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Abstract

Self-similar Markov trees constitute a remarkable family of random compact real trees carry-
ing a decoration function that is positive on the skeleton. As the terminology suggests, they are
self-similar objects that further satisfy a Markov branching property. They are built from the
combination of the recursive construction of real trees by gluing line segments with the seminal
observation of Lamperti, which relates positive self-similar Markov processes and Lévy processes
via a time change. They carry natural length and harmonic measures, which can be used to
perform explicit spinal decompositions. Self-similar Markov trees encompass a large variety of
random real trees that have been studied over the last decades, such as the Brownian CRT,
stable Lévy trees, fragmentation trees, and growth-fragmentation trees. We establish general
invariance principles for multi-type Galton—Watson trees with integer types and illustrate them
with many combinatorial classes of random trees that have been studied in the literature, in-
cluding (possibly dissipative) discrete fragmentation trees, peeling trees of Boltzmann (possibly

O(n)-decorated) planar maps, or even the more recent fully parked trees.



Chapter 1

Introduction

Since the early 1990s and the introduction of the ubiquitous Brownian Continuum Random
Tree (CRT) by Aldous [3], random real trees have become central objects in probability theory.
Apart from their obvious applications to scaling limits of population models, they emerge in
a variety of areas ranging from superprocesses, combinatorial optimization (minimal spanning
trees), and analysis of algorithms to Liouville Quantum Gravity and the construction of the
Brownian sphere [93]. For standard textbooks on the subject, see [69, 65, 96]. In particular,
two important classes of random real trees have been known for a long time: the Lévy trees of
Duquesne-Le Gall-Le Jan [63, |, which are the scaling limits of discrete Bienaymé-Galton—
Watson trees, and the fragmentation trees of Haas—Miermont [79], which are the genealogical
trees underlying self-similar fragmentation processes [18]. The intersection of these two classes
consists of the one-parameter family of stable trees, which generalize the Brownian CRT and
have proved to be crucial objects in random geometry [52]. In this work, we considerably broaden
the former and introduce the self-similar Markov trees. We prove that they appear as scaling
limits of many natural discrete models of trees that already popped-up in the literature, and

pave the way for their systematic study.

o

Figure 1.1: lllustration of a self-similar Markov tree (embedded in the plane R?) where

its decoration function is represented in the third (vertical) dimension.



I. Self-Similar Markov Trees

The goal of this monography is to define and study the random rooted real trees (T, dr, p), where
p € T is a distinguished point called the root, which further support a function g : 7' — R,
positive on its skeleton and referred to as a decoration. See Figure 1.1 for an illustration. Infor-
mally, a self-similar Markov tree (ssMt in short) is a family of laws (Qy).~0 on the Polish space
of decorated compact random trees (see Chapter 2 for a presentation of the topology) together

with a real number a > 0, called the self-similarity index, so that the following properties hold:
e Initial decoration. Under Q,, the decoration at the root is g(p) = «.

e Self-similarity. For every x > 0, the law under Q; of the rescaled version (T, z%-dp, p,x-g)

is Q.

e Markov property. For any height A > 0, conditionally on the subtree {u € T': dr(p,u) < h}
up to height h and on its decoration, the decorated subtrees above height h are independent
and each has the law Q,, where y is the decoration at the root of the subtree (see Chapter 5

for proper statements and Figure 1.2 for an illustration).

Figure 1.2: lllustration of the Markov property (left) and the self-similar property
(right). The color of the root of a tree is meant for its decoration. Left: Conditionally
on the black structure of the tree up to height i and on the decoration (colors) of the

root vertices, the dangling subtrees (in gray) are independent.

A related Markov property (without decoration) was employed in [137] to characterize Lévy
trees. Of course, random real trees carrying functions have been considered before in the litera-
ture. One may think e.g. of the genealogical trees underlying superprocesses [108] as constructed
in [65]. One important difference though, is that usually for superprocesses, the spatial displace-
ments is merely superposed on the branching structure, whereas in our case, the branching and
the decoration are intimately tighten. Still, we borrow a lot from this theory, in particular in our

rigorous treatment of the Markov property. When the tree is merely a segment, the decoration



is given by a positive self-similar Markov process (pssMp). The latter have been studied in the
pioneer work of Lamperti [91], who notably identified positive self-similar Markov processes as
being time changed of exponential of Lévy processes, see [39, Chapter 5] and our Section 3.2.
It follows from the well-known Lévy—Khintchine—It6 decomposition of Lévy processes that the
distribution of pssMp is hence determined by a self-similarity exponent o € R together with
the characteristic triplet (62 > 0,a € R, A) of the underlying Lévy process £&. More precisely,
A is the so-called Lévy measure on R U {—o0}, it integrates 1 A 22 and its mass at —oo de-
noted by k := A({—0o0}), serves as killing rate. The drift depends on the choice of cutoff in the

Lévy-Khintchine formula, and in this work we use the standard cutoff y — y1,,<;. We have

E(exp(61)) = exp (14(7)).

where

1
Y(y) = —k+ 50272 +ay+ fR* (e —1 =yl <) A(dy).

Furthermore, to ensure that the pssMp gets absorbed at 0 in finite time a.s., a must be positive
and the Lévy process £ must either drift to —oo or be killed.

The first part of this work can be seen as the branching analog of the seminal contribution
of Lamperti that we just sketched. We provide a rigorous setting (in particular a topology on
the space decorated real trees, see Chapter 2) and construct what we believe are essentially the
most general (positive) self-similar Markov trees. In a nutshell, we shall see a decorated tree
(T, g) as a closed subset Hyp(g) of the space T' x R where the base space is the tree T', via its
hypograph

Hyp(g) == {(u,2) e T x Ry : 2 < g(u)}.

To ensure compactness of the latter, we shall impose that T is compact and ¢ is upper-semi
continuous. See the numerous illustrations below for a visualization of this concept. As for
pssMp, ssMt are characterized by their self-similarity index a > 0 together with a Gaussian
coefficient o2 > 0, a drift coefficent a € R, and what we call a generalized Lévy measure A
which is a measure on the product space S = [—00,0) x S;, where S; is the space of non-

increasing sequences
S1={y=Wiz1 1 =y2> ... e Ru {0} }.

We also require that the image measure Ag of A by the first projection (y,y) — ¥ is a usual
Lévy measure, that is, integrates 1 A y2. We then refer to (02,a,A;a) as a characteristic
quadruplet. Roughly speaking, we extend the idea of Lamperti and construct ssMt through a
time change of the exponential of branching Lévy processes, which have been introduced and
studied recently by Bertoin—Mallein [26]. Heuristically, the evolution of the decoration along
distinguished branches of the tree are pssMp given as the time-change exponential of the Lévy
process ¢ with characteristics (02, a, Ag). Let us give an informal interpretation of the generalized

Lévy measure. Recall first that in the pssMp case, if the process is at state x > 0, then it jumps



to state x - €Y with a rate x® - Ag(dy). If one then imagines a ssMt as the genealogical tree of
a cloud of independent particles, then each particle of mass z > 0 becomes a particle of x - e¥
and in the same time gives rise to a cloud of new particles of mass z - (e¥',e¥2,...) at a rate
z® - A(dy, d(yi)i=1)-

Many properties of ssMt are encapsulated by the so-called cumulant function defined by

k() =) + L A(dy, dy) (Z em) ,

i=1
which can also be seen as the Biggins transform or moment generating function of the underlying
branching Lévy process. To ensure non-explosion, we assume that x takes negative values, which
will sometimes be referred to as sub-criticality, and we leave open the construction of ssMt in

the critical case min x = 0, see Section 3.4.

Informal Result (Construction of self-similar Markov trees). For every characteristic quadruplet
(02,8, A; ) such that k() < 0 for somey > 0, there exists a family of laws (Qz)z>0 of decorated
random trees T = (T,dr, p,g) which are self-similar with exponent o > 0 and fulfill the Markov
property.

As already mentioned, the decoration g along branches of T evolves according to a pssMp
with characteristics (02, a, Ag; @), and the generalized Lévy measure A induces a way to “explore”
branches within 7. However, contrary to the case of pssMp, different characteristic quadruplets
can produce the same ssMt, and we identify precisely when this happens in Section 6.3, using a

concept of bifurcators that is adapted from [123, 131].

Properties of ssMt and their random measures

Regarding the Markov property, we will in fact describe various Markov decompositions in
Chapter 5. We then establish several basic properties of ssMt, including the computation of
their Hausdorff dimension, by studying natural finite measures on ssMt. Real trees are naturally
equipped with the length measure, i.e. the 1-dimensional Hausdorff measure, which may be
thought of as the Lebesgue measure on 1" and is therefore denoted by A. Although A is not even
locally finite in most cases of interest, the decoration function g enables us to circumvent this
issue. We consider the measures dA” := ¢7~*d\ supported by the skeleton of T and which we
call weighted length measures. We show that the latter has a finite total mass provided x takes

negative values before v, see Proposition 3.11. In particular, by self-similarity, we have

—
=

AN(T) = J dA ¢ under Q, = J:WJ dA g7 =2"AN7(T) under Qq,
T T

so that the weighted length measures A7 are self-similar with exponent . In most situations,
there is yet another natural finite measure on 7', denoted by u, which is supported by the leaves
of T. Its construction requires a more stringent hypothesis on x, that we call the first Cramér

hypothesis. This requires the existence of w_ € (0,00) so that

Klw—) =0 and k(q) <0 for some ¢ > w_.



The formal slightly more restrictive condition is given by Assumption 3.12.

Informal Result (Harmonic measure). Suppose (02, a, A; ) satisfies the first Cramér hypothesis.
Then, as v — w— the renormalized length measure —k(7y) - A converge in probability towards a

measure | supported by the leaves of T'.

The measure p is called the harmonic measure since it is connected to the so-called har-
monic or additive martingale in the branching random walk underlying our construction of
T = (T,dp,p,g). Alike the weighted length measures, the harmonic measure is self-similar with
exponent w_. The harmonic measure is natural in many respects and it is for example used as

a Frostman measure to compute the Hausdorff dimension of 7'

Informal Result (Hausdorff dimension). Suppose (02, a, A; ) satisfies the first Cramér hypoth-

esis. Then almost surely, T has Hausdorff dimension

w_
dimg (T) = (1 % —) , a.s.
o
This result considerably extends the fragmentation case [78] or the growth-fragmentation
case [1241]. We then use those finite measures to provide spine decompositions of our decorated

random trees. Roughly speaking, we use —k(7y) - A7, for 7 such that k() < 0, or u, which can
thought as the extremal case v = w_, to distinguish a point p* at random in 7. The branch
[[p, p°]] connecting p and p* is then called the spine. Using the Markov property, we shall see
that the decorated trees dangling from the spine are, conditionally on their initial decoration,
independent ssMt with characteristics (02, a, A;a). However, the evolution of the decoration
along the spine is now governed by another set of characteristics (o2, ay, Ay; o) explicitly given
in terms of (02, a, A; ), and in particular, the Lévy Khintchine exponent 1., of the Lévy process

underlying the pssMp evolution along the tagged branch is simply given by

Uy(2) = Ky + 2).

As the reader may know, spinal decompositions are essential tools in branching process theory
and are also instrumental in many of our proofs. The spinal decomposition can also be seen
as a more intrinsic and geometric description of the law of the ssMt. Indeed, as we alluded to
above, several characteristic quadruplets (02, a, A; ) can yield to the same ssMt. However we
shall see in Corollary 6.13 that the quadruplet (o2, ay, Ay; ) generically uniquely specifies the
law (Q;)z>0 of the ssMt. Furthermore, although the pssMp associated to (02, a, A;a) is quite
arbitrary, those appearing as the decoration along the tagged branch of a ssMt have special

properties, see Section 6.5 for details.

I1. Examples

Self-similar Markov trees include many examples of important random (undecorated) real trees

that have appeared in the literature. They encompass in particular the fragmentations trees



constructed by Haas and Miermont [75] as the genealogical trees underlying self-similar conser-
vative fragmentations processes [1 7], and the generalized fragmentation trees introduced recently
by Stephenson [134] to cover the dissipative case. If one considers ssMt as branching analogs of
Lévy processes, then the (generalized) fragmentation trees would correspond to the subordinator
case. More precisely, they consist of ssMt for which the decoration along branches is decreasing.
The fragmentation trees of Haas and Miermont had “no erosion” and were conservative: the

mass of particles is conserved in splitting events which in our case means that

A({(yo,(yl,...)) eS: ieyﬂ' # 1}) = 0.

In such situations, it is plain that the first Cramér hypothesis is always satisfied with w_ = 1,
and in fact the decoration g(u) corresponds to the harmonic mass of the fringe subtree above
point v € T. In particular, we have w(7) = z under Q,, so that the total harmonic mass
is deterministic. Fragmentation trees already include many interesting examples such as the
Brownian Continuum Random Tree (CRT) or more generally the stable trees. Specifically, it is
well known that the Brownian CRT 77 can be seen as the real tree constructed from a standard
Brownian excursion of length 1, say (e1(s))o<s<1 as in [66, 97]. We denote its contour measure
by 7e, and endow 7; with the decoration which assigns to each vertex v € 7; the contour-mass

Ve, (T1,0) of the fringe-subtree above point v, see Figure 1.3.

Figure 1.3: A simulation of a Brownian CRT. The tree is embedded (non-isometrically
in R?) and the decoration function representing the p-mass above each point is depicted

in the vertical coordinate.

It follows then from [I17, 135] that the decorated Brownian CRT is indeed a self-similar
Markov tree with self-similar with index o« = 1/2, no erosion, no Gaussian part and generalized
Lévy measure given by

J‘ F(eyO’ (e¥ .. )) Apo(dyo, d(yi)i=1) = \/5 1 F(z,1—=x,0,0, )dix’

S ™ J1/2 (z(1— QU))?’/Q
where F' stands for a generic nonnegative functional on §. See Example 4.6. This well-known

and useful interpretation has already been used many times in the literature see e.g. [38].



Perhaps more surprisingly, there are other representations of (a small variant of the) Brown-
ian CRT as a self-similar Markov tree which is not anymore a fragmentation tree. Consider this
time the Brownian CRT T of height 1, i.e. the tree T.) coded by an Brownian excursion e
of height 1.

We can endow 7 with the deterministic decoration which assigns to each vertex v € 7

the height of the fringe-subtree 7;,(1) rooted at v. See Figure 1.4 for an illustration. It follows

Figure 1.4: A simulation of a Brownian CRT normalized by the height. The tree is
embedded non-isometrically in R?; the decoration function represents the height of fringe

subtrees and is depicted in the vertical coordinate.

then by a classical decomposition of e(!) due to David Williams, that the decorated tree 7
is indeed a self-similar Markov tree with index a = 1, no Brownian part, constant erosion and
generalized Lévy measure given by
! dz
js F(e®, (¥, ...)) Ateight(dy, dy) = ZL F(1,(z,0,0,.. ))?,
where F' denotes a generic nonnegative functional on §. The cumulant function is easy to
compute and equals Kpeight (Y) = —y + 2/(y — 1) for v > 1. In particular, Cramér assumption
holds with w_ = 2. As the reader may expect, the harmonic measure p then coincides with (a
multiple of) the contour measure 7,1y on 7 and in particular its total mass is now random. See
Example 4.5. These are not the only representations of — variations of — the Brownian CRT that
can be obtained using ssMt. In particular, in Example 4.12, we present another representation
based on the recent work of Aidekon and Da Silva [6], which connects growth-fragmentations
to planar Brownian excursions. In this example, the Brownian CRT is, roughly speaking, seen
as a ssMt where the decoration processes along branches are variants of the symmetric Cauchy
process, see Figure 1.5. We refer to Example 4.12 for details.
Luckily, there is more to life than variations on the Brownian CRT. The primary incentive for

developing the general theory of ssMt is its connection with random planar geometry. Motivated



Figure 1.5: The decorated random tree 7. associated with a half-planar Brownian
excursion. The tree is embedded non-isometrically in R2: the decoration function rep-
resents the horizontal X displacement in fringe subtrees and is depicted in the vertical
coordinate.

in part by 2-dimensional quantum gravity, the last few decades have witness spectacular devel-
opments in this field, notably around the Brownian sphere. This is a random compact metric
space almost surely homeomorphic to the 2-sphere [103] but with fractal dimension 4 [98]. It
has first been constructed as the scaling limit of random planar quadrangulations by Le Gall
[99] and Miermont [114] and since then appeared as a universal scaling limit model for many
planar graphs models see e.g. [99, 54, 31, 7]. The Brownian sphere has also been shown to be
the random metric induced by exponentiating a planar Gaussian Free Field (GFF) to the proper
power, see the works of Miller & Sheffield [116, 117] yielding to a so-called Liouville Quantum
Gravity metric [61, 75]. The Brownian sphere has a cousin, the Brownian disk [32], which, as
the name suggests, has the topology of a disk and is better suited to make the connection with
ssMt. Informally, the Brownian disk is a random compact metric space (.S, d) homeomorphic to
the closed unit disk of the complex plane, and can be obtained as the scaling limit of generic
random planar maps with a large boundary [32]. In particular, we can define its boundary 0.5
as the set of all points that have no neighborhood homeomorphic to the open unit disk. We can
then consider, for every r = 0, the ball B, = {x € S : d(x,dS) < r}. The topological boundary
0B, of these balls generically has infinitely many connected components (C? : i > 1), which all
have the topology of a circle and have fractal dimension 2. However it is possible to associate
a natural notion of “boundary length” (|Cf| : i > 1) to them extending the classical notion of
perimeter, see [104]. Furthermore, as r grows, the connected components (C? : i > 1) describe

a tree structure , see Figure 1.6 for an illustration and Example 4.9 for details. This tree is



called the Brownian cactus and was first studied in [55]. We can then decorate each point of the

Brownian cactus with the associated boundary length.

Figure 1.6: lllustration of the Cactus of a surface S with a boundary 0S. The ball
of radius r (measured from 0S) is depicted in light gray and it has several boundary
components. When each of these components has a “size”, this enables us to decorated

the cactus tree (on the right).

It follows from the recent work [104] (see e.g. [23, 22]) that the resulting decorated tree is'

a (multiple of the) self-similar Markov tree called Brownian growth-fragmentation tree. This is

the ssMt with exponent %, with no Brownian part and generalized Lévy measure given by

3 Flo,1—2,0,0,.)—3
Am iy T (@(1 =)

Notice that the Lévy measure Apyogro(dy) does not integrate y in the vicinity of 0 and so

LF(eyO, (¥, ...)) ABrocr(dyo,dy) =

compensation is involved in the definition. In particular, the drift term is non-trivial (and

explicit) and the cumulant function is equal to kprogr(y) = Fr(?v_fg), for v > 3/2. So that
w_ = 2 and the first Cramér hypothesis holds. We refer again to Example 4.9. The same ssMt
but with self-similarity exponent ov = 3/2 also appears as the scaling limits of many labeled trees
arising in the combinatorial literature associated with polynomial equations with one catalytic
variable [10], we refer to the forthcoming Part II for examples. We also refer to Chapter 4 for
other examples of ssMt related to a-stable processes for « € (1, 3/2] and which appear in random

planar geometry as well.

ITI. Invariance principles for multi-type Galton—Watson processes

The second main objective of our work is to develop robust invariance principles under which
multi-type Galton—Watson trees converge towards a self-similar Markov tree. These are devel-
oped in Part II of this work which shall be available soon. More formally, suppose that we
have a collection of particles which evolve as a multi-type Galton—Watson process with types in

N = {1,2,...}. We denote the law of the process, starting from a single particle of type j > 1,

n the case when the base surface is a free Brownian disk, see [32]



Figure 1.7: A simulation of the Brownian growth-fragmentation tree. The self-similar
Markov tree is binary and conservative: at each splitting event, the total mass is con-

served and split between two children.

by P;?W and suppose aperiodicity for simplicity. Here also we stress that the type is intimately
tighten to the branching mechanism and should not be thought as a superposed spatial displace-
ment as for many superprocesses. It is easy to interpret such a branching system as a random
decorated tree (Taw, A1y, P, 9), see Figure 1.8 below.

In this direction, it will be convenient to systematically distinguish one child particle in each
non-empty progeny, for instance the child with the largest type, and then gather the remaining
children as a non-increasing sequence. Then, a reproduction event can be represented in the
form j — (ko, (k1,...,ke)), meaning that a particle of type j gives birth to ¢ + 1 particles with
types ko = k1 = ... = kg, and the first one with type kg has been distinguished. The reproduction

law of the Galton-Watson process induces a family of (sub)probability measures (7;);>1, where

75 ((ko, (k1, ..., kp))

is the probability of the reproduction event j — (ko, (k1,...,ks)) for any given non-increasing
finite sequence kg = k1 = ... = k¢ in N. We now present the conditions on the reproduction kernel
(7j);>1 ensuring the convergence of the rescaled discrete decorated trees towards a (02, a, A; a)-
ssMt. Recall that Py is then the law of T = (7', dr, p, g) when the decoration at the root is 1. The
most obvious necessary condition is the vague convergence of the renormalized kernel towards

the generalized Lévy measure A, namely

. a ko k1 ky
nh_{réon . Z ﬂn(ko,(kl,...,k‘g))f<logn, (logn,...,logn>>

ko=--=ke

= L A(dyo,dy) f(yo,¥), (©)

10



Figure 1.8: A representation of a Galton—Watson process with integer types as a random

decorated tree, see the forthcoming Part Il for more details.

for continuous functionals f : S — R, with compact support avoiding (0, (—00,...)). In par-
ticular, the above assumption gives a clear meaning to the generalized Lévy measure: typically
a particle of large type n gives birth to an essentially single particle of type close to n, but
with probability of order n=® - A(ds) it gives rise to several particles (ne¥o,ne¥',...) of type
comparable to n. We further need a control on the drift and variance of the first coordinate,
see Part II for the proper definition and denote those assumptions by (#) in this introduc-
tion. Extending a result of Bertoin & Kortchemski [24], the previous two conditions implies the
convergence of rescaled decoration-reproduction processes over long branches of Tgw towards
the Markov decoration-reproduction process X associated with the characteristic quadruplet
(0%,a, A;a) defined in Section 3.2. However, these two conditions are only asymptotic in the
particle-type and cannot account alone for the convergence of rescaled trees and does not even
guarantee that the tree Ty is finite under PJ@W. The latter is ensured by requiring the existence
of a super-harmonic function for the multi-type Galton—Watson process and the integrability

condition
l k. q
li o, Wk, k Z) —1) <o,
imsup 7 D1 ks k) <Z<n> ) < (<)
(F1,.-.ke) i=1

in some open interval of (0,00) for the parameter q. The latter assumption is the discrete
counterpart to the sub-criticality assumption minx < 0 in the continuous. We prove that the
previous set of three assumptions is sufficient to imply the convergence of the rescaled decorated

tree in the Gromov—Hausdorff decorated sense, see Part II for the proper statement.

Informal Result (Scaling limits without mass measure). Suppose (©V),(#) and ({>). Then as

n — o0, we have the following convergence for the decorated Gromov—Hausdorff topology

d
<Tc;w, %, P Z) under P5Y LGN (T,dr,p,g) under Py.

11



The topology for this convergence is that developed in Chapter 2; it is adapted from the
classical Gromov—Hausdorff topology to involve the decoration as well. Let us now consider
more delicate versions of this result that incorporate measures. We fix a non-zero weight function
w : N — R, regular varying with exponent v — o and write u% for the measure on Ty that
assigns a mass w(k) to each particle with type k. We let [Z,(n) denote the expected mass of a

multi-type tree starting from a single particle of type n, i.e.

[Gw(n) =B (0™ (T9Y).

We naturally aim for a scaling limit result of the measure decorated tree (TSXV s ATqw» P %, lggv%) .
As in the continuous case, there is a big difference between the case v > w_ and v < w_. More
precisely, if v > w_, the measure u® is essentially carried by the branches of T and converge
after renormalization towards the weighted length measure A7 (jointly with the converge in the
above result). However, in the case when v < w_ the measure ;% is now carried by the “leaves”
of Tew and converges towards the harmonic measure p. Actually, proving this convergence
requires the discrete counterpart of the first Cramér hypothesis, that we denote by (&), see
the forthcoming Part II for details. Our discrete invariance principles recover those of Haas—
Miermont [79] in the fragmentation case. This was actually one of the main source of inspiration
for our convergence results. In particular, the requirement () is the analog of the fundamental
hypothesis (H) of Haas—Miermont [79]. But the most interesting, by far, applications of our
invariance principles concern the discrete multi-type Galton—Watson trees converging to ssMt
where the decoration can exhibit growth. An important example in this direction is given by the
peeling trees underlying Boltzmann stable maps already considered in [22, Section 6] (see [23] in
the triangulation case). Let us describe that setting more precisely. Given a non-zero sequence
q := (qr)k>1 of non-negative numbers we define a measure w on the set of all bipartite planar
maps m (finite graph embedded in the sphere up to homeomorphisms, given with a distinguished

oriented edge) by the formula

wm) =[] daea(yse-
feFaces(m)
We shall suppose that the weight sequence is admissible (the above measure is finite) and critical
(roughly speaking, the weights cannot be increased while staying admissible), see [50, Chapter 5.
We shall furthermore suppose that q is non-generic, in the sense that it satisfies
35
g ~ k" ETP as k — oo, forge|=,=],
2’2
for some ¢,k > 0. For this choice of q, a random q-Boltzmann M,, conditioned on having n
faces (provided that the conditioning make sense) possesses “large faces” and converge in the
scaling limit
1 (d)
(M,,,n 25-1 - dy,) —— Sg,

n—0o0

2 Actually, we will establish the result for a slightly more general form of non-generic maps.
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in law for the Gromov-Hausdorff distance, where Sg is the -stable carpet/gasket introduced

implicitly by Le Gall and Miermont in [102] and whose uniqueness has been very recently proved
in [56]. In particular, the limiting case 5 = 2 corresponds to the Brownian sphere, see [112].
On the other hand, the dual maps M;rl (with large degree vertices) are much less understood®.
Although the typical distances in ML are known to be of order nﬁﬁ%l?? when 8 > 2, see [12],
it is not known whether the metrics spaces (MIL, n_/f*i_i? - dgy) are tight. One important tool
in the theory of random planar maps is the so-called peeling process, which is a Markovian
exploration procedure that discovers a map step-by-step, see [50]. This exploration actually
encodes a planar map into a binary labeled plane tree, which under the g-Boltzmann measure
is a multi-type Galton—Watson tree, see the forthcoming Part II for details. In the critical non-
generic case above, we prove that those trees satisfy our standing assumptions (O, &, >, &) with
a = (B — 1) for an explicit subcritical characteristic quadruplet (02,a, A; ). As an immediate
corollary of this convergence, we deduce that the diameter of (MIL, n_ﬁ—iﬁ? - dgy) is tight. The
corresponding ssMt should play the role of the cactus tree in the potential scaling limits of ML
and this convergence thus lays the foundations for the definition of their scaling limits when
8> 2.

Relation to previous works

As we said above, the main source of inspiration for this monography is the work of Haas—
Miermont [78, 79], where they constructed the self-similar fragmentation trees and established
invariance principles, see [77] for a beautiful set of lecture notes. To be more specific, the
fragmentation trees of Haas—Miermont [78], later generalized by Stephenson [134] correspond to
the family of self-similar Markov trees where the decoration ¢ is decreasing along branches. A
powerful invariance principle for discrete fragmentation was established in [79] for the Gromov-
Hausdorff topology (using quite different tools as ours) and proved to be very useful in the study
of random trees [27, 129].

The definition of growth-fragmentation processes was given by Bertoin [20, 21] first in the
binary conservative case. The properties of growth-fragmentation processes were then studied
in much details, see e.g. [131, , D7, 29, 28] (the list is by no mean exhaustive). It was soon
realized that these processes encode the genealogy of real trees, and they were constructed by
Rembart—Winkel using the “string of beads” construction [124], which also inspired the construc-
tion of Chapter 3. In the self-similar case, those (decorated) trees are indeed examples of ssMt.
Growth-fragmentation processes were shown to appear in peeling exploration of random planar
maps [23, 22], directly within Brownian geometry [104] and in random plane Brownian excursions
[6]. We revisit these results in light of the ssMt theory. Let us in particular point to the paper
of Dadoun [58] which builds upon the techniques of [23] to establish an invariance principles

in the Gromov—Hausdorff topology for discrete (binary, conservative) self-similar Markov trees,

3For readers familiar with the theory of random maps, this is due to the lack of suitable bijective encodings &
la Schaeffer.
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appropriately truncated. As stated above, much of these works focus on the binary conservative
case until Bertoin—-Mallein layed the foundations of general branching Lévy processes [25, 20]
which are closely related to our construction of self-similar Markov trees.

An important caveat, is that in many of the previous works the random mass measures and
the decorations on random continuous and discrete trees was neglected (it is “trivial” in the frag-
mentation case of Haas—Miermont). Establishing invariance principle for measured decorated
random trees pushed us to introduce an appropriate topology, find the appropriate assumptions
and develop new and wider proofs ideas. Most of our approach relies on construction of trees via
“stick-breaking” construction, i.e. by the recursive gluing of (decorated) branches. This is old
technique pioneered by Aldous [3] and which was revived recently [51, 124, 37] as an alternative

to the “contour function approach” [60].
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Index of important notations

To state our results, we use the standard Landau notation O, 0 and ~ to compare the asymptotic

behavior of sequences at infinity. To help the reader navigate through these pages, we make a

list of some of the most important notation that are used across several sections.

Chapter 2
T=(T,dr,p,9)

([, 91l
g
or

(fu)ueUa (tu)ueU*

a decorated tree where (T, dr, p) is a real tree with root p

and g : T'— R, is the usc decoration.

segment between x,y € T

fringe subtree above the point x € T

leaves (points of degree 1) of T'

building blocks serving for the construction of T in Theorem 2.5
fu [0, 2] — R4 given decoration along [p(u,t) : 0 <t < 2]

identifications at p(u,ty;) = p(ui,0) = p(ui)

(Muy)ueu p-mass of the subtree above p(u) in Proposition 2.10
AL tree obtained by gluing the first n generations in Theorem 2.5
AT Lebesgue measure on the skeleton of T'
T a measured decorated tree, also denoted (T, dr, p, g,v)..
T, space of equivalence classes of measured decorated compact metric spaces
T space of equivalence classes of (non-measured) decorated compact metric spaces

Te, T*! space equivalence classes of pointed decorated compact metric spaces

Chapter 3
(fusMu)uey  decoration-reproduction processes of the individuals
(Pr)z>0 decoration-reproduction kernels
(x(u))ueu  types of the individuals
P, law of (fu, My )uey When x () =z
(P) one can apply Theorem 2.5 to the building blocks (fu)ueu, (tu)ucu*
constructed from (fy, 7y )uev in Section 3.1

S1 space of non-increasing sequences in [—o0, 00)

S space of elements (y,y) € [—00,0) x S1

A generalized Lévy measure on &

Ao first marginal of A which is required to be a Lévy measure

Ay second marginal of A

k killing rate, i.e. = A({—w0} x S7)

(6%,a,A; ) characteristic quadruplet
P Lévy-Khintchine exponent associated to (o2, a, Ag) via (3.11)
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(&(t))t=0 Lévy process with Lévy—Khintchine exponent 1)

(X(t))e=0 pssMp associated with & via Lamperti transformation with index a > 0

K cumulant function defined via (3.19)
AY weighted length measure ¢7~“Ap defined in Proposition 3.11
i harmonic measure defined in Lemma 3.13 under Assumption 3.12

(w—,w4+) intervalle over which  is negative

Chapter 4

acan = & — § Ao(dy)yl)y < canonical drift, well-defined when Ag(dy) integrates 1 A |y|
finite branching activity Ay (Si\{(—0, —0,...)}) <

non-increasing acan < 0 and A({(yo, (¥i)i=1) : Jy; > 0}) =0
conservative A ({(yo, (y1,...)) - Z;O:O evi # 1}) =0
fragmentation non-increasing conservative, acay = 0 and k = 0
binary A ({(o, (y1,...)) 1 y3 # —0}) =0
growth-fragmentation conservative, binary and k = 0
Chapter 5
Q. laws of the equivalence class of T € T under P,

(T)ier subtrees dangling from a base subtree
Tlel  tree obtained by keeping only individuals for which y(u) = f,(0) = ¢
B,(T) ball of radius a centered at pe T

Chapter 6

o ay, Ao ~v-tilted characteristic quadruplet defined in Lemma 6.
QVAV ilted ch isti druplet defined in L 6.4
(X5, 1) decoration-reproduction process along the tagged branch
z)=r(y+z evy—Khintichine exponent o
y Lévy—Khintichi f X,
T* = (T, p*) a pointed decorated tree
Q)20 laws of pointed decorated tree defined in (6.9)
ord the map (y, (yi)i=1) € § > (3 : j > 0)' € &
0% as, Ny the locally largest biturcator
2 A he locally 1 bif
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Part 1

Self-similar Markov trees
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Chapter 2

Decorated real trees and their topologies

Random decorated real trees are the central objects in this work. A decorated real tree consists
of a compact real tree T equipped with a root p and nonnegative function g on 7', which we
refer to as a decoration and is typically discontinuous at branching points. Often, decorated
trees will further be measured, i.e. endowed with a finite Borel measure.

After recalling some basic background on real trees, we present in the first section a natural
gluing operation, using marks on the base tree to specify locations where the other trees are
glued. This enables us in the second section to present a recursive construction of decorated
real trees from so-called building blocks, indexed by the Ulam tree, by gluing iteratively line

segments on which some functions have been defined (Theorem 2.5).

Figure 2.1: Hypograph of a tree (embedded in the plane) decorated by an usc function

in the third (vertical) dimension.

We will be interested in the convergence of sequences of such decorated real trees, which
incites us to define a notion of closeness for two decorations on two different domains. One of the

purposes of this chapter is thus to introduce a convenient formalism and, to stay on safe ground
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as soon as randomness and measurability will be involved, we represent these as elements of
some Polish space. The topological framework that is needed to define a notion of convergence
for sequences of decorated real trees is developed in the third section. In this direction, we
shall always impose that the decoration g is upper semi-continuous, i.e., the superlevel sets
{x: g(x) = r} are closed for every r = 0. The main idea there is to represent usc functions by
their hypographs; see Figure 2.1. In the situation where the domains can be viewed as subsets
of a same metric space, the Hausdorff metric yields a natural distance in terms of hypographs.
We then adapt an idea of Gromov and consider isometric embeddings to measure the distance

between the structures induced by two usc decorations with unrelated domains (Theorem 2.15).

2.1 Decorated real trees and a gluing operator

We start by recalling a few basic features on real compact trees. The reader is referred to the
lecture notes by Evans [09], by Le Gall [96], or to the manuscript by Duquesne [64] for detailed
accounts and further properties.

A real tree is a metric space (T, dr) such that for any x,y € T, there exists a unique isometry

Gry 1 [0,dr(z,y)] > T with ¢,,(0) = 2 and ¢,y (dr(z,y)) = y;

we shall refer to ¢, , as the path from x to y in 7. Furthermore, the image of any continuous
injective map 1 : [0,1] — T with ¢(0) = = and ¢(1) = y coincides with ¢, , ([0, dr(x,y)]). The
image of ¢, , is called the segment from x to y in T and is denoted by [[z, y]] in the sequel.

A useful characterization is that a connected metric space (T, dr) is a real tree if and only if

the so-called four point condition holds, that is:
dr(z1,22) + dr(z3, 24) < (dr(z1,23) + dr(22,24)) Vv (dr(21, 24) + dr (22, 23)), (2.1)

for every x1,x9,23,z4 in T. The real trees appearing in this work are typically compact and
rooted at some distinguished point p € T, even though for the sake of simplicity we shall often
omit the distance dp and the root p from the notation. The distance dp(p,z) of a point z € T
to the root is called the height of z, and then the height of T', denoted by Height(T), is the
maximal height of points in 7. The root enables us to endow 1" with a partial order: for any two
points x,y € T we write x < y and we say that x is an ancestor of y, or that y is a descendant
of z, if x belongs to the segment [[p,y]]. The fringe subtree T, = {y € T': x < y} induced by
a point z € T is the subset of T' consisting of all the descendants of z (including z itself). This
fringe subtree is naturally equipped with the metric induced by the restriction of dr, and rooted
at x. We also use the following standard nomenclature and notation for points in a real tree.
The degree of a point x € T' is the number (possibly infinite) of connected components of T\{z},
and then:

e A point x € T is a leaf if it has degree 1. We denote the set of leaves of T by oT.
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e The skeleton of T is the subset T\0T.

e A point x € T is a branching point if it has degree at least 3.
We will further equip real trees with some upper semi-continuous (usc in the sequel) functions!.

Definition 2.1. A decorated real tree is a quadruplet

T= (Ta dT7p7g)

where (T, drp, p) is a rooted compact real tree and g : T — Ry an usc function referred to as the

decoration.

Let us give a couple of simple examples. Consider a rooted compact real tree (T, dr, p). The
function g : T'— R, that assigns to every x € T its height, that is g(x) = dp(p, x), is continuous
and can thus be taken as a decoration. If we further equip (7, dr, p) with a finite measure v,
then the function ¢’ : T — R, that assigns to every x € T the v-mass of the fringe subtree
induced by this vertex, ¢’(x) = v(T}), is clearly usc, and can also be used as a decoration of T'.

In the sequel, it will sometimes be convenient to consider decorated compact trees not just
with a single distinguished point (the root), but more generally endowed with a further finite or
countable family of distinguished points in T, referred to as marks. Specifically, marks consist
of a family (7;);er of points in T', where I is a finite or countable set of indices. We stress that we
do not request r; # r; for ¢ # j, and the same mark may arise for different indices. In particular,
the notion of marks allow us to introduce the gluing operation which will lie at the heart of the
construction of decorated compact real trees from building blocks in the next section.

Let us clarify what we mean by gluing decorated trees. In this direction, consider a rooted
compact real tree (T, dy+, p’) with marks (r;);e;. The tree T” serves as a base, marks specify the
locations on T” where gluing will be performed. Let further (7}, dr;, pi)ier be a family of rooted
compact real trees which are pairwise disjoint, and also disjoint from 7”. Roughly speaking, we
will glue each T; on T” by identifying the mark r; and the root p; of T;, and equip the resulting
space with the distance induced by d7v and the dr; on each component. See Figure 2.2 for an
illustration.

In order to describe rigorously this operation, we first introduce the (disjoint) union of those

T =T U <|_|T> .
el

We next define d°: T x T — Ry by

trees

dr(z,y) ifx,yeT’,
dr,(x,y) if x,y € T; for some 7 € I,
d°(z,y) = dpi(x,r;) + dr,(pi,y) if z € T' and y € T; for some i € I,
dr,(z, p;) + dpr(ri, y) if v € T; for some i€ [ and y e T”,
dr,(z, pi) + dpi(ri,75) +dr;(pj,y) if € T; and y € Tj for some i # j € I.

'We enforce this requirement because usc-functions are well-behaved when gluing trees (see below), and also

for their compatibility with Gromov-type topologies (see Section 2.4).
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Figure 2.2: Gluing three subtrees on a base tree with three marked points.

It is immediately seen that d° is a pseudo-distance on T~ such that for any distinct points x,y
in T, we have d°(x,y) = 0 if and only if, either = r; and y = p; for some ¢ € I, or vice versa,
or x = p; and y = p; for some ¢ # j € I such that r; = r;.

We write T for the quotient space of T for the equivalence relation
x~y < d°(z,y) =0,
and equip this quotient space with the metric dr induced by d°, that is
dr(z,9) = d(z,y),  #,yeT,

for any representatives x €  and y € y of these equivalence classes. In other words, (7', dr) is

obtained from (7-,d°) by identifying r; and p; for every i € I.

Lemma 2.2. Suppose that

(Height(T3)),c; is a null family, (2.2)

meaning that for any h > 0, the set of indices i € I with Height(T;) = h is finite. Then (T, dr)

is a compact real tree. We further use the equivalence class of p' as the root p of T.

Proof. We argued above that (T, dr) is a metric space; let us now check that it is a real tree, which
should be intuitively clear. We use the obvious notation Z for the equivalence class of a point z
in T-. Pick any x,y in T". If both points belong to the same tree before the gluing, say x,y € T;
for some i € I, then d°(z,y) = dr,(x,y) = dr(%,7), and the path ¢; : [0,dr,(x,y)] — T; from
$:(0) = z to ¢;(dr,(x,y)) = y in T} yields in the obvious notation a path ¢; : [0, dr(&,§)] — T
from ¢;(0) = & to ¢;(dr(%,9)) = § in T. The case when, say z € T" and y € T} (or vice versa),
is treated by concatenating two paths, the first from z to 7; in 77 and the second from p; to y
in 7;. Finally the case when x € T; and y € T; with ¢ # j involves the concatenation of three
paths, the first from = to p; in Tj, the second (possibly degenerate) from r; to r; in 7", and the
third from p; to y in Tj.
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The initial trees being pairwise disjoint, uniqueness of the path ¢ from Z to 7 in T should
be plain. Specifically, we may assume without loss of generality that & # g, pick an element in
each equivalence class, say x € T and y € §j. Suppose first that both x and y can be chosen in the
same tree, say for simplicity z,y € T'. Write T'" = T for the set of equivalence classes of points
in T". If ¢ entered T \f’ , then by continuity we could find two times 0 < s < ¢t < dp(Z, ) such
that (;3(5) = qg(t) = p;, which is absurd. Thus ¢ stays in T" and hence defines unambiguously a
path ¢ from x to y in T”. By uniqueness of the latter, we conclude that <Z~> is also unique. The
case when x and y belong to different initial trees can be treated similarly. Essentially the same
argument also shows that if ¢ : [0,1] — T is a continuous injective map, then its image must
coincides with the segment from (0) to ¢ (1) in 7.

