Université Pierre et Marie Curie Master MEEF 1ère année 2016-2017

TD 3: Variables aléatoires discrètes, dénombrement

Exercice 1.

Quelle est la probabilité que dans un groupe de 23 personnes, au moins deux d'entre elles aient leur anniversaire le même jour?

Exercice 2.

Dans une course, n chevaux sont au départ. On suppose que tous les ordres d'arrivée à la course sont équiprobables. Calculer la probabilité de gagner le tiercé avec un ticket :

- 1. dans l'ordre;
- 2. dans l'ordre ou dans un ordre différent;
- 3. dans un ordre différent.

Exercice 3.

Un joueur de poker reçoit une main de 5 cartes d'un jeu de 32 cartes. Quelle est la probabilité qu'il reçoive :

- 1. une seule paire (deux cartes de même hauteur);
- 2. deux paires;
- 3. un brelan (trois cartes de même hauteur et pas de paire ni de carré);
- 4. un carré (quatre cartes de même hauteur);
- 5. un full (une paire et un brelan)?

Exercice 4.

Au loto, le joueur doit choisir 6 nombres dans $\{1, \ldots, 49\}$. Un tirage consiste à extraire, sans remise, 6 boules numérotées d'une urne, dont les numéros sont dits gagnants, et une septième boule fournissant le numéro dit complémentaire.

- 1. Quelle est la probabilité de tirer les 6 numéros gagnants?
- 2. Quelle est la probabilité de tirer 5 numéros gagnants et le numéro complémentaire?

Exercice 5.

On place r boules dans n urnes, chaque boule ayant la même probabilité d'être placée dans chaque urne, et les boules étant placées indépendamment les unes des autres. Quelle est la probabilité qu'une urne donnée contienne exactement k boules?

Exercice 6.

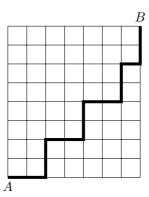
Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de n variables de classe \mathcal{C}^{∞} . Quel est le nombre de dérivées partielles distinctes d'ordre r?

Exercice 7.

Combien l'équation $x_1 + x_2 + x_3 = 15$ a-t-elle de solutions entières positives ou nulles? de solutions entières strictement positives?

Exercice 8.

On considère les chemins tracés sur une grille de largeur 7 et de hauteur 8 (voir figure) tels que le chemin aille toujours vers la droite ou vers le haut.



- 1. Combien de trajets différents peut-on emprunter entre le point A et le point B?
- 2. Combien y a-t-il d'octuplets (n_1, \ldots, n_8) d'entiers naturels avec $n_1 + \ldots + n_8 = 8$?
- 3. Quel est le rapport entre les deux premières questions?

Exercice 9.

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et de même loi de Bernoulli de paramètre $p\in]0,1[$. On note $T=\sup\{n\in \mathbb{N},\ X_1=X_2=\ldots=X_n\}$ et $S=\sup\{n\in \mathbb{N},\ X_{T+1}=X_{T+2}=\ldots=X_{T+n}\}$. Quelles sont les lois de T et S? Calculer $\mathbb{E}T$ et $\mathbb{E}S$.

Exercice 10.

Donner le nombre d'anagrammes de chacun des mots suivants :

 $erreur \quad bonbon \quad turlututu.$

Exercice 11.

Un groupe de n étudiants présente un examen. On suppose que chaque étudiant réussit l'examen avec probabilité p, indépendamment des autres, et on note X le nombre d'étudiant ayant réussi l'examen du premier coup. Les n-X autres étudiants sont autorisés à passer un examen de rattrapage, que chacun réussi avec probabilité q, indépendamment des autres. On note Y le nombre d'étudiant ayant réussi l'examen ou le rattrapage.

- 1. Que vaut $\mathbb{P}(X=k)$ pour k un entier?
- 2. Quelle est la probabilité de $\{Y=m\}$ sachant $\{X=k\}$, pour deux entiers k et m?
- 3. En déduire la loi de Y.
- 4. Comment aurait-on pu déterminer la loi de Y par un argument direct?

Exercice 12.

Une urne contient un nombre N inconnu de boules, toutes blanches. Pour déterminer (une approximation de) N, on pioche n boules dans l'urne, que l'on colorie en bleu.

On remet alors les n boules dans l'urne, puis, après avoir mélangé, on tire à nouveau n boules. On note X le nombre de boules bleue dans ce nouveau tirage.

- 1. (a) Quelle est la probabilité de $\{X = k\}$ pour un entier k?
 - (b) Quelle est l'espérance de X?
- 2. Déterminer la valeur de N telle que $\mathbb{P}(X=k)$ soit maximale, pour un k donné. En quoi la valeur obtenue est elle une approximationn "raisonnable" de N, sachant X=k?

Exercice 13.

Soient $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes de loi de Bernoulli de paramètre $p\in]0,1[$. On pose $T=\inf\{n>0,\ X_n=1\}$ et $S=\inf\{n>0,\ X_{T+n}=1\}$.

- 1. Montrer que S et T sont deux variables aléatoires indépendantes de loi géométrique de paramètre p.
- 2. Calculer P(T = k, S = q | T < n < T + S). Les variables T et T + S sont-elles indépendantes sachant $\{T < n < T + S\}$?
- 3. Quelle est la loi de T sachant $\{T + S = n\}$?

Exercice 14.

Soient X et Y deux variables aléatoires indépendantes, à valeurs dans \mathbb{N} .

- 1. Calculer la loi de Z = X + Y.
- 2. Calculer la loi de $T = \min(X, Y)$.

Exercice 15.

Soit N une variable de loi binomiale de paramètres n et q, et soit $(X_k)_{k\in\mathbb{N}}$ une suite de variables aléatoires indépendantes de loi de Bernoulli de paramètre q, et indépendantes de N.

- 1. (a) Quelle est la loi de $Z = \sum_{k=1}^{N} X_k$? Et celle de N Z?
 - (b) Les variables Z et N-Z sont-elles indépendantes?
- 2. Mêmes questions si N suit la loi de Poisson de paramètre θ .

Exercice 16.

Soient $(X_k)_{k=1,...,n}$ des variables aléatoires indépendantes de loi uniforme sur $\{1,...,N\}$. Quelle est la loi de $\max_{k=1}^n X_k$?