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Abstract
We consider a natural model of inhomogeneous random graphs that extends the
classical Erdős–Rényi graphs and shares a close connection with the multiplicative
coalescence, as pointed out by Aldous (Ann Probab 25:812–854, 1997). In this model,
the vertices are assigned weights that govern their tendency to form edges. It is by
looking at the asymptotic distributions of the masses (sum of the weights) of the con-
nected components of these graphs that Aldous and Limic (Electron J Probab 3:1–59,
1998) have identified the entrance boundary of the multiplicative coalescence, which
is intimately related to the excursion lengths of certain Lévy-type processes. We,
instead, look at the metric structure of these components and prove their Gromov–
Hausdorff–Prokhorov convergence to a class of (random) compact measured metric
spaces that have been introduced in a companion paper (Broutin et al. in Limits of
multiplicative inhomogeneous random graphs and Lévy trees: the continuum graphs.
arXiv:1804.05871, 2020). Our asymptotic regimes relate directly to the general con-
vergence condition appearing in thework ofAldous andLimic.Our techniques provide
a unified approach for this general “critical” regime, and relies upon two key ingredi-
ents: an encoding of the graph by some Lévy process as well as an embedding of its
connected components into Galton–Watson forests. This embedding transfers asymp-
totically into an embedding of the limit objects into a forest of Lévy trees, which
allows us to give an explicit construction of the limit objects from the excursions of
the Lévy-type process. The mains results combined with the ones in the other paper
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allow us to extend and complement several previous results that had been obtained
via model- or regime-specific proofs, for instance: the case of Erdős–Rényi random
graphs obtained by Addario-Berry et al. (Probab Theory Relat Fields 152:367–406,
2012), the asymptotic homogeneous case as studied by Bhamidi et al. (Probab Theory
Relat Fields 169:565–641, 2017), or the power-law case as considered by Bhamidi et
al. (Probab Theory Relat Fields 170:387–474, 2018).

Mathematics Subject Classification 05C80 · 60C05

1 Introduction

Motivation and model Random graphs have generated a large amount of literature.
This is even the case for one single model: the Erdős–Rényi graph G(n, p) (graph
with n vertices connected pairwise in an i.i.d. way with probability p ∈ [0, 1]). Since
its introduction by Erdős and Rényi [21] more than fifty years ago, and the discovery
of a phase transition where a “giant connected component” gets born, the pursuit of
a deeper understanding of its structure has never stopped. Many landmark results by
Bollobás [14], Łuczak [32], Janson, Knuth, Łuczak and Pittel [29] have shaped our
grasp of this phase transition. From the point of view of precise asymptotics, one of
themost important papers is certainly the contribution of Aldous [3], who introduced a
stochastic process point of view and paved the way towards the study of scaling limits
of critical randomgraphs. In that paper, he obtained the asymptotics for the sequence of
sizes of the connected components of G(n, p) in the so-called critical window where
the phase transition actually occurs. His work paved the way to the construction by
Addario-Berry, Goldschmidt andB. [2] of the scaling limits of these connected compo-
nents, seen as metric spaces, which also confirmed the limit fractal (Brownian) nature.

Following [2], the question of identifying the scaling limits has been investigated for
more general models of random graphs. Particular attention has been paid to so-called
inhomogeneous random graphs, which exhibit heterogeneity in the node degrees and
whose behaviours are often quite different from the Erdős–Rényi graph. (See Fig. 1
for an illustration of this difference). Besides being a theoretical object with intriguing
properties, these graphs are also commonly believed to offer more realistic modelling
for complex real-world networks (see, e.g. [33]).

In the present work, we consider such an inhomogeneous random graph model
that is defined as follows. Let w = (w1, w2, . . . , wn) be a sequence of n positive real
numbers sorted in nonincreasing order. Interpreting wi as the propensity of vertex
i to form edges, we define a random graph Gw as follows: the set of its vertices is
{1, 2, . . . , n}, the events {{i, j} is an edge of Gw

}
, 1 ≤ i < j ≤ n, are independent

and

P
({i, j} is an edge of Gw

)=1− exp
(− wiw j/σ1(w)

)
, where σ1(w) = w1 + · · · + wn .

(1)

The graphGw extends the classical Erdős–Rényi random graph in allowing edges to be
drawn with non-uniform probabilities, while keeping the independence among edges.
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Fig. 1 Left: a picture of a large connected component of G(n, p). Right: a picture of a large connected
component of Gw. Observe the presence of “hubs” (nodes of high degrees) in the latter

The graph Gw has come under different names in the literature, for instance, Pois-
son random graph in [10,34], the Norros–Reittu graph in [10] or rank-1 model in
[9,11,15,38,39]. Here, we will refer to it as the multiplicative graph to emphasise its
close connection with the multiplicative coalescent as pointed out by Aldous in [3].
This connection is the starting point of the work [4] of Aldous & Limic who iden-
tify the entrance boundary of multiplicative coalescent by looking at the asymptotic
distributions of the sizes of the connected components found in Gw. The asymptotic
regime and the limit processes found in Aldous & Limic [4] lie at the heart of this
paper. Namely, we extend this result to the geometry of the connected components of
Gw by proving the weak convergence of these connected components as it has been
done by Addario-Berry, Goldschmidt and B. [2] for critical Erdős–Rényi graphs. Our
approach relies on the results of a companion paper [17] where we provide a specific
coding of Gw and an embedding of Gw into a Galton–Watson forest, and where we
construct the continuous multiplicative graphs that are proven here to be the scaling
limits of the discrete models.

More precisely, we equip Gw with the graph distance dgr and we introduce the
weight measure mw = ∑1≤i≤n wiδi on Gw. The goal of our article can be roughly
rephrased as follows: we construct a class of (pointed and measured) compact random
metric spaces (G, d,m) such that the graphs (Gwn , εndgr, ε

′
nmwn ) weakly converge

to (G, d,m) along suitable subsequences (wn, εn, ε′n). We also prove a similar result
wheremwn is replaced by the counting measure, the limitG being the same. Of course,
here the scaling parameters, εn and ε′n go to 0, so that G is not discrete. The limits
we consider hold in the sense of the weak convergence corresponding to Gromov–
Hausdorff–Prokhorov topology on the space of (isometry classes of) compact metric
spaces equipped with finite measures. To achieve the construction of the possible limit
graphs and to prove the convergence of rescaled multiplicative graphs, we rely on
two main new ideas: (1) we encode multiplicative graphs by processes derived from
a LIFO-queue; (2) we embed multiplicative graphs into Galton–Watson trees whose
scaling limits are well-understood. Before discussing further the connections with
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previous works and in order to explain the advantages of our approach, let us give a
brief but precise overview of our results and of the two above mentioned ideas.

Overview of the results Our approach relies first on a specific coding of w-
multiplicative graphsGw via a LIFO-queue and a related stochastic process; the queue
actually yields an exploration of Gw and a spanning tree that encompasses almost all
the metric structure of the graph. The LIFO-queue is defined as follows:

– A single server is visited by n clients labelled by 1, . . . , n;
– Client j arrives at time E j and she/he requests an amount of time of service w j ;
– The E j are independent exponentially distributed random variables such that
E[E j ] = σ1(w)/w j ;

– A LIFO (last in first out) policy applies: whenever a new client arrives, the server
interrupts the service of the current client (if any) and serves the newcomer; when
the latter leaves the queue, the server resumes the previous service.

As mentioned above, the LIFO-queue yields a tree T w whose vertices are the clients:
namely, the server is the root (Client 0) and Client j is a child of Client i in T w if and
only if Client j interrupts the service of Client i (or arrives when the server is idle if
i = 0). We introduce

Y w
t = −t +

∑

1≤i≤n
wi1{Ei≤t}, Jwt = inf

s∈[0,t]Y
w
s and Hw

t = #
{
s ∈ [0, t] : inf

r∈[s,t] Y
w
r > Y w

s−
}
.

(2)

The quantity Y w
t − Jwt is the load of the server, i.e. the amount of service due at time

t . We sometimes call Y w
t the algebraic load of the server. Note that the LIFO-queue

is encoded by Y w. Then, observe that Hw
t is the number of clients waiting in the

queue at time t . We easily see that Hw is the contour (or the depth-first exploration)
of T w; this entails that the graph-metric of T w is entirely encoded by Hw: namely,
the distance between the vertices/clients served at times s and t in T w isHw

t +Hw
s −

2minr∈[s∧t,s∨t]Hw
r .

To get to the graph from the tree T w, we need to include some surplus edges which
are sampled from a Poisson point measure. More precisely, conditionally on Y w, let

Pw =
∑

1≤p≤pw
δ(tp ,yp) be a Poisson pt. meas. on [0,∞)2 with intensity 1

σ1(w)
1{0<y<Yw

t −Jwt } dt dy.

(3)

Note that pw < ∞ a.s., since Y w − Jw is constant and zero after a random time. We
set

�w =
(
(sp, tp)

)
1≤p≤pw where sp = inf

{
s ∈ [0, tp] : inf

u∈[s,tp ]
Y w
u − Jwu > yp

}
, 1 ≤ p ≤ pw .

(4)
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Next, we define the set of additional edges Sw as the set of the edges connecting the
clients served at times sp and tp, for all 1 ≤ p ≤ pw, and we define the graph Gw by

Gw := (T w\{0}) ∪ Sw .

Namely, Gw is the graph obtained by removing the root 0 from T w and adding the
edges in Sw. The following is proved in the companion paper [17]:

Theorem 1.1 (Theorem 2.1 in [17]) Gw is distributed as a w-multiplicative random
graph as specified in (1).

From this representation of the discrete graphs, one expects that if Y w converges,
then the graph should also converge, at least in a weak sense. However, since Y w is not
Markovian, it is difficult to obtain a limit for the local-time functional Hw, which is
the function that encodes the metric. To circumvent this technical difficulty, we embed
the non-Markovian LIFO-queue governed by Y w into a Markovian one that is defined
as follows:

– A single server successively receives an infinite number of clients;
– A LIFO policy applies;
– Clients arrive at unit rate;
– Each client has a type that is an integer ranging in {1, . . . , n}; the amount of
service required by a client of type j is w j ; types are i.i.d. with law νw =

1
σ1(w)

∑
1≤ j≤n w jδ j .

Namely, let τk be the arrival-time of the k-th client and let Jk be the type of the
k-th client; then the Markovian LIFO queueing system is entirely characterised by∑

k≥1 δ(τk ,Jk ) that is a Poisson point measure on [0,∞) × {1, . . . , n} with intensity
�⊗νw, where � stands for the Lebesguemeasure on [0,∞). To simplify the explanation
of themain ideas,we concentrate in this overview only on the (sub)critical caseswhere
the Markovian queue is recurrent, which amounts to assuming that

σ2(w) ≤ σ1(w) .

Here, for all r ∈ (0,∞), we use the notation σr (w) =∑1≤ j≤n wr
j .

The Markovian queue yields a tree Tw that is defined as follows: the server is
the root of Tw and the k-th client to enter the queue is a child of the l-th one if the
k-th client enters when the l-th client is being served. One easily checks that Tw is
a sequence of i.i.d. Galton–Watson trees glued at their root and that their common
offspring distribution is

μw(k) =
∑

1≤ j≤n

wk+1
j

σ1(w)k!e
−w j , k ∈ N. (5)

Observe that
∑

k∈N kμw(k) = σ2(w)/σ1(w) ≤ 1, which implies that the GW-trees are
finite a.s. The tree Tw is then encoded by its contour process (Hw

t )t∈[0,∞): namely,
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Hw
t stands for the number of clients waiting in the Markovian queue at time t and it

is given by

Hw
t = #

{
s ∈ [0, t] : inf

r∈[s,t] X
w
r > Xw

s−
}

where Xw
t = −t +

∑

k≥1
wJk1[0,t](τk), t ∈ [0,∞).

(6)

The quantity Xw
t is called algebraic load of the Markovian server at time t in the

queueing theory literature (algebraic because it can take negative values). We will see
in Sect. 2 how these definitions extend to the supercritical cases. Note that Xw is a
spectrally positive Lévy process with initial value 0; it is characterised by its Laplace
exponent defined by E[e−λXw

t ] = etψw(λ), for t, λ ∈ [0,∞), that is explicitly given by

ψw(λ) = αwλ+
∑

1≤ j≤n

w j

σ1(w)

(
e−λw j − 1+ λw j

)
and αw := 1− σ2(w)

σ1(w)
.

From this tractable model, we derive the LIFO-queue and the tree T w governed by
Y w by a time-change that “skips” some time intervals and that is defined as follows.
We colour in blue or red the clients of the Markovian queue in the following recursive
way:

(i) if the type Jk of the k-th client already appeared among the types of the blue clients
who previously entered the queue, then the k-th client is red;

(ii) otherwise the k-th client inherits her/his colour from the colour of the client who
is currently served when she/he arrives (and this colour is blue if there is no client
served when she/he arrives: namely, we consider that the server is blue).

Note that a client who is the first arriving of her/his type is not necessarily coloured
in blue. We easily check that exactly n clients are coloured in blue and their types
are necessarily distinct. Moreover, while a blue client is served, note that the other
clients waiting in the line (if any) are blue too. Actually, the sub-queue of blue clients
corresponds to the previous LIFO queue governed by Y w. More precisely, we set

Blue = {t ∈ [0,∞) : a blue client is served at t
}

and θ
b,w
t = inf

{
s ∈ [0,∞) :

∫ s

0
1Blue(u)du > t

}
.