Finally, we check (sequential) compactness. Let (g,)n>1 be a sequence in T’ pick for each
n an element y, € 7,. In the case when there exists some tree, say T;, such that y, € T; for
infinitely many n’s, then, since T} is compact, we can extract from (y,)n>1 a subsequence which
converges in T;, say towards y, and it follows that there is a subsequence extract from (g )n>1
that converges towards the equivalence class g of y. Next consider the complementary case when
for all trees T;, there are only finitely many n’s with y,, € T}, and the same also holds for 77. We
can then extract from (y,)n,>1 a subsequence such that each y, (along this subsequence) belongs
to a different tree, say y, € Tj(,). The assumption (2.2) entails that dry (Yn» pi(n)) converges to
0 as n — o0 along this subsequence. By compactness of T”, we can extract a further subsequence
from (7)) that converges to a point x € T’. We conclude that (g, ),>1 contains a subsequence

that converges towards the equivalence class T of x, and hence T' is compact. O

We next extend the gluing operation to decorations; recall that these must be given by usc
functions on trees. Specifically, we consider a decorated real tree T' = (T”,dp, p’, ¢') with marks
(ri)ier and a family of decorated real trees, T, = (T;,dr,,pi,gi) for i € I, such that the T;,
i € I, are pairwise disjoint and also disjoint from 7”. We define a function g on the glued tree
T which coincides of course with ¢ on T"\{r; : ¢ € I}, with g; on T;\{p;}, and is adjusted at
the glued points in order to ensure upper semi-continuity. More precisely, define first the map
g-:T" >Ry by ¢”(y) = ¢ (y) if ye T" and ¢g“(y) = gi(y) if y € T; for i € I, and then

9(y) =supg”(y), GeT.
Yy

Lemma 2.3. Suppose (2.2) and further that

(max gi(y)> is a null family. (2.3)
yeT; iel

Then T := (T,dr, p,g) is a decorated real tree.

Proof. We have to verify that g is usc. Let § € T and a > ¢(y). We distinguish three possible
situations.

The simplest is when § = {y;} for some y; € T}, with i € I. Then ¢(g) = ¢i(y:), and since
necessarily y; # p;, we can find a small neighborhood V; of y; in T; such that p; ¢ V; and

22



9i(z) < a for all z € V;. In particular the equivalence class Z of any z € V; is reduced to {z}, so
9(3) = gi(z) < a. In the obvious notation, V; is a neighborhood of § in T, and we conclude that
g is usc at §. The same argument applies when § = {y} for some y € T" which does not belong
to the closure of {r; : i € I'} in T".

Next suppose that 7 is the equivalence class of a marked point in 7”7, that is

g=A{ztu{p;:jeJ},

where z is one of the marked points in 77 and J = {j € I : r; = 2} # . Let V be a
neighborhood of z in 7" such that ¢’(z) < a for all z € V. Similarly, for every j € J, there is a
neighborhood Vj of p; in Tj such that g;(z) < a for all z € V;. The assumption (2.3) ensures
that the set J, = {j € J : maxer; g;(2) > a} is finite. We deduce that

G=Vu <|_| VJ> L |_| T;
jeJa jeI\Ja

is a neighborhood of x in T for the pseudo-distance d° and g-(z) < a for all z € G. If we
write G for the set of equivalence classes that G induces in 7', then Gisa neighborhood of g
and g(2) <aforall € G.

The last case is when § = {z} for some x € 7" which is not marked, but adherent in 7" to
the family of marked points. Recall from (2.3) that I, := {i € I : max,er, ¢i(z) > a} is finite.
Since x is not marked, we can find a neighborhood V' of z in T” that avoid the mark r; for every

i € I,, and then a possibly smaller neighborhood V" < V' such that ¢/(z) < a for all z € V".

The set
U=V"L <|_| T)

i1y
is then a neighborhood of z in T for the pseudo-distance d°, and we have g-(z) < a for all
z e U. If we write U for the set of equivalence classes Z for z € U, then Uis a neighborhood of
jin T, and g(3) <aforall e U.
We have thus verified that g is indeed usc on 7. An appeal to Lemma 2.2 completes the
proof. O

When we want to record specifically all the elements involved in the gluing operator, we shall

use the notation
T= Gluing(T', (r3)ier, (Ti)ieI)'

It will be convenient to call degenerate a decorated real tree T; = (13, dr;, pi, g;) such that
T; = {pi} is merely a singleton decorated with g;(p;) = 0; in that case we shall use the notation
T; ~ t. Plainly, gluing a degenerate tree T; on a decorated real tree T’ is a neutral operation
without incidence on the outcome (apart from removing the associated mark), and we may as
well discard degenerate elements in gluing operations. We also stress that if the decorated real

trees T;, which are glued onto on T', are themselves marked, say (r; ;);es, on T; for every i € I,
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where we use pairwise disjoint set of indices J; for ¢ € I, then slightly more generally the gluing
process yields a decorated real tree with marks indexed by J = | |._; J;. The latter is naturally

denoted by

el

Gluing (T/, (ri)ier, (Ts, (ri,j)jeJi)ieI)
In particular, this enables us to iterate the gluing operation, notably as it will be done in the

next section.

2.2 Construction of decorated real trees by gluing building blocks

We first introduce some standard notation related to the Ulam tree, whose set of vertices?

consists of finite sequence of positive integers,

U= | N,
k=0

with the convention N := {@}. The vertices are sometimes referred to as individuals, since one
may think of U as a population structured by its genealogy, where each individual has an infinite
offspring. We use related vocabulary; for instance the edges of the Ulam tree connect parents to
their children. We write |u| for the generation of u € U (the length of the sequence u), u(j) for
the ancestor at generation j of w (that is the prefix of u with length j) whenever |u| = j, and
uv for the sequence of length |u| 4 |v| resulting from appending v to u (in particular, for ¢ € N,
wi is viewed as the i-th child of u). We also write U* = U\{@} for the set of nonempty finite
sequences of positive integers and u— for the parent of u € U*, i.e. u— = u(|u| —1).

The Ulam tree will be used to index the building blocks appearing in the construction of
decorated real trees through successive gluing. In order to unify the presentation, it is convenient
to allow certain of these building blocks to be degenerate, where, as in Section 2.1, degenerate
elements can always be discarded in the construction. For simplicity, we also call a vertex u
fictitious if it indexes a degenerate block and then write u ~ f for a fictitious vertex. We agree
that only fictitious vertices uv appear in the descent of a fictitious vertex wu; as a consequence
the subspace of non-fictitious vertices forms a subtree of U.

For the sake of simplicity, we shall present first the construction of decorated real trees by
recursive gluing without measures, and then later on discuss natural Borel measures on such

spaces. The building blocks for the construction by gluing consist of a pair of families

(fu)ueTU ) (tu)uEU*
that satisfy the following properties for any non-fictitious u € U:
o fu:[0,2,] — Ry is a rcll (right-continuous with left limits) function with z, > 0;

e cither t; € [0, Zu] or ty; ~ T;

2U is not a real tree, but rather a tree in the sense of combinatorics.
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e If t,; ~ T then the vertex us is also fictitious.

We further use the notation

sup fu = sup fu(z) and |fu] = 24 +sup fu.

0<r<2y

We also agree for definitiveness that if u ~ { is fictitious, then f, is degenerate (recall that this
means z, = 0 and f,(0) =0), | full =0, and t,; ~ T for all i > 1 as well.
We always assume that
(| full : w € U) is a null family. (2.4)

Before we formally define the gluing construction, let us provide an informal explanation
of the roles of the building blocks. A (non-fictitious) interval [0, z,] will become a segment of
the resulting real tree 7', and the real number ¢,; # { will be used in the gluing construction
to specify the location on the parent segment where the ¢-th child segment labeled by ui is
glued. In particular, t,; will yield a branching point of the real tree whenever 0 < t,; < z,
and z,; > 0. When u has only fictitious children, the construction regarding the subtree rooted
at u stops at that point, in the sense that no segments are glued on the segment labeled by
w. Finally, the family (f,)uey will correspond to the usc-decoration. In this direction, we
must address a technical issue regarding the regularity of trajectories. When dealing with most
random processes in continuous time (e.g. a Feller process), one usually works with rcll versions,
which is the reason why we requested the functions f,, above to be rcll. Nonetheless, we have to
consider rather their ucs versions in order to conform to the framework introduced in Section 2.1.

Formally, if f : [0, 2] — Ry is rell function, then its usc version f is defined by the relation:

f(t) == max {f@t=), f(t)}, forte]0,z], (2.5)

with the convention f(0—) = f(0). This only affects the values of the function at times when it
has a negative jump (including possibly at lifetime).

We also agree to write simply d for the usual distance on any interval. For every non-fictitious
u € U, we view f, as a decorated compact interval ([O,ZU],d,O, fu), and the family of non-
fictitious times ¢,; for ¢ = 1 as marks on [0, z,,]. The gluing operation described in the preceding
section uses pairwise disjoint real trees, and we shall therefore introduce disjoint isomorphic
copies of the preceding for different v € U. Namely, we use the Ulam tree to differentiate these
segments, and, in the notation of Definition 2.1, we consider for every non-fictitious u € U the

decorated segment
Su = (Sua dua Pus fu)a

where S, = {(u,t) : t € [0,24]}, pu = (u,0), and the metric d,, and usc decoration fu are
defined by

dy((u,s), (u,t)) = d(s,t) and  fu(u,t) = fu(t), fors,te [0,z
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In particular, the segments S, are pairwise disjoint sets and S,, is isomorphic to ([O, zu], d, 0, fu),
in the sense that there is a bijective isometry ¢, : [0, z,,] — Sy with ¢, (0) = p,, and f is the
usc version of f o, 1. We stress that ¢, is actually unique, since we are dealing with oriented
segments. Last but not least, we further mark each segment using the family of (non-fictitious)
tyi with @ = 1. More precisely, if we let I, = {uj : uj # t} for the non-fictitious offspring of the
individual u (introducing this notation is needed as we want to use different set of indices for the
marks arising from different blocks), then the family of marks on S, is given by (%, := (u, ty))ver, -

We can now proceed with the formal construction of a decorated real tree from building

blocks, where at first, measures are discarded. We introduce first the disjoint union of segments

T :=|_|Su,

uxt
where the union is taken over the set of non-fictitious vertices © € U. We use pg as root, and
write d” for the natural distance on T which is given by d, on each segment S, and such that
d’(z,y) = oo when x and y belong to different segments (i.e.  and y are in different connected

components). We also define unambiguously the map ¢g“ : T — R, by
g°(x) == fulz), for every x € S, and u ¥ f.

We then construct recursively® a sequence (d"),>1 of pseudo-distances on T“, using the
gluing operator of Section 2.1; note that (2.4) ensures the requirements (2.2) and (2.3) in this
setting. Specifically, d! is the pseudo-distance on T obtained by identifying p; and the marked
point #; for each non-fictitious vertex i at the first generation, that is i € Iy. Segments at
generations 2 and more are not affected, in particular d'(z,y) = o for any x € S, and y € S,
with v # v and |u| v |v] > 2. Next d? is the pseudo-distance on T“ obtained by further identifying
pij and the marked point fij for each vertex ij € I; and each i € I. And so on, and so forth,
generation after generation.

Then consider any z,y € T", say z € S, and y € S,. Plainly, if u = v, then d"(z,y) = d°(x,y)
for all n > 0. If u # v, then d*(x,y) = 00 when n < |u| v |[v|, whereas d"(x,y) = d" (z,y) < ©

for all n,n’ > |u| v |v|. We can then set
d°(z,y) = lim d"(z,y),
n—00

and d° defines a pseudo-distance on T~ which is now everywhere finite (this can be interpreted

as connectivity). Alternatively, we could also define directly d° as the largest pseudo-distance
on T*“ which coincides with d, on each segment S,, and such that do(fv, py) = 0 for every
non-fictitious v € U*.

We next define T° as the quotient space for equivalence relation

T~y <= d(z,y)=0, x,yeT".

3Instead of developing a recursive construction, one could have given directly an explicit formula for d”* in
terms of distances d,, for all the vertices w on the segment from u to v in U. However the formula would be a bit

cumbersome to state precisely and not quite transparent, at least for the first reading.
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We write dro for the distance on T° induced by d° and also define the map ¢g° : T° — R, given
by
g° (&) =sup g (z), zeT".

TET
Note that ¢° is actually bounded, thanks to (2.4).
The following claim can be viewed as the analog of Lemma 2.3 for infinite iterations of the
gluing operation, and its proof relies heavily on this lemma. Recall that a metric space is called

pre-compact if, for every € > 0, it can be covered by finitely many balls with radius e.

Lemma 2.4. Assume (2.4) and
0
: .= N{ _
kh_)II;O sup { nZk Zgn) t UEN } =0, (2.6)

where (n) € U stands for the prefir at generation n of an infinite sequence @ € NN of positive

integers. Then (T°,dre) is a pre-compact real tree and g° an usc function.

We briefly postpone the proof of Lemma 2.4 and mention that since plainly

sup{ i Za(n) :EGNN} < i sup{zu : ueNn},

n=k n=k
we shall often use in the sequel the simpler but stronger requirement

0

2 sup {zu Tu€ N”} < 0, (2.7)

n=0
which implies (2.6).

Taking Lemma 2.4 for granted, we can easily finalize the construction of decorated real trees
from building blocks as follows. We let (7', dr) be the completion of the metric space (1, dro)
and write simply p for the equivalence class of pg in T°. We also extend ¢° to the boundary
T\T° and define the map g : T — R, by g(y) = ¢°(g) if y =y € T°, and g(y) =0 if y € T\T°.

Theorem 2.5. Assume that the building blocks fulfill (2.4) and (2.6). Then T = (T,dr,p,g) is a

decorated real tree.

Proof. The completed space (7', dr) plainly inherits connectivity and the four point condition
(2.1) from (T°,dro), and is therefore a real tree. We also know from Lemma 2.4 that (T°, dgo) is
a pre-compact space, so its completion (7', d) is compact. We turn our attention to the extension
g of g°. Take first x € T° and a real number a > ¢°(x). Since ¢° is usc at x, we can choose € > 0
small enough such that g(y) = ¢°(y) < a for all y € T° such that dp(z,y) < e. Since g(y) = 0,
for every y € T\T°, it follows that ¢ is usc at z. Suppose finally that z € T\T°, and take any
a > 0. The distance from x to any segment S, with | f,| = a is bounded away from 0, since by
(2.4), there is only finitely many such segments. We can again choose ¢ > 0 small enough such
that g(y) = ¢°(y) < a for all y € T° such that dr(z,y) < €, which shows that ¢ is usc at z. So

g is an usc function on 7', and the proof is complete. ]
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Remark 2.6. Beware that, in spite of what the notation might suggest, T° should not be thought
of as the interior of T'. It should be plain that every boundary point of T° is always a leaf of T,

but the converse usually fails. In other word, we have
T\T° < 0T,
and the inclusion can be strict in general.
Let us now establish Lemma 2.4.

Proof of Lemma 2.4. By construction, (T°,dr-) is a connected metric space; let us show that it
is a real tree by checking the four point condition (2.1). Pick any x1,z9,z3,24 in T, and let k
denote the maximal generation of the indices v € U such that the segment S, contains at least
one of those points. Since we know by iteration from Lemma 2.2 that gluing the segments up

to the k-th generation produces a tree and that trees satisfy the four point condition, we have
d¥(x1, x2) + dF (x5, 24) < (dF (1, 23) + d¥ (20, 24)) v (d¥ (21, 24) + d¥ (22, 23)).

Recall that d°(x,y) = d*(x,y) for any points z,y in segments indexed by vertices at generations

at most k, so we have as well
d°(x1,z2) + d°(z3,24) < (d°(x1,23) + d°(x2,24)) v (d°(21,24) + d°(x2, 23)).

Denote by Z; the equivalence class of x; for the pseudo-distance d°, with i = 1,2,3,4. We can

rewrite the above inequality as
dre(Z1,22) + dro (Z3, 24) < (dre (21, &3) + dre (&2, 34)) v (dro (21, 4) + dre (22, T3)),

and we conclude that (7°,dro) is a real tree.
We next turn our attention the pre-compactness assertion. Fix € > 0 arbitrarily small; the

Assumption 2.6 allows us to pick k > 1 sufficiently large so that

0
Z Zﬁ(n) < 6/2,

n=k+1

for any infinite sequence % € NN. It follows from the construction by gluing that for every

y e T, we can find some z(y) € T-F := Lljuj<k Su such that

d’(y, z(y)) < /2.

Indeed, this claim is trivial if y € S, for some vertex v at generation |v| < k, and otherwise we

can take for z(y) the marked point fv(kﬂ) on Sy (recall that v(¢) denotes the ancestor of the
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vertex v € U at generation ¢ < |v|) so that then

o] -1

d° (‘T(y)a y) < Z dv(n) (pv(n)va(n+1)) + dy (pv; y)
n=k+1
lv]—1

< Z tv(n+1)+zv
n=k+1

|v]

< Z Zy(n)-

n=k+1

Denote by T°% < T° the subset of the equivalence classes of points in 7%* and infer from above

that for any 7 € T°, there is some #(§) € T°F such that

dro(9,2(y)) < &/2.

On the other hand, we deduce by induction from Lemma 2.2 that T°% endowed with the distance

dre is compact. Thus there exists a finite sequence in T°%, say 1, ..., &, such that the sequence
of balls with radius /2 centered at those points cover T°¢. We conclude from the triangle
inequality that the sequence of balls with radius € and centered at the &; now cover the whole
T°, and T° is hence pre-compact.

We finally check that ¢° is an usc function on 7°. Fix ¢ > 0; from (2.4) we can choose k > 1
sufficiently large so that sup f,, < € for any u € U at generation |u| > k. Define the function gj
on T°F by

gr(%) = sup {g”(y) yedn T“’“} :

We know from Lemma 2.3 and an iteration argument that g; is an usc function on Tk,

Therefore, for any & € T°F, there is ¢’ > 0 such that

go(#) < go(%) + e, for every &’ € T°F with dpo(&,7) < €.

It then follows from the choice of k that

g°(@") < g°(%) + &, forevery ¥’ € T° with dp-(%,7') < €,

proving that ¢° is indeed an usc function at any z € T°. O

It will be convenient to introduce a notation for points in T° given by equivalence classes
of marks (possibly fictitious) on the initial segments. For every vertex v € U*, consider the
mark £, on the segment S,_ (recall that v— stands for the parent of the vertex v). We then
write p(v) € T for the equivalence class of %, that is also the equivalence class of the root p, of
the segment S, as those two points are identified in T, and by convention set p(&) := p. The
reader will easily check that any branching point of T', say b, is of the form b = p(v) for some
non-fictitious vertex v € U. We also stress that in the converse direction, p(v) is not necessarily

a branching point of T' (counter-examples arise in the situation where ¢, = z,_ and there are no
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other non-fictitious vertices aside v in the offspring of the parent v—). A bit more generally, we
will sometimes use the following notation to identify points in 7° even when they have not been
marked. Consider any vertex v € U and any t € [0, z,]. We write p,(t) for the unique point on
the segment S, at distance ¢ from the root p,, and then p(v,t) for the corresponding point in
T° (strictly speaking, p(v,t) is the equivalence class of p,(t), which is actually reduced to the
singleton {p,(t)} except if p,(t) has been marked).

We also point out that the proof of Lemma 2.4 also yields some useful information, notably
about the height of T and the maximum of the decoration g, which we record in the next
statement. In this direction, recall that we wrote there T°F for the subset of T° given by the
equivalence classes of points in T-*F = |_||u| <k Su- On the other hand, we infer from Lemma
2.2 that T* is sequentially compact for the pseudo-distance d¥, that is we can always extract
from any sequence in T-* a subsequence which converges in 7% for the pseudo-distance d°. A
fortiori, this holds as well for the pseudo-distance d¥, and we deduce that T°F is actually closed
for the distance dro. We shall henceforth use the simpler notation 7% = T°%, and view T* as a
closed subset of T

Proposition 2.7. Assuming (2.4) and (2.6), we have for every k = 0 that

0
dT(y,Tk) <sup{ Z Zu(n) :TLENN}, forallyeT
n=k+1
and "
Height (7)) < sup{ Z Zg(n) P UE NN}.
n=0

Moreover, we have also

sup g(y) < max{supf,:ueU,lul > k+1}.
yeT\Tk

We also note the following direct consequence concerning Hausdorff dimensions.
Lemma 2.8. Assume (2.4) and (2.6), and write
00T ={x e dT : g(x) = 0}, (2.8)
for the set of leaves with decoration 0. Then, we have
dimy(T") < dimpy (0oT) v 1.

Proof. Recall that for any n = 0, the subset 7™ < T induced by the countable collection of
segments S, with generation |u| < n is a closed subtree. Therefore its Hausdorff dimension
cannot exceed 1. Moreover, T° = [ J,,5,T" obviously contains the skeleton T\dT' of T', and by
definition we have g(x) = 0 for every z € T\T°. O
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We now conclude this section and record notation for two important families of (decorated)
subtrees. The second and third have already appeared in this chapter, whereas the first will be

used later.

Notation 2.9. Let T = (T, dr, p, g) denote the decorated real tree constructed from the building
blocks (fu)uev and (ty)yeu in Theorem 2.5.

(i) For every non-fictitious vertex u € U, the building blocks indexed by descendants of w,
namely (fuv)ver, (fuv)veux and (myy)vey also fulfill the requirements of Theorem 2.5. We
write Ty, = (Tyu,dr,,p(u), gy) for the decorated real tree constructed from the latter by
gluing®.

(ii) For every generation n > 0, we write T" = (1", dpn, p,g") for the decorated real tree
constructed by gluing the building blocks up to generation n only, that is from the building
blocks (fi)uev and (t})yecu*, where f! = f, and ¢} = t, when |u| < n, whereas these

quantities are fictitious when |u| > n.

(iii) We write 7° = | J,,»; T". The set T\T* of adherence points of 7° is included into the set
of leaves 0T.

We stress that T), is always a subtree of the fringe subtree T}, rooted at p(u) € T', and that
the inclusion is strict in general. Last, note also that although ¢" is always dominated by the

restriction of g to T™, these two functions may be different only at marked points.

2.3 Measured decorated trees

We will now equip the compact real tree T constructed in Theorem 2.5 with some finite measures.
First, as any compact real tree, our tree 1" is naturally equipped with the length measure Ap,
which is given by the one-dimensional Hausdorff measure on the skeleton, see [70, Section 2.4].
In words, Ar mirrors on each segment of 1" the Lebesgue measure on intervals, where we recall
that segments of T" are isometric to intervals of Ry. We stress that Az is usually only a sigma-
finite measure. However, we can consider a density function f : T — R, in L'(Az) and then
take v(dz) = f(z)Ap(dx). Densities that will appear naturally in this work depend on the
decoration, that is, they are of the type f = w o g, where w : Ry — R, is a measurable
function. The resulting measure on T is then denoted by w o g-Ar and often called the weighted
length measure. We stress that the length measure, and therefore a fortiori w o g - Ap as well,

gives no mass to the set of leaves 07. We also stress that, since the set of points {p(v) : v e U}

4We make here a slight abuse in order to view T}, as a subtree of T: we have previously defined p(u) € T as the
equivalence class of the root p, of the segment S,, which is actually larger than the equivalence class obtained
when the gluing construction restricted to descendants of u. A similar minor abuse is made for the same reason

in (ii).
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is countable and thus receives no mass from Ay, we have
f w o g(x)Ap(dx) f w o fu(t) (2.9)

where the sum in the right-hand side is implicitly taken over non-fictitious vertices. In particular,
the requirement w o g € L'(Ar) is equivalent to the finiteness of the previous display.
We shall now construct another class of measures on T, which, at the opposite, are typically

carried by ¢7T. This requires to introduce, on top of the building blocks, a further family

(NQU)uEU

where m,, = 0, m, = 0 when u ~ f is a fictitious vertex, and most importantly,
Z My = My, for all u e U. (2.10)

Note that if m,, > 0, then (2.10) implies that u has at least one infinite line of descent with only
non-fictitious vertices. Next recall that p(u) denotes the point in T" associated to a mark t¢,. We

then define for every n > 0 the purely atomic measure u"* on 7T given by

= > M o (2.11)

ul=n
where the notation ¢, is used for the Dirac point mass at x, and we implicitly agree to ignore
fictitious vertices in the sum. It is immediately seen by induction from the requirement (2.10)

that u"*(7T") = mg for any n > 0.

Proposition 2.10. Assume that the building blocks fulfill (2.4), (2.6) and (2.10). The sequence
(UW)pn=1 converges in the sense of Prokhorov towards a Borel measure on T denoted by w. One

has W(T') = mgy.

Proof. Recall that for any n > 0, the set 7" denotes the subtree of T" obtained by gluing the
collection of segments S,, with generation |u| < n. We write p™ : T — T™ for the projection on
T™, that is for any y € T', p™(y) is the right endpoint of the segment [[p,y]] n T™. On the one
hand, the first claim in Proposition 2.7 entails

o0

iy 1) < 3] sy wen)

k=n+1
On the other hand, we infer by iteration from (2.10) that for any n’ > n, the push-forward of
u”/ by p™ coincides with p™.
We deduce from these two observations that the Prokhorov distance between p™ and p™ is

at most
o0

dProk(Hn, Hn,) < SUP{ Z Za(k) - u e NN}.
k=n+1

Since (2.6) requests the right-hand side to converge to 0 as n — o0, the sequence (u"),>1 is

Cauchy on the space of measures on 17" with total mass mg, and our claim follows. ]
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We also point out that, under a minor additional hypothesis, the measure p constructed
above is carried by the boundary points of the pre-compact tree T°. Recall that the latter

denotes the equivalence class of T"; see also Remark 2.6.

Proposition 2.11. Assume (2.4), (2.6) and (2.10). Suppose further that for any non-fictitious
vertex v € U*, the mark t, is strictly positive. Then we have W(T°) = 0, and as a consequence,

W is carried by the subset of leaves T\T*.

Proof. We shall check first that the root p is not an atom of p, which should be intuitively
clear. In this direction, write Sy := {p(2,t) : t € [0, 2]} for the segment in T induced by the
equivalence class of the ancestral segment Sg. Then for any a > 0, consider the subset T, of
points € T such that the length (i.e. the Ay measure) of the segment Sy N [[p, z]] is less than
a. By (2.10) and the construction by gluing, we have

H(T<a) = Z 1t‘j<amj7

j>1

and since we assumed that the (non-fictitious) marks t; are strictly positive, we have
lim w(7T<,) =0.
a—0+ FL( <a)

Also by construction, the open ball in T centered at p and with radius a is contained in T,.
Letting a — 04, we conclude that n({p}) = 0.

Next, recall that for every non-fictitious vertex j > 1 at the first generation, p(j) € Sy
denotes the equivalence class of the mark fj on the ancestral segment Sg. On the one hand, the
argument above shows that we have also u({p(j)}) = 0. On the other hand, the requirement
(2.10) entails that the entire mass of w is carried by the union for j > 1 of the fringe subtrees
rooted at the p(j). This shows that p assigns zero mass to the equivalence class of ancestral
segment, ll(gg) = 0. We conclude by iteration on generations that pu assigns zero mass to 1°,
and a fortiori to the skeleton T\0T. O

2.4 Hypographs, topologies, and isomorphic identifications

We have developed so far general material on (measured) decorated real trees and their construc-
tion, and roughly speaking, we now would like to compare two different decorated real trees one
with the other. More precisely, our main motivation is to give a rigorous definition of a notion
of convergence for sequences of these objects. Actually, although dealing with usc functions on
compact metric spaces is fundamental to our approach, tree structures are essentially irrelevant
for this question, and we shall develop first a more general framework that could also be used
for other purposes. It will be only at the end of this section that the special case of real trees
will be addressed more specifically.

Let (Y, dy) be a Polish space and K(Y') denote the set of non-empty compact subspaces in Y.

Consider an usc function g : K — Ry for some K € K(Y) which we refer to as the domain of
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g. Upper semi-continuity enables us to view g as a compact subspace of the larger Polish space

Y x R, by introducing the hypograph
Hyp(g) = {(z,r):ze Kand 0<r < g(z)} < Y x Ry.
Specifically, the product space Y x R is naturally equipped with the distance

dy x®r, ((y,r), (v, r/)) =dy (y,y) v |r — 1], (2.12)

and Hyp(g) is then a compact subspace® of the Polish space (Y x Ry, dyxr ). Plainly, the
hypograph Hyp(g) determines g : K — R,. Namely, the domain K is the base of the hypograph,
that is the image of Hyp(g) by the first projection p; : Y x Ry — Y, and

g(z) =max{r = 0: (z,7) € Hyp(g)}, for every z € K.

In this work, we will interpret a decorated tree through its hypograph. Before continuing
with the general study of hypographs and defining a suitable metric for comparing them, let
us highlight the following consequence of Lemma 2.8 and establish a bound for the Hausdorff
dimension of the hypograph of the decoration g.

Corollary 2.12. Assume (2.4) and (2.6), and recall from (2.8) that 0T denotes the subset of
leaves of T' on which the decoration g vanishes. Then, the Hausdorff dimension of the hypograph

of g can be bounded by
dimg (Hyp(g)) < dimg(0oT) v 2,

where dimg (00T stands for the Hausdorff dimension of doT equipped with the restriction of
dp.

Proof. Recall from Notation 2.9, that for every n > 1, the notation T stands for the subtree
of T built by gluing segments up to generation n only. Both T and T™ are rooted at p and T
is decorated with the usc function g, while T™ is decorated with ¢g" which verifies ¢" < ¢ on
T™. The hypograph Hyp(¢g™) can be constructed by gluing a countable family of hypographs of

decorated segments, each having Hausdorff dimension smaller than 2, and therefore
dimH( U Hyp(g”)) < 2.
n=0

Since the family (|f. )uev is null, we infer that |, -, Hyp(9") = U, o Hyp(g97=), where grn
stands for the restriction of g to T™. Finally, recall also from the proof of Lemma 2.8 that

T\U,soT" is a subset of 0T, so we can write

Hyp(g) = (U Hyp(m)) U (60T X {0}>,

n=0

and the desired bound follows. O

5This is one of the main reasons why we considered usc functions.
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Our goal now is to define a metric to compare general hypographs. In this direction, consider
two usc functions g : K — Ry and ¢’ : K/ — R, with respective domains K and K’ in K(Y).

Their hypographs Hyp(g) and Hyp(g’) are thus two elements of (Y x R, ), and we can define

dHyp(gv g/) = dHaus (Hyp(g)7 Hyp(g/>) ,

where in the right-hand side, dy..s denotes the Hausdorff distance between two compact subsets
in Y x R;. In words, the hypograph distance dpyp between two usc functions g : K — R, and
g : K' > R, is at most ¢ > 0 if and only if for every z € K we can find 2/ € K’ such that
dy (z,2') < e and g(x) < ¢'(2') + €, and wvice versa when the roles of g and ¢’ are permuted.
The hypograph convergence for sequences of usc functions can be characterized as a kind of

pointwise convergence, see [13] for details.

Remark 2.13. In the case when Y = R, it is natural to compare the distance between two
functions in the sense of hypographs with other notions d la Skorohod; see [32, Chapter VI| for
background. Specifically, take a < z and @’ < 2/, and let g : [a, 2] — Ry and ¢ : [d/, 2'] — R, be
two usc functions. It is then readily checked that for any increasing bijection § : [a, 2] — [d, 2],
one has
dityp(9, 9') < max {[lg — g" 0 B[, |8 — 1dje 1]},

where we use the notation || - | for the supremum norm on the space of bounded functions on
[a, 2] and Id[, ;) for the identity function on [a,z]. As a consequence, convergence in the sense
of Skorohod for sequences of rcll (right-continuous with left limits) functions defined on compact
intervals entails convergence of the sequence of usc versions® in the sense of hypographs. Of
course, the converse fails. For instance, consider g, : [0,1] — Ry given by g, (z) = 1 + cos(nx)
for n > 1. Then the sequence (g, )n>1 converges as n — o to the constant function 2 on [0, 1]

for the distance dgyyp, but does not converge in the sense of Skorohod.

Let us now extend the main nomenclature and notations introduced for real trees to the
setting of general compact metric spaces. In this direction, consider K € K(Y'), and note that
this set is naturally endowed with the distance dx induced by the restriction of dy to K x K.
We say that (K, dk) is rooted if it is equipped with a distinguished point p in K, also referred
to as the root. Similarly, the compact space (K, dg) is said decorated (resp. measured) if it is
equipped with an usc function g : K — R, (resp. with a finite Borel measure v on K).We use
short hand notations K := (K, d, p, g) for a decorated compact space and K = (K, dg, p,g,V)
for a measured decorated compact space. Obviously, a decorated compact space can always be
seen as a measured decorated compact space once equipped with the null measure, so that we
directly develop the formalism in the more general case.

We write H,,(Y") for the space of measured decorated compact spaces on Y, that is formally

Ha(Y)= || {(K,dK,p,g,v):peK,g:K—>R+usc, andver(K)},
KeK(Y)

Recall that if g : [a, 2] — R4 is a rcll function, its usc version is the function defined by §(t) == max{g(t—), g(t)}
for t € [a, z], with the convention g(a—) = g(a).
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where M/ (K) denotes the space of finite Borel measures on K. We endow H,,(Y) with a
natural metric defined for any K, K’ € H,,,(Y) in the obvious notation by

de(Y) (Kv K/) = dy (P» pl) Vv dHyp (ga g/) v dprok (Va V,) )
where dp,ox stands for the Prokhorov distance on M/ (Y).

Proposition 2.14. The space H,,(Y) of measured decorated compact spaces on a Polish space

(Y,dy) and equipped with the distance dy,,(yy is also Polish.

Proof. The heart of the argument is the observation, which is doubtless well-known, that the
space of hypographs of usc functions with compact domains in Y is closed in (Y x R, ). More
precisely, we claim that if (g, : K,, — R ),>1 is a sequence of usc functions with K,, € K(Y),
such that the sequence of hypographs (Hyp(gn)),; converges as n — o to some H for the
Hausdorff distance in (Y x R;), then the sequence (K,),>1 converges to some K for the
Hausdorff distance in K(Y). Furthermore, there exists an usc function g : K — R, such that
H = Hyp(g), and hence the sequence of usc functions (g, )n>1 converges to g as n — oo for the
hypograph distance dyyyp.

Indeed, the projection on the first component p; : Y x Ry — Y is a 1-Lipschitz map. Set
K = pi(H) for the image of H by pi, so K is a nonempty compact set. We now also regard
p1 as a map from K(Y x Ry) to K(Y); plainly this still is a 1-Lipschitz map, and therefore
K,, = p1(Hyp(gn)) converges to K for the Hausdorff distance in K(Y'). Then take any x € K
and r = 0 such that (z,7) € H. There exists some sequence (z, 7 )n>1 With (2,,7,) € Hyp(gn)
which converges to (z,r) in Y x R4. Since g, (z,) = 7y, the segment {z,} x [0,7,] belongs to
Hyp(gn), and therefore {x} x [0,7] € H. We set g(x) = sup{r > 0: {z} x [0,r] € H}. Since H
is compact, (x,g(x)) € H, and we conclude that H = {(z,r) : z € K and 0 < r < g(z)}. Now
using that H is closed, we infer that the function g : K — R is usc, and H = Hyp(g).

Next, let £ denote the space of rooted measured compact space on (Y xR, dy xr, ) endowed
with the Hausdorff-Prokhorov distance, say dpyp(g). Identifying the usc function g with its
hypograph Hyp(g), the root p with (p,0) € Hyp(g) and similarly v with a measure v on ¥ x R,
supported by the base K x {0} of Hyp(g), yields a natural isometric embedding, say

P : (Hp(Y),dn,,v)) = (B, dup))-

Since it is well-known that (E, dpp( E)) is a Polish space, all that is needed to establish Propo-
sition 2.14 is to verify that the image ®(H,,(Y)) of H,,(Y) under this embedding is closed
w1 i Hip (Y) such that the embedded sequence
(®(Ky)),>, converges in (E,dup(g)), say to (H,dw,p,V), where H € (Y x Ry ), dy denotes
the restriction of dy g, to H, p € Y x Ry and v € M/(Y x Ry). We have just seen above
that K, converges to K for the Hausdorff distance on C(Y') and that H = Hyp(g) for some usc
function g : K — R4. Plainly, since p is the limit of (p,,0) in Y x Ry and p, € K, for all

in (E,dyp(g)). So, consider a sequence (Kn)

n = 1, we have p = (p,0) for some p € K. Similarly, by the Portemanteau theorem, the measure
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v must be supported by K x {0}, and can thus be identified as a finite measure v on K. Last,
dp coincides with the restriction of dgxr, to H = Hyp(g). Putting the pieces together, we get
(H,dg, p,v) = ®(K) for some K = (K,dg,p,g,v) € H,,(Y), as we wanted to check. O

Roughly speaking, we are only interested in the general structure induced by a decorated
compact space rather than by a specific realization. More precisely, two decorated compact
spaces, say K = (K,dg,p,g,v) € H,,(Y) and K' = (K',dgk+, p', ¢', V') € H,,,(Y’) have the same
structure and then are viewed as equivalent (or isomorphic) if there exists a bijective isometry
¢ : (K,dg) — (K',dg) with inverse denoted by ¢!, such that o' = é(p), ¢ = go ¢!
and v/ = v o ¢! is the pushed forward of v by ¢. We then simply write K ~ K’. Note
that the underlying Polish spaces (Y, dy) and (Y’,dy) play no role in this definition and we
may simply take (Y,dy) = (K,dgk) and (Y',dy/) = (K’,dgs) for definitiveness. Let us also
make some comments concerning decorated trees and the general construction presented in
Section 2.2. First, note that due to the 4-point criterion, it is clear that a decorated real
tree can only be isomorphic to another decorated real tree. Moreover, we emphasize that the
gluing construction described in Section 2.2 is not unique in the sense that different building
blocks, ((fu)ueu, (tu)ueu*) can produce isomorphic trees. For instance, one may apply a bijective
isometry (for the graph distance) ¢ : U — U that fixes the root. More complex rearrangements
are also possible; for example, during a birth event, a mother particle might switch identities
with one of its daughters. Such modifications, called bifurcations, are studied in depth in the

self-similar Markov setting in Chapter 6. Informally, each bifurcation provides a different way

ol

|
|

to decompose the associated decorated tree in building blocks.

Figure 2.3: lllustration of a bifurcation event where the identity of two particles is
exchanged during a birth event. Obviously the underlying decorated tree is unchanged.

Our goal now is to define a notion of distance between equivalence classes. In this direction,
we denote the set of all equivalence classes of measured decorated compact spaces by H,,. Our
goal now is to endow H,,, with a natural distance and make it a Polish space. In this direction,
recall that the Gromov—Hausdorff-Prokhorov distance between two rooted measured compact

spaces (K,dk,p,v) and (K',dg, p', V') is defined as

dGHP((K7 dK7 P, V)7 (Klu dK’? p/7 V/))
= Yigfw dup(v) ((¢(K), dg(rys d(p)s v o &), (W(K"), dyicry, ¥(p), V' 0 ¢_1)>»

¥
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where in the right-hand side, dgp(y) stands for the Hausdorff-Prokhorov distance between rooted
measured compact spaces in Y, the infimum is over all the metric spaces (Y,dy) and all the
isometric embeddings ¢ : (K,dr) — (Y,dy) and ¢ : (K',dg/) — (Y,dy), and v o ¢! is the
pushforward measure of v by ¢. The quantity dggp ((K7 di,p, V), (K',dgr,p, v’)) is null if and
only if there exists an isomorphism between (K, d, p,v) and (K',dg,p’, V'), and dgup defines
a distance in the space of equivalence classes of rooted measured compact spaces, see [3].

This incites us to make the following definition. First, for any measured decorated compact
space K = (K,v) = (K,dk,p,g,v) and any isometric embedding ¢ : (K,dg) — (Y,dy), we
define

goop L p(K) >R, , good Yo(x)) = g(x) for all z € K.

1

Plainly, ¢(K) is a compact subset of Y and go ¢+ is usc. We further write

¢(K) = (¢(K)7V © ¢_1) = (¢(K)7d¢(K)a ¢(p)vg © ¢_17V o ¢_1)-

For every K and K’ measured decorated compact spaces, we then set

dir,, (K, K') = inf du,, ) (6(K), ¥(K)), (2.13)

¥y

where again the infimum is taken over all the Polish spaces (Y,dy) and all the isometric
embeddings ¢ : (K,dg) — (Y,dy) and ¢ : (K',dg/) — (Y,dy). We point out that in
the special case where g and ¢’ are identically zero on their respective domains, the dis-
tances d,, (K, dx, p,0,v), (K',dx,p',0,v")) and daup (K, dk, p, V), (K',dk, p', V")) coincide.
Of course dy,, (K,K') is invariant by isomorphisms, and therefore can be viewed as a function
H,, x H,, — R4 which we still denote by dp,, for simplicity. Our goal now is to establish the

following result.

Theorem 2.15. The map dy,, : H,,, x H,, - R4 defines a distance on H,, and (H,,,dy,,) is
Polish.

We prepare the proof of the theorem with a technical lemma. Roughly speaking, it states
that given an arbitrary sequence (K, ),>1 of equivalence classes in H,,, we can always find
some Polish space (Z,dz) and representatives of the equivalence classes in H,,(Z), such that
the distance in H,,(Z) between the representatives of two consecutive equivalence classes of the
sequence is never significantly larger than the distance between the equivalence classes (K )n>1

in H,,,. Here is the formal statement.

Lemma 2.16. Let (g,)n>1 be a sequence in Ry and (K, )n=1 = (Kn,dk,, pn, n, V" )n>1 @ se-

quence of measured decorated compact spaces with
dm,,, (Kn, Knt1) < en, for alln = 1.

