Corrigé de la feuille de TD 3 (Continuité)

Exercice 1.

• 1. Soit ε un réel positif. Si, pour un certain réel positif δ , x satisfait $|x-1| \le \delta$, alors

$$|f(x) - f(1)| = ||x - 1| - 0| = |x - 1| \le \delta.$$

Notamment le choix $\delta = \varepsilon$ montre que f est continue en 1.

2. Soit ε un réel positif. Si, pour un certain réel positif δ , x satisfait $|x-1| \le \delta$, alors

$$|f(x) - f(1)| = |(x - 1)^5 - 0| = |x - 1|^5 \le \delta^5.$$

Notamment le choix $\delta = \varepsilon^{1/5}$ satisfait

$$|x-1| \le \varepsilon \Rightarrow |f(x) - f(1)| \le \varepsilon$$

ce qui montre que f est continue en 1.

3. Soit ε un réel positif. Si, pour un certain réel positif δ , x satisfait $|x-1| \le \delta$, alors

$$|f(x) - f(1)| = |(x - 1)e^{x^7} - 0| = |x - 1|e^{x^7} \le \delta e^{x^7}.$$

Notamment, si δ est inférieur à 1, alors $e^{x^7} \leq e^{2^7}$. En conséquence, si on choisit $\delta = \min\{1, \frac{\varepsilon}{e^{2^7}}\}$, alors

$$|x-1| \le \delta \Rightarrow |f(x) - f(1)| \le \delta e^{2^7} \le \varepsilon,$$

ce qui montre que f est continue en 1.

- 1.
 - 2.
 - 3.

Exercice 2.

- 1.
 - 2.
 - 3.
- 1.
 - 2.
 - 3.

Exercice 3.

Exercice 4.

1. Pour se donner des idées, on trace le graphe de la fonction (Figure 1): On voit que la fonction prend une infinité de fois la valeur 0 au voisinage de 0. En effet, pour un réel non nul x, $\sin(\frac{1}{x}) = 0$ si et seulement si $\frac{1}{x} = k\pi$ pour un certain entier k, autrement dit, F s'annule aux points $x = \frac{1}{k\pi}$. La suite définie par $u_n = \frac{1}{n\pi}$ satisfait donc $\lim_n u_n = 0$ et $\lim_n f(u_n) = \lim_n 0 = 0$.

On voit également que la fonction peut prendre des valeurs de plus en plus grandes, correspondant aux cas où $\sin(\frac{1}{x})=1$, ce qui équivaut à $\frac{1}{x}=\frac{\pi}{2}+2\pi k=(4k+1)\frac{\pi}{2}$, autrement dit pour les valeurs $\frac{2}{(4k+1)\pi}$. La suite définie par $v_n=\frac{2}{(4n+1)\pi}$ vérifie donc $\lim_n v_n=0$, et $\lim_n F(v_n)=\lim_n \frac{1}{v_n}\sin(\frac{1}{v_n})=\lim_n \frac{1}{v_n}=\lim_n \frac{(4n+1)\pi}{2}=\infty$.

De même, en résolvant l'équation $\sin(\frac{1}{x}) = -1$, (dont les solutions sont $x = (4k-1)\frac{\pi}{2}$), on trouve que la suite définie par $w_n = \frac{2}{4n-1}\pi$ satisfait $\lim_n w_n = 0$ et $\lim_n f(w_n) = -\infty$.

1

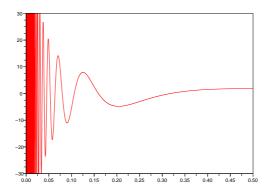


Figure 1:

2. Si f avait une limite en 0, la suite $(f(u_n))_{n\in\mathbb{N}}$ convergerait vers une même limite quelle que soit la suite $(u_n)_{n\in\mathbb{N}}$ convergeant vers 0. Or, ici, on a construit trois suites différentes convergeant toutes vers 0, mais donnant trois valeurs distinctes à $\lim_n f(u_n)$. f n'a donc pas de limite en 0.