We refer to (101) in Sect. 3.3 for a precise definition of θb,w. Then,

(Y w
t ,Hw

t )t∈[0,∞) =
(
Xw

θ
b,w
t

, Hw
θ
b,w
t

)
t∈[0,∞)

. (7)

We refer to Proposition 3.2 and Lemma 3.4 in Sect. 3.3 for a more precise statement of
this equality. This explains how to encode Gw in terms of the two tractable processes
Xw and Hw derived from the Markovian queue.

The above embedding of LIFO queues is the starting point of our analysis. Let
us also point out that it naturally translates to an “embedding” of the graph Gwn into
a Galton–Watson forest, which bears a similar flavour to the construction in [34].
However, we have been able to extend the relationship in (7) to a more general setting.
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In particular, the Markovian queues that appear above and their coding processes
(Xw, Hw) have analogues in the continous time and space setting. In our context, the
parameters governing such processes are those identified by Aldous & Limic [4] for
the eternal multiplicative coalescent. Namely,

α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c = (c j ) j≥1 decreasing and such that
∑

j≥1
c3j <∞ .

(8)
The load of service of the continuous analogue of the Markovian queue is a spectrally
positive Lévy process (Xt )t∈[0,∞) starting at X0 = 0 whose Laplace exponent ψ is
given by

1
t log

(
E
[
e−λXt

]) := ψ(λ) = αλ+ 1
2 βλ2 +

∑

j≥1
κc j
(
e−λc j − 1+ λc j

)
, for all t, λ ∈ [0,∞).

(9)

To simplify, we restrict our explanations to the cases where X does not drift to ∞,
which is equivalent to assuming that α ∈ [0,∞). The tree corresponding to the clients
of the continuous analogue of the Markovian queue that is driven by X is actually the
Lévy tree yielded by X , which is defined through its contour process as introduced by
Le Gall & Le Jan [31]. To that end, we assume that ψ (as defined in (9)) satisfies

∫ ∞ dλ

ψ(λ)
<∞, (10)

which implies that either
∑

j c
2
j = ∞ or β �= 0; therefore X has infinite variation

sample paths. The assumption (10) is sometimes referred to as Grey’s condition in the
literature. As a side note, let us also remark that we allow the sequence c to be null; in
that case, we must have β > 0 as imposed by (10). Under Assumption (10), Le Gall
& Le Jan [31] (see also Le Gall & D. [19]) prove that there exists a continuous process
(Ht )t∈[0,∞) such that the following limit holds true for all t ∈ [0,∞) in probability:

Ht = lim
ε→0

1

ε

∫ t

0
1{Xs−infr∈[s,t] Xr≤ε} ds . (11)

We explain further how to make sense of this definition in the supercritical cases. The
process H is called the height process associated with X and the processes (X , H) are
the continuous analogues of (Xw, Hw).

We explain in Sect. 4.2 how to colour the Markovian queue driven by X : namely,
we explain how to define a right-continuous increasing time-change (θbt )t∈[0,∞) that
is the analogue of the discrete one θb,w. We refer to (145) in Sect. 4.2 for a formal
definition of θb. Then the càdlàg process Y is defined by

Yt = Xθbt
, t ∈ [0,∞), (12)
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and represents the load driving the analogue of the LIFO-queue (without repetitions).
As we will see in (144), Sect. 4.2, for each t ∈ [0,∞), Yt can be written as

Yt = −αt − 1
2 κβt2 +√βBt +

∑

j≥1
c j (1{E j≤t} − c jκt), (13)

where (Bt )t∈[0,∞) is a standard linear Brownian motion starting at 0 and where the
E j are independent exponentially distributed random variables that are independent
from B and such that E[E j ] = (κc j )−1. The sum in (13), as it is, is informal: it
has to be understood in the sense of L2 semimartingales (see Sect. 4.2 for a precise
explanation). The latter expression of Y can be found in Aldous & Limic [4] who
proved that the lengths of the excursions of Y above its running infimum (ranked in
decreasing order) are distributed as the multiplicative coalescent (Theorem 2 in [4]).
We refer to Theorem 4.2 in Sect. 4.2 for a precise statement of (12).

As it is proved in Theorem 2.6 in [17] (that is recalled in Theorem 4.7, Sect. 4.2),
there exists a continuous process (Ht )t∈[0,∞) that is an adapted functional of Y such
that for each t ∈ [0,∞),

Ht = Hθbt
. (14)

Here, H is a.s. a continuous process that is called the height process associated with
Y and we claim that (Y ,H) is the continuous analogue of (Y w,Hw), as justified by
the limit theorems stated further.

As proved in [17] (and recalled in Lemma 4.8, Sect. 4.2), the excursion intervals of
H above 0 and the excursion intervals of Y above its running infimum are the same.
Moreover, Proposition 14 inAldous&Limic [4] (recalled in Proposition 4.5, Sect. 4.2)
asserts that these excursions can be indexed in the decreasing order of their lengths.
Namely,

{
t ∈ [0,∞) : Ht > 0

} =
{
t ∈ [0,∞) : Yt > inf[0,t] Y

}
=
⋃

k≥1
(lk, rk) , (15)

where the sequence ζk = lk−rk , decreases. The continuous analogue ofGw is derived
from (Y ,H) as follows: first, for all s, t ∈ [0,∞), we define the usual tree pseudo-
metric associated withH: dH(s, t) = Hs +Ht − 2minu∈[s∧t,s∨t]Hu . Then, for each
t ∈ [0,∞), we set

Jt = inf
s∈[0,t] Ys , (16)

and given Y , let

P=
∑

p≥1
δ(tp,yp) be a Poisson pt. meas. on [0,∞)2 with intensity κ1{0<y<Yt−Jt } dt dy.

(17)
Then, we set

� = ((sp, tp)
)
p≥1 where sp = inf

{
s ∈ [0, tp] : inf

u∈[s,tp]
Yu−Ju > yp

}
, for p ≥ 1.

(18)
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Here � plays the role of �w. Fix k ≥ 1. One can prove that if tp ∈ [lk, rk], then sp ∈
[lk, rk]. We define Gk as the set [lk, rk] where we have identified points s, t ∈ [lk, rk]
such that either dH(s, t) = 0 or (s, t) ∈ {(sp, tp); p ≥ 1 : tp ∈ [lk, rk]}. It actually
yields a metric, denoted by dk , onGk ; note that lk and rk are identified and we denote
by �k the corresponding point in Gk ; we denote by mk the measure induced by the
Lebesgue measure on [lk, rk]. The continuous analogue of Gw is then the sequence of
pointed measured compact metric spaces

G = ((Gk, dk, �k,mk)
)
k≥1 , (19)

that is called the (α, β, κ, c)-continuous multiplicative graph. We refer to Sect. 2.3
(and more specifically (58)) for a more precise definition.

As already mentioned, the main goal of the paper is to prove that G is the scaling
limit of sequences of rescaled discrete graphs Gwn for a suitable sequence of weights
with finite support wn = (w

(n)

j ) j≥1 that are listed in the nonincreasing order: namely,

w
(n)

j ≥ w
(n)

j+1 for all j ≥ 1, and w
(n)

j = 0 for all sufficiently large j . Here, we first set

jn := sup
{
j ≥ 1 : w(n)

j > 0
}

<∞ . (20)

We do not require that jn is equal to n but we require limn→∞ jn = ∞. Our main
result (Theorem 2.4 in Sect. 2.2) asserts the following:

If the Markovian processes (Xwn , Hwn ), properly rescaled in time and space,
weakly converge to (X , H), then (Y wn ,Hwn ) converges weakly to (Y ,H) with the
same scaling.

More precisely, the graphs Gwn , or their coding functions, are rescaled by two factors
an and bn tending to ∞; an is a weight factor and bn is an exploration-time factor.
Namely, the rescaled processes to consider are 1

an X
wn
bn · (or

1
an Y

wn
bn · ). We now discuss

further natural constraints. First, it is natural to require a priori that bn = O(a2n)
by standard results on Lévy processes. Moreover, we assume that the largest weight
"persists" in the limit, or more precisely w

(n)

1 = O(an). In the limit, if two large
weights persist, they cannot fuse and they tend not to be connected by an edge. Namely,
if the two largest weights persist, then 1 − exp(−w

(n)

1 w
(n)

2 /σ1(wn)) → 0 and since

w
(n)

1  w
(n)

2  an , it entails limn→∞ a2n/σ1(wn) = 0. Next, since bn is an exploration-
time factor, we require that bn  E[Cn], where Cn stands for the number of clients
who are served before the arrival of Client 1 (i.e. the client corresponding to the largest
weight w

(n)

1 ) in the wn-LIFO queue encoding Gwn . Let us denote by Dn the sum of
the weights of the vertices explored before visiting Client 1. It is easy to see that
E[Cn] = ∑ j≥2 w

(n)

j /(w
(n)

j + w
(n)

1 ) and that E[Dn] = ∑ j≥2(w
(n)

j )2/(w
(n)

j + w
(n)

1 ).

So, when w
(n)

1 persists, we get σ1(wn)  anE[Cn] and σ2(wn)  anE[Dn]. Moreover,
in the asymptotic regime that we consider, we require that the number of visited
vertices has to be of the same order of magnitude as the sum of the corresponding
weights: namely, E[Cn]  E[Dn], which corresponds to the criticality assumption:
σ1(wn)  σ2(wn) that also implies anbn  σ1(wn). These constraints amount to the
following assumptions:
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lim
n→∞ an = lim

n→∞
bn
an
= ∞, lim

n→∞
bn
a2n
=: β0 ∈ [0,∞), w

(n)

1 = O(an), lim
n→∞

anbn
σ1(wn)

= κ.

(21)

Note it is possible to have β0 = 0. Let us present here a more precise statement of
Theorem 2.4: If (an, bn,wn) satisfies (21),

and if
(

1
an X

wn
bn · ,

an
bn
Hwn
bn ·
) −−−−→

n→∞
(
X , H

)
(22)

weakly on D([0,∞), R)×C([0,∞), R) equipped with the product of the Skorokhod
and the continuous topologies, then the joint convergence

(
1
an X

wn
bn · ,

an
bn
Hwn
bn · ,

(
1
bn

θ
b,wn
bn · , 1

an Y
wn
bn ·
)
,

an
bn
Hwn

bn ·
) −−−−→

n→∞
(
X , H , (θb,Y ),H) (23)

holds weakly on D([0,∞), R) × C([0,∞), R) × D([0,∞), R
2) × C([0,∞), R)

equipped with the product topology.
Necessary and sufficient conditions on the (an, bn,wn) for (22) to hold can be

derived from previous results due to Le Gall & D. [19] (it is not direct, see Proposition
2.2). Namely, suppose that (an, bn,wn) satisfy (21); then (22) holds if and only if the
following conditions are satisfied

(A) : 1
an X

wn
bn

(weakly)−−−−→
n→∞ X1 and (B) : ∃ δ ∈(0,∞), lim inf

n→∞ P
(
Zwn�bnδ/an� = 0

)
>0,

(24)
where (Zwn

k )k∈N stands for aGalton–Watson branching processwith offspring distribu-
tion μwn given by (5) and with initial state Z

wn
0 = �an�. Proposition 2.3 shows that for

allα ∈ R,β ∈ [0,∞),β0 ∈ [0, β], κ ∈ (0,∞) and c such that
∑

j≥1 c3j <∞ and such
that Grey’s condition (10) is satisfied, there indeed exists a sequence (an, bn,wn)n∈N
satisfying (21) and (24), so that (23) holds. Proposition 2.3 also shows that in (24),
(A) does not necessarily imply (B). Moreover, Proposition 2.3 also provides a more
tractable condition that implies (B) in (24) and that is satisfied in all the examples that
have been considered previously.

By soft arguments (see Lemma 2.7), the convergence (23) of the coding func-
tions implies that the rescaled sequence of graphs Gwn converges, as random metric
spaces. As already mentioned, the convergence holds weakly on the space G of
(pointed and measure preserving) isometry classes of pointed measured compact
metric spaces endowed with the Gromov–Hausdorff–Prokhorov distance (whose def-
inition is recalled in (53) in Sect. 2.3). Actually, the convergence holds jointly for
the connected components of Gwn : namely, equip Gwn with the weight-measure
mwn = ∑ j≥1 w

(n)

j δ j ; let qwn be the number of connected components of Gwn ; we
index these connected components (Gwn

k )1≤k≤qwn in the decreasing order of theirm
wn -

measure:
mwn (Gwn

1 ) ≥ · · · ≥ mwn (Gwn
qwn

). (25)

For convenience, we complete this finite sequence of connected components
by point graphs with null measure to get an infinite sequence of G-valued
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r.v.
(
(Gwn

k , dwnk , �
wn
k ,mwn

k )
)
k≥1, where dwnk stands for the graph-metric on Gwn

k , �
wn
k

is the first vertex/client of Gwn
k who enters the queue andmwn

k is the restriction ofmwn
to Gwn

k . Then, Theorem 2.8 asserts that if (an, bn,wn) satisfy (21) and (22), then

((
Gwn
k ,

an
bn
dwnk , �

wn
k , 1

bn
mwn

k

))
k≥1 −−−−→n→∞

((
Gk, dk, �k,mk

))
k≥1 (26)

holds weakly onG
N
∗
equipped with the product topology.Moreover, Theorem 2.8 also

asserts that in (26) we can replace the weight-measuremwn by the counting measure
# = ∑1≤ j≤jn δ j , where jn := sup{ j ≥ 1 : w(n)

j > 0}, and that under the additional
assumption

√
jn/bn → 0, the connected components can be listed in the decreasing

order of their number of vertices:

#(Gwn
1 ) ≥ · · · ≥ #(Gwn

qwn
). (27)

Discussion We now briefly discuss connections to other works. We refer to Sect. 2.4
for more detailed comments on related papers.

