2.2]. It is easy to see that

the equivalence classes for „Cac are precisely the boundary cycles of BBr for all r ě 0, so that

the size function |C| of boundary components is a well defined decoration rcll on branches on

the cactus tree and we denote its usc modification by g|¨|. Then, it follows from [104] (see in

particular Theorem 3 there) that the law of the equivalence class in T of the decorated tree

`

CacpDxq, dCac, ρBDx , g|¨|
˘

is that of T “ pT, dT , ρ, gq under Px for the characteristic quadruplet p0, 2
?
2?
3

¨ aBroGF,
2

?
2?
3

¨
ΛBroGF;

1
2q. Actually, [104] only deals with the growth-fragmentation point of view, but the re-

sults there are established using cell processes so that the previous display is a consequence of
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the arguments therein. Let us sketch the reasoning: It is proved in [104, Proposition 16] that the

self-similar process obtained by following the locally largest exploration is precisely the pssMp X

constructed from p0, 2
?
2?
3

¨ aBroGF,
2

?
2?
3

¨ ΛBroGF;
1
2q in Section 3.2. In particular, in the growth-

fragmentation case (binary conservative case), the decoration-reproduction η is recovered from

X. Finally, conditionally on this exploration, by [104, Proposition 18], the decorated subtrees

branching are conditionally independent given their initial decorations. Using these two ingredi-

ents, one can couple the construction of Section 3.1 with the iterative locally largest exploration

of a Brownian disk so that they coincide. ˛
Related to the above example, one can consider the self-similar Markov tree with the same

first three characteristics pσ2, aBroGF,ΛBroGFq but with self-similarity parameter 3{2 (instead

of 1{2). This modification has the effect of performing a length change along branches à la

Lamperti. This tree actually appears as the scaling of the so-called peeling trees associated to

random planar maps with small faces, see [22, Section 6]; we expect it to be further the scaling

limit of several other discrete models such as critical fully parked trees [49], fighting-fish [62] or

even the peeling trees of plane Weil-Petersson surfaces with n punctures. See Part II for more

details.

At bit more generally, one can allow the trajectories of cells to have positive jumps, keeping

up with the convention that only negative jumps are interpreted as mitosis events. Then [22,

Theorem 5.1] presents the following generalization of the preceding example:

Example 4.10 (The pβ, ϱq-stable family). There exists a family parametrized by pa P p0, 1s, b P
p0, 1{2sq of self-similar Markov trees with cumulant functions given by

κa,bpγq “ ´Γp1 ` 2a ` 2b ´ γqΓpγ ´ a ´ bq
Γp1 ` a ` 2b ´ γqΓpγ ´ a ´ 2bq , γ P pa ` b, 2a ` 2b ` 1q. (4.16)

Specifically, the generalized Lévy measure Λa,b is prescribed by three parts

ż

S
F
`

ey0 , pey1 , ey2 , ¨ ¨ ¨ q˘ Λa,bpdy0, dyq “

Γpβ ` 1q sinpπbq
π

ż 1

1{2
dx

pxp1 ´ xqqβ`1
F
`

x, p1 ´ x, 0, . . .q˘ pconservative binary splittingq

` Γpβ ` 1q sinpπaq
π

ż 8

0

dx

pxp1 ` xqqβ`1
F
`

1 ` x, p0, 0, . . .q˘ punique positive jump, growthq

` cospπbq2Γp2pa ` bqq
Γpa ` bq ¨ F `0, p0, 0, . . .q˘ pkillingq,

(4.17)

for a generic positive function F : S Ñ R`. The Gaussian part is degenerate, σ2 “ 0, and

the drift coefficients are fine tuned so that the (4.16) holds. In particular, they satisfy ω´ “
a ` 2b, ω` “ a ` 2b ` 1 and Assumption 3.12 holds. Those expressions may seem ad-hoc for
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the moment, but we will see in Section 6.5 that they appear in relation to so-called Lamperti-

stable processes, [89, Section 4.3], and are naturally associated with β-stable Lévy process with

positivity parameter ϱ for

β “ a ` b and ϱ “ a

a ` b
, (4.18)

see Section 6.5 for details. We also denote the killing rate k “ cospπbq2Γp2pa`bqq
Γpa`bq to lighten

notation.

Let us give a more explicit description of the characteristics in two cases (in red and blue on

Figure 4.10):

No killing. We take b “ 1{2 in (4.18) so that k “ 0, 1{2 ă β “ a`b ď 3{2 and βp1´ϱq “ 1{2.
This gives the self-similar Markov tree with exponent α “ β, no Gaussian component, generalized

Lévy measure given by

π

Γpβ ` 1q
ż

S
F
`

ey0 , pey1 , ey2 , ¨ ¨ ¨ q˘ Λa, 1
2
pdy0, dyq

“
ż 1

1{2
dx

pxp1 ´ xqqβ`1
F
`

x, p1 ´ x, 0, . . .q˘

` cosppβ ` 1qπq ¨
ż 8

0

dx

pxp1 ` xqqβ`1
F
`

1 ` x, p0, 0, . . .q˘, (4.19)

and where the drift coefficient a is prescribed so that the cumulant function equals

κa, 1
2
pγq “ cospπpγ ´ βqq

sinpπpγ ´ 2βqq
Γpγ ´ βq
Γpγ ´ 2βq , for β ă γ ă 2β ` 1, (4.20)

in particular we have ω´ “ β ` 1
2 and ω` “ β ` 3

2 , see [22, Section 5]. Assumption 3.12 holds

and the limiting mass measure has the law of a positive 1{pβ`1{2q-stable random variable biased

by x ÞÑ 1{x, see [42, Proposition 4]. Those decorated trees appear as the scaling limit of the

peeling trees in critical discrete stable planar maps, see [22, Section 6] and Part II for details.

They also appear (implicitly) in Liouville Quantum Gravity in [119]. We can add to this family

the limiting point b “ 1{2, a “ 0 corresponding to Example 4.6.

Conservative. We take a “ 1 in (4.18) so that 1 ă β “ a ` b ď 3{2 and ϱ “ 1
β . This gives the

self-similar Markov tree with index α “ β, Gaussian coefficient σ2 “ 0, and binary generalized

Lévy measure given by
ż

S
F
`

ey0 , pey1 , ey2 , ¨ ¨ ¨ q˘Λ1,bpdy0,dyq

“ Γpβ ` 1q sinpπpβ ´ 1qq
π

˜

ż 1

1{2
dx

pxp1 ´ xqqβ`1
F
`

x, p1 ´ x, 0, . . .q˘
¸

` 2Γp2βq cospπpβ ´ 1qq
Γpβq ¨ F `0, p0, 0, . . .q˘, (4.21)
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0

1

1
2

3
2

α

1
β

1− 1
2β

spectrally negative

no killing

Figure 4.10: The two-parameters family of ”stable” binary conservative self-similar

Markov trees. See Section 6.5 for the explanation of the relation with β-stable pro-

cesses with positivity parameter ϱ. The upper blue boundary case corresponds to stable

Lévy process with no positive jumps (but the generalized Lévy measure Λ has a positive

killing). This case is encountered in the scaling limit of fully parked trees, see Part II.

The lower red boundary corresponds to the case with no killing. This case is encountered

in critical stable random planar maps, see Part II. The case β “ 3{2, ϱ “ 2
3 where those

two lines merge is the spectrally negative 3{2-stable case discussed in Example 4.9, but

with self-similarity parameter α “ 3
2 . The case β “ 1{2 and ϱ “ 0 corresponds to the

pure fragmentation of the Brownian CRT, see Example 4.6.

and where the drift a P R is prescribed so that the cumulant function is equal to

κ1,bpγq “ ´Γp1 ` 2β ´ γqΓpγ ´ βq sinpπp2β ´ γqq
π

.

Assumption 3.12 holds, however the distribution of the total harmonic mass remains elusive.

We expect that these self-similar Markov trees provide the scaling limits of the so-called dilute

critical fully-parked tree studied in [47]. See also Section 6.5 for a related family of Examples

with generalized Lévy measures similar to (4.21) but where β P p0, 1{2s. ˛

4.4 An overlay on the stable family and a critical example

Our final example is a family of binary non-conservative self-similar Markov trees, so that a

trimmed version of which gives the family with no killing in Example 4.10. Those ssMt should

appear in connection with Opnq-decorated random planar maps, see Part II for details. There

is a critical case in this family which is naturally associated with the Brownian CRT (Example

4.6) in a rather surprising way.
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Example 4.11 (An overlay on the stable family). Recall the case b “ 1{2 in Example 4.10. In

particular, with the notation used there we have α “ β “ a`b. We consider now the“augmented”

self-similar Markov tree obtained by adding; in case of positive jumps x ÞÑ x` y, a new particle

of mass y. Formally this is done by replacing the generalized Lévy measure defined in (4.19) by

Λ`
a, 1

2

, where

π

Γpβ ` 1q
ż

S
F
`

ey0 , pey1 , ey2 , ¨ ¨ ¨ q˘ Λ`
a, 1

2

pdy0,dyq

“
ż 1

1{2
dx

pxp1 ´ xqqβ`1
F
`

x, p1 ´ x, 0, . . .q˘

` cosppβ ` 1qπq ¨
ż 8

0

dx

pxp1 ` xqqβ`1
F
`

1 ` x, px, 0, . . .q˘, (4.22)

(notice the small difference with (4.19): we replaced F p1´x, p0, ...qq there by F p1´x, px, 0, ...qq).
The cumulant function is easily updated and becomes

κpγq
loomoon

in (4.20)

`Γpβ ` 1q
π

cosppβ ´ 1qπq
ż 8

0
px´ 1qγ dx

pxpx´ 1qqβ`1

“ ´Γpγ ´ βqSecpπ2 pγ ´ 2βqq sinpπγ{2q
Γpγ ´ 2βq , for β ă γ ă 2β ` 1,

for which now the two roots are t2β, 2u so that ω´ “ mint2β, 2u and ω` “ maxt2β, 2u. As-

sumption 3.9 holds and so the self-similar Markov tree T “ pT, dT , ρ, gq exists as soon as β ‰ 1.

Under this condition, Assumption 3.12 also holds and the law of harmonic mass µpT q under P1

has been identified in [48, Theorem 4.3] and related to an inverse-Gamma distribution. Wat-

son [136] extended the model where the exploration of positive jumps appears with probability

r P r0, 1s and found explicit cumulant functions as well. ˛

In the example above, when β “ 1 the cumulant function has a double root and stays non

negative so that we cannot directly apply Proposition 3.10 to construct a self-similar Markov

tree. However, the work of Aidekon & Da Silva [6] identified directly the underlying ssMt as a

variant of the Brownian CRT of Example 4.6.

Example 4.12 (Half-plane excursions after Aidekon & Da Silva [6]). We consider a two-dimensional

excursion pX, eq where e is a Brownian excursion of length ℓ and X is a Brownian bridge of

length ℓ going from 0 to 1 under the normalized excursion measure Nr1s
ads for plane Brownian

motion. This law can be expressed using Itô’s positive Brownian excursion measure (4.4) as

Nr1s
ads

`

dpX, eq˘ “
ż

R`

dℓ
e´ 1

2ℓ

2ℓ2
P 0Ñ1
ℓ pdXq b Nℓpdeq,

where P 0Ñ1
ℓ is the law of the Brownian bridge of length ℓ going from 0 to 1; see [6, Proposition

2.9]. Given the pair pX, eq distributed according to Nr1s
ads, we can first construct the rooted tree

98



pTe, dTe , ρq coded by the excursion e : r0, ℓs Ñ R` as presented in Section 4.1 using [66]. The

random real tree Te is nothing but a mixture of Brownian CRT (Example 4.6) whose size is

distributed according to the 1{2-stable law ℓ. We then endow it with the following decoration

using the process X: for any point u P Te, in the coding of Te from e, let us denote by su, tu

respectively the minimal and maximal pre-images6 of u in r0, ℓs. The interval rsu, tus is then a

subexcursion of e in the sense that eprq ě epsuq “ eptuq for all r P psu, tuq and tu´su correspond

to the size of the fringe subtree above u. The point u P Te is labeled by the X-displacement over

the time interval rsu, tus, i.e.
g̃puq :“ |Xptuq ´Xpsuq|.

It is not hard to see that g̃ is then a rcll function over the branches of Te and we thus consider

Te

eee

0

e

1

e

X

Figure 4.11: Illustration of the construction of a decorated tree from an excursion in the

half-plane. The vertical coordinate encodes the tree structure, whereas the horizontal

displacement encodes the decoration.

the usc modification g of g̃ as the decoration on Te to fit the framework of Chapter 2. Remark in

particular that we have gpρq “ 1 under the law Nr1s
ads. It follows from the arguments of [6] that

the law of the random decorated tree

`

Te, dTe , ρ, g
˘

under Nr1s
ads,

is that of the ssMt T under P1 with the characteristic quadruplet p0, aads,Λads; 1q where

ż

F
`

ey0 , pey1 , ...q˘Λadspdy0,dpyiqiě1q

“ 2

π

˜

ż 1

1{2
dx

`

xp1 ´ xq˘2
F
`

x, p1 ´ x, 0, ...q˘ `
ż 8

1

dx
`

xp1 ` xq˘2
F
`

1 ` x, px, 0, ...q˘
¸

,

and aads “ ´ 4

π
` 2

π

ż 8

´ log 2
dy p1|y|ď1 ´ pey ´ 1qq e´y

pey ´ 1q2 .
6Recall that almost surely, any point u P Te has at most three pre-images by the projection π : r0, ℓs Ñ Te. The

points having three pre-images correspond to the branch points of Te and those having at least two pre-images

correspond to the skeleton of Te.
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That is, the decorated Lévy measure is twice that of (4.22) and the drift coefficient is set so

that we have

κpγq “ 2pγ ´ 2q tan
´πγ

2

¯

.

Some explanations are in order. First, in the work [6], the authors only consider “positive

excursions”, i.e. they trimmed the tree at points u P Te where Xptuq ´ Xpsuq becomes negative.

If we do so, we instead recover the ssMt corresponding to (4.19) with β “ 2. However, we

prefer to keep positive and negative horizontal excursions (their proof adapts easily) so that the

underlying tree is exactly Te. Second, as in [104], the authors state their results in terms of

growth-fragmentation processes, but we can argue similarly as in Example 4.9 using [6, Theorem

3.3 and Theorem 3.6] and prove that we can couple the construction of Chapter 3 with that of [6]

so that the underlying branching process with types and decoration-reproduction is actually the

same. We deduce that in this case the gluing can be performed and yields a compact decorated

tree without appealing to Proposition 3.10 nor to Property pPq. Indeed, Assumption 3.9 is not

fulfilled and so one cannot use Proposition 3.10 to justify a priori that T is well-defined. Also,

Assumption 3.12 is not fulfilled either and actually the “natural measure on the leaves of T”which

coincides with the contour measure 1
2 ¨γe should be constructed via the derivative martingale, see

[6, Theorem 5.3].

This example shows that the construction of self-similar Markov trees can, at least in some

examples, still be performed in the critical case minκ “ 0 and gives credits to the discussion in

the comments section of Chapter 3. Furthermore, it sheds yet another point of view on the usual

Brownian CRT by showing that a version of it can be constructed as critical self-similar Markov

tree.

Figure 4.12: The decorated random tree associated with half-planar Brownian excur-

sion.

˛
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Chapter 5

Markov properties

In this chapter, we discuss several Markov properties of a self-similar Markov tree with a given

characteristic quadruplet, hence justifying a posteriori the terminology. We state them as prop-

erties satisfied by the laws of the equivalence class in T of the decorated trees T “ pT, dT , ρ, gq.
Heuristically, these properties claim that certain natural families of disjoint decorated subtrees

are conditionally independent given the values of the decoration at their respective roots, and

that after a proper rescaling, they are distributed as the original self-similar Markov tree. The

chapter is divided as follows. First in Section 5.1, we introduce the notion of local decomposition,

which provides a general and rigorous formulation of the Markov property. Then in Sections 5.2

and 5.3, we apply this framework to the case of subtrees dangling from spines, balls or hulls.

The Markov properties will play a pivotal role in our study of self-similar Markov trees, see

Chapter 6, and are also crucial for establishing invariance principles in Part II.

5.1 Local decompositions

Our goal here is to introduce a general framework that enables us to state rigorously Markov

properties of self-similar Markov trees. Throughout this section, we fix a probability space on

which various random variables will be defined. Heuristically, a local decomposition of a random

decorated tree T is a way to reconstruct it from an initial random decorated real tree T1 with
marks and then by gluing on the latter a family of random decorated real trees satisfying some

branching property. This notion is similar in a random framework to the deterministic one

we used in Section 2.1. See also the end of Section 2.4, and notably Lemma 2.18 therein, for

the version of the gluing operator in the setting of equivalence classes modulo isomorphisms of

decorated real trees.

Let us now provide a formal definition. Recall from Section 2.4 that T is the Polish space of

all isomorphism classes of rooted decorated compact trees equipped with the distance dT. Fix

pQxqxě0 a (measurable) kernel of probability measures on T and I some countable set of indices.

In the same probability space, we let pT1, priqiPIq be a random decorated real tree endowed with

a family of marks, that is a random variable in TI‚,
`

ℓi
˘

iPI a family of random variables in R`,
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and finally pτiqiPI a family of random decorated real trees in T. Recall the definition of the gluing

operation as a map from TI‚ ˆ pTqI to T, which was given after Lemma 2.18 in Section 2.4.

Definition 5.1. We say that
´

pT1, priqiPIq, pℓiqiPI , pτiqiPI
¯

is a pQxq-local decomposition of T if

it satisfies the following:

(LD1) We have

Gluing
´

pT1, priqiPIq, pτiqiPI
¯

“ T, in T, a.s.

(LD2) Conditionally on
`pT1, priqiPIq, pℓiqiPI

˘

, the random decorated real trees pτiqiPI are indepen-

dent and the conditional law of τi is Qℓi for every i P I.

We stress that the first and third components of the triplet involved in a local decomposition

are random variables in spaces of equivalent classes TI‚ and T. Since by Lemma 2.18, the

equivalence class of the glued tree in (LD1) does not depend on the choice for representatives,

the above definition does makes sense. In this situation, we refer to T1 as the base of the local

decomposition, and to the τi’s as subtrees dangling from T1. Recall also that in the construction

by gluing, only the decorated real trees τi that are not degenerate play a role. We also stress that

local decompositions are only of interest if conditions (2.2) and (2.3) are fulfilled a.s.; otherwise,

we will simply have T “ 0.

