Examen du Juin 2011

Durée: 4h

Exercice 1. On dit qu'une suite (u_n) converge en moyenne vers $\ell \in \mathbb{R}$ si la suite (v_n) définie, pour $n \geq 1$, par $v_n = \frac{1}{n} \sum_{k=1}^n u_k$, converge vers ℓ .

1. Soit (a_n) une suite réelle convergeant vers 0. Démontrer que pour tout nombre réel $\varepsilon > 0$, il existe un entier p tel que pour tout entier n supérieur à p on ait

$$\left| \frac{1}{n} \sum_{k=1}^{n} a_k \right| \le \frac{\varepsilon}{2} + \frac{1}{n} \sum_{k=1}^{p} |a_k|.$$

En déduire que la suite (a_n) converge en moyenne vers 0.

- 2. (a) Soit (b_n) une suite convergeant vers $b \in \mathbb{R}$. Démontrer que la suite (b_n) converge en moyenne vers b.
 - (b) La suite (μ_n) défine par $\mu_n = (-1)^n$ est-elle convergente? Est-elle convergente en moyenne? Qu'en déduit-on?
- 3. Soit (c_n) une suite. On suppose que la suite δ_n définie par $\delta_n = c_{n+1} c_n$ converge vers $c \in \mathbb{R}$. Démontrer que la suite $\left(\frac{c_n}{n}\right)$ converge aussi vers c.
- 4. On considère la suite (u_n) définie par les conditions $u_1 = \frac{\pi}{2}$ et $\forall n \in \mathbb{N}$,

$$u_{n+1} = \sin(u_n).$$

- (a) Montrer que la suite (u_n) est convergente. Quelle est sa limite?
- (b) Déterminer un nombre réel r < 0 tel que la suite (v_n) définie par $v_n = u_{n+1}^r u_n^r$ converge vers une limite non nulle ℓ . (On pourra utiliser un développement limité au voisinage de zéro de la fonction sinus).
- (c) En déduire que lorsque $n \to +\infty$ on a $u_n \sim \sqrt{\frac{3}{n}}$.

Exercice 2. Montrer que la fonction définie sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ par

$$f(x) = \begin{cases} \frac{\log(\cos(x)) + \frac{x^2}{2}}{x^3} & \text{si } x \neq 0\\ 0 & \text{en } x = 0 \end{cases}$$

est de classe C^1 .

Exercice 3. (Interpolation de Lagrange-Hermite) Soit [a, b] un segment de \mathbb{R} (avec a < b) et $n \in \mathbb{N}$. On se donne n + 1 points distincts de $[a, b] : a \le x_0 < x_1 < \ldots < x_n \le b$.

1. Montrer que l'application $\varphi:\mathbb{R}_{2n+1}[X]\to\mathbb{R}^{2n+2}$ donnée par

$$\varphi(P) = (P(x_0), \dots, P(x_n), P'(x_0), \dots, P'(x_n))$$

défini un isomorphisme linéaire entre $\mathbb{R}_{2n+1}[X]$ et \mathbb{R}^{2n+2} .

2. Soit L_0, \ldots, L_n les (n+1) polynômes de Legendre d'ordre n associé aux points $\{x_i\}$. (On rappelle qu'ils sont caractérisés par $L_i \in \mathbb{R}_n[X]$ et $L_i(x_j) = \delta_{i,j}$ pour $i, j = 0, \ldots, n$). Pour $k = 0, \ldots, n$ on introduit les polynômes

$$H_k(X) = L_k(X)^2$$
 et $\tilde{H}_k(X) = (X - x_k)L_k(X)^2$.

Montrer que la famille

$$\{H_k \; ; \; k = 0, \dots, n\} \cup \{\tilde{H}_k \; ; \; k = 0, \dots, n\}$$

forme une base de $\mathbb{R}_{2n+1}[X]$.