Then there exist a Polish space (Z,dz) and isometric embeddings ¢1, 2, ... respectively from
Ky, Ky, ... into Z such that

dm,, (2) (00 (Kn), dni1(Kns1)) < en, Jor alln > 1.
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Let us mention that similar results have already appeared in the literature for different
variants of the Gromov—Hausdorff-Prokhorov distance. In this work, we adapt the proof of
Lemma 5.7 in [74], which establishes the analog of our Lemma 2.16 for the Gromov—Prokhorov

distance.

Proof. Without loss of generality, we may suppose that the compact spaces K, are pairwise
disjoint. First, by definition, we can find for every n > 1 a Polish space (Y,,dy,) and two
isometric embeddings ¢, : K, — Y, and ¢, : K,,41 — Y, such that:

Mn = de(Yn) (¢n(Kn)a 2;Z)TL(]KnJrl)) < én.

Then, we introduce the disjoint union Z := |_|n21 K,, and we endow Z with the metric dyz

defined as the largest distance that coincides with dg, on K, x K,, for each n > 1 and such that

dz(z,y) = dy, (¢n (@), ¥n(y)) + (en — Mn)/2, for z € K,, and y € K41,

where the term (g, — 7,,)/2 ensures that dz(z,y) > 0 when z € K,, and y € K,,41. Specifically,
for z; € Kj and x4 € K4 with 1 < j,k, we have
j+k
dz(xj, jk) = inf{ Z dz(xe—1,2¢) :xp€ Ky forevery £ =5 +1,...,k— 1}.
l=j+1
Since the spaces K, are separable, (Z,dy) is also separable. By a slight abuse of notation,
we still write (Z,dz) for its completion, which is a Polish space. We claim that (Z,dz) and the
sequence (pp)n>1, where p, : K, — Z is a canonical embedding, satisfy the conclusion of the
statement.
To begin with, note from the very definition of dz that, for every n > 1, the distance in Z

between the roots of K,, and K, satisfies

dZ(pn,pn+1) = dYn <¢n(pn)a wn(pn—&-l)) =+ <5n - nn)/2 < N+ <5n - nn)/Q < én-

Then, recall that the Prokhorov distance between v" o ¢! and v**1 04! is at most 7,. Take
any 1 > 7, and let A be an arbitrary Borel subset of Y,,. Writing A" for the n-neighborhood of
Ain Y, we have

Vo gt (A) < v oy(AY) 4.

Let B be an arbitrary Borel subset of Z, take A = ¢, (p, ' (B)), and set ' = 1 + (e, — 1) /2.
Since ¢, and v, are isometries, 1, 1(A") is contained into the pre-image by p,.1 of B", the

n’-neighborhood of B in Z. So the last displayed inequality shows that
v op, ' (B) < v op 1 (BT) + 1.

The very same argument also shows that
v o p 1 (B) < v op, ' (BT) + .
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Since 7 can be chosen arbitrarily close to 7,, this entails that

+

dprok(V* o p L, v o) < i + (80 — 1) /2 < e

Finally, we deal with the hypographs and check that
dityp (90 0P 9041 0Py ) < 0 (2.14)
Indeed, for every (x,r) € Hyp(g, o p,!), we have
inf {dz(2.y) v [r = 5| (,5) € Hyp(gns1 o ply) |
< (e —m)/2 + inf {dy, (6n(@), () v Ir = 5| (3,5) € Hyp(gns1) .
The second term in the sum above is bounded by
dtyp (gn © Oy gnr1 0y ') < dm,, (2 (éf’n(KnaVn)»T/Jn(KnJrlvVnH)) = ",
and therefore
sup {dzxr, ((x,7), Hyp(gni1°p,11)) : (x,7) € Hyp(gn o p;, ")} < en.
The same argument shows that
sup {dzxr. ((4,8), Hyp(gn 00y ') = (y,5) € Hyp(gn41 0 pyie) } < ene
This establishes (2.14) and completes the proof of the lemma. O
We can now proceed with the proof of Theorem 2.15.

Proof Theorem 2.15. The proof relies heavily on Proposition 2.14 and Lemma 2.16. We shall
use Lemma 2.16 to represent measured decorated compact spaces in the same well-chosen Polish
space (Z,d* ). It is convenient for this purpose to let Z systematically appear as an exponent
in the notation, writing e.g. dﬁyp for the hypograph distance on H,,(Z), rather than using Z as
an index or omitting it like in Lemma 2.16 and its proof.

We first establish that dp,, is a distance. Symmetry is clear; we now check the triangle

inequality. Let K, Ko, K3 three measured decorated compact spaces and £1,£2 > 0 such that
de (Kl, KQ) <é&r and de (KQ, Kg) < €9.

By Lemma 2.16, there exist a Polish space Z and isometric embeddings ¢, ¢2 and ¢3, respec-
tively from K7, Ko and K3 into Z, such that

dm,,(2) (¢n(Kn), dnr1(Kni1)) < en, forn =1,2.

By Proposition 2.15, dg,, (z) is a distance on H,,,(Z) and then the triangle inequality gives
dm,,, (K1, K3) < dp,, () (61(K1), ¢3(K3)) <e1 + €2
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Passing to equivalent classes, we infer that dy,, : H,, xH,, — R satisfies the triangle inequality.

We then check positivity. To this end we need to show that if K and K’ are two measured
decorated compact spaces such that dy, (K,K’) = 0, then they have to be equivalent. Let
us proceed. For every n = 0, set K,, = K if n is odd and K,, = K’ if n is even. Again by
Lemma 2.16, we can find a Polish space (Z,d?) and isometric embeddings ¢, 1 : K < Z and
¢on : K' — Z, for all n > 1, such that

dm,,(z) (¢n(Kn)> ¢n+1(Kn+1)) <27

It follows that the sequence (¢,,(Kn)),>; is Cauchy, and by Proposition 2.14, converges in
H,,(Z) to, say, K?. Specifying this for odd integers, we get in the obvious notation,
lim d?(¢2n-1(p),p%) =0, lim dfiy, (9 65, 1,97)

. Z —1 Z
=0 lim d Vo ve) =0.
m ) oo Prok( ¢2n71’ )

Recall now from the proof of Proposition 2.14 that the convergence of usc functions for the

Z

hypograph distance dHle

entails the convergence of the domains for the Hausdorff distance, so
nh_r)%o dgau5(¢2n—l (K)7 KZ) = 0.

This implies that for any = € K, the sequence (¢2,—1(x))n>0 is relatively compact in Z. On
the other hand, the sequence of isometries (¢2,—1)n>0 is of course equicontinuous. These ob-
servations enable us to apply the Arzela-Ascoli theorem, and we infer that there is a strictly
increasing sequence of odd integers (ng)r>1 such that (¢p,)k>1 converges uniformly to an iso-
metric embedding ¢ : K < Z. It is now immediate to check that K% = ¢(K), p? = ¢(p),
g% =gop™!, and vZ = voop !, so K and KZ belong to the same equivalence class in H,,. The
same argument shows that K’ and KZ also belong to the same equivalence class in H,,, and
establish positivity.

Finally, we check that the space (H,,,dq,, ) is Polish. Separability should be plain since the
set — of isometry classes — of measured decorated rooted compact spaces with a finite cardinality
and associated distances, measures and usc functions taking only rational values is dense in
(H,p, dm,, ). Completeness is also immediate from Lemma 2.16 and Proposition 2.14. Indeed, if
(Kp)n>1 is a sequence of measured decorated compact spaces such that:

Jim. sup dy,, (K, Kyq0) = 0,

then Lemma 2.16 enables us to embed (K, ),>1 into a Cauchy sequence (KZ),,>1 in (H,,(2), de(Z))
for some Polish space (Z,d?). We know from Proposition 2.14 that the latter converges, say
to some KZ € H,,(Z). We now see from the definition (2.13) that the equivalent class of K,

converges to the equivalent class of K in H,, as n — o0. O
Finally, we turn back our attention to measured decorated real trees; recall Definition 2.1.

Corollary 2.17. The set T,, of equivalence (up to isomorphisms) classes of decorated compact

real trees is closed in (Hy,,dm,,).
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Proof. Let (T,,)n>1 be a sequence of decorated compact real trees converging to some T in H,,.
We already know that T must be a decorated compact space. We just need to check that the
metric space associated to the latter is a real tree, which is immediate, using e.g. the four point

condition. See also [70, Theorem 1]. O

In the remainder of this work, we write dr,, for the restriction of dy,, to T,, and equip
T,, with the Borel sigma-field. Let us mention that the class of decorated trees, with a trivial
measure, can be viewed as a closed subclass of (Ty,,dr,,). This allow us to identify the set T
of equivalence of (non-measured) decorated trees with the closed subset of T,, of equivalence
classes equipped with the null measure. We denote by dr the induced distance so that (T, dr)
is also a Polish space which we similarly equip with the Borel sigma-field. We will often abuse
terminology and refer to a decorated real tree T = (T, dp, p,g) or a measured decorated tree
T = (T,dr, p,g,V) instead of their equivalence class, implicitly identifying a decorated real tree
and its equivalence class. When doing so, one must consider only notions that are invariant under
isomorphisms, such as weighted length measures (if o g € L'(Ar)). Other examples of notions
well-defined in T,, include the functions that associate to a decorated real tree its diameter, the
maximal value of the upper semi-continuous decoration, and its total mass. These functions
are all continuous with respect to dr,, and are particularly well-defined on T,,. We also stress
that by definition the map from (T,,,dr,,) to (T,dr), defined by (T, dr, p, g,v) — (T, dr,p,9),
is continuous. It will also be convenient to write 0 (resp. 0) for the element of T (resp. T,,)
corresponding to a degenerate real tree reduced to a singleton with zero decoration (and zero
measure).

In the sequel, we will sometimes have to consider equivalence classes of measured decorated
real trees with marks. A minor difficulty however is that marking a decorated real tree is not
unambiguously defined for equivalence classes, and as a remedy, we need to work with an exten-
sion of T,, and T for marked (measured) decorated real trees. This extension is straightforward
and let us present the measured decorated case.

Let T = (T, dr,p,g,V) be a fixed measured decorated tree and (x;);e; a family of points in
T, where I is a finite or countable set of indices. We then say that two pairs (T, (x;)er) and
(T, (2});er) are equivalent and then write (T, (xi)iej) ~ (T, (w;)ie[), if there exists an isometric

bijection ¢ : T'— T” which induces an isomorphism between T and T, such that furthermore
Ie

@(z;) = o} for all i € I. We denote the set of such equivalence classes by T,?,

and simply Ty,
when I = {1}. In order to extend the distance dr, to the set TI® of equivalence classes of
decorated real trees with marks, we fix some null family (a;);e; of positive real numbers. First,
when (T, (z;)ier) and (T, (2})er) are two marked decorated real spaces in some Polish space

(Y,dy), we set first

dH%(Y)((T, (zi)ier), (T, (@} )ier)) = du,,, (v) (T,T) v (sup (dy (zi, 2f) A ai>),

el
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Then, in the general case, one defines

dyre (T, (2i)ier), (T, (7)ier))

= At dan ) ((T),¢/(T")) v (Sgr) (dy (e(@i), ' (%)) A ai)>, (2.15)
G Ty

where the infimum is over all the Polish spaces (Y,dy) and all the isometric embeddings ¢ :
T—Yand ¢ :T — Y.

By definition, drzs induces a well defined function from TZ* x TZ* to R, which we still
denote by dpse by a slight abuse of notation. It is straightforward to check that the space
(Tle, drz.) is Polish, and we stress that the resulting topology on T!* does not depend on the
specific choice of (a;)ier. Specifically, Lemma 2.16 can be extended to this context using the
exact same proof, and then the proof of Theorem 2.15 can easily be adapted; we leave the details
to the reader. Just as in the unmarked case, we write T!* for the set of equivalence classes of
marked, non-measured, decorated compact trees, and when no confusion is possible, we identify
a marked (measured) decorated compact tree with its equivalence class in TZ* or T!* and we use
the notation (T, (z;)ier) and (T, (z;)ier). Later on, when we will deal with random decorated
trees, we shall always implicitly work on the canonical space T, T,,, T!* or T.* equipped with
their Borel sigma-fields, which will be endowed with different laws.

As an important example, we point out that the gluing operator defined in Section 2.1,
which uses marks to specify the locations where gluing takes place on the base tree, can be

made compatible with isomorphisms. Here is a formal statement.

Lemma 2.18. Let T' be a decorated real tree with marks (x;)ier and (T;)ier a family of decorated
real trees such that the domains of (T;)ier are pairwise disjoint and also disjoint from the one of
T'. Assume that (2.2) and (2.3) hold.

Let also T' be another decorated real tree with marks (Z;)ier and (Ti)z‘e] another family of
decorated real trees such that the the domains of (Ti)ie[ are pairwise disjoint and also disjoint

from the one of T'. Suppose that

9]

(T/, (xz')iel) N (T/, (i’z)le[) and T, ~ TZ fOT alltel.
Then (2.2) and (2.3) also hold for the second family of decorated real trees, and we have
Gluing((T’, (%’)z‘e[), (Ti)ie1> ~ Gluing(("f", (ii)id), (Ti)id)

Proof. With the obvious notation, let ¢/ : T/ — T" and ¢; : T, — T, for i € I, denote
bijective isomorphisms underlying the assumptions of the Lemma. By gluing these isomorphisms
at the marks (x;),c; in an obvious way, we can construct a function ¢ from the domain of

Gluing((T’, (:ci)z-el), (Ti)l.d) to the one of Gluing((T’, (i"i)iej), (Ti)id). One readily checks that

© is in turn a bijective isomorphism for the glued decorated real trees. O
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As a consequence, we can henceforth view the gluing operator as a map from a sub-domain
of T!* x (T)! to T; and as usual we keep the same notation for the latter as for the former.

By convention, we can extend the definition when conditions (2.2) and (2.3) are not fulfilled by
simply setting Gluing ((T’, (;)ser), (Ti)z‘el) = 0.

2.5 Comments and bibliographical notes

The formalism presented here is chiefly inspired by the recursive construction of continuum
random trees performed by Rembart and Winkel [124] in terms of so-called strings of beads and
by the general gluing of metric spaces along points performed by Senizergues, see [130, Section
2]. Note in particular that gluing of real trees along points is a folklore operation in the literature
on random real trees, see e.g. [1, Section 2.4], which can at least be traced back to Aldous [9]
and the famous stick breaking construction of the Brownian Continuum Random Tree.

Let us conclude with a discussion, for readers familiar with “Gromov-type” topologies, on
possible alternative topologies for decorated trees, and explain our choice. It is possible to define
a complete separable topology on the set of compact metric spaces endowed with a continuous
function taking values in a fixed Polish space and with a controlled regularity (e.g. a Lipschitz
condition), see [12, Section 3] and especially Remark 3.2 there. However, since we aim to consider
functions that are typically discontinuous on trees, finding an adaptation “a la Skorokhod” for
trees decorated with rcll functions in the spirit of [36] or [120] seemed complicated. Another
approach inspired by the Brownian and Lévy snake constructions of Duquesne & Le Gall [65],

involves viewing the label of a point x of a “decorated” tree as a rcll path:

CI : [O,dT(p,iL‘)) — R,

representing the entire history of the “decoration” from the root of T to z. By doing so, the
labeling becomes Lipschitz over the real tree (for the appropriate topology of space of paths), al-
lowing us to define a Gromov-type topology for such structures. The resulting “snake” topology”
differs from the topology discussed in this chapter: snake convergence roughly corresponds to the
convergence of the (measured) rooted tree in the Gromov-Hausdorff-Prokhorov sense, combined
with a Skorokhod convergence of the decorations along the macroscopic branches, but it does
not cover the decorations near the leaves. Conversely, our hypograph convergence uniformly
controls the supremum of our function over any non trivial interval of the tree, but the topology
is weaker “in the interior of branches”, see Remark 2.13. We chose the hypograph-type topology
because, besides the fact that functions are defined on leaves, it also works well with the gluing
operation and is particularly suited for studying Markov properties and spinal decompositions

in the context of decorated trees, see Chapters 5 and 6.

"Snake trajectories [1, 65, ] encode more structure than just the tree and the labels. Roughly speaking,
they also encode a canonical contour function of the underlying tree. The analogy with snake trajectories here is
that we consider the entire ancestral path as a label. This is also reminiscent of the notion of historical processes

in the theory of superprocesses [63].
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Chapter 3
Branching processes with real types

Motivated by the evolution in continuous time of a population of individuals, Jagers [33] intro-
duced general branching processes as Markov random fields indexed by the Ulam tree. Roughly
speaking, each individual is labeled according to its ancestral lineage, and receives at birth a
type in some abstract space which determines the statistics of a so-called life career. The life-
time, the reproduction process and further traits of an individual (which typically may evolve
with the age of the individual) are all viewed as measurable functions of its life career. The
branching property requests that conditionally on their types, the life careers of individuals at
generation n are independent, and also independent of the life careers of individuals from the
previous generations.

For the applications we have in mind, here types are positive real numbers'. Any individual
may beget infinitely many children?, but only finitely many with types greater than e for every
€ > 0. We apply results of the preceding chapter to construct, under fairly general assumptions,
a random real tree that encodes the evolution of such a branching process, and such that lengths
of branches correspond to time durations. We decorate the latter with a nonnegative usc function
to represent some trait of every individual which may vary with the age. We further endow the
resulting tree with different weighted length measures, and, assuming further the existence of a
harmonic function on the space of types, we also define a natural Borel measure carried by the
set of leaves of the genealogical tree.

The framework is made simpler when one further requests self-similarity and the Markov
property in time. More precisely, it is well-known feature that general branching processes are
Markovian when viewed as processes indexed by generations; however the Markov property

in the time variable fails, except in the very special case when lifetimes have an exponential

In Chapter 6, we shall also consider a bit more generally models with distinguished individuals, so that
formally the type of an individual has then two components: a positive real number together with a distinction
or an absence of distinction.

2This situation is usually excluded in the setting of general branching processes, as it would be awkward
from a biological point of view. It is nonetheless relevant when populations and types have rather a geometric

interpretation as we shall see later on.
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distribution and reproduction processes are homogeneous Poisson processes. Nevertheless, the
fact that we do not only consider the evolution of a branching population with types, but also
endow individuals with a random decoration, will enable us to retrieve the Markov property
in the time variable for a large family of self-similar models. Self-similar Markov branching
processes are introduced in Section 3.3 and will be shown to arise as scaling limits of a variety of
discrete Markov branching models in Part II. The construction relies on the so-called Lamperti
transformation, which is classically applied to connect real Lévy processes to positive self-similar

Markov processes, and we shall also provide some necessary background in this setting.

3.1 General branching processes as random decorated real trees

In this section, we shall apply general results from the preceding chapter and define the decorated
real tree that depicts a general branching process endowed with some random decoration for
individuals. In this direction, we will have to specify the distribution of the building blocks, and
to start with, we recall more precisely how a general branching process with types in (0,00) can
be constructed.

We call decoration-reproduction process a pair (f,n) with f : [0,z] — Ry a random rcll
function on a random interval [0, z], and 1 = n(d¢, dy) a point process on (0, z] x (0,0). Strictly

speaking, we mean by this that 1 is a point process on Ry x (0,00) such that
n({0} x (0,00)) =0 and n((z,0) x (0,0)) =0, almost surely. (3.1)

See Figure 3.1 below. We refer to f, respectively to 7, as the decoration process, respectively the
reproduction process. We should think of z as the lifetime of an individual, of f(¢) as some trait
of this individual at age ¢, and of i as a reproduction process, in the sense that each atom of 7,
say (t,y), is interpreted as a birth event of a child of type y occurring when the individual has
reached age ¢ (notice that an individual can produce multiple offspring at the same time). The
requirement (3.1) means that the individual cannot beget at birth nor after its death which is a
natural restriction (however it may happen that an individual produces offsprings at the exact
time when it dies). Needless to say, decoration and reproduction are generally not independent.

We then call a decoration-reproduction kernel a family of probability laws (P,);~0, where
for every x > 0, the distribution P, is the law of a random decoration-reproduction process (f, )
for an individual with type . We shall implicitly assume that map z — P, is a measurable’
function of the type x and we use the notation F, for the mathematical expectation under P,.
We always assume that for every € > 0, any individual has finitely many children with type
greater than e, almost surely for P, for all x > 0. In other words, the types of the progeny of
an individual always form a null family, even though the total progeny may be infinite.

We now describe formally the construction of a general branching process with a given

decoration-reproduction kernel, using the Ulam tree U to encode the genealogy of individuals.

3This requirement will be automatically satisfied in the self-similar case.
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Figure 3.1: Decoration and reproduction point process (f,n). The centers of the small
circles represent the locations of the atoms of 7; observe that several atoms may share
the same time-coordinate, and also that the time-coordinates of these atoms may or not
be the time of a jump of the decoration. In the above case, there is a reproduction at

the exact time of death of the individual.

Let us first explain how to assign to every individual a type, a reproduction process, and a
random decoration. By assigning types to individuals, we mean a random process (x(u))uey on
the Ulam tree, so that x(u) is the type of the individual labeled by u. In this direction, it is
convenient to add 0 to the space of types; the type 0 will be assigned to fictitious individuals,
that do not appear in the branching process, but nonetheless have to be represented by some
vertex u € U for definitiveness.

Given the type of the ancestor, say x(&) = x > 0, we pick a pair (fz,ny) with law P,
as above. We enumerate the atoms (¢1,y1), (t2,92),... of 7z using some deterministic rule,
for instance the co-lexicographical order?. In the case when 7y has only finitely many atoms,
we complete with fictitious individuals of the form (f,0) to get an infinite sequence. We then
set x(j) = y; for every individual j € N at the first generation. Once the types of the indi-
viduals (fictitious or not) at the first generation have been assigned, we iterate the construc-
tion using the branching property. That is, conditionally on (fz,nz), we consider a sequence
(fi,m), (f2,m2), ... of independent pairs distributed according to Py, , Py,, ..., where y; = x(j),
and, for definitiveness, Py denotes the law of the trivial pair (f,n) corresponding to z = 0,
f(0) = 0 and n = 0. The construction by iteration for the next generations should now be ob-
vious, using independent decoration-reproduction processes for different individuals. We stress
that the type x(u) of an individual any generation |u| > 1 is determined by the reproduction
process 1, of its parent u—.

We write P, for the probability law of the family of decoration-reproduction processes
(fusMu)yey Which results when the ancestor @ has the type x > 0; then we naturally write
also E, for the mathematical expectation under P,. Let us spell out in this setting what we

shall refer to as the branching property in the sequel. For any initial type = > 0 and for every

4That is in non-increasing order of the types and ties are broken in non-increasing of the times.
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n = 1, the families ( fu,nu)|u| -, and ( fvanv)\v\zn are conditionally independent under the law

P, given the family (x(w)) of the types at generation n. Specifically, the conditional law

w|=n
of each subfamily (fyy, nwv)lv,iIU for a vertex w at generation n is Py (), and to different vertices
at generation n correspond conditionally independent subfamilies. The proof of this branching
property is immediate from the construction by a recursive argument.

Every vertex u € U has now been assigned not only a type x(u), but also a decoration
fu 1[0, 2] = Ry, and a reproduction process 7,,. The latter encodes the age t,,; of the individual
labeled by w at which its j-th child is born, and the type v,; = x(uj) of this child, for every
j € N. We have therefore the building blocks needed for the gluing construction of Section 2.2,
namely the families (fy,)yeu and (ty)yeus:

We stress that even though the decoration and reproduction processes above have been
defined as random variables under P,, the setting still makes sense more generally for arbitrary
(deterministic) family (fy, 7y )uey of decoration-reproduction pairs and we can always consider

their associated building blocks (fy)ueu and (tyi)uicu* -

Definition 3.1 (Property (P)). We say that such a family

(fm Uu)ueU

verifies Property (P) if the associated building blocks (fu)uey and (tu;)uicu Satisfy the require-
ments (2.4) and (2.6).

When Property (P) is satisfied, we write generically T = (T, dr, p, g) for the decorated real
tree which then stems from an application of Theorem 2.5. For the sake of notational simplicity,
we still write T for the respective equivalence class up to isomorphisms (see Section 2.4), which
enables us to view the latter as random variables with values in the Polish space T of equivalence
classes of (non-measured) decorated compact trees; see Corollary 2.17 and the discussion below
it. In this direction, we point out that the function which maps a family (fu,nu) ey satisfying
Property (P) into a decorated real tree T = (T,dr,p,g) is measurable when the set of such
families indexed by U is equipped with the cylindrical sigma-algebra.” It may be tempting to
think of T as the genealogical tree of the general branching process, and then the decoration
g encodes some trait of individuals which may evolve with age. We stress however that if T’
is another random decorated real tree which is a.s. isomorphic to T, then one cannot fully
recover the general branching process from T’ as the precise genealogy of individuals may have
been lost®. Nonetheless T' does keep track of evolution as time passes of the point process that
records the values of traits of individuals in the population at any given time, which is sufficient

for many applications. In general, we use the notation P to refer to distributions on families

5In short, measurability is straightforward when we restrict our attention to families having only finitely many
non-fictitious elements, and the general setting follows by approximation, we leave details to scrupulous readers

familiar with Gromov-Hausdorff-Prokhorov topologies.
SRecall the discussion around Figure 2.3.
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of decoration-reproduction processes, and we use Q instead for distributions on the space of
equivalence relations of decorated trees T.

Our goal now is to introduce simple assumptions on the decoration-reproduction kernel
(Py)z>0 to ensure that Property (P) is verified P,-a.s., for every x > 0. These assumptions will
become even more transparent in the case when the kernel (P,),~¢ is self-similar, as we will see
at the end of the section.

In this direction, we consider first the total intensity of children of given types which an

individual of type x begets, i.e. the measure 1, on (0, 00) defined by
w(B) = Ex (n([0,2] x B)),  BeB((0,0)).

We shall henceforth suppose the existence of a function ¢ : [0,00) — R4 with ¢(0) = 0 and a

positive constant ¢, < 1, such that for all > 0:
| o) < o (32)
(0,00)

The function ¢ will be referred to as a strictly excessive function. We shall also suppose that

there exist 79, « > 0 and finite constants c., ¢y such that:

E, (2% < c.o(x),
_. } (3.3)

E.(sup f7°)

for all z > 0. The role of the first assumption (3.2) is enlightened by the following elementary

result.

Lemma 3.2. Assuming (3.2), we have for every x > 0

E, (2 ¢(><(U))> < o(2)/(1 - ¢,).

uel

As a consequence, the family (¢(x(u))),cu s null, Py-a.s.

Proof. By the definition of the intensity measure ., there is the identity

E,; j = 2. (dy).
(jzlcé(x(y))) f(opo)é(y) (dy)

We deduce from the branching property and (3.2) that for n > 1 we have
E | 3 o) | <o), (3.4)
lu|=n

and since ¢, < 1, the first claim follows. In particular, the family (¢(x(u))), ey is summable and

a fortiori null, P;-a.s. O

We are now able to state the main result of this section:
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Theorem 3.3. Suppose that (3.3) is fulfilled for some strictly excessive function ¢ (i.e. ¢ verifies
(3.2)) and some exponents a,~y > 0. Then Property (P) is satisfied by the family (fu, Mu)ueu,
P.-a.s. for every x > 0.

Proof. Fix x > 0 and recall the notation from Section 2.2, and notably that z, > 0 is the length
of the interval on which f, is defined. As a warm-up, we observe from the branching property,
(3.2), the first bound in (3.3), and Lemma 3.2, that

@ <q§jzzo/a> < cE, (% qb(x(u))) < : iZCi¢($) . (3.5)

Z ZZO/O‘ < 0, P,-a.s.,
uelU

In particular,

and a fortiori (zy)uey is a null family, P,-a.s.
We check similarly that (2.7) (recall that this is a stronger requirement than (2.6)) holds
P.-a.s. We distinguish two cases, depending on whether vy < a or 79 = «. In the first case

where v9 < «, we simply write

o) Yo/e 0
(Z sup zu> < Z sup z)0/* < Z 20/,

We then take the expectation and invoke (3.5) to see that (2.7) holds P,-a.s.

In the second case where vy > «, we write from Minkovski’s inequality

yo/a\ /70 0 a/vo
(Z sup zu> < Z E, (Sup zz°/°‘> .
n=0

n=0 lul= lul=n

and then, from (3.3) and the branching property

E, (sup zgo/“> < Z E,(210/%) < Z E,

lul=n lul=n lul=n

Thanks to (3.4), we can bound the right-hand side by c,c]'¢(z) and infer

Yo/ 0 Yo/
(Z sup zu> < (Z C?/voczza/%gb(x)a/%) < ep(z)(1 — C;)c/’yo)—’yo/a’
n=0 lul=n

n=0
and again (2.7) holds Pg-a.s.
We check likewise that the requirement (2.4) holds P,-a.s. Namely, we deduce from the
branching property, the second bound in (3.3), and Lemma 3.2, that

Z Eq(sup f°) < ¢ Z Ez (o(x(u))) <

uelU uel

Cz

- Cﬁb(x) < 0, (3.6)

This ensures that (sup fy)uey is a null family, P,-a.s. Since we have already observed that

(2zu)uev is a null family, P,-a.s., the same holds for (|| fu|)ueu as well. d
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When the conditions of Theorem 3.3 are fulfilled, we can consider the random decorated real
tree T = (T,drp, p,g) which then stems from an application of Theorem 2.5. The above proof

also shows:
Corollary 3.4. Under the assumptions of Theorem 3.3, the random variables
Height(7)°/* and m:,a;}xgwO

belong to L*(P,).

The assumptions of Theorem 3.3 are more transparent when the decoration-reproduction
kernel (P,),~0 satisfies a scaling property. Fix some a > 0. We start defining, for any ¢ > 0

and a (rcll) function f : [0, z] — R4, the rescaled function
F9:00,¢%2] > Ry, fO@) = ef (),

and also, for any measure 7 on [0, z] x (0,00), the rescaled measure n(© given by the push

forward image of 7 by the map
[0,2] x (0,00) — [0,c%2] x (0,0) , (t,y) — (c"t, cy).

Definition 3.5. We say that a decoration-reproduction kernel (Py)z>o is self-similar with ex-
ponent o > 0 if for every x > 0, the law P, coincides with the distribution of the rescaled pair

(f(’“"),n(w)) under Py. Then we also say that the general branching process is self-similar.

The self-similarity of the decoration-reproduction kernel (P,),~o enables us to focus on the
type = 1. Indeed it is immediate from the self-similarity assumption and the construction of

general branching processes that the distribution of the family of rescaled pairs

(féx), nq(f))

under Py is the same as that of (fu, Nu) ey under P,. We write for simplicity P :== Py and ¢ == 1

uelU

for the total intensity of children of given types beget by an individual of type 1.

We first point out that the self-similarity assumption has a simple and important consequence
for the process (x(u)),cpy that assigns types to individuals. For every x > 0, the distribution
under P, of the family of the logarithms of types (log x(j)) j>1 of the individuals at the first
generation, is identical to the law under P of the same family shifted by log z. Therefore, if we

consider the point process on R induced by the logarithms of types at each generation,
Z 510gx(u)7 n =0, (37)
lul=n

(implicitly the fictitious individuals with type 0 are discarded in the sum), then we obtain a
branching random walk; see e.g. [132]. This observation has simple consequences regarding the
existence of the strictly excessive function ¢ of (3.2) (and later on of harmonic function) that

we now explain.
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We introduce first the function

M(y) = f y(dy), v =0. (3.8)

(0,00)

In words, v +— M (y — 1) is the Mellin transform of the intensity measure 2. Note also that the
push forward of 2 by the logarithm function yields the reproduction intensity of the branching
random walk (3.7), that is the intensity measure of the point process at the first generation,
Z;’;l dlog x(j)- Therefore M can also be viewed as the moment generating function of the latter.
Except in the degenerate case where the reproduction process 7 is merely a Dirac point mass
with a fixed type P-a.s., this function is strictly log-convex and takes its values in R u {o0}. By
convexity log M has at most two zeros. Notice that (3.2) is satisfied for ¢(y) = y?° as soon as
M(y) < 1.

In the self-similar case, one can also easily bound from above the Hausdorff dimension of the

set of leaves 0T

Lemma 3.6 (Upper-bound on the Hausdorff dimension of leaves). Suppose that the decoration-
reproduction kernel (Py)z=o is self-similar with exponent a.. Assume that there exist w < o with
M(w) =1 and M(vy) < 1, and furthermore that the assumptions of Theorem 3.2 are satisfied
with ¢(y) = y°. If we write T = (T,drp, p,g) for the resulting random decorated tree, then we
have for every x > 0 that

dimg(0T) < w/a, Py-a.s.,

where dimg (0T) stands for the Hausdorff dimension of 0T equipped with the restriction of drp.

In particular, combining Lemma 3.6 with Lemma 2.8 and Corollary 2.12, we infer that

dimpy(T) < max(1l,w/a) and dimy(Hyp(g)) < max(2,w/a), Py-a.s., for every z > 0.

Proof. By Lemma 2.8 and self-similarity, it suffices to prove the bound on the Hausdorff dimen-
sion of 0T under IP;. In this direction, recall the notation T for the tree obtained by performing
the gluing of the first n generation along Ulam’s tree. We see T" as a subset of T". In the proof
of Lemma 2.8 we showed that T" is a countable union of segments and as a consequence of the
gluing construction 7™ n 07T is included in the union of the extremities of those segments. We
deduce that T" n 0T is a countable set of points and thus u,>T"™ N ¢T has Hausdorff dimen-
sion 0. It remains to show that the Hausdorff dimension of 0*T = 0T\ uU,>o T™ is bounded
above by w/a. To this end, for every u € U, consider the subtree T,, obtained by performing the
gluing in the subtree above u in Ulam’s tree, seen as a subset of T, and write Diam(T,,) for its
diameter in (7, dr). Then, for every n > 0, the collection {Tu TS N”} is a covering of 0*T
and note that, for every u € N, we have Diam(T},) < 2-Height(73,). Moreover, for every u € N”,

the self-similarity of the decoration-reproduction process entails that

E, (Diam(Tu)’Y/a) < 2% By (x(w)") - By (Height(T)W/a) :
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for every v € (w,7). Now remark that by Corollary 3.4, the quantity E; (Height(T)V/ @) <
1+ E; (Height(T)VO/ O‘) is finite and by log-convexity of M we also have M(y) < 1, for every
v € (w,70). Hence, by the branching property, we infer that

E, < 3 Diam(Tu)V/a) = 27/% . M(9)" - Ey (Height(T)V/a) ——0, fory e (w,%0)-
ueN”

This proves that the Hausdorff dimension of 0*T is bounded above by 7/« for every v € (w, o),

and so by w/a. O

3.2 Lévy, Ito, Lamperti, and self-similar Markov trees

We now proceed with the self-similar Markov case. Our objective is to construct a general
branching process endowed with a decoration that satisfies both self-similarity and temporal
Markov properties. For this purpose, we first discuss pairs (X,n), where X is a self-similar
Markov process started from 1, which we interpret as a decoration-reproduction process in the
sense of Section 3.1. We then define the kernel (P,),~¢ through a scaling transformation of the
law P = P of (X, n); in particular the decoration under P, has the law of the self-similar Markov
process X started from z. Note that the type of an individual now coincides with the initial
value of its decoration; this was not necessarily so in the more general setting of Section 3.1.
We stress that the decoration-reproduction kernel (P,),~¢ is de facto self-similar in the sense
of Definition 3.5, and that Markovian aspects will be analyzed in greater details in Chapter 5.
The framework that we develop here lies at the heart of the construction of self-similar Markov
trees in the next Section 3.3, which constitute one of the primary objects of this work.

Introduce first the space &1 of non-increasing sequences y = (yi,...) in [—00,00) with
lim;, o Yy, = —0, and then set S := [—00,0) x S;. Agreeing that log0) = —o0 and e™* = 0, we
view log : [0,00) — [—0o0,00) as a bijection with reciprocal given by the exponential function.
Transforming an element (y,y) of S by the exponential function yields a sequence (e¥, e¥1, e¥2, .. .)
in [0, 00), whose first term e¥ is distinguished and the next ones form a non-increasing sequence
that converges to 0. Hence, applying the exponential function to each term of the sequence
enables us to endow S with the distance induced by the supremum norm on the space of real
sequences converging to 0. Then S equipped with this distance is a Polish space.

We can now introduce the following important terminology.

Definition 3.7. Consider a measure A = A(dy,dy) on S. Write Ay = Ao(dy) and A1 = A1(dy)
for its push-forward images by the first projection (y,y) — y from S to [—00, ) and by the second
projection (y,y) +— y from S to Si, respectively. We call A a generalized Lévy measure
provided that

f (1 AyHAo(dy) <0 and Ay ({yeSi:e¥ >¢}) <o foralle>0.
R
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We then further call (02, a,A;a) a characteristic quadruplet, where o > 0 is a self-
similarity exponent, 0> > 0 a Gaussian coefficient, a € R a drift coefficient. We also

refer to k := A({—0} x 81) < oo as the killing rate.

We will next associate a decoration process to a characteristic quadruplet (o2, a, A;a). We
rely for this on the classical Lamperti construction of positive self-similar Markov processes
from (possibly killed) real Lévy processes and refer the reader to [91] and Chapter 13 in [88]
for a complete account. We introduce a standard Brownian motion B and a Poisson random
measure N = N(dt, dy, dy) on [0,00) x S with intensity measure dtA(dy, dy). If the killing rate
k is strictly positive, then we denote the time coordinate of the first atom of N belonging to
{—o0} x 81 by ¢ < o0, so that ¢ is then an exponential variable with parameter the killing rate
k. If k = 0, then we agree that ( = co. We assume that B and N are independent.

Let us quickly recall the construction of real Lévy processes by the Lévy-Ité6 decomposition.
Consider the first projection of N on [0, 00) x R and write Ny = Ny(dt, dy) for the resulting point
process. By the mapping theorem for Poisson random measures, Ny is a Poisson point process

with intensity 1,erdtAg(dy). Additionally, we introduce the compensated Poisson measure
N (ds, dy) = No(ds, dy) — dsAq(dy).

As a consequence of the conditions fulfilled by A, the process £ defined for 0 < ¢ < { by

E(t) = oB(t) + at + J

0 RNo(dSady) Yliys1 +J Néc)(dS,dy) yly<1 (3.9)
St x

[0,¢] xR
is a Lévy process. Furthermore, in the case k > 0, it will be convenient to declare that £(¢) = —o0
for t > (, so that exp(y£(t)) = 0 whenever v > 0 and ¢ > (. In other words, k is the killing rate

of the Lévy process €. For every t = 0, we have

E(exp(7£(t)) = E(exp(v£(t)),t < ¢) = exp (tb(7)), (3.10)

where 9 is known as the Laplace exponent of £ and given by the Lévy-Khintchine formula

1
¥(y) = —k+ 50" +ay + JR* (€™ =1 =Ly <1) Ao(dy). (3.11)

Slightly more generally, one can start the Lévy process from any arbitrary y € R by translating
the entire process, i.e., by considering y + &.

We now present the Lamperti transformation which allows to construct a (positive) self-
similar Markov process, for which the acronym pssMp is often used, from a real Lévy process £

and a positive’ exponent of self-similarity, a > 0. We introduce first the exponential functional®

t ¢
e(t) = j exp(ag(s))ds for0<t<(¢, z:=¢€((—)= J exp(ag(s))ds, (3.12)

0 0

"The case of a negative exponent can then be obtained by applying the simple inverse z — 1 /z transformation
to a pssMp.

8We shall soon view the random interval [0, z] as the domain of a rcll function; then the notation z has the
same interpretation as in the preceding chapters. The reader should therefore not be worried about a possible

confusion of notation.

54



and note that € : [0,¢) — [0, z) is an increasing bijection a.s. We then define 7 as the reciprocal
bijection, so that
7(t)
J exp(a&(s))ds =t, forany 0 <t < z. (3.13)
0
Lamperti [91] pointed out that the process

X(t) = exp (&£(7(1))), 0<t<z, (3.14)

obtained from the exponential of the Lévy process by time-substitution based on 7, is both
Markovian and self-similar with scaling exponent « (in the literature, one often calls 1/« the

Hurst exponent). More precisely, X starts from 1, and for every = > 0, the rescaled process
x X (%), for 0 <t < a%z, (3.15)

is a version of X started from z (that is, the underlying Lévy process £ starts from logx).
Conversely, any pssMp with a positive exponent « can be realized from some real Lévy process
by this transformation. We stress that the lifetime z of X is finite a.s. if and only if either
¢ < o0 a.s. or the Lévy process drifts to —oo (i.e. ¢ = 00 a.s. and lim;_,o (t) = —o0 a.s.). More
precisely, the boundary point 0 serves as a cemetery state for the self-similar Markov process X,
it is reached by a jump when ¢ < oo (i.e. then X (z—) > 0 a.s.) and continuously when & drifts
to —oo (i.e. then X(z—) = 0 a.s.). By convention we take X(z) := 0, when z < o0, to see X as
a rcll process on the segment [0, z].

For later use, we also observe that for any ¢ > 0, the Lévy process, say 5 , constructed from
the scaled characteristics (¢202, ca, cA) has the same law as (€)i>0. Therefore, if we write X
for the pssMp induced by the Lamperti transformation applied to £, then there is the identity

in distribution
(Xi:t=0) = (Xt : t=0). (3.16)

We now turn our attention to the reproduction process 7. For convenience, we use the
notation [0, (] = [0,0), if { = o0. The reproduction process 7 is going to be defined using the
second projection of N on [0,(] x S; that we denote by N; = Nj(dt,dy). To this end, we
expand each atom of the latter, say (s,y), as a sequence (s, y¢)¢=1 in [0,(] x [—00,00) and, as a

first step, introduce a point process on [0, (] x R by

7= D Ls<cyO(s,exp(€(s=) +30)): (3.17)

where the sum is taken over all the pairs (s, y¢) obtained by developing the atoms (s,y) of Ny,
possibly repeated according to their multiplicities, with y # {—o0, —o0,...}. In words, 1 has
an atom at (s,z) for some s < ¢ and = > 0 if and only if the Poisson random measure N has
an atom at (s,y), with y # {—o0, —00,...}, such that logx — £(s—) is a component of y. As

a second step, we perform the Lamperti transformation and consider the push-forward of the
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measure 7] by the Lamperti time-change. Namely, recall that 7 is defined by (3.13) as the inverse

of the exponential functional € (in particular €(¢) = z is the lifetime of X ), and set

n-= 2 Lie(s)<210(e(s) exp(€(s—)+12)) (3.18)

where the same convention for the summation as above applies. In particular several atoms may
occur at the same time.