We interpret a pQxqxě0-local decomposition as a type of Markov property. Conditioned on

the“present”pℓiqiPI , the“past”pT1, priqiPIq and the“future”pτiqiPI are independent. Furthermore,

the conditional distribution of the future is determined by the probability kernel pQxqxě0. This

property can actually be seen as an extension of the branching property discussed in Section 3.1,

within the context of random decorated trees. It can be related to the so-called strong Markov

branching property of general branching processes in [83], as we shall see notably in the proof

of the forthcoming Proposition 5.4. Let us illustrate the notions that we just introduced with a

basic example involving general branching processes.

Example 5.2 (Local decomposition of general branching processes along the spine). Consider

a decoration-reproduction kernel pPxqxą0 as defined in Section 3.1. We write as usual Px for

the law of the family of decoration-reproduction processes pfu, ηuquPU which is induced when the

ancestor has type x. Assume that Property pPq holds Px-a.s. for all x ą 0. We take for T P T
the random decorated tree defined in Theorem 2.5 and denote its law under Px by Qx. We also

write Q0 for the Dirac point mass at the degenerate decorated real tree 0 in T.
Let us work under Py for some y ą 0. Recall from Notation 2.9, that T 0 “ tρp∅, tq : t P

r0, z∅su stands for the base subtree of T induced by the ancestral individual of the general branch-

ing process. We interpret T 0 as the spine of T . We also write dT 0 for the restriction of dT to

T 0 and g0 for the associated usc-decoration – which corresponds to the usc version of f∅. Next,

recall that the atoms of the reproduction process η∅ of the ancestor have been enumerated, say

pr1, ℓ1q, pr2, ℓ2q, . . ., using some deterministic rule, for instance the co-lexicographic order, and,

if needed, are completed with fictitious pairs p:, 0q to get an infinite sequence. For any j ě 1
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such that rj ‰ :, the sub-family of decoration-reproduction processes pfju, ηjuquPU also satisfies

the Property pPq almost surely and we write Tj for the random decorated tree that it induces.

When rj “ :, we simply decide that Tj is the degenerate decorated real tree.

On the one hand, we see from the gluing construction that

Gluing
´

`pT 0, dT 0 , ρ, g0q, pρp∅, riqqiPN
˘

, pTiqiPN
¯

“ T,

which is the requirement (LD1). On the other hand, the branching property of general branching

processes discussed in Section 3.1 entails that conditionally on pf∅, η∅q, or equivalently condi-

tionally on
`pT 0, dT 0 , ρ, g0q, pρp∅, riqqiPN

˘

and pℓiqiPN, the sub-families of decoration-reproduction

processes pfju, ηjuquPU for j ě 1 are independent and the conditional law of pfju, ηjuquPU is Pℓj .
Therefore the random decorated real trees pTiqiPN are also conditionally independent and the

conditional law of Ti is Qℓi for every i P N, which is the requirement (LD2). We conclude that
´´

`

T 0, dT 0 , ρ, g0
˘

,
`

ρp∅, riq
˘

iPN
¯

,
`

ℓi
˘

iPN,
`

Ti
˘

iPN
¯

is a pQxqxě0 local decomposition of T; see Figure 5.1 for an illustration. ˛

ρ
ρ

T

ρp∅, rjq

Tj

Figure 5.1: Illustration of the local decomposition of branching processes along the spine

T 0: conditionally on the reproduction measure, the dangling subtrees Ti are independent

and of law Qℓi , i P N.

Let us now focus on our case of interest, namely when T “ pT, dT , ρ, gq is built as in Proposi-

tion 3.10 from decoration-reproduction processes pfu, ηuquPU induced by a characteristic quadru-

plet pσ2, a,Λ;αq satisfying Assumption 3.9. Recall the notation Px for the law of pfu, ηuquPU
when starting from initial decoration x ą 0 and that Qx is the law of the equivalence class of

T “ pT, dT , ρ, gq in T. Note the subtlety here: under Px the variable T is an actual and explicit

decorated tree built from gluing decorated segments obtained from pfu, ηuquPU as in Section 2.2,

whereas under Qx the variable T is rather an equivalence class of such trees. Recall also that Q0

stands for the law of the degenerate decorated tree 0 in T.
We shall work under P “ P1 and establish a decomposition of the actual decorated tree

T “ pT, dT , ρ, gq that will provide a local decomposition in the sense of Definition 5.1 once seen

103



as variables in T. In this direction, we need first to introduce a standard procedure to decorate

subtrees of T . Specifically, we say that τ Ă T is a subtree if it is non-empty, connected and

closed. We can endow τ with the distance dτ induced by dT and root it at the unique point

ρτ P τ such that infyPτ dT pρ, yq “ dT pρ, ρτ q. Then, pτ, dτ , ρτ q is a compact rooted real tree and

we further say that τ is a base subtree if furthermore ρ P τ . We equip τ with the decoration gτ

that coincides with g on τztρτu and is given at the root by

gτ pρτ q :“ lim sup
yPτztρτ u
yÑρτ

gpyq, (5.1)

with the convention that gτ pρτ q “ 0, if τ “ tρτu. We refer to gτ pρτ q as the germ of the

decoration on τ . It is important to note that this quantity has been defined not only to ensure

upper semi-continuity of the decoration, but also so that it can be evaluated by peeping only

infinitesimally at the boundary point of a connected component τztρτu, revealing the latter as

little as possible. In particular, since fup0q “ χpuq in the self-similar setup, if τ is a base subtree

then we must have gτ pρτ q “ gpρq. In the rest of the section we will use the standard notation

τ :“ pτ, dτ , ρτ , gτ q, and for definiteness we extend the definition when τ is empty by taking

τ :“ ptρu, 0, ρ, 0q which is isomorphic to 0. We refer to τ as the standard decoration of τ .

We can now explain the road map to encode local decompositions under P. First, assume

that we have defined a base subtree T 1 Ă T by means of some algorithm or geometric definition

(using the pfu, ηuquPU). We then write pτi̊ qiPI for the family of connected components of T zT 1,
agreeing for definitiveness that some τi̊ may be empty, notably when the number of components

is finite. We stress that the precise choice of the indexing set I is irrelevant at the stage, but

will have some importance latter. Next, we write τi for the closure of τi̊ , in particular we have

τi “ τi̊ Ytρτiu when τi̊ is non empty and τi “ ∅ otherwise. If, we write ri and ℓi for the root and

initial usc-decoration of τj , that is pri, ℓiq :“ pρτi , gτipρτiqq if τi is non empty and pri, ℓiq :“ pρ, 0q
otherwise, then the requirement (LD1) for a local decomposition is clearly fulfilled, i.e.

Gluing
´

pT1, priqiPIq, pτiqiPI
¯

“ T, in T, a.s..

So the remaining crucial issue is to verify (LD2), and this requires in particular a proper a

choice of the indexation of the connected components1, which in our cases will use the explicit

construction from pfu, ηuquPU. Under P, we will say in short that T 1 Ă T induces a local

decomposition of the self-similar Markov tree T whenever it exists such an indexation so that
´

pT1, priqiPIq, pℓiqiPI , pτiqiPI
¯

is a pQxqxą0 local decomposition of T. Ours proofs will consists in

constructing such an indexation and checking the independence property.

1For instance, the algorithm that ranks components in the decreasing order of their heights would not serve

our purpose.
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5.2 Genealogical Markov property

In this section we establish local decompositions induced by base subtrees that are constructed

using the genealogy of Ulam’s tree. Recall that we work under P and that we write T “
pT, dT , ρ, gq for the decorated tree built from the family of decoration-reproduction processes

pfu, ηuquPU. Recall also from Notation 2.9 that for every n ě 0, we write Tn for the base subtree

of T induced by individuals of the general branching process up to generation n only. The

following local decomposition can be seen as an easy extension of Example 5.2.

Proposition 5.3. For every n ě 0, the subtree Tn induces a local decomposition of T under P.

Proof. We will establish the claim by induction. We start considering the case n “ 0 which has

essentially been already discussed in Example 5.2, and we use the notation therein. The slight

difference is that we decorate here the spine segment T 0 with the restriction of g to T 0, whereas

in Example 5.2, we rather used the usc-modification of f∅. However, these two functions may

only differ at marked points of the segment where gluing is performed. More precisely, for every

i P N, we have gpriq “ f∅priq _ ℓi. We deduce that (LD2) still holds when we decorate T 0 with

the restriction of g instead of f∅, and hence T 0 induces a local decomposition of T under P.
For n “ 1, we decompose in turn each (non-degenerate) connected component along its own

spine, using I “ N2 to index the family of subtrees at the second generation. And so on, and

so forth, generation after generation. For the sake of clarity, let us spell the elements of the

local decomposition out. At generation n, we use I “ Nn`1 as set of indices. For u P Nn`1,

ru “ ρpuq is the equivalence class of the root of the segment labelled by u in the construction by

gluing, and ℓu “ χpuq is the type of the individual u, that is the germ of the decoration gupρuq
for the subtree τu “ Tu, again with the Notation 2.9. Condition (LD2) follows directly from the

branching property.

In the remaining of the section, we focus on the model of pruned tree below a fixed level,

which can be though of as a variation of Tn where we only keep the finitely many individuals

with types larger than ε. We shall prove after, see Corollary 5.5, that the associated decorated

subtree Trεs is an approximation of T as ε Ñ 0; and this will be notably useful in Part II, when

we shall consider scaling limits of Galton-Watson branching processes with integer types.

To define properly the pruning transformation, we fix some threshold ε P p0, 1q and introduce

the set of vertices

F pεq :“ ␣

u P U : fup0q ă ε and fvp0q ě ε for all v ă u
(

, (5.2)

where the notation v ă u means that v is a strict prefix of u in U. For every u P F pεq, we change
the entire descent of u and make it fictitious by setting pf rεs

v , η
rεs
v q “ p0, 0q for all v ľ u (u prefix

of v). The decoration-reproduction of the ascendants of individuals of F pεq are unchanged, i.e.

pf rεs
v , η

rεs
v q “ pfv, ηvq for all v ă u with u P F pεq. We know from Lemma 3.2 that the family

Apεq –
␣

v P U : v ă u for some u P F pεq(
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is finite P-a.s. The tree pruned at level ε ą 0, denoted by T rεs, is the real tree obtained by

gluing as in Section 3.1 the line segments r0, zvs for v P Apεq only, i.e.

T rεs :“ ␣

ρpu, tq : u P Apεq and t P r0, zus(,

where we recall that ρpu, tq denotes the – equivalent class of the – point on the segment Su

at distance t from the root ρpuq. In particular, T rεs is a base subtree of T built from a finite

number of line segments.

Proposition 5.4. For every ε P p0, 1q, the subtree T rεs induces a local decomposition of T under P.

We stress that the heart of the proof is that the set of vertices F pεq in (5.2) is an optional

line in the sense of Jagers [83] to which the strong Markov branching property applies. Other

choices of optional lines would thus yield analogous local decompositions.

Proof. First, for every v P F pεq non-fictitious, we consider the subtree

τv “ ␣

ρpvu, tq : u P U and t P r0, zvus(,

and we write τv for the induced decorated tree. By construction, the connected components of

T zT rεs are precisely the τv, for v P F pεq non-fictitious. Furthermore, recalling Notation 2.9, we

see that τv is isomorphic to the decorated tree Tv associated with the family pfvu, ηvuquPU. We

also let rv “ ρpvq and ℓv “ χpvq “ fvp0q. For convenience, we extend the above construction to

all the Ulam tree by taking τv “ ptρu, 0, ρ, 0q, rv “ ρ and ℓv “ fvp0q, for v R F pεq or v fictitious.

We have to verify (LD2) in this setting, which can be derived from Proposition 5.3 by

constructing T rεs recursively branch by branch. Nonetheless, since the same argument can be

used to establish many other local decompositions, it may be more instructive to rather use the

strong Markov branching property of general branching processes, which has been developed in

great generality in [83].

We first observe that the set of vertices F pεq is a random line, that is F pεq does not contain

two vertices u and v with u ă v. It is furthermore optional, in the following sense. For any

subset of vertices V Ă U, the event tF pεq ĺ V u that every v P V has some prefix in F pεq, is
measurable with respect to the sigma-algebra FV generated by ppfw, ηwq : w ń v for all v P V q.
In other words, the event tF pεq ĺ V u does not depend on the decoration-reproduction processes

indexed by vertices with a prefix in V .

Then define the pre-F pεq-algebra FF pεq of events A such that A X tF pεq ĺ V u P FV for

all V Ă U. The strong Markov branching property [83, Theorem 4.14] of general branching

processes at optional stopping lines can now be stated in our framework as follows. Consider

for every u P U a measurable functional φu : T Ñ r0, 1s; then there is the identity

E
´

ź

uPF pεq
φupTuq

ˇ

ˇ

ˇ
FF pεq

¯

“
ź

uPF pεq
Eχpuq

`

φupTq˘.
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Let us now impose furthermore φup0q “ 1 for a while, so that we can rewrite the preceding in

the form

E
´

ź

uPU
φupτuq

ˇ

ˇ

ˇ
FF pεq

¯

“
ź

uPU
Eℓu

`

φupTq˘.

It is readily seen that this identity remains valid if we drop the requirement φup0q “ 1. Indeed,

it suffices to replace φv by 10 for any given vertex v P U, use linearity, and repeat the operation

for every vertex in U. Since pTrεs, prvqvPUq and pℓvqvPU, as variable in TU‚ and RU`, are measurable

with respect to the sigma-algebra FF pεq, this shows (LD2) and hence completes the proof of the

proposition.

We conclude this section by establishing that the subtree pruned at level ε approximates

the self-similar Markov tree as ε Ñ 0`. We shall furthermore endow T rεs with approximations

of the weighted length and harmonic measures constructed in Section 3.3. More precisely, for

any γ ě γ0, the tree T rεs can be equipped with the restriction 1T rεs ¨ λγ of the length measure

gγ´αλT constructed in Proposition 3.11. However, when Assumption 3.12 holds, the harmonic

measure µ assigns zero mass to Tn for any n ě 0, and therefore also to the pruned subtree T rεs

for any ε ą 0. In particular the restriction of µ to T rεs is always null and does not converge to

µ as ε Ñ 0`. For this reason, we shall then rather equip T rεs with another measure, namely

we let µrεs be the image of the harmonic measure µ by the canonical projection of T on T rεs.
Specifically, we introduce

µrεs :“
ÿ

uPF pεq
µpTuq ¨ δρpuq, (5.3)

where the optional line F pεq has been defined in (5.2), and, as usual, ρpuq denotes the point in

T rεs at which the segment Su is glued. Then we have the following property.

Corollary 5.5 (Convergence of cutoff approximations). In the notation above, the following as-

sertions hold P-a.s.

(i) Suppose Assumption 3.9. Then for any γ ě γ0, we have

lim
εÑ0`

`

T rεs, dT rεs , ρ, gT rεs ,1T rεs ¨ λγ˘ “ `

T, dT , ρ, g, λ
γ
˘

, in Tm.

(ii) Suppose Assumption 3.12. Then we have

lim
εÑ0`

`

T rεs, dT rεs , ρ, gT rεs ,µrεs˘ “ `

T, dT , ρ, g,µ
˘

, in Tm.

Proof. We will establish the statements with convergence in probability instead of almost surely,

as then the sharper claims follow readily by an argument of monotonicity. To start with, recall

from Proposition 3.10 and Lemma 3.2 that

E
´

ÿ

uPU
χpuqγ0

¯

ă 8.
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As a consequence, we have

lim
εÑ0`E

´

ÿ

uPU
1tχpuqăεuχpuqγ0

¯

“ 0,

and a fortiori

lim
εÑ0`E

´

ÿ

uPF pεq
χpuqγ0

¯

“ 0. (5.4)

Next, we deduce from the local decomposition Proposition 5.4, Corollary 3.4 and the scaling

property that there is some finite constant c ą 0 such that for every ε ą 0, we have

E
´

ÿ

uPF pεq
HeightpTuqγ0{α

¯

ď c ¨ E
´

ÿ

uPF pεq
χpuqγ0

¯

and

E
´

ÿ

uPF pεq
max
Tu

gγ0u

¯

ď c ¨ E
´

ÿ

uPF pεq
χpuqγ0

¯

.

We deduce that

lim
εÑ0`E

´

ÿ

uPF pεq

´

HeightpTuqγ0{α ` max
Tu

gγ0u

¯¯

“ 0.

Since the decorated real tree T can be recovered by gluing on Trεs the subtrees Tu for u P F pεq,
there is the bound

dHpTqpT, Trεsq ď sup
uPF pεq

´

HeightpTuq _ max
Tu

gu

¯

,

and we conclude that

lim
εÑ0`dHpTqpT, Trεsq “ 0, in probability.

Note that this immediately yields the claim (ii) (again with convergence in probability in place

of almost surely), since from the definition (5.3), the Prokhorov distance between µrεs and µ is

bounded from above by the Hausdorff distance between T rεs and T .
We are thus left to deal with the weighted length measure in (i). In this direction, remark

that for every γ ě γ0 we have

dProkpλγ ,1Trεs ¨ λγq ď λγpT zT rεsq ď `

max
T

gγ´γ0˘ ¨ λγ0pT zT rεsq.

Consequently, by Corollary 3.4, to conclude it suffices to establish that λγ0pT zT rεsq converges to
0 in probability, as ε Ó 0. To this end note that, from Proposition 5.4 and the scaling property,

that for every ε ą 0

E
`

ÿ

uPF pεq
λγpTuq˘ ď E

`

λγ0pT q˘ ¨ E`
ÿ

uPF pεq
χpuqγ0˘ “ ´ 1

κpγ0q ¨ E`
ÿ

uPF pεq
χpuqγ0˘,

where to obtain the last equality we used (3.22). The desired results follows now by (5.4).
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Remark 5.6 (An intrinsic cutoff). The reader may compare the subtree Trεs with the subtree Tpεq

obtained heuristically from T by starting from the root and cutting each branch as soon as the

decoration drops below level ε. The inclusion Tpεq Ă Trεs should be plain. The nice feature of Tpεq

is that its equivalence class in T only depends on that of T, that is, it is an intrinsic geometric

subtree, as opposed to Trεs which uses the construction from pfu, ηuquPU. However, it will be

technical simpler to deal with Trεs rather than Tpεq.

Figure 5.2: Illustration of the decorated subtrees T pεq pruned at increasing levels from

left to right. The subtrees T rεs would actually be larger since they contain all branches

whose initial decoration is larger than ε.