A unified and exhaustive treatment of the limit regimes: While important progress
has been made on the Gromov–Hausdorff scaling limits of the multiplicative graphs,
notably in Bhamidi, Sen & X. Wang, and Bhamidi, van der Hofstad & Sen [8,9],
previous works have distinguished two seemingly orthogonal cases depending on
whether the inhomogeneity is mild enough to be washed away in the limit as in
Addario-Berry, B. & Goldschmidt, Bhamidi, B., Sen & X. Wang and Bhamidi, Sen
& X. Wang [2,7,8], or strong enough to persist asymptotically as in Bhamidi, van
der Hofstad & Sen and Bhamidi, van der Hofstad & van Leeuwaarden [9,11]: the
so-called asymptotic (Brownian) homogeneous case and the power-law case. In these
papers the proof strategies greatly differ in these two cases. On the other hand, the
remarkable work of Aldous and Limic [4] about the weights of large critical connected
components deals with the inhomogeneity in a transparent way. We provide here such
a unified approach for the geometry, which works not only for both cases but also for
graphs which can be seen as a mixture of the two cases.

Furthermore, an easy correspondence (see (61) below) allows us to link our param-
eters (α, β, κ, c) for the limit objects to the ones parametrising all the extremal eternal
multiplicative coalescents, as identified by Aldous & Limic in [4]. We note that our
limit theorems are valid in the Gromov–Hausdorff–Prokhorov topology, which con-
trols the distances between all pairs of points, and not just in the Gromov–Prokhorov
topology where only distances between typical points are controlled. (A general result
has already been proved by Bhamidi, van der Hofstad & Sen [9] for the Gromov–
Prokhorov topology in the special case when β = 0.) In light of this, we believe our
work contains an exhaustive treatment of all the possible limits related to those mul-
tiplicative coalescents. In the mean time, we remove some technical conditions that
had been imposed on the weight sequences in some of the previous works.

Avoiding to compute the law of connected components: The connected components of
the random graphs may be described as the result of the addition of “shortcut edges”
to a tree; this picture is useful both for the discrete models and the limit metric spaces.
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The work of Bhamidi, Sen & X. Wang and Bhamidi, van der Hofstad & Sen [8,9]
yields an explicit description of the law of the random tree to which one should add
shortcuts in order to obtain connected components with the correct distribution. As in
the case of classical random graphs treated in Addario-Berry, B. & Goldschmidt [2],
this law involves a change of measure from one of the “classical” random trees, whose
behaviour is in general difficult to control asymptotically. Our connected components
are described as the metric induced on a subset of a Galton–Watson tree; the bias of
the law of the underlying tree is somewhat transparently handled by the procedure that
extracts the relevant subset.

More general models of random graphs. While we focus on the model of the multi-
plicative graphs, the theorems of Janson [28] on asymptotically equivalent models (see
Sect. 2.4) and the expected universality of the limits confers on the results obtained here
potential implications that go beyond the realm of this specific model: for instance,
random graphs constructed by the celebrated configuration model where the sequence
of degrees has asymptotic properties similar to the weight sequence of the present
paper are believed to exhibit similar scaling limits; see Section 3.1 in [9] for a related
discussion.

Upcoming work. The current version of the limit theorems consider the sequences
of connected components in the product topology. The embedding of the graphs in a
forest of Galton–Watson trees actually also yields a control on the tail of the sequence,
which would allow to strengthen the convergence to �p-like spaces as in [2] or [8];
this will be pursued somewhere else.

Organisation of the paper In Sect. 2, after introducing some necessary notation, we
give the precise statements of themain results of the paper, compare themwith previous
results, as well as lay out a plan for the subsequent proof. Sections 3–8 constitute the
main body of the proof. In the appendix, we collect some results used in the proof on
Laplace transforms, Skorokhod’s topology, Lévy processes and branching processes.
Although most of these results are standard, we either did not find an exact reference
or we have adapted the existing version to our need here.

2 Main results

Notation Throughout the paper, N stands for the set of nonnegative integers and
N
∗ = N\{0}. A sequence of weights refers to an element of the set �↓∞ =

{
(w j ) j≥1 ∈

[0,∞)N
∗ : w j ≥ w j+1

}
. For all r ∈ (0,∞) and all w = (w j ) j≥1 ∈ �

↓∞, we
set σr (w) = ∑ j≥1 wr

j ∈ [0,∞]. The following subsets of �
↓∞ will be of particular

interest to us.

�
↓
r =

{
w ∈ �

↓∞ : σr (w) <∞}, and �
↓
f =

{
w ∈ �

↓∞ : ∃ j0 ≥ 1 : w j0 = 0
}
.

We often abbreviate X = (Xt )t≥0 for a process. Occasionally, we write X(t) for
Xt if the notation for the time parameter becomes too heavy to stand as subscript.
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2.1 Convergence results for theMarkovian queue

We fix a sequence wn ∈ �
↓
f , and two sequences an, bn ∈ (0,∞) that satisfy the a priori

assumptions (21). As alreadymentioned the convergence of the graphsGwn is obtained
thanks to the convergence of rescaled versions of Y wn andHwn and the convergence of
these two processes is also obtained by the convergence of the Markovian processes
into which they are embedded: namely, the asymptotic regimes of (Y wn ,Hwn ) and of
(Xwn , Hwn ) should be the same. The purpose of this section is to state weak limit-
theorems for Xwn and Hwn .Many results of this section rely on standard limit-theorems
on random walks, on results due to Grimvall in [24] on branching processes and on
results due to Le Gall & D. in [19] on the height processes of Galton–Watson trees.
However, the specific form of the jumps and of the offspring distribution of the trees
actually requires a careful analysis done in Sect. 7.

We recall the definition of Xwn in (6); recall that the Markovian queueing system
induced by Xwn yields a tree that is an i.i.d. sequence of Galton–Watson trees with
offspring distribution μwn whose definition is given by (5). Denote by (Zwn

k )k∈N a
Galton–Watson branching process with offspring distribution μwn and with initial
state Zwn

0 = �an�. The following proposition is mainly based on Theorem 3.4 in
Grimvall [24] p.1040, that proves weak convergence for Galton–Watson processes to
continuous-state branching processes (CSBP for short). Grimvall’s approach relies
on the close relationship between the CSBP and Lévy processes. Indeed, according to
Lamperti [30], a (conservative) CSBP, which is a [0,∞)-valued Markov process, can
always be represented as a time-changed spectrally positive Lévy process. Thus, the
law of the CSBP is completely characterised by the Lévy process, and thus also by its
Laplace exponent. ThisLaplace exponent is usually called thebranchingmechanism of
theCSBP. We refer toBingham [12] formore details onCSBP (and seeAppendixB.2.2
for a very brief account). We denote by D([0,∞), R) the space of càdlàg functions
from [0,∞) toR equipped with Skorokhod’s topology and byC([0,∞), R) the space
of continuous functions from [0,∞) to R, equipped with the topology of uniform
convergence on all compact subsets. Recall the above definitions of Xwn and Zwn .

Proposition 2.1 Let an, bn ∈ (0,∞) and wn ∈ �
↓
f , n ∈ N, satisfy (21). Let (Xt )t∈[0,∞)

and (Zt )t∈[0,∞) be two càdlàg processes such that X0 = 0 and Z0 = 1. Then, the
following holds true.

(i) The following convergences are equivalent:

(i-a) There exists t ∈ (0,∞) such that 1
an
Xwn
bnt
→ Xt weakly on R;

(i-b) ( 1
an
Xwn
bnt

)t∈[0,∞) −→ (Xt )t∈[0,∞) weakly on D([0,∞), R);

(i-c) ( 1
an
Zwn�bnt/an�)t∈[0,∞) −→ (Zt )t∈[0,∞) weakly on D([0,∞), R).

If any of the three convergences in (i) holds true, then X is a spectrally Lévy
process and Z a conservative CSBP; moreover there exist α ∈ R, β ∈ [β0,∞),
κ ∈ (0,∞) and c = (c j ) j≥1 ∈ �

↓
3 such that the branching mechanism of Z and

the Laplace exponent of X are equal to the same function ψ given by

ψ(λ) = αλ+ 1
2 βλ2 +

∑

j≥1
κc j
(
e−λc j − 1+ λc j

)
, λ ∈ [0,∞). (28)
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(ii) For all n ∈ N, we set αwn = 1 − σ2(wn)
σ1(wn)

. Then, (i) is equivalent to the following
three conditions:

(C1) : bnαwn/an −−−→n→∞ α (C2) : bn
a2n
· σ3(wn)
σ1(wn)

−−−→
n→∞ β + κσ3(c) ,

(29)

(C3) : for each j ∈ N
∗,

w
(n)
j

an
−−−→
n→∞ c j . (30)

(iii) For all λ ∈ [0,∞), we set

ψwn (λ) = αwnλ+
∑

1≤ j≤n

w
(n)
j

σ1(wn)

(
e−λw

(n)
j −1+ λw

(n)
j

)
. (31)

Any of the convergences of (i) is equivalent to (C1) and the following limit for all
λ ∈ (0,∞):

bnψwn (λ/an) −−−−→
n→∞ ψ(λ) , (32)

(iv) For all λ ∈ [0,∞), setψ−1(λ) = inf{r ∈ [0,∞) : ψ(r) > λ},ψ−1wn (λ) = inf{r ∈
[0,∞) : ψwn (r) > λ}, � = ψ−1(0) and �wn = ψ−1wn (0) that are the largest roots
of the convex functions ψ and ψwn . Then, for all λ ∈ [0,∞),

lim
n→∞ anψ

−1
wn (λ/bn) = ψ−1(λ) . (33)

In particular, limn→∞ an�wn = �.
(v) For all α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c = (c j ) j≥1 ∈ �

↓
3 , there are sequences

an, bn ∈ (0,∞), wn ∈ �
↓
f , n ∈ N, satisfying (21) with β0 ∈ [0, β], (C1), (C2),

(C3) and
√
jn/bn → 0 where we recall that jn = max{ j ≥ 1 : w(n)

j > 0}.
Proof See Sect. 7 (andmore specifically Sect. 7.2). As alreadymentioned, Proposition
2.1 (i) strongly relies on Theorem 3.4 in Grimvall [24] p. 1040. However, the proof
of (i i) and (v) requires arguments tailored to our case where ψ takes the particular
form (28). ��
Remark 2.1 We will see in Theorem 2.8 that the condition

√
jn/bn → 0 ensures that

the same scaling limit holds even if we rank the connected components with respect
to the number of vertices. ��

Recall the definition of Hwn in (6), the height process associated with Xwn . Note
here that we also deal with supercritical cases.

Proposition 2.2 Let α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c = (c j ) j≥1 ∈ �
↓
3 . Let ψ in

(9) satisfy (10).
Let X be a spectrally positive Lévy process with Laplace exponent ψ . Let H be its

height process as defined in (11). Let an, bn ∈ (0,∞), wn ∈ �
↓
f , n ∈ N, satisfy (21)
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with β0 ∈ [0, β], (C1), (C2) and (C3). We also assume

(C4) : ∃ δ ∈ (0,∞), lim inf
n→∞ P

(
Zwn�bnδ/an� = 0

)
> 0 . (34)

Then, (
( 1
an X

wn
bnt

)t∈[0,∞), (
an
bn
Hwn
bnt

)t∈[0,∞)

) −−−−→
n→∞ (X , H) (35)

weakly on D([0,∞), R) × C([0,∞), R) equipped with the product topology. Fur-
thermore, for all t ∈ [0,∞),

lim
n→∞P

(
Zwn�bnt/an� = 0

) = e−vψ (t) where
∫ ∞

vψ (t)

dλ

ψ(λ)
= t . (36)

Proof See Sect. 7 (and more specifically Sect. 7.2). Proposition 2.2 strongly relies on
Theorem 2.3.1 in Le Gall & D. [19]. However, its proof requires more care than one
might expect because Hwn is not exactly the height process as defined in [19] (it is
actually a time-changed version of the so-called contour process as in Theorem 2.4.1
[19] p. 68). ��

The following proposition provides a practical criterion to check (C4). In particular,
it shows that (C4) is always true when β0 > 0. It also shows that Proposition 2.2 is
never void. Recall that jn = max{ j ≥ 1 : w(n)

j > 0}.

Proposition 2.3 Let α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c = (c j ) j≥1 ∈ �
↓
3 . Let ψ in

(9) satisfy (10). The following statements hold true.

(i) Let an, bn ∈ (0,∞), wn ∈ �
↓
f , n ∈ N, satisfy (21), (C1), (C2) and (C3). Denote

by ψn the Laplace exponent of (
1
an
Xwn
bnt

)t∈[0,∞): namely, for all λ ∈ [0,∞),

ψn(λ) = bn
an

(
1− σ2(wn)

σ1(wn)

)
λ+ anbn

σ1(wn)

∑

j≥1

w
(n)
j

an

(
e−λw

(n)
j /an − 1+ λ w

(n)
j /an

)
.

(37)
Then, (C4) holds true if

lim
y→∞ lim sup

n→∞

∫ an

y

dλ

ψn(λ)
= 0 . (38)

In particular, if β0 > 0 in (21), then (38) is always satisfied and (C4) holds true.
(ii) There are sequences an, bn ∈ (0,∞),wn ∈ �

↓
f , n ∈ N, satisfying (21)withβ0 = 0,√

jn/bn → 0, (C1), (C2) and (C3) but not (C4).
(iii) There are sequences an, bn ∈ (0,∞), wn ∈ �

↓
f , n ∈ N, satisfying (21) with any

β0 ∈ [0, β],√jn/bn → 0, (C1), (C2), (C3) and (C4).

