Corrigé de la feuille de TD 4 (Continuité sur un intervalle)

Exercice 1.

Exercice 2. La dérivée de f est donnée par $f'(x) = 5(x^4 - 1) = 5(x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x^2 + 1)$. On a donc le tableau de variations suivant :

x	$-\infty$		-1		1		∞
f'(x)		+		_		+	
			5				∞
f(x)		7		/		7	
	$-\infty$				-3		

Par le théorème des valeurs intermédiares, f a donc au moins un zéro dans chacun des trois intervalles $]-\infty,-1[,]-1,1[$ et $]1,\infty[$. De plus f' est strictement monotone dans chacun de ces intervalles, donc f ne peut pas s'annuler plus d'une fois dans chaque cas. En conclusion l'équation f(x) a exactement trois solutions réelles.

Exercice 3. Tout d'abord, si f(1) = 1 ou f(0) = 0, il n'y a rien à faire (on prend $x_0 = 0$ ou 1). Dans le cas contraire, on a f(0) > 0 et f(1) < 1 (car f est à valeurs dans [0,1]). En définissant g(x) = f(x) - x, on construit une fonction continue (comme différence de deux fonctions continues) telle que g(0) = f(0) - 0 > 0 et g(1) = f(1) - 1 < 0. Par le théorème des valeurs intermédiaires, la fonction g s'annule au moins une fois en un point x_0 de]0,1[. On a donc $f(x_0) - x_0 = g(x_0) = 0$. Le point x_0 vérifie alors $f(x_0) = x_0$.

Exercice 4.

Exercice 5.

1. Posons $f(x) = 8x^5 - 20x^2 - 3$. La dérivée de f est donnée par

$$f'(x) = 40(x^4 - x) = 40(x^2 + x + 1)(x - 1)x.$$

On a donc le tableau de variations suivant

x	$-\infty$		0		1		∞
f'(x)		+		_		+	
			-3				∞
f(x)		7		\		7	
	$-\infty$				-15		

Sur l'intervalle $]-\infty,1[$ la fonction f a pour maximum -3, elle ne s'annule donc pas sur cet intervalle. Sur $]1,\infty[$ la fonction est strictement croissante. Par conséquent, elle ne s'annule au maximum qu'une fois sur $]1,\infty[$. De plus f est continue et satisfait f(1)<0, f(2)=173>0. Par le théorème des valeurs intermédiaires, elle admet donc un zéro dans]1,2[. En conclusion, l'équation f(x)=0 admet une unique solution sur \mathbb{R} , et cette solution est dans l'intervalle]1,2[.

2. La dérivée de la fonction g définie par $g(x) = x^8 - 4x^5 - x^3 + 1$ est donnée par $g'(x) = 8x^7 - 20x^4 - 3x^2 = x^2 f(x)$. On a donc le tableau de variation suivant (voir aussi Figure 1):

x	$-\infty$		0		1		x_0		2		∞
$g'(x) = x^2 f(x)$		_	0	_		_	0	+		+	
	∞										∞ .
g(x)		\	1	\	-3	\		7	121	7	
							$\min f$				

En vertu de ce tableau, f ne s'annule pas sur les trois intervalles $]-\infty,0]$, $[1,x_0]$ et $[2,\infty[$. En revanche par le théorème des valeurs intermédiaires elle s'annule (une unique fois, par monotonie) sur chacun des intervalles [0,1] et $[x_0,1]$. L'équation g(x)=0 a donc bien exactement deux solutions x_1 et x_2 , et ces solutions satisfont $0 < x_1 < 1 < x_2 < 2$.

1

Avec un peu de motivation on trouve : $x_1 = 0,70742...$ et $x_2 = 1,62492...$

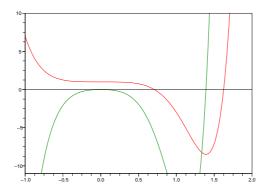


Figure 1: Courbe rouge : graphe de f, courbe verte : graphe de f'

Exercice 6. Soit $f: I \to \mathbb{R}$ une fonction continue. Supposons que f prenne deux valeurs distinctes $f(a) \neq f(b)$, avec a < b. Par le théorème des valeurs intermédiaires, sur l'intervalle [a, b], f prend toutes les valeurs de l'intervalle [f(a), f(b)] (ou [f(b), f(a)] le cas échéant), qui est infini. En conséquence, si f prend plusieurs valeurs, elle en prend une infinité.