5.3 Temporal Markov property

Roughly speaking, the local decompositions described in Propositions 5.3 and 5.4 only rely on the

genealogical branching property of self-similar Markov trees, and could have been stated as well

for general branching processes; see Example 5.2 and also the proof of Proposition 5.4. In this

section, we turn our attention to another type of local decompositions for self-similar Markov

trees, which now rather stems from the following temporal Markov property of decoration-

reproduction processes. Recall that pPxqxě0 denotes the self-similar decoration-reproduction

kernel with characteristic quadruplet pσ2, a,Λ;αq. For every t ě 0, we use the notation pf, ηq˝θt
for the pair of shifted processes at time t, that is pf, ηq ˝ θt “ p0, 0q if t ě z, and otherwise,

f ˝ θt : r0, z ´ ts Ñ R`, f ˝ θtpsq “ fpt` sq for 0 ď s ď z ´ t,

and
ż

r0,8qˆR`

φps, xqη ˝ θtpds, dxq “
ż

pt,8qˆR`

φps´ t, xqηpds, dxq,

for any measurable function φ : r0,8q ˆ R` Ñ R`.

Lemma 5.7 (Markov property of the decoration-reproduction process). Write pGtqtě0 for the

natural filtration of the decoration-reproduction process pf, ηq, i.e. Gt is the (completed) sigma-

algebra generated by 1r0,ts ¨ f and 1r0,tsˆR`
¨ η. For every x ě 0 and every pGtq-stopping time

R, the conditional distribution under Px of the shifted decoration-reproduction process pf, ηq ˝ θR
given GR is PfpRq.
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Proof. The claim is an easy extension of the strong Markov property of positive self-similar

Markov processes; we merely sketch below the argument and refer to [88, Chapter 13] for more

details. Recall the setting of Section 3.2, and in particular that N “ Npdt,dy,dyq is a Poisson

random measure on r0,8q ˆS with intensity measure dtΛpdy,dyq, and ξ the Lévy process with

Lévy-Itô decomposition (3.9) and possibly killed at the exponentially distributed time ζ. Writing

pHtqtě0 for the natural filtration of pξ,Nq, we have that for every t ě 0 and conditionally on

t ă ζ, the pair pξptq,Nptqq given by

ξptqpsq “ ξps` tq ´ ξptq, for s ě 0,

and
ż

r0,8qˆS
φps, y,yqNptqpds, dy,dyq “

ż

pt,8qˆS
φps´ t, y,yqNpds, dy,dyq,

is independent of Ht and has the same law as pξ,Nq. This observation extends to the situation

where the fixed time t is replaced, first by a simple pHtq-stopping time, and then, by approxi-

mation, by any a.s. finite pHtq-stopping time. The statement then follows readily by inspection

of the Lamperti transformation described in Section 3.2.

We now derive from Lemma 5.7 the first two temporal local decompositions that are both

induced by a stopping time R ď z∅ in the natural filtration of the decoration-reproduction

process of the ancestor pf∅, η∅q. We consider the spine truncated at distance R from the root,

that is the segment T 0
R :“ tρp∅, rq : r P r0, Rsu Ă T 0. We consider also the hull generated by

the truncated spine,

B‚
RpT q :“ ␣

y P T : dT pρ, p∅pyqq ď R
(

,

where p∅ : T Ñ T 0 denotes the projection on the spine and ρ stands for the root of T . So roughly

speaking, the hull B‚
RpT q is the subtree that results from killing the ancestor immediately after

time R in the population model. The closure of its complement B̌‚
RpT q is connected and hence

also a real tree on the event R ă z∅, and empty on the complementary event. Notice that when

R ă z∅, we have

B̌‚
RpT q “ ␣

y P T : dT p0, p∅pyqq ą R
( Y ␣

ρp∅, Rq(.
Proposition 5.8. For every stopping time R ď z∅ in the natural filtration of the ancestral

decoration-reproduction process pf∅, η∅q, both the truncated spine T 0
R and the hull B‚

RpT q in-

duce a local decomposition of T under P.

Proof. The claim readily follows from a variation of the pQxqxě0 local decomposition along the

spine, i.e. Proposition 5.3 when n “ 0. Recall the notation there and in Example 5.2, and

notably that the atoms of the ancestral reproduction process η∅ are enumerated in the co-

lexicographic order, pr1, ℓ1q, pr2, ℓ2q, . . ., and that for every j ě 1, we denoted by Tj the random

decorated tree induced by the sub-family pfju, ηjuquPU. We have seen in the beginning of the

proof of Proposition 5.3 that

`pT0, pρp∅, riqqiPNq, pℓiqiPN, pTiqiPN
˘

is a pQxqxě0 local decomposition of T. (5.5)
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T̃i

B̌‚
RpT q

Figure 5.3: Illustration of the Markov property for the truncated spine: conditionally on

the reproduction measure, all dangling subtrees are independent and of law Qℓi where

ℓi are the germ decorations.

We now re-order those elements depending on their positions relative to the stopping time

R as follows, taking Z˚ “ Zzt0u as new set of indices. We construct recursively 1 ď Rp1q ă
Rp2q ă . . . such that for any j ě 1, Rpjq “ k where k is the rank of the j-th atom prk, ℓkq such

that rk ą R if any, and Rpjq “ 8 otherwise. We define similarly 1 ď Rp´1q ă Rp´2q ă . . . such

that for any j ě 1, Rp´jq “ k where k is the rank of the j-th atom prk, ℓkq such that rk ď R if

any, and Rp´jq “ 8 otherwise. We then set for any j P Z˚, r̃j “ rRpjq, ℓ̃j “ ℓRpjq and rTj “ TRpjq
when Rpjq ă 8, and r̃j “ 0, ℓ̃j “ 0 and rTj “ 0 otherwise. It is immediate to check from (5.5),

the fact that R is measurable with respect to ppT0, pρp∅, riqqiPNq, pℓiqiPNq, and the fact that the

original ordering can be recovered from the new one, that

`pT0, pρp∅, r̃iqqiPZ˚q, pℓ̃iqiPZ˚ , prTiqiPZ˚

˘

is again a pQxqxě0 local decomposition of T. (5.6)

We then split the spine at R. First, write rT0 for the decorated version of B̌‚
RpT q and note that

it can be obtained by taking the set tρp∅, rq : r P rR, z∅su with its associated decoration, and

then gluing on it the family prTiqiě1 at the position prescribed by the points pρp∅, r̃iqqiě1. Second,

write TR0 for the decorated truncated spine and observe that the variables pT0R, pρp∅, r̃iqqiď´1q
and pℓ̃iqiď´1 are measurable in the sigma-algebra GR generated by the ancestral decoration-

reproduction process stopped at time R. By comparison with the local decomposition along the

spine in Proposition 5.3 and the temporal Markov property in Lemma 5.7, we deduce that the

conditional law of rT0 given
´

`

T0R,
`

ρp∅, r̃iq
˘

iď´1

˘

, pℓ̃iqiď´1, prTiqiď´1

˘

is Qf∅pRq. Thus writing r̃0 “ R and ℓ̃0 “ f∅pRq, we conclude from (5.6) that

´

`

T0R,
`

ρp∅, r̃iq
˘

iď0

˘

, pℓ̃iqiď0, prTiqiď0

˘

is a pQxq-local decomposition of T; we have thus proved the claim for the truncated spine.
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Finally the claim for the hull follows again from (5.6) and the observation that the decorated

version of B‚
RpT q can be obtained by gluing the sequence of decorated trees prTiqiď´1 on the

truncated spine T0R at the locations pρp∅, r̃iqqiď´1.

Similarly as in the previous section, one can iterate the local decomposition of the truncated

spine to infer new Markov properties. We illustrate this procedure with another important

example of base subtrees, namely the closed ball of radius a,

BapT q :“ ␣

υ P T : dT pρ, υq ď a
(

.

Proposition 5.9. For every a ą 0, the ball BapT q induces a local decomposition of T under P.

Proof. Recall that Tn denotes the base subtree of T induced by individuals of the general

branching process up to generation n only, and set BapTnq :“ BapT qXTn. For n “ 0, the subtree

BapT 0q is merely the spine truncated at the fixed height a, and we know from Proposition 5.8

that BapT 0q induces a local decomposition of T under P. Just as in Proposition 5.3, we can then

recursively decompose T along the truncated segments at generations 1, 2, . . ., and get that for

any n ě 0, the base tree BapTnq induces a local decomposition of T under P. In this framework,

the connected components of T zBapTnq are indexed by the set of vertices u P U.
More specifically, for every u P U with |u| ď n, note that there is at most one point ρpu, tq

in tρpu, sq : s P r0, zusu at distance a from ρ. When there is such a point, we set rnu :“ ρpu, tq,
ℓnu :“ fuptq and we write τnu for the subtree formed by the set of points v P T such that

ρpu, tq P rrρ, vss. Remark that we have t “ a ´ dT pρ, ρpuqq and τnu can be seen as the closure of

the complement of the hull of radius a ´ dT pρ, ρpuqq of Tu. If there no such point or if |u| ą n,

we let rnu :“ ρ, ℓnu :“ 0 and τnu :“ 0. If we write τnu for the decorated version of τnu and BapTnq for
the decorated version of BapTnq, by recursively applying Proposition 5.3 we infer that, under P
the family:

´

`

BapTnq, prnuquPU
˘

,
`

ℓnu
˘

uPU,
`

τnu
˘

uPU
¯

is a pQxqxě0 local decomposition of T. We stress that the labeling is consistent as we let

generations increase, that is, for any vertex u with |u| ď n, the mark rnu , the variable ℓnu
and the subtree τnu for the decomposition of T zBapTnq are identical to those obtained for the

decomposition of T zBapTmq, for any m ą n. With the obvious notation, for u P U, let us

write ru, ℓu and τu for the corresponding terminal value. Now, using that
`}fu} : u P U

˘

is a

null family, the fact that
ř

uPU zu ă 8 a.s. and the definition of pTU‚, dTU‚q given in (2.15),

it is straightforward to infer that
`

BapTnq, prnuquPU
˘

converges to
`

BapT q, pruquPU
˘

, where BapT q
stands for the standard decorated version of BapT q. Therefore, taking the limit when n Ñ 8,

we deduce that
´

`

BapT q, pruquPU
˘

,
`

ℓu
˘

uPU,
`

τu
˘

uPU
¯

is a pQxqxě0 local decomposition of T. This completes the proof of the proposition.
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We now conclude this chapter by stressing a connection with measured-valued branching

processes; we refer to [108] for background and precise definition. Consider for every a ě 0, the

random integer-valued measure on p0,8q

Za :“
ÿ

iPI
δℓipaq,

where ℓipaq denotes the germ decoration of the connected component τi̊ of T zBapT q and we

implicitly discard empty components with ℓipaq “ 0 in the sum. Plainly, Za does not depend on

the choice for indexing these connected components. We then deduce from Proposition 5.9 that

for ever a ě 0, conditionally on Za, the shifted process pZa`bqbě0 is independent of the process

pZbq0ďbďa. Moreover, the distribution of the shifted process given Za is that of
ř

iPI Y i, where

the Y i’s are independent measured-valued processes and each Y i has the same law as Z under

Qℓipaq. In short, pZaqaě0 is measured-valued branching process. For instance, pZaqaě0 may be a

self-similar fragmentation process as discussed in Section 4.2, or a growth-fragmentation process

as in Section 4.3.

Comments and bibliographical notes

The Markov property is of course a most important concept in probability theory. Born with

the theory of stochastic processes, it has been developed for more sophisticated objets such as

branching processes [83] (the stopping lines used many times in this chapter), superprocesses

[67] (the so-called special Markov property) and random snakes, see [95, 65] and [126]. The

Gaussian Free Field (GFF, in abbreviation) is essentially characterized by its domain Markov

property [14] and random sets coupled with the GFF that satisfy a strong Markov property

are called local sets, see [115] for their introduction and [138] for a comprehensive survey. In

particular, our formulation of the Markov property (Definition 5.1) is inspired from GFF local

sets and we use the terminology local decomposition to emphasize this connection. See also

[105, 106] for a theory of a general Markov property in Brownian geometry. We also recall from

the introduction that we expect that our self-similar Markov trees (including the critical case

discussed in Section 3.4) are essentially all random decorated trees with a positive decoration

on the skeleton satisfying a Markov and self-similar property.
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Chapter 6

Spinal decompositions and bifurcators

The main purpose of this chapter is to investigate so-called spinal decompositions for self-similar

Markov trees governed by a characteristic quadruplet pσ2, a,Λ;αq satisfying Assumption 3.9

which is fixed thorough this chapter. We first take the point of view of general branching

processes, and then provide an explicit description in the self-similar Markovian setting. We use

either a weighted length measure or the harmonic measure to mark a point ρ‚ at random on

the tree, and describe the joint distribution of the decoration-reproduction along the segment

rrρ, ρ‚ss and the family of subtrees that stem from this segment, that is the collection of – the

closure of – the connected components of the complement T zrrρ, ρ‚ss. Although the decorated

trees dangling from rrρ, ρ‚ss are, conditionally on their initial decorations, independent ssMt;

the decoration-reproduction process along rrρ, ρ‚ss is a different self-similar Markov decoration-

reproduction whose characteristics pσ2, aγ ,Λγ ;αq are explicitly determined in terms of the initial

ones. As a first application, we address an important issue already mentioned in Sections 2.4

and 3.2, namely the fact that different characteristic quadruplets may yield self-similar Markov

trees with the same distribution, and provide an explicit characterization of such bifurcators in

Section 6.3. Another application to the determination of the Hausdorff dimension of self-similar

Markov trees that fulfill the first Cramer’s condition is given in Section 6.4.

6.1 Spine decompositions in the setting of general branching processes

The notion of spinal decomposition is one of the most useful and powerful tools in the study of

branching structures. The purpose of this section is to present its basic aspect, first from the

point of view of general branching processes, and then more specifically in the situation where

the decoration-reproduction kernel is Markovian and self-similar.

Let pPxqxą0 denote a decoration-reproduction kernel; using the notation introduced in Sec-

tion 3.1, we write Px for the probability law of the associated family of decoration-reproduction

processes pfu, ηuquPU, which results when the ancestor has type x ą 0. We assume the existence

of a harmonic function h : p0,8q Ñ p0,8q in the sense of (3.23). Recall that χpuq stands for

the type of the individual labelled by the vertex u of the Ulam tree U, and that the process
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Mn “ ř

|u|“n hpχpuqq for n ě 0 in (3.24) is a nonnegative martingale. We stress that at this

stage, we do not require Property pPq to hold, nor the additive martingale (3.24) to converge

in L1pPq. The harmonic function h serves here to distinguish an infinite lineage at random, and

we will use the symbol ‹ as an exponent to refer to distinction. That is, a single individual

u‹pnq P Nn is distinguished at each generation n ě 0 such that u‹pnq ă u‹pn ` 1q, i.e. the

individual distinguished at generation n is always the parent of the individual distinguished at

generation n`1, and pu‹pnqqně0 constitutes the distinguished lineage. Specifically, we introduce

a probability measure P̄hx that describes the joint law of the family of decoration-reproduction

processes pfu, ηuquPU together with pu‹pnqqně0. For every n ě 0, every v P Nn and every non-

negative functional Φ of the decoration-reproduction processes up to generation n, we define

Ēhx
`

Φppfu, ηuq|u|ďnq1u‹pnq“v
˘

:“ hpxq´1Ex
´

Φppfu, ηuq|u|ďnqhpχpvqq
¯

. (6.1)

The martingale property ensures the coherence of this definition. It is an easily checked

and well-known fact in the field of branching processes (see for instance [132, Chapter 4] or

[35]) that the probability measures P̄hx also describe a generalized branching process, where

individuals not only have a type x ą 0, but are furthermore either distinguished or not. More

precisely, non-distinguished individuals beget only non-distinguished children and the statistics

of their decoration-reproduction processes are given by the original kernel pPxqxą0. Distinguished

individuals always give birth to a single distinguished child, possibly together with further non-

distinguished children, the distinguished child being picked at random in the progeny with

probability proportional to the value assigned by h to the type. The decoration-reproduction

process of a distinguished individual follows a biased version of the original kernel, denoted by

pP̄ hx qxą0. Specifically, writing t‹ for the age of the parent when its distinguished child is born,

and x‹ for the type of the latter, then for every nonnegative functional Ψ, there is the identity

Ēhx
`

Ψpf, η, t‹, x‹q˘ “ hpxq´1Ex

´

ż

r0,8qˆp0,8q
ηpdt,dyqΨpf, η, t, yqhpyq

¯

. (6.2)

Let us now provide a more explicit description of the biased law P̄ hx in the case when the

original decoration-reproduction process is self-similar Markovian with characteristic quadruplet

pσ2, a,Λ;αq as in Section 3.2. We exclude implicitly the degenerate case η “ 0 when there is

no reproduction at all, and suppose further that the cumulant function κ in (3.19) is well-

defined and vanishes at some ω ą 0. The function hpxq “ xω is harmonic; see Lemma 3.13

and observe that the sole harmonicity of h only requires Lemma 3.8 and not the more stringent

Assumption 3.12. In this direction, we shall now write P̄ω instead of P̄ h for the sake of clarity.

Recall from Section 3.2 that in the self-similar Markov setting, the decoration process is denoted

by X rather than by f , so (6.2) reads

Ēωx
`

ΨpX, η, t‹, x‹q˘ “ x´ωEx
´

ż

r0,8qˆp0,8q
ηpdt,dyqΨpX, η, t, yqyω

¯

. (6.3)

We now argue that a similar feature occurs also for γ ą 0 when κpγq ă 0. As a motivation, we

define first a probability measure rPγx, with associated mathematical expectation rEγx, describing
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the joint law of the family of decoration-reproduction processes together with a marked vertex

u‚ and a marked time t‚, such that for every v P U, every measurable φ : R` Ñ R` and every

nonnegative functional Φ,

rEγx
´

Φppfu, ηuquPUqφpt‚q1u‚“v
¯

:“ ´κpγqx´γEx
´

Φppfu, ηuquPUq
ż zv

0
φptqfvptqγ´αdt

¯

, (6.4)

where the assertion that rPγx is probability is seen from Proposition 3.11. In words, the distribution

of the family of decoration-reproduction processes pfu, ηuquPU under rPγx is x´γ νpT q ¨Px, further
conditionally on this family, the marked vertex u‚ is picked at random in U with probability

proportional to
şzv
0 fvptqγ´αdt, and finally, the conditional law of the marked time t‚ given

pfu, ηuquPU and u‚ is proportional to 1tPr0,zu‚ qfu‚ptqγ´αdt.
We then relate the law rPγx to that of another generalized branching process where individuals

have a positive type and are either distinguished or not. Again non-distinguished individuals

beget only non-distinguished children and the statistics of their decoration-reproduction pro-

cesses are given by the original kernel pPxqxą0. In turn distinguished individuals, for which an

exponent ‹ is used in the notation, give birth to at most one distinguished child and further

non-distinguished children. We stress that now, a distinguished individual may have no dis-

tinguished child (then, of course, the distinguished lineage dies out), in which case we rather

distinguish an age. Specifically, when the distinguished parent has a distinguished child, we

write x‹ ą 0 for the type of the latter and t‹ for the age of the parent at the distinguished birth

event. Otherwise, i.e. when the distinguished parent has no distinguished child, we set x‹ “ 0

and write t‹ for the distinguished age. With this notation at hand, the decoration-reproduction

kernel pP̄ γx qxą0 for distinguished individuals is defined in terms of the original kernel pPxqxą0 by

the following variation of (6.2). We set for every nonnegative functional Ψ,

Ēγx
`

ΨpX, η, t‹, x‹q˘

“ x´γEx

˜

ż

r0,zqˆp0,8q
ΨpX, η, t, yqyγηpdt,dyq ´ κpγq

ż z

0
ΨpX, η, t, 0qXptqγ´αdt

¸

, (6.5)

where as usual Ēγx stands for the mathematical expectation with respect to P̄ γx . We write P̄γx for

the law of the generalized branching process with distinguished individuals defined above , when

the ancestor has type x ą 0 and is distinguished. More precisely, P̄γx is the joint distribution of

the family of decoration-reproduction processes pfu, ηuquPU together with the (finite) sequence

of distinguished individuals and distinguished ages. We further write u‚ for the ultimate distin-

guished individual and t‚ for its distinguished age.