Proof See Sects. 7.3.1, 7.3.2 and 7.3.3. ��
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2.2 Convergence of the processes encoding themultiplicative graphs

Let us recall that we generate surplus edges with the help of the sequence of points
�wn as introduced in (18). To deal with limits of (�wn ), it is convenient to embed
([0,∞)2)p into (R2)N

∗
by extending any sequence ((si , ti ))1≤i≤p ∈ ([0,∞)2)p by

setting (si , ti ) = (−1,−1), for all i > p.Here, (−1,−1)plays the role of an unspecific
cemetery point. We equip (R2)N

∗
with the product topology. Recall the definition of

Y in (13) and that ofH in (14). Recall the notation of � in (18), (Y wn ,Hwn ) in (2), as
well as �wn in (4). Then, the main theorem of the paper is the following:

Theorem 2.4 Let α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c = (c j ) j≥1 ∈ �
↓
3 . Let ψ in (9)

satisfy (10). Let an, bn ∈ (0,∞), and wn ∈ �
↓
f , n ∈ N, satisfy (21), (C1) − (C4) as

specified in (29), (30) and (34). Then, the joint convergence

(
1
an Y

wn
bn ·,

an
bn
Hwn

bn · ,
1
bn

�wn

) −−−−→
n→∞

(
Y ,H,�

)
(39)

holds weakly on D([0,∞), R) × C([0,∞), R)× (R2)N
∗
equipped with the product

topology.

Proof See Sect. 5.1. Let us mention that we actually prove a joint convergence of all
the involved processes such as Xwn , Hwn , θb,wn , ... to their continuous counterparts. ��

Theorem 2.4 implies the convergence of the coding processes of the connected
components of Gwn , because each connected component of Gwn is encoded by an
excursion above 0 of Hwn and the corresponding pinching points. More precisely,
denote by (lwnk , rwnk ), 1 ≤ k ≤ qwn , the excursion intervals of Hwn above 0, that
are exactly the excursion intervals of Y wn above its running infimum process Jwnt =
infs∈[0,t] Y wn

s . Namely,

⋃

1≤k≤qwn
[lwnk , rwnk ) = {t ∈ [0,∞) : Hwn

t > 0
} = {t ∈ [0,∞) : Y wn

t > Jwnt
}
. (40)

Here the indexation is such that ζ
wn
k ≥ ζ

wn
k+1, where we have set ζ

wn
k = rwnk − lwnk

(if ζ
wn
k = ζ

wn
k+1, then we agree on the convention that lwnk < lwnk+1); the excursions

processes are then defined as

Hwnk (t) = Hwn
(lwnk +t)∧rwnk

, ∀k ∈ {1, . . . ,qwn }, ∀t ∈ [0,∞). (41)

We next define the sequences of pinching points of the excursions: to that end, recall
the definition of �wn =

(
(sp, tp)

)
1≤p≤pwn in (4); �wn is the sequence of pinching

times of Gwn ; observe that if tp ∈ [lwnk , rwnk ], then sp ∈ [lwnk , rwnk ]; then, it allows to
define the following for all k ∈ {1, . . . ,qwn }:
�

wn
k =

(
(skp, t

k
p)
)
1≤p≤pwk where (tkp)1≤p≤pwnk increases and where

the (lwnk + skp, l
wn
k + tkp)’s are exactly the terms (sp′ , tp′ ) of �wn such that tp′ ∈ [lwnk , rwnk ].

(42)
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As already specified, we trivially extend each finite sequence�
wn
k as a random element

of (R2)N
∗
. We pass to the limit for rescaled versions of ((Hwnk , lwnk , rwnk ,�

wn
k ))1≤k≤qwn .

Since qwn tends to ∞, it is convenient to extend this sequence by taking Hwnk as the
null function, lwnk = rwnk = 0 and �

wn
k as the sequence constant to (−1,−1) for all

k > qwn .
Similarly, recall the definition of the excursion intervals of H above 0 in (15):⋃
k≥1(lk, rk) = {t ∈ [0,∞) : Ht > 0}, where indexation is chosen in such a way that

the sequence ζk := rk − lk , k ≥ 1, decreases. We define the excursion processes Hk ,
k ≥ 1, by

Hk(t) = H(lk+t)∧rk , (43)

for t ∈ [0,∞). The pinching times are defined as follows: in (17) and (18) recall
the definition of � = ((sp, tp)

)
p≥1. If tp ∈ [lk, rk], then note that sp ∈ [lk, rk], by

definition of sp. For all k ≥ 1, we set

�k =
(
(skp, t

k
p)
)
1≤p≤pk where (tkp)1≤p≤pk increases and where

the (lk + skp, lk + tkp)’s are exactly the terms (sp′ , tp′) of � such that tp′ ∈ [lk , rk ].
(44)

Then the following theorem holds true.

Theorem 2.5 Under the same assumptions as in Theorem 2.4, the convergence

((
(
an
bn
Hwnk (bnt))t∈[0,∞),

1
bn
lwnk , 1

bn
rwnk , 1

bn
�

wn
k

))
k≥1 −−−−→n→∞

((
Hk, lk, rk,�k

))
k≥1
(45)

holds weakly on ((C([0,∞), R) × [0,∞)2 × (R2)N
∗
)N
∗
equipped with the product

topology.

Proof See Sect. 5.2. ��

2.3 Convergence of themultiplicative graphs

We recall here a generic procedure described in [17] which allows us to extract the w-
graph Gw from the coding processes (Y w,Hw,�w) and the continuous multiplicative
graph from (Y ,H,�). We begin with the encoding of trees by real-valued functions.

Encoding trees Let h : [0,∞)→ [0,∞) be a càdlàg function such that

ζh = sup{t ∈ [0,∞) : h(t) > 0} <∞ . (46)

We further assume that one of the following conditions is satisfied:

either (a) h takes finitely many values or (b) h is continuous. (47)

Note that the (discrete) height process Hw as defined in (2) verifies Condition (a),
while in the continuous setting, the process H defined in (14) verifies Condition (b),
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as asserted by Theorem 4.7 below. For all s, t ∈ [0, ζh), we set

bh(s, t) = inf
r∈[s∧t,s∨t] h(r) and dh(s, t) = h(s)+ h(t)− 2bh(s, t). (48)

We readily check that dh satisfies the four-point inequality: for all s1, s2, s3, s4 belong-
ing to [0, ζh), dh(s1, s2) + dh(s3, s4) ≤

(
dh(s1, s3) + dh(s2, s4)

) ∨ (dh(s1, s4) +
dh(s2, s3)

)
. It follows that dh is a pseudometric on [0, ζh). We denote by s ∼h t the

equivalence relation dh(s, t) = 0 and we set

Th = [0, ζh)/ ∼h . (49)

Then, dh induces a true metric on the quotient set Th that we keep denoting by dh and
we denote by ph : [0, ζh)→ Th the canonical projection. Note that if h is continuous,
then ph is a continuousmap. It follows that in that case themetric space Th is a compact
real tree, namely a compact metric space where any pair of points is joined by a unique
injective path that turns out to be a geodesic (see Evans [23] for more references on
this topic). If, on the other hand, h satisfies Condition (a) in (47), then Th is compact
but not connected. It is still tree-like, as dh satisfies the four-point inequality.

We will also need some additional features of the metric space (Th, dh), which are
defined as follows: a distinguishedpointρh = ph(0), called the root ofTh , and themass
measure mh , which satisfies that for any Borel measurable function f : Th → [0,∞),
we have

∫
Th

f (σ )mh(dσ) = ∫[0,ζh ] f (ph(t)) dt .
Pinched metric spaces Let (E, d) be a metric space and let � = ((xi , yi ))1≤i≤p
where the elements (xi , yi ) ∈ E2, 1 ≤ i ≤ p, are referred to as pinching points.
Let ε ∈ [0,∞), that is interpreted as the length of the edges that are added to E (if
ε = 0, then each xi is identified with yi ). Set AE = {(x, y) : x, y ∈ E} and for all
e = (x, y) ∈ AE , set e = x and e = y. A path γ joining x to y is a sequence of
e1, . . . , eq ∈ AE such that e1 = x , eq = y and ei = ei+1, for all 1 ≤ i < q. For all
e = (x, y) ∈ AE , we then define its length by lεe = ε ∧ d(xi , yi ) if (x, y) or (y, x)
is equal to some (xi , yi ) ∈ �; otherwise we set lεe = d(x, y). The length of a path
γ = (e1, . . . , eq) is given by lε(γ ) =∑1≤i≤q lεei , and we set for all x, y ∈ E :

d�,ε(x, y) = inf
{
lε(γ ) : γ is a path joining x to y

}
. (50)

We set A� = {(xi , yi ), (yi , xi ); 1 ≤ i ≤ p} and we easily check that

d�,ε(x, y) = d(x, y) ∧min
{
lε(γ ) : γ = (e0, e

′
0, . . . , er−1, e′r−1, er ),

a path joining x to y such that e′0, . . . e′r−1 ∈ A� and r ≤ p
}
. (51)

Clearly,d�,ε is a pseudo-metric andwedenote the equivalence relationd�,ε(x, y) =
0 by x ≡�,ε y; the (�, ε)-pinched metric space associated with (E, d) is then the
quotient space E/ ≡�,ε equipped with d�,ε. First note that if (E, d) is compact or
connected, so is the associated (�, ε)-pinched metric space since the canonical pro-
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jection ��,ε : E → E/ ≡�,ε is 1-Lipschitz. Of course when ε > 0, d�,ε on E is a
true metric, E = E/ ≡�,ε and ��,ε is the identity map on E .
Encoding pinched trees Let h : [0,∞)→ [0,∞) be a càdlàg function that satisfies
(46) and (47); let � = ((si , ti ))1≤i≤p where 0 ≤ si ≤ ti < ζh , for all 1 ≤ i ≤ p
and let ε ∈ [0,∞). Then, the compact measured metric space encoded by h and the
pinching setup (�, ε) is the (�, ε)-pinched metric space associated with (Th, dh) and
the pinching points � = ((ph(si ), ph(ti )))1≤i≤p, where ph : [0, ζh)→ Th stands for
the canonical projection. We shall denote by ph,�,ε the composition of the canonical
projections��,ε ◦ ph : [0, ζh)→ Gh,�,ε; then �h,�,ε = ph,�,ε(0) andmh,�,ε stands
for the pushforward measure of the Lebesgue on [0, ζh) via ph,�,ε. We shall use the
notation

G(h,�, ε) = (Gh,�,ε, dh,�,ε, �h,�,ε,mh,�,ε

)
. (52)

Convergence of metric spaces Let (G1, d1, ρ1,m1) and (G2, d2, ρ2,m2) be two
pointed compact measured metric spaces. The pointed Gromov-Hausdorff-Prokhorov
distance of G1 and G2 is then defined by

δGHP(G1,G2) = inf
{
dHausE

(
φ1(G1), φ2(G2)

)

+dE (φ1(ρ1), φ2(ρ2))+ dProkE

(
m1 ◦ φ−11 ,m2 ◦ φ−12

)}
. (53)

Here, the infimum is taken over all Polish spaces (E, dE ) and all isometric embeddings
φi : Gi ↪→ E , i ∈ {1, 2}; dHausE stands for the Hausdorff distance on the space of
compact subsets of E , dProkE stands for the Prokhorov distance on the space of finite
Borel measures on E and for all i ∈ {1, 2}, mi ◦ φ−1i stands for the pushforward
measure of mi via φi .

We recall Theorem 2.5 in Abraham, Delmas & Hoscheit [1] which asserts the
following: δGHP is symmetric and it satisfies the triangle inequality; δGHP(G1,G2) = 0
if and only if G1 and G2 are isometric, namely if and only if there exists a bijective
isometry φ : G1 → G2 such that φ(ρ1) = ρ2 and that m2 = m1 ◦ φ−1. Denote by G

the isometry classes of pointed compact measured metric spaces. Then, we recall the
following result:

Theorem 2.6 (Theorem 2.5 in [1]) (G, δGHP) is a complete and separable metric
space.

Actually in our paper, weak-limits are proved for coding functions, which entail δGHP-
limits as asserted by the following lemma:

Lemma 2.7 Let h, h′ : [0,∞)→ [0,∞) be two càdlàg functions such that ζh and ζh′
are finite and that (47) is satisfied. Let� = ((si , ti ))1≤i≤p and�′ = ((s′i , t ′i ))1≤i≤p be
two sequences such that 0 ≤ si ≤ ti < ζh and 0 ≤ s′i ≤ t ′i < ζh′ , and let δ ∈ (0,∞)

be such that
|si − s′i | ≤ δ and |ti − t ′i | ≤ δ, i ∈ {1, . . . , p} . (54)

Let ε, ε′ ∈ [0,∞). Recall the pointed compact measured metric spaces G :=
G(h,�, ε) and G ′ := G(h′,�′, ε′) in (52). Then,

δGHP(G,G ′) ≤ 6(p + 1)
(‖h − h′‖∞ + ωδ(h)

)+ 3p(ε ∨ ε′)+ |ζh − ζh′ | , (55)

123



884 N. Broutin et al.

where ωδ(h) = max
{|h(s) − h(t)| : s, t ∈ [0,∞) : |s − t | ≤ δ

}
and where ‖·‖∞

stands for the uniform norm on [0,∞).