De plus, si f était bornée, toute suite de la forme $f(u_n)$ serait bornée. Or la suite $(v_n)_{n\in\mathbb{N}}$ est telle que la suite $(f(v_n))_{n\in\mathbb{N}}$ tend vers ∞ , et n'est donc pas bornée. La fonction f n'est donc pas bornée.

Exercice 5.

1. La fonction $x \mapsto \frac{1}{|x|}$ est, sur \mathbb{R}^* , l'inverse d'une fonction continue ne s'annulant pas (la fonction valeur absolue), elle est donc continue sur \mathbb{R}^* . La fonction f est alors continue sur \mathbb{R}^* comme produit de fonctions continues sur \mathbb{R}^* .

Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergeant vers 0 par valeurs supérieurs. On a alors $f(u_n) = \frac{u_n}{|u_n|} = \frac{u_n}{u_n} = 1$ (car u_n est supposé positif), et donc $\lim_n f(u_n) = 1$. f a donc une limite à droite en 0, valant 1.

De même, en considérant une suite $(u_n)_{n\in\mathbb{N}}$ convergeant vers 0 par valeurs inférieures, on trouve $\lim_n f(u_n) = -1$. f a donc une limite à gauche en zéro, valant -1.

Les limites à gauche et à droite de f en 0 sont distinctes, f n'a donc pas de prolongement par continuité en 0.

2. La fonction $x \mapsto \frac{1}{x}$ est continue sur \mathbb{R}^* , et la fonction $x \mapsto \sin \sqrt{x^2}$ est continue sur \mathbb{R} en tant que composée de fonctions continues. En conclusion f est un produit de fonctions continues sir \mathbb{R}^* et est donc continue sur \mathbb{R}^* .

Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergeant vers 0 par valeurs supérieures. On a alors $\sqrt{u_n^2}=u_n$. Donc $f(u_n)=\frac{\sin(u_n)}{u_n}$. Or u_n tend vers 0 et $\lim_{x\to 0}\frac{\sin(x)}{x}=1$, d'où $\lim_n f(u_n)=1$. f a donc une limite à droite en zéro valant 1.

De même, pour $(u_n)_{n\in\mathbb{N}}$ une suite convergeant vers 0 par valeurs inférieures, on a $\sqrt{u_n^2}=-u_n$, donc $f(u_n)=\frac{\sin(-u_n)}{u_n}=-\frac{\sin(u_n)}{u_n}$, qui converge vers -1. f a donc une limite à gauche en zéro valant -1. Les limites à gauche et à droite de f en 0 sont distinctes, f n'a donc pas de prolongement par continuité en 0.

3. Comme précedemment, $x \mapsto \frac{1}{x}$ est continue sur \mathbb{R}^* et $x \mapsto \sin(x^2)$ est continue sur \mathbb{R} , donc f est continue sur \mathbb{R}^* .

Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergeant vers 0 par valeurs supérieures. On a $f(u_n)=\frac{1}{u_n}\sin(u_n^2)=u_n\frac{\sin(u_n^2)}{u_n^2}$. Or u_n^2 est une suite convergeant vers 0, donc $\frac{\sin(u_n^2)}{u_n^2}$ converge vers 1. La suite $f(u_n)$ est donc le produit d'une suite convergeant vers 1 (à savoir $\frac{\sin(u_n^2)}{u_n^2}$) et d'une suite convergeant vers 0 (a savoir u_n). Au final, la suite $f(u_n)$ converge vers 0, et la fonction f a une limite à droite en 0 valant 0. Le même raisonement est valable à l'identique pour des suites convergeant vers 0 par valeurs inférieures, on trouve alors que f admet une limite à gauche en 0, valant 0.

En conclusion les limites à droite et à gauche de f en zéro existent et sont égales, par conséquent, on peut prolonger la fonction f par continuité sur \mathbb{R} en posant $f(0) = \lim_{0+} f = \lim_{0-} f = 0$.

