1H30.

Exercice 1. Soit \mathcal{U} l'espace vectoriel sur \mathbb{R} des suites de nombres réels.

(1) On donne

$$\mathcal{F} = \{(u_n)_{n \in \mathbb{N}}, u_n + 2u_{n-2} = 0; n \ge 2\}$$

L'ensemble ${\mathcal F}$ est-il un sous-espace vectoriel de ${\mathcal U}$? Justifier la réponse.

(2) On donne

$$\mathcal{G} = \{(u_n)_{n \in \mathbb{N}}, u_n - u_{n-1}^2 = 0; n \ge 1\}$$

L'ensemble \mathcal{G} est-il un sous-espace vectoriel de \mathcal{U} ? Justifier la réponse.

Exercice 2. Soit

$$F = \{(x, y, z, t) \in \mathbb{R}^4; x - y + z - 2t = 0\}$$

- (1) L'ensemble F est-il un sous-espace vectoriel de \mathbb{R}^4 ? Justifier la réponse.
- (2) Donner une partie génératrice de F.

Exercice 3. Question de cours. Soient E un \mathbb{K} -espace vectoriel, $p \in \mathbb{N}^*$, $u_1,...,u_p$ des vecteurs de E, linéairement indépendants. Soit v un vecteur de E. Démontrer que si les p+1 vecteurs u_1, \ldots, u_p, v ne sont pas linéairement indépendants, alors v s'écrit comme combinaison linéaire des vecteurs $u_1,...,u_p$.

On donne le sous-espace vectoriel G de \mathbb{R}^3 , engendré par les vecteurs : Exercice 4.

$$u = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \quad \text{et } v = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

- (1) Le vecteur $\begin{pmatrix} 1 \\ 1 \\ 5 \end{pmatrix}$ appartient-il à G? Justifier la réponse. (2) Soit $H = \{(x, y, z) \in \mathbb{R}^3; \begin{cases} x 2y = 0 \\ x + z = 0 \end{cases} \}$

Expliquer pourquoi H est un sous-espace vectoriel de \mathbb{R}^3 . Donner une partie génératrice de H.

(3) Démontrer que $G \cap H = \{0_{\mathbb{R}^3}\}.$