Proof See Appendix C. The proof is partly adapted from Theorem 2.1 in Le Gall &
D. [20], Proposition 2.4 Abraham, Delmas & Hoscheit [1] and Lemma 21 in Addario-
Berry, Goldschmidt & B. in [2]. ��
Limit theorems formultiplicative graphsRecall the definitionof thewn-multiplicative
graph Gwn in (1). We equip its vertex set with a measure mwn =

∑
1≤ j≤jn w

(n)

j δ j .
Recall, as in (40), [lwnk , rwnk ), 1 ≤ k ≤ qwn are the excursion intervals above 0 of
Hwn ; similarly, Hwnk (·) are the excursion intervals of Hwn . Recall as well the sets of
pinching times �

wn
k . We recall that each excursion Hwnk (·) corresponds to a connected

component Gwn
k of Gwn and we have mwn

(
Gwn
k

) = ζ
wn
k = rwnk − lwnk . Thus, we get

mwn (Gwn
1 ) ≥ · · · ≥ mwn (Gwn

qwn
). (56)

Then, Gwn
k is the pinched (measured pointed) metric space encoded by (Hwnk ,�

wn
k ). So

G(Hwnk ,�
wn
k , 1) is isometric to (Gwn

k , dwnk , �
wn
k ,mwn

k ) , (57)

and thus, these objects define the same random element in the space G of the isometry
classes of pointed compact measured metric spaces equipped with the Gromov-
Hausdorff-Prokhorov distance δGHP defined in (53). Here, we have denoted the
graph-distance by dwnk , the first vertex explored via the LIFO coding by �

wn
k and

mwn
k stands for the restriction to Gwn

k of the weight measure mwn . Since qwn tends to
∞, it is convenient to extend the sequence (Gwn

k )1≤k≤qwn by taking Gwn
k equal to the

point space equipped with the null measure for all k > qwn .
Similarly, recall the excursion intervals (lk, rk) and the corresponding excursions

Hk(·), k ≥ 1, ofH, aswell as the set of pinching times�k in (44). Recall the continuous
(α, β, c, κ)-multiplicative graphG = ((Gk, dk, �k,mk))k≥1 as seen in (19), where for
all k ≥ 1,Gk is the pinched (measured pointed) metric space encoded by (Hk,�k, 0),
namely,

Gk := G(Hk,�k, 0) . (58)

Then, Theorem 2.5 and Lemma 2.7 entail the following theorem:

Theorem 2.8 Under the same assumptions as in Theorem 2.4, the convergence

((
Gwn
k ,

an
bn
dwnk , �

wn
k , 1

bn
mwn

k

))
k≥1 −−−−→n→∞

((
Gk, dk, �k,mk

))
k≥1 (59)

holdsweakly onG
N
∗
equippedwith the product topology.Denote the countingmeasure

on Gwn
k by μ

wn
k =

∑
j∈Gwn

k
δ j . Then, the convergence

((
Gwn
k ,

an
bn
dwnk , �

wn
k , 1

bn
μ
wn
k

))
k≥1 −−−−→n→∞

((
Gk, dk, �k,mk

))
k≥1 (60)

holds weakly on G
N
∗
equipped with the product topology.
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Recall the notation jn = max{ j ≥ 1 : w
(n)

j > 0}. If we furthermore assume
that
√
jn/bn → 0, then (60) holds when the connected components are listed in

the decreasing order of their numbers of vertices, namely, when μ
wn
1

(
Gwn
1

) ≥ · · · ≥
μ
wn
qwn

(
Gwn
qwn

)
.

Proof See Sect. 5.3. ��

Remark 2.2 The assumption
√
jn/bn → 0may not be optimal for (60) to holdwhen the

connected components are listed in the decreasing order of their numbers of vertices.
However, for allα ∈ R,β ∈ [0,∞), κ ∈ (0,∞) and c = (c j ) j≥1 ∈ �

↓
3 satisfying (10),

this statement is never void since the examples of (an, bn,wn) provided in Proposition
2.3 (i i i) satisfy

√
jn/bn → 0. Moreover, let us mention that all the cases that have

been considered previously by other authors satisfy this assumption, as it is pointed
out in the Sect. 2.4. ��

Remark 2.3 Theorem 2.8 holds true under the assumption κ > 0. When κ = 0, the
processes encoding the graphs may converge as in (39) for a wider class of branching
mechanisms (see Theorem 7.1). In these cases, however, it turns out that the compo-
nents that are explored are the exceptionally small ones and they are all trees. ��

2.4 Connections with previous results

Entrance boundary of the multiplicative coalescent The model of w-multiplicative
random graphs appears in the work of Aldous [3] as an extension of Erdős–Rényi
random graphs that have close connections with multiplicative coalescent processes.
Relying upon this connection, Aldous and Limic determine in [4] the extremal eternal
versions of the multiplicative coalescent in terms of the excursion lengths of Lévy-
type processes Y (up to rescaling, as explained below); to that end, they consider in
Proposition 7 [4] asymptotics of themasses of the connected components of sequences
of multiplicative random graphs. The asymptotic regime in Proposition 7 [4] is very
close to Assumptions (21) and (C1) – (C3) in our Theorem 2.8.

Let us briefly recall Proposition 7 in [4] since it is used in the proof of Theorem
2.8. Aldous & Limic fix a sequence of weights xn ∈ �

↓
f , n ∈ N, and their notation for

multiplicative graphs is the following: let (ξi, j ) j>i≥1 be an array of independent and
exponentially distributed r.v. with unit mean; let N (xn) = max{ j ≥ 1 : x (n)

j > 0};
then for all q ∈ [0,∞), Aldous & Limic consider the random graph Gn(q) whose set
of vertices is V (Gn(q)) = {1, . . . , N (xn)} and whose set of edges E (Gn(q)) is such
that {i, j} ∈ E (Gn(q)) if and only if ξi, j ≤ qx (n)

i x (n)

j ; themultiplicative graphGn(q) is

equipped with the measuremn =∑ j≥1 x
(n)

j δ j ; let ζ1(xn, q) ≥ · · · ≥ ζk(xn, q) ≥ · · ·
stand for the (eventually null) sequence of themn-masses of the connected components
of Gn(q). Then, it is easy to check that Xn : q �→ (ζk(xn, q))k≥1 is a multiplicative
coalescent process with finite support. Aldous & Limic describe the limit of the pro-
cessesXn in terms of the excursion-lengths of a process (W κAL,−τAL,cAL

s )s∈[0,∞) whose
law is characterized by three parameters: κAL ∈ [0,∞), τAL ∈ R and cAL ∈ �

↓
3 ;

this process is connected to the (α, β, κ, c)-process Y defined in (13) as follows: for
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s ∈ [0,∞),

W κAL,−τAL,cAL
s = Ys/κ , where κAL = β

κ
, τAL = α

κ
and cAL = c. (61)

Proposition 7 [4] assumes that

lim
n→∞

σ3(xn)

(σ2(xn))3
= κAL + σ3(cAL), for j ∈ N

∗,

lim
n→∞

x (n)

j

σ2(xn)
= cALj and lim

n→∞ σ2(xn) = 0, (62)

and asserts that for all τAL ∈ R,Xn(σ2(xn)−1−τAL)→ (ζk)k≥1, weakly in �
↓
2 , where

(ζk)k≥1 are the excursion-lengths of W κAL,−τAL,cAL above its running infimum, listed
in the decreasing order.

The assumptions in (62) are close to (C2) and (C3). More precisely, let (α, β, κ, c)
be connected with κAL, τAL and cAL as in (61); let an, bn ∈ (0,∞) and wn ∈ �

↓
f

satisfy (21) and (C1) – (C3); then, set

∀ j ∈ N
∗, x (n)

j =
κw

(n)

j

bn
and τ nAL =

b2n
κ2σ2(wn)

(
1− σ2(wn)

σ1(wn)

)
−−−−→
n→∞

α

κ
= τAL.

Recall that Gwn is the wn-multiplicative graph in (1). Recall thatmwn =
∑

j≥1 w
(n)

j δ j

andGwn
k , k ≥ 1, stand for the connected components ofGwn listed in the nonincreasing

order of their mwn -mass. Then, it is easy to check that

Gn
(
σ2(xn)

−1−τ nAL
)(law)= Gwn and ζk

(
xn , σ2(xn)

−1−τ nAL
)(law)= κ

bn
mwn

(
Gwn
k

) =: κζ n
k .

(63)
Note that the ζ n

k are the excursion-lengths of ( 1
an
Y wn
bnt

)t∈[0,∞) above its running infi-
mum. Recall the definition of Y wn (resp. of Y ) in (2) (resp. in (13)). Since τ nAL→ α/κ

and since multiplicative coalescent processes have no fixed time-discontinuity, Propo-
sition 7 in [4] immediately entails the following proposition that is used in Sect. 5.2
to prove Theorems 2.5 and 2.8:

Proposition 2.9 (Proposition 7 [4]) Let an, bn ∈ (0,∞) and wn ∈ �
↓
f satisfy (21)

and (C1)–(C3), with α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c ∈ �
↓
3 . Let (ζ n

k )1≤k≤qwn
(resp. (ζk)k≥1) be the excursion-lengths of ( 1

an
Y wn
bnt

)t∈[0,∞) (resp. of Y ) above its run-
ning infimum. Then,

(
ζ n
k

)
1≤k≤qwn

weakly in �
↓
2−−−−→

n→∞ (ζk)k≥1. (64)

Limits of Erdős–Rényi graphs in the critical window The first result proving metric
convergence in a strong Hausdorff sense of rescaled Erdős–Rényi graphs and their
inhomogeneous extensions is due to Addario-Berry, Goldschmidt & B. in [2]. In this
paper, the authors study the scaling limits of the largest components of Erdős–Rényi

123



Limits of multiplicative inhomogeneous random graphs and… 887

random graph G(n, pn) in the critical window pn = n−1 − αn−4/3, with α ∈ R,
which corresponds to the graph Gwn where w

(n)

j = 1{ j≤n}n log( 1
1−pn

), j ≥ 1. Taking,

an = n1/3 and bn = n2/3, we immediately see that an, bn and wn satisfy (21) with
κ = β0 = 1, (C1), (C2), (C3) and

√
jn/bn = n−1/6 → 0, with the parameters

α ∈ R, β = 1 and c = 0. Namely, the branching mechanism is ψ(λ) = αλ + 1
2 λ

2.
Since β0 > 0, Proposition 2.3 (i) implies that (C4) is automatically satisfied and
Theorem 2.8 applies: in this case, Theorem 2.8 is a weaker version of Theorem 2 in
Addario-Berry, Goldschmidt&B. [2], p. 369: the result in [2] actually provides precise
estimates on the size of metric components. Let us mention that [2] also contains tail-
estimates on the diameters of the small components. Such estimates seem difficult to
obtain in the case of general wn .

Multiplicative graphs in the same basin of attraction as Erdős–Rényi graphs
Bhamidi, van der Hofstad & van Leeuwaarden in [10] prove the scaling limit of the
component sizes (number of vertices) for examples of multiplicative graphs which
behave asymptotically like the Erdős–Rényi graphs. Bhamidi, Sen & X. Wang in [8]
and Bhamidi, Sen, X. Wang & B. in [7] investigate instead the scaling limits of these
graphs seen as measured metric spaces. The conditions under which these authors
prove their limit theorems slightly differ. We give here a detailed account of these
conditions so as to make a connection with our results. In all the cases covered by
[7,8,10], the scalings appear to be an = n1/3, bn = n2/3 and wn is a sequence of length
n having the following asymptotic behaviour:

w
(n)
1

n1/3
→ 0, ∃ σ, σ ′ ∈ (0,∞) : σi (wn) = nσ + o(n2/3), i ∈ {1, 2} and σ3(wn)

= nσ ′ + o(n). (65)

For all α ∈ R, set

wn(α) = (1− αn−
1
3
)
wn =

((
1− αn−

1
3
)
w

(n)

j

)
j≥1 .

This is a situation covered by Theorem 2.8. Indeed, (65) easily implies that
an, bn,wn(α) satisfy (21), (C1), (C2), (C3),

√
jn/bn = n−1/6→ 0, with the parame-

ters α ∈ R, β0 = 1, β = σ ′/σ , κ = 1/σ and c = 0. Thus, the branching mechanism is
ψ(λ) = αλ+ 1

2
σ ′
σ

λ2. Since β0 = 1, Proposition 2.3 (i) implies (C4). Then, Theorem
2.8 applies in this setting, which allows us to extend

– Theorem 1.1 in [10], which has been proved under the supplementary assumption
(Assumption (b) there) that there exists a r.v. W : �→ [0,∞) such that

1
n

∑

i

1{w(n)
i ≤x} → P(W ≤ x) for all x ≥ 0, and σ = E[W ] = E[W 2], σ ′ = E[W 3].

– Theorem 3.3 in Bhamidi, Sen & X. Wang in [8] that has been proved by quite
different methods and under two additional technical assumptions (Assumptions
3.1 (c) and (d)).
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Turova in [36] also proved a result similar to Theorem 1.1 of [10] for i.i.d. random
weight sequences. Let us mention that the convergence under the sole assumptions
(65), that we proved, has been conjectured by Bhamidi, Sen and X. Wang in [8],
Section 5, part (c).