Lemma 6.1. Suppose κpγq ă 0. Then the law of ppfu, ηuquPU, t‚, u‚q under P̄γx is rPγx.

Proof. To start with, we observe that for any n ě 1, any vertex v P Nn at generation n, and

every functional F ě 0, there is the identity

Ēγx
`

F
`pfu, ηuq|u|ďn´1

˘

1v is distinguished

˘ “ rEγx
`

F
`pfu, ηuq|u|ďn´1

˘

1u‚pnq“v
˘

, (6.6)
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where as usual u‚pnq denotes the forebear of u‚ at generation n if |u‚| ě n and otherwise the

indicator in the left-hand side is interpreted as 0. Indeed, this identity is immediately checked

for n “ 1 from (6.4) and Proposition 3.11. The general case n ě 1 then follows by induction,

applying the branching property under P̄γx and under Px.
Next, consider a measurable function φ : R` Ñ R` and a nonnegative functional Φ. By

the branching property under Px, there is a functional Ψpf, ηq of the decoration-reproduction

process such that for any x ą 0,

Ex
`

Φppfu, ηuquPUq | f∅, η∅
˘ “ Ψpf∅, η∅q.

Using the branching property under P̄γx and (6.5), we get by conditioning on the decoration-

reproduction of the ancestor that

Ēγx pΦppfu, ηuquPUqφpt‚q1u‚“∅q “ ´κpγqx´γEx
ˆ

Ψpf∅, η∅q
ż z∅

0
φptqf∅ptqγ´αdt

˙

“ rEγx pΦppfu, ηuquPUqφpt‚q1u‚“∅q , (6.7)

where the second equality stems from (6.4). The statement now readily follows from the combi-

nation of (6.5) and (6.6) with the branching property.

Our goal now is to characterize the law of pX, η, t‹, x‹q under pP̄ γx qxě0 in both regimes. In

this direction, we fix γ ą 0 such that κpγq ď 0, and we decompose the decoration-reproduction

process into three parts. The first corresponds to the time interval r0, t‹q, the second to the

time interval pt‹,8q up to a natural shift and rescaling, and the third focusses at the exact

time t‹ when the distinguished child is born. We now spell out these parts explicitly. We write

A “ ApX, η, t‹q for the pair resulting from the restriction of pX, ηq to the time-interval r0, t‹q,
that is

A “
´

1r0,t‹qX,1r0,t‹qˆp0,8q ¨ η
¯

.

We write B “ BpX, η, t‹q for the pair given by the decoration-reproduction shifted at time t‹

and rescaled, namely the image of
`

1rt‹,8qX,1pt‹,8qˆp0,8q ¨ η˘ by the map

ps, yq ÞÑ
´ s´ t‹

Xpt‹qα ,
y

Xpt‹q
¯

, s ě t‹, y ě 0.

Finally, we consider the (possibly finite) sequence pxjqjě1 of the types of children (distinguished

or not) which are born at time t‹, as usual ranked in the non-increasing order. In other words,

the restriction of the reproduction process η to the fiber tt‹u ˆ p0,8q is

1tt‹uˆp0,8q ¨ η “
ÿ

jě1

δpt‹,xjq,

and x‹ is one of the terms of the sequence pxjqjě1. We set

C “ CpX, η, t‹, x‹q “
´ Xpt‹q
Xpt‹´q ,

x‹

Xpt‹´q ,
´ xj
Xpt‹´q

¯

jě1

¯

.
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Plainly, the variable Xpt‹´q is measurable with respect to A, so Xpt‹q can be recovered from

A and C. Therefore A, B, and C entirely determine the decoration-reproduction process of a

distinguished individual. We conclude this section by an explicit description of their joint law.

In this direction, recall that the function ψ is the Laplace exponent given by the Lévy-Khintchine

formula (3.11), and from (3.19) that

ψpγq ´ κpγq “ ´
ż

S
Λpdy,dyq

˜ 8
ÿ

i“1

eγyi

¸

P p´8, 0q.

Proposition 6.2. Let γ ą 0 such that κpγq ď 0. For every x ą 0, the random variables A, B and

C are independent under P̄ γx . Moreover we have:

(i) A is a self-similar Markov decoration-reproduction process with characteristic quadruplet

pσ2, āγ , Λ̄γ ;αq and type x, where

Λ̄γpdy,dyq :“ eγy ¨ Λpdy,dyq ´ ψpγqδp´8,p´8,...qqpdy,dyq,

and

āγ :“ a ` σ2γ `
ż

S
ypeγy ´ 1q1|y|ď1Λpdy,dyq.

(ii) B has the law P1 of the initial self-similar Markov decoration-reproduction process with

characteristic quadruplet pσ2, a,Λ;αq.
(iii) The law of C is determined by

Ēγx pF pCqq “ |ψpγq|´1

˜

´κpγqF p1, 0, p0, ...qq `
ż

S
Λpdy,dyq

ÿ

iě1

eγyiF peγy, eγyi , peγyj qjě1q
¸

,

for every nonnegative functional F .

Proof. By self-similarity, there is no loss of generality in assuming that the type of the initial

distinguished individual is x “ 1. As usual, we then drop the indices 1 in the notation for

probabilities and expectations. Roughly speaking, the cornerstone of the argument consists

in applying the well-known Mecke equation for Poisson random measures and analyzing its

consequences. For this, we need first to reformulate (6.3) in terms of the Lévy process ξ and the

Poisson random measure N, which essentially amounts to undoing the Lamperti transformation.

The decoration-reproduction process pX, ηq under P is constructed by applying the Lamperti

transformation to the Lévy process ξ and the point process η (see (3.14) and (3.18)), and since

η is defined in terms of the Lévy process ξ and the Poisson random measure N by (3.17), we

have

Ēγ
´

Φpξ,N, ϵpt‹q, x‹q
¯

“E
´

ż

r0,8qˆRˆS1

Npdt,dy,dyq
ÿ

jě1

Φ
´

ξ,N, t, eξpt´q`yj
¯

eγpξpt´q`yjq
¯

´ κpγqE
´

ż

r0,8q
dt Φ

`

ξ,N, t, 0
˘

eγξptq
¯

,
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where Φ denotes another generic nonnegative functional and ϵ is given by (3.12).

We can now apply the Mecke equation (see for instance [92, Section 4.1]), which involves

adding a Dirac mass at pt, y,yq, under 1tą0dtΛpdy,dyq, to the Poisson random measure N.

Note from the Lévy-Itô decomposition (3.9) that this addition also changes ξ into ξ ` y1rt,8q.
We rewrite the first expectation of the right-hand side above as

ż 8

0
dt

ż

RˆS1

Λpdy,dyqE
´

ÿ

jě1

Φ
´

ξ ` y1rt,8q,N ` δpt,y,yq, t, eξpt´q`yj
¯

eγpξpt´q`yjq
¯

“
ż

RˆS1

Λpdy,dyq
ÿ

jě1

eγyj
ż 8

0
E
´

eγξpt´qΦ
´

ξ ` y1rt,8q,N ` δpt,y,yq, t, eξpt´q`yj
¯¯

dt.

Recall that variables A, B, and C in the statement essentially correspond to splitting the

decoration-reproduction process of a distinguished individual at time t‹. Aiming similarly at

undoing the Lamperti transformation for the parts before and after t‹, this leads us to decompose

pξ,Nq under P̄ γ into three parts corresponding to times strictly before, strictly after, and exactly

at ϵpt‹q. Specifically, we write A1 for the restriction of pξ,Nq to r0, ϵpt‹qq, and B1 for the pair

´

1pϵpt‹q,8qpξ ´ ξpϵpt‹qq,1pϵpt‹q,8qˆS ¨ N
¯

further shifted in time by ϵpt‹q. Last, we consider the atom ofN at time ϵpt‹q, say pϵpt‹q, w, pwiqiě1q.
We denote by w‹ the distinguished element of the sequence pwiqiě1 and set C 1 “ pw,w‹, pwiqiě1q.
In particular, w coincides with the jump ∆ξpϵpt‹qq of ξ at time ϵpt‹q and w‹ “ log x‹ ´ξpϵpt‹q´q.
Then A and B are recovered by applying the Lamperti transformation to A1 and to B1 respec-
tively, and C by exponentiating the elements of C 1.

Specializing the previous discussion to functionals Φ of the form

Φpξ,N, ϵpt‹q, x‹q “ Φ1pA1qΦ2pB1qΦ3pC 1q,

and using that for Lebesgue almost every t ą 0 we have ξpt´q “ ξptq, we obtain that the

quantity Ēγ pΦ1pA1qΦ2pB1qΦ3pC 1qq equals

´

ż

RˆS1

Λpdy,dyq
ÿ

jě1

eγyjΦ3

`

y, yj ,y
˘ ´ κpγqΦ3

`

0,´8, p´8, ...q˘
¯

¨
ż 8

0
E
´

eγξptqΦ1p1r0,tqξ,1r0,tqˆS ¨ NqqΦ2pξptq,Nptqq
¯

dt,

where ξptqpsq :“ ξpt` sq ´ ξptq, for s ě 0, and Nptqpds, dy1,dy1q :“ 1tsą0uˆS ¨ Npt` ds, dy1,dy1q
are the shifted versions of ξ and N. It is now elementary to check that for any t ě 0, the

expectation in the right-hand side can be expressed as the product

E
´

eγξptqΦ1p1r0,tqξ,1r0,tqˆS ¨ Nqq
¯

¨ E`Φ2pξ,Nq˘;

see e.g. the proof of Proposition 5.8 which is closely related.

119



This proves the independence claim in the statement, as well as (ii) and (iii), and we are left

the computation of
ż 8

0
E
´

eγξptqΦ1p1r0,tqξ,1r0,tqˆS ¨ Nqq
¯

dt.

For this, recall that ψpγq P p´8, 0q is the value taken at γ by the Laplace exponent ψ of the

Lévy process ξ, and rewrite the preceding quantity as
ż 8

0
eψpγqtE

´

eγξptq´tψpγqΦ1p1r0,tqξ,1r0,tqˆS ¨ Nqq
¯

dt.

The process exppγξptq ´ψpγqtq is a martingale under P , which can be use as a density to define

a locally equivalent probability measure. This procedure is known as an Esscher transform.

In the current setting, if we write pP 1
xqxą0 for the self-similar Markov decoration-reproduction

kernel with characteristic quadruplet pσ2, āγ , Λ̄γ ;αq defined in the statement, then an elementary

calculation as in the proof of [88, Theorem 3.9] yields

|ψpγq|
ż 8

0
eψpγqtE

´

eγξptq´tψpγqΦ1p1r0,tqξ,1r0,tqˆS ¨ Nqq
¯

dt “ E1 `Φ1p1r0,ζqξ,1r0,ζqˆS ¨ Nqq˘ ,

where we recall that ζ stands for the lifetime of the Lévy process, which is exponentially

distributed with parameter |ψpγq| under P 1, and E1 corresponds to the mathematical expectation

with respect to P 1. This completes the proof.

6.2 Size-biased spine decompositions for self-similar Markov trees

In the setting of self-similar Markov trees, a spinal decomposition can be viewed as a remarkable

local decomposition in the sense of Definition 5.1 for some size-biased version of a self-similar

Markov tree under Px. Slightly more precisely, the base subtree that induces this decomposition

is merely the segment rrρ, ρ‚ss from the root ρ to a marked point ρ‚ which is picked at random

according to some natural probability measure on the tree. We may work either with a weighted

length measure or the harmonic measure on T , and to avoid many repetitions, we will use the

same notation for both cases. In this setting, a spinal decomposition further describes explicitly

the joint law of the decoration on the segment rrρ, ρ‚ss and of the point measure induced by the

germs of the decorations of the subtrees dandling from rrρ, ρ‚ss.
We consider a characteristic quadruplet pσ2, a,Λ;αq satisfying Assumption 3.9. Either under

this sole requirement, we fix γ ą 0 such that κpγq ă 0 and write ν :“ ´κpγqλγ , or under the

stronger Assumption 3.12, we take γ “ ω´, so κpγq “ 0, and write ν :“ µ for the harmonic

measure. Recall from (3.22) and (3.30) that the total mass νpT q has expectation

Ex pνpT qq “ xγ , for x ą 0. (6.8)

The characteristic quadruplet pσ2, a,Λ;αq induces self-similar laws pPxqxą0 for families of

reproduction processes pfu, ηuquPU, and in turn the latter yield distributions pQxqxą0 on the

space T of (equivalence classes up to isomorphisms of) measured decorated real trees T “
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pT, dT , ρ, g,νq. We next introduce for every x ą 0 a probability measure rQx on the space T‚

of (equivalence classes up to isomorphisms of) non-measured decorated real trees with a single

marked point, T‚ “ pT, ρ‚q, such that for any positive measurable function F : T‚ Ñ R`,

rQγ
x

´

F
`

T‚˘
¯

:“ x´γQx

ˆ
ż

T
F
`

T, r
˘

νpdrq
˙

, (6.9)

where for the sake of simplicity, we use the same notation for the probability measures rQx and

Qx as for their corresponding mathematical expectations. In words, rQγ
x is obtained from Qx by

first biasing the latter with the total mass x´γνpT q, and then marking a point ρ‚ at random

according to the normalized law νpdrq{νpT q on T . The assertion that rQγ
x is a probability measure

on T‚ is seen from (6.8).

Figure 6.1: Illustration of the spinal decomposition where a branch (in red above)

has been distinguished and along which the decoration-reproduction process evolves

according to tilted characteristics.

It will often be convenient to work with a specific realization of the marked decorated tree

T‚ “ pT, ρ‚q under rQγ
x in terms of a certain general branching process. In this direction, let us

first make the connexion with the preceding section in the case when Assumption 3.12 holds.

When κpγq ă 0 this connection is transparent. Specifically, if we set ϱ‚ :“ ϱpu‚, t‚q, then by

Proposition 3.10 and Lemma 6.1 , under P̄γx, the family of decoration-reproduction processes

pfu, ηuquPU satisfies Property pPq, and the construction of decorated trees by gluing building

blocks immediately yields that

the distribution of pT, ϱ‚q under P̄γx is rQγ
x. (6.10)
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Let us now explain why the analog result also holds for the harmonic measure. More precisely,

recall that the probability measure P̄ωx stands for the joint law of the family of decoration-

reproduction processes pfu, ηuquPU together with the distinguished lineage pu‹pnqqně0.

Proposition 6.3. Let Assumption 3.12 be satisfied and take γ “ ω´ “ ω. Then the following

assertions hold under P̄ω´
x for any x ą 0:

(i) The law of pfu, ηuquPU is x´ω´νpT q ¨ Px and satisfy Property pPq. We write as usual T for

the resulting decorated tree.

(ii) The sequence pϱpu‹pnqqqně0 of the locations on T induced by the births of the distinguished

individuals u‹pnq converges a.s. We write ϱ‚ for its limit.

(iii) The law of the marked decorated tree pT, ϱ‚q is rQω´
x .

Proof. (i) By definition, for any n ě 0, the distribution of pfu, ηuq|u|ďn under P̄ω´
x is the same

as under x´ω´Mn`1pω´q ¨ Px, where pMnpω´qqně0 is the intrinsic martingale. The remaining

assertions are then immediate from Proposition 3.10.

(ii) The sequence pϱpu‹pnqqqně0 is monotone increasing, in the sense that ϱpu‹pnqq is te

parent of ϱpu‹pn` 1qq for all n ě 0. Since T is compact, this sequence converges in T .

(iii) Again it is seen from the very construction that for every n ě 0, the conditional distri-

bution under P̄ω´
x of ϱpu‹pnqq given T is µnpdvq{µpT q, where µn stands for the projection of the

harmonic measure on Tn (recall that the latter denotes the subtree induced by the individuals

up to the generation n only). Since we know from Proposition 2.10 that µn converges towards

µ as n Ñ 8 in the sense of Prokhorov, P̄ω´
x -a.s. given T, we conclude that the conditional law

under P̄ω´
x of ϱ‚ given T is indeed µpdvq{µpT q “ νpdvq{νpT q.

Now that we have defined the ν-marked version of a ssMt and explained how it can be con-

structed using an explicit family of decoration-reproduction processes, let us turn our attention

to the spinal decomposition, which involves decomposing the latter along the marked segment.

Informally, our goal is to explicitly describe the joint law of the decoration on the segment

rrρ, ρ‚ss, the standard decorated versions of the subtrees dandling from rrρ, ρ‚ss, and the point

measure induced by the germs of the decorations of these dandling subtrees. Let us explain the

road map that we will follow. First, we introduce the candidate for the law of the decoration-

reproduction process encoding the decoration and germs on the segment rrρ, ρ‚ss by means of

a new characteristic quadruplet. As in Section 2.2, this new decoration-reproduction process

allows us to define a decorated segment, and by analogy with Section 5.2 we refer to it as the

marked spine. Next, we demonstrate in Proposition 6.5 that we can construct a decorated tree

by gluing self-similar Markov trees, with the original characteristic quadruplet pσ2, a,Λ;αq, onto
this marked spine. Finally, we show that the resulting decorated tree, marked at the endpoint

of the marked spine, is distributed according to rQγ
x, see Theorem 6.6. The proof will rely on the

characterization given in Proposition 6.2.
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Let us proceed by introducing our candidate for the decoration-reproduction process along

the marked spine. In this direction, we introduce a measure Λγ on S which is derived from the

generalized Lévy measure Λ as follows. Fix i ě 1 and consider for any pair py,yq in S “ RˆS1

the pair py,yq∽i in S that results by swapping1 y and yi. Specifically, the first element of py,yq∽i
is given by the i-th term yi of the sequence y “ pyjqjě1, and its second element is obtained from

the sequence py1, . . . , yi´1, y, yi`1, . . .q (i.e. we replace the i-th term yi in y by y) after re-ordering

terms in the non-increasing order. Then Λ∽i is simply the push-forward measure of Λ by the

map py,yq ÞÑ py,yq∽i. We next define the measure Λ∽
γ on S by

Λ∽
γ pdy,dyq :“ eγy ¨

˜

ÿ

iě1

Λ∽ipdy,dyq
¸

,

and observe from the finiteness of κpγq and (3.19) that

Λ∽
γ pSq “

ż

S

˜

ÿ

iě1

eγyi

¸

Λpdy,dyq “ κpγq ´ ψpγq ă 8. (6.11)

Finally, we define

Λγpdy,dyq :“ eγy ¨ Λpdy,dyq ` Λ∽
γ pdy,dyq ´ κpγqδp´8,p0,´8,¨¨¨ qqpdy,dyq. (6.12)

We stress from the finiteness of ψpγq that
ş

Sp1 ^ y2qeγyΛpdy,dyq ă 8, and therefore Λγ is

a generalized Lévy measure, since

ż

S
p1 ^ y2qΛγpdy,dyq ă 8.