En conclusion, si f prend un monbre fini de valeurs, c'est qu'elle n'en prend qu'une seule, autrement dit elle est constante.

Exercice 7.

Exercice 8.

- 1. Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ continue telle que f(x) < x pour tout x > 0. Soit $(u_n)_{n \in \mathbb{N}}$ une suite de réels positifs convergeant vers 0. Par continuité de f on a $\lim_n f(u_n) = f(0)$. Or on a $0 \le f(u_n) < u_n$. En passant à la limite (noter que l'inégalité stricte devient une inégalité large), on obtient $0 \le f(0) \le 0$. Autrement dit f(0) = 0.
- 2. Soit 0 < a < b. Sur [a,b] la fonction $g: x \mapsto \frac{f(x)}{x}$ est continue. Par conséquence g atteint son maximum M: pour x dans [a,b], $g(x) \leq g(x_0) = M$. On remarque alors que $M = g(x_0) = \frac{f(x_0)}{x_0} < \frac{x_0}{x_0} = 1$. On a donc $g(x) = \frac{f(x)}{x} \leq M < 1$. Autrement dit, pour $x \in [a,b]$ f(x) < Mx, ou M > 1.

Exercice 9. Soit f une fonction continue de \mathbb{R} dans \mathbb{R} avec $\lim_{\pm \infty} f = +\infty$. On pose $x_- = \inf\{x \in \mathbb{R}, f(x) \leq f(0)\}$ et $x_+ = \sup\{x \in \mathbb{R}, f(x) \leq f(0)\}$. Les réels x_- et x_+ existent et sont finis puisque f tend vers $+\infty$ en $\pm \infty$. Par définition f(x) est supérieur à f(0) pour x hors de $[x_-, x_+]$.

Sur l'intervalle fermé $[x_-, x_+]$, la fonction f est minorée et atteint son minimum en un point x_0 . En conséquence, on a pour x dans $[x_-, x_+]$, $f(x) \ge f(x_0)$ et pour x hors de $[x_-, x_+]$, $f(x) \ge f(0) \ge f(x_0)$. On conclut donc que f atteint son minimum sur \mathbb{R} au point x_0 .

Exercice 10.

- 1. La dérivée de f est donnée par $f'(x) = \tan'(x) 1 = 1 + \tan^2(x) 1 = \tan^2(x) \ge 0$. La fonction f est donc croissante. De plus la f' ne s'annule qu'aux points où $\tan(x) = 0$, c'est à dire pour x = 0. En conséquence la fonction f est strictement croissante sur $[0, \pi/2[$. f réalise donc une bijection de $[0, \pi/2[$ sur son image $[f(0), \lim_{x \to \pi/2} f(x)[= [0, = \infty[$. Comme f est une bijection de $[0, \pi/2[$ sur $[0, \infty[$, pour tout entier n, il existe un unique réel x_n tel que $n = f(x_n) = \tan(x_n) x_n$. On a alors bien la relation $\tan x_n = x_n + n$.
- 2. La fonction f est croissante, donc sa réciproque f^{-1} l'est aussi. Comme la suite $(n)_{n\in\mathbb{N}}$ est croissante, la suite $(x_n)_{n\in\mathbb{N}} = (f^{-1}(n))_{n\in\mathbb{N}}$ l'est aussi. Or $(x_n)_{n\in\mathbb{N}}$ est dans l'intervalle $[0, \pi/2]$, c'est donc une suite croissante et majorée, et donc elle converge, et sa limite est un élément de $[0, \pi/2]$.

Si cette limite l étair strictement inférieure à $\pi/2$, par continuité de la fonction tangente en l, la suite $(\tan(x_n) - x_n)_{n \in \mathbb{N}}$ convergerait (vers $\tan l - l$). Or $\tan(x_n) - x_n = n$, et cette suite ne peut donc pas converger. En conséquence, x_n converge vers $\pi/2$.

Exercice 11. La fonction définie par $f(x) = x^2 \cos^n(x) + x \sin(x) + 1$ est continue sur \mathbb{R} . Or on a f(0) = 1 et $f(3\pi/2) = 0 - 3\pi/2 + 1 < 0$. Par le théorème des valeurs intermédiaires, f s'annule donc au moins une fois sur l'intervalle $[0, 3\pi/2]$.