We now write P = P; for the law of the pair (X,n) constructed above and recall that o > 0
denotes the self-similarity exponent. For every x > 0, we denote by P, the image of P by
the scaling transformation (s,y) — (x%s,xy) on Ry x Ry, which, by (3.15), transforms X into
the version of the self-similar Markov process started from x, and the atoms d(,,) of n into
O(zaszy)- We call (Py)zo the self-similar Markov decoration-reproduction kernel with charac-
teristic quadruplet (02, a, A;a); the qualifier self-similar is taken in the sense of Definition 3.5.
Note passing by that ({0} x (0,00)) = 0 and that, in absence of killing, i.e. when k = 0, the
reproduction process also satisfies n({z} x (0,00)) = 0, i.e. that no birth event can happen at
the death of an individual.

Our goal now is to associate a decorated compact real tree to every characteristic quadruplet
(0%, a, A; o) satisfying some additional requirements. In this direction, we start by computing
the moment generating function of the branching random walk associated with the self-similar
Markov decoration-reproduction kernel (P,),~o with characteristic quadruplet (o2, a, A; ). Re-
call that for simplicity, the index for the starting point x is omitted from the notation when

= 1, and following (3.8), we write

a0
M(y) =E (J y”n(dt,dy)> =FE (Z x(j)7> = f udy)y”, v =0,
[0,2] % (0,00) j=1 (0,00)

for the Mellin transform of the total intensity measure ¢ of children of given types. Then,
recalling the Lévy-Khintchine formula (3.11) for the Laplace exponent 1 of £, we introduce the
quantity

K(y) = v(y) + JS A(dy,dy) ( i eV.%’)
i=1

1 N
= 50272 +ay+ L A(dy,dy) (evy — 1=yl < + Z eW”), (3.19)
i=1

© = (, so that the possible killing rate k is incorporated in

where we use again the convention e~
the integral with respect to A. The function r is called the cumulant function of (02, a, A; ).
We stress that the cumulant does not depend on the exponent of self-similarity «, and that
the functions ¥ and x are convex with ¥ < k. We will always assume that the cumulant is
finite at least at some point v > 0 (we will actually soon impose more, see the forthcoming

Assumption 3.12). The cumulant function s enables us to compute the Mellin transform M.

Lemma 3.8. The Mellin transform M in (3.8) is given by

M(y) =1—=kr(y)/¥(y), whenever (y) < 0. (3.20)
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Proof. Recall that ¢ is the measure on (0,00) that describes the total intensity of the children
with given types that an individual with type 1 begets throughout its life. Note first that the
connexion between n and 77 via the Lamperti transformation yields, using the same convention

for the summations as in (3.18),

D Le(sesy (X (e(s)=) exp(ye))” = > Lisecy exp (v(E(s—) + we)) -

Next, the construction of 7 in terms of the random measure N7 and the Lévy process £ shows
that:

2 Lis<qy exp(7(E(s—) + ) = f

[0,{]x 81

exp(7€(s—)) <Z exp(vyi)> N (ds, dy).
i=1

Taking expectations using (3.10), we get by compensation whenever ¢ () < 0 that

f(oﬁo@) y(dy) = E <L¢ exp(’yg(s—))d8> (L i ewiAl(dy)>

14=1

_ _le (L D e”yiAl(dy)) =1—r()/P().

1i=1

O

We now have all the ingredients to properly define the self-similar Markov trees (for short,
ssMt). We fix a characteristic quadruplet (02,a, A; ) and we write (Py).~o for the associated
self-similar Markov decoration-reproduction kernel. We also write P, for the distribution of
the family (fu, 7y )uev of decoration-reproduction processes of individuals in a general branching
process governed by this kernel when the ancestral individual has type x > 0, that is such
that (fz,nz) has the law P,. Let x denote the cumulant function associated by (3.19) to the

characteristic quadruplet (o2, a, A; ). We make the following crucial assumption:

Assumption 3.9. We say that a cumulant k is subcritical if there exists v > 0 such that

K(70) < 0.

Subcriticality of the cumulant is the only assumption on the characteristic quadruplet needed
to define self-similar Markov trees as random variables with values in the space T of equivalence
classes up to isomorphisms of decorated real trees (see Section 2.4, and more specifically Corol-
lary 2.17).

Proposition 3.10 (Construction of self-similar Markov trees). Let Assumption 3.9 be satisfied for

some vg > 0. Then the following assertions hold:

(i) The function ¢p(x) = 70 is strictly excessive in the sense of (3.2). Assumption 3.3 is

verified, and as a consequence, so does Property (P), Py-a.s. for all z > 0.
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(i) The equivalence class (up to isomorphism) of the random decorated tree T = (T,dr, p, g)
without measures constructed in Theorem 2.5 is called a self-similar Markov tree with
characteristic quadruplet (0%, a, A;a). One has

g(p) = limsup g(r) = =, P.-a.s. for all x > 0.
T —
r;é[))
In this framework, self-similarity means that for every x > 0, the law of T under P, is identical
to that of the rescaled version (T,x® - dr, p,x - g) under Py, where the notation x® - dr is for the

distance on T given by x® - dr(y,y') = z%dr(y,y'), and = - g denotes similarly the decoration

with z - g(y) = zg(y).

Proof. Let us check the assumptions of Theorem 3.3, for the exponents «, g and the function
¢(y) = y°. In this direction, recall that k is convex, and since ¥ < k, we have ¥(vy) < 0.
Hence, k(70)/%(7) € (0,1) and we infer from Lemma 3.8 that

j you(dy) = M(r) < 1,
(0,00)

so (3.2) holds with ¢(y) = y?°. By self-similarity, it suffices now to verify that F; (sup X7°) < oo
and El(zvo/ @) < 00, and by the Lamperti transformation, this boils down to establishing that

E;y (Sup exp (’yof(t))) <o and Ey <<f< exp(a§(t))dt> WO/CY) < 0.

t=0 0

These kinds of results are part of the folklore of the theory of Lévy processes. For example,
see Lemma 3 of Rivero [128] for the second assertion when the killing rate is zero. Unfortunately,
we have not been able to find a suitable reference that holds when killing is allowed. Since the
display above follows from standard techniques, and because we believe it may be of independent
interest, we provide details of the proof in the Appendix; see Lemma 7.1 there.

The assertion that the value of the decoration at the root is z, P,-a.s. follows readily
from (2.4) and the fact that fy is rcll with fz(0) = =z, Py-a.s. Last, by construction, the
random decorated tree T plainly inherits the self-similarity property from the kernel (Py);~0;

see Definition 3.5 and the discussion thereafter. O

Let us point right now at an important feature, which is closely related to the discussion
around Figure 2.3. We have argued here that one can associate a self-similar Markov tree to
any subcritical characteristic quadruplet, and the characteristic quadruplet then determines the
distribution of this self-similar Markov tree. Nonetheless we stress that different characteristic
quadruplets may yield self-similar Markov trees with the same distribution, just as in Section
2.2 where different families of building blocks could produce isomorphic decorated trees. In
that case, one says that the characteristic quadruplets belong to the same equivalence class
of bifurcators. Thus, in short, a characteristic quadruplet determines the law of a self-similar

Markov tree, and in the converse direction, a self-similar Markov tree determines an equivalence
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class of bifurcators, where each such bifurcator corresponds to a unique characteristic quadruplet.
This matter will be discussed in details in Chapter 6.

We also point out from (3.16) that for any ¢ > 0, the self-similar Markov tree (T, df, p, g) with
dilated characteristic quadruplet (c202, ca, cA; a) has the same distribution as (T, ctdr,p, g)
where T = (T, dr, p, g) denotes the ssMt with characteristics (02, a, A; ).

3.3 Weighted length and harmonic measures

Now that we have defined self-similar Markov trees, our next purpose is to endow the latter with
certain natural measures. We are interested in measures compatible with self-similarity, and
which are also consistent with the Markov property of the decoration. This leads us to consider
power functions with adequate exponents as weight functions for weighted length measures. To
define a natural measure on the leaves, we will require a stronger assumption, which ensures
the existence of a simple harmonic function for the decoration-reproduction kernel. By analogy
with the literature on branching random walk, we refer to this assumption as the first Cramér’s
condition?, and its statement and implications will be addressed in the second part of this section.
Finally, we point out that the harmonic measure on leaves can also be obtained as a limit of
weighted length measures (Proposition 3.14). Throughout this section, we use the notation of
Sections 3.1 and 3.2. In particular, we fix a characteristic quadruplet (02, a, A; ) and we write
(Py)z=0 for the associated self-similar Markov decoration-reproduction kernel which has been
defined in the preceding section. We also write P, for the distribution of the family (fy, 7y )ueu
of decoration-reproduction processes of individuals in a general branching process governed by
this kernel when the ancestral individual has type x > 0, that is such that (fz,nz) has the
law P,.

3.3.1 Weighted length measures

We start with weighted length measures which are simpler to construct. Recall Section 2.3 and

focus on the case where w is a power function.

Proposition 3.11 (Weighted length measures). Let Assumption 3.9 hold. Then for every x > 0,

E, (%;JL fu(t)vo—adt> =~ (3.21)

As a consequence, for every v = 7o, the measure @ o g - Ay induced by the weight function'’

there is the identity

w(x) = 27" is finite, Py-a.s. We denote it by NV and then (T,dr, p,g,N") is a random measured

decorated compact tree.

9The second Cramér’s condition will appear when defining conditional versions of ssMt.
0Qur choice of using v — « instead of v as exponent is related to the Lamperti transformation. As we will see

shortly, this will simplify notation thereafter.
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Proof. Let us start establishing (3.21). Thanks to self-similarity, it is enough to treat the case
x = 1. We have

S ([ ) o (50 [ 00)

By Assumption 3.9, ¥(y0) < £(7) < 0, and Lemma 3.8 gives M(v9) = 1 — k(70)/¥(70). Then
by the very construction of the family (fu, 7 )ueu, We get

Ey (2 x(uw)) = (1= #(0)/p(0))",  forn=0.

ueN"™

Since 1 — k(70)/¥(10) € (0,1), we deduce that

By (2 x(u)’yo) = $(30)/x(10)-

uelU

Next, we have by the Lamperti transformation,

By ([ srear) = By ([ exp (60 - agetro) )
=B (LOO exp (70€(s)) ds)

0

- f exp ($(70)s) ds
b
()’

where in the second equality we used that exp(v£(s)) = 0, for every s > ¢, and in the ultimate
equality, that ¥(y0) < k(y0) < 0. This completes the proof of (3.21).
Let us now deduce the remaining claim. Recalling Section 2.3 and in particular (2.9), by

Proposition 3.10 and self-similarity, it suffices to verify that for every v > ~y, we have
Z J fu(t)77%dt < o0, Pi-a.s.

uelU

In this direction, we notice that for every v > 7o,

sup j Ju(t 7°(d7f<sup{1+f()71 0 e U tel0,z,] (

Ye[vo,71] ey

Ef Fu(t)0 adt)

uelU

Recalling from Proposition 3.10 that (| fu]),cp is a null family; we infer from (3.21) that:

sup J fu()77%dt < 0, Pp-a.s.
velvo.m] yeu

This completes the proof of the proposition. O
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In the setup of the above proposition, we have A7(T') < oo, P,-a.s. for every x > 0, and we

even have

E,(A'(T)) = penE as soon as k(7y) < 0. (3.22)

We further stress that the self-similarity asserted in Proposition 3.10 then extends to these
weighted length measures. Specifically, for every x > 0, the distribution of the equivalence class
in Ty, of (T,dr,p,g,\") under P, is the same as that of (T, z%-dr,p,x-g,z7 - N7) under P;.
For this reason, we say that A7 is self-similar with exponent -, which motivates a posteriori our

choice for the parameter for the weight functions w in Proposition 3.11.

3.3.2 First Cramér’s condition and the harmonic measure on leaves

In this section, we define the natural measure on leaves for self-similar Markov trees. To do so,
we shall rely on the constructed presented in Section 2.3 using an additional family (my)ueu
verifying (2.10). Those m, will be constructed using a harmonic function for the underly-
ing branching random walk. Specifically, recall from Section 3.1 the notation (fy,7y)uey for
the general branching process index by Ulam’s tree, where the decoration-reproduction kernel
(Py)e>0 is self-similar and associated with the characteristic quadruplet (02,a, A;a). In this

particular case, we have f,(0) = x(u), and, as noticed in (3.7), the process

Z 5logx(u)7 n =0
lu|=n
is a branching random-walk with moment generating function M given by Lemma 3.8. We
deduce that if w > 0 is such that x(w) = 0, then the function h(z) = z“ is a harmonic function

of types, namely that ~(0) = 0 and

h(z) = B, (Z h(X(j))> = f( h(y)ie(dy),  for all z > 0. (3.23)
J=1

0,00)

It follows readily that by the branching property that the process

M, = Y h(x(u), n=0, (3.24)

lul=n

is then a positive martingale, which is usually referred to as an additive martingale; it converges
to its terminal value P, almost surely. We have more generally for any vertex u € U
my = lim h(x(uv)), in P, — a.s. (3.25)

n—0o0
[v[=n

Verifying the spread of mass condition (2.10) is intimately connected to ensuring that the pre-
vious convergence also holds in mean. Whether or not the additive martingale (3.24) converges
in L1(P) is well understood in the literature on branching random walks, see e.g. [33]. In our

setup, this will be implied by the following assumption:
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Assumption 3.12 (First Cramér’s condition). Suppose that there exist w— > 0 and p € (1,2] such
that

o0 p
(i) K(w-) =0, k(pw—) <0, and (i) J A (dy) (Z eyi“—> < 0.
S1 i=1
From now on, under Assumption 3.12, we set:
wy = inf {t >w_: K(t) =0}, (3.26)

with the usual convention inf @ = oo. Observe that, by convexity of the cumulant, we have
pw_ < wy. Furthermore, Assumption 3.12 ensures that both x and v are negative over the
interval (w_,w; ). In particular, Assumption 3.9 holds for every 7y € (w—,w+) and therefore we
can define the associated ssMt as well as the measures A7, v > w_. Also, because of convexity, x
possesses a negative right-derivative at w_ that we denote for simplicity by x’(w_), see Figure 3.2

for an illustration. We are going to use the function h(x) = 2~ to define our measure on leaves.

A

Figure 3.2: lllustration of the typical shape of the cumulant function k. Assumption

3.12 requires that x becomes strictly negative after its first zero (like in the gray region).

For this purpose, we need the following result:

Lemma 3.13. Let Assumption 3.12 hold. Then the function h(x) = x“~ is harmonic in the sense
(3.23), and the process

Mawo) = 3 x(@®,  n>0,

ueN”?

is a martingale bounded in LP(P,) for every x > 0. As a consequence, the spread of mass
condition (2.10) is fulfilled for the family the (my,)yeu defined by (3.25).

Proof. Lemma 3.8 and Assumption 3.12 entail that M(w_) = 1, so h(z) = 2*- is a har-
monic function, and we have already seen that M, (w_), n > 0, is then an additive martin-
gale of a branching random walk with moment generating function M. Since M(pw_) = 1 —
K(pw-) /¥ (pw—) < 1, it is known that boundedness in L? will follow provided that E(M;(w-)P) <
o0; see e.g. Theorem 3.1 of Alsmeyer and Kuhlbusch [10].
In this direction, we write
0
Mi(w-) = 3 xG)* = Y 1jpeey exp (€(5—) + pw)

Jj=1
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where the last sum is taken over all the pairs (s, y,) obtained by expanding the atoms (s,y) of
N;. This shows that M;(w-) is a so-called Lévy-type perpetuity in the sense of Iksanov and
Mallein [31], see Section 2 there. Specifying Theorem 3.1 of [31] in our setting, all that we need

to verify are, first
E (exp(§(1)pw-)) = exp(¢(pw-)) <1,

and second,
p

The first requirement holds since ¥(pw_) < k(pw—) < 0, and the second is part of Assump-

tion 3.12. Let us now prove the spread of mass condition (2.10). Introduce for any u € U,

My (u) = Y h(x(uw)). (3.27)

[v[=n

Note from the Markov property that conditionally on x(u) = y, the martingale (M, (u)),>0 has

the same law as (M, )n>0 under Py. Plainly, we have on the one hand,
0
Myi1(u) = Y Mi(ug), (3.28)
j=1

and on the other hand, there are the convergences a.s. under P,

my, = lim M,(u) and my; = lim M, (uj) for all j > 1.
n—o0 n—o0

Hence Fatou’s lemma yields
0
My = Y My, Pe-as. (3.29)
j=1

Moreover, we also know from the first point of the lemma that these martingales converge in
LY(P,), which implies

Ey(mu) = Be(Mo(u)) = Eq (h(x(w)))  and  Eg(mu;) = Eo(Mo(uj)) = Ea (R(x(uj))) ,

for all j > 1. Taking the expectation in (3.28) for n = 0, we deduce that both sides in (3.29)

have the same mean, and are thus almost surely equal. O

In the sequel, we shall refer to (M, (w—))n>0 as the intrinsic martingale. Under Assumption
3.12 and using Proposition 2.10, we can endow the self-similar Markov tree T = (T, dr, p, g) with
the measure induced by the (my,)ycu; recall that the latter is supported by the set 07" of leaves
of T. From now on, we will use the notation p for this measure and recall that it is referred to

as the harmonic measure. Observe that the total mass w(7") of the harmonic measure coincides

" Theorem 3.1 in [31] assumes that the killing rate is 0. However, since the proof can be extended for a positive

killing without modifications, we leave the details to the reader.
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with the terminal value mg of the intrinsic martingale. Plainly, the self-similarity stated in
Proposition 3.10 extends to p as follows. For any x > 0, the distribution, the equivalence class
in Ty, of (T, z%-dp,p,x - g, 2%~ - n), under Py, coincides with that of (T, dr, p, g, 1), under P,.

We say that p is self-similar with exponent w_; note also that
E;(nW(T)) = 2¥=, for x> 0. (3.30)

We mention that when the second root w, in (3.26) is finite, My(w), n = 0 is also a
martingale. Nonetheless it follows by general results on branching random walks, see [132], that
its terminal value is always 0 a.s. Even though the martingale M, (w,) has also interesting
applications (see Part III), it cannot be used to construct a non-degenerate measure on self-
similar Markov trees.

Proposition 3.11 also allows us to endow 71" with the weighted length measures A7 for any
v > w_, as it was discussed at the end of Section 3.2. In this direction, one can infer from

Lemma 3.13, that for every v < w_, one has

J 67 () A(dv) = ] f T T dE =, Proas,

T uel 0

In other words, the measures ¢-A7, for v > w_ and some ¢ > 0, are the sole self-similar weighted
length measures with a finite total mass. Additionally, since all the measures p and A7, v > w_,
have distinct self-similarity exponents, a nontrivial linear combination cannot be self-similar.
Consequently, up to an unimportant factor, o and A7, v > w_, are the only self-similar measures
consistent with our framework. They constitute the family of measures that we will work with

in the sequel, and will also naturally appear as scaling limits of discrete models in Part II.

3.3.3 The harmonic measure as limit of weighted length measures

The purpose of this section is to point out that the harmonic measure n on leaves can also
be obtained as a limit of re-scaled versions of weighted length measures AY, as v decreases
towards w_. One important motivation for establishing such a result stems from the following
observation. Weighted length measures are given intrinsically in terms of the decorated real tree
T = (T,dr, p,g) rather than in terms of a specific construction of T, such as by gluing building
blocks in Section 2.2. As a consequence, if (77 ,dpr, p',g') = T' is another decorated real tree
isomorphic to T, then for any weight function w with wog € L'(Ar), we have also in the notation
of Definition 2.1 that

(T7 dT;pvg7wa ’ 7\T) ~ (T/adTlaplmglawogl : }\T’)'

At the opposite, the harmonic measure w on a self-similar Markov tree has been defined in
terms the family (my)uey in (3.25), and it is not clear a priori whether p can be given directly
in terms of T only. Therefore, it is also unclear whether the compatibility with isomorphisms

that we just stressed for weighted length measures remains valid for n. Proposition 3.14 below
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implies that actually, this is indeed the case, and the harmonic measure on leaves is also an

intrinsic quantity for self-similar Markov trees.

Proposition 3.14. Let Assumption 3.12 hold. Then there exists a sequence (Yp)n=1 With v, > w_
and limy, o vn, = w—, such that Pi-a.s.,

lim —k(yn) - AT =y,

n—00

in the sense of weak convergence for finite measures on T'.

Recall that k() < 0 for v € (w—,wy) so that —k(y) - A7 is a positive finite measure, and by
(3.22), the factor —k(7y) > 0 is simply chosen so that

Ei(— 5(7) -N(T)) = Ey(w(T)) = 1.

For technical reasons and to avoid extending the section unnecessarily, we restricted ourselves
to convergence along a sequence (v, ),>1 in Proposition 3.14, which suffices for our purpose. We
are nonetheless confident that the convergence should hold as v | w_.

The rest of this section is devoted to the proof of Proposition 3.14; we implicitly take As-

sumption 3.12 for granted. As a first step, we establish the convergence of the total mass.

Lemma 3.15. There is the convergence

lim k(N(T) = =u(T),  in L(Ba),

Proof. Recall from Lemma 3.8 that the Mellin transform of the reproduction intensity is given

by M(v) =1 —&(7y)/¥(7) € (0,1] for every v € [w—,w]. From the branching property,

My(y) == M(y)™" D, x(w)? = M) Y] fu(0)7, n=0,
ueN" ueN”
is then a nonnegative martingale, and we denote its terminal value by My (7). We are going to
establish:

(i) My(y) converges in L'(PP1) to My (w_) as v | w_,
(i) Mo () + () - A(T) converges in L*(P;) to 0 as v | w_.

Combining these two claims implies the lemma, since, by definition w(7") = My (w_). We start
by proving the first item which follows by standard branching random walk technics'?.
(i) Recall from Lemma 3.13 that M, (w_) € LP(IP;) for some p > 1 appearing in Assumption

3.12 and every fixed n = 0. We deduce readily from dominated convergence that

l}m M,(y) = My(w_), in L'(Py). (3.31)
Fylw_
12Gimilar results appeared in the theory of branching random walks, see notably [34]. Unfortunately, we have

not been able to find a reference covering our specific situation.
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The idea now is to control the difference My, (y) — My, (7y) for 7 close enough of w_. In this
direction, fix ¢ € (1,p) and take v € (w—, pw_/q) such that

ci= sup M(qy)/ M) <1

ve€lw—,71]

This is indeed feasible since k(w_) = 0 and k(pw_) < 0.

For every v € [w—, 7], a direct computation gives:

My(7) < M(y)™* (Sup X(U)”_“)q) My(w-)? < M(y)™7 (1 + My (w-)P~7) My (w-)7.

ueN

Since by Lemma 3.13, the variable M (w-) is in LP(Py) and infy, .1 M(y) > 0, we deduce
from Holder’s inequality that

sup El(Ml(’y)q) = K < .
'YE[W*»'H]

We can now apply [31, Lemma 2(i)], combined with Jensen inequality, to infer that for every
n >0 and v € [w_,y1], we have

E1 (|Mos(7) = Ma(y)]) < 22 KMac™1. (3.32)
Using (3.31) and (3.32), we arrive at

lim sup By (| My () — Mo (w_)|) < 2°K Y,
Yow_
Finally, taking the limit as n — oo in the right-hand side, we obtain (i).
(ii) From the very definition of the weighted length measure A7 and the canonical decompo-

sition (2.9) of T into line segments indexed by U, we get for every v € (w—,v1],

K(Y)A(T) = :Z((z)) %;Jx(u)mu(v),

where for non-fictitious vertex u, we write

Au(7) = B x(w) jo fulpyredr,

and by convention we take A, = 0 if u is fictitious. Next from (3.32) that

o (o35 5 B

n=0 ueN"”

n=0
21K 75(y)
<
() (1 = M(y)ct/a)’

and the right-hand side converges to 0 as v | w_. Therefore, it suffices to show that

k(Y
Jﬁ?El(w 2 2 XV () + 1

n=0 ueNn

) §2M V)"Eq (|Mn(7) — Moo (7)])

> —0. (3.33)
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In this direction, recalling that ¢ € (1,2) and using the triangle and then the Jensen inequal-

ities, we bound from above the expectation in (3.33) by

q\ 1/q
m S E, (( S ()| Au(y) + 1\) ) . (3.34)

n=0 ueN"

Now an application of the branching and the self-similarity properties, combined with the Lam-
perti transformation, shows that, for n > 0, under P; and conditionally on the types at generation

n, (x(u))yenn, the variables A, (7), for u e N* with x(u) # 0, are i.i.d with the same law as

¢
() jo exp(7£())dt, under Py,

We know from Tonelli’s theorem that

¢ 0
B < | expww))dt) ~ [ B texplagton e < i = 1/000),

0

and we can apply the Marcinkiewicz-Zygmund inequality to infer that (3.34) is bounded above

1/q - ;
c(q) 5() D Es (Z X(u)”") By <‘¢(7) f exp(v€(t))dt + 1‘(’) Y

ueN” 0

= C(Q)zb(v)(l H(X/)l(qv)l/q) By Ow('y) LOO exp(y€(t))dt + 1‘q>1/q,

where ¢(q) < o0 is some constant depending on ¢ only.
On the one hand, c(q)x(7)/(¥(7)(1 — M(gy)"/?)) converges to 0 as v | w_. On the other
hand, the bound e¥? < ¥~ 4 e¥" for all y € R and v € [w_, 1] yields

([ o))
<21p, (( J exp(w_f(t))dt> q) L, <( J exp(’ylf(t))dt) q) ,

and since ¥ (qw_) < 0 and ¥(gy1) < 0, the finiteness of the right-hand side above follows from
standard properties of Lévy processes, see Lemma 7.1 in the Appendix. Putting the pieces

together, we have checked (3.33), and the proof of (ii) is complete. O
We can now establish Proposition 3.14.

Proof of Proposition 3.14. We work under P; and equip the ssMt T = (T,dr,p,g) with the
measures (t and A := —x(y) - A? for v € (w_,w; ). We infer from Lemma 3.15 that there exists
a sequence (Yn)n>1 in (w_,pw_) which converges to w_ and such that A (T) — w(T) a.s. Our

goal is to show that lim, dprok(i\%, i) = 0 a.s. Since the convergence for the total masses is
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already know from Lemma 3.15, it suffices to establish that, for every § > 0 and every Borel set
A c T, we have
n(A) < A (A%) + 4, for all n sufficiently large, (3.35)

where we use the standard notation A° to denote the d-neighborhood of A in T.

In this direction, recall Notation 2.9, and in particular that for every v € U, (T, dr,, p(v), Gu, Ho)
stands for the subtree encoded by the sub-family (fyu, 7vu)uey. By the branching property, the
conditional law of (T, dr,,p(v), gv, ), in T, given the type x(u) = y is that of the ssMt under
P,. Therefore, by self-similarity, we get

lim A" (T,) = wy(T,) = w(T,), for every ve U, a.s. (3.36)

n—o0

Using again Notation 2.9, we can decompose the tree T' at a generation k > 1 as
T=1"u| | T
|v|=k

We stress that for any two distinct vertices at the same generation, say v # w with |v| = |w| = k,
the subtrees T, and T, are either disjoint, or they share the same root and their intersection is
then reduced to the latter. In both cases, we have pu(7T, n Ty,) = 0. Combining this observation
with the fact from Corollary 3.4, that for any & > 1, the harmonic measure assigns no mass to

T*, we conclude that there is the identity

mA) = Y WA,

veNF

We then recall (from Propositions 2.7 and 3.10, and Property (P)) that
kh—{%o sup{Height(T,) : v € NF} = 0;
we can therefore almost surely find a (random) integer k sufficiently large such that
Height(T,) < 6/2,  for all v e N*. (3.37)

Next, since w(T) = ZM:k m, and m, = w(T,), we can select finitely many distinct vertices

v1,...,U) at generation k, such that

S w(T) = w(T) —6/2.

1<isM

As a consequence of (3.36), we can now find an integer N > 1, such that
w(Ty,) <A™ (Ty,) + 6/(2M), for every 1 <i< M and n > N.
Take any Borel subset A of T and combine the preceding observation. We get

wWA) < D w(AnT,)+6/2< > A (T,) +46.
1<isM 1<i<M
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Finally, (3.37) entails that for any vertex v € N¥ with A n T, # &, T, is included into the
d-neighborhood of A, and the previous display is therefore bounded from above by AT (A%) + §;
here we used the facts that A7 has no atoms and that the intersection of two different subtrees

at the same generation is either empty or a singleton. This completes the proof of our claim. [

3.4 Comments and bibliographical notes

Construction of ssMt. As mentioned in the previous chapter, the inspiration for the recursive
random construction of self-similar Markov trees is the work of Rembart & Winkel. In [1241] those
authors already constructed the underlying tree structure (but without the decoration) of binary
growth-fragmentation processes (a subclass of our ssMt) and gave a similar upper bound on the
Hausdorff dimension as in Lemma 3.6. After the initial works on self-similar fragmentations
[18, 78], the introduction of branching self-similar Markov processes can be traced back to [21]
(in particular Lemma 3.8 is adapted from [21, Lemma 4]) in the context of (binary) Growth-
Fragmentation and [20] in the context of branching Lévy processes. Most of the framework of
Section 3.2 is adapted from the literature on branching Lévy processes [26]. A branching Lévy
process can be seen as the continuous-time version of a branching random walk which describes
a particle system on the real line in which particles move and reproduce independently in a
Poissonian manner. Just as for Lévy processes, the law of a branching Lévy process is determined
by its characteristic triplet (02, a, A) where the decorated Lévy measure A describes the intensity
of the Poisson point process of births and jumps. In a nutshell, the self-similar Markov branching
trees can be interpreted as the random decorated trees obtained after performing a Lamperti
transformation with exponent o > 0 to the decorated trees coding for the genealogy of branching

Lévy processes.

Critical case. Our construction of ssMt in Proposition 3.10 assumes sub-criticality of the cu-
mulant, i.e. that x(79) < 0 for some ¢ > 0. Indeed, when & is strictly positive, the underlying
branching random walk should witness local explosion, see [28], and it is hopeless to define a
random compact tree from it. However, we left aside of this work the critical case when there
exists w > 0 for which k(w) = 0 and otherwise x > 0. In this case, we do not believe that our
Theorem 3.3 can apply, since there are cases when

Z E( sup x(u)) = .

n>0 lul=n
However, the application of Theorem 2.5 requires the more flexible assumption (2.6), namely

limg_, o sup { ZZO: k Za(n) S UE NN} = 0 and its associated branching random walk analog

]}i_)nolosup{ i x(u(n)):ae NN} = 0.
n=k

In terms of growth-fragmentation process (see Section 4.3 for details), although the particle

system evolving in continuous time makes sense as well in the critical case, we do not know
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in general whether its extinction time is finite a.s. or not (see [21, Corollary 3]) and in turn
whether the construction of Proposition 3.10 yields to a compact decorated random real tree.
A private communication of Elie Aidekon, Yueyun Hu and Zhan Shi reported progress in that
direction and we believe that ssMt could even be defined in the critical case'®. See Remark 4.4

and Example 4.12 for instances of critical cases.

On the intrinsic martingale. Our construction of the harmonic measure on ssMt is based on a
natural additive martingale, which is often referred to as the intrinsic martingale in the branching
random walk literature. Biggins [33] and Biggins & Kyprianou [36] have given explicit general
criteria (extending the celebrated Kesten-Stigum theorem) which entail that the convergence
also holds in mean of those martingales. In our case, Assumption 3.12 and Lemma 3.13 which
ensures the convergence in mean builds on the recent works Alsmeyer & Kuhlbusch [10] and
Iksanov & Mallein [81]. Although Lemma 3.13 proves a convergence in LP(IP;) for some p > 1,
Proposition 3.10 merely requires the uniform integrability. Even though we employ the condition
of boundedness in LP(PP;) to streamline some technical arguments, it might be possible to bypass
it. Our results are likely to remain valid under less stringent assumptions ensuring the uniform
integrability of the intrinsic martingale (M, (w-))n>1.

The law of M, the limit of the intrinsic martingale is subject of intense study in the
literature: Passing (3.28) to the limit using the convergence in mean, we deduce the following

recursive distributional equation

M(wo) @3 () - M (o), (3.39)
ueN

where on the right hand side the iid copies MY (w_),u € N are independent of the vector
(x(u) : u € N). The above fixed point equation, related to the equation “X = AX + B” is
sometimes called a smoothing transform and has been studied in depth in recent years, see [59].
Under our assumptions, we infer in particular from results due to Biggins (see Section 2 in [33]),
that this equation has a unique solution with given mean. In our Markovian setup, we can also
write an “infinitesimal version” of the recursive distributional equation (3.38), see [25, bottom
page 4], and deduce that the Laplace transform w(\) = E(e*)‘MOO(“’*)), A = 0, satisfies the

following integro-differential equation,

0 =—kw(A) + %(72)\210”()\) + a Xw'(N)
+ f v(dy) <H wAyL™) —w(\) — yoxw'(melgyoge) , (3.39)
=0

where v is the image measure of A by xz — e®. Alas, despite the fact that the law of My (w_)
satisfies (3.38) and (3.39), it seems to be difficult to identify its distribution in general. We

13Notice then that Assumption 3.12 cannot hold and natural harmonic measure pu must be constructed from

the derivative martingale, [132, Section 3.4].
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shall however be able to identify the law of M (w_) in some special cases in particular via a

surprising connection with random planar maps, see Chapter 4.
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Chapter 4
Examples

The purpose of this chapter is to illustrate the construction of self-similar Markov trees and
to discuss some distinguished families of examples. Roughly speaking, many of those exam-
ples have the property that the decorations along branches are given by some versions of a
stable Lévy process. We stress here again -see also the end of Section 3.2- that the law of a
self-similar Markov tree is determined by a characteristic quadruplet, and that different char-
acteristic quadruplets in the same equivalence class of bifurcators induce self-similar Markov
trees with the same distribution. Choosing one characteristic quadruplet rather than another
one within an equivalence class of bifurcators is often only a matter of preferences. The reader
may wish to have first a glance at the forthcoming Section 6.3 that will provide a detailed ac-
count on bifurcators; notably Theorem 6.3 there describes these equivalence classes explicitly.
Nonetheless, the examples treated in this chapter do not require any result from Section 6.3.
Before starting our list of examples and in order to give a purely analytic definition in terms
of the characteristic quadruplet, we also need to make some comments on the concept of drift.
The notion of drift coefficient for a Lévy process £ can be defined canonically when the Lévy
measure Ag(dy) integrates 1 A |y|, but depends otherwise of the arbitrary choice of the cutoff
function in the Lévy-Khintchin formula (3.11). More precisely, if {(1 A |y|)Ao(dy) < oo, then
no compensation is needed to make sense of the Poisson integral there and we can re-write the

Lévy-Ito decomposition (3.9) in the simpler form
f(t) = UB(t) + acant + f[ | No(ds,dy) Y, Acan *— & — JA()(dy)ylyKl-
0,t] xR

Note that acan, = a when all the jumps of £ have size greater than 1 (i.e. when Ag([—1,1]) = 0),
but otherwise these two coefficients are usually different. It is well-known that ac,, is then a
much more relevant quantity for the Lévy process £ than the rather artificial a, and we shall
therefore call ac,n the canonic drift coefficient. Notice that in this case, the cumulant function

takes the following simpler form
1 e¢]
K(Y) = 502’72 + acany + f A(dyo,dy) (( Z ) — 1) . (4.1)
S i=0
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4.1 Finite branching activity

One often says that a Lévy process has a finite activity when almost surely, its sample paths
have only a finite number of jumps along any time interval of finite duration; this is equivalent
to the finiteness of the Lévy measure. In the setting of Section 3.2, recall that Ay denotes the
image of the generalized Lévy measure A by the second projection from & = [—o0,0) x §;
to Si, and that A; bears a close relation to the reproduction process n; see (3.17) and (3.18).
Recall also that in a reproduction event, the degenerate sequence (—o0, —o0,...) € §; should be
interpreted as empty. So strictly speaking, an atom of the Poisson random measure N of the
form (t,y, (—o0, —00,...)) is not associated to any reproduction event, but only to a jump of the
decoration at time t.

We say that a self-similar Markov tree with characteristic quadruplet (o2, a, A; @) has a finite

branching activity when

A1 (Si1\{(—0, —00,...)}) < 0.

This is the case precisely when the first atom of the reproduction process n occurs at a (strictly)
positive time a.s., and as a consequence, reproduction events for an individual can only (possibly)
accumulate at the end of its lifetime. The tree has then essentially a discrete structure and its
branching points do not pile up, except possibly at leaves; see Figures 4.1 and 4.2. Note also
that since the killing rate k = A({—o0} x &) is always finite, a self-similar Markov tree has a

finite branching activity if and only if its generalized Lévy measure satisfies
A({(y,y)eS:y=—wory # (-0, —m,...)}) < . (4.2)

Having or not a finite branching activity is an intrinsic property of a self-similar Markov
tree, hence it does not depend on the choice of the characteristic quadruplet within a family of
bifurcators. Moreover, if a characteristic quadruplet (02, a, A; ) has a finite branching activity,
then we can always choose an equivalent bifurcator, which we denote again by (02, a, A; ) for

the sake of simplicity, such that the generalized Lévy measure now fulfills
A({(y,y)eS:y# —wandy # (—0,—00,...)}) = 0. (4.3)

This requirement means that reproduction events can only occur at the death of the parent,
which makes the reproduction process especially simple to depict. In terms of general branching
processes, considering such an equivalent bifurcator amounts to the following somewhat artificial
transformation. We decide to kill each individual at the first instant when it begets, and declare
that at its death, it gives birth to an additional child then viewed as its reincarnation and whose
decoration is thus defined by shifting the decoration of the parent. Although this transformation
affects some genealogical aspects of the branching process, it has no impact on the decorated
real tree which is induced.

We assume throughout the rest of this section that the generalized Lévy measure A satisfies'

LOf course, (4.2) and (4.3) alone do not grant Assumption (3.9) and the latter is also needed to ensure the

existence of the self-similar Markov tree.
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(4.2) and (4.3). Then the self-similar Markov tree can be seen as the result of Lamperti’s trans-
formation applied to the decorated genealogical tree that records the evolution of a continuous
time branching random walk in the sense of Biggins [34, Section 5]. More precisely, the latter
depicts a population of individuals living in R, starting at time 0 from a single ancestor located
at the origin, and such that each individual lives for an exponentially distributed duration with
a fixed parameter. During their lifetimes, individuals move according to independent copies of

a Lévy process with characteristic triplet (02, a, Ag) and are thus killed with rate
k= Ap({—0}) = A({—0} x S1) = A({(g,y) €S 1y = —0 or y # (=00, —20,...)}),

where the second identity stems from (4.3). In particular, when a death event occurs, the
individual which dies is chosen uniformly at random in the current population, independently
of its location.

At the time of its death, the parent is replaced by its offspring. The distribution of the
children positions relative to the parent is given by the normalized sub-probability measure
k~!'A; on S;\{(—00, —0,...)}, where the default of mass is the probability that an individual
dies without begetting any child. The self-similar Markov tree is then obtained by interpreting
the location of an individual in the continuous time branching random walk as a value of the
(real) decoration on the genealogical tree, and then performing the Lamperti transformation
on each line of descent. Last, we need to take the completion in order to deal with a compact
structure.

We will now describe in more detail three examples in which the motions of individuals and
their reproductions for the continuous time branching random walk are particularly simple. In
the first example, individuals are static and the sole motion occurs at birth. In the second,
the motion of individuals is merely a linear drift and children are born at the same location
as their parents. In the third, the displacements of individuals are governed by independent
Brownian motions with drift, and again children are born at the same location as their parents.
For the sake of simplicity, we mostly focus on binary branching, meaning that an individual

begets exactly two children when it dies.

Example 4.1 (Static, after Haas [77]). Consider the characteristic quadruplet with 0% = 0, acan =
0, Anaif = 0(—oo,(—log2,—log 2,—0,...)) and an arbitrary a > 0. In the continuous time branching
random walk, each individual lives for a standard exponential duration and does not move until
it dies. At death, each parent given birth to two children, both located at distance log2 at the left
of the parent.

The self-similar Markov tree is then obtained by performing the Lamperti transformation,
which is elementary. Its structure is very simple to described iteratively: it consists of a branch
having a standard exponential length and decorated with the constant function 1, at the extremity
of which two branches of independent exponential lengths with mean 27%, each decorated with
the constant function 1/2 are grafted, and so on and so forth. Finally we take the closure; see

Figure /.1 for an illustration.
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The cumulant is simply
k(y)=27—1, fory>0.

Assumption 3.12 holds with w_ = 1 and wy = 00, and since the sum of the decoration of the two
children always equals the decoration of the parent, the intrinsic martingale is constant and the
total mass of the tree for the harmonic measure is merely 1. Turning our attention to weighted
length measures, we observe from Proposition 3.11 that A7 is finite for any v > 1. An application
of the branching property shows that the total mass NV(T') satisfies the fized-point equation in
distribution

M) D (1) + 277\ + A)

where A1 and Ay are two independent copies of NY(T') also independent of the exponential random

variable £(1). o

Figure 4.1: A simulation of the self-similar Markov tree in Example 4.1 for &« = 0.4. The
tree T is embedded (non-isometrically) in the plane, and the decoration is represented
in the vertical dimension. The root is at the bottom of the right hand side, marked by
an arrow.