Gromov–Prokhorov convergence of multiplicative graphs without Brownian
component In light of the above mentioned result of Aldous & Limic [4] on the
convergence of the component masses of the multiplicative graph in the asymptotic
regime (62), it is natural to expect that the graph itself should also converge in some
sense. The first affirmation in this direction is due to Bhamidi, van der Hofstad and
Sen who prove the following in [9]: Denote by Ci (q) the i-largest (in mn-mass) con-
nected component of Gn(q), that is, mn(Ci (q)) = ζi (xn, q). Equip each component
Ci (−τAL + σ2(xn)−1) with its graph distance rescaled by σ2(xn) and with the mass
measure mn , they prove that under (62) with κAL = 0, the collection of rescaled
metric spaces converge in the sense of Gromov–Prokhorov topology to a collection
of measured metric spaces, which are not necessarily compact. They also give an
explicit construction of the limit spaces based upon a model of continuum random
tree called ICRT. The Gromov–Prokhorov convergence is equivalent to the conver-
gence of mutual distance of an i.i.d. sequence with law mn , which is weaker than the
Gromov–Hausdorff–Prokhorov that we obtain in Theorem 2.8 under the compactness
assumption

∫∞ dλ/ψ(λ) < ∞. Our approach via coding processes is quite distinct
from that of Bhamidi, van der Hofstad & Sen in [9].

Power-law cases We extend the power-law cases investigated in Bhamidi, van der
Hofstad & van Leeuwaarden [11] and Bhamidi, van der Hofstad & Sen [9]. Let W :
�→ [0,∞) be a r.v. such that

r = E[W ] = E[W 2] <∞ and P(W ≥ x) = x−ρL(x), (66)

where ρ ∈ (2, 3) (in the notation of [9], τ = ρ + 1 ∈ (3, 4)) and where L is slowly
varying at∞. We then set for all y ∈ [0,∞),

G(y) = sup
{
x ∈ [0,∞) : P(W ≥ x) ≥ 1 ∧ y

}
. (67)

Note that G(y) = 0 for all y ∈ [1,∞) and that G(y) = y−1/ρ �(y), where � is slowly
varying at 0. We assume that for each n ∈ N

∗ we have

P
(
W = G(1/n)

) = 0 . (68)

Let κ, q ∈ (0,∞) and let an, bn,wn be such that

an ∼
n→∞ q−1G(1/n), ∀ j ≥ 1, w

(n)
j = G( j/n), bn ∼

n→∞ κσ1(wn)/an . (69)

Then, the following lemma holds true.
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Lemma 2.10 We keep the notation from above and we assume (68). Then an ∼
q−1n

1
ρ �(1/n), bn ∼ qκ n1−

1
ρ /�(1/n) and an, bn and wn satisfy (21) with β0 = 0

and
√
jn/bn ∼ �(1/n)

qκ
n

1
ρ − 1

2 → 0. Next, for all integers j ≥ 1 and for all α ∈ R, set

w
(n)
j (α) = (1− an

bn
(α−α0)

)
w

(n)
j , where α0 = 2κq2

( ∫ 1

0
y{y−ρ} dy+ 1

ρ−2
)
, (70)

and where {·} stands for the fractional part function. Then, an, bn,wn(α) satisfy (21),
(C1)–(C4) and

√
jn/bn → 0, with the parameters α ∈ R, κ ∈ (0,∞), β = β0 = 0

and c j = q j−
1
ρ , for all j ≥ 1.

Proof See Sect. 8. ��

Lemma 2.10 implies that Theorem 2.8 applies to an, bn andwn(α) as defined above.
This extends Theorem 1.1 in Bhamidi, van der Hofstad & van Leeuwaarden [11] that
proves the convergence of the component sizes under the more restrictive assumption
that L(x) = xρP(W ≥ x)→ cF ∈ (0,∞) as x → ∞ (see (1.6) in [11]) as well as
Theorem 1.2 in Bhamidi, van der Hofstad & Sen [9] (Section 1.1.3) that asserts the
convergence of the components as measured metric spaces under the supplementary
assumptions that P(W ∈ dx) = f (x)dx , where f is a continuous function whose
support is of the form [ε,∞) with ε > 0, and such that x ∈ [ε,∞) �→ x f (x) is
nonincreasing (see Assumption 1.1 in [9], Section 1.1.3). Again, the proofs in [11]
and in [9] are quite different from ours.

Let us also mention that a solution to the Conjecture 1.3 on fractal dimensions of
the components of G right after Theorem 1.2 in [9] is given in the companion paper
[17], Proposition 2.7.

General inhomogeneousErdős–Rényi graphs that are close to bemultiplicative In
[28], Janson investigates strong asymptotic equivalence of general inhomogeneous
Erdős–Rényi graphs that are defined as follows: denote by P the set of arrays p =
(pi, j ) j>i≥1 of real numbers in [0, 1] such that Np = sup{ j ≥ 2 :∑1≤i< j pi, j > 0} <
∞; the p-inhomogeneous Erdős–Rényi graph G(p) is the random graph whose set of
vertices is {1, . . . , N (p)} and whose random set of edges E (G(p)) is such that the
r.v. (1{{i, j}∈E (G(p))})1≤i< j≤N (p) are independent and such that P({i, j} ∈ E (G(p))) =
pi, j . The asymptotic equivalence is measured through the following function ρ that
is defined for all p, q ∈ [0, 1], by ρ(p, q) = (

√
p −√q)2 + (

√
1− p −√1− q)2.

More precisely, let pn,qn ∈ P , n ∈ N; then Theorem 2.2 in Janson [28] implies that
there are couplings of G(pn) and G(qn) such that limn→∞ P(G(pn) �= G(qn)) = 0
if and only if

lim
n→∞

∑

j>i≥1
ρ(p(n)

i, j , q
(n)

i, j ) = 0 . (71)

We then apply this result as follows: let an, bn ∈ (0,∞) and wn ∈ �
↓
f , n ∈ N, satisfy

the assumptions of Theorem 2.8. For j > i ≥ 1, we set
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p(n)

i, j =
w

(n)

i w
(n)

j

σ1(wn)
and u(n)

i, j =
⎧
⎨

⎩

q(n)
i, j

p(n)
i, j

− 1 , if p(n)

i, j > 0

0 , if p(n)

i, j = 0.
(72)

First note that max j>i≥1 p(n)

i, j = O((w
(n)

1 /an)2an/bn)→ 0 by (21); next, as proved in
Janson [28] (2.5) p. 30, if p ≤ 0.9, then ρ(p, q)  |p−q|(1∧ |q/p−1|). Thus, (71)
is equivalent to

lim
n→∞

∑

j>i≥1
p(n)

i, j |u(n)

i, j |
(
1 ∧ |u(n)

i, j |
) = 0, with the convention p(n)

i, j |u(n)

i, j | = q (n)

i, j if p(n)

i, j = 0.

(73)

In particular, let h : [0, 1] → [0, 1] be such that h(x) = x + O(x2). If we set
q (n)

i, j = h(p(n)

i, j ), then there exists C ∈ (0,∞) such that |u(n)

i, j | ≤ Cp(n)

i, j . In this case, for
all sufficiently large n,

∑

j>i≥1
p(n)

i, j |u(n)

i, j |
(
1 ∧ |u(n)

i, j |
) ≤ C2

∑

j>i≥1
(p(n)

i, j )
3 ≤ C2 σ3(wn)2

σ1(wn)3
∼ C ′(an/bn)3 −→ 0

by (C2) and (21). Caseswhere h(x) = 1∧x have been studied byChung&Lu [18] and
van der Esker, van der Hofstad &Hooghiemstra [37]; the cases where h(x) = 1−e−x ,
was first studied byAldous [3],Aldous&Limic [4], aswell as [2,7–11,34]; caseswhere
h(x) = x/(1 + x) have been investigated by Britton, Deijfen & Martin-Löf [16]. To
summarise, Janson’s Theorem 2.2 [28], p. 31 combined with Theorem 2.8 imply the
following result.

Theorem 2.11 (Theorem 2.2 in Janson [28]) Assume that an, bn,wn satisfy the same
assumptions as in Theorem 2.4 (and thus as in Theorem 2.8). We furthermore assume
that
√
jn/bn → 0. We define pn by (72). Let qn ∈ P. We define (u(n)

i, j ) j>i≥1 by (72)
and we suppose (73). Then, there exist couplings of G(qn) and Gwn such that

lim
n→∞P(Gwn �=G(qn)) = 0 (74)

and the weak limit (60) in Theorem 2.8 holds true in the same scaling for the connected
components of G(qn) that are listed in the decreasing order of their numbers of
vertices and that are equipped with the graph distance and the the counting measure.
In particular, its holds true when u(n)

i, j = h(p(n)

i, j ), j > i ≥ 1, for all functions h :
[0, 1]→[0, 1] such that h(x) = x + O(x2).

2.5 An overview of the proof

The rest of the paper is taken up by the proof of the results announced in this section.
We briefly describe how it is organised.

Section 3 collects most of the tools we need for the discrete model. In particular,
we recall some results on the (discrete) red and blue processes established in the
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companion paper [17]. We also provide some estimates on the fluctuations of these
processes (particularly Lemma 3.6), which will be a key ingredient in the proof of the
limit theorems later on.

Section 4 is, on the other hand, our tool box for the continuous model. We explain
the construction of the continuum graph based on the coding processes Y and H as
introduced in [17] in more detail. Let us note that the graph-encoding process Y is a
time change of X (see (12)); a similar relationship (14) also holds betweenH and H .
However, the dependence between X and the time-change θb constitutes a point of
subtlety when dealing with the limit theorems and our approach will strongly rely on
the properties of red and blue processes stated in that section.

The proof of the main limit theorems is given in Sects. 5–7. In Sect. 5, we show
that the convergence of the graphs is a consequence of the convergence of the coding
processes (Proposition 5.1). This proves our main results Theorems 2.4, 2.5 and 2.8
subject to Proposition 5.1. In Sect. 6, we explain how to derive Proposition 5.1 from
the convergence of theMarkovian queueing system (Propositions 2.1–2.2). The actual
proof of the latter is given in Sect. 7.

Section 8 concerns the specific example of power-law weight sequence, which has
attracted some attention: we show that the assumptions of our main results are verified
in this case.

3 Preliminary results on the discrete model

In this section, we gather the results we need for the discrete model. In Sect. 3.1, we
recall some useful processes encoding Galton–Watson trees: Lukasiewicz path, height
process and contour process. In Sect. 3.2, we use the connection with the Markovian
queue to prove estimates on these coding processes, which will be used in Sect. 7. In
Sect. 3.3, we explain in more detail the embedding of the multiplicative graph into
the Galton–Watson trees, obtained in our construction via the blue and red processes.
Estimates on these processes are then proved in Sect. 3.4.

3.1 Height and contour processes of Galton–Watson trees

Let us briefly recall some basic notation about the coding of trees. We first denote by
U = ⋃n∈N(N∗)n the set of finite words written with positive integers; here, (N∗)0 is
taken as {∅}. The set U is totally ordered by the lexicographical order ≤lex (the strict
order is denoted by <lex).

Let u = [i1, . . . , in] ∈ U be distinct from ∅. We set |u| = n that is the length or the
height of u, with the convention that |∅| = 0. We next set←−u = [i1, . . . , in−1] that is
interpreted as the parent of u (and if n= 1, then←−u is taken as ∅). More generally, for
all p ∈ {1, . . . , n}, we set u|p = [i1, . . . , i p], with the convention: u|0 = ∅. Note that←−u = u|n−1.Wewill also use the following notation: [[∅, u]] = {∅, u|1, . . . , u|n−1, u},
]]∅, u]] = [[∅, u]]\{∅}, [[∅, u[[= [[∅, u]]\{u} and ]]∅, u[[= [[∅, u]]\{∅, u}. For all
v = [ j1, . . . , jm] ∈ U, we also set u ∗ v = [i1, . . . , in, j1, . . . , jm] that is the concate-
nation of u with v, with the convention that ∅ ∗ u = u ∗∅ = u.
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A rooted ordered tree can be viewed as a subset t⊂U such that the following holds
true:

(a) : ∅ ∈ t .
(b) : If u ∈ t\{∅}, then←−u ∈ t .
(c) : For all u ∈ t , there exists ku(t) ∈ N ∪ {∞} such that u ∗ [i] ∈ t if and only if

1 ≤ i ≤ ku(t).

Here, ku(t) is interpreted as the number of children of u and if 1 ≤ i ≤ ku(t), then
u ∗ [i] is the i-th child of u; ku(t)+ 1 is the degree of the vertex u in the graph t when
u is distinct from the root. Implicitly, if ku(t) = 0, then there is no child stemming
from u and assertion (c) is trivially satisfied. Note that the subtree stemming from u
that is θut={v ∈ U : u ∗ v ∈ t} is also a rooted ordered tree.

Let T be the set of rooted ordered trees that is equipped with the σ -field F (T)

generated by the sets {t ∈ T :u ∈ t}, u ∈ U. Then, aGalton–Watson tree with offspring
distribution μ (a GW (μ)-tree, for short) is a (F ,F (T))-measurable r.v. τ :�→ T

that satisfies the following:

(a′) : k∅(τ ) has law μ.
(b′) : For all k≥1 such thatμ(k)>0, the subtrees θ[1]τ, . . . , θ[k]τ underP( · |k∅(τ ) =

k) are independent with the same law as τ under P.

Assume thatμ(1)<1. Recall that τ is a.s. finite if and only ifμ is critical or subcritical:
namely, if and only if

∑
k≥1 kμ(k) ≤ 1.