Of course (6.12) is reminiscent of the definition of Λ̄γ given in Proposition 6.2. One of our

motivations for introducing Λγ stems from the following observation.

Lemma 6.4. The function

ψγpqq :“ κpγ ` qq, q ě 0 (6.13)

can then be expressed in the Lévy-Khintchine form

ψγpqq “ 1

2
σ2q2 ` aγq `

ż

S

`

eqy ´ 1 ´ qy1|y|ď1

˘

Λγpdy,dyq,

where the drift coefficient aγ is given by

aγ :“ a ` σ2γ `
ż

S

´

ypeγy ´ 1q1|y|ď1 `
8
ÿ

i“1

yie
γyi1|yi|ď1

¯

Λpdy,dyq, (6.14)

1Observe that we often use the symbol „ to indicate a tilting transformation of probability measures; this

should not be confused with ∽ which rather refers to swapping two elements.
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Proof. The claim should be viewed as a variation of a well-known result related to the Esscher

transform, see e.g. [88, Theorem 3.9]. It states that if ψ is the Laplace exponent of a real

Lévy process with characteristic triplet pσ2, a,Λq (recall our convention that the killing rate

k “ Λpt´8uq is specified by the mass of the Lévy measure at ´8), and if ψpγq ď 0, then

the shifted function ψpγ ` ¨q can be expressed in the Lévy-Khintchine form (3.11) for the same

Gaussian coefficient σ2, the tilted drift coefficient a`σ2γ`şpeγy´1qy1|y|ď1Λpdyq, and the tilted

Lévy measure eγyΛpdyq ´ ψpγqδ´8.

Let us now proceed with the proof of the lemma. Since Λγ is a generalized Lévy measure

with killing rate ´κpγq ě 0, we have
ż

S

`

eqy ´ 1 ´ qy1|y|ď1

˘

Λγpdy,dyq

“
ż

S

`

eqy ´ 1 ´ qy1|y|ď1

˘

eγyΛpdy,dyq `
ż

S

´

8
ÿ

i“1

eγyi
`

eqyi ´ 1 ´ qyi1|yi|ď1

˘

¯

Λpdy,dyq ` κpγq.

Now, by the Esscher transformation, the first term in the sum on the right-hand side can be

expressed as
ż

S

`

eqy ´ 1 ´ qy1|y|ď1

˘

eγyΛpdy,dyq

“ ψpγ ` qq ´ ψpγq ´ 1

2
σ2q2 ´ q

ˆ

a ` σ2γ `
ż

S
peγy ´ 1qy1|y|ď1Λpdy,dyq

˙

.

Recall also from (6.11) that κpγq “ ψpγq ` Λ∽
γ pSq. Therefore, if we set

aγ :“ a ` σ2γ `
ż

S

´

ypeγy ´ 1q1|y|ď1 `
8
ÿ

i“1

yie
γyi1|yi|ď1

¯

Λpdy,dyq,

and use (3.19), then we arrive at the identity

κpγ ` qq “ 1

2
σ2q2 ` aγq `

ż

S

`

eqy ´ 1 ´ qy1|y|ď1

˘

Λγpdy,dyq,

and our claim is checked.

Lemma 6.4 allows to apply the construction devised in Section 3.2 by keeping the same

Gaussian coefficient σ2 and the same exponent of self-similarity α, but replacing the Poisson

random measure N on r0,8qˆS with intensity dtΛpdy,dyq there by a Poisson random measure

Nγ with intensity dtΛγpdy,dyq and the drift coefficient a by aγ given in (6.14). We write pP γx qxą0

for the self-similar kernel of decoration-reproduction laws induced there by the characteristic

quadruplet pσ2, aγ ,Λγ ;αq. In particular, the decoration process under this kernel is a self-

similar Markov process Xγ with exponent α that is associated by the Lamperti transformation

to a Lévy process ξγ with Laplace exponent ψγ . We also write ηγ for the reproduction process.

We stress that in the case where κpγq ă 0, the decoration is strictly positif immediately before

the deathtime, Xγpz´q ą 0, and the reproduction process ηγ has an atom at pz,Xγpz´qq (and

there are no further atoms at time z).
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Our goal now is to glue self-similar Markov trees, with characteristics pσ2, a,Λ;αq, onto the

decorated segment induced by pXγ , ηγq. To this end, we rely on the following technical result.

Proposition 6.5. Fix x ą 0. Under P γx , consider pt1, y1q, pt2, y2q, . . . the atoms of ηγ in co-

lexicographical order. Let pTj “ pTj , dTj , ρj , gjqqjě1 denote a sequence of independent ssMt with

characteristic quadruplet pσ2, a,Λ;αq and such that each Tj has the law Pyj . Then, almost surely,

the two families
`

HeightpTjq
˘

jě1
and

`

max
Tj

gj
˘

jě1

are null.

Before proving the proposition, let us discuss some of its implications. First, with the

notation above, it allows us to use Lemma 2.3 and consider the non-degenerated decorated tree

Gluing
´

`r0, zs, d, 0, Xγ

˘

, pyjqjě1,
`

Ti
˘

jě1

¯

,

where z stands for the lifetime of Xγ and d for the usual distance on segments. We then let pQγ
x

be the resulting law on the space T‚ of decorated real trees with a single marked point, where

the marked point is induced by the right-extremity z of the ancestral segment. Heuristically

speaking, under pQγ
x, the evolution along the spine is governed by the characteristic pσ2, aγ ,Λγ ;αq,

while the other branches are governed by pσ2, a,Λ;αq. We can now provide a formal statement

for the spinal decomposition. Recall the definition (6.9) of the law rQγ
x.

Theorem 6.6 (Spinal decomposition). Either let Assumption 3.9 hold and pick any γ ą 0 such

that κpγq ă 0, or let the stronger Assumption 3.12 hold and take γ “ ω´. For every x ą 0, the

probability measures pQγ
x and rQγ

x on T‚ are identical.

The proofs of Proposition 6.5 and Theorem 6.6 rely on two further technical lemmas that

connect the distribution of the decoration-reproduction process pXγ , ηγq under P γ1 to pX, ηq un-

der P1. These two lemmas will allow us to prove Proposition 6.5 and Theorem 6.6 simultaneously

by comparing these results with the characterization of P̄ γ1 given in Proposition 6.2. To start

with, (6.12) suggests to decompose Nγ under P γ1 as the sum of two independent Poisson point

processes, N1 and N2, with respective intensities

eγy ¨ dtΛpdy,dyq and dt
`

Λ∽
γ ´ κpγqδp´8,p0,´8,¨¨¨ qq

˘ pdy,dyq.
Since Λ∽

γ is a finite measure, the set of times at which N2 has an atom is discrete P γ1 -a.s., and

we write r2 for the first one,

r2 :“ sup
␣

r ě 0 : N2pr0, rs ˆ Sq “ 0
(

.

In particular, by (6.11), r2 is exponentially distributed with parameter Λ∽
γ pSq ´κpγq “ ´ψpγq.

We next write ϵγptq “ şt
0 exppαξγpsqqds for the exponential functional (3.12) of the Lévy

process ξγ that appears in the Lamperti transformation. So t2 :“ ϵγpr2q is the first time at which

the reproduction process ηγ has atoms originating from N2. Write furthermore pt2, x2
j qjě1 for

the sequence of atoms of ηγ at time t2, in non-increasing order of pxjqjě1.
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Figure 6.2: Illustration of Theorem 6.6.

Lemma 6.7. Under P γ1 , and in the notation above, the pair

´

Xγpt2q{Xγpt2´q, `x2
j{Xγpt2´q˘

jě1

¯

,

is independent of the restriction of the decoration-reproduction process to the time-interval

r0, t2q, `1r0,t2qXγ ,1r0,t2qˆp0,8q ¨ ηγ
˘

, and the distribution of the former is the push-forward of the

law on S
|ψpγq|´1

`

Λ∽
γ ´ κpγqδp´8,p0,´8,¨¨¨ q

˘

by the exponential map py, pyjqjě1q ÞÑ pey, peyj qjě1q. Moreover, for every functional F ě 0,

there is the identity

Eγ1

´

F
`

1r0,t2qXγ ,1r0,t2qˆp0,8q ¨ ηγ
˘

¯

“ |ψpγq|
ż 8

0
dt E1

´

Xptqγ´αF
`

1r0,tqX,1r0,tqˆp0,8q ¨ η˘
¯

.

Proof. Let pr2, py2,y2qq denote the first atom of N2. By basic properties of Poisson point

measures, py2,y2q is a variable in S distributed according to the normalized intensity

|ψpγq|´1
`

Λ∽
γ ´ κpγqδp´8,p0,´8,¨¨¨ q

˘

.

Moreover r2, py2,y2q, and N1 are independent.

Next, let ξ1 denote the process derived from ξγ by suppressing the jumps of the latter coming

from N2. Then ξ1 is a Lévy process whose Lévy-Itô decomposition (3.9) uses the same Brownian

component as ξγ , the Poisson random measure N1 instead of Nγ , and finally the drift coefficient

a1 :“ aγ ´
ż

S
y1|y|ď1Λ

∽
γ pdy,dyq “ a ` σ2γ `

ż

S
ypeγy ´ 1q1|y|ď1Λpdy,dyq.
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We stress that the latter quantity has been tuned up to take into account the compensation

in Poissonian integrals. By the Lévy-Khintchine formula, the Laplace exponent of ξ1 is q ÞÑ
ψpγ ` qq ´ ψpγq. Obviously, r2, py2,y2q and pξ1,N1q are independent.

Since ξγ and ξ1 coincide on the time-interval r0, r2q, we have

ϵγptq “ ϵ1ptq :“
ż t

0
exppαξ1psqqds for all t ď r2, (6.15)

and by the Lamperti transformation, py2,y2q and
`

1r0,t2qXγ ,1r0,t2qˆp0,8q ¨ ηγ
˘

are independent.

By construction, there are the identities

Xγpϵγpr2qq{Xγpϵγpr2q´q “ exppy2q and x2
j{Xγpϵγpr2q´q “ exppy2

j q,

and the first two claims of the statement follow.

We turn our attention to the third claim. We deduce by the discussion above that for every

functional F ě 0, there is the identity

Eγ1

´

F
`

1r0,t2qXγ ,1r0,t2qˆp0,8q ¨ ηγ
˘

¯

“ |ψpγq|
ż 8

0
dt Eγ1

´

eψpγqtF
`

1r0,ϵ1ptqqX 1,1r0,ϵ1ptqqˆp0,8q ¨ η1˘
¯

,

where pX 1, η1q denotes the decoration-reproduction process derived from pξ1,N1q by the Lamperti

transformation. On the other hand, again from a version of the Esscher transformation ([88,

Theorem 3.9]), we know that the process pexppγξptq ´ tψpγqqqtě0 is a martingale under P1, and

for every t ą 0, the distribution of the pair
`

1r0,tsξ,1r0,tsˆS ¨ N˘

under the tilted law exppγξptq ´
tψpγqq ¨ P1 is the same as that of the pair

`

1r0,tsξ1,1r0,tsˆS ¨ N1˘. A final application of the

Lamperti transformation yields

ż 8

0
dt Eγ1

´

eψpγqtF
`

1r0,ϵ1ptqqX 1,1r0,ϵ1ptqqˆp0,8q ¨ η1˘
¯

“
ż 8

0
dsE1

´

XpϵγpsqqγF `

1r0,ϵγpsqqX,1r0,ϵγpsqqˆp0,8q ¨ η˘
¯

,

and combining Tonelli’s theorem with a time change using (6.15) we get that the previous

displays equals
ż 8

0
dsE1

`

Xpsqγ´αF
`

1r0,sqX,1r0,sqˆp0,8q ¨ η˘˘ .
which completes the proof.

The second technical lemma shows that the distributions in Lemma 6.7 also naturally appear

under a tilted version of P1; we need to introduce some notation in this direction. Consider a

realization of the decoration-reproduction process pX, ηq under the law P1, and assume that

pt, xq is an atom of η, that is a child with type x is born at time t. Let xptq “ pxjqjě1 be the

sequence of the types of the children born at that time, repeated according to their multiplicities

and ranked in the non-increasing order. In particular, x is one of the terms of the sequence x,
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say x “ xi. We then write pXptq,xqx∽ for the pair whose first element is x and second element

is derived from the sequence px1, . . . , xi´1, Xptq, xi`1, . . .q (i.e. we replace a term x in x by Xptq)
after re-ordering in the non-increasing order.

Lemma 6.8. For every nonnegative functionals F,G, there is the identity

Eγ1
`

F
`

1r0,t2qXγ ,1r0,t2qˆp0,8q ¨ ηγ
˘

GpXγpt2q, px2
j qjě1q˘

“ E1

˜

ż

r0,zqˆp0,8q
ηpdt,dxqxγF `

1r0,tqX,1r0,tqˆp0,8q ¨ η˘G` pXptq,xptqqx∽ ˘

¸

´ κpγq ¨ E1

´

ż z

0
ds Xptqγ´αF

`

1r0,tqX,1r0,tqˆp0,8q ¨ η˘G`0, pXptq, 0, . . . q˘
¯

.

Proof. The notion of compensators of optional processes and random measures (see [82, Sections

I.3 and II.1]) lies at the heart of the proof. Roughly speaking it plays a role similar to that of

the Mecke equation in Proposition 6.2. To start with, recall from Lemma 6.7 that

Eγ1
`

F
`

1r0,t2qXγ ,1r0,t2qˆp0,8q ¨ ηγ
˘

GpXγpt2q, px2
j qjě1q˘

“ E1

ˆ
ż z

0
dtXptqγ´αF

`

1r0,tqX,1r0,tqˆp0,8q ¨ η˘
ż

S
Λ∽
γ pdy,dyqGpXptqey, pXptqeyj qjě1q

˙

´ κpγqE1

ˆ
ż 8

0
dtXptqγ´αF

`

1r0,tqX,1r0,tqˆp0,8q ¨ η˘Gp0, pXptq, 0, . . .qq
˙

.

Comparing this identity with that of the statement, it suffices to identify the first terms of the

differences in the respective right-hand sides.

We work under P1 and may assume without loss of generality that the functionals F and G

are bounded. In the natural filtration of pX, ηq, we consider the optional increasing process

Aptq :“
ż

r0,tsˆp0,8q
ηpds, dxqxγGppXpsq,xpsqqx∽q.

We claim that its compensator Appq is the predictable increasing process given by

Appqptq “
ż t

0
dsXpsqγ´α

ż

S
Λ∽
γ pdy,dyqGpXpsqey, pXpsqeyj qjě1q, (6.16)

in the sense that Aptq ´ Appqptq is a martingale. Since the process F
`

1r0,tqX,1r0,tqˆp0,8q ¨ η˘ is

predictable and bounded, it follows that

E1

´

ż

r0,zqˆp0,8q
F
`

1r0,tqX,1r0,tqˆp0,8q ¨ η˘ dAptq
¯

“ E1

´

ż

r0,zqˆp0,8q
F
`

1r0,tqX,1r0,tqˆp0,8q ¨ η˘ dAppqptq
¯

,

which proves of the statement.

We still have to check (6.16), for which we need to return to the construction of the re-

production process η in terms of the Poisson point measure N and Lamperti’s transformation
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in Section 3.2. The expression for the optional increasing process A leads us to introduce the

optional process (now in the natural filtration of pξ,Nq)

Dptq :“
ż

r0,tsˆS
Npds, dy,dyq

ÿ

iě1

exppγpξps´q ` yiqqHpξps´q, py,yq∽iq,

for the functional

Hpr, py,yqq :“ Gper`y, per`yiqiě1q.
Observe that if we write x “ er`y and x “ per`yiqiě1, then

Hpr, py,yq∽iq “ Gppx,xqxi∽q.

Finally, by Poissonian calculus, the compensator Dppq of D is

Dppqptq “
ż t

0
ds

ż

S
Λpdy,dyq

ÿ

iě1

exppγpξps´q ` yiqqHpξps´q, py,yq∽iq

“
ż t

0
ds exppγξps´qq

ż

S
Λ∽
γ pdy,dyqHpξps´q, py,yqq,

and (6.16) follows from an application of the Lamperti time-substitution.

We can now tackle the proofs of Proposition 6.5 and Theorem 6.6.