The second example is a simple variation of the Yule process, which has also a natural

interpretation in terms of reduced stable trees, as it will be discussed afterwards.

Example 4.2 (Binary branching and drift). Consider here the characteristics 02 = 0, acan = —1,
Atwo = 0(—0,(0,0,~c0,...)) and a = 1. In the continuous time branching random walk, individuals
live in R_ and drift continuously with velocity —1; they die at rate k = 1 and then are replaced
by two children at the same location. This is an elementary spatial version of the Yule process

(see [11, Chapter III.5]); in particular, the number of individuals at any given time t = 0 has
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the geometric distribution with parameter e=' and all these individuals are located at —t. The
sequence of times at which birth events occur is given by the partial sums €1 + --- + €, for
n = 1, where the variables €¢;’s are independent and each €; has the exponential distribution with
parameter i. As a consequence, the variables 3; = exp(—¢;) are independent beta(i, 1) variables
with distribution functions P(3; < r) = r° for r € [0,1]. In the present case, the Lamperti
transformation amounts to combining the time-change 7(r) = —log(1 — r) for r € [0,51) and
the exponential map y — €Y in space. In particular, the decoration process is simply given by
X(r) =exp(—7(r)) =1—r, forre[0,61) and X(B1) = 0. Furthermore, the ranked sequence of
the heights of the branching points in the self-similar Markov tree is 1 — 31 - By, forn = 1.

Equivalently, the self-similar Markov tree can then be constructed recursively as follows; see
Figure 4.2 for an illustration. We start with the line segment with unit length. As a first step,
we glue at height 1 — B1 a segment with length B1. Next we choose one of the two points at
height 1 — 182 uniformly at random and glue there a segment with length $182, and so on, and
so forth. That it, at the n-th step, we pick on the tree constructed so far one of its n points at
height 1 — By - - - Bn, uniformly at random and glue there a segment with length By - - Bn. We end
the construction by completing the tree and define the decoration as 1 minus the height function.
The decoration g(x) at vertex x is then the height of the fringe subtree that stems from x.

We next turn our attention to the intrinsic martingale and the harmonic measure u. By
(3.19), we have

k(y)=1—7~, fory>0,

so that Assumption 3.12 holds with w_ = 1 and wy = +00. On the other hand, we see from
(3.18) that reproduction process simply given by

n = 20wy,

where U = 1 — exp(—e€1) has the uniform distribution on [0, 1]. Recall that the harmonic mass
w(T) is given by the terminal value of the intrinsic martingale, and we see from the branching

property that the latter satisfies the distributional identity

w(T)E U + pa),
where in the right-hand side, the variables py and pe are independent copies of W(T), also
independent of U. It is easy to deduce (for instance, by considering Laplace transforms) that
w(T) has the standard exponential distribution, as we may expect from a well-known result on
Yule processes (see, e.g. [11, Problem 2 on page 136]).
We consider as well the weighted length NY(T) for v > 1, and get similarly the identity in
distribution

ATy 11— U7) + U (M + M),

where in the right-hand side, the variables A1 and Ay are independent copies of NV (T), also

independent of the uniform variable U. o
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Figure 4.2: A simulation of reduced tree at height 1 in the Brownian CRT. The re-
duced tree is embedded in the plane and the decoration (corresponding to the height
of subtrees) corresponds to the vertical dimension. The root is placed on the right and

marked with an arrow.

The self-similar Markov tree in Example 4.2 is well-known in the literature and notably
appeared in connection with the Brownian motion and the Brownian CRT. In this direction, let
us first briefly recall basics about It6’s measure of Brownian excursions and the coding of real
trees by excursions since this will serve in several examples below.

We consider the It6 measure Ny, of positive Brownian excursions, which can be constructed
using It6 or William’s decomposition, see [125, Chapter XII, Theorem 4.2 and 4.5]. Specifically,
there exist a family of probability distributions (Ny);~g on excursions of fixed length ¢, and a
family (N (h)) r>0 on excursions of fixed height h, which both inherit self-similarity from Brownian

motion, such that

© dh © o
Ny, — N — J ——Ny. 4.4
o fo 2h? 0 2276 “4

Next, recall from [66] that any continuous excursion, say e : [0,¢] — R, with e(0) = ¢(¢) = 0,
encodes a rooted planar continuous tree, say 7., via the contour function. The latter is a
continuous surjection ¢, : [0,¢] — T¢, and it is then natural to endow 7. with the push-forward
image of the Lebesgue measure on [0, ¢] by c., which we call here the contour measure® on 7
and denote by .. We shall see in Examples 4.5 and 4.6 that the random tree 7, under N; or

N can be seen as self-similar Markov tree (see also Example 4.12 for a related example).

2The same tree can be encoded by different excursions, and each such excursion induces a contour measure.
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At the heart of the connexions between Example 4.2 and Brownian excursions or CRT lies
the observation that the sequence (5 - - B, )n>1 of the random lengths used in the construction
by gluing can be obtained as the sequence ranked in the decreasing order of the atoms of a
Poisson point measure on (0,1) with intensity ¢~?d¢. By Brownian excursion theory, the latter
has the same statistics as the ranked sequence of the depths of the family of the excursions
below 1 for a Brownian motion started from 1 and killed when hitting 0. Now imagine that
instead of ranking these lengths in decreasing order, we keep the natural order induced by time)
of occurrences of the excursions of the Brownian motion (informally speaking, this corresponds
to a uniform random shuffling of the ranked sequence), and add a unit length at the right-end
to take into account the final excursion that brings the Brownian motion to 0. By gluing each
length ¢ < 1 at its bottom point to the first larger length at its right, we recover precisely the
recursive construction devised in Example 4.2.

This construction can also be interpreted as follows. We work under the It6 measure of

positive Brownian excursion conditioned to have height at least 1, which thanks to (4.4) can be

©dh_,
L ﬁN( ),

Under this conditional probability measure, a sample path can be viewed as the contour process

expressed in the form

of a planar continuous tree with height at least 1. Imagine that we reduce this tree by removing
first all the vertices at height greater than 1, and further by pruning all the remaining branches
that do not reach height 1. Then this reduced tree has the same distribution as the self similar
Markov tree in Example 4.2; see e.g. [53, Section 2.1].

This reduction process can be applied to the stable trees of the forthcoming Example 4.7.
In this case we still have a = 1, the drift is a = —1, the Gaussian coefficient 02 = 0 and the
generalized Lévy measure is given by

AL (k- B)
A= 2000 fTE )

k times
so that the associated cumulant function is

K(y) = ﬁl_l - 7.

In particular Assumption 3.12 still holds with w_ = ﬁ € [1,00) and w; = +o0, and in this

case, the total u-mass has Laplace transform

o L\ VD
E(e—1Me —):1_(1+761> ,

see [109] and the references therein.
We end this subsection with a last example where now the motions of individuals are diffusion

processes.
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Example 4.3 (Branching Bessel processes). Consider the characteristics 0% =1, acan € R, Awo =
0(—0,(0,0,—,...)), and self-similarity parameter o = 2. The continuous time branching process
is then the well-known binary branching Brownian motion with drift acan, and the cumulant

function is
2

v
’{(’7) = ? + acany + 1.

It satisfies Assumption 3.12 as soon as acan < —v/2 and then w— = —acan — Vacan2 — 2 and

Wy = —acan + Vacan? — 2. By the Lamperti transformation, the self-similar Markov process

X associated to the Brownian motion with drift By + acant is a Bessel process with dimension
d = 2acan + 2. See Figure 4.3 for an illustration.

Similarly to Fxample 4.2, the spatial marginal of the reproduction measure is

U(R+ X dx) = 256Xp(Be+acan€) (dl’),

where € is an exponentially distributed random time independent of the Brownian motion B.

The density of the variable Be + acan€ is given by

P(Be + acan€ € dy) = (2 + acan?) Y2 exp(acany — [¥]V2 + acan?)dy,

see [39, (1.0.5) on page 256]. The terminal value of the intrinsic martingale, that is the mass

of the harmonic measure, then satisfies the distributional identity

d
Moo(w)2 explw—(Be + acan)) (Mon () + Mig(w-),
where in the right-hand side, the variables B + acan€, My (w—_) and M, are independent, and
M, is a copy of My (w—). It is not known to us whether an explicit expression for the distribution

of Mo (w—) can be derived from this. o

Remark 4.4 (Critical case). If we take acay = —+/2 in the above example, then the overall
minimum of the cumulant function x equals 0, which we called the critical case in the comments
section of Chapter 3. In this example, we leave open the fact that the procedure of Chapter 3

actually produces a compact decorated random tree.

4.2 Non-increasing decorations and fragmentations

We say that a decoration on rooted real tree is non-increasing when its restriction to any segment
from the root defines a non-increasing function of the height. We then call a self-similar Markov
tree non-increasing if its decoration is non-increasing, almost-surely. In that case, the self-
similar Markov process X that describes the decoration for a typical individual must plainly
have non-increasing sample paths, that is, equivalently, the underlying Lévy process & that gives
X after the Lamperti transformation must be the negative of a subordinator (possibly with

killing). However, this requirement is clearly not sufficient; one needs to impose further that
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Figure 4.3: A simulation of the Branching Bessel process with ac,, = —3. As usual,
the decoration (the values of the Bessel processes) is displayed in the vertical coordinate.
The root of the decorated tree is marked by an arrow.

the reproduction process 1 has no atom, say at (t,z), with X (t—) < . The latter translates in

terms of the generalized Lévy measure as

Al({yZ(yl,...)6512y1>0})=0. (45)

In the converse direction, it is immediately seen that if (4.5) holds and if the underlying Lévy
process £ is the negative of a subordinator, then the self-similar Markov tree is non-increasing.
For instance, Examples 4.1 and 4.2 are non-increasing self-similar Markov trees (with a finite
branching activity), but not Example 4.3. In particular, a (possibly killed) real Lévy process
is a subordinator — that is, it has non-decreasing sample paths until it eventually dies almost
surely — if and only if its Gaussian coefficient is 02 = 0, its Lévy measure Ag(dy) gives zero
mass to (—o0,0) and integrates the function 1 A |y|, and finally, its canonic drift coefficient is
nonnegative, acan = 0.

Putting the pieces together, we arrive at the following analytic definition in terms of the
characteristic quadruplet®. A self-similar Markov tree is non-increasing if and only if its Gaussian

coefficient is zero, o2 = 0, its generalized Lévy measure verifies

A({(y,y)eS:y>0o0ry >0}) =0,

and
J (1 A [yl)Ao(dy) < oo, (4.6)
(70070)

3Whether or not a self-similar Markov tree is non-increasing is obviously an intrinsic property, which does not

depend of the choice of the characteristic quadruplet within a family of bifurcators.
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and finally, its canonic drift coefficient is non-positive,
Acan = @ — J on(dy) <O0.
[7170)

We stress however that at this stage, the cumulant function & in (3.19) could potentially be

infinite everywhere, and a fortiori Assumption (3.9) may fail in general.

We now present an example of a non-increasing self-similar Markov tree with an infinite
branching activity which is related to Example 4.2. Recall the notation regarding It6 excursion

measure and contours of planar trees that was introduced after Example 4.2.

Example 4.5 (Heights of Brownian sub-trees). Let us denote the Brownian CRT of height 1 by
T, je. the tree Toq) where e follows the law N in (4.4). We further endow TM) with the
deterministic decoration which assigns to each vertexv € T the height of the fringe-subtree %(1)
rooted at v as defined in Section 2.1; see Figure 4.4 for an illustration. We shall now argue that

this decorated random real tree is a self-similar Markov tree and determine its characteristics.

Figure 4.4: A simulation of a Brownian CRT normalized by the height. The tree is
embedded non-isometrically in R?; the decoration function represents the height of fringe

subtrees and is depicted in the vertical coordinate.

As a first step, recall from a well-known result of David Williams, that the Brownian ex-
cursion with height 1 can be constructed by gluing back to back the trajectories of two inde-
pendent copies of a 3-dimensional Bessel process started from 0 and killed when hitting 1, say
R = (R(s))ogs<z- See [125, Theorem 4.5 on page 499]. We observe from Brownian excursion

theory and classical relations between the Brownian motion and the 3-dimensional Bessel process
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also due to Williams, that if we set oy, := sup{s = 0 : R(s) < u} for the last passage time of R be-
low some level u € (0,1), then the following assertion holds. The point process of sub-excursions

of R above its future infimum, whose atoms are given by
(u, (Rpy +s—u:0<s<o,— au,))
for those u such that oy > oy_, is a Poisson random measure with intensity
1j(e)<1—udu 2Nygo (de).

Here e stands for a generic excursion, h(e) = maxe for the height of e, and the restriction
h(e) < 1—wu stems from the fact that the maximum of R during the excursion interval [oy—, o]
must be less than 1. See for instance [121], and also [2] for a more general version in the setting
of Lévy’s CRT. If we think of R as the left-contour of TV until the highest vertex is reached,
then an atom of this point measure, say at (u,e), should be interpreted as follows. The vertex at
height u on the branch from the root to the highest vertez is a branchpoint of TV, and a contour
function of the left subtree that stems from this vertex is induced by the excursion e.

Now from (4.4) we have 2Ny (h(e) € dz) = x=2dx. Since by Williams’ decomposition, the
full contour process of T is obtained from two independent copies of R, one now readily sees
from the Brownian scaling property that the process that records the heights of the collection of
the subtrees of T above height t € [0,1] is a general branching process in the sense of Section
3.1, whose decoration-reproduction kernel can be described as follows. For every x > 0, under
Py, the decoration process is simply given by X (t) = x —t for 0 <t < x, and the reproduction
process n(du,dy) is a Poisson random measure on the triangle {(u,y) : 0 <y < z —u < x}
with intensity 2y~ 2dudy (the factor 2 stems from the fact that two independent copies of R are
needed to construct the contour function of 7'(1)). One immediately checks that the family of
laws (Py) >0 is self-similar with exponent o = 1 in the sense of Definition 3.5, and we shall now
argue that it is actually one of the self-similar Markov decoration-reproduction kernels devised
in Section 3.2.

In this direction, set 0> = 0, acan = —1 and o = 1, and introduce the generalized Lévy

measure Ayeighy on S given by

0
JS F(y07 (yl; Y2, .. -))AHeight(dy7 dy) = 2J F(O7 (y7 —0, .. ‘))eiydyv
—0Q0

where F denotes a generic nonnegative functional on S. In particular, notice that we have
acan = a = —1. Just as in Section 3.2, consider a Poisson random measure N(dt,dy,dy) on
[0,00) x S with intensity dt Aneignt(dy,dy). In this setting, the Lévy process is merely linear,
&(t) = —t fort = 0, and the exponential functional e(t) = 1 —e~t has inverse 7(s) = —log(1—s)
for 0 < s < 1. After the Lamperti transformation, the positive self-similar Markov process is
hence X(t) = 1 —t for 0 < t < 1 as we wished. Next observe that the push-forward image
of the measure dte™Ydy on Ry x (—00,0) by the map (t,y) — (u,x) = (1 — et e tY) is the
measure x~2dudx on the triangle {(u,z) : 0 < x < 1 —u < 1}. It follows from the mapping
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theorem for Poisson point processes that the reproduction process defined by (3.18) has the same
distribution as the reproduction process n above under Py. Putting the pieces together, we can
now conclude that the decorated tree (TM v — Height(ﬁ(l)),O) is a self-similar Markov tree
with characteristic quadruplet (0, —1, AHeight; 1)-

As a consequence, we compute the cumulant by (4.1), which is simply

0
ﬁHeight(’Y) =—7+ 2J 6(771)ydy =7+ 2/(7 - 1)7 Y > L.
—0

It follows that w_ = 2 and wy = o and Assumption 3.12 holds. We will now identify the
harmonic measure W in terms of the contour measure vy 1) on T which has been defined above
as the push-forward image of the Lebesque measure by the contour function induced by V). We

claim that there is the identity
3

5’)’6(1) . (47)

To establish this assertion, recall that the expectation of the lifetime z of the killed Bessel pro-

}’L:

cess R equals 1/3. Therefore, the total mass of contour measure has expectation B(yq) (TM)) =
2/3; moreover we have also Var(vy,u (T(M1))) < co. Now recall that x(v) denotes the type of the
individual labelled by v € U in the general branching process, so that in the present setting, x(v)
is the height of some sub-ezcursion of eV). We then deduce from the branching property and

self-similarity that

2 2
Yoy (THV) — §><(v)2

Vo

[v[=n

<c-E Z x(v)*

[v[=n

<c-(1+r(4)/4)",

where the last line stems from Lemma 5.8. Since k(4) < 0, we deduce that

R(TW) = Tim M () = Sy (TO).

n—0 2

Again by the branching property, we have more generally that

3
W(TY) = Sren(TH),  vel,

and (4.7) follows. o

We next discuss an important family of non-increasing self-similar Markov trees that have
received much attention in the literature; see for instance the survey [18] and references therein.
A self-similar fragmentation process can be thought of as a model for an inert length that splits
as time passes into smaller and smaller pieces called fragments. One assumes the branching

property and self-similarity, in the sense that different fragments evolve independently the ones
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from the others and according to the same dynamics up to a proper rescaling of time and size.
Intuitively speaking, the inertia of the length falling apart yields a natural genealogical structure
of the family of fragments: we view a fragment present at time t as a forebear of another fragment
present at time ¢’ > ¢ if the latter was part of the former at time ¢. Hence a fragmentation can
be depicted by a continuous genealogical tree where branching points represent the sudden
dislocations of a fragment, endowed with a decoration which records sizes.

Roughly speaking, self-similarity entails that the rate at which a fragment with size x > 0
breaks into a (possibly infinite) sequence of sizes xs1,xso,... is given by x~*E(ds), where s =
(s1,82,...) is a non-increasing sequence in [0,1) and E is known as the dislocation measure.
Beware that the convention for the self-similarity exponent « that we follow in this text has the
opposite sign of the one used in the literature on self-similar fragmentations, see e.g. [77, 78]. So
for a > 0, small fragments break up at a higher pace than larger ones, hence faster and faster as
time passes. An important consequence is that the entire length becomes fully shattered after
a finite time; in other words, there are no more fragments with positive length present in the
system after a while.

The assumption of inertia of the length falling apart translates into the requirement that
the sum of the sizes of the smaller fragments after a dislocation event never exceeds that of the
fragment before the dislocation, and can even be strictly smaller in the case where some dust
(fragments of infinitesimal sizes) is produced. So more precisely, Z is a measure on the space
of non-increasing sequences s = (s;);>1 in [0,1) with },,_ s; < 1, which furthermore fulfills the

integral condition
J(l — 51)E(ds) < o0. (4.8)

Note that this requirement allows the dislocation measure E to be infinite, that is, the fragmen-
tation to have an infinite activity. If (4.8) failed, then the intensity of dislocations would then
be too strong and any length would be instantaneously reduced to dust.

Self-similar fragmentations naturally yield non-increasing self-similar Markov trees. More
precisely, the dislocation measure E of a fragmentation is related to the generalized Lévy measure
A as follows. The former is the push-forward image of the latter by the function which maps
(Y0,y) € S to (8;)i>1, the version ranked in the non-increasing order of sequence (e¥0,e¥1 e¥2 .. .).
Note that (4.8) follows from (4.6) and that

A ({(yo,(yl,...)) eS: i e’ > 1}) == ({s : isi > 1}) = 0;
j=0 i=1

one then says that A is dissipative. The last parameter of the model is the so-called erosion
coefficient, a non-negative real number which accounts for rate at which fragments continuously
shrink and that is simply identified as the negative of the canonic drift coefficient ac,,. Putting
the pieces together, a self-similar Markov tree encodes a self-similar fragmentation if and only

if it is non-increasing and its generalized Lévy measure is dissipative. Note from (4.1) that the
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cumulant can also be expressed in terms of the dislocation measure as

() = ey + | E(c) (Z 57— 1) .
i>1
By dissipativity, < is a non-increasing function with (1) < 0, and in particular, Assumption
(3.9) holds for v > 1 as soon as E is not degenerated, i.e. & # (19,

The cumulant x has a simple probabilistic interpretation in terms of the so-called tagged
fragment. The latter is the process that, as time passes, records the size of the fragment that
currently contains a point that has been initially tagged uniformly at random in the length. It
is easily seen from the branching property that this tagged fragment has the Markov property,
and it is also naturally self-similar. The Lévy process that underlies the latter via the Lamperti
transformation is non-increasing, hence the negative of a subordinator. In this framework, the
Laplace exponent of this subordinator is given by the function v — —k(y + 1); see e.g. [18,
Corollary 3.1]. This observation is in close relation to the forthcoming Lemma 6.4.

A fragmentation is called pure when there is no erosion, that is when the canonic drift
coefficient is acan = 0, and then conservative when further total sizes are preserved at dislocation

events, that is when the dislocation measure satisfies

= ({S = (Si)i>1 : Z S < 1}) = O,
i=1

or equivalently in terms of the generalized Lévy measure

A ({(yg, (y1,..)) : Z Y # 1}) - 0. (4.9)

Example 4.1 is an elementary case of a conservative fragmentation.
For any conservative self-similar fragmentation, we have (1) = 0, so Assumption 3.12 holds
with w_ = 1 and w; = 400. Much more precisely, conservativeness readily entails in terms of

the reproduction process n that there is the identity

f xzn(dt,dz) =1 a.s.,

[0,00) % (0,00)

and therefore the intrinsic martingale is trivial, M, (w_) = 1. As a consequence, the decoration
of a self-similar conservative fragmentation simply assigns to any vertex of the tree which is not
a branching point, the pu-mass of the subtree that stems from this vertex.

Genealogical trees of self-similar fragmentations have been constructed first by Haas & Mier-
mont [78] in the conservative setting. They were notably able, under mild hypotheses, to compute
Hausdorff dimensions as well as the maximal Holder exponents of the height functions. Specifi-
cally, they showed that the Hausdorff dimension of the set of leaves is 1/a. We will extend this
result to our general framework of ssMt in Section 6.4, and specifically in Proposition 6.14 (ac-

tually, [78] has a mild assumption that is not needed Proposition 6.14). Then this was extended
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to more general self-similar fragmentations where the conservativeness condition is dropped by
Stephenson [131]. We also mention that in the case acan, = 0 without erosion, the total length
measure A7 (7T') has been introduced and studied in [19].

We already dealt in Example 4.5 (see also the discussion after Example 4.2) with a variation
of the most distinguished member of the family of self-similar fragmentation trees, namely the

ubiquitous Brownian Continuum Random Tree [3]. Here is a precise discussion.

Example 4.6 (Brownian CRT and its fragmentation). The real tree Ty constructed from a standard
Brownian excursion of length 1, say (e1(s))o<s<1 with the law Ny defined in (4.4), is known as
the Brownian CRT *. We denote by Yo, its contour measure and endow Ty with the decoration
which assigns to each vertex v € Ty the contour-mass ve,(T1,v) of the fringe-subtree above point

v (this is indeed a usc decoration), see Figure /.5.

Figure 4.5: A simulation of a Brownian CRT. The tree is embedded (non-isometrically

in R?) and the decoration function representing the p-mass above each point is depicted
in the vertical coordinate.

Just as in Example /.5, this decorated random real tree is a self-similar Markov tree. By
construction, it encodes a self-similar fragmentation whose state at time t = 0 is given by the
ranked sequence of decorations on the sphere {v € Ty : d(p,v) = t}. Equivalently in terms of the
excursion ey, for every t = 0, the random open set {s € [0,1] : e1(s) > t} can be decomposed
into a (possibly empty) sequence of open intervals; the process in the variable t that records
the sequence of the lengths of these intervals ranked in the decreasing order, is the Brownian
fragmentation. The characteristics are found using [17, pages 338-340] and [175].

The Brownian fragmentation tree is self-similar with index o = 1/2, no erosion, and binary

“Beware that, as in [94] and many works in that field, there is a difference by a factor 2 between our definition
of the Brownian CRT and that in [8].
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conservative dislocation measure By, given by

1 xr
JF(sl,SQ, ) o (ds) — \/ELQF@, 1~ 20,0, ...)W, (4.10)

where F' stands for a generic nonnegative functional of the sequence of fragments. The cumulant

function can be evaluated using (4.1):

v I'(y—-1/2)
KBro (Y \[J (7 + (1 —x)" —1)( (1_36))3/2_—2\/5 NCE y>1.  (4.11)

As for all conservative fragmentations, we have w_ = 1 and wy = 00, Assumption 3.12 holds
and the total w-mass is trivially x under P,. In particular, we have the almost sure equality
WL = e, S0 that the decoration in T1 can be recovered from its harmonic measure and vice-versa.

A possible choice for the generalized Lévy measure in the family of bifurcators is then obtained
by following the largest fragment at each dislocation. This amounts to defining first the measure
ABro,max on R_ as the push-forward image of the dislocation measure Epy, by the map s — logx
with s = (z,1 —x,0,...) for x € [1/2,1). Concretely, this gives

2
J f( )ABro max dy \/7 1/2f logx ( ))3/2

SRS
log2 ey(l - ey)3

Then the generalized Lévy measure Apromax %5 simply obtained by

f F(yo,y>ABm,mx<dy,dy>=f F(y, (log(1 — &%), =20, .. )) Apromax(dy),
RXSl R

where now F stands for a generic nonnegative functional on S.

Notice also that using the fact that the Brownian CRT is coded by the Brownian ercursion
[0/, 16], the quantity N*/>(T) = §7dX g can be interpreted as the area under a standard Brownian
excursion, known as the Airy law and whose moments are explicit, see [5]] for details. Other
length measures appeared recently in the literature [71, 60, 5].

This Brownian fragmentation has been studied in depth in the literature and we did not try
here to survey all its known properties, see e.g. [35] for a recent application to the study of
increasing subsequences in the Brownian separable permuton. Finally, it is interesting to recall
that Aldous [9] has a construction of the Brownian CRT by recursive gluing of line segments that

is somewhat similar to the construction in Example 4.1. o

One says that a conservative self-similar fragmentation is binary if, just like as in Example 4.6,
exactly two fragments are produced at each dislocation event. Specifically, the dislocation mea-

sure must satisfy
= ({S = (Si)izl 83 > 0}) =
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that is equivalently in terms of the generalized Lévy measure to asking

A ({(yo, (y1,---)) 1 y3 # —o0}) = 0. (4.12)

We already observed in Example 4.6 that in the binary conservative case, the generalized Lévy

measure A is entirely determined by its first marginal Ay and the identity

f F(yo, y)A(dy, dy) = f Fly, (log(1 — ¢¥), —0, .. ))Ao(dy). (4.13)
RxS1 R

Moreover, the reproduction process 7 is determined by the decoration process X since we have

n= > 0-ax(): (4.14)
t>0
Pitman and Winkel [122] and [123, Section 3] devised first a recursive construction of binary

conservative self-similar fragmentation trees using a so-called bead splitting processes that gen-
eralizes Aldous’ line-breaking construction of the Brownian CRT.
The stable CRT, introduced by Le Gall — Le Jan & Duquesne |

family indexed by /3 € (1,2] of random continuous trees, where the boundary case 5 = 2 is the

, (0], form a one-parameter

Brownian CRT. They appear as scaling limits of critical Galton—Watson trees whose offspring
distribution belong to the domain of attraction of a spectrally positive stable law with index .
They also belong to the family of self-similar fragmentation trees of Haas and Miermont [75],
and satisfy the striking property that their distribution is invariant under re-rooting at a random
u-point [20]. A notable difference in the case § < 2 is that branchpoints have infinite degrees

almost surely, whereas branching are always binary for the Brownian CRT.

Example 4.7 (Stable fragmentation trees). Just as in Example /.0, the stable trees can be in-
terpreted as self-similar Markov trees. More precisely, for B € (1,2), if hg : [0,1] — Ry is the
stable excursion height process introduced in [101], we can consider the random real tree Ty,
decorated by the y,-mass of its fringe-subtrees. It then follows from the work of Miermont [115]
that this is a self-similar Markov tree with self-similar exponent o = 1 — 1/, canonical drift
acan = 0 and no Brownian component. The generalized Lévy measure Ag_gaple %5 conservative
but non-binary, and can be related to the Poisson-Dirichlet measure with parameter (1/5,—1).
More precisely, it can be given by
B2T(2 -1/ AS;,
fF(eyOv (e, )) Aﬁ—stable(dyﬁadY> [ :,;hml] F((2—B§) ‘E [SlF <S1 1= 1)} )

where ASy, are the jumps of a stable 1/ subordinator (St)o<t<1 started from 0 on the unit time
interval, ranked in decreasing order.

As for all conservative fragmentations we have w— = 1 and wy = +00, Assumption 3.12
holds with trivial total w mass, and as in the previous example, |t = Ven, and the decoration g(x)
1s the w-measure of the subtree above point x € T. The length measures on T have also been

considered in [71, 00, 5].
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Figure 4.6: A simulation of a 3/2-stable fragmentation tree embedded in the plane with

the decoration in the third coordinate.

The exact form of the cumulant function was computed in Section 3.4 in [115], which estab-
lished that Iy~ 1/8)
/‘iﬁ—stable(’)’) = -3 W

In this normalization, the [(-stable tree encodes the genealogy of the CSBP with branching

mechanism z — 2%, and when B = 2 the associated random tree is /2 times the Brownian CRT

(hence the disappearance of a factor of /2 in (4.11), see [51] for careful normalizations). Last,

we also refer to [75] and [12]] for constructions of stable CRTs by recursive random gluing of

segments, in the same vein as in Aldous [9] and Example j.1. o

We refer to [79, 77] for other examples of conservative fragmentation trees that we do not
describe in these pages. Let us now present a few natural generalized fragmentation trees that are
not covered by the Haas—Miermont framework. One natural way to obtain them is to consider
dissipative fragmentations obtained by trimming a (conservative) fragmentation using a local

rule to keep only certain particles. Specifically, in the continuous world, a trimming rule is a

Trim - Sx[0,1] -8
rim : ((?/07 (Y1, Y2, )),w) — (gjg, (71, Y2, ))7

which associates to a point (yo, (y1,y2,...)) € S and an additional source of randomness w € [0, 1]

function

a random variable (7o, (71, 92, ...)) in S where g is either yy or —oo (we interpret the latter case
as a deletion) together with a -possibly finite’- subsequence (71, 2, ...) excerpted from (y1, 2, ...).

Given a trimming rule, we write

Trim(A) := Trimy (A ® Leb|0, 1]),

5In that case, the finite sequence is completed by infinitely many’s —oo for the sake of definitiveness.
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for the image of a generalized Lévy measure by this rule. We shall furthermore suppose that

the killing rate does not explode after trimming, i.e. that
Kirim = Trim(A) ({—o0} x 81) < oo;

plainly Trim(A) is in turn a generalized Lévy measure. Remark that the cumulant function
associated to (02,a,A;q) is clearly upper bounded by that of (02, a, Trim(A); ) so that by
Proposition 3.10, we can construct simultaneously on the same probability space (T, dr, pr, g)
and (Tirim, ATy > PTisim» 9trim) With characteristics (0%,a,A;a) and (02, a, Trim(A); @) so that
Tirim is a subtree of T' with the restriction of the decoration (the trees do not carry any measure).

Let us give a concrete example where explicit computations are doable:

Example 4.8 (k-sampling in the Brownian case). Consider the Brownian fragmentation of Ex-

ample 4.6 which we trim as follows: Fiz k = 2 and for (sg,s1) € S, write xg = €* and x1 = €°!.

Next, using an independent source of randomness, sample k i.i.d. Bernoulli variables €1, ..., €
with P(§ = 1) = x; fori = 0,1. Then delete x; if and only if none of the Bernoulli variables €; for
j=1,...,k takes the value i. This yields a non-conservative binary self-similar fragmentation

with characteristics (02 = 0,acan = 0, Aprox; @ = 1/2), where the generalized Lévy measure is

given by

L Asro(dyo, d(yi)iz1) F (20, (%1, ..))

F(z, (1 —2,0,..))(1 -2 — (1 —2)F)

2 (1 dz
=\ |t F(z,(0,0...))z"
\[LQ el =) | F(0,(1—2,0,..))(1 - 2)k

In this example, we have:

e Fork =2,
(1—29)l(y+1/2)
ro =2 )
KBro2(7) = V2 o1 D)
so that Assumption 3.12 holds with w— = 1/2 and wy = +00. We believe that the total

harmonic measure w(T') should be distributed as a multiple of a Rayleigh law with density

ze=/2 op Ry.
o for k=3,
_ B=29(1+29))P(y+1/2)
’iBro,S(V) = ’
V2I(2 +7)
so that Assumption 3.12 holds with w_ = \/%71 and wy = +00. The underlying ssMt is

thus a rather natural subtree of the Brownian CRT with Hausdorff dimension @
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Figure 4.7: An illustration of the Trimmed Brownian tree for k = 2 (in blue) inside the

standard Brownian tree of Example 4.6. The thickness indicates the labels.

4.3 Conservative binary growth-fragmentations

Markovian growth-fragmentations processes have been introduced in [21] as stochastic models
describing the evolution of a system of living cells, where at any given time cells are simply
determined by their sizes. Imagine that as time passes, cells may grow or shrink continuously
and are further involved in birth events at which a daughter cell split from the mother cell (this
is called mitosis in biology). More precisely, let X (¢) be the size of a typical cell at age t; we
suppose that the process X = (X (t))=0 is Markovian, has only negative jumps, and reaches 0
continuously after some finite time which we view as the death of the cell. Suppose further that
each jump of X is a birth event, such that if AX(s) = —x < 0, then s is the birthtime of a
daughter cell with size x which then evolves independently and according to the same dynamics,
i.e. giving birth in turn to great-daughters, and so on and so forth. This description fits the
setting of general branching processes of Section 3.1, where the reproduction process 7 is simply
the point process of the negative of the jumps of the decoration, see (4.14). We point out that
the case when cells are actually inert (i.e. may split but otherwise do not grow nor shrink)
corresponds to bead splitting processes introduced by Pitman and Winkel [122, 123].

Suppose further now that the Markov process X is self-similar with exponent a > 0, and note
from (4.14) that the reproduction process 7 inherits self-similarity from X. Recall also that X
should have no positive jumps (to match the assumption that cells grow continuously and hence
have only negative jumps at mitosis events) and die when reaching continuously a size 0. We
are then in the conservative (4.9) and binary (4.12) case. The Lévy process £ = (£(t))i=0 that
underlies X in the Lamperti transformation is thus spectrally negative (i.e. its Lévy measure

Ag is carried on (—0,0)), drifts to —co, and has also killing coefficient k = 0. Therefore, if we
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write (02, a, Ag) for its characteristic Lévy triplet, then Ag is a measure on (—0,0) with
J (1 AyH)Ag(dy) <o and a —i—J yAo(dy) < 0.
(—00,0) (=%0,-1)
We stress that the integrability condition (4.6) may fail, and that the second requirement above
is the necessary and sufficient condition for £ to drift to —oo. The generalized Lévy measure is
then given by (4.13) and hence the cumulant by

1
) = g e | (e Ly ) Aol
.

It can be shown that if k(y) < 0 for some v > 0, then almost-surely, the family of the sizes of
cells is null at any time ¢ > 0, whereas if () € (0,00] for all v > 0, then almost surely, there
exist times ¢ > 0 at which there are infinitely many cells with size, say, larger than 1. See [21]
and [28]. We stress that on top of the restriction above (binary, conservative, no killing), the
main conceptual difference between the growth-fragmentation point of view and our approach
in these pages is that a growth-fragmentation process is a process (X(t) : ¢ = 0) with values in
the space of point measures on R (or sequences of non-negative reals), whereas we focus here
on the construction of random decorated trees. Specifically, when () < 0 for some v > 0, that
is in the subcritical case, the self-similar Markov tree with characteristics (02, a, A; ) where
A is given by (4.13) can be thought of as the decorated genealogical tree underlying the self-
similar growth-fragmentation process. This correspondence is similar to the one made between
superprocesses and their encoding by random trees and snake trajectories [65]. It is still open
to decide whether this correspondence also holds in the critical case, see the end of Chapter
3. Rembart and Winkel [124, Section 4.2] were the first to describe a recursive construction of
binary conservative self-similar growth-fragmentation trees that inspired our general construction
by gluing in Section 2.4.

We now describe an interesting family of self-similar Markov trees for which cumulant func-
tions will always be expressed as ratio of Gamma functions (and simple trigonometric functions).

We start with the most important example:

Example 4.9 (Brownian growth-fragmentation tree). The Brownian growth-fragmentation tree
s a self-similar Markov tree related to a remarkable growth-fragmentation that has appeared
as the scaling limit of cactus trees inside random triangulations [25] or directly within the free
Brownian disk [10/]. It bears some obvious similarities with the Brownian fragmentation tree of
Example J.6.
The Brownian growth-fragmentation is self-similar with exponent o = 1/2, and its cumulant
function is given by
I'(y—3/2)
L(y=3) "

Its Gaussian coefficient is 0> = 0, its generalized Lévy measure Aproar 1S binary conservative

KBroGF(Y) = for v > 3/2.

and given by
3 1 dx
f F(eyo,(eyl,...)) ABrocr(dyo,dy) =
S

W 1/2F(x,(1—x,O,O,...))W.M.lS)
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Figure 4.8: A simulation of the Brownian growth-fragmentation tree. The process is
binary and conservative: at each splitting event, the total mass is conserved and split

between two children.

Since Aprocr(dyo,dy) does not integrate 1 A |yo|, the drift coefficient is not canonic; for the

cut-off function as in (3.11) we have

2 Tl 1— A7 —
3 ogxw + T (7 377)’

TO =——+
BeCE T TR T Ayw s (1 — )2 NG
see [23, Eq (32)] or [22, Proof of Proposition 5.2] for a different drift using a different cut-off

function.

In particular, we have w_ = 2 and wy = 3, and Assumption 3.12 holds. The distribution
of the total mass wW(T) is known from [22, Corollary 6.7], it satisfies the striking property that
its size-biased transform is a 1/2-stable law. Let us develop in more details the connection with
Brownian geometry since this is one of central motivation for this whole work. The Brownian
sphere is a random compact metric space almost surely homeomorphic to the 2-sphere, and which
has famously proved to be the scaling limit of various classes of random planar maps equipped with
the graph distance [11/, 99], or shown to be the random metric space obtained by exponentiating
a planar Gaussian Free Field with the proper parameter \/%, see [110, 118, 75]. The Brownian
sphere has a variant, having the topology of the disk, called the Brownian disk, see [72]. In
particular, the boundary of the Brownian disk may be defined as the set of all points that have

no neighborhood homeomorphic to the open unit disk. Let us denote a free Brownian disk
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with boundary size x (it has a random volume) by D, and its boundary by dD,. For every point

u € D, we write H(u) for the height of u, defined as its distance to 0D, and for every r > 0, we

Figure 4.9: lllustration of the Cactus tree of a Brownian disk. The ball of radius r
(measured from 0dD),) is depicted in light gray and it has several boundary components.
Each of these components has a “size” which enables us to decorated the cactus tree (on
the right).

consider the “ball” B, = {u € D, : H(z) < r}. Its boundary 0B, is made of several components
homeomorphic to circles. Fach of these boundary components C is a fractal curve (of dimension
2) but it is possible to give a meaning to its size |C| by approximation (a.s. simultaneously for
every r = 0 and for each boundary component), see [10./, Theorem 3]. In particular, the boundary
0D, has size x a.s. Furthermore, those boundary components have a natural tree genealogy as r

varies. Specifically, consider the pseudo-metric dcac defined by

dcac(u,v) = H(u) + H(v) — 2 sup ( min H(fy(i))) ,

Y:u—v 0<i<1

where the supremum is over all continuous curves v : [0,1] — D, such that v(0) = u and
v(1) = v. Then, we introduce Cac(D,) the quotient space of D, for the equivalence relation
defined by setting a ~cac b if and only if dcac(a,b) = 0. The quotient Cac(Dy), equipped with
the metric induced by dcac, is a compact real tree called the cactus of D, seen from dD,. We
root Cac(Dy) at pop, the equivalence class of 0Dy, see [55, Section 2.2]. It is easy to see that
the equivalence classes for ~cac are precisely the boundary cycles of 0B, for all r = 0, so that
the size function |C| of boundary components is a well defined decoration rcll on branches on
the cactus tree and we denote its usc modification by g.;. Then, it follows from [10/] (see in

particular Theorem 8 there) that the law of the equivalence class in T of the decorated tree

(CaC(Dx)7 dCaca PoD, » gH)

is that of T = (T,dp,p,g) under P, for the characteristic quadruplet (O,% . aBrO(;F,Q—\‘//g .
ABrocF; %) Actually, [10/]] only deals with the growth-fragmentation point of view, but the re-

sults there are established using cell processes so that the previous display is a consequence of
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the arguments therein. Let us sketch the reasoning: It is proved in [10., Proposition 16] that the
self-similar process obtained by following the locally largest exploration is precisely the pssMp X
constructed from (0, % - ABroGF, % - ABroaF; %) in Section 3.2. In particular, in the growth-
fragmentation case (binary conservative case), the decoration-reproduction n is recovered from
X. Finally, conditionally on this exploration, by [10/, Proposition 18], the decorated subtrees
branching are conditionally independent given their initial decorations. Using these two ingredi-
ents, one can couple the construction of Section 3.1 with the iterative locally largest exploration

of a Brownian disk so that they coincide. o

Related to the above example, one can consider the self-similar Markov tree with the same
first three characteristics (02, aBroqr, ABrogr) but with self-similarity parameter 3/2 (instead
of 1/2). This modification has the effect of performing a length change along branches a la
Lamperti. This tree actually appears as the scaling of the so-called peeling trees associated to
random planar maps with small faces, see [22, Section 6]; we expect it to be further the scaling
limit of several other discrete models such as critical fully parked trees [19], fighting-fish [62] or
even the peeling trees of plane Weil-Petersson surfaces with n punctures. See Part II for more
details.