- 3. Pour $i \leq n$, que valent $\varphi(\tilde{H}_i)$ et $\varphi(H_i 2L'_i(x_i)\tilde{H}_i)$?
- 4. Soit f une fonction dérivable sur [a, b]. Montrer qu'il existe un et un seul polynôme $P \in \mathbb{R}_{2n+1}[X]$ tel que

$$\forall i = 0, \dots, n,$$
 $P(x_i) = f(x_i)$ et $P'(x_i) = f'(x_i)$,

et qu'il s'écrit sous la forme

$$P(X) = \sum_{k=0}^{n} \left(f(x_k) + \left[f'(x_k) - 2f(x_k) L'_k(x_k) \right] (X - x_k) \right) L_k(X)^2.$$

On notera $H_n[f] := P$ le polynôme de $\mathbb{R}_{2n+1}[X]$ associé ainsi à une fonction f dérivable. Par ailleurs on notera $\pi_{n+1}(X) = (X - x_0)(X - x_1) \dots (X - x_n)$.

- 5. Peut-on dire quelque chose sur le degré de $H_n[f]$? Montrer que pour tout $P \in \mathbb{R}_{2n+1}[X]$ on a $H_n[P] = P$.
- 6. (a) Soit $\ell \in \mathbb{N}$ et soit h une fonction réelle de classe C^{ℓ} sur le segment [a,b]. Montrer que s'il existe $\ell+1$ points distincts de [a,b] où h s'annule, alors il existe $c \in [a,b]$ tel que $h^{(\ell)}(c) = 0$.
 - (b) Soit g une fonction réelle de classe C^{2n+2} sur [a,b]. Montrer que s'il existe n+1 points distincts $c_0, \ldots, c_n \in [a,b]$ et un autre point $c_{n+1} \in [a,b]$ (distincts des autres c_i) tel que $g(c_i) = g'(c_i) = 0$ et $g(c_{n+1}) = 0$, alors $\exists \xi \in [a,b]$ tel que $g^{(2n+2)}(\xi) = 0$. Indication: On pourra appliquer la question précedente à g' et à un l bien choisi.
- 7. Soit f une fonction réelle de classe C^{2n+2} sur [a, b].
 - (a) On fixe $x \in [a, b] \setminus \{x_0, \dots x_n\}$. Montrer qu'on peut choisir $c \in \mathbb{R}$ tel que la fonction définie pour $t \in [a, b]$ par

$$g(t) = f(t) - H_n[f](t) - c \pi_{n+1}(t)^2,$$

vérifie g(x) = 0.

Montrer qu'alors il existe $\xi_x \in [a,b][$ tel que $c = \frac{f^{(2n+2)}(\xi_x)}{(2n+2)!}$.

(b) Montrer que pour tout $x \in [a, b]$ il existe $\xi_x \in [a, b]$ tel que :

$$f(x) - H_n[f](x) = \frac{1}{(2n+2)!} \pi_{n+1}(x)^2 f^{(2n+2)}(\xi_x).$$

Exercice 4. Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et soient A et B deux évènements de \mathcal{A} .

- 1. Donner la définition de : "les évènements A et B sont indépendants".
- 2. Démontrer que si les évènements A et B sont indépendants, alors les évènements A et B^c le sont aussi. La réciproque est-elle vraie?

Exercice 5. Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et (X, Y) un couple de variables aléatoires définies sur Ω , dont la loi jointe est définie par :

$$\forall i \in \mathbb{N}, \forall j \in \mathbb{N}, \quad \mathbb{P}(X = i, Y = j) = \frac{e^{-1}}{(1 + i + j)!}.$$

- 1. Sans faire de calcul, expliquer pourquoi la loi des variables aléatoires X et Y, c'est-à-dire les lois marginales du vecteur (X, Y), sont les mêmes.
- 2. Calculer $\mathbb{P}(X=0)$. En déduire que les variables aléatoires X et Y ne sont pas indépendantes.
- 3. Soient S = X + Y et $k \in \mathbb{N}$. Calculer $\mathbb{P}(S = k)$. En déduire la loi de S.
- 4. Donner sans calcul l'espérance de S. En déduire l'espérance de X et de Y.
- 5. Peut-on utiliser la même méthode qu'à la question précédente pour calculer la variance de X et de Y? Motivez votre réponse.

Exercice 6. Je joue contre un adversaire qui triche parfois. J'évalue la probabilité qu'il triche à 0,2. Lorsque je joue contre un tricheur, je gagne une fois sur trois; face à un joueur honnête, je gagne 99 fois sur 100. Je viens de jouer et j'ai perdu, quelle est la probabilité que j'aie joué contre un tricheur?