Proofs of Proposition 6.5 and Theorem 6.6. Depending on whether γ “ ω´ or κpγq ă 0, we

use the realization of rQγ
x in terms of a general branching process with a distinguished lineage,

provided in Proposition 6.3 and the discussion above it. We henceforth work under the associated

law P̄γx, and by scaling, we may assume without loss of generality that x “ 1. This enables us to

explore the segment rrρ, ρ‚ss by following the trajectory of distinguished individuals, switching

from parent to child at each distinguished birth event, in the sense that we then stop following

the distinguished parent and rather follow its distinguished child. This allows us to analyze the

decoration-reproduction process along the spine rrρ, ρ‚ss, say pf‚, η‚q, which is defined rigorously

in terms of the distinguished lineage as follows. In the case κpγq ă 0, we write n‚ :“ |u‚| for
the generation of the ultimate distinguished individual, so n‚ ` 1 has the geometric law with

success probability κpγq{ψpγq, as it can readily be checked from (6.4) and using the first lines

of the proof of Proposition 3.11. In the case γ “ ω´, we set n‚ “ 8. Next for every generation

0 ď n ă n‚, we write t‹pnq for the distinguished age at which the distinguished individual

u‹pnq begets its distinguished child, and further set t‹pn‚q “ t‚ in the notation of Lemma

6.1 when κpγq ă 0. In this framework, the segment rrρ, ρ‚ss is realized by concatenating one

after the other the segments corresponding to distinguished individuals and truncated at their

distinguished ages. We set s‹pnq :“ řn
k“0 t

‹pkq, in particular s‹p´1q :“ 0 and s‹pn‚q :“ z‚ is the

length of rrρ, ρ‚ss. The (rcll) decoration f‚ : r0, z‚q Ñ R` is simply obtained by concatenating

the truncated decorations of distinguished individuals,

f‚ptq :“ fu‹pnq
`

t´ s‹pn´ 1q˘ for any s‹pn´ 1q ď t ă s‹pnq.
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In turn, the reproduction process η‚ only partly results from the concatenation of the trun-

cated reproduction processes of distinguished individuals; a special attention must be given to

the birth-times of distinguished children. Discarding the latter at first, we define the point

process η˝ by

ż

r0,z‚qˆp0,8q
η˝pdt,dxqφpt, xq :“

n‚
ÿ

k“0

ż

r0,t‹pkqqˆp0,8q
ηu‹pkqpdt,dxqφpt` s‹pk ´ 1q, xq,

where φ : R` ˆp0,8q Ñ R` stands for a generic measurable function. Next, for any 0 ď k ă n‚,
the distinguished individual u‹pkq begets children at its distinguished age t‹pkq; for simplicity

just write pxjqjě1 for the sequence of the types of those children, repeated according to their

multiplicities and, say, listed in the non-increasing order. The type of the distinguished child is

an element of this sequence, and we then write px∽j qjě1 for the sequence obtained from pxjqjě1

after replacing the type of the distinguished child by fu‹pkqpt‹pkqq, the value of the decoration

immediately after this birth event. This transformation reflects the fact that at distinguished

birth events, we cease to follow the distinguished parent and rather switch to its distinguished

child. We then write

η‹∽
k :“

ÿ

jě1

δps‹pkq,x∽j q.

Finally, in the case κpγq ă 0, the ultimate distinguished individual u‚ at generation n‚ does

not beget any distinguished child, and we set

η‹∽
n‚ :“ δpz‚,fu‚ pt‚qq.

We now have all the ingredients to define the reproduction process on rrρ, ρ‚ss by

η‚ :“ η˝ `
n‚
ÿ

k“0

η‹∽
k .

We claim that

(i) The distribution of pf‚, η‚q is P γ1 .

(ii) If we write η‚ “ ř

iě1 δpti,xiq where indices are chosen in co-lexicographical order, then

conditionally on pf‚, η‚q, the associated standard decorated subtrees pTiqiě1 dangling from

rrρ, ρ‚ss in T‚ “ pT, ρ‚q are independent and, for every i ě 1, the law of Ti is Pxi .

Before proving the claim let us explain why Proposition 6.5 and Theorem 6.6 follows directly

from it. First, by Proposition 3.10 and Lemma 6.1, combined with the definition of P̄γ1 , we infer

that under P̄γ1 the family pfu, ηuquPU satisfies Property pPq. It follows that the families

`

HeightpTiq
˘

iě1
and

`

max
Ti

gi
˘

iě1

are both null. Therefore Point (i) implies Proposition 6.5. Moreover, by definition of the

dangling subtrees and Point (ii), we must have:

T “ Gluing
´

`r0, z‚s, d, 0, f‚˘, pxiqiě1,
`

Ti
˘

jě1

¯

,
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where as usual d stands for the usual distance on segments. This entails Theorem 6.6, since

by Point (i) the right-side hand of the previous display is distributed according to pQγ
x. Let us

now conclude by proving the claim. We focus on the case κpγq ă 0, as the case γ “ ω´ follows

from similar (actually, slightly simpler) arguments and we leave the extension the reader – it

can also be directly deduced from the case κpγq ă 0 by taking the limit γ Ó ω´ and using

Proposition 3.14. In order to verify (i), recall the setting of Lemma 6.7. Imagine that under

the law P γ1 , we tag the times at which the reproduction process ηγ has atoms originating from

the Poisson random measure N2. In particular the first tagged time is t2, and the ultimate

one is related via the Lamperti time-change to the first time when N2 has an atom on the

fiber r0,8q ˆ tp´8, p0,´8, . . .qqu. It follows that the total number of tagged times has the

geometric distribution with success parameter ´κpγq{ `Λ∽
γ pSq ´ κpγq˘ “ κpγq{ψpγq, that is the

same distribution as the number n‚ ` 1 of distinguished individuals under P̄γ1 . This is of course
not a mere coincidence, and we shall actually see that we can couple Pγ1 and P̄γ1 such that the

tagged times for ηγ correspond to the times t‹pkq for k “ 0, . . . , n‚ at which a new distinguished

individual is born under P̄γ1 .
Indeed, consider the restriction of the decoration-reproduction process under P̄γ1 to the closed

time interval r0, t‹p0qs,
`

1r0,t‹p0qsf‚,1r0,t‹p0qsˆS ¨ η‚˘ .

By the construction of pf‚, η‚q and the very definition of the general branching process with

law P̄γ1 , the former has the same law as

´

1r0,t‹qf ` 1tt‹ux‹,1r0,t‹qˆS ¨ η `
ÿ

jě1

δpt‹,x∽j q
¯

under P̄ γ1 , where the sequence px∽j qjě1 is reduced to the single term fpt‹q if x‹ “ 0, and

otherwise is obtained by replacing x‹ in the sequence of the types of the children born at time

t‹ by fpt‹q.
The comparison of Proposition 6.2 with Lemma 6.8 now confirms that the law under P̄γ1

of the restriction
`

1r0,t‹p0qsf‚,1r0,t‹p0qsˆS ¨ η‚˘ is indeed the same as that of the restriction
`

1r0,t2sf,1r0,t2sˆS ¨ η˘ under P γ1 . The verification of (i) can then be completed by an application

of the strong Markov property, conditionally on f‚pt‹p0qq under P̄γ1 , respectively conditionally

on fpt2q under P γ1 , iteratively as long as these quantities remain non-zero.

It remains to check Point (ii) about the dangling subtrees. Since the non-distinguished

individuals under P̄γ1 have the same evolution as under P1, we only need to consider the subtrees

induced by distinguished individuals strictly after their distinguished age t‹. Recall then from

Proposition 6.2(ii) that the decoration-reproduction shifted at time t and properly rescaled,

denote by B, has law P1. Since by definition, a distinguished parent does not have any further

distinguished children strictly after time t‹, we conclude, by an application of the branching

property and Lemma 5.7, that the subtree induced by the k-th distinguished individual strictly

after time t‹pkq (i.e. strictly after the distinguished individual has reached the age t‹pkq) and
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properly rescaled has indeed the law Q1, independently of all the others dangling subtrees. This

completes the verification of (ii).

6.3 Bifurcators

In this section, we use the spinal decomposition to determine all the characteristic quadruplets

satisfying Assumption 3.9 which yield the same law on (unmarked, non-measured) decorated

trees. To this end, we introduce the map

ord : S Ñ S1, ord
`

y0, pyiqiě1

˘ “ pyÓ
i qiě1,

where the right-hand side denotes the sequence obtained by ranking the collection of pyiqiě0 in

non-increasing order. Borrowing the terminology from [123, 131], we say that two characteristic

quadruplets pσ2, a,Λ;αq and pσ2�, a�,Λ�;α�q are bifurcators of one another and we write

pσ2, a,Λ;αq « pσ2�, a�,Λ�;α�q
if and only if

σ2 “ σ2� , Λ ˝ ord´1 “ Λ� ˝ ord´1 , α “ α�, (6.17)

and

a ´ a� “ lim
εÑ0`

´

ż

εă|y|ď1
Λpdy,dyq y ´

ż

εă|y|ď1
Λ�pdy,dyq y

¯

. (6.18)

Remark 6.9. If (6.17) holds for two characteristic quadruplets that both fulfill Assumption 3.9,

then we will see in the proof of Theorem 6.11 below that Λ´Λ� is always a finite signed measure

on S. As a consequence, the condition (6.18) can then be re-expressed in the simpler form

a� “ a `
ż

|y|ď1
y pΛ� ´ Λq pdy,dyq.

Plainly « is an equivalence relation; the notation is also meant to suggest that when

both quadruplet fulfill Assumption 3.9, the self-similar Markov trees, say T with characteris-

tic quadruplet pσ2, a,Λ;αq and T� with characteristic quadruplet pσ2�, a�,Λ�;α�q, should be

thought of as isomorphic; see Chapter 2. We immediately see from (3.19) that if pσ2, a,Λ;αq «
pσ2�, a�,Λ�;α�q, then the cumulant function κ� associated to pσ2�, a�,Λ�q is identical to κ.

Therefore, if κpγq ă 0 for some γ ą 0, then κ�pγq ă 0 as well, and Assumption 3.9 holds for

both characteristic quadruplets.

Example 6.10. An important example of bifurcator is obtained by taking Λ� “ Λ˚ to be the

push-forward of Λ by the transformation on S that swaps y and y1 if y1 ą y and leaves py,yq
unchanged otherwise, and then choosing a˚ so that (6.18) is verified. See the proof of Theorem

6.11 below for details. The bifurcator pσ2, a˚,Λ˚;αq is called the locally largest bifurcator

since, in the genealogical interpretation, all children have a type smaller than the value of the

decoration of their parent immediately after the birth event. This allows us to distinguish a

canonical element in every equivalence class of bifurcators.
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We stress that it is implicitly assumed in the definition of bifurcators that both Λ and

Λ� are generalized Lévy measures, and in particular that their images by the first projection

S Ñ R, py,yq ÞÑ y, are standard Lévy measures. For instance, if Λ∽ denotes the measure on

S obtained from Λ by swapping the first coordinate y and the first term y1 of the sequence y,

no matter whether y1 ą y or not, then plainly Λ ˝ ord´1 “ Λ∽ ˝ ord´1. However generically

Λ∽pp´8,´1s ˆ S1q “ 8 and therefore Λ∽ is not a generalized Lévy measure.

In the sequel, we fix pσ2, a,Λ;αq and pσ2�, a�Λ�;α�q two characteristic quadruplets and

use the obvious notation Px and P�
x for the laws of the decoration-reproduction process of an

individual with type x ą 0, Px and P�
x for the law of the family of decoration-reproduction

processes indexed by the Ulam tree, and finally Qx and Q�
x for the laws of the self-similar

Markov trees endowed with the zero measure – when Assumption 3.9 is verified.

Theorem 6.11 (Bifurcators). Assume that the two characteristic quadruplets, pσ2, a,Λ;αq and

pσ2�, a�,Λ�;α�q, satisfy Assumption 3.9. Then, Qx “ Q�
x, for all x ą 0, if and only if

pσ2, a,Λ;αq and pσ2�, a�,Λ�;α�q are bifurcators of one another.

Before establishing Theorem 6.11, we shall first illustrate the statement by establishing a

special case, which will turn out later to be a key step of the proof. In this direction, let Λ1

and Λ2 two measures on S such that Λ “ Λ1 ` Λ2, and satisfying Λ1pt´8u ˆ S1q “ 0 and

Λ2pSq ă 8. We then write Λ3 for the push-forward of Λ2 by the transformation on S

py,yq ÞÑ py,yq: :“ p´8, ordpy,yqq.

We set Λ: :“ Λ1 ` Λ3 and

a: :“ a ´
ż

S
y1|y|ď1Λ

2pdy,dyq.

Clearly, pσ2, a:,Λ:;αq is a characteristic quadruplet and we have pσ2, a:,Λ:;αq « pσ2, a,Λ;αq,
and the next statement is thus a version of Theorem 6.11 in this setting. With transparent nota-

tions, we write Q:
x for the laws of the self-similar Markov trees associated with the characteristic

quadruplet pσ2, a:,Λ:;αq, when the latter is well defined.

Lemma 6.12. If pσ2, a,Λ;αq satisfies Assumption 3.9, then so does pσ2, a:,Λ:;αq and the law of

the self-similar Markov tree with characteristic quadruplet pσ2, a:,Λ:;αq coincides with pQxqxą0.

Proof. The strategy of the proof is similar to that of Theorem 6.6. Let us proceed. First,

notice that by scaling it suffices to treat the case x “ 1, and remark that pσ2, a:,Λ:;αq directly

satisfies Assumption 3.9 since pσ2, a:,Λ:;αq « pσ2, a,Λ;αq. We shall use a coupling argument,

and for this recall the construction of self-similar Markov decoration-reproduction processes

in Section 3.2. Let B be a standard Brownian motion, and N1 and N2, two Poisson point

measures on r0,8q ˆ S with respective intensities dtΛ1pdy,dyq and dtΛ2pdy,dyq. We assume

that B, N1, and N2 are independent. Let N3 denote the image of N2 by the map pt, py,yqq ÞÑ
pt, py,yq:q. Then N “ N1 ` N2 is a Poisson point measure with intensity dtΛpdy,dyq, whereas
N: “ N1 ` N3 is a Poisson point measure with intensity dtΛ:pdy,dyq, and each of these
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point measures is independent of B. We then construct the Lévy processes ξ and ξ:, and

the decoration-reproduction processes pX, ηq and pX:, η:q with law P and P :, by using the

same Brownian motion B, the point measures N and N:, and the drift coefficients a and a:,
respectively.

Since 0 ă Λ2pSq ă 8, we may consider the first time τ1 at which N2 has an atom. The Lévy

processes ξ and ξ: coincide on the time interval r0, τ1q, and so do the point processes N and

N:. Performing the Lamperti transformation with the exponential functional ϵ in (3.12), the

restriction of the decoration processes X and X: to the time interval r0, ϵpτ1qq coincide. Since

Λ1pt´8u ˆ S1q, the measure N1 has no atoms on R` ˆ t´8u ˆ S1 and

τ1 “ inf
␣

t ě 0 : N:pr0, ts ˆ t´8u ˆ S1q ą 0
(

.

Hence ϵpτ1q “ z: is the lifetime of X:, and is smaller than the lifetime z of X. Moreover, from

the very definition of the transformation py,yq ÞÑ py,yq:, we can express the entire reproduction

process η: as

η: “ 1r0,ϵpτ1qsˆp0,8q ¨ η ` 1Xpϵpτ1qqą0 ¨ δpϵpτ1q,Xpϵpτ1qqq.

The interpretation in terms of the evolution of populations is that pX:, η:q results from pX, ηq
by killing at time z:, the reproduction event for η occurring at time z: being still taken into

account in η:, and adding an extra child with type Xpz:q at that time (which can be of type

0 if X is also killed at z:). Let us tag this extra child to distinguish it from the progeny of

the :-parent that stems from η. It should now be intuitively clear from the Markov property

for pX, ηq (see Lemma 5.7) that such a killing combined with the addition of an extra child at

the killing time having precisely the type given by the decoration of the parent when it is killed

is essentially a neutral operation for the population model (even though it clearly impacts the

genealogical structure). More precisely, when Xpz:q ą 0, we write τ2 for the second time at

which N2 has an atom. We can the use for the decoration-reproduction process of the tagged

child the restriction of pX, ηq to the time-interval pτ1, τ2s and shifted by ´τ1 backward in time.

The concatenation of the decoration-reproduction processes of the :-parent and its tagged child

is then given by the restriction of pX, ηq to the time-interval r0, τ2s. Concatenating iteratively

along the tagged lineage, we then recover the entire process pX, ηq, and hence in this respect,

the claimed identity Q1 “ Q:
1 thus should not come as a surprise – here we use the transparent

notation Q:
1 for the law of the self-similar Markov tree with initial decoration 1 associated with

pσ2, a:,Λ:;αq.
More formally, recalling the gluing construction of self-similar Markov trees, the analy-

sis above enables us to construct recursively two decorated trees T “ pT, dT , ρ, gq and T: “
pT :, dT : , ρ:, g:q, such that the distributions induced on T are respectively Q1 and Q:

1, and T
: is

a subtree of T , ρ: “ ρ, dT : corresponds to the restriction distance of dT to T :, and g:pυq ď gpυq,
for every υ P T :. To conclude the proof, we need to establish that T “ T : and g “ g:. To this

end, fix γ ą 0 such that κpγq ă 0. Recalling that the functions used in the gluing construction

of Section 2.2 are the usc-modification of rcll functions that can vanish only at the end of their
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lifetimes, we infer that to obtain the desired result, it suffices to show that:
ż

T
gpυqγ´α λT pdυq “

ż

T :

`

gpυq:˘γ´α
λT :pdυq.

We already know that the left-hand term is greater than or equal to the right-hand side.

Moreover, by Proposition 3.11 and since pσ2, a,Λ;αq and pσ2, a:,Λ:;αq have the same cumulant

function, both quantities have the same expectation and therefore they must be equal. This

completes the proof of the lemma.

We now prove Theorem 6.11.

Proof of Theorem 6.11. We first establish the sufficiency part. Consider a characteristic quadru-

plet pσ2, a,Λ;αq that fulfills Assumption 3.9 and fix any γ ą 0 such that κpγq ă 0. As we

suggested in Example 6.10, it is natural to consider the locally largest bifurcator. In order to

introduce the latter rigorously, we consider the partition S “ Să \Sě, where Să :“ tpy,yq P S :

y ă y1u and Sě :“ SzSă, and observe, from the fact that Λ0pdyq “ Λpdy,S1q is a Lévy measure

and the finiteness of κpγq, that

ΛpSăq ď
ż

S
Λpdy,dyq1yď´1 `

ż

S
Λpdy,dyq1y1ě´1

ď Λ0pr´8,´1sq ` eγ
ż

S
Λpdy,dyq

ÿ

iě1

eγyi ă 8.

Write Λ˚ for the push-forward of the generalized Lévy measure Λ by the transformation

py,yq ÞÑ ordpy,yq, so Λ˚ ´ Λ is a finite signed measure on S. We then set

a˚ :“ a `
ż

|y|ď1
y pΛ˚ ´ Λq pdy,dyq.

By construction, pσ2, a,Λ;αq and pσ2, a˚,Λ˚;αq are bifurcators one another. Now remark that

Λ˚ ´ 1Sě
Λ is a finite measure, and let us write Λ3̊ for the push-forward measure of Λ˚ ´ 1Sě

Λ

by py,yq ÞÑ py,yq:. We set Λ:̊ “ 1Sě
Λ ` Λ3̊ and

a:̊ :“ a˚ `
ż

|y|ď1
y
`

Λ:̊ ´ Λ˚
˘ pdy,dyq.

We define similarly Λ: and a: replacing Λ by Λ:, Λ˚ ´ 1Sě
Λ by 1Să

Λ “ Λ ´ 1Sě
Λ and a˚ by

a in the construction above. By definiton, we have the identity

pσ2, a:,Λ:;αq “ pσ2, a:̊ ,Λ:̊ ;αq,

and we deduce from Lemma 6.12 that

pQxqxą0 “ pQx̊qxą0,

where as usual Qx̊ stands for the law of the self-similar Markov tree with initial decoration x as-

sociated with pσ2, a˚,Λ˚;αq. Finally consider another characteristic quadruplet pσ2, a�,Λ�;αq «
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pσ2, a,Λ;αq. Then it is readily checked that the locally largest bifurcator for pσ2, a�,Λ�;αq is

again pσ2, a˚,Λ˚;αq, from which we conclude that pQxqxą0 “ pQ�
xqxą0.