At bit more generally, one can allow the trajectories of cells to have positive jumps, keeping
up with the convention that only negative jumps are interpreted as mitosis events. Then [22,

Theorem 5.1] presents the following generalization of the preceding example:
Example 4.10 (The (3, p)-stable family). There exists a family parametrized by (a € (0,1],b €

(0,1/2]) of self-similar Markov trees with cumulant functions given by

I'l+2a+2b—79)I'(y—a—12)
F'l+a+2b—7)(y—a—2b)’

Ka,b(Y) = — ve (a+b,2a+2b+1). (4.16)

Specifically, the generalized Lévy measure Ay is prescribed by three parts

f F(eyo, (e¥t,e¥2, ... )) Aop(dyo,dy) =
S

['(8 + 1)sin(7d) fl dz N s
F 1-— ..
- s (@1 — )P (z,(1==,0,...)) (conservative binary splitting)
I'(8 + 1)sin(ma) foo dz ‘ L
F(1 ..
+ - o @t 2))P T ( + z, (0,0, )) (unique positive jump, growth)
oT(2(a + b)) .
+ cos(md) T(a+tb) (0,(0,0,...)) (Killing),
(4.17)

for a generic positive function F : S — Ry. The Gaussian part is degenerate, 0> = 0, and
the drift coefficients are fine tuned so that the (4.16) holds. In particular, they satisfy w_ =

a+2bwy = a+2b+ 1 and Assumption 3.12 holds. Those expressions may seem ad-hoc for

95



the moment, but we will see in Section 6.5 that they appear in relation to so-called Lamperti-
stable processes, [59, Section 4.3/, and are naturally associated with [3-stable Lévy process with

positivity parameter o for

a
a+b

B=a+b and o= , (4.18)

% to lighten

see Section 0.5 for details. We also denote the Fkilling rate k = cos(mb)
notation.
Let us give a more explicit description of the characteristics in two cases (in red and blue on

Figure 4.10):

No killing. We take b=1/2 in (4.18) so thatk =0, 1/2 < f = a+b < 3/2 and B(1—p) = 1/2.
This gives the self-similar Markov tree with exponent o = 3, no Gaussian component, generalized

Lévy measure given by

T R o) A,y
1 dx
- £/2 Ga_ayprt @1 =0..))

o dz

+cos((B8 + 1)) - Jo @ T2

and where the drift coefficient a is prescribed so that the cumulant function equals

cos(m(y—pB)) T'(y—p5)
sin(m(y—28))T(y—28)’

i particular we have w_ = 8 + % and wy = B+ %, see [22, Section 5]. Assumption 3.12 holds

F(1+,(0,0,...), (4.19)

/ia,

() =

for B <~y <2B+1, (4.20)

VI

and the limiting mass measure has the law of a positive 1/(S+1/2)-stable random variable biased
by x — 1/x, see [|2, Proposition 4]. Those decorated trees appear as the scaling limit of the
peeling trees in critical discrete stable planar maps, see [22, Section 6] and Part II for details.
They also appear (implicitly) in Liowville Quantum Gravity in [119]. We can add to this family
the limiting point b = 1/2, a = 0 corresponding to Example /.0.

Conservative. We take a =1 in (4.18) so that 1 < f=a+ b<3/2 and 9o = % This gives the
self-similar Markov tree with index oo = 3, Gaussian coefficient 0® = 0, and binary generalized

Lévy measure given by
J F(e¥, (e, 6”2, )) Ay 5(dyo, dy)
S

_ T(8+ sin(r(5 - 1)) ( f e F(x,(l_x,o,..q))

& 1/2 (z(1— x))ﬁﬂ

- F(0,(0,0,...)), (4.21)

2I'(28) cos(m (8 — 1))
INGE))
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spectrally negative

Figure 4.10: The two-parameters family of "stable” binary conservative self-similar
Markov trees. See Section 6.5 for the explanation of the relation with [-stable pro-
cesses with positivity parameter g. The upper blue boundary case corresponds to stable
Lévy process with no positive jumps (but the generalized Lévy measure A has a positive
killing). This case is encountered in the scaling limit of fully parked trees, see Part Il.
The lower red boundary corresponds to the case with no killing. This case is encountered
in critical stable random planar maps, see Part Il. The case 5 = 3/2,0 = % where those
two lines merge is the spectrally negative 3/2-stable case discussed in Example 4.9, but
with self-similarity parameter o = % The case 5 = 1/2 and ¢ = 0 corresponds to the

pure fragmentation of the Brownian CRT, see Example 4.6.

and where the drift a € R is prescribed so that the cumulant function is equal to

(1428 —7)T'(y — B)sin(7(28 — 7))

Kllvb(r)/) = - T *

Assumption 3.12 holds, however the distribution of the total harmonic mass remains elusive.
We expect that these self-similar Markov trees provide the scaling limits of the so-called dilute
critical fully-parked tree studied in []7]. See also Section 6.5 for a related family of Examples

with generalized Lévy measures similar to (4.21) but where 5 € (0,1/2].

4.4 An overlay on the stable family and a critical example

Our final example is a family of binary non-conservative self-similar Markov trees, so that a
trimmed version of which gives the family with no killing in Example 4.10. Those ssMt should
appear in connection with O(n)-decorated random planar maps, see Part II for details. There

is a critical case in this family which is naturally associated with the Brownian CRT (Example

4.6) in a rather surprising way.
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Example 4.11 (An overlay on the stable family). Recall the case b = 1/2 in Example /.10. In
particular, with the notation used there we have o = 8 = a+b. We consider now the “augmented”
self-similar Markov tree obtained by adding; in case of positive jumps x — x + vy, a new particle

of mass y. Formally this is done by replacing the generalized Lévy measure defined in (4.19) by

AT, where
G47§

™

I‘(64_1)JSF(eyo’(ey1,eyz>’...)) A: (dyo,dy)

! dz ’
B Lg WF(% (1-2,0,...))

+cos((B8 + 1)) - JOO dz

o WF@ +z,(z,0,...), (4.22)

(notice the small difference with (4.19): we replaced F(1—x,(0,...)) there by F(1—=x, (z,0,...))).

The cumulant function is easily updated and becomes

PB+Y osts—1m [ w1y —3%
(), + = eos(- 1) [ =17 s
in (4.20)
I'(y — B)Sec(5(y — 28)) sin(7v/2)
- - T?W—Qﬁ) , JorB<~y<2B8+1,

for which now the two roots are {23,2} so that w— = min{2f3,2} and w; = max{23,2}. As-
sumption 3.9 holds and so the self-similar Markov tree T = (T,dr, p,g) exists as soon as B # 1.
Under this condition, Assumption 3.12 also holds and the law of harmonic mass W(T) under Py
has been identified in [/5, Theorem 4.3] and related to an inverse-Gamma distribution. Wat-
son [150] extended the model where the exploration of positive jumps appears with probability

r € [0,1] and found explicit cumulant functions as well. o

In the example above, when S = 1 the cumulant function has a double root and stays non
negative so that we cannot directly apply Proposition 3.10 to construct a self-similar Markov
tree. However, the work of Aidekon & Da Silva [0] identified directly the underlying ssMt as a
variant of the Brownian CRT of Example 4.6.

Example 4.12 (Half-plane excursions after Aidekon & Da Silva [6]). We consider a two-dimensional

excursion (X,e) where e is a Brownian excursion of length ¢ and X is a Brownian bridge of
[1]

length £ going from 0 to 1 under the normalized excursion measure N,

for plane Brownian

motion. This law can be expressed using Ito’s positive Brownian excursion measure (4.4) as

_ 1
e 20

N (d(x,e) = JR at S PYHAX) © N(de),
+

where Pf”l is the law of the Brownian bridge of length £ going from 0 to 1; see [0, Proposition
2.9]. Given the pair (X,e) distributed according to NU e can first construct the rooted tree

ads’
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(Te, d7;, p) coded by the excursion e : [0,¢] — Ry as presented in Section 4.1 using [00]. The
random real tree To is nothing but a mizture of Brownian CRT (Ezample J.06) whose size is
distributed according to the 1/2-stable law €. We then endow it with the following decoration
using the process X : for any point u € Te, in the coding of Te from e, let us denote by sy, 1ty
respectively the minimal and mazimal pre-images® of u in [0,£]. The interval [sy,t,] is then a
subexcursion of e in the sense that e(r) = e(sy) = e(ty) for allr € (sy,ty) and t, — s, correspond
to the size of the fringe subtree above u. The point u € To is labeled by the X -displacement over
the time interval [sy,ty], i.e.
g(u) =X (tu) — X (su)|-
It is not hard to see that g is then a rcll function over the branches of Te and we thus consider

e

A

0 1

Figure 4.11: Illustration of the construction of a decorated tree from an excursion in the
half-plane. The vertical coordinate encodes the tree structure, whereas the horizontal

displacement encodes the decoration.

the usc modification g of g as the decoration on Te to fit the framework of Chapter 2. Remark in
particular that we have g(p) = 1 under the law NU g follows from the arguments of [0] that

ads”

the law of the random decorated tree
(72, dr., p, g) under NEEES,

is that of the ssMt T under Py with the characteristic quadruplet (0, aags, Aads; 1) where

fF(eyO, ("', ...)) Awas(dyo, d(yi)i=1)

2 ! dx 0 da
- = (L — S F(z,(1-2,0,..)) + J —————F(1+a,(z,0, ))) ,

T /2 (z(1 - x))2 1 (z(1+ 9:))2

! 4+2foo dy (111 — (e — 1)) ——
an Qads = —— + — - -1)—s.
ads T T 710g2 y |y\<1 (ey o 1)2

SRecall that almost surely, any point u € T has at most three pre-images by the projection 7 : [0,£] — T¢. The
points having three pre-images correspond to the branch points of 7. and those having at least two pre-images

correspond to the skeleton of 7.
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That is, the decorated Lévy measure is twice that of (4.22) and the drift coefficient is set so

that we have

k(y) = 2(y — 2) tan <%) .

Some explanations are in order. First, in the work [0], the authors only consider “positive
excursions”, i.e. they trimmed the tree at points u € To where X (t,) — X (sy) becomes negative.
If we do so, we instead recover the ssMt corresponding to (4.19) with = 2. However, we
prefer to keep positive and negative horizontal excursions (their proof adapts easily) so that the
underlying tree is exactly To. Second, as in [10/], the authors state their results in terms of
growth-fragmentation processes, but we can argue similarly as in Example /.9 using [0, Theorem
3.3 and Theorem 3.6] and prove that we can couple the construction of Chapter 3 with that of [0]
so that the underlying branching process with types and decoration-reproduction is actually the
same. We deduce that in this case the gluing can be performed and yields a compact decorated
tree without appealing to Proposition 3.10 nor to Property (P). Indeed, Assumption 3.9 is not
fulfilled and so one cannot use Proposition 3.10 to justify a priori that T is well-defined. Also,
Assumption 3.12 is not fulfilled either and actually the “natural measure on the leaves of T” which
cotncides with the contour measure % Yo Should be constructed via the derivative martingale, see
[0, Theorem 5.3].

This example shows that the construction of self-similar Markov trees can, at least in some
examples, still be performed in the critical case mink = 0 and gives credits to the discussion in
the comments section of Chapter 3. Furthermore, it sheds yet another point of view on the usual
Brownian CRT by showing that a version of it can be constructed as critical self-similar Markov

tree.

Figure 4.12: The decorated random tree associated with half-planar Brownian excur-

sion.
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Chapter 5
Markov properties

In this chapter, we discuss several Markov properties of a self-similar Markov tree with a given
characteristic quadruplet, hence justifying a posteriori the terminology. We state them as prop-
erties satisfied by the laws of the equivalence class in T of the decorated trees T = (T, dr, p, ).
Heuristically, these properties claim that certain natural families of disjoint decorated subtrees
are conditionally independent given the values of the decoration at their respective roots, and
that after a proper rescaling, they are distributed as the original self-similar Markov tree. The
chapter is divided as follows. First in Section 5.1, we introduce the notion of local decomposition,
which provides a general and rigorous formulation of the Markov property. Then in Sections 5.2
and 5.3, we apply this framework to the case of subtrees dangling from spines, balls or hulls.
The Markov properties will play a pivotal role in our study of self-similar Markov trees, see

Chapter 6, and are also crucial for establishing invariance principles in Part II.

5.1 Local decompositions

Our goal here is to introduce a general framework that enables us to state rigorously Markov
properties of self-similar Markov trees. Throughout this section, we fix a probability space on
which various random variables will be defined. Heuristically, a local decomposition of a random
decorated tree T is a way to reconstruct it from an initial random decorated real tree T/ with
marks and then by gluing on the latter a family of random decorated real trees satisfying some
branching property. This notion is similar in a random framework to the deterministic one
we used in Section 2.1. See also the end of Section 2.4, and notably Lemma 2.18 therein, for
the version of the gluing operator in the setting of equivalence classes modulo isomorphisms of
decorated real trees.

Let us now provide a formal definition. Recall from Section 2.4 that T is the Polish space of
all isomorphism classes of rooted decorated compact trees equipped with the distance dr. Fix
(Qz)z=0 a (measurable) kernel of probability measures on T and I some countable set of indices.
In the same probability space, we let (T', (r;);er) be a random decorated real tree endowed with

a family of marks, that is a random variable in T*, (&)ie ; a family of random variables in R,
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and finally (T;)es a family of random decorated real trees in T. Recall the definition of the gluing

operation as a map from T/* x (T)! to T, which was given after Lemma 2.18 in Section 2.4.

Definition 5.1. We say that ((T’, (ri)ier), (4i)ier, (Tz‘)z‘e[) is a (Qg)-local decomposition of T if
it satisfies the following:

(LD1) We have
Gluing((T/, (ri)ief),(n)ie[) —T, T, as

(LD2) Conditionally on ((T’, (ri)ier), (Ei)iej), the random decorated real trees (T;)ier are indepen-

dent and the conditional law of T; is Qg for everyie I.

We stress that the first and third components of the triplet involved in a local decomposition
are random variables in spaces of equivalent classes T!® and T. Since by Lemma 2.18, the
equivalence class of the glued tree in (LD1) does not depend on the choice for representatives,
the above definition does makes sense. In this situation, we refer to T’ as the base of the local
decomposition, and to the T;’s as subtrees dangling from T’. Recall also that in the construction
by gluing, only the decorated real trees T; that are not degenerate play a role. We also stress that
local decompositions are only of interest if conditions (2.2) and (2.3) are fulfilled a.s.; otherwise,
we will simply have T = 0.

We interpret a (Q,),>0-local decomposition as a type of Markov property. Conditioned on
the “present” (¢;);er, the “past” (T', (r;);er) and the “future” (t;)es are independent. Furthermore,
the conditional distribution of the future is determined by the probability kernel (Q;)z>0. This
property can actually be seen as an extension of the branching property discussed in Section 3.1,
within the context of random decorated trees. It can be related to the so-called strong Markov
branching property of general branching processes in [33], as we shall see notably in the proof
of the forthcoming Proposition 5.4. Let us illustrate the notions that we just introduced with a

basic example involving general branching processes.

Example 5.2 (Local decomposition of general branching processes along the spine). Consider
a decoration-reproduction kernel (Py)y~o as defined in Section 3.1. We write as usual P, for
the law of the family of decoration-reproduction processes (fu,Nu),ey Which is induced when the
ancestor has type x. Assume that Property (P) holds Py-a.s. for all x > 0. We take for Te T
the random decorated tree defined in Theorem 2.5 and denote its law under P, by Q.. We also
write Qg for the Dirac point mass at the degenerate decorated real tree 0 in T.

Let us work under P, for some y > 0. Recall from Notation 2.9, that T° = {p(@,t) : te€
[0, 25|} stands for the base subtree of T' induced by the ancestral individual of the general branch-
ing process. We interpret TY as the spine of T. We also write dro for the restriction of dr to
T9 and ¢° for the associated usc-decoration — which corresponds to the usc version of fs. Next,
recall that the atoms of the reproduction process ng of the ancestor have been enumerated, say
(r1,01), (ro2,02), ..., using some deterministic rule, for instance the co-lexicographic order, and,

if needed, are completed with fictitious pairs (1,0) to get an infinite sequence. For any j = 1
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such that rj # {, the sub-family of decoration-reproduction processes (fju,Nju),cy @lso satisfies
the Property (P) almost surely and we write T; for the random decorated tree that it induces.
When rj = 1, we simply decide that T; is the degenerate decorated real tree.

On the one hand, we see from the gluing construction that

Gluing(((To, dro, p, g°), (p(D,75))ien). (Ti)ieN> =T,

which is the requirement (LD1). On the other hand, the branching property of general branching
processes discussed in Section 3.1 entails that conditionally on (fz,ng), or equivalently condi-
tionally on ((TD, dyo, p,g°), (p(2, ri))ieN) and (4;)en, the sub-families of decoration-reproduction
processes (fjus Mju) ey for J = 1 are independent and the conditional law of (fju; Mju),ey 5 Pe; -
Therefore the random decorated real trees (T;)ieny are also conditionally independent and the

conditional law of T; is Qq, for every i € N, which is the requirement (LD2). We conclude that

(((To’ dro, p, 90)7 (p(g’ri))ieN)’ (Ei)ieN’ (Ti)ieN)

is a (Qg)z=0 local decomposition of T; see Figure 5.1 for an illustration. o

Figure 5.1: lllustration of the local decomposition of branching processes along the spine
TY: conditionally on the reproduction measure, the dangling subtrees T; are independent
and of law Qy,, ¢ € N.

Let us now focus on our case of interest, namely when T = (7', drp, p, g) is built as in Proposi-
tion 3.10 from decoration-reproduction processes ( fy, N )uev induced by a characteristic quadru-
plet (02, a, A; ) satisfying Assumption 3.9. Recall the notation P, for the law of (fu,7u)uev
when starting from initial decoration z > 0 and that Q, is the law of the equivalence class of
T = (T,dr,p,g) in T. Note the subtlety here: under P, the variable T is an actual and explicit
decorated tree built from gluing decorated segments obtained from (fy, 7y )ueu as in Section 2.2,
whereas under Q.. the variable T is rather an equivalence class of such trees. Recall also that Qg
stands for the law of the degenerate decorated tree O in T.

We shall work under P = P; and establish a decomposition of the actual decorated tree

T = (T,dr, p, g) that will provide a local decomposition in the sense of Definition 5.1 once seen
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as variables in T. In this direction, we need first to introduce a standard procedure to decorate
subtrees of T'. Specifically, we say that 7 < T is a subtree if it is non-empty, connected and
closed. We can endow 7 with the distance d, induced by dr and root it at the unique point
pr € T such that inf e, dr(p,y) = dr(p, pr). Then, (7,d;, p;) is a compact rooted real tree and
we further say that 7 is a base subtree if furthermore p € 7. We equip 7 with the decoration g,

that coincides with g on 7\{p,} and is given at the root by

gr(pr) = limsup g(y), (5.1)

yer\{p-}
Yy—=pr

with the convention that g,(p;) = 0, if 7 = {p;}. We refer to g-(p,) as the germ of the
decoration on 7. It is important to note that this quantity has been defined not only to ensure
upper semi-continuity of the decoration, but also so that it can be evaluated by peeping only
infinitesimally at the boundary point of a connected component 7\{p;}, revealing the latter as
little as possible. In particular, since f,,(0) = x(u) in the self-similar setup, if 7 is a base subtree
then we must have g,(p;) = g(p). In the rest of the section we will use the standard notation
T := (1,dr, pr,9:), and for definiteness we extend the definition when 7 is empty by taking
T:= ({p},0, p,0) which is isomorphic to 0. We refer to T as the standard decoration of 7.

We can now explain the road map to encode local decompositions under P. First, assume
that we have defined a base subtree T" < T by means of some algorithm or geometric definition
(using the (fy,Nu)uev). We then write (7;*);es for the family of connected components of T\1”,
agreeing for definitiveness that some 7;* may be empty, notably when the number of components
is finite. We stress that the precise choice of the indexing set I is irrelevant at the stage, but

will have some importance latter. Next, we write 7; for the closure of 7%, in particular we have

i
7; = 77U {ps,} when 7* is non empty and 7; = @ otherwise. If, we write r; and ¢; for the root and
initial usc-decoration of T, that is (74, 4;) := (pr, g, (pr;)) if 73 is non empty and (74, ¢;) := (p,0)

otherwise, then the requirement (LD1) for a local decomposition is clearly fulfilled, i.e.
Gluing((T’, (ri)ier), (Ti)iel> =T, inT, as.

So the remaining crucial issue is to verify (LD2), and this requires in particular a proper a
choice of the indexation of the connected components', which in our cases will use the explicit
construction from (fy,ny)uecy. Under P, we will say in short that 77 < T induces a local
decomposition of the self-similar Markov tree T whenever it exists such an indexation so that
((T’7 (ri)ier), (i)ier, (Ti)ig) is a (Q4)z>0 local decomposition of T. Ours proofs will consists in

constructing such an indexation and checking the independence property.

1For instance, the algorithm that ranks components in the decreasing order of their heights would not serve

our purpose.
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5.2 Genealogical Markov property

In this section we establish local decompositions induced by base subtrees that are constructed
using the genealogy of Ulam’s tree. Recall that we work under P and that we write T =
(T,dr,p,g) for the decorated tree built from the family of decoration-reproduction processes
(fusMu)ueu- Recall also from Notation 2.9 that for every n > 0, we write T" for the base subtree
of T induced by individuals of the general branching process up to generation n only. The

following local decomposition can be seen as an easy extension of Example 5.2.
Proposition 5.3. For every n = 0, the subtree T™ induces a local decomposition of T under P.

Proof. We will establish the claim by induction. We start considering the case n = 0 which has
essentially been already discussed in Example 5.2, and we use the notation therein. The slight
difference is that we decorate here the spine segment T° with the restriction of g to T°, whereas
in Example 5.2, we rather used the usc-modification of fz. However, these two functions may
only differ at marked points of the segment where gluing is performed. More precisely, for every
i€ N, we have g(r;) = fz(r;) v £;. We deduce that (LD2) still holds when we decorate 70 with
the restriction of ¢ instead of fz, and hence TP induces a local decomposition of T under P.
For n = 1, we decompose in turn each (non-degenerate) connected component along its own
spine, using I = N? to index the family of subtrees at the second generation. And so on, and
so forth, generation after generation. For the sake of clarity, let us spell the elements of the
local decomposition out. At generation n, we use I = N**! as set of indices. For u € N**+1,
T = p(u) is the equivalence class of the root of the segment labelled by u in the construction by
gluing, and ¢, = x(u) is the type of the individual u, that is the germ of the decoration g, (p.)
for the subtree 7, = T}, again with the Notation 2.9. Condition (LD2) follows directly from the
branching property. O

In the remaining of the section, we focus on the model of pruned tree below a fixed level,
which can be though of as a variation of 7™ where we only keep the finitely many individuals
with types larger than . We shall prove after, see Corollary 5.5, that the associated decorated
subtree Tl is an approximation of T as € — 0; and this will be notably useful in Part II, when
we shall consider scaling limits of Galton-Watson branching processes with integer types.

To define properly the pruning transformation, we fix some threshold ¢ € (0, 1) and introduce

the set of vertices
F(e) :={ueU: f,(0) < e and f,(0) > for all v < u}, (5.2)

where the notation v < u means that v is a strict prefix of w in U. For every u € F'(¢), we change
the entire descent of v and make it fictitious by setting ( fk],m[f]) = (0,0) for all v > u (u prefix
of v). The decoration-reproduction of the ascendants of individuals of F'(g) are unchanged, i.e.
(f£€],n£€]) = (fu,mv) for all v < u with u € F(g). We know from Lemma 3.2 that the family

A(e) = {veU:v < u for some u € F(e)}
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is finite P-a.s. The tree pruned at level € > 0, denoted by TI¢l, is the real tree obtained by

gluing as in Section 3.1 the line segments [0, z,| for v € A(e) only, i.e.
Tl = {p(u,t): ue Ale) and t € [0, z,]},

where we recall that p(u,t) denotes the — equivalent class of the — point on the segment S,
at distance t from the root p(u). In particular, T!¢! is a base subtree of T built from a finite

number of line segments.
Proposition 5.4. For every e € (0, 1), the subtree Tl induces a local decomposition of T under P.

We stress that the heart of the proof is that the set of vertices F'(¢) in (5.2) is an optional
line in the sense of Jagers [33] to which the strong Markov branching property applies. Other

choices of optional lines would thus yield analogous local decompositions.

Proof. First, for every v € F'(¢) non-fictitious, we consider the subtree
Ty = {p(vu,t) :ueUandte [O,zm]},

and we write T, for the induced decorated tree. By construction, the connected components of
T \T[E] are precisely the 7,, for v € F(g) non-fictitious. Furthermore, recalling Notation 2.9, we
see that T, is isomorphic to the decorated tree T, associated with the family (fuu, vu)uecy. We
also let 7, = p(v) and ¢, = x(v) = f,(0). For convenience, we extend the above construction to
all the Ulam tree by taking 1, = ({p},0, p,0), r, = p and ¢, = f,,(0), for v ¢ F(e) or v fictitious.

We have to verify (LD2) in this setting, which can be derived from Proposition 5.3 by
constructing T'¢] recursively branch by branch. Nonetheless, since the same argument can be
used to establish many other local decompositions, it may be more instructive to rather use the
strong Markov branching property of general branching processes, which has been developed in
great generality in [33].

We first observe that the set of vertices F'(g) is a random line, that is F'(¢) does not contain
two vertices u and v with v < v. It is furthermore optional, in the following sense. For any
subset of vertices V' < U, the event {F(¢) < V} that every v € V has some prefix in F(e), is
measurable with respect to the sigma-algebra Fy generated by ((fu,nw) : w 3} v for all ve V).
In other words, the event {F'(¢) < V'} does not depend on the decoration-reproduction processes
indexed by vertices with a prefix in V.

Then define the pre-F'(¢)-algebra Fp(.) of events A such that A n {F(e) < V} € Fy for
all V. c U. The strong Markov branching property [83, Theorem 4.14] of general branching
processes at optional stopping lines can now be stated in our framework as follows. Consider

for every u € U a measurable functional ¢, : T — [0, 1]; then there is the identity

E( [T eu(t) ‘ fF(a)) = E ) (u(T))-
ueF (g) ueF ()
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Let us now impose furthermore ¢,(0) = 1 for a while, so that we can rewrite the preceding in

the form

E(JTeu®) [Fre) = TTEu (pum):

uelU uelU
It is readily seen that this identity remains valid if we drop the requirement ¢, (0) = 1. Indeed,
it suffices to replace ¢, by 1o for any given vertex v € U, use linearity, and repeat the operation
for every vertex in U. Since (T, (1,)yev) and (£,)yew, as variable in TU* and RY, are measurable
with respect to the sigma-algebra Fp.), this shows (LD2) and hence completes the proof of the

proposition. ]

We conclude this section by establishing that the subtree pruned at level £ approximates
the self-similar Markov tree as & — 0+. We shall furthermore endow T'I€! with approximations
of the weighted length and harmonic measures constructed in Section 3.3. More precisely, for
any v = ~, the tree Tl can be equipped with the restriction 1,1 - A7 of the length measure
g7~ %A constructed in Proposition 3.11. However, when Assumption 3.12 holds, the harmonic
measure | assigns zero mass to 7™ for any n = 0, and therefore also to the pruned subtree 7'¢]
for any ¢ > 0. In particular the restriction of p to T1¢l is always null and does not converge to
it as ¢ — 0+. For this reason, we shall then rather equip 7!} with another measure, namely
we let pl) be the image of the harmonic measure p by the canonical projection of T' on T'1el,

Specifically, we introduce

H[e] = Z H(Tu) ’ 5p(u)7 (53)

ueF ()

where the optional line F'(¢) has been defined in (5.2), and, as usual, p(u) denotes the point in

Tlel at which the segment S, is glued. Then we have the following property.

Corollary 5.5 (Convergence of cutoff approximations). In the notation above, the following as-

sertions hold P-a.s.

(i) Suppose Assumption 3.9. Then for any vy = vy, we have

al_i)%l+ (T[E]a dT[E] y P> 91lel s 1T[E] ’ }\7) = (T7 dr, p, g, }\’Y)a in Ty,

(ii) Suppose Assumption 3.12. Then we have

EEI(I)lJr (T[S]v dT[E] y Ps 9Tlels H[€]> = (Ta dT7 P9, }‘L)v in Tr,.

Proof. We will establish the statements with convergence in probability instead of almost surely,
as then the sharper claims follow readily by an argument of monotonicity. To start with, recall

from Proposition 3.10 and Lemma 3.2 that

E( Z X(u)“’“) < 0.

uelU
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As a consequence, we have

lim E( > 1{X(u)<a}X(u)%> =0,

e—0+
- uel

and a fortiori
I 70) - 0. .
g (5 ) = o
ueF ()
Next, we deduce from the local decomposition Proposition 5.4, Corollary 3.4 and the scaling

property that there is some finite constant ¢ > 0 such that for every € > 0, we have

E( Z Height(Tu)VO/oa> <c-E( Z X(U)W")

u€F(e) ueF (e)

and
70 . Yo
E( 2 max g, ) <c IE( Z x(u) )
ueF (e) ueF (e)
We deduce that
; ; Yo/ Y)) —
€£%1+ IE( Z (Helght(Tu) + max g, )) 0.
ueF ()
Since the decorated real tree T can be recovered by gluing on Tl the subtrees T}, for u € F(e),
there is the bound

[e] < i
dg(n) (T, TH) < uz;lwz) <Helght(Tu) v H%F%Xg“)’

and we conclude that
lim  dgr (T, T[a]) =0, in probability.

e—0+
Note that this immediately yields the claim (ii) (again with convergence in probability in place
of almost surely), since from the definition (5.3), the Prokhorov distance between pul*l and w is
bounded from above by the Hausdorff distance between TI¢l and T
We are thus left to deal with the weighted length measure in (i). In this direction, remark

that for every v > 7o we have
dprox(AY, 1qp - A7) < A (T\TED < (mTanv—vo) A (T\TED).

Consequently, by Corollary 3.4, to conclude it suffices to establish that A7 (T\T'€]) converges to
0 in probability, as € | 0. To this end note that, from Proposition 5.4 and the scaling property,
that for every ¢ > 0

E( Y A1) <ENOTD) E( Y ww)®) = -

u€F(e) ueF (e)

E( D] x(w)™),

K (70) weF(e)

where to obtain the last equality we used (3.22). The desired results follows now by (5.4). O
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Remark 5.6 (An intrinsic cutoff). The reader may compare the subtree T(¥] with the subtree T(*)
obtained heuristically from T by starting from the root and cutting each branch as soon as the
decoration drops below level e. The inclusion T¢) < TI¢] should be plain. The nice feature of T(€)
is that its equivalence class in T only depends on that of T, that is, it is an intrinsic geometric
subtree, as opposed to TI€l which uses the construction from (fusMu)uecy. However, it will be
technical simpler to deal with T rather than T().

Figure 5.2: lllustration of the decorated subtrees 7¢) pruned at increasing levels from
left to right. The subtrees T1¢] would actually be larger since they contain all branches

whose initial decoration is larger than €.

5.3 Temporal Markov property

Roughly speaking, the local decompositions described in Propositions 5.3 and 5.4 only rely on the
genealogical branching property of self-similar Markov trees, and could have been stated as well
for general branching processes; see Example 5.2 and also the proof of Proposition 5.4. In this
section, we turn our attention to another type of local decompositions for self-similar Markov
trees, which now rather stems from the following temporal Markov property of decoration-
reproduction processes. Recall that (P;);>¢ denotes the self-similar decoration-reproduction
kernel with characteristic quadruplet (02, a, A; ). For every t > 0, we use the notation (f,n)o6;

for the pair of shifted processes at time ¢, that is (f,n) o 0y = (0,0) if ¢ > z, and otherwise,
fob:[0,z—t] >Ry, fobi(s)=f(t+s) for0<s<z—t,

and

| elsometdsdn) = | gl - (s, do),
[O,(X)) XR+ (t,OO) XR+

for any measurable function ¢ : [0,00) x Ry — R;.

Lemma 5.7 (Markov property of the decoration-reproduction process). Write (Gt)i=o for the
natural filtration of the decoration-reproduction process (f,n), i.e. G is the (completed) sigma-
algebra generated by 1igy - f and ljgsxr, - 1. For every x = 0 and every (Gy)-stopping time
R, the conditional distribution under P, of the shifted decoration-reproduction process (f,n)o0r
given Gr is Pf(R).
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Proof. The claim is an easy extension of the strong Markov property of positive self-similar
Markov processes; we merely sketch below the argument and refer to [$8, Chapter 13] for more
details. Recall the setting of Section 3.2, and in particular that N = N(d¢, dy, dy) is a Poisson
random measure on [0, 00) x § with intensity measure d¢tA(dy,dy), and £ the Lévy process with
Lévy-Ito decomposition (3.9) and possibly killed at the exponentially distributed time . Writing
(Ht)t=0 for the natural filtration of (§,N), we have that for every ¢ > 0 and conditionally on
t < ¢, the pair (£, N®) given by

f(t)(s) =&(s+t)—&(t), fors=0,

and

f o(s,y,y)NO(ds, dy, dy) = J o(s —t,y,y)N(ds, dy, dy),
[0,00) xS (t,00)xS

is independent of H; and has the same law as (£, N). This observation extends to the situation
where the fixed time ¢ is replaced, first by a simple (#;)-stopping time, and then, by approxi-
mation, by any a.s. finite (#H;)-stopping time. The statement then follows readily by inspection

of the Lamperti transformation described in Section 3.2. O

We now derive from Lemma 5.7 the first two temporal local decompositions that are both
induced by a stopping time R < zy in the natural filtration of the decoration-reproduction
process of the ancestor (fz,nz). We consider the spine truncated at distance R from the root,
that is the segment T9 := {p(@,7) : r € [0, R]} = T°. We consider also the hull generated by

the truncated spine,
BR(T) = {ye T :dr(p,ps(y)) < R},

where pg : T — TP denotes the projection on the spine and p stands for the root of T'. So roughly
speaking, the hull By (7') is the subtree that results from killing the ancestor immediately after
time R in the population model. The closure of its complement B]’%(T) is connected and hence
also a real tree on the event R < zg, and empty on the complementary event. Notice that when

R < zg, we have
By(T) ={yeT :dr(0,ps(y)) > R} u {p(2,R)}.

Proposition 5.8. For every stopping time R < zg in the natural filtration of the ancestral
decoration-reproduction process (fz,mz), both the truncated spine T% and the hull By(T) in-

duce a local decomposition of T under P.

Proof. The claim readily follows from a variation of the (Qy).>0 local decomposition along the
spine, i.e. Proposition 5.3 when n = 0. Recall the notation there and in Example 5.2, and
notably that the atoms of the ancestral reproduction process 7y are enumerated in the co-
lexicographic order, (r1,41), (2,¢2), ..., and that for every j > 1, we denoted by T; the random
decorated tree induced by the sub-family (fju,nju),c- We have seen in the beginning of the

proof of Proposition 5.3 that
((TO, (p(2,7i))ien), (4i)ien, (Ti)ieN) is a (Qz)z>0 local decomposition of T. (5.5)
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By(T)

Figure 5.3: lllustration of the Markov property for the truncated spine: conditionally on
the reproduction measure, all dangling subtrees are independent and of law Q, where

£; are the germ decorations.

We now re-order those elements depending on their positions relative to the stopping time
R as follows, taking Z* = Z\{0} as new set of indices. We construct recursively 1 < R(1) <
R(2) < ... such that for any j > 1, R(j) = k where k is the rank of the j-th atom (r, ¢) such
that r, > R if any, and R(j) = oo otherwise. We define similarly 1 < R(—1) < R(—2) < ... such
that for any j > 1, R(—j) = k where k is the rank of the j-th atom (r, ¢x) such that r < R if
any, and R(—j) = oo otherwise. We then set for any j € Z*, 7; = rg(;), le = {p(j) and T, = TR())
when R(j) < o0, and #; = 0, £; = 0 and T; = 0 otherwise. It is immediate to check from (5.5),
the fact that R is measurable with respect to ((T%, (p(@,7:))ien), (i)ien), and the fact that the

original ordering can be recovered from the new one, that
((TO, (p(D,74i))iez* ), (!Z-)iez*, (Ti)ieZ*) is again a (Q;)z>0 local decomposition of T.  (5.6)

We then split the spine at R. First, write Ty for the decorated version of B},(T') and note that
it can be obtained by taking the set {p(&,r) : r € [R, 25|} with its associated decoration, and
then gluing on it the family (T;);>1 at the position prescribed by the points (p(&, 7))i=1. Second,
write T{ for the decorated truncated spine and observe that the variables (T%, (p(@,7;))i<—1)
and (gi)ig,l are measurable in the sigma-algebra Gr generated by the ancestral decoration-
reproduction process stopped at time R. By comparison with the local decomposition along the
spine in Proposition 5.3 and the temporal Markov property in Lemma 5.7, we deduce that the

conditional law of Ty given

<(T%, (0(2,74)),_1)> E)is—1, (Ti)i<—1)

is Qy,(r)- Thus writing 7o = R and lo = fo(R), we conclude from (5.6) that

((TO , (p(2, fi))l'go)’ (43)i<0, (Ti)i<o)

is a (Qy)-local decomposition of T; we have thus proved the claim for the truncated spine.
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Finally the claim for the hull follows again from (5.6) and the observation that the decorated
version of By(T) can be obtained by gluing the sequence of decorated trees (T;)i<—1 on the

truncated spine TOR at the locations (p(@,7;))i<—1. O

Similarly as in the previous section, one can iterate the local decomposition of the truncated
spine to infer new Markov properties. We illustrate this procedure with another important

example of base subtrees, namely the closed ball of radius a,
By(T) :=={veT: dr(p,v) <a}.
Proposition 5.9. For every a > 0, the ball B,(T) induces a local decomposition of T under P.

Proof. Recall that T™ denotes the base subtree of T induced by individuals of the general
branching process up to generation n only, and set B, (T™) := Bo(T)nT". For n = 0, the subtree
Bo(T?) is merely the spine truncated at the fixed height a, and we know from Proposition 5.8
that B, (TY) induces a local decomposition of T under P. Just as in Proposition 5.3, we can then
recursively decompose T along the truncated segments at generations 1,2,..., and get that for
any n = 0, the base tree B, (T") induces a local decomposition of T under P. In this framework,
the connected components of T\ B, (T™) are indexed by the set of vertices u € U.

More specifically, for every u € U with |u| < n, note that there is at most one point p(u,t)
in {p(u,s): se[0,z]} at distance a from p. When there is such a point, we set 7} := p(u,t),
0t = fu(t) and we write 7,' for the subtree formed by the set of points v € T such that
p(u,t) € [[p,v]]. Remark that we have t = a — dr(p, p(u)) and 7' can be seen as the closure of
the complement of the hull of radius a — dr(p, p(u)) of T),. If there no such point or if |u| > n,
we let rjf := p, £ := 0 and 7, := 0. If we write T}, for the decorated version of 7, and B, (7") for
the decorated version of B,(T"), by recursively applying Proposition 5.3 we infer that, under P

the family:
((Ba(Tn)a (TZ)UEU)’ (Ez)ueU’ (TZ)UEU)

is a (Qz)z=0 local decomposition of T. We stress that the labeling is consistent as we let
generations increase, that is, for any vertex u with |u| < n, the mark 7]', the variable ¢}
and the subtree T for the decomposition of T\B,(T™) are identical to those obtained for the
decomposition of T\B,(T™), for any m > n. With the obvious notation, for u € U, let us
write ry, ¢, and T, for the corresponding terminal value. Now, using that (H full s u e U) is a
null family, the fact that ), 2, < o a.s. and the definition of (TY*,dqw.) given in (2.15),
it is straightforward to infer that (Bo(T™), (ri})ucu) converges to (Bo(T), (ry)uev), where Bq(T)
stands for the standard decorated version of By (T). Therefore, taking the limit when n — oo,
we deduce that

(o). (ru)ue). (00) e (%) )

is a (Qz)z>0 local decomposition of T. This completes the proof of the proposition. O
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We now conclude this chapter by stressing a connection with measured-valued branching
processes; we refer to [108] for background and precise definition. Consider for every a > 0, the

random integer-valued measure on (0, c0)

Zo =) 6u(a),
iel
where /;(a) denotes the germ decoration of the connected component 7;* of T\By(T') and we
implicitly discard empty components with ¢;(a) = 0 in the sum. Plainly, Z, does not depend on
the choice for indexing these connected components. We then deduce from Proposition 5.9 that
for ever a > 0, conditionally on Z,, the shifted process (Z,44)p=0 is independent of the process
(Zb)o<b<a- Moreover, the distribution of the shifted process given Z, is that of >, ; Y, where
the Y%’s are independent measured-valued processes and each Y has the same law as Z under
Q,(a)- In short, (Z,)a>0 is measured-valued branching process. For instance, (Z,)a>0 may be a
self-similar fragmentation process as discussed in Section 4.2, or a growth-fragmentation process

as in Section 4.3.

