Corrigé de l'interrogation du 7 novembre 2013

Question de cours (4 points). Soit ℓ la limite de la suite $(u_n)_{n\in\mathbb{N}}$. Il existe un entier N tel que pour tout entier n>N, on a : $|u_n-\ell|<1$, donc : $|u_n|<|\ell|+1$. On peut poser :

$$M = \max \{ |u_0|, |u_1|, \dots, |u_N|, |\ell| + 1 \}$$

car cet ensemble est fini, et on obtient : $|u_n| \leq M$ pour tout entier naturel n, donc la suite $(u_n)_{n\in\mathbb{N}}$ est bornée.

Exercice 1

a) (2 points). Pour tout entier naturel p, notons $\mathcal{P}(p)$ la propriété : les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont définies jusqu'au rang p et on a $a_p \ge 0$ et $b_p \ge 0$. Comme a et b sont positifs la propriété $\mathcal{P}(0)$ est vraie, et si $\mathcal{P}(p)$ est vraie les réels

$$a_{p+1} = \frac{a_p + b_p}{2}$$
 et $b_{p+1} = \sqrt{a_p b_p}$

sont bien définis et positifs, donc $\mathcal{P}(p+1)$ est vraie. On en conclut par récurrence que $\mathcal{P}(p)$ est vraie pour tout entier naturel p, donc que les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont bien définies et à valeurs positives.

b) (4 points). Pour tout entier naturel n, on a:

$$a_{n+1} - b_{n+1} = \frac{a_n + b_n}{2} - \sqrt{a_n b_n} = \frac{\left(\sqrt{a_n} - \sqrt{b_n}\right)^2}{2} \geqslant 0$$

donc $b_{n+1} \leqslant a_{n+1}$, et on a aussi : $b_0 = b \leqslant a = a_0$ par hypothèse, donc $a_n \geqslant b_n$ et :

$$a_n - a_{n+1} = \frac{a_n - b_n}{2} \geqslant 0$$

soit $a_{n+1} \leq a_n$. Enfin, on a vu en **a**) que $b_n \geq 0$ et on a :

$$b_{n+1} - b_n = \left(\sqrt{a_n} - \sqrt{b_n}\right)\sqrt{b_n} \geqslant 0$$

par croissance de la fonction racine carrée, d'où finalement pour $n \in \mathbb{N}$:

$$0 \leqslant b_n \leqslant b_{n+1} \leqslant a_{n+1} \leqslant a_n$$
.

c) (4 points). Pour tout $n \in \mathbb{N}$, on a donc :

$$a_{n+1} - b_{n+1} \leqslant a_{n+1} - b_n = \frac{1}{2} (a_n - b_n).$$

d) (2 points). On en déduit par récurrence que pour tout $n \in \mathbb{N}$, on a :

$$0 \leqslant a_n - b_n = \frac{a - b}{2^n}$$

donc la suite $(a_n - b_n)_{n \in \mathbb{N}}$ converge vers 0. La suite $(a_n)_{n \in \mathbb{N}}$ est décroissante et $(b_n)_{n \in \mathbb{N}}$ est croissante d'après **b**), donc ces suites sont adjacentes et convergent toutes les deux vers la même limite.

Exercice 2

a) (3 points). Pour tout
$$n \in \mathbb{N}$$
, posons : $x_n = \frac{\pi}{2} + 2n\pi$ et $y_n = -\frac{\pi}{2} + 2n\pi$. On a :

$$\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} y_n = +\infty$$

et pour tout $n \in \mathbb{N}$ on a : $f(x_n) = x_n$ et $f(y_n) = -y_n$, donc :

$$\lim_{n \to +\infty} f(x_n) = +\infty \quad \text{ et } \quad \lim_{n \to +\infty} f(y_n) = -\infty.$$

- b) (2 points). Si f admettait une limite ℓ (finie ou infinie) en $+\infty$, les suites $(f(x_n))_{n\in\mathbb{N}}$ ($f(y_n))_{n\in\mathbb{N}}$ convergeraient toutes les deux vers ℓ par composition des limites. Comme ceci est faux, on en déduit que f n'admet pas de limite en $+\infty$.
- c) (3 points). Comme $(f(x_n))_{n\in\mathbb{N}}$ tend vers $+\infty$ et $(f(y_n))_{n\in\mathbb{N}}$ tend vers $-\infty$, , il existe un entier naturel N tel que pour tout entier $n\geqslant N$ on a :

$$f(y_n) \leqslant c \leqslant f(x_n)$$
.

Mais f est continue par théorèmes généraux, donc le théorème des valeurs intermédiaires montre que pour tout entier $n\geqslant N$ il existe un réel z_n compris entre x_n et y_n tel que $f(z_n)=c$. Mais $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ tendent vers $+\infty$, donc $(z_n)_{n\in\mathbb{N}}$ aussi puisque z_n est compris entre x_n et y_n , d'où le résultat.