Exercice 6.

1. La fonction f_1 est la composée des deux fonctions continues $g_1: \begin{array}{c} \mathbb{R}^* \to \mathbb{R} \\ x \mapsto \frac{1}{x} \end{array}$ et $g_2: \begin{array}{c} \mathbb{R} \to \mathbb{R} \\ x \mapsto e^x \end{array}$. Par conséquent, f_1 est continue sur \mathbb{R}^* .

En revanche, si $(u_n)_{n\in\mathbb{N}}$ est une suite convergeant vers 0 par valeurs positives, alors $(\frac{1}{u_n})_{n\in\mathbb{N}}$ tend vers ∞ et donc $\lim_n f(u_n) = \lim_n e^{\frac{1}{u_n}} = \infty$. En conséquence, f n'a pas de limite en 0, et ne peut donc pas être prolongée en une fonction continue sur \mathbb{R} .

- 2. La fonction $x\mapsto e^{2x}-e^x$ est continue sur \mathbb{R} , et la fonction $x\mapsto \frac{1}{x}$ est continue sur \mathbb{R}^* , donc la fonction f_2 est le produit de deux fonctions continues sur \mathbb{R}^* , et est donc continue sur \mathbb{R}^* . On peut écrire $f_2(x)=\frac{e^{2x}-e^x}{x}=e^x\frac{e^x-1}{x}$, or la fonction $x\mapsto e^x$ a une limite en 0 valant 1. de même, la fonction $x\mapsto \frac{e^x-1}{x}$ a une limite en 0 valant 1. En conclusion, f_2 a une limite en 0 valant $1\times 1=1$. On peut donc prolonger f_2 par continuité en posant $f_2(0)=1$.
- 3. La fonction f_3 est la composée des deux fonctions continues $h_1: \frac{\mathbb{R}^* \to \mathbb{R}}{x \mapsto \frac{1}{x}}$ et $h_2: \frac{\mathbb{R} \to \mathbb{R}}{x \mapsto \sin(x)}$. Par conséquent, f_3 est continue sur \mathbb{R}^* .

En revanche, si on considère la suite définie par $u_n = \frac{2}{(2n+1\pi)}$, qui est bien une suite qui converge vers 0, on trouve $f_3(u_n) = \sin((2n+1)\frac{\pi}{2}) = (-1)^n$. La suite $(f(u_n))_{n\in\mathbb{N}}$ n'admet donc pas de limite, ce qui montre que la fonction f_3 n'a pas de limite en 0. Elle ne peut donc pas être prolongée par continuité.

4. La fonction f_4 est le produit de la fonction f_3 , qui est continue sur \mathbb{R}^* , et de la fonction $x \mapsto x$ qui est continue sur \mathbb{R} , f_4 est donc continue sur \mathbb{R}^* .

Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergeant vers 0. On peut écrire $f_4(u_n) = u_n \sin(\frac{1}{u_n})$, donc $|f(u_n)| \le |u_n|$. Comme (u_n) tend vers 0, alors $f(u_n)$ tend donc également vers 0. On peut donc prolonger f_4 par continuité en posant $f_4(0) = 0$.

Exercice 7.

1. On peut écrire $f_1(x) = \frac{\sin(5x)}{x} = 5\frac{\sin(5x)}{5x}$. Or la fonction $x \mapsto \frac{\sin(5x)}{5x}$ est la composée de la fonction $x \mapsto 5x$ qui à pour limite 0 en 0, et de la fonction $x \mapsto \frac{\sin(x)}{x}$ qui a pour limite 1 en 0. Par conséquent, $x \mapsto \frac{\sin(5x)}{5x}$ a pour limite 1 quand x tend vers 0. En conclusion, f_1 a une limite en 0, valant 5.

2.

3.

Exercice 8.