Comments and bibliographical notes

The Markov property is of course a most important concept in probability theory. Born with
the theory of stochastic processes, it has been developed for more sophisticated objets such as
branching processes [33] (the stopping lines used many times in this chapter), superprocesses
[67] (the so-called special Markov property) and random snakes, see [95, (5] and [126]. The
Gaussian Free Field (GFF, in abbreviation) is essentially characterized by its domain Markov
property [14] and random sets coupled with the GFF that satisfy a strong Markov property
are called local sets, see [115] for their introduction and [138] for a comprehensive survey. In
particular, our formulation of the Markov property (Definition 5.1) is inspired from GFF local
sets and we use the terminology local decomposition to emphasize this connection. See also
[105, | for a theory of a general Markov property in Brownian geometry. We also recall from
the introduction that we expect that our self-similar Markov trees (including the critical case
discussed in Section 3.4) are essentially all random decorated trees with a positive decoration

on the skeleton satisfying a Markov and self-similar property.
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Chapter 6
Spinal decompositions and bifurcators

The main purpose of this chapter is to investigate so-called spinal decompositions for self-similar
Markov trees governed by a characteristic quadruplet (02, a, A; ) satisfying Assumption 3.9
which is fixed thorough this chapter. We first take the point of view of general branching
processes, and then provide an explicit description in the self-similar Markovian setting. We use
either a weighted length measure or the harmonic measure to mark a point p* at random on
the tree, and describe the joint distribution of the decoration-reproduction along the segment
[[p, p*]] and the family of subtrees that stem from this segment, that is the collection of — the
closure of — the connected components of the complement T'\[[p, p*]]. Although the decorated
trees dangling from [[p, p*]| are, conditionally on their initial decorations, independent ssMt;
the decoration-reproduction process along [[p, p*]] is a different self-similar Markov decoration-
reproduction whose characteristics (o2, ay, Ay; a) are explicitly determined in terms of the initial
ones. As a first application, we address an important issue already mentioned in Sections 2.4
and 3.2, namely the fact that different characteristic quadruplets may yield self-similar Markov
trees with the same distribution, and provide an explicit characterization of such bifurcators in
Section 6.3. Another application to the determination of the Hausdorff dimension of self-similar

Markov trees that fulfill the first Cramer’s condition is given in Section 6.4.

6.1 Spine decompositions in the setting of general branching processes

The notion of spinal decomposition is one of the most useful and powerful tools in the study of
branching structures. The purpose of this section is to present its basic aspect, first from the
point of view of general branching processes, and then more specifically in the situation where
the decoration-reproduction kernel is Markovian and self-similar.

Let (P,)z~0 denote a decoration-reproduction kernel; using the notation introduced in Sec-
tion 3.1, we write P, for the probability law of the associated family of decoration-reproduction
processes ( fu, My )uecy, Which results when the ancestor has type > 0. We assume the existence
of a harmonic function A : (0,00) — (0,0) in the sense of (3.23). Recall that x(u) stands for

the type of the individual labelled by the vertex w of the Ulam tree U, and that the process

114



M, = Z|u|:n h(x(u)) for n = 0 in (3.24) is a nonnegative martingale. We stress that at this
stage, we do not require Property (P) to hold, nor the additive martingale (3.24) to converge
in L'(P). The harmonic function h serves here to distinguish an infinite lineage at random, and
we will use the symbol x as an exponent to refer to distinction. That is, a single individual
u*(n) € N™ is distinguished at each generation n > 0 such that u*(n) < u*(n + 1), i.e. the
individual distinguished at generation n is always the parent of the individual distinguished at
generation n+ 1, and (u*(n))n>0 constitutes the distinguished lineage. Specifically, we introduce
a probability measure P that describes the joint law of the family of decoration-reproduction
processes (fu,Nu),ey together with (u*(n))p>0. For every n > 0, every v € N” and every non-

negative functional ® of the decoration-reproduction processes up to generation n, we define

B (@ fus ) af<n) Lurmy=o) = 1) ™ Ear (@((Fus )y X)) ). (6.1)

The martingale property ensures the coherence of this definition. It is an easily checked
and well-known fact in the field of branching processes (see for instance [132, Chapter 4] or
[35]) that the probability measures IF’;,L also describe a generalized branching process, where
individuals not only have a type = > 0, but are furthermore either distinguished or not. More
precisely, non-distinguished individuals beget only non-distinguished children and the statistics
of their decoration-reproduction processes are given by the original kernel (P,),~¢. Distinguished
individuals always give birth to a single distinguished child, possibly together with further non-
distinguished children, the distinguished child being picked at random in the progeny with
probability proportional to the value assigned by h to the type. The decoration-reproduction
process of a distinguished individual follows a biased version of the original kernel, denoted by
(PM)4s0. Specifically, writing ¢* for the age of the parent when its distinguished child is born,

and z* for the type of the latter, then for every nonnegative functional W, there is the identity
EX(U(f,n,t*,2")) = h(fr)‘lEm(J n(dt, dy) ¥ (f,n,t, y)h(y)>- (6.2)
[0,00) % (0,00)

Let us now provide a more explicit description of the biased law P;L in the case when the
original decoration-reproduction process is self-similar Markovian with characteristic quadruplet
(02,a,A; ) as in Section 3.2. We exclude implicitly the degenerate case n = 0 when there is
no reproduction at all, and suppose further that the cumulant function s in (3.19) is well-

“ is harmonic; see Lemma 3.13

defined and vanishes at some w > 0. The function h(x) = =z
and observe that the sole harmonicity of A only requires Lemma 3.8 and not the more stringent
Assumption 3.12. In this direction, we shall now write P instead of P" for the sake of clarity.
Recall from Section 3.2 that in the self-similar Markov setting, the decoration process is denoted

by X rather than by f, so (6.2) reads
EZ (U(X,n,t*,2%)) = 27 “E, (J n(dt, dy)¥(X,n,t, y)y“’)- (6.3)
[0,00) % (0,00)

We now argue that a similar feature occurs also for v > 0 when k() < 0. As a motivation, we

define first a probability measure ]T”}, with associated mathematical expectation IE;, describing
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the joint law of the family of decoration-reproduction processes together with a marked vertex
u® and a marked time t°, such that for every v € U, every measurable ¢ : Ry — R, and every

nonnegative functional ®,
B (st ) = =)o B (O Fumiduce) [ ol0ule)™0dt). (64

where the assertion that P is probability is seen from Proposition 3.11. In words, the distribution
of the family of decoration-reproduction processes (fu, 7 )uey under P is 2~ v(T') - Py, further
conditionally on this family, the marked vertex u® is picked at random in U with probability
proportional to S” fo(t)Y7dt, and finally, the conditional law of the marked time ¢* given
(fu> Mu)uev and u® is proportional to Lo » .)fus (t)7“dt.

We then relate the law P to that of another generalized branching process where individuals
have a positive type and are either distinguished or not. Again non-distinguished individuals
beget only non-distinguished children and the statistics of their decoration-reproduction pro-
cesses are given by the original kernel (P,);~¢. In turn distinguished individuals, for which an
exponent = is used in the notation, give birth to at most one distinguished child and further
non-distinguished children. We stress that now, a distinguished individual may have no dis-
tinguished child (then, of course, the distinguished lineage dies out), in which case we rather
distinguish an age. Specifically, when the distinguished parent has a distinguished child, we
write z* > 0 for the type of the latter and t* for the age of the parent at the distinguished birth
event. Otherwise, i.e. when the distinguished parent has no distinguished child, we set * = 0
and write ¢t* for the distinguished age. With this notation at hand, the decoration-reproduction
kernel (P} );~o for distinguished individuals is defined in terms of the original kernel (P,);=o by

the following variation of (6.2). We set for every nonnegative functional ¥,
E;/ (\II(X’ m, t*a IE*))

=2"E, (J (X, n,t,y)y"n(dt, dy) — K(7) f U(X,n,t, O)X(t)”adt> , (69)

[0,2) % (0,%0) 0
where as usual £ stands for the mathematical expectation with respect to P;. We write P} for
the law of the generalized branching process with distinguished individuals defined above , when
the ancestor has type # > 0 and is distinguished. More precisely, P} is the joint distribution of
the family of decoration-reproduction processes (fu,7u),cy together with the (finite) sequence
of distinguished individuals and distinguished ages. We further write u® for the ultimate distin-

guished individual and ¢* for its distinguished age.
Lemma 6.1. Suppose x(y) < 0. Then the law of ((fu,7u)uev,t*; u®) under BY is PJ.

Proof. To start with, we observe that for any n > 1, any vertex v € N at generation n, and

every functional F' > 0, there is the identity

E;’ (F ((fuvnu)m\gnfl)lv is distinguished) = IAE?;I (F ((fU777u)\u|$n71> 1u'(n):v> ) (66)
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where as usual u®(n) denotes the forebear of u® at generation n if |u®| = n and otherwise the
indicator in the left-hand side is interpreted as 0. Indeed, this identity is immediately checked
for n = 1 from (6.4) and Proposition 3.11. The general case n > 1 then follows by induction,
applying the branching property under P} and under P,.

Next, consider a measurable function ¢ : R — R, and a nonnegative functional ®. By
the branching property under P,, there is a functional ¥(f,n) of the decoration-reproduction

process such that for any x > 0,

Ez(q’((fuaﬁu)uetu) | f@ﬂ?z) =V (fz,M2).

Using the branching property under P} and (6.5), we get by conditioning on the decoration-

reproduction of the ancestor that

B} (O((fus u)uev) (1) Lur—2) = ()2, (‘I’(fz, ) | so(t)fgw—adt)

0
= B (@((fus a)uet) (") Luo =) , (6.7)

where the second equality stems from (6.4). The statement now readily follows from the combi-

nation of (6.5) and (6.6) with the branching property. O

Our goal now is to characterize the law of (X, n,t*,2*) under (PJ);>o in both regimes. In
this direction, we fix v > 0 such that x(v) < 0, and we decompose the decoration-reproduction
process into three parts. The first corresponds to the time interval [0,¢*), the second to the
time interval (¢*,00) up to a natural shift and rescaling, and the third focusses at the exact
time t* when the distinguished child is born. We now spell out these parts explicitly. We write
A = A(X,n,t*) for the pair resulting from the restriction of (X,n) to the time-interval [0, t*),
that is

A= <1[07t*)X, Lj0.04) (0.0) n)-

We write B = B(X,n,t*) for the pair given by the decoration-reproduction shifted at time ¢*
and rescaled, namely the image of (l[t*’oo)X, L+ o) % (0,00) * 17) by the map

s—1t* Y *
> (e >t*,y = 0.
(S7y) <X(t*)a7X(t*))7 $ Yy

Finally, we consider the (possibly finite) sequence (x;);=1 of the types of children (distinguished
or not) which are born at time ¢*, as usual ranked in the non-increasing order. In other words,

the restriction of the reproduction process n to the fiber {t*} x (0, 0) is

Lityx(0,00) "1 = Z Ot ;)

j>1

and z* is one of the terms of the sequence (z;);>1. We set

C=C(X,ntz")= (;((if*_))’ X(fb:—)7 (X(:;z—))]}l)'
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Plainly, the variable X (t*—) is measurable with respect to A, so X (¢*) can be recovered from
A and C. Therefore A, B, and C entirely determine the decoration-reproduction process of a
distinguished individual. We conclude this section by an explicit description of their joint law.
In this direction, recall that the function v is the Laplace exponent given by the Lévy-Khintchine
formula (3.11), and from (3.19) that

Y(v) = k(y) = — L A(dy,dy) (Z e””) € (—0,0).

Proposition 6.2. Let v > 0 such that k() < 0. For every x > 0, the random variables A, B and

C are independent under Py . Moreover we have:

(i) A is a self-similar Markov decoration-reproduction process with characteristic quadruplet

(02,4, Ay; ) and type z, where

A’Y (dya dy) =e- A(dya dy) - w(V)(s(—oo,(—oo,)) (dy7 dY)7

and
ayi=a+ o’y + J y(e” — 1)1}, <1 A(dy, dy).
S

(ii) B has the law Py of the initial self-similar Markov decoration-reproduction process with

characteristic quadruplet (o2, a, A; ).

(iii) The law of C is determined by

EL(F(C)) = [v(nI™! <—H(7)F(1707 (0,...)) + LA(dy,dY) DI ACHENTES (ewj)j>1)>

i1

for every nonnegative functional F'.

Proof. By self-similarity, there is no loss of generality in assuming that the type of the initial
distinguished individual is * = 1. As usual, we then drop the indices 1 in the notation for
probabilities and expectations. Roughly speaking, the cornerstone of the argument consists
in applying the well-known Mecke equation for Poisson random measures and analyzing its
consequences. For this, we need first to reformulate (6.3) in terms of the Lévy process £ and the
Poisson random measure N, which essentially amounts to undoing the Lamperti transformation.

The decoration-reproduction process (X, n) under P is constructed by applying the Lamperti
transformation to the Lévy process £ and the point process 1 (see (3.14) and (3.18)), and since
n is defined in terms of the Lévy process £ and the Poisson random measure N by (3.17), we
have

B (0(6, N, e(t"),2")) :E(f[om)xm& N(dt, dy, dy) ; @ (&N, 1,500 ) (6

— f-;(y)E(J[O )dt <I>(§, N,t,O)eWE(t)),
,00

118



where ® denotes another generic nonnegative functional and ¢ is given by (3.12).

We can now apply the Mecke equation (see for instance [92, Section 4.1]), which involves
adding a Dirac mass at (t,y,y), under 1;-0dtA(dy,dy), to the Poisson random measure N.
Note from the Lévy-1to6 decomposition (3.9) that this addition also changes & into & + y1y; o).

We rewrite the first expectation of the right-hand side above as

0¢]
E(t=)+y; ) @(EE—)+y;)
J;] de J;R><Sl A(dy7 dY)E< Z ¢ <§ + yl[t,oo)a N+ 5(t,y,y)7 t,e J) € ’ )

= f A(dy, dy) ZeWJJ e% §+y1too) N +d(,y.y) s eSlt= Hyﬂ))dt.
RxS1 =1
Recall that variables A, B, and C in the statement essentially correspond to splitting the
decoration-reproduction process of a distinguished individual at time ¢*. Aiming similarly at
undoing the Lamperti transformation for the parts before and after t*, this leads us to decompose
(¢,N) under P” into three parts corresponding to times strictly before, strictly after, and exactly
at €(t*). Specifically, we write A’ for the restriction of (£,N) to [0, e(t*)), and B’ for the pair

(L)) (€ = E(E(t))s Ly s - N)

further shifted in time by €(¢*). Last, we consider the atom of N at time €(t*), say (e(t*), w, (w;)i>1).
We denote by w* the distinguished element of the sequence (w;);>1 and set C" = (w, w*, (w;)i>1)-
In particular, w coincides with the jump A&(e(¢*)) of £ at time €(¢t*) and w* = log z* —&(e(t*)—).
Then A and B are recovered by applying the Lamperti transformation to A’ and to B’ respec-
tively, and C by exponentiating the elements of C’.

Specializing the previous discussion to functionals @ of the form
(&, N, e(t"),2") = @1(A")@a(B") 23(C"),

and using that for Lebesgue almost every ¢ > 0 we have {(t—) = £(t), we obtain that the
quantity E7 (®1(A")®2(B")®3(C")) equals

(J]Rxsl A(dy,dy) Z i ®s(y,y;,y) — k() P3(0, —00, (—0, )))

j=1

'JOOE(G%( 118 Lo xs N))‘I’z(ﬁ(t),N(t)))dt,
0

where £ (s) := £(t + s) — £(t), for s = 0, and N)(ds,dy/, dy’) := 1i=0yxs - N(t +ds,dy’, dy’)
are the shifted versions of £ and N. It is now elementary to check that for any ¢ > 0, the

expectation in the right-hand side can be expressed as the product

E(e%(t)qh(l[o,t)& Lot)xs N))> B (22(6,N));

see e.g. the proof of Proposition 5.8 which is closely related.
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This proves the independence claim in the statement, as well as (ii) and (iii), and we are left

the computation of

oo
fo E <e’75(t)q)1(1[0,t)£’ 1[o,t)xS . N))) dt.

For this, recall that ¢ (vy) € (—0,0) is the value taken at v by the Laplace exponent v of the

Lévy process &, and rewrite the preceding quantity as

0
L VO E (e”f(t)’w(w‘l)l(l[o,t)ga Ljopxs - N))> dt.

The process exp(y£(t) — 1 (7)t) is a martingale under P, which can be use as a density to define
a locally equivalent probability measure. This procedure is known as an Esscher transform.
In the current setting, if we write (P.),~¢ for the self-similar Markov decoration-reproduction
kernel with characteristic quadruplet (0%, a,, A+; «) defined in the statement, then an elementary

calculation as in the proof of [$8, Theorem 3.9] yields

o0
()| J VO (60D (16, g 105 - N)) ) dt = B (D1(1p0 Lo cyes - N)))

where we recall that ( stands for the lifetime of the Lévy process, which is exponentially
distributed with parameter |¢)(y)| under P’, and E’ corresponds to the mathematical expectation

with respect to P’. This completes the proof. ]

6.2 Size-biased spine decompositions for self-similar Markov trees

In the setting of self-similar Markov trees, a spinal decomposition can be viewed as a remarkable
local decomposition in the sense of Definition 5.1 for some size-biased version of a self-similar
Markov tree under P,. Slightly more precisely, the base subtree that induces this decomposition
is merely the segment [[p, p*]] from the root p to a marked point p® which is picked at random
according to some natural probability measure on the tree. We may work either with a weighted
length measure or the harmonic measure on 7', and to avoid many repetitions, we will use the
same notation for both cases. In this setting, a spinal decomposition further describes explicitly
the joint law of the decoration on the segment [[p, p*]] and of the point measure induced by the
germs of the decorations of the subtrees dandling from [[p, p*]].

We consider a characteristic quadruplet (02, a, A; a) satisfying Assumption 3.9. Either under
this sole requirement, we fix v > 0 such that x(y) < 0 and write v := —x(v)A?, or under the
stronger Assumption 3.12, we take 7 = w_, so k(y) = 0, and write v := p for the harmonic
measure. Recall from (3.22) and (3.30) that the total mass v(7') has expectation

E; (v(T)) =27, for x> 0. (6.8)

The characteristic quadruplet (o2, a, A; ) induces self-similar laws (P;)z~¢ for families of

reproduction processes (fu, ) and in turn the latter yield distributions (Qg)z~¢ on the

uel?
space T of (equivalence classes up to isomorphisms of) measured decorated real trees T =
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(T,drp,p,g,v). We next introduce for every x > 0 a probability measure @x on the space T*
of (equivalence classes up to isomorphisms of) non-measured decorated real trees with a single

marked point, T* = (T, p*), such that for any positive measurable function F': T®* — R,
Q@ (F(T°)> = 277Q, <f F(T,r)v(dr)) : (6.9)
T

where for the sake of simplicity, we use the same notation for the probability measures @x and
Q. as for their corresponding mathematical expectations. In words, @;’ is obtained from Q, by
first biasing the latter with the total mass 2~ 7v(T'), and then marking a point p* at random
according to the normalized law v(dr)/v(T) on T. The assertion that Q7 is a probability measure

on T* is seen from (6.8).

Figure 6.1: lllustration of the spinal decomposition where a branch (in red above)
has been distinguished and along which the decoration-reproduction process evolves
according to tilted characteristics.

It will often be convenient to work with a specific realization of the marked decorated tree
T* = (T, p*) under Q7 in terms of a certain general branching process. In this direction, let us
first make the connexion with the preceding section in the case when Assumption 3.12 holds.
When k() < 0 this connection is transparent. Specifically, if we set ¢* = o(u®,t*), then by
Proposition 3.10 and Lemma 6.1 , under P}, the family of decoration-reproduction processes
(fusu)ueu satisfies Property (P), and the construction of decorated trees by gluing building
blocks immediately yields that

the distribution of (T, ¢*) under P is Q7. (6.10)
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Let us now explain why the analog result also holds for the harmonic measure. More precisely,
recall that the probability measure P¥ stands for the joint law of the family of decoration-

reproduction processes (fu, M),y together with the distinguished lineage (u*(n))n>o0-

Proposition 6.3. Let Assumption 3.12 be satisfied and take v = w_ = w. Then the following

assertions hold under Py~ for any x > 0:

(i) The law of (fu,Nu)ucy is £~ v(T) - P, and satisfy Property (P). We write as usual T for

the resulting decorated tree.

(ii) The sequence (p(u*(n)))n=o of the locations on T induced by the births of the distinguished

individuals u*(n) converges a.s. We write o* for its limit.
(iii) The law of the marked decorated tree (T, 0%) is Q.

Proof. (i) By definition, for any n > 0, the distribution of (fu, 7u)ju<, under P;~ is the same
as under x~“~ M, 41 (w_) - P, where (My(w—))n>0 is the intrinsic martingale. The remaining
assertions are then immediate from Proposition 3.10.

(ii) The sequence (g(u*(n)))p>0 is monotone increasing, in the sense that g(u*(n)) is te
parent of o(u*(n + 1)) for all n > 0. Since T is compact, this sequence converges in 7.

(iii) Again it is seen from the very construction that for every n > 0, the conditional distri-
bution under P;~ of o(u*(n)) given T is u(dv)/u(7T"), where u" stands for the projection of the
harmonic measure on 7™ (recall that the latter denotes the subtree induced by the individuals
up to the generation n only). Since we know from Proposition 2.10 that p" converges towards
it as n — o0 in the sense of Prokhorov, Py -a.s. given T, we conclude that the conditional law
under P, of o* given T is indeed p(dv)/w(T) = v(dv)/v(T). O

Now that we have defined the v-marked version of a ssMt and explained how it can be con-
structed using an explicit family of decoration-reproduction processes, let us turn our attention
to the spinal decomposition, which involves decomposing the latter along the marked segment.
Informally, our goal is to explicitly describe the joint law of the decoration on the segment
[[p, p*]], the standard decorated versions of the subtrees dandling from [[p, p*]], and the point
measure induced by the germs of the decorations of these dandling subtrees. Let us explain the
road map that we will follow. First, we introduce the candidate for the law of the decoration-
reproduction process encoding the decoration and germs on the segment [[p, p*]] by means of
a new characteristic quadruplet. As in Section 2.2, this new decoration-reproduction process
allows us to define a decorated segment, and by analogy with Section 5.2 we refer to it as the
marked spine. Next, we demonstrate in Proposition 6.5 that we can construct a decorated tree
by gluing self-similar Markov trees, with the original characteristic quadruplet (o2, a, A; a), onto
this marked spine. Finally, we show that the resulting decorated tree, marked at the endpoint
of the marked spine, is distributed according to ~¥, see Theorem 6.6. The proof will rely on the

characterization given in Proposition 6.2.
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Let us proceed by introducing our candidate for the decoration-reproduction process along
the marked spine. In this direction, we introduce a measure A, on § which is derived from the
generalized Lévy measure A as follows. Fix ¢ > 1 and consider for any pair (y,y) in S = R x &;
the pair (y,y) in S that results by swapping’ y and ;. Specifically, the first element of (y, y)~*
is given by the i-th term y; of the sequence y = (y;);>1, and its second element is obtained from
the sequence (y1, ..., Yi—1,Y, Yi+1,---) (i.e. we replace the i-th term y; in y by y) after re-ordering
terms in the non-increasing order. Then A™ is simply the push-forward measure of A by the

map (y,y) — (y,y)"". We next define the measure A7 on S by
A7 (dy,dy) =€ - (Z A”i(dy,dy)> ,
i>1

and observe from the finiteness of x(7y) and (3.19) that

<Z em) A(dy,dy) = k(7)) — ¥(7) < . (6.11)

i>1

A - |

S

Finally, we define

A (dy,dy) :=e" - A(dy,dy) + AT (dy,dy) — £(7)0(—o,(0,—c0,. )) (dy, dy)- (6.12)

We stress from the finiteness of () that {s(1 A y?)e?A(dy,dy) < o0, and therefore A is

a generalized Lévy measure, since
J (1 A y*)A,(dy, dy) < .
S

Of course (6.12) is reminiscent of the definition of A, given in Proposition 6.2. One of our

motivations for introducing A, stems from the following observation.

Lemma 6.4. The function
Uy(q) = k(v +4q), q¢=0 (6.13)

can then be expressed in the Lévy-Khintchine form

1
¥y(q) = 0% +ayq + L (e” =1 — gyl <1) Ay (dy,dy),

where the drift coefficient a., is given by

o0
ay=a+ o2y + fs (y(ew — 1)1‘y|<1 + Z yieWilwiKl)A(dy, dy), (6.14)
i=1

!Observe that we often use the symbol ~ to indicate a tilting transformation of probability measures; this

should not be confused with «~» which rather refers to swapping two elements.
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Proof. The claim should be viewed as a variation of a well-known result related to the Esscher
transform, see e.g. [88, Theorem 3.9]. It states that if ¢ is the Laplace exponent of a real
Lévy process with characteristic triplet (02,a,A) (recall our convention that the killing rate
k = A({—o0}) is specified by the mass of the Lévy measure at —c0), and if ¢(y) < 0, then
the shifted function (7 + -) can be expressed in the Lévy-Khintchine form (3.11) for the same
Gaussian coefficient o2, the tilted drift coefficient a+ 027y + §(e? —1)y1}, <1 A(dy), and the tilted
Lévy measure e A(dy) — ¥ (7)0—q0.

Let us now proceed with the proof of the lemma. Since A, is a generalized Lévy measure

with killing rate —r(7y) = 0, we have

L (e? —1 — qylyy<1) Ay (dy, dy)
ee}

= L (" —1—qyly <) € A(dy,dy) + L (Z e (&% —1 — quilyy, <1) )A(dy7 dy) + k(7).
=1

Now, by the Esscher transformation, the first term in the sum on the right-hand side can be

expressed as

f (e —1 — qylyy<1) €Y A(dy, dy)
S

1

= (v +q) = ¥(7) - 50°¢" — ¢ (a + 0%y + L(e”y — Dyl <1A(dy, dY)) :

Recall also from (6.11) that k() = ¥(7) + A7 (S). Therefore, if we set

0
ay=a+ oy + Js (y(ew — D1y« + Z yiewillyilél)A(dya dy),
i=1
and use (3.19), then we arrive at the identity

1
K(v+q) = 507¢" +ayg + L (e —1 — qyljy<1) Ay (dy,dy),

and our claim is checked. OJ

Lemma 6.4 allows to apply the construction devised in Section 3.2 by keeping the same
Gaussian coefficient o2 and the same exponent of self-similarity «, but replacing the Poisson
random measure N on [0, 00) x S with intensity d¢A(dy, dy) there by a Poisson random measure
N, with intensity d¢A(dy, dy) and the drift coefficient a by a, given in (6.14). We write (P )z>0
for the self-similar kernel of decoration-reproduction laws induced there by the characteristic
quadruplet (02 a,, Ay;a). In particular, the decoration process under this kernel is a self-
similar Markov process X, with exponent « that is associated by the Lamperti transformation
to a Lévy process £, with Laplace exponent 1).,. We also write 7, for the reproduction process.
We stress that in the case where k() < 0, the decoration is strictly positif immediately before
the deathtime, X, (2—) > 0, and the reproduction process 7, has an atom at (z, X,(2—)) (and

there are no further atoms at time z).
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Our goal now is to glue self-similar Markov trees, with characteristics (02, a, A; ), onto the

decorated segment induced by (X, 7). To this end, we rely on the following technical result.

Proposition 6.5. Fiz x > 0. Under PJ, consider (t1,y1), (t2,92),... the atoms of n, in co-
lexicographical order. Let (T; = (1},dr;, pj,9j))j=1 denote a sequence of independent ssMt with
characteristic quadruplet (02, a, A; ) and such that each T; has the law Py, . Then, almost surely,
the two families

(Height(7})) .

j=1

and (H%FQX gj)j>1

J

are null.

Before proving the proposition, let us discuss some of its implications. First, with the

notation above, it allows us to use Lemma 2.3 and consider the non-degenerated decorated tree
Gluing(([O, Z], d, 0, Xfy), (yj)]?l? (Ti)]}l) s

where z stands for the lifetime of X, and d for the usual distance on segments. We then let @}
be the resulting law on the space T* of decorated real trees with a single marked point, where
the marked point is induced by the right-extremity z of the ancestral segment. Heuristically
speaking, under @;, the evolution along the spine is governed by the characteristic (o2, ay, Ay; ),
while the other branches are governed by (02, a, A; ). We can now provide a formal statement
for the spinal decomposition. Recall the definition (6.9) of the law @g

Theorem 6.6 (Spinal decomposition). FEither let Assumption 3.9 hold and pick any v > 0 such
that k(y) < 0, or let the stronger Assumption 3.12 hold and take v = w_. For every x > 0, the

probability measures @; and @; on T* are identical.

The proofs of Proposition 6.5 and Theorem 6.6 rely on two further technical lemmas that
connect the distribution of the decoration-reproduction process (X,7,) under P to (X, 7) un-
der P;. These two lemmas will allow us to prove Proposition 6.5 and Theorem 6.6 simultaneously
by comparing these results with the characterization of P] given in Proposition 6.2. To start
with, (6.12) suggests to decompose N, under P; as the sum of two independent Poisson point

processes, N’ and N”, with respective intensities
e’ . dtA(dy,dy) and dt (A,? — /i(y)&(,oo’(O’,oo’,,,))) (dy, dy).

Since A7 is a finite measure, the set of times at which N” has an atom is discrete P}'-a.s., and

we write r” for the first one,
" =sup {r > 0:N"([0,r] x S) = 0}.

In particular, by (6.11), r” is exponentially distributed with parameter A7(S) — r(y) = =¥ (7).

We next write e,(t) = Sé exp(aéy(s))ds for the exponential functional (3.12) of the Lévy
process &, that appears in the Lamperti transformation. So t” := €,(r”) is the first time at which
the reproduction process 7, has atoms originating from N”. Write furthermore (', 27);>1 for

the sequence of atoms of 7, at time ¢”, in non-increasing order of (z;);>1.
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Figure 6.2: lllustration of Theorem 6.6.

Lemma 6.7. Under P}, and in the notation above, the pair

(X)X, ("), (/%) )

is independent of the restriction of the decoration-reproduction process to the time-interval
[0,t"), (1[07t//)X»y, Lj0,67)x (0,00) -177), and the distribution of the former is the push-forward of the
law on S8

W™ (AT = £(1)6(—c0,(0,—0,))

by the exponential map (y, (yj)j=1) — (€¥,(e¥);j>1). Moreover, for every functional F' = 0,

there is the identity

0
EY <F(1[0,t”)X’Y7 Ljo,e7) % (0,00) 'W)) = W(’Y)’JO dt Eq (X(t)'y_aF(l[o,t)X 110,)% (0,00) 77))

Proof. Let (r",(y",y")) denote the first atom of N”. By basic properties of Poisson point

measures, (y”,y”) is a variable in S distributed according to the normalized intensity

)™ (A5~ KNS ot0,-0) -

Moreover r”, (y”,y"), and N are independent.
Next, let ¢’ denote the process derived from &, by suppressing the jumps of the latter coming
from N”. Then ¢’ is a Lévy process whose Lévy-Itd decomposition (3.9) uses the same Brownian

component as &, the Poisson random measure N’ instead of N.,, and finally the drift coefficient

a=a,— L y1|y|<1A§(dy, dy) =a+ oy + L y(e™ — 1)1|y|<1A(dy, dy).
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We stress that the latter quantity has been tuned up to take into account the compensation
in Poissonian integrals. By the Lévy-Khintchine formula, the Laplace exponent of £ is g +—
Y(y + q) — (). Obviously, r, (v",y”) and (¢, N’) are independent.

Since &, and &’ coincide on the time-interval [0, "), we have

ey (t) =€(t) = J exp(af’(s))ds for all t <", (6.15)
0
and by the Lamperti transformation, (y”,y”) and (1o X5, L[ot)x(0,00) * 7y) are independent.

By construction, there are the identities

Xy (e(r")/ X (64 (") =) = exp(y”) and  27/X, (e, (r")—) = exp(y)),

and the first two claims of the statement follow.
We turn our attention to the third claim. We deduce by the discussion above that for every
functional F' = 0, there is the identity

Eiy (F (l[O,t”)X’Y? l[O,t”)X(0,00) . 7’]7) )

0
= ch('y)lfo dt B] ("O1F (10,000 X' Lo opsoe) 1) ) -

where (X', 1) denotes the decoration-reproduction process derived from (£, N’) by the Lamperti
transformation. On the other hand, again from a version of the Esscher transformation ([38,
Theorem 3.9]), we know that the process (exp(v£(t) — t1(7y)))i=0 is a martingale under P;, and
for every ¢t > 0, the distribution of the pair (1[0’,5]5, Lo,4]xs N) under the tilted law exp(y&(t) —
ty(y)) - Py is the same as that of the pair (1[0,t]§/7 Ljo,qxs - N’). A final application of the

Lamperti transformation yields

0¢]
J;) dt E17 <ew(7)tF (1[0,6/(t))X/7 1[075/(t))><(07w) ) 77/))

o0
= JO ds B4 (X(G’Y(S))’YF (L[0,e, ()X L0, (5))x (0,00) = 1) ),

and combining Tonelli’s theorem with a time change using (6.15) we get that the previous

displays equals

o0
fo ds E1 (X (s)Y7F (10,9 X, 10,6 (0,00) * 1)) -

which completes the proof. O

The second technical lemma shows that the distributions in Lemma 6.7 also naturally appear
under a tilted version of P;; we need to introduce some notation in this direction. Consider a
realization of the decoration-reproduction process (X,n) under the law P;, and assume that
(t,z) is an atom of 7, that is a child with type « is born at time ¢. Let x(¢) = (z;);=1 be the
sequence of the types of the children born at that time, repeated according to their multiplicities

and ranked in the non-increasing order. In particular, x is one of the terms of the sequence x,
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say © = z;. We then write (X (¢),x)*" for the pair whose first element is 2 and second element
is derived from the sequence (x1,...,x;—1, X(t), i+1,...) (i.e. we replace a term x in x by X (¢))

after re-ordering in the non-increasing order.

Lemma 6.8. For every nonnegative functionals F, G, there is the identity
E] (F (10,01 Xy, Lo 0.0) - ) G(X5 ("), (2)21))

= F J[O o )ﬁ(dt»dfﬁ)ﬁF (10, X, L10,)x (0,00) 'n)G((X(t%X(t))W))
,2)% (0,00

— k() El(J: ds X(£)7"F (10,0 X, Ljo,0)x (0,00) - 1) G(0, (X (1), 0, ... )))

Proof. The notion of compensators of optional processes and random measures (see [32, Sections
I.3 and II.1]) lies at the heart of the proof. Roughly speaking it plays a role similar to that of

the Mecke equation in Proposition 6.2. To start with, recall from Lemma 6.7 that

Eiy (F (1[0,t”)X’yv 1[0,t”)><(0,oo) : 777) G(X'y(t”)a (x;()jzl))

=B (L dt X (6)""F (L0, X, 10,6y (0,00) * 1) L A7 (dy,dy)G(X (t)e?, (X (t)e¥ )j>1>>

—m«nEI(Lfth@ﬁ@“F(1mwX>umwﬂmmyn)G«L@Yaxopnn).

Comparing this identity with that of the statement, it suffices to identify the first terms of the
differences in the respective right-hand sides.
We work under P; and may assume without loss of generality that the functionals F' and G

are bounded. In the natural filtration of (X, n), we consider the optional increasing process
A= [ s de) GO s) x5,
[0,¢] % (0,00)
We claim that its compensator A®) is the predictable increasing process given by

AP (1) = L dsX (s)7™ L A3 (dy, dy)G(X (s)e?, (X (s)e™) j=1), (6.16)

in the sense that A(t) — A®)(t) is a martingale. Since the process F (1[07t)X, 1j0,6)x (0,00) -n) is
predictable and bounded, it follows that

B F (1j0X,1 -n) dA(t
1(J‘[(),Z)X(O,oo) ( [04) [0,2) x (0,00 77) ())

=Lk (J F (109X, L[0.4)%(0,00) 1) dA®) (75)>7
[0,2) x (0,00)

which proves of the statement.
We still have to check (6.16), for which we need to return to the construction of the re-

production process n in terms of the Poisson point measure N and Lamperti’s transformation
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in Section 3.2. The expression for the optional increasing process A leads us to introduce the

optional process (now in the natural filtration of (£, N))

D(t) = j[ 1 N 0 03) D0 €(5) ) HE), (:3)7)

=1

for the functional
H(r, (y,y)) = G, (e")iz1).

Observe that if we write z = "% and x = (e"1¥i);>1, then

H(r, (y,y)™") = G((z,%)"").

Finally, by Poissonian calculus, the compensator D®) of D is

f ds | Aldy.dy) 3 exp(r(6(s-) + ) (). (0:3)7)

=1
J dsexp(v€(s— J AZ(dy, dy)H (§(s—), (¥,¥))

and (6.16) follows from an application of the Lamperti time-substitution. O
We can now tackle the proofs of Proposition 6.5 and Theorem 6.6.

Proofs of Proposition 6.5 and Theorem 6.6. Depending on whether v = w_ or k(y) < 0, we
use the realization of @; in terms of a general branching process with a distinguished lineage,
provided in Proposition 6.3 and the discussion above it. We henceforth work under the associated
law P}, and by scaling, we may assume without loss of generality that # = 1. This enables us to
explore the segment [[p, p*]] by following the trajectory of distinguished individuals, switching
from parent to child at each distinguished birth event, in the sense that we then stop following
the distinguished parent and rather follow its distinguished child. This allows us to analyze the
decoration-reproduction process along the spine [[p, p*]], say (f*,n°*), which is defined rigorously
in terms of the distinguished lineage as follows. In the case k(y) < 0, we write n® = |u®| for
the generation of the ultimate distinguished individual, so n® + 1 has the geometric law with
success probability x(v)/1(7), as it can readily be checked from (6.4) and using the first lines
of the proof of Proposition 3.11. In the case v = w_, we set n® = c0. Next for every generation
0 < n < n®, we write t*(n) for the distinguished age at which the distinguished individual
u*(n) begets its distinguished child, and further set ¢*(n®) = ¢* in the notation of Lemma
6.1 when s(y) < 0. In this framework, the segment [[p, p*]] is realized by concatenating one
after the other the segments corresponding to distinguished individuals and truncated at their
distinguished ages. We set s*(n) :== >,;'_, t*(k), in particular s*(—1) := 0 and s*(n®) := 2* is the
length of [[p, p*]]. The (rcll) decoration f* : [0, 2°) — R4 is simply obtained by concatenating

the truncated decorations of distinguished individuals,
) = furmy(t = s*(n—1)) for any s*(n —1) <t < s*(n).
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In turn, the reproduction process 1* only partly results from the concatenation of the trun-
cated reproduction processes of distinguished individuals; a special attention must be given to
the birth-times of distinguished children. Discarding the latter at first, we define the point
process n° by

f 7 (dt, dz)p(t,z) = Y j e (o (A8, da)p (£ + 5% ( — 1), 2),
[0,2%)x(0,00) k=0 [0,¢*(k)) % (0,00)

where ¢ : Ry x (0,00) — R stands for a generic measurable function. Next, for any 0 < k < n®,
the distinguished individual u*(k) begets children at its distinguished age t*(k); for simplicity
just write (z;);>1 for the sequence of the types of those children, repeated according to their
multiplicities and, say, listed in the non-increasing order. The type of the distinguished child is
an element of this sequence, and we then write (z}7);>1 for the sequence obtained from () >1
after replacing the type of the distinguished child by f,«x)(t*(k)), the value of the decoration
immediately after this birth event. This transformation reflects the fact that at distinguished
birth events, we cease to follow the distinguished parent and rather switch to its distinguished
child. We then write

M= D (s k-

=1
Finally, in the case k(y) < 0, the ultimate distinguished individual u® at generation n® does

not beget any distinguished child, and we set

F*n

e = 0(z0 foe(t*)):

We now have all the ingredients to define the reproduction process on [[p, p*]] by
n.
=0+
k=0
We claim that
(i) The distribution of (f*,n*) is P/.
(ii) If we write n® = 2,5, (2, Where indices are chosen in co-lexicographical order, then

conditionally on (f*®,n°*), the associated standard decorated subtrees (T;);>; dangling from

[[p,p*]] in T* = (T, p*) are independent and, for every i > 1, the law of T; is P,.

Before proving the claim let us explain why Proposition 6.5 and Theorem 6.6 follows directly
from it. First, by Proposition 3.10 and Lemma 6.1, combined with the definition of P], we infer

that under P] the family (fu,7.)ucy satisfies Property (P). It follows that the families
(Height(ﬂ))i>1 and (mj%x )

=1

are both null. Therefore Point (i) implies Proposition 6.5. Moreover, by definition of the

dangling subtrees and Point (ii), we must have:

T= Gluing(([O, 2°1,d,0, f°), (z:)iz1, (Ti)jzl)»
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where as usual d stands for the usual distance on segments. This entails Theorem 6.6, since
by Point (i) the right-side hand of the previous display is distributed according to @% Let us
now conclude by proving the claim. We focus on the case k() < 0, as the case v = w_ follows
from similar (actually, slightly simpler) arguments and we leave the extension the reader — it
can also be directly deduced from the case k() < 0 by taking the limit v | w_ and using
Proposition 3.14. In order to verify (i), recall the setting of Lemma 6.7. Imagine that under
the law P, we tag the times at which the reproduction process 7, has atoms originating from
the Poisson random measure N”. In particular the first tagged time is ¢’, and the ultimate
one is related via the Lamperti time-change to the first time when N” has an atom on the
fiber [0,0) x {(—0o0,(0,—00,...))}. It follows that the total number of tagged times has the
geometric distribution with success parameter —k(v)/ (A7(S) — k(7)) = £(7)/¢(7), that is the
same distribution as the number n® + 1 of distinguished individuals under P]. This is of course
not a mere coincidence, and we shall actually see that we can couple P] and ]f’)'ly such that the
tagged times for 7, correspond to the times ¢*(k) for £ = 0,...,n* at which a new distinguished
individual is born under PJ.

Indeed, consider the restriction of the decoration-reproduction process under ]?Y to the closed
time interval [0, ¢*(0)],

(Lo /" Lo @15 - 1) -

By the construction of (f*,n®) and the very definition of the general branching process with

law P, the former has the same law as

(1[0’t*)f + L™, Lo ryws 11 + Z 6(15*’1?))
j=1
under P}, where the sequence (:Bj“)J;l is reduced to the single term f(¢*) if z* = 0, and
otherwise is obtained by replacing z* in the sequence of the types of the children born at time
t* by f(t*).