AGalton–Watson forest with offspring distributionμ (aGW (μ)-forest, for short) is
a random treeT such that k∅(T) = ∞ and such that the subtrees (θ[k]T)k≥1 stemming
from∅ are i.i.d. GW(μ)-trees. We next recall how to encode a GW(μ)-forestT thanks
to three processes: its Lukasiewicz path, its height process and its contour process. We
denote by (ul)l∈N the sequence of vertices of T such that u0 = ∅ and such that, for
all l, ul+1 is the smallest vertex of T with respect to the lexicographical order that is
larger than ul . If μ is critical or subcritical, then (ul)l∈N exhausts all the vertices of T;
however, if μ is supercritical (namely if

∑
k≥1 kμ(k)>1), then (ul)l∈N exhausts the

vertices of T that are situated before (or on) the first infinite line of descent. We first
set

V T
0 = 0, and for l≥0, VT

l+1 = VT
l +kul+1(T)−1 and HghtTl =|ul+1|−1. (75)

The process (V T
l )l∈N is the Lukasiewicz path associated with T and (HghtT

l )l∈N is
the height process associated with T. We recall the following results in Le Gall & Le
Jan [31]:

(i) V T is distributed as a random walk starting from 0 and with jump-law ν(k) =
μ(k + 1), k ∈ N ∪ {−1}.

(i i) We set V T
0 = 0 and for all l≥1, V T

l = inf0≤k≤l−1 V T
k −1. Note that ul ∈ θ[p]T

if and only if (ul)|1= p. Then, we get

−V T
l = (ul)|1 and V T

l −V T
l = #

{
v ∈ T : ul <lex v and←−v ∈ ]]∅, ul ]]

}
. (76)
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(i i i) The height process HghtT is derived from VT by setting HghtT0 = 0 and, for
l≥1,

HghtT
l = #

{
m ∈ {0, . . . , l−1} : V T

m = inf
m≤ j≤l V

T
j

}
. (77)

The contour process of T is informally defined as follows: suppose thatT is embedded
in the oriented half plane in such a way that edges have length one and that orientation
reflects lexicographical order of visit; we think of a particle starting at time 0 from ∅

and exploring the tree from the left to the right, backtracking as little as possible and
moving continuously along the edges at unit speed. In (sub)critical cases, the particle
crosses each edge twice (upwards first and then downwards). In supercritical cases,
the particle only explores the edges that are situated before (or on) the first infinite
line of descent in the lexicographical order: the edge on the infinite line of descent are
visited once (upwards only) and the edge strictly before the infinite line of descent
are visited twice (upwards first and then downwards). For all s ∈ [0,∞), we define
CT
s as the distance at time s of the particle from the root ∅. The associated distance

dCT as defined in (48) is the graph distance of T in the (sub)critical cases. We refer
to Le Gall & D. [19] (Section 2.4, Chapter 2, pp. 61–62) for a formal definition and a
formula relating the contour process to the height process.

3.2 Coding processes related to theMarkovian queueing system

We fix w = (w1, . . . , wn, 0, 0, . . .) ∈ �
↓
f and we briefly recall the definition of the

Markovian queue as in the introduction: a single server is visited by infinitely many
clients; clients arrive according to a Poisson process with unit rate; each client has
a type that is a positive integer ranging in {1, . . . , n}; the amount of time of service
required by a client of type j is w j ; types are i.i.d. with law

νw = 1

σ1(w)

n∑

j=1
w jδ j . (78)

Let τl stand for the time of arrival of the l-th client in the queue and let Jl stand for
her/his type; then, the queueing system is entirely characterised by the point measure

Xw=
∑

k≥1
δ(τk ,Jk ), (79)

that is distributed as a Poisson point measure on [0,∞)×{1, . . . , n} whith intensity
�⊗νw, where � stands for the Lebesgue measure on [0,∞). We next introduce

Xw
t = −t +

∑

l≥1
wJl1[0,t](τl) and Iwt = inf

s∈[0,t] X
w
s , t ∈ [0,∞). (80)

Then, Xw
t − Iwt is interpreted as the load of the Markovian queueing system at time t

and Xw
t is the algebraic load of the queue. Note that Xw is a spectrally positive Lévy

123



894 N. Broutin et al.

process whose law is determined by its Laplace exponent ψw : [0,∞)→R defined as

E
[
e−λXw

t
]= etψw(λ) where

ψw(λ) = αwλ+
∑

1≤ j≤n

w j

σ1(w)

(
e−λw j−1+ λw j

)
and αw :=1− σ2(w)

σ1(w)
. (81)

Here, recall that σr (w) = wr
1+ . . .+wr

n , r ≥ 0.We call the queueing system recurrent
if a.s. lim inf t→∞ Xw

t =−∞, which means that all the clients will eventually depart.
Observe that the system is recurrent if and only if σ2(w)/σ1(w) ≤ 1. If, on the other
hand, σ2(w)/σ1(w) > 1, then αw < 0 and a.s. limt→∞ Xw

t =∞ (the queue will see
an accumulation of infinitely many clients). As a common practice for branching
processes, in the sequel, we shall refer to the following cases:

supercritical: σ2(w)>σ1(w), critical: σ2(w)=σ1(w), subcritical: σ2(w)<σ1(w).

(82)
Note that the criticality alluded to above is distinct from the critical regime of the
random graph Gwn .

The LIFO queueing system governed byXw generates a tree that can be informally
defined as follows: the clients are the vertices and the server is the root (or the ances-
tor); the j-th client to enter the queue is a child of the i-th one if the j-th client enters
when the i-th client is served; among siblings, clients are ordered according to their
time of arrival. In critical or subcritical cases, it fully defines a Galton–Watson forest;
however in supercritical cases, it only defines the part of a Galton–Watson forest sit-
uated before the first infinite line of descent. To circumvent this problem, we actually
define the tree first and then we couple it with the queueing system.

In what follows, what we mean by a Poisson random subset � on [0,∞) with unit
rate is the set of atoms of a unit-rate Poisson randommeasure: namely, it is the random
subset {e1+· · ·+en; n≥1}, where the en are i.i.d. exponentially distributed r.v. with
unit mean. For all u ∈ U\{∅}, let J (u) and �u be independent r.v. whose laws are
given as follows: J (u) has law νw as defined in (78) and �u is a Poisson random
subset of [0,∞) with unit rate. We next define �∅ as a Poisson random subset of
[0,∞) with unit-rate that is assumed to be independent of (J (u),�u)u∈U\{∅} and for
convenience, we set J (∅) = 0. For all u ∈ U, we index the points of �u using the
children of u. Formally, we define a map σ : {u∗[p] ; p≥1} → �u as follows:

�u =
{
σ(u∗[p]) ; p≥1}, where σ(u∗[p]) < σ(u∗[p + 1]), p≥1. (83)

Note that it defines a collection (σ (u))u∈U\{∅} of r.v. It is easy to check that there is a
unique random tree Tw :�→T such that, for u ∈ Tw\{∅},

ku(Tw) = #
(
�u ∩ [0, wJ (u)]

)
and k∅(Tw) = ∞. (84)
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Clearly Tw is distributed as a GW(μw)-forest where μw is given by

∀k ∈ N, μw(k)=
∑

j≥1

wk+1
j e−w j

σ1(w) k! . (85)

Namely, k∅(Tw) = ∞ and the subtrees (θ[k]Tw)k≥1 stemming from ∅ are
i.i.d. GW(μw)-trees. Note that

∑
k≥0 kμw(k) = σ2(w)/σ1(w).

Then we define the point process Xw governing the Markovian queueing system
as follows: denote by (ul)l∈N the sequence of vertices of Tw such that u0 = ∅ and
such that for all l, ul+1 is the smallest vertex of Tw (with respect to the lexicographical
order) that is larger than ul . Then we set

Jl = J (ul) , τl =
∑

v∈Tw:v<lexul
and v /∈[[∅,ul ]]

wJ (v) +
∑

v∈]]∅,ul ]]
σ(v) and Xw =

∑

l≥1
δ(τl ,Jl ). (86)

We also set, for each t ∈ [0,∞),

Nw(t) =
∑

l≥1
1[0,t](τl) . (87)

In (75), recall that (V Tw
l )l≥0 stands for the Lukasiewicz path associated with Tw; we

also recall the notation V Tw
l for the quantity inf0≤k≤l−1 V Tw

k − 1.

Lemma 3.1 We keep the notation from above. ThenXw as defined by (86) is a Poisson
point measure on [0,∞)×{1, . . . , n} with intensity �⊗νw and therefore Nw in (87)
is a Poisson process on [0,∞) with unit rate. Let Xw and Iw be derived from Xw by
(80). For all t ∈ [0,∞), the following statements hold true:

(i) Conditional on Xw
t −Iwt , V Tw

Nw(t)−V Tw
Nw(t) is distributed as a Poisson r.v. with mean

Xw
t − Iwt .

(i i) P-almost surely: −V Tw
Nw(t)=#(�∅ ∩ [0,−Iwt ]).

Then, for all a, x ∈ (0,∞), we get

P
(∣∣VTw

Nw(t)−Xw
t

∣∣ > 2a
) ≤ 1∧(4x/a2)+P

(−Iwt > x)+E
[
1∧((Xw

t −Iwt )/a2
)]

. (88)

Proof We first explain how (τl+1, Xw
τl+1) is derived from (τl , Xw

τl
) in terms of the

r.v. (J (u),�u), u ∈ U. To that end, we need notation: fix u ∈ U\{∅}; then for all
0 ≤ p< |u|, we set

Ru
p =

(
wJ (u|p)−σ(u|p+1)

)
+ and Qu

p =
{
σ(v)−σ(u|p+1) ; v ∈ U : u|p+1<lex v and←−v = u|p

}
.

Note that J (u|0) = J (∅) = 0 and that w0 = ∞ (by convention); thus, Ru
0 =∞. We also set Ru|u| = wJ (u), Qu|u| = �u , R(u) = (Ru

1 , . . . , R
u|u|) and Q(u) =
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(Qu
0, . . . , Q

u|u|). By convention, we finally set R∅

0 = ∞, R(∅) = ∅ and Q(∅) =
(�∅).

We next denote by G (u) the σ -field generated by the r.v. (σ (v), J (v),�v ∩
[0, σ (v)))v∈ ]]∅,u]] and (J (v),�v)v<lexu and v /∈[[∅,u]]. Elementary properties of Pois-
son point processes imply that conditionnally given G (u), the Qu

p, 0 ≤ p < |u| are
independent Poisson random subsets of [0,∞) with unit rate: they are therefore inde-
pendent of G (u); by construction they are also independent from the r.v. (J (v),�v),
u<lex v.

For all u ∈ U\{∅}, we next define s(u) ∈ U and e(u) ∈ [0,∞) that satisfy
s(ul) = ul+1 and τl+1 = e(ul)+τl . To that end,wefirst setq = sup

{
p ∈ {0, . . . , |u|} :

#(Qu
p ∩ [0, Ru

p])≥1
}
that is well-defined since Ru

0 = ∞.

• If q = |u|, then we set s(u) = u∗[1] and e(u) = σ(u∗[1]).
• If q< |u|, then |u| ≥ 1 and we set s(u) = [i1, . . . , iq, iq+1+1] (namely, s(u) =
[i1+1] if q = 0), where u = [i1, . . . , i|u|]. We also set

e(u) = σ(s(u))−σ(u|q+1)+
∑

q<p≤|u|
Ru
p . (89)

Elementary properties on Poisson point processes imply that e(u), J (s(u)) and G (u)

are independent, that e(u) is exponentially distributed with unit mean and that J (u)

has law νw. Then, we easily derive from (84) that for all l ∈ N, ul+1 = s(ul),
as already mentioned. It is also easy to deduce from (86) that τl+1 = e(ul) + τl .
Thus, τl+1−τl , J (ul+1) are independent and they are also independent of G (ul) and
therefore of the r.v. ((τk, J (uk)))1≤k≤l . It implies thatXw is a Poisson point measure
on [0,∞)×{1, . . . , n} with intensity �⊗νw.

We next prove inductively that for all l≥1,

Zl :=
∑

1≤p≤|ul |
Rul
p = Xw

τl
− Iwτl and σ((ul)|1) = −Iwτl . (90)

Proof of (90): For l = 1, u1 is the first customer in the queue. In that case, Z1 =
Ru1|u1| = wJ (u1) is the size of the first jump of Xw. The first identity in (90) then follows.
Note also that σ(u1) = τ1 by (86), the latter equal to −Iwτ1 as Xw has slope −1. This
proves (90) for l = 1.