We turn our attention to the necessary condition. Suppose that the laws Qx and Q�
x coincide

for all x ą 0. Comparing for instance the distribution of the height of T under Qx, Q�
x, Q1 and

Q�
1 , we immediately see that the exponents of self-similarity α and α� must be the same. We

can now focus on the case x “ 1 and then drop the index x from the notation, i.e. we write as

often Q “ Q1 and Q� “ Q�
1 .

Next, consider the random variable
ş

T gpvqγ´αλT pdvq, where we recall that λT stands for the

length (or Lebesgue) measure on T , and we write κ and κ� for the cumulant function associated

respectively with pσ2, a,Λ;αq and pσ2, a�,Λ�;αq. According to Proposition 3.11, the variable
ş

T gpvqγ´αλT pdvq has expectation ´1{κpγq ă 8 under Q and ´1{κ�pγq ă 8 under Q�. This

forces κ�pγq “ κpγq ă 0. So we can equip the decorated real tree T with the (finite) weighted

length measure ν “ λγ under Q as well as under Q�. The identity Q “ Q� then extends to the

framework of decorated real trees with a single marked point of Section 6.2. More precisely, we

define the law rQγ (respectively, rQγ
�) on T‚ as in (6.9), that is by first biasing Q (respectively,

Q�) with the variable κpγqνpT q and then picking a point ρ‚ in T at random according to the

normalized probability measure νpdvq{νpT q. Obviously, we have again rQγ “ rQγ
�.

Recall from the preceding section that in this setting, f‚ denotes the decoration on the

marked segment rrρ, ρ‚ss and η‚ the point process on rrρ, ρ‚ss ˆ p0,8q that records the germs

of the decorations of the subtrees dandling from rrρ, ρ‚ss, see the proof of Theorem 6.6 for a

formal definition. We know from the spinal decomposition, i.e. Theorem 6.6, that the law of

pf‚, η‚q under rQγ is P γ , that is that of the self-similar Markov decoration-reproduction process

with tilted characteristic quadruplet pσ2, aγ ,Λγ ;αq, where the drift aγ is given by (6.14) and

the generalized Lévy measure Λγ by (6.12). Using an obvious notation under rQγ
�, we arrive at

the identity P γ “ P γ� where the right-hand side is the law of the self-similar Markov decoration-

reproduction process with tilted characteristic quadruplet pσ2�, a�
γ ,Λ

�
γ ;αq.

Just in the same way as the distribution of a Lévy process determines its characteristic triplet,

one readily sees by undoing the Lamperti transformation that the law of a self-similar Markov

decoration-reproduction process with a given exponent of self-similarity α entirely determines

its characteristic quadruplet. We infer from above that there is the identity

pσ2, aγ ,Λγq “ pσ2�, a�
γ ,Λ

�
γ q.

To conclude the proof of the necessary part, it now suffices to observe from (6.12) that the

push-forward of the generalized Lévy measure Λ by the function ord : S Ñ S that ranks all the

terms of py,yq in the non-increasing order can be expressed in terms of Λγ and κpγq via the

identity

˜

eγy `
ÿ

iě1

eγyi

¸

¨ `Λ ˝ ord´1
˘ pdy,dyq “ ``

Λγ ` κpγqδt´8uˆt0,´8,¨¨¨ u
˘ ˝ ord´1

˘ pdy,dyq.
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Recalling that κpγq “ κ�pγq, we now see that Λ ˝ ord´1 “ Λ� ˝ ord´1. Finally, we check (6.18)

using again κpγq “ κ�pγq, (3.19), and the Lévy-Khintchine formula (3.11).

We saw in the above proof that the tilted characteristics pσ2, aγ ,Λγ ;αq can be recovered

from the laws pQxqxą0. Those tilted characteristics are in fact more intrinsic that the initial

ones since they generically uniquely characterize the law of the ssMt. We say that a generalized

Lévy measure Λ is asymmetric if there exists a point ty0, py1, y2, ...qu P S in the support of Λ so

that y0 ą y1 ą ´8. Then we have

Corollary 6.13. Suppose that Λ is asymmetric. The law pQxqxą0 is uniquely characterized by

the data pσ2, aγ ,Λγ ;αq.
Remark that in the binary conservative case, the tilted characteristics are completely de-

scribed by the sole Lévy–Khintchine exponent ψγ of the pssMp decoration Xγ along the tagged

branch since the decoration-reproduction process ηγ is given in terms of Xγ by (4.14). See the

end of the next section for applications.

Proof. We saw in the previous proof that pQxqxą0 is characterized by the data of pκpγq, γq
together with the tilted characteristic quadruplet pσ2, aγ ,Λγ ;αq. Using (6.13), we deduce that

the function κ can itself be recovered from pσ2, aγ ,Λγ ;αq together with the parameter γ. To

complete the proof it suffices to show that γ ą 0 can be recovered from the generalized Lévy

measure Λγ only. To prove this, let us denote by Λ˚ the generalized Lévy measure of the locally

largest bifurcator so that we have

Λγpdy,dyq “ eγyΛ˚pdy,dyq ` eγy ¨
˜

ÿ

iě1

Λ∽i˚ pdy,dyq
¸

.

Since Λ˚ is asymmetric (this is equivalent to asking that a bifurcator Λ or even Λγ is asym-

metric), then there exists a point py0, y1, y2, ...q P S1 with y0 ą y1 “ y2 “ ¨ ¨ ¨ “ yk ą yk`1 ě
.... ě ´8 in the support of Λ˚. Let us now consider the measure Λγ restricted to the vicinity

of the points py0, py1, y2, ...qq and py1, py0, y2, ...qq in S. Denote them respectively by Λ0
γ and Λ1

γ .

Using the previous display, we deduce that Λ1
γ ˝ Ord´1 and Λ0

γ are absolutely continuous with

respect to each-other in the vicitinity of py0, py1, y2, ...qq with Radon–Nikodym derivative equal

to

d
`

Λ1
γ ˝ Ord´1

˘

dΛ0
γ

py0, py1, y2, ...qq “ c ¨ eγy1
eγy0

,

where c ą 0 is an explicit constant. Since y1 ‰ y0 are known, this formula thus enables us to

recover γ from the knowledge of Λγ .

In the symmetric case, the previous corollary may not hold. Consider for example the two

finite generalized Lévy measures

Λ “ δp´ log 3,p´ log 3,´ log 3,´8,...qq ` 3 ¨ δplog 3,p´8,´8,...qq ` 7 ¨ δp´8,p´8,´8,...qq,

Λ̃ “ 3 ¨ δp´ log 3,p´ log 3,´ log 3,´8,...qq ` δplog 3,p´8,´8,...qq ` 7 ¨ δp´8,p´8,´8,...qq.
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Then a straightforward calculation shows that the pγ “ 1q-tilted characteristics of p0, 0,Λ;αq
coincide with those of the pγ̃ “ 2q-tilted characteristics of p0, 0, Λ̃;αq.

6.4 Hausdorff dimensions

In this section, we use the spinal decomposition of Theorem 6.6 to determine the Hausdorff

dimension of some random sets that appear naturally for self-similar Markov trees satisfying the

first Cramer’s condition, completing Lemma 3.6 in this context.

Proposition 6.14. Fix pσ2, a,Λ;αq satisfying Assumption 3.12 for some ω´ ą 0. Then P1-a.s.,

the Hausdorff dimensions of B0T , T and Hyppgq are ω´{α, 1_pω´{αq and 2_pω´{αq respectively.

Proof. Thanks to Lemma 3.6, we only need to establish that dimHpB0T q ě ω´{α, P1-a.s. In this

direction, we claim that it suffices to establish that

lim sup
rÑ0

µ
`

Brpρ‚q˘

r
ω´
α

´δ “ 0, pQω´

1 -a.s., (6.19)

where we write ρ‚ for the point corresponding in T to the extremity z∅ of the ancestral indi-

vidual pf∅, η∅q, and Brpρ‚q for the closed ball of radius r centered at ρ‚. Indeed, recall from

Proposition 2.11 that the harmonic measure is supported on B0T , P1- a.s. Since by (6.9) and

Theorem 6.6, under pQω´

1 , the marked point ρ‚ is distributed according to µpdvq{µpT q, it follows
from standard density theorems for Hausdorff measures that dimHpB0T q ě ω´{α, P1-a.s.

To prove the claim (6.19) recall that, under pQω´

1 , the decoration-reproduction process pf∅, η∅q
of the spine is distributed according to the biased decoration-reproduction kernels pPω´

x qxą0.

Recall also from Section 5.3 the notation B̌‚
apT q for the closure of the complement of the hull of

radius a when dT pρ, ρ‚q ą a. By definition, B̌‚
apT q contains the open ball Brpρ‚q for the radius

r “ dT pρ, ρ‚q ´ a. Finally, fix δ ą 0 and for every ε ą 0, set ϑε :“ inftt ě 0 : f∅ptq ă εu. We

shall show that for every δ1, δ2 ą 0 such that

ω´ ´ δ1 ą pα ` δ2qpω´{α ´ δq, (6.20)

we have pQω´

1 -a.s. that for every k P N large enough,

µ
`

B̌‚
ϑ
2´k

pT q˘ ď 2´kpω´´δ1q and 2´kpα`δ2q ď dT pρ, ρ‚q ´ ϑ2´k . (6.21)

The desired result (6.19) then follows, since we deduce from the inclusions

B2´kpα`δ2qpρ‚q Ă BdT pρ,ρ‚q´ϑ
2´k

pρ‚q Ă B̌‚
ϑ
2´k

pT q

that

µ
`

B2´kpα`δ2qpρ‚q˘ ď 2´kpω´´δ1q, for k sufficiently large,

and we conclude from (6.20).
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Let us proceed with the proof of (6.21). First remark that by the Markov property of pf∅, η∅q
of Lemma 5.7 and the branching property, conditionally on f∅pϑεq, the variable µpB̌‚

ϑ
2´k

pT q˘ is

distributed as µpT q under pQω´

f∅pϑεq. Therefore, by the scaling property combined with the fact

that f∅pϑεq ď ε, we get

pQω´

1

´

µ
`

B̌‚
ϑ
2´k

pT q˘ ě εω´´δ1
¯

ď pQω´

1

´

µpT q ě ε´δ1
¯

.

Since E1pµpT qpq ă 8 for some p ą 1 appearing in Assumption 3.12, the variable µpT qp´1 has

a finite mean under pQω´

1 . By the Markov inequality, the right-hand side of the last display is

Opεδ1pp´1qq. The first inequality in (6.21) follows by taking ε “ 2´k and applying the Borel–

Cantelli lemma. On the other hand, recall that under pQω´

1 , the decoration process f∅ “ Xω´

along the spine is obtained by performing the Lamperti transformation to a Lévy process ξω´
,

and from Lemma 6.4 that the latter has Laplace exponent q ÞÑ κpω´ ` qq. From basic results

on Lévy processes, we have ξω´
ptq „ t ¨ pEω´

1 pξω´
p1qq almost surely as t Ñ 8, we infer from the

Lamperti transformation that a.s. we eventually have

2´kpα`δ2q ď dT pρ, ρ‚q ´ ϑ2´k .

This completes the verification of (6.21) and hence the proof.

6.5 Back to Examples

We now revisit the Examples of Chapter 4 and explicit their spinal decomposition. We also

recall some background about stable Lévy processes conditioned to die continuously at zero,

since they appear in the ω´-spinal decomposition of many natural examples. Interestingly, we

will see that the only spectrally negative β-stable Lévy processes conditioned to die continuously

at zero that may appear in binary conservative ssMt are present in Examples 4.6 and 4.10, and

satisfy

β P p0, 1{2s Y p1, 3{2s.
Recall from (6.12) and (6.14) the definition of the tilted characteristics pσ, aγ ,Λγ ;αq in the

spinal decomposition (Theorem 6.6) for κpγq ă 0 or γ “ ω´ together with Assumption 3.12.

Recall also from (6.13) that the Lévy–Khintchine exponent ψγ of the Lévy process underlying

the pssMp Xγ of the decoration along the distinguished tagged branch under rQγ is given by

ψγpqq “ κpγ ` qq.

Similarly to what we did in the opening of Chapter 4, in the case when the image Λγ,0 of Λγ

by the application py,yq ÞÑ y integrates 1 ^ |y| we define the canonical drift coefficient

acanγ :“ aγ ´
ż

Λγ,0pdyq y1|y|ď1.
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It is easy to see that when κpγq ď 0 then Λγ,0 integrates 1 ^ |y| if and only if Λ0 does and in

this case we have

acanγ “ acan ` σ2γ. (6.22)

It is rather straightforward to compute the tilted characteristics pσ2, aγ ,Λγ ;αq in the finite

branching activity case, see Examples 4.1, 4.2 and 4.3. We shall do so only in the case γ “ ω´
to lighten the prose and because there is no killing involved in this case.

• In Example 4.1 we have ω´ “ 1 and Assumption 3.12 holds. After performing the spinal

decomposition with γ “ ω´ we still have acanγ “ 0, σ2 “ 0 and the tilted generalized Lévy

measure is merely equal to the initial one, more precisely Λhalf,ω´
“ Λhalf ˝ Ord´1. The

tagged branch thus evolves as a standard branch in this model.

• In Example 4.2 we have ω´ “ 1 and Assumption 3.12 holds. After performing the spinal

decomposition with γ “ ω´ we still have acanγ “ ´1, σ2 “ 0 and the tilted generalized

Lévy measure is twice the original one, more precisely Λtwo,ω´
“ 2ˆΛtwo ˝Ord´1. Along

the tagged branch, the intensity of splittings is twice that of a standard branch. Undoing

the Lamperti transformation we recover the famous spine decomposition of Yule trees, see

e.g. [53, Proposition 5].

• In Example 4.3 we have ω´ “ ´acan ´ ?
acan2 ´ 2 and Assumption 3.12 holds as long

as acan ă ´?
2. After performing the spinal decomposition with γ “ ω´ we still have

σ2 “ 1, the tilted generalized Lévy measure is again Λtwo,ω´
“ 2 ˆ Λtwo ˝ Ord´1 and

the canonical drift gets changed to acanγ “ ´?
acan2 ´ 2 using (6.22). In particular, the

intensity of splittings along the tagged branch is multiplied by two as in the previous case,

and the decoration Xω´
evolves as a Bessel process with dimension 2acanγ ` 2.

Let us now move to examples with an infinite branching activity, starting with Example 4.5.

We have ω´ “ 2 and Assumption 3.12 holds. After performing the spinal decomposition with

γ “ ω´, we still have acanγ “ ´1, σ2 “ 0 and the tilted generalized Lévy measure is the sum of

the original one Λ and a finite measure Λ1 given by

ż

S
F
`

ey0 , pey1 , ey2 , ...q˘Λ1pdyq “ 2

ż 1

0
du F pu, p1, 0, 0, ...qq.

In probabilistic terms, this means that the decoration Xω´
along the tagged branch is a pssMp

which evolves as follows: starting from a value x, it decreases until x ¨ p1 ´ ?
Uq as a standard

branch, and then jumps to x ¨ p1 ´ ?
Uq ¨ V where U, V are independent and uniform on r0, 1s.

Afterwards, the evolution iterates the same dynamic.

The next, and perhaps one of the most important, example is given by the Brownian CRT

with mass 1, see Example 4.6. It is an example of conservative fragmentation so we have ω´ “ 1
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and Assumption 3.12 holds. The spinal decomposition with γ “ ω´ has characteristics σ2 “ 0,

canonical drift acan “ 0 and the tilted generalized Lévy measure is

ż

S
F
`

ey0 , pey1 , . . .q˘ ΛBro,ω´
pdy0, dyq “

c

2

π

ż 1

0
F px, 1 ´ x, 0, 0, ...q ¨ x ¨ dx

pxp1 ´ xqq3{2 .

In particular, the Lévy–Khintchine exponent of the underlying Lévy process of the pssMp

decoration Xω´
along the tagged branch is

ψω´
pzq “ κBropz ` ω´q “ ´2

?
2 ¨ Γpz ` 1

2q
Γpzq .

We deduce from [135, Proposition 1] (see [89, Chapter 5] for more general results that we shall

use below) that the decoration along the tagged branch Xω´
has the law of the opposite of a

stable subordinator of index 1{2 starting from 1, conditioned to visit 0, and finally killed when

hitting 0. See below for details. Notice that thanks to the conservative and binary properties, the

decoration-reproduction ηω´
is recovered from Xω´

using (4.14). Interestingly, the reproduction

process bears a close relation to the Poisson–Dirichlet distribution with parameters p1{2, 1{2q;
see [135, Theorem 1]. A similar phenomenon occurs in the spinal decomposition of the stable

trees of Example 4.7. Again, since the fragmentation is conservative we have ω´ “ 1 and

Assumption 3.12 holds. As above, the decoration along the tagged branch has the same law

as the opposite of a stable subordinator of index 1 ´ 1{β starting from 1, conditioned to visit

0, and finally killed when hitting 0; see [135, Proposition 1] and also [113, Proposition 1]. See

also below for details. Since this case is not binary, the decoration-reproduction process is more

involved, as above it bears close relation with the Poisson–Dirichlet distribution with parameter

p1 ´ 1
β , 1 ´ 1

β q, see [113, 135] for details.

Finally, let us consider the family of Examples 4.10. Recall that for a P p0, 1s and b P p0, 1{2s
the characteristics pσ2 “ 0, aa,b,Λa,b;αq yield a ssMt for which ω´ “ a ` 2b and ω` “ a ` 2b`1

and for which Assumption 3.12 always holds. We introduce the notation

β “ a ` b, and ϱ “ a

a ` b
.

Then using (4.16) and Lemma 6.4 we see that the Lévy–Khintchine exponent of the pssMp

decoration along the ω´-tagged branch is given by

ψω´
pzq “ ´Γp1 ` a ´ zqΓpb ` zqsinpπzq

π
.

Using [89, Theorem 5.15] we deduce that in the ω´- spine decomposition of those ssMt, the

decoration Xω´
along the tagged branch evolves as a stable Lévy process with parameters pβ, ϱq

conditioned to die continuously at 0. Since the generalized Lévy measure is conservative (4.9)

and binary (4.12), the decoration-reproduction process is recovered from Xω´
using (4.14). In

the case of the overlay Example 4.11, the decoration Xω´
in the ω´-spinal decomposition is a

so-called ricocheted stable process, introduced by Budd [41] and recently studied in [90, 136].
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The critical case Example 4.12 is left aside since Assumption 3.12 does not hold, see Section 3.4

for a discussion.