The comparison of Proposition 6.2 with Lemma 6.8 now confirms that the law under P}
of the restriction (l[O,t*(O)]f.71[0,t*(0)]><8'n.) is indeed the same as that of the restriction
(1[o,t"] Fi1[0xs 17) under P;'. The verification of (i) can then be completed by an application
of the strong Markov property, conditionally on f*(¢*(0)) under P}, respectively conditionally
on f(t") under P/, iteratively as long as these quantities remain non-zero.

It remains to check Point (ii) about the dangling subtrees. Since the non-distinguished
individuals under IF’Y have the same evolution as under P;, we only need to consider the subtrees
induced by distinguished individuals strictly after their distinguished age t*. Recall then from
Proposition 6.2(ii) that the decoration-reproduction shifted at time ¢ and properly rescaled,
denote by B, has law P;. Since by definition, a distinguished parent does not have any further
distinguished children strictly after time t*, we conclude, by an application of the branching
property and Lemma 5.7, that the subtree induced by the k-th distinguished individual strictly
after time t*(k) (i.e. strictly after the distinguished individual has reached the age t*(k)) and
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properly rescaled has indeed the law Q1, independently of all the others dangling subtrees. This
completes the verification of (ii).
O

6.3 Bifurcators

In this section, we use the spinal decomposition to determine all the characteristic quadruplets
satisfying Assumption 3.9 which yield the same law on (unmarked, non-measured) decorated

trees. To this end, we introduce the map

ord: S — 81, ord(yo, (vi)iz1) = (yz‘l)iéla

where the right-hand side denotes the sequence obtained by ranking the collection of (y;)i>o in
non-increasing order. Borrowing the terminology from [123, ], we say that two characteristic

quadruplets (02,a, A; ) and (02,a., A;ax) are bifurcators of one another and we write
(027 a, A a) ~ (‘737 a, A o)

if and only if

0?=0%2 , Aoord'=A.oord”™! | a=a, (6.17)
and
a—a.= lim (f A(dy,dy) y — f A (dy,dy) y) (6.18)
=0 Meapyl<t e<lyl<t

Remark 6.9. If (6.17) holds for two characteristic quadruplets that both fulfill Assumption 3.9,
then we will see in the proof of Theorem 6.11 below that A — A is always a finite signed measure

on S. As a consequence, the condition (6.18) can then be re-expressed in the simpler form
ac=a+ f y (A< —A) (dy, dy).
lyl<1

Plainly ~ is an equivalence relation; the notation is also meant to suggest that when
both quadruplet fulfill Assumption 3.9, the self-similar Markov trees, say T with characteris-
tic quadruplet (02, a, A;a) and T. with characteristic quadruplet (02,a<, A;a.), should be
thought of as isomorphic; see Chapter 2. We immediately see from (3.19) that if (02, a, A; ) ~
(0%,a., A; ), then the cumulant function k. associated to (02,a<,A) is identical to k.
Therefore, if k() < 0 for some v > 0, then k.(7) < 0 as well, and Assumption 3.9 holds for

both characteristic quadruplets.

Example 6.10. An important example of bifurcator is obtained by taking A, = A, to be the
push-forward of A by the transformation on S that swaps y and yy if y1 > y and leaves (y,y)
unchanged otherwise, and then choosing a, so that (6.18) is verified. See the proof of Theorem
6.11 below for details. The bifurcator (02, a4, Ay; ) is called the locally largest bifurcator
since, in the genealogical interpretation, all children have a type smaller than the value of the
decoration of their parent immediately after the birth event. This allows us to distinguish a

canonical element in every equivalence class of bifurcators.
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We stress that it is implicitly assumed in the definition of bifurcators that both A and
A are generalized Lévy measures, and in particular that their images by the first projection
S - R, (y,y) — vy, are standard Lévy measures. For instance, if A™ denotes the measure on
S obtained from A by swapping the first coordinate y and the first term g; of the sequence y,
no matter whether y; > y or not, then plainly A o ord™' = A~ o ord™'. However generically
A7 ((—o0,—1] x §1) = o0 and therefore A™ is not a generalized Lévy measure.

In the sequel, we fix (02,a,A;a) and (02,a<A.;a.) two characteristic quadruplets and
use the obvious notation P, and P, for the laws of the decoration-reproduction process of an
individual with type x > 0, P, and P for the law of the family of decoration-reproduction
processes indexed by the Ulam tree, and finally Q, and Q7 for the laws of the self-similar

Markov trees endowed with the zero measure — when Assumption 3.9 is verified.

Theorem 6.11 (Bifurcators). Assume that the two characteristic quadruplets, (02, a, A;a) and
(02,a., A ), satisfy Assumption 3.9. Then, Q, = QF, for all x > 0, if and only if

(02,a,A; ) and (02,a, A; o) are bifurcators of one another.

Before establishing Theorem 6.11, we shall first illustrate the statement by establishing a
special case, which will turn out later to be a key step of the proof. In this direction, let A’
and A” two measures on S such that A = A’ + A’ and satisfying A’({—o0} x &) = 0 and
A”(8) < 0. We then write A” for the push-forward of A” by the transformation on S

(v, y) = (1, y)" = (o0, 0rd(y,y)).

We set AT := A’ + A" and
al =a— L ylj, <1 A" (dy, dy).

Clearly, (02, al, AT ) is a characteristic quadruplet and we have (o2, al, AT: a) ~ (02,a,A; ),
and the next statement is thus a version of Theorem 6.11 in this setting. With transparent nota-
tions, we write Ql for the laws of the self-similar Markov trees associated with the characteristic

quadruplet (o2, af, AT; @), when the latter is well defined.

Lemma 6.12. If (62, a, A; ) satisfies Assumption 3.9, then so does (o2, al, AT «) and the law of

the self-similar Markov tree with characteristic quadruplet (o2, al, AT a) coincides with (Qg)z>0-

Proof. The strategy of the proof is similar to that of Theorem 6.6. Let us proceed. First,
notice that by scaling it suffices to treat the case x = 1, and remark that (o2, al, AT, a) directly
satisfies Assumption 3.9 since (o2,a, AT;a) ~ (02, a, A;a). We shall use a coupling argument,
and for this recall the construction of self-similar Markov decoration-reproduction processes
in Section 3.2. Let B be a standard Brownian motion, and N’ and N”, two Poisson point
measures on [0,00) x S with respective intensities dtA’(dy,dy) and dtA”(dy,dy). We assume
that B, N, and N” are independent. Let N” denote the image of N” by the map (¢, (y,y)) —
(t,(y,y)"). Then N = N’ + N” is a Poisson point measure with intensity d¢A(dy,dy), whereas
N = N’ + N” is a Poisson point measure with intensity dtAT(dy,dy), and each of these
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point measures is independent of B. We then construct the Lévy processes & and ¢7, and
the decoration-reproduction processes (X,n) and (XT,n") with law P and PT, by using the
same Brownian motion B, the point measures N and NT, and the drift coefficients a and al,
respectively.

Since 0 < A”(8S) < 0, we may consider the first time 11 at which N” has an atom. The Lévy
processes & and ¢ coincide on the time interval [0,T;), and so do the point processes N and
NT. Performing the Lamperti transformation with the exponential functional € in (3.12), the
restriction of the decoration processes X and X to the time interval [0, ¢(T1)) coincide. Since
A’ ({—o0} x 81), the measure N’ has no atoms on Ry x {—o0} x 8; and

T = inf {t > 0: NT([0,] x {—o0} x S1) > 0}.

Hence e(t;) = 2T is the lifetime of XT, and is smaller than the lifetime z of X. Moreover, from
the very definition of the transformation (y,y) — (y,y), we can express the entire reproduction

process 7’]T as

f

N = L[0,e(t1)]x(0,00) * M+ 1x(e(t1))>0 * O(e(r1), X (e(r1)))-

The interpretation in terms of the evolution of populations is that (X, 7) results from (X, n)
by killing at time z', the reproduction event for 7 occurring at time z being still taken into
account in 7', and adding an extra child with type X (z7) at that time (which can be of type
0 if X is also killed at z7). Let us tag this extra child to distinguish it from the progeny of
the f-parent that stems from 7. It should now be intuitively clear from the Markov property
for (X,n) (see Lemma 5.7) that such a killing combined with the addition of an extra child at
the killing time having precisely the type given by the decoration of the parent when it is killed
is essentially a neutral operation for the population model (even though it clearly impacts the
genealogical structure). More precisely, when X (z7) > 0, we write T for the second time at
which N” has an atom. We can the use for the decoration-reproduction process of the tagged
child the restriction of (X,7) to the time-interval (T1, T2] and shifted by —t; backward in time.
The concatenation of the decoration-reproduction processes of the f-parent and its tagged child
is then given by the restriction of (X,7) to the time-interval [0, T2]. Concatenating iteratively
along the tagged lineage, we then recover the entire process (X,n), and hence in this respect,
the claimed identity Q; = QI thus should not come as a surprise — here we use the transparent
notation QI for the law of the self-similar Markov tree with initial decoration 1 associated with
(02,aT,AT; Q).

More formally, recalling the gluing construction of self-similar Markov trees, the analy-
sis above enables us to construct recursively two decorated trees T = (T,dr,p,g) and T' =
(TT,dr,p', g"), such that the distributions induced on T are respectively Q; and QI, and T is
a subtree of T, p! = p, dpt+ corresponds to the restriction distance of dr to T, and ¢ (v) < g(v),
for every v € TT. To conclude the proof, we need to establish that 7= TT and ¢ = ¢'. To this
end, fix v > 0 such that k() < 0. Recalling that the functions used in the gluing construction

of Section 2.2 are the usc-modification of rcll functions that can vanish only at the end of their
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lifetimes, we infer that to obtain the desired result, it suffices to show that:

f g(v)7™% Ap(dv) = J (g(U)T)’Y*a Api(dv).

T Tt
We already know that the left-hand term is greater than or equal to the right-hand side.
Moreover, by Proposition 3.11 and since (02, a, A; a) and (02, af, AT «) have the same cumulant
function, both quantities have the same expectation and therefore they must be equal. This

completes the proof of the lemma. O
We now prove Theorem 6.11.

Proof of Theorem 6.11. We first establish the sufficiency part. Consider a characteristic quadru-
plet (02,a, A;a) that fulfills Assumption 3.9 and fix any v > 0 such that x(y) < 0. As we
suggested in Example 6.10, it is natural to consider the locally largest bifurcator. In order to
introduce the latter rigorously, we consider the partition S = S— US>, where S< = {(y,y) € S :
y <y1} and Ss := S\S<, and observe, from the fact that Ag(dy) = A(dy, S1) is a Lévy measure
and the finiteness of x(7), that

A(S2) < f

A(dy,dy)ly<—1 +J A(dy,dy)ly,>—1
S S

< Ao([—0,—1]) + ¢ L A(dy, dy) Y e < oo,

=1

Write A, for the push-forward of the generalized Lévy measure A by the transformation

(y,y) — ord(y,y), so Ay, — A is a finite signed measure on S. We then set
ay '=a-+ J y (Ax — A) (dy, dy).
ly|<1

By construction, (02, a, A;a) and (02, as, As; ) are bifurcators one another. Now remark that
A, —1s A is a finite measure, and let us write AY for the push-forward measure of A, —1s. A
by (y,y) — (y,y)T. We set A],: =1s. A+ A and

a]; = Ay + J Yy (A:L - A*) (dyad)’)-
lyl<1

We define similarly AT and af replacing A by AT, Ay, —1s. A by 1s.A = A — 1s_ A and a, by

a in the construction above. By definiton, we have the identity
(02,al,AT;0) = (6%, al, Al @),
and we deduce from Lemma 6.12 that

(Qz):v>0 = (Q;>x>07

where as usual Q¥ stands for the law of the self-similar Markov tree with initial decoration z as-

sociated with (02, ax, As; ). Finally consider another characteristic quadruplet (o2, a., A;a) ~
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(02,a,A; ). Then it is readily checked that the locally largest bifurcator for (02, a., A;a) is
again (02, as, Ay; ), from which we conclude that (Qz)z>0 = (Q})z>0-

We turn our attention to the necessary condition. Suppose that the laws Q, and Q3 coincide
for all z > 0. Comparing for instance the distribution of the height of 7" under Q,, Q;, Q; and

{, we immediately see that the exponents of self-similarity o and o must be the same. We
can now focus on the case x = 1 and then drop the index x from the notation, i.e. we write as
often Q = Q; and Q. = Q7.

Next, consider the random variable {. g(v)7=*Ar(dv), where we recall that Az stands for the
length (or Lebesgue) measure on T', and we write x and k- for the cumulant function associated
respectively with (02, a, A;a) and (02,a-, A<;a). According to Proposition 3.11, the variable
§79(v)""*Ar(dv) has expectation —1/k(y) < o under Q and —1/k-(y) < oo under Q.. This
forces k<(y) = k(y) < 0. So we can equip the decorated real tree T with the (finite) weighted
length measure v = A” under Q as well as under Q. The identity Q = Q. then extends to the
framework of decorated real trees with a single marked point of Section 6.2. More precisely, we
define the law @7 (respectively, @Z) on T* as in (6.9), that is by first biasing Q (respectively,
Q<) with the variable x(v)v(T) and then picking a point p® in 7' at random according to the
normalized probability measure v(dv)/v(T'). Obviously, we have again @7 = @Z

Recall from the preceding section that in this setting, f°® denotes the decoration on the
marked segment [[p, p*]] and n*® the point process on [[p, p*]] x (0,0) that records the germs
of the decorations of the subtrees dandling from [[p, p*]], see the proof of Theorem 6.6 for a
formal definition. We know from the spinal decomposition, i.e. Theorem 6.6, that the law of
(f*,n*) under @V is P7, that is that of the self-similar Markov decoration-reproduction process
with tilted characteristic quadruplet (02, a,, Ay; ), where the drift a, is given by (6.14) and
the generalized Lévy measure A, by (6.12). Using an obvious notation under @Z, we arrive at
the identity P? = PJ where the right-hand side is the law of the self-similar Markov decoration-
reproduction process with tilted characteristic quadruplet (o2, ay, AJ; ).

Just in the same way as the distribution of a Lévy process determines its characteristic triplet,
one readily sees by undoing the Lamperti transformation that the law of a self-similar Markov
decoration-reproduction process with a given exponent of self-similarity « entirely determines

its characteristic quadruplet. We infer from above that there is the identity
2 2
(o aa’yvA’y) = ( <7a;7A'_y<)'

To conclude the proof of the necessary part, it now suffices to observe from (6.12) that the
push-forward of the generalized Lévy measure A by the function ord : § — & that ranks all the
terms of (y,y) in the non-increasing order can be expressed in terms of A, and () via the

identity

(ew + Z ewi> . (A o ord_l) (dy,dy) = ((AﬂY + 5(7)5{_OO}X{07_007,,,}) o ord_l) (dy, dy).

=1
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Recalling that x(y) = k«(7), we now see that Aoord™* = A, oord™!. Finally, we check (6.18)
using again s(7y) = k<(7), (3.19), and the Lévy-Khintchine formula (3.11). O

We saw in the above proof that the tilted characteristics (0’2,8,7,1\7; «) can be recovered
from the laws (Q.)z~0. Those tilted characteristics are in fact more intrinsic that the initial
ones since they generically uniquely characterize the law of the ssMt. We say that a generalized
Lévy measure A is asymmetric if there exists a point {yo, (y1,¥2,...)} € S in the support of A so

that yg > y1 > —o0. Then we have

Corollary 6.13. Suppose that A is asymmetric. The law (Qg)z>0 s uniquely characterized by
the data (o2, ay, Ays ).

Remark that in the binary conservative case, the tilted characteristics are completely de-
scribed by the sole Lévy—Khintchine exponent 1., of the pssMp decoration X, along the tagged
branch since the decoration-reproduction process 7, is given in terms of X, by (4.14). See the

end of the next section for applications.

Proof. We saw in the previous proof that (Q);>0 is characterized by the data of (k(v),7)
together with the tilted characteristic quadruplet (02, a,, A; ). Using (6.13), we deduce that
the function s can itself be recovered from (02, a,, A,;a) together with the parameter v. To
complete the proof it suffices to show that v > 0 can be recovered from the generalized Lévy
measure A, only. To prove this, let us denote by A, the generalized Lévy measure of the locally

largest bifurcator so that we have

A, (dy,dy) = Y Ay(dy,dy) + e - (Z AL (dy, dy)) :

i1
Since A, is asymmetric (this is equivalent to asking that a bifurcator A or even A, is asym-
metric), then there exists a point (yo,y1,%2,...) € St with yo > y1 = ya = - = Yp > Y41 =
.... =2 —0o0 in the support of A,. Let us now consider the measure A, restricted to the vicinity
of the points (yo, (y1, y2, ...)) and (y1, (Yo, Y2, -..)) in S. Denote them respectively by Ag and A%.
Using the previous display, we deduce that A% o Ord~! and Ag are absolutely continuous with
respect to each-other in the vicitinity of (yo, (y1,y2, ...)) with Radon-Nikodym derivative equal

to

d(Al oOrd™) c. e
—o(l/o, (y1,92,--)) =
dAf

where ¢ > 0 is an explicit constant. Since y; # yo are known, this formula thus enables us to

evvo ’

recover v from the knowledge of A. O

In the symmetric case, the previous corollary may not hold. Consider for example the two

finite generalized Lévy measures

A = (_log3,(~log3,—log3,—0,.)) T 3 Olog3,(—c0,~00,...)) T 7 O(—eo,(—00,—c0,...))s
A = 3 6(_1og3(—logd—log3,—c0,..)) T O(log3,(—p—p,..)) T T O(—op,(—o0,—00,.))-
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Then a straightforward calculation shows that the (y = 1)-tilted characteristics of (0,0, A; «)
coincide with those of the (5 = 2)-tilted characteristics of (0,0, A; ).

6.4 Hausdorfl dimensions

In this section, we use the spinal decomposition of Theorem 6.6 to determine the Hausdorff
dimension of some random sets that appear naturally for self-similar Markov trees satisfying the

first Cramer’s condition, completing Lemma 3.6 in this context.

Proposition 6.14. Fiz (02, a, A; ) satisfying Assumption 3.12 for some w_ > 0. Then Pi-a.s.,
the Hausdorff dimensions of 00T, T and Hyp(g) are w_/a, 1v (w_/a) and 2v (w— /o) respectively.

Proof. Thanks to Lemma 3.6, we only need to establish that dimg (07T = w_/«a, P1-a.s. In this

direction, we claim that it suffices to establish that

B, (p* o
Tim sup W —0, 0% -as., (6.19)
r—0 ra

where we write p°® for the point corresponding in T to the extremity zg of the ancestral indi-
vidual (fg,n), and B,(p*) for the closed ball of radius r centered at p®. Indeed, recall from
Proposition 2.11 that the harmonic measure is supported on dy7T', P1- a.s. Since by (6.9) and
Theorem 6.6, under @T_, the marked point p*® is distributed according to p(dv)/w(T), it follows
from standard density theorems for Hausdorff measures that dimg(dpT) = w—/a, Pi-a.s.

To prove the claim (6.19) recall that, under @‘f*, the decoration-reproduction process (fz, 1)
of the spine is distributed according to the biased decoration-reproduction kernels (Py ™ )z=0-
Recall also from Section 5.3 the notation B2(T) for the closure of the complement of the hull of
radius @ when dr(p, p*) > a. By definition, B2(T') contains the open ball B,(p*) for the radius
r = dr(p,p®) — a. Finally, fix § > 0 and for every € > 0, set ¥ := inf{t > 0: fz(t) < e}. We
shall show that for every d1,ds > 0 such that

w_ — 01 > (a+ d2)(w_/a — 9), (6.20)
we have @Lf’—a.s. that for every k € N large enough,
w(By (1)) < 9 klw—=01) and  27k@+2) < dr(p, p*) — Iy (6.21)
The desired result (6.19) then follows, since we deduce from the inclusions
By-s(a+59) (p*) © Bap(p.pr)-,, () = By, (T)

that
u(Bsz(amQ)(p')) < Z_k(w*_‘sl), for k sufficiently large,

and we conclude from (6.20).
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Let us proceed with the proof of (6.21). First remark that by the Markov property of (fz, ns)
of Lemma 5.7 and the branching property, conditionally on fg (1)), the variable u(BéTk (T)) is
distributed as n(7") under @L}),;( 9.)" Therefore, by the scaling property combined with the fact
that fz(0:) < e, we get

@ (w85, (@) 2 7)< (WD) 2 7).

Since Eq(u(T)P) < oo for some p > 1 appearing in Assumption 3.12, the variable u(7)?~! has
a finite mean under @f’ By the Markov inequality, the right-hand side of the last display is
O(en®=1). The first inequality in (6.21) follows by taking ¢ = 27% and applying the Borel-
Cantelli lemma. On the other hand, recall that under @‘f*, the decoration process fz = X,,_
along the spine is obtained by performing the Lamperti transformation to a Lévy process &, _,
and from Lemma 6.4 that the latter has Laplace exponent ¢ — k(w_ + ¢). From basic results
on Lévy processes, we have &, (t) ~t- IAET_ (€ (1)) almost surely as ¢t — oo, we infer from the

Lamperti transformation that a.s. we eventually have
27k(a+52) < dT(P, po) o 192—k.

This completes the verification of (6.21) and hence the proof. O

6.5 Back to Examples

We now revisit the Examples of Chapter 4 and explicit their spinal decomposition. We also
recall some background about stable Lévy processes conditioned to die continuously at zero,
since they appear in the w_-spinal decomposition of many natural examples. Interestingly, we
will see that the only spectrally negative S-stable Lévy processes conditioned to die continuously
at zero that may appear in binary conservative ssMt are present in Examples 4.6 and 4.10, and
satisfy

B e(0,1/2] u (1,3/2].

Recall from (6.12) and (6.14) the definition of the tilted characteristics (o, ay, Ay; ) in the
spinal decomposition (Theorem 6.6) for k(y) < 0 or v = w_ together with Assumption 3.12.
Recall also from (6.13) that the Lévy-Khintchine exponent 1, of the Lévy process underlying
the pssMp X, of the decoration along the distinguished tagged branch under @'Y is given by

Uy(a) = K(y + 9)-

Similarly to what we did in the opening of Chapter 4, in the case when the image A, of A,
by the application (y,y) — y integrates 1 A |y| we define the canonical drift coefficient

Ao J Ay o(dy) ylpy<i-
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It is easy to see that when x(y) < 0 then A, integrates 1 A |y| if and only if Ag does and in
this case we have

a%an = Qcan + 027. (6.22)

It is rather straightforward to compute the tilted characteristics (o2, ay, Ay; o) in the finite
branching activity case, see Examples 4.1, 4.2 and 4.3. We shall do so only in the case v = w_

to lighten the prose and because there is no killing involved in this case.

e In Example 4.1 we have w_ = 1 and Assumption 3.12 holds. After performing the spinal

decomposition with v = w_ we still have ai™ = 0, 02 = 0 and the tilted generalized Lévy

measure is merely equal to the initial one, more precisely Apaif., = Apalf © Ord™!. The

tagged branch thus evolves as a standard branch in this model.

e In Example 4.2 we have w_ = 1 and Assumption 3.12 holds. After performing the spinal

decomposition with v = w_ we still have ai™ = —1, 0% = 0 and the tilted generalized
Lévy measure is twice the original one, more precisely Atwow_ = 2 X Agwo © Ord—!. Along

the tagged branch, the intensity of splittings is twice that of a standard branch. Undoing

the Lamperti transformation we recover the famous spine decomposition of Yule trees, see

e.g. [53, Proposition 5].

e In Example 4.3 we have w_ = —acan — Vacan® — 2 and Assumption 3.12 holds as long
as acan < —V/2. After performing the spinal decomposition with v = w_ we still have
02 = 1, the tilted generalized Lévy measure is again Atwow_ = 2 X Agywo © Ord~! and
the canonical drift gets changed to a5 = —+/ Acan’ — 2 using (6.22). In particular, the

intensity of splittings along the tagged branch is multiplied by two as in the previous case,

and the decoration X, evolves as a Bessel process with dimension 23@&“ + 2.

Let us now move to examples with an infinite branching activity, starting with Example 4.5.

We have w_ = 2 and Assumption 3.12 holds. After performing the spinal decomposition with

can
Y

the original one A and a finite measure A’ given by

v = w_, we still have a’® = —1, 02 = 0 and the tilted generalized Lévy measure is the sum of

1

f F(e%, (e, e”2,..)) A (dy) = ZJ du F(u, (1,0,0,...)).
S 0

In probabilistic terms, this means that the decoration X,,_ along the tagged branch is a pssMp
which evolves as follows: starting from a value x, it decreases until 2 - (1 — +/U) as a standard
branch, and then jumps to x - (1 — VU) -V where U,V are independent and uniform on [0,1].

Afterwards, the evolution iterates the same dynamic.

The next, and perhaps one of the most important, example is given by the Brownian CRT

with mass 1, see Example 4.6. It is an example of conservative fragmentation so we have w_ = 1
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and Assumption 3.12 holds. The spinal decomposition with v = w_ has characteristics o2 = 0,

canonical drift ac,, = 0 and the tilted generalized Lévy measure is

2t dx
F(e®, (e",...)) Aprow_(dyo,dy) = /= | Flaz,1-2,0,0,..) 2+ ——r.
L (e*, (")) ABrow(dyo, dy) \/;JO (z,1-2,0,0,..) - @ (@(1— 1))

In particular, the Lévy—Khintchine exponent of the underlying Lévy process of the pssMp
decoration X,,_ along the tagged branch is

D(z+1
VYo (2) = KBro(z + w_) = —24/2- (I‘(z)Q)
We deduce from [135, Proposition 1] (see [89, Chapter 5] for more general results that we shall

use below) that the decoration along the tagged branch X, has the law of the opposite of a
stable subordinator of index 1/2 starting from 1, conditioned to visit 0, and finally killed when
hitting 0. See below for details. Notice that thanks to the conservative and binary properties, the
decoration-reproduction 7,,_ is recovered from X, using (4.14). Interestingly, the reproduction
process bears a close relation to the Poisson—Dirichlet distribution with parameters (1/2,1/2);
see [135, Theorem 1]. A similar phenomenon occurs in the spinal decomposition of the stable
trees of Example 4.7. Again, since the fragmentation is conservative we have w_ = 1 and
Assumption 3.12 holds. As above, the decoration along the tagged branch has the same law
as the opposite of a stable subordinator of index 1 — 1/ starting from 1, conditioned to visit
0, and finally killed when hitting 0; see [135, Proposition 1] and also [ 13, Proposition 1]. See
also below for details. Since this case is not binary, the decoration-reproduction process is more
involved, as above it bears close relation with the Poisson—Dirichlet distribution with parameter

(1-— %, 1-— %), see [113, 135] for details.

Finally, let us consider the family of Examples 4.10. Recall that for a € (0,1] and b € (0, 1/2]
the characteristics (o2 = 0, aab, Aap; ) yield a ssMt for whichw_ = a+2band wy =a+2b+1

and for which Assumption 3.12 always holds. We introduce the notation

a
=a+b and = )
b ’ e a+tb

Then using (4.16) and Lemma 6.4 we see that the Lévy—Khintchine exponent of the pssMp

decoration along the w_-tagged branch is given by

Yo (2) = -T(1+a—2)(b+ z)sin(m).

™

Using [89, Theorem 5.15] we deduce that in the w_- spine decomposition of those ssMt, the
decoration X,  along the tagged branch evolves as a stable Lévy process with parameters (5, o)
conditioned to die continuously at 0. Since the generalized Lévy measure is conservative (4.9)
and binary (4.12), the decoration-reproduction process is recovered from X,, using (4.14). In
the case of the overlay Example 4.11, the decoration X, in the w_-spinal decomposition is a

so-called ricocheted stable process, introduced by Budd [11] and recently studied in [90, 1306].
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The critical case Example 4.12 is left aside since Assumption 3.12 does not hold, see Section 3.4

for a discussion.

We saw in Examples 4.6, 4.7 and 4.10 the appearance of conditioned stable processes as
the pssMp decoration along the tagged branch of a ssMt. We will actually show that not all
such processes can appear in spine decomposition of binary conservative ssMt. Let us first give
some background on stable Lévy processes, their conditioned versions and their relations with
hypergeometric Lévy processes to unify the results. Recall that a Lévy process (& )¢>0 is stable
with index o € (0,2] if it satisfies the scaling relation c¢=! - (£(c®t))i=0 = (£(t))¢=0 in law. Up
to dilation, they can be classified by their index index of similarly « € (0, 2] together with the
positivity parameter o = 0 given by o = P({(¢t) = 0). Specifically, if

1}

1
o

QIm

(a,0) € {ae (0,1),0€ 0,11} u{a=1,0=1/2} u{ae(1,2),0¢[1 -
their Lévy measure is given by

sin(rag) ;LT 4+ a)
T

M(dz) — |:,;|1f+1 (F(l +a) Sin(ml_g))1x<o> .

The case a = 2 is the case of Brownian motion (no jumps). We refer to [15, Chapter VIII]
or [89, Chapter 4] for details. A stable Lévy process naturally gives rise to a pssMp without
performing the Lamperti transformation: if £ is an a-stable Lévy process starting from 1, then

the censored process &7 defined by
() = §t)li<ry, ,  with Tr_ :=inf{t > 0:(t) <0},

is a pssMp. There are other ways to build pssMp from ¢ using h-transformations, see [13].
More precisely, recall that h : R, — R is a positive harmonic function for £ if for each = > 0

we have
h(z) = E, (h(gT(thTRf) .

Given such a harmonic function, it is possible to define a new process £ by the formula
1
Ba(e € 4) = o GEFWIGIOE R

where A is measurable with respect to F; (a priori it is unclear whether the obtained process
is conservative or not, but it will be the case in what follows). It turns out that for stable Lévy

processes, any positive harmonic function for £' is a linear combination of the two functions
Al(z) = 22079 and  hl(z) = z00-071

see [133]. The two processes ¢! and &' obtained this way are respectively called the (o, o)-
stable Lévy processes conditioned to survive, resp. to die continuously at 0, since they can be
alternatively obtained by a limiting conditioning procedure associated to their names. See |

)
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Chapter 5] or [45] for details. Then the three processes &7, &4, €1 are positive self-similar Markov
processes, for which it is possible to compute the characteristics of the underlying Lévy process in
the Lamperti transformation [13] (beware, those are not stable processes anymore). To present
them in a unified way, it is convenient to introduce the formalism of hypergeometric pssMp and
Lévy processes. Recall that a pssMp is called hypergeometric if the underlying Lévy-Khintchine
exponent is of the form

MNl—¢+v—2) T'C+0+2)

Fr1-¢—z2)  T(+2)

where (¢, v,<,0) belongs to the admissible set of parameters {¢ < 1, v € [0,1), ¢ >0, 0 €

¥(2) = -

(6.23)

(0,1)}. We refer and use the same notation as in [37] where we replaced 3 by ¢ and v by v to
avoid conflict in the notation. In particular, it is proved there that the pssMp &7, & and €1 are

hypergeometric with parameters

S v 'S U
gll1—all—0)| ao [1—a(l—0) | a(l—0p)
¢ 1 oo 1 a(l - o)
I3 0 oo 0 ol - o)

Let us now examine which of the pssMp &', &7 can arise as the decoration along a tagged
branch in a conservative and binary ssMt. We shall actually consider the case where the gener-
alized Lévy measure A is binary, and almost conservative meaning that the only possible loss of

mass during splitting event is due to a killing:
a0
A({o, (1) D e #1}) = A({(=o0, (—o0,~0..)}), (6.24)
j=0

note that in this case the decoration-reproduction process n is still recovered from the pssMp
evolution as in (4.14) except that the final jump does not yield to an atom in the decoration-
reproduction. Since we are in the spectrally negative case, we shall treat separately the subor-
dinator case a € (0,1) and the case a € (1,2). In the case o € (0, 1), consider the opposite of
a a-stable subordinator started from 1 either killed ¢ when reaching R_ or conditioned &' to
die continuously at 0. Then we have o = 0. The Lévy-Khintchine exponent in the Lamperti

representation is explicit and given by

W) =~ preas, and k() = -t (6.25)
By [89, Theorem 4.6 (ii)], their Lévy measures are, after a push-forward by = — e, respec-
tively given by
-1 dx -1 dz

7wl (dz) = and 7} (dz) =

T'(—a) ‘ (1—xz)ita Locfo1)s I(—a) ’ gl-a(l — g)l+e Locfo,1]-

2To be precise, the borderline case v = 0 is often excluded in the definition. Nonetheless, it can be added to

the family of hypergeometric processes thanks to Proposition 4.1 and Theorem 4.4 in [39].
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Moreover, we infer from (6.25) that their killing rate are ﬁ and 0 respectively. In order

to obtain &7 and &' as tilted versions of a characteristic quadruplet (a, o2, Ay; ), we must
have ai®™ = 04 = 0 and a, = a ; where we use the transparent notation ai*" for the associated
canonical drift. Furthermore, without loss of generality we may assume that A, is a locally
largest generalized Lévy measure, and by (6.26) and the almost conservative assumption it must

be of the form:

J F(e” (e, e, ...) Ax(dyo, dy)
s

1
-1 dx
= : F 1—12,0,0,... ks - F(0,(0,...)), 6.26
Jm Fea) G—ayra’ (070 000) ke F00), - (626)
for some constant ky, > 0 corresponding to the killing rate. Recalling (6.11), we see that we
must tilt the latter by v = a + 1 in the case of ¢7 and v = 2« in the case of ¢!, Finally using
the (6.13) combined with the almost conservative assumption, we infer that we have to take
ky = —wg(—a) for ¢7 and ky = —wé(l — 2a) for &'. Performing the calculation, it turns out
that I'(—a) s
(o) = b (1 —90) = =) —4%m

and the above display is non-positive if and only if « € (0,1/2]. So, to summarize, the processes

¢" and &' can be obtained as the decoration processes along the tagged branch in a ssMt only
when « € (0,1/2], and in this case we can even use the same ssMt. Also, note that the associated
generalized Lévy measure has killing in all cases except for av = 1/2.

The case when « € (1,2) is very similar except that some care is needed to deal correctly
with compensation. The spectrally negative case correspond to ¢ = é The Lévy—Khintchine

exponents are now given by

1 1
Yl(z) = = (D(a— 2)T'(1 + 2)sin(n(a — 2))) and }(z) = = (-2 — 2)T'(a — 1 + 2)sin(7z)),
T T
and the underlying Lévy measures are, after a push-forward by = — €%, similarly given by
—I'(a + 1) sin(an) dz —I'(a + 1) sin(am) dz
T — I -
w)(dx) = - SRS and 7 (dz) = - (1 — gy

As above, those measures are necessarily obtained by starting from a locally largest of the form

f F(e¥(e¥,e"2,...) Ax(dyo, dy)
S

fl —I'(a + 1) sin(an) dz
1/2 ™ (z(1 —z))tte

= F(z,(1—-2,0,0,..)) + ke - F(0,(0,...)),

after tilting by v = v+ 1 in the case of ¢7 and by 7 = 2a— 1 in the case of ¢€}. The drift is then
adjusted in the characteristics of the ssMt to match the one obtained in 1/)& or Q/Ji. As above,
the only condition to check is that the killing rate is non-negative. Using a formal calculation

software, it is possible to obtain a closed formula for the cumulant function in terms of the
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killing rate, and we get the condition k, = 740\5), in both regimes. The latter is non-negative

Ti/2—a)
if and only if @ € (1,3/2]. Notice in particular, the perhaps striking fact that the only stable
processes conditioned to die continuously at 0 that can appear as the decoration X, in a binary

conservative ssMt without killing are the 1/2 and 3/2-stable spectrally negative cases.

Comments and bibliographical notes

The notion of spinal decomposition is one of the most useful and powerful tools in the study of
branching structures. It can be traced back at least to Kahane & Peyriere [85], while the first
geometric formulation on trees is due to Chauvin & Rouault [16]. It has been famously popular-
ized in the 90’s by Lyons, Pemantle and Peres [111, ] and has found numerous applications,
notably in branching random walk theory, see [132]. In a context close to ours, these tools have
been applied also for growth-fragmentation in [22] and branching Lévy processes [25].

The notion of bifurcators has already been introduced by Pitman & Winkel in the setting of
fragmentations trees by [123] and by Shi [131] for growth-fragmentations processes. Section 6.3
build upon these works. See [22, Section 5] for a similar use of the tilted characteristics in the
growth-fragmentation case.

The profile of a random measured (decorated) tree T = (T, dr, p, g,v) is the push forward
of v by the distance to the origin x € T — dp(p, x). After size-biaising by the total mass, it is
related to the law of dr(p, p*) defined in (6.9). The profile has been studied in details in the
fragmentation [76] and the growth-fragmentation [72] cases. In particular, it is proved there that
in the case of the harmonic measure, the profile has a continuous density if and only if the self-
similarity exponent « is strictly larger than w_. In the case of the Brownian CRT of Example 4.6,
the profile is famously linked to Ray-Knight theorems and a similar phenomenon, though more
complicated, has been established in the case of the Brownian growth-fragmentation tree of
Example 4.9, see [100, , 41]. We wonder whether a similar Markov property of local times

holds in a greater generality.
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Chapter 7
Appendix

This appendix contains certain results which may be of broader interest.

Lemma 7.1. Let £ be a Lévy process (possibly with killing) and denote its law by P. We write
Y for its Laplace exponent as defined in Section 3.2; see (3.10). We further assume that there
exists v > 0 such that () < 0. Then, we have

¢

E(supexp (’y{(t))) <o and E((J exp(a{(t))dt)w/a) < o0, (7.1)

t=0 0

for every a > 0, where { stands for the lifetime of €.

Proof. We work under the assumption of the lemma for some v > 0 and we set I = SSO exp(~v€(t))dt,

with the usual convention £(t) = —oo, for every ¢ > (. Then remark that by Fubini:
o0 o0 06) 1
5 J exp(r£(1))dt) = f E(exp(ré(t))dt = f exp(t(y))dt = ——— < o,
0 0 0 ¥(7)

The idea now is to use the variable I to control the expectations appearing in (7.1). In this
direction, we fix b > 0 such that P;(I > b) > 0, and, for every r > 0, we introduce the stopping
time 7T, :=inf{s > 0: &(s) =log(r)/v}. An application of the Markov property then yields

P(I=b-r) > P({TT <} n {f:exp (v(&(t) = &(T;)))dt = b-rexp (— vf(TT))})
> P(T, <o) -P(I=b),

where in the second line we used that £(7,) = log(r)/y on the event {7, < co}. Henceforth, we

have
P(supexp('yﬁ(t)) > r) < PI > br) , forr>0.
=0 P(I>=0)
Now, an application of Fubini gives:
© © P(I=br) Ey(I)
E t)) ) = P =r)dr < dr = < 0.
(iggeXp(vf( ))) L (Stggexp(vé) r)dr fo e XY
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Let us focus on the variable SSO exp(a&(t))dt, which belongs to the family of exponential func-
tionals of Lévy processes. This family of variables has already been studied in depth [30], and
analog results to the second inequality in (7.1) can be found in the literature. For instance,
see Rivero [128, Lemma 3] for the case when the killing component is null, and [127, Lemma 2]
for the case when o > «. Unfortunately, we have not been able to find a reference that holds
under our assumptions; therefore, we adapt, with minor modifications, the latter proofs. In this

direction, notice that

S

B(( fo exp(ag(1))d

for every s = 0. Moreover, the Markov property entails that

2
«

) = Z[E<JS exp (v€(u)) Lu<c ( foo exp (a(&(t) — §(u)))dt> %_ldu)7

0 u

S 0 04

B(( [ explagna))”) = Ze( [ e etwan) - ([ (e (asto)ar) ).

Finally, since {;exp(a&(t))dt < s - SUPye(o,s] €XP(£(t)), we derive from (7.2) that the previous
display is finite for every s > 0. As a consequence, we get E(( SSO exp (af (t))dt)%_l) < o0, and,

by monotone convergence taking the limit when s — o0, we obtain that:

B(( [ exptaconar)”) = Le() - B(( [ (e (ag)ar) ) <o,

0 0

which completes the proof of the lemma. O

Lemma 7.2 (A law of semi-large numbers). Let (X; : i = 1) be a uniformly integrable family
of independent real random variables of mean 1. For any 6 € (0,1), there exists some constant
Cs > 0 such that for any sequence of non-negative numbers (z; : i = 1) of sums = Y, x; < o0,

the random sum S = Y, X; - x; satisfies

C
P(|S—s|>ds) <0+ = sup .
S izl
Proof. Fix § € (0,1), and for every i > 1 set Y; := X; —1. In particular, (Y; : ¢ > 1) is a uniformly
integrable family of independent centered random variables and thus we can find Mg > 1 such

that E(|Y;|1)y;)> ) < 62/2, for i = 1. Next, using the triangle inequality, we write:

0s 0s
P (IS —s| = ds) = P(| 2 Y| = os) <] 2 Yyl 2 5) +P(| 2 Viljyi<ai] > 5>'
=1 =1 =1
Let us now bound each term separately. On one hand, an application of Markov inequality gives:

0s 2
7) < = D E(Yill ;)i < 6.
=1

\%

B(| Y Yilimasyi] >

i>1

2

On the other hand, using that E(},;5, Yiz;) = 0, it is plain that the truncated sum TS :=
Yiis1 Yiljy,|<m, @i has mean in [—0%s/2,6%s/2] and by independence its variance is bounded

147



above by 4M52 D1 x2. Therefore, the triangle inequality followed by a classical application of
Chebytchev inequality entails that

16M§Zi>1x?< 16 M2 up;
.

ds
P(11812 5) < o < o

This completes the proof of the lemma. O
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