- 1. On a $\sqrt{x+1} \sqrt{x} = \frac{x+1-x}{\sqrt{x+1}+\sqrt{x}} = \frac{1}{\sqrt{1+\frac{1}{x}}+1}$, qui converge bien vers 1/2 pour $x \to \infty$.
- 2. Si a est négatif ou nul alors $\sqrt{x^2+x+1}-ax \geq \sqrt{x^2+x+1}$, or cette dernière quantité tend vers $+\infty$ pour $x\to\infty$. En conséquence, si $a\leq 0$, $\sqrt{x^2+x+1}-ax \underset{x\to\infty}{\to} \infty$.

Si a > 0, on peut écrire $a = \sqrt{(a^2)}$, et on a $\sqrt{x^2 + x + 1} - ax = \frac{x^2 + x + 1 - ax}{\sqrt{x^2 + x + 1} + ax} = \frac{(1 - a^2)x^2 + x + 1}{\sqrt{x^2 + x + 1} + ax}$. On distingue alors deux cas: si a = 1, le terme dominant au numérateur est en x et on a

$$\sqrt{x^2 + x + 1} - ax = \frac{x + 1}{\sqrt{x^2 + x + 1} + x} = \frac{x(1 + \frac{1}{x})}{x(\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + 1)} \xrightarrow{x \to \infty} \frac{1}{2}.$$

En revanche si $a \neq 1$, le terme dominant au numérateur est en x^2 , et

$$\sqrt{x^2 + x + 1} - ax = \frac{x^2(1 - a^2 + \frac{1}{x} + \frac{1}{x^2})}{x(\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + 1)} = x \frac{1 - a^2 + \frac{1}{x} + \frac{1}{x^2}}{\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + 1},$$

qui converge donc vers $+\infty$ si a < 1 et vers $-\infty$ si a > 1.

En résumé, la limite vaut $+\infty$ pour $a\in]-\infty,1[$, elle vaut 1/2 pour a=1 et elle vaut $-\infty$ pour $a\in]1,\infty[$.

3

- 3. Le dénominateur de $\frac{1}{x^2(\sqrt{\cos x}-1)}$ tend vers 0 par valeurs négatives $(x^2$ tend vers 0^+ en 0^+ et $\sqrt{\cos x}-1$ tend vers 0^- en 0^+) donc $\lim_{x\to 0^+}\frac{1}{x^2(\sqrt{\cos x}-1)}=-\infty$.
- 4. On se ramène en 0 en posant $y = \frac{1}{x}$, on trouve alors

$$\lim_{x\to 0^+}\sqrt{\left|\frac{1}{x}+1\right|}-\sqrt{\left|\frac{1}{x}-1\right|}=\lim_{y\to +\infty}\sqrt{|y+1|}-\sqrt{|y-1|}=\lim_{y\to +\infty}\sqrt{y+1}-\sqrt{y-1},$$

dans la dernière égalité, on considère y supérieur à 1, ce qui n'est pas génant, puisqu'on étudie la limite en $y\to\infty$. Finalement $\sqrt{y+1}-\sqrt{y-1}=\frac{(y+1)-(y-1)}{\sqrt{y+1}+\sqrt{y-1}}=\frac{2}{\sqrt{y+1}+\sqrt{y-1}}$. Le dénominateur de cette dernière expression tend vers ∞ , donc la limite $\lim_{x\to 0^+}\sqrt{\left|\frac{1}{x}+1\right|}-\sqrt{\left|\frac{1}{x}-1\right|}$ vaut 0.

De même, on a

$$\begin{split} \lim_{x \to 0^{-}} \sqrt{\left|\frac{1}{x} + 1\right|} - \sqrt{\left|\frac{1}{x} - 1\right|} &= \lim_{y \to -\infty} \sqrt{|y + 1|} - \sqrt{|y - 1|} = \lim_{y \to -\infty} \sqrt{-y - 1} - \sqrt{1 - y} \\ &= \lim_{z \to +\infty} \sqrt{z - 1} - \sqrt{1 + z} = 0. \end{split}$$

Exercice 9.

Exercice 10.