We saw in Examples 4.6, 4.7 and 4.10 the appearance of conditioned stable processes as

the pssMp decoration along the tagged branch of a ssMt. We will actually show that not all

such processes can appear in spine decomposition of binary conservative ssMt. Let us first give

some background on stable Lévy processes, their conditioned versions and their relations with

hypergeometric Lévy processes to unify the results. Recall that a Lévy process pξtqtě0 is stable

with index α P p0, 2s if it satisfies the scaling relation c´1 ¨ pξpcαtqqtě0 “ pξptqqtě0 in law. Up

to dilation, they can be classified by their index index of similarly α P p0, 2s together with the

positivity parameter ϱ ě 0 given by ϱ “ Ppξptq ě 0q. Specifically, if

pα, ϱq P ␣

α P p0, 1q, ϱ P r0, 1s( Y ␣

α “ 1, ϱ “ 1{2( Y ␣

α P p1, 2q, ϱ P r1 ´ 1

α
,
1

α
s(,

their Lévy measure is given by

Πpdxq “ dx

|x|α`1

ˆ

Γp1 ` αqsinpπαϱq
π

1xą0 ` Γp1 ` αqsinpπαp1 ´ ϱqq
π

1xă0

˙

.

The case α “ 2 is the case of Brownian motion (no jumps). We refer to [15, Chapter VIII]

or [89, Chapter 4] for details. A stable Lévy process naturally gives rise to a pssMp without

performing the Lamperti transformation: if ξ is an α-stable Lévy process starting from 1, then

the censored process ξ: defined by

ξ:ptq :“ ξptq1tďTR´
, with TR´

:“ inf tt ě 0 : ξptq ă 0u ,

is a pssMp. There are other ways to build pssMp from ξ using h-transformations, see [43].

More precisely, recall that h : R` Ñ R` is a positive harmonic function for ξ: if for each x ą 0

we have

hpxq “ Ex
´

hpξ:ptqq1tăTR´

¯

.

Given such a harmonic function, it is possible to define a new process ξh by the formula

Pxpξh P Aq “ 1

hpxqPx
´

ξ: P A ¨ hpξ:ptqq1tăTR´

¯

,

where A is measurable with respect to Ft (a priori it is unclear whether the obtained process

is conservative or not, but it will be the case in what follows). It turns out that for stable Lévy

processes, any positive harmonic function for ξ: is a linear combination of the two functions

hÒpxq “ xαp1´ϱq, and hÓpxq “ xαp1´ϱq´1,

see [133]. The two processes ξÒ and ξÓ obtained this way are respectively called the pα, ϱq-
stable Lévy processes conditioned to survive, resp. to die continuously at 0, since they can be

alternatively obtained by a limiting conditioning procedure associated to their names. See [89,
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Chapter 5] or [45] for details. Then the three processes ξ:, ξÓ, ξÒ are positive self-similar Markov

processes, for which it is possible to compute the characteristics of the underlying Lévy process in

the Lamperti transformation [43] (beware, those are not stable processes anymore). To present

them in a unified way, it is convenient to introduce the formalism of hypergeometric pssMp and

Lévy processes. Recall that a pssMp is called hypergeometric if the underlying Lévy-Khintchine

exponent is of the form

ψpzq “ ´Γp1 ´ ς ` υ ´ zq
Γp1 ´ ζ ´ zq ¨ Γpς̂ ` υ̂ ` zq

Γpς̂ ` zq , (6.23)

where pς, υ, ς̂, υ̂q belongs to the admissible set of parameters tς ď 1, υ P r0, 1q, ς̂ ě 0, υ̂ P
p0, 1qu.2 We refer and use the same notation as in [87] where we replaced β by ς and γ by υ to

avoid conflict in the notation. In particular, it is proved there that the pssMp ξ:, ξÓ and ξÒ are

hypergeometric with parameters

ς υ ς̂ υ̂

ξ: 1 ´ αp1 ´ ϱq αϱ 1 ´ αp1 ´ ϱq αp1 ´ ϱq
ξÒ 1 αϱ 1 αp1 ´ ϱq
ξÓ 0 αϱ 0 αp1 ´ ϱq

Let us now examine which of the pssMp ξÓ, ξ: can arise as the decoration along a tagged

branch in a conservative and binary ssMt. We shall actually consider the case where the gener-

alized Lévy measure Λ is binary, and almost conservative meaning that the only possible loss of

mass during splitting event is due to a killing:

Λ
´!

py0, py1, ...qq :
8
ÿ

j“0

eyj ‰ 1
)¯

“ Λ
` tp´8, p´8,´8...qu ˘, (6.24)

note that in this case the decoration-reproduction process η is still recovered from the pssMp

evolution as in (4.14) except that the final jump does not yield to an atom in the decoration-

reproduction. Since we are in the spectrally negative case, we shall treat separately the subor-

dinator case α P p0, 1q and the case α P p1, 2q. In the case α P p0, 1q, consider the opposite of

a α-stable subordinator started from 1 either killed ξ: when reaching R´ or conditioned ξÓ to

die continuously at 0. Then we have ϱ “ 0. The Lévy-Khintchine exponent in the Lamperti

representation is explicit and given by

ψ:
αpzq “ ´ Γp1 ` zq

Γp1 ´ α ` zq , and ψÓ
αpzq “ ´Γpα ` zq

Γpzq . (6.25)

By [89, Theorem 4.6 (ii)], their Lévy measures are, after a push-forward by x ÞÑ ex, respec-

tively given by

π:
αpdxq “ ´1

Γp´αq ¨ dx

p1 ´ xq1`α1xPr0,1s, and πÓ
αpdxq “ ´1

Γp´αq ¨ dx

x1´αp1 ´ xq1`α1xPr0,1s.

2To be precise, the borderline case υ “ 0 is often excluded in the definition. Nonetheless, it can be added to

the family of hypergeometric processes thanks to Proposition 4.1 and Theorem 4.4 in [89].
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Moreover, we infer from (6.25) that their killing rate are 1
Γp1´αq and 0 respectively. In order

to obtain ξ: and ξÓ as tilted versions of a characteristic quadruplet pa˚, σ2˚,Λ˚;α˚q, we must

have acan˚ “ σ˚ “ 0 and α˚ “ α ; where we use the transparent notation acan˚ for the associated

canonical drift. Furthermore, without loss of generality we may assume that Λ˚ is a locally

largest generalized Lévy measure, and by (6.26) and the almost conservative assumption it must

be of the form:
ż

S
F pey0 ,pey1 , ey2 , ...qΛ˚pdy0,dyq

:“
ż 1

1{2
´1

Γp´αq ¨ dx

pxp1 ´ xqq1`αF
`

x, p1 ´ x, 0, 0, ...q˘ ` k˚ ¨ F `0, p0, . . . q˘, (6.26)

for some constant k˚ ě 0 corresponding to the killing rate. Recalling (6.11), we see that we

must tilt the latter by γ “ α ` 1 in the case of ξ: and γ “ 2α in the case of ξÓ. Finally using

the (6.13) combined with the almost conservative assumption, we infer that we have to take

k˚ “ ´ψ:
αp´αq for ξ: and k˚ “ ´ψÓ

αp1 ´ 2αq for ξÓ. Performing the calculation, it turns out

that

ψ:
αp´αq “ ψÓ

αp1 ´ 2αq “ ´Γp´αq
2Γp´2αq “ ´4α

?
π

Γp1{2 ´ αq ,

and the above display is non-positive if and only if α P p0, 1{2s. So, to summarize, the processes

ξ: and ξÓ can be obtained as the decoration processes along the tagged branch in a ssMt only

when α P p0, 1{2s, and in this case we can even use the same ssMt. Also, note that the associated

generalized Lévy measure has killing in all cases except for α “ 1{2.
The case when α P p1, 2q is very similar except that some care is needed to deal correctly

with compensation. The spectrally negative case correspond to ϱ “ 1
α . The Lévy–Khintchine

exponents are now given by

ψ:
αpzq “ 1

π
pΓpα ´ zqΓp1 ` zq sinpπpα ´ zqqq and ψÓ

αpzq “ 1

π
p´Γp2 ´ zqΓpα ´ 1 ` zq sinpπzqq ,

and the underlying Lévy measures are, after a push-forward by x ÞÑ ex, similarly given by

π:
αpdxq “ ´Γpα ` 1q sinpαπq

π

dx

p1 ´ xq1`α and πÓ
αpdxq “ ´Γpα ` 1q sinpαπq

π

dx

x2´αp1 ´ xq1`α .

As above, those measures are necessarily obtained by starting from a locally largest of the form

ż

S
F pey0 ,pey1 , ey2 , ...qΛ˚pdy0,dyq

:“
ż 1

1{2
´Γpα ` 1q sinpαπq

π

dx

pxp1 ´ xqq1`αF px, p1 ´ x, 0, 0, ...qq ` k˚ ¨ F `0, p0, . . . q˘,

after tilting by γ “ α` 1 in the case of ξ: and by γ “ 2α´ 1 in the case of ξÓ. The drift is then

adjusted in the characteristics of the ssMt to match the one obtained in ψ:
α or ψÓ

α. As above,

the only condition to check is that the killing rate is non-negative. Using a formal calculation

software, it is possible to obtain a closed formula for the cumulant function in terms of the
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killing rate, and we get the condition k˚ “ ´4α
?
π

Γp1{2´αq , in both regimes. The latter is non-negative

if and only if α P p1, 3{2s. Notice in particular, the perhaps striking fact that the only stable

processes conditioned to die continuously at 0 that can appear as the decoration Xγ in a binary

conservative ssMt without killing are the 1{2 and 3{2-stable spectrally negative cases.

Comments and bibliographical notes

The notion of spinal decomposition is one of the most useful and powerful tools in the study of

branching structures. It can be traced back at least to Kahane & Peyrière [85], while the first

geometric formulation on trees is due to Chauvin & Rouault [46]. It has been famously popular-

ized in the 90’s by Lyons, Pemantle and Peres [111, 110] and has found numerous applications,

notably in branching random walk theory, see [132]. In a context close to ours, these tools have

been applied also for growth-fragmentation in [22] and branching Lévy processes [25].

The notion of bifurcators has already been introduced by Pitman & Winkel in the setting of

fragmentations trees by [123] and by Shi [131] for growth-fragmentations processes. Section 6.3

build upon these works. See [22, Section 5] for a similar use of the tilted characteristics in the

growth-fragmentation case.

The profile of a random measured (decorated) tree T “ pT, dT , ρ, g, νq is the push forward

of ν by the distance to the origin x P T ÞÑ dT pρ, xq. After size-biaising by the total mass, it is

related to the law of dT pρ, ρ‚q defined in (6.9). The profile has been studied in details in the

fragmentation [76] and the growth-fragmentation [72] cases. In particular, it is proved there that

in the case of the harmonic measure, the profile has a continuous density if and only if the self-

similarity exponent α is strictly larger than ω´. In the case of the Brownian CRT of Example 4.6,

the profile is famously linked to Ray-Knight theorems and a similar phenomenon, though more

complicated, has been established in the case of the Brownian growth-fragmentation tree of

Example 4.9, see [100, 107, 44]. We wonder whether a similar Markov property of local times

holds in a greater generality.
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Chapter 7

Appendix

This appendix contains certain results which may be of broader interest.

Lemma 7.1. Let ξ be a Lévy process (possibly with killing) and denote its law by P . We write

ψ for its Laplace exponent as defined in Section 3.2; see (3.10). We further assume that there

exists γ ą 0 such that ψpγq ă 0. Then, we have

E
´

sup
tě0

exp
`

γξptq˘
¯

ă 8 and E
´

`

ż ζ

0
exppαξptqqdt˘γ{α¯ ă 8, (7.1)

for every α ą 0, where ζ stands for the lifetime of ξ.

Proof. We work under the assumption of the lemma for some γ ą 0 and we set I “ ş8
0 exppγξptqqdt,

with the usual convention ξptq “ ´8, for every t ě ζ. Then remark that by Fubini:

E
´

ż 8

0
exppγξptqqdt

¯

“
ż 8

0
E
`

exppγξptqq˘dt “
ż 8

0
expptψpγqqdt “ ´ 1

ψpγq ă 8.

The idea now is to use the variable I to control the expectations appearing in (7.1). In this

direction, we fix b ą 0 such that P1pI ě bq ą 0, and, for every r ą 0, we introduce the stopping

time Tr :“ infts ě 0 : ξpsq ě logprq{γu. An application of the Markov property then yields

P
`

I ě b ¨ r˘ ě P
´

␣

Tr ă 8( X
!

ż 8

Tr

exp
`

γpξptq ´ ξpTrqq˘dt ě b ¨ r exp ` ´ γξpTrq
˘

)¯

ě P
`

Tr ă 8˘ ¨ P `I ě b
˘

,

where in the second line we used that ξpTrq ě logprq{γ on the event tTr ă 8u. Henceforth, we
have

P
´

sup
tě0

exppγξptqq ě r
¯

ď P
`

I ě br
˘

P pI ě bq , for r ą 0.

Now, an application of Fubini gives:

E
´

sup
tě0

exp
`

γξptq˘
¯

“
ż 8

0
P
`

sup
tě0

exppγξq ě r
˘

dr ď
ż 8

0

P
`

I ě br
˘

P pI ě bq dr “ E1pIq
b ¨ P1pI ě bq ă 8.

(7.2)
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Let us focus on the variable
ş8
0 exppαξptqqdt, which belongs to the family of exponential func-

tionals of Lévy processes. This family of variables has already been studied in depth [30], and

analog results to the second inequality in (7.1) can be found in the literature. For instance,

see Rivero [128, Lemma 3] for the case when the killing component is null, and [127, Lemma 2]

for the case when α ą γ. Unfortunately, we have not been able to find a reference that holds

under our assumptions; therefore, we adapt, with minor modifications, the latter proofs. In this

direction, notice that

E
´´

ż s

0
exppαξptqqdt

¯

γ
α
¯

“ γ

α
E
´

ż s

0
exp

`

γξpuq˘1uăζ
´

ż 8

u
exp

`

αpξptq ´ ξpuqq˘dt
¯

γ
α

´1
du

¯

,

for every s ě 0. Moreover, the Markov property entails that

E
´´

ż s

0
exppαξptqqdt

¯

γ
α
¯

“ γ

α
E
´

ż s

0
exp

`

γξpuq˘du
¯

¨ E
´´

ż 8

0

´

exp
`

αξptq˘dt
¯

γ
α

´1¯

.

Finally, since
şs
0 exppαξptqqdt ď s ¨ suptPr0,ss exppξptqq, we derive from (7.2) that the previous

display is finite for every s ě 0. As a consequence, we get E
`` ş8

0 exp
`

αξptq˘dt˘ γ
α

´1˘ ă 8, and,

by monotone convergence taking the limit when s Ñ 8, we obtain that:

E
´´

ż 8

0
exppαξptqqdt

¯

γ
α
¯

“ γ

α
E
`

I
˘ ¨ E

´´

ż 8

0

´

exp
`

αξptq˘dt
¯

γ
α

´1¯ ă 8,

which completes the proof of the lemma.

Lemma 7.2 (A law of semi-large numbers). Let pXi : i ě 1q be a uniformly integrable family

of independent real random variables of mean 1. For any δ P p0, 1q, there exists some constant

Cδ ą 0 such that for any sequence of non-negative numbers pxi : i ě 1q of sum s “ ř

i xi ă 8,

the random sum S “ ř

iXi ¨ xi satisfies

P p|S ´ s| ě δsq ď δ ` Cδ
s

sup
iě1

xi.

Proof. Fix δ P p0, 1q, and for every i ě 1 set Yi :“ Xi´1. In particular, pYi : i ě 1q is a uniformly

integrable family of independent centered random variables and thus we can find Mδ ą 1 such

that Ep|Yi|1|Yi|ąMδ
q ď δ2{2, for i ě 1. Next, using the triangle inequality, we write:

P p|S ´ s| ě δsq “ P
´

ˇ

ˇ

ÿ

iě1

Yixi
ˇ

ˇ ě δs
¯

ď P
´

ˇ

ˇ

ÿ

iě1

Yi1|Yi|ąMδ
xi
ˇ

ˇ ě δs

2

¯

` P
´

ˇ

ˇ

ÿ

iě1

Yi1|Yi|ďMδ
xi
ˇ

ˇ ě δs

2

¯

.

Let us now bound each term separately. On one hand, an application of Markov inequality gives:

P
´

ˇ

ˇ

ÿ

iě1

Yi1|Yi|ąMδ
xi
ˇ

ˇ ě δs

2

¯

ď 2

δs

ÿ

iě1

Ep|Yi|1|Yi|ąMδ
qxi ď δ.

On the other hand, using that Epřiě1 Yixiq “ 0, it is plain that the truncated sum TS :“
ř

iě1 Yi1|Yi|ăMδ
xi has mean in r´δ2s{2, δ2s{2s and by independence its variance is bounded
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above by 4M2
δ

ř

iě1 x
2
i . Therefore, the triangle inequality followed by a classical application of

Chebytchev inequality entails that

P
´

ˇ

ˇTS
ˇ

ˇ ě δs

2

¯

ď 16M2
δ

ř

iě1 x
2
i

pδ ´ δ2q2s2 ď 16M2
δ

pδ ´ δ2q2s supiě1
xi.

This completes the proof of the lemma.
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processes and self-similarity, Journal of Applied Probability, 58 (2021), pp. 254–273.

[91] J. Lamperti, Semi-stable Markov processes. I, Z. Wahrscheinlichkeitstheorie und Verw.

Gebiete, 22 (1972), pp. 205–225.

[92] G. Last and M. Penrose, Lectures on the Poisson process, vol. 7, Cambridge University

Press, 2017.

[93] J.-F. Le Gall, Random geometry on the sphere, Proceedings of the ICM 2014.

[94] , The uniform random tree in a Brownian excursion, Probab. Theory Related Fields,

96 (1993), pp. 369–383.

[95] , Spatial branching processes, random snakes and partial differential equations, Lec-

tures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1999.
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process, Annals of Probability, 26 (1998), pp. 213–252.

155



[102] J.-F. Le Gall and G. Miermont, Scaling limits of random planar maps with large

faces, Ann. Probab., 39 (2011), pp. 1–69.

[103] J.-F. Le Gall and F. Paulin, Scaling limits of bipartite planar maps are homeomorphic

to the 2-sphere, Geom. Funct. Anal., 18 (2008), pp. 893–918.

[104] J.-F. Le Gall and A. Riera, Growth-fragmentation processes in Brownian motion

indexed by the Brownian tree, Annals of Probability, 48 (2020), pp. 1742–1784.

[105] , Spatial Markov property in Brownian disks, Ann. Inst. Henri Poincaré Probab. Stat.,
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