Assume it holds true for l. Set k = (ul)|1; namely ul ∈ θ[k]Tw. Since ul+1 = s(ul),
ul+1 ∈ θ[k]Tw if and only if q = sup

{
p ∈ {0, . . . , |ul |} : #(Qul

p ∩ [0, Rul
p ])≥1

}≥1.
We first suppose that q≥1. By comparing (89) and (90), we see that e(ul)< Zl . Since
τl+1− τl = e(ul) and since Xw does not jump on [τl , τl+1) (by the definition (80)),
we have

inf
s∈[τl ,τl+1]

Xw
s = Xw

τl+1− = Xw
τl
−(τl+1−τl) = Xw

τl
− e(ul) = Zl − e(ul)+ Iwτl (91)

and thus −Iwτl+1 = −Iwτl . Since ul+1 ∈ θ[k]Tw, k = (ul+1)|1 = (ul)|1 and thus
σ((ul+1)|1) = σ((ul)|1). Then (90) entails −Iwτl+1 = σ((ul+1)|1). We also check
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easily that Zl+1−Zl = wJ (ul+1)−e(ul) = Xw
τl+1−Xw

τl
, which easily entails (90) for

l + 1.
Suppose now that q = 0, which is equivalent to ul+1 = [k + 1]. Then ul+1 is

the only one in the queue when it arrives. Thus, R(ul+1) = (wJ (ul+1)) and Zl+1 =
wJ (ul+1). Since q = 0, e(ul) = Zl + σ([k + 1])−σ([k]) by (89). As in (91), we get
infs∈[τl ,τl+1] Xw

s = Zl − e(ul)+ Iwτl = Iwτl−σ([k + 1])+ σ([k]) = −σ([k + 1]), the
last equality being a consequence of (90) for l. It implies that −Iwτl+1 = σ([k + 1])>
σ([k]) = −Iwτl . Therefore, Xw

τl+1− Iwτl+1 = �Xw
τl+1 = wJ (ul+1) = Zl+1. This proves

that (90) holds for l + 1. It also completes the proof of (90) by induction. ��
Next, it is easy to check that

#
{
v ∈ Tw : ul <lex v and←−v ∈ ]]∅, ul ]]

} =
∑

1≤p≤|ul |
#
(
Qul

p ∩ [0, Rul
p ]
)
,

and by (76) we get
∑

1≤p≤|ul | #
(
Qul

p ∩[0, Rul
p ]
) = VTw

l −V Tw
l . By (90) and elementary

properties of Poisson point processes, it shows that given Xw
τl
− Iwτl , V

Tw
l −V Tw

l is
distributed as a Poisson r.v. with mean Xw

τl
− Iwτl . This proves (i).

Next, we have seen in (76) and (90) that −V Tw
l = (ul)|1 and σ((ul)|1) = −Iwτl .

Namely, −V Tw
l = #

(
�∅ ∩ [0,−Iwτl ]

)
and elementary arguments entail −V Tw

l =
#
(
�∅ ∩ [0,−Iwt ]

)
for all t ∈ [τl , τl+1). This easily proves (i i) for all t ∈ [τ1,∞).

For all t ∈ [0, τ1), observe that Nw
t = 0 and −Iwt = t <τ1. Since V

Tw
0 = 0, it entails

(i i) for all t ∈ [0, τ1), which completes the proof of (i i).
We next prove (88). We fix t ∈ [0,∞) and to simplify we set

D = V Tw
Nw(t)−V Tw

Nw(t), Z = Xw
t − Iwt , D′ = −V Tw

Nw(t) and Z ′ = −Iwt .

By (i), E
[
(D− Z)2|Z] = Z ; thus P(|D− Z | > a) ≤ E[1 ∧ (Z/a2)]. By (i i),

D′ = #(�∅ ∩ [0, Z ′]); then, for all x ∈ (0,∞), we get P(|D′ − Z ′| > a) ≤
P(supz∈[0,x] |#(�∅ ∩ [0, z])− z| > a) + P(Z ′ > x) ≤ 1∧ (4x/a2) + P(Z ′ > x) by
Doob L2-inequality for the martingale z �→#(�∅ ∩ [0, z])−z. It implies (88), which
completes the proof of Lemma 3.1. ��
The contour of Tw: estimates In (6), recall that Hw

t stands for the number of clients
waiting in the line right after time t . More precisely, for all s, t ∈ [0,∞) such that
s ≤ t , we have

Hw
t = #Kt , where Kt =

{
s ∈ [0, t] : Iw,s−

t < Iw,s
t
}
and where Iw,s

t = inf
r∈[s,t] X

w
r for s ∈ [0, t].

(92)
See Fig. 2 for an example. The process Hw is called the height process associated
with Xw by analogy with (77), but Hw is actually closer to the contour process of Tw.

To see this, recall that (ul)l∈N stands for the sequence of vertices of Tw listed in the
lexicographical order; we identify ul with the l-th client to enter the queueing system.
For all t ∈ [0,∞), we denote by u(t) the client currently served right after time t :
namely u(t) = ul where l = sup{k ∈ N : τk ≤ t and Xw

τk− < infs∈[τk ,t] Xw
s }. Then,
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τ1 τ2 τ3

Hw

Xw

1

2

Fig. 2 An example of Xw and the associated height process Hw drawn side by side. Observe that at each
τi , both Xw and Hw jump upwards: these are the arrival times of the customers. Note that Hw also jumps
down by one unit each time a customer leaves the queue

the length of the word u(t) is the number of clients waiting in the line right after time
t : |u(t)| = Hw

t .
We next denote by (ξm)m≥1 the sequence of jump-times of Hw: namely, ξm+1 =

inf{s >ξm : Hw
s �= Hw

ξm
}, for all m ∈ N, with the convention ξ0 = 0. We then set, for

t ∈ [0,∞),
Mw

t =
∑

m≥1
1[0,t](ξm) . (93)

Note that (ξm)m≥1 is also the sequence of jump-times of u and that for all m ≥ 1,
(u(ξm−1),u(ξm)) is necessarily an oriented edge ofTw.We then setTw(t) = {u(s); s ∈
[0, t]}, that represents the set of the clients who entered the queue before time t (and
the server ∅); Tw(t) has Nw(t) + 1 vertices (including the server represented by ∅);
therefore, Tw(t) has 2Nw(t) oriented edges. Among the 2Nw(t) oriented edges of
Tw(t), there are |u(t)| edges going down from u(t) to ∅ which do not belong to the
subset {(u(ξm−1),u(ξm));m≥1 : ξm ≤ t}. Thus, for each t ∈ [0,∞),

Mw
t = 2Nw(t)−Hw

t . (94)

Recall the definition of the contour and the height processes of Tw introduced in
Sect. 3.1, and denoted resp. by (CTw

t ) and (HghtTw
k ). Then, observe that, for each

t ∈ [0,∞),

CTw
Mw(t) = Hw

t and sup
s∈[0,t]

Hw
s ≤ 1+ sup

s∈[0,t]
HghtTwNw

s
. (95)

Since Nw is a homogeneous Poisson process with unit rate, Doob’s L2-inequality
combined with (94) and (95) imply that for t, a ∈ (0,∞),

P
(
sup

s∈[0,t]
|Mw

s −2s| > 2a
) ≤ 1∧(16t/a2)+ P

(
1+ sup

s∈[0,t]
HghtTw

Nw
s

> a
)
. (96)
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3.3 Red and blue processes

This section contains no new result and we recall here more precisely the embedding
of the LIFO queue without repetition encoding the multiplicative graph Gw into the
Markovian queue considered in the previous Sect. 3.2. This embedding has been
introduced in [17] (and it is informally recalled in the introduction). This embedding
uses two auxiliary processes, the blue and red processes, that we now define. First, we
introduce two independent random point measures on [0,∞)×{1, . . . , n}:

X b
w =

∑

k≥1
δ(τbk ,Jbk ) and X r

w =
∑

k≥1
δ(τrk ,Jrk ), (97)

that are Poisson point measures with intensity �⊗νw, where we recall that � stands for
the Lebesgue measure and that νw = 1

σ1(w)

∑
1≤ j≤n w jδ j . The blue process Xb,w and

the red process Xr,w are defined respectively by

Xb,w
t = −t +

∑

k≥1
wJbk

1[0,t](τbk ) and Xr,w
t = −t +

∑

k≥1
wJrk

1[0,t](τrk ). (98)

Note that Xb,w and Xr,w are two independent spectrally positive Lévy processes with
Laplace exponent ψw given by (81). For all j ∈ {1, . . . , n} and all t ∈ [0,∞), we next
set

Nw
j (t) =X b

w

([0, t]×{ j}) and Ew
j = inf

{
t ∈ [0,∞) :X b

w ([0, t]×{ j}) = 1
}
.

(99)
Then the Nw

j are independent homogeneous Poisson processes with jump-rate

w j/σ1(w) and the r.v. (
w j

σ1(w)
Ew

j )1≤ j≤n are i.i.d. exponentially distributed r.v. with
unit mean. We next set

Y w
t = −t +

∑

1≤ j≤n
w j1{Ew

j ≤t} and Aw
t = Xb,w

t −Y w
t =

∑

1≤ j≤n
w j (N

w
j (t)−1)+ . (100)

Here Y w is the algebraic load of the following queue without repetition that encodes
the multiplicative graphGw (as explained in the introduction): a single server is visited
by n clients labelled by 1, . . . , n; Client j arrives at time Ew

j and she/he requests an
amount of time of service w j ; a LIFO (last in first out) policy applies: whenever a
new client arrives, the server interrupts the service of the current client (if any) and
serves the newcomer; when the latter leaves the queue, the server resumes the previous
service.

We embed this queue into a Markovian one that is obtained from (Y w, Aw) and
Xr,w as follows. We first introduce the following time-change process that will play a
prominent role:

θ
b,w
t = t + γ

r,w
Aw
t

, where for all x ∈ [0,∞), we have set γ r,w
x = inf

{
t ∈ [0,∞) : Xr,w

t <−x},
(101)
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with the convention that inf ∅ = ∞. We next recall various properties of θb,w that are
used in the sequel. To that end, let us first note that standard results on Lévy processes
(see e.g. Bertoin’s book [6] Chapter VII) assert that (γ r,w

x )x∈[0,∞) is a (possibly killed)
subordinator whose Laplace exponent is given by, for λ ∈ [0,∞),

E
[
e−λγ

r,w
x
] = e−xψ−1w (λ) where ψ−1w (λ) = inf

{
u ∈ [0,∞) : ψw(u)>λ

}
. (102)

Set �w = ψ−1w (0), the largest root of ψw. Then, �w = 0 in the subcritical or critical
cases, while �w > 0 in the supercritical case. Moreover, in the latter case, −Ir,w∞ :=
− inf t∈[0,∞) X

r,w
t is exponentially distributed with parameter �w and γ

r,w
x <∞ if and

only if x<−Ir,w∞ . It follows that the explosion time for θb,w is given by

T ∗w = sup{t ∈ [0,∞) : θb,w
t <∞} = sup{t ∈ [0,∞) : Aw

t <−Ir,w∞ } , (103)

which is infinite in the critical and subcritical cases and which is a.s. finite in the
supercritical cases. Note that θb,w(T ∗w−)<∞ in the supercritical cases.

We also introduce the following processes:

�
b,w
t = inf

{
s ∈ [0,∞) : θb,w

s > t} and �
r,w
t = t−�

b,w
t . (104)

Both processes �b,w and �r,w are continuous and nondecreasing. Moreover,
a.s. limt→∞�

r,w
t = ∞. In critical and subcritical cases,we alsoget a.s. limt→∞�

b,w
t =

∞ and�b,w(θ
b,w
t ) = t for all t ∈ [0,∞). However, in supercritical cases,�b,w

t = T ∗w
for t ∈ [θb,w(T ∗w−),∞) and a.s. for all t ∈ [0, T ∗w ), �b,w(θ

b,w
t ) = t . The following

proposition was proved in [17].

Proposition 3.2 We keep the previous notation and we define the process Xw by, t ∈
[0,∞),

Xw
t = Xb,w

�
b,w
t
+ Xr,w

�
r,w
t

. (105)

Then, Xw has the same law as Xb,w and Xr,w: namely, it is a spectrally positive Lévy
process with Laplace exponent ψw as defined in (81). Furthermore, we have

Y w
t = Xw

θ
b,w
t

, a.s. for all t ∈ [0, T ∗w ), (106)

Proof See Proposition 2.2 in [17]. ��
Recall that Blue and Red are the sets of times during which respectively blue and

red clients are served (the server is considered as a blue client). Then formally these
sets are given by

Red =
⋃

t∈[0,T ∗w ]:�θ
b,w
t >0

[
θ
b,w
t− , θ

b,w
t
)

and Blue = [0,∞)\Red. (107)

Note that the union defining Red is countably infinite in critical and subcritical cases
and that it is a finite union in supercritical cases where

[
θb,w(T ∗w−), θb,w(T ∗w )) =
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[θb,w(T ∗w−),∞). Recall the definition of the time-changes �b,w and �r,w in (104);
then, we easily check that

�
b,w
t =

∫ t

0
1Blue(s) ds and �

r,w
t = t−�

b,w
t =

∫ t

0
1Red(s) ds. (108)

We have the following properties of Xw, θb,w, etc. from [17] (see also Figure 3).

Lemma 3.3 A.s. for all b ∈ [0, T ∗w ] such that θb,w
b− < θ

b,w
b , we get the following for all

s ∈ [θb,w
b− , θ

b,w
b ):

Xw
s > Xw

(θ
b,w
b− )−=Y w

b , �Xw
θ
b,w
b−
= �Aw

b and Xw
(θ

b,w
b− )−= Xw

θ
b,w
b
= Xw

(θ
b,w
b )− if θ

b,w
b <∞.

(109)
Thus, a.s. for all s ∈ [0,∞), Xw

s ≥ Y w(�
b,w
s ). Moreover, a.s. for all s1, s2 ∈ [0,∞)

such that �b,w
s1 <�

b,w
s2 , we have

inf
b∈[�b,w

s1 ,�
b,w
s2 ]

Y w
b = inf

s∈[s1,s2]
Xw
s . (110)

If the red time-change is defined by

θ
r,w
t = inf

{
s ∈ [0,∞) : �r,w

s > t
}
, (111)

Then, for all s, t ∈ [0,∞), θr,w
s+t−θ

r,w
t ≥s and if �θ

r,w
t >0, then �Xr,w

t = 0.

Proof See Lemma 4.1 in [17]. ��
Embedding of the tree The previous embedding of the LIFO queuewithout repetition
governed by Y w into theMarkovian queue governed by Xw yields a related embedding
of the trees associated with these queues. More precisely, consider first the queue
governed by Y w: the LIFO rule implies that Client i arriving at time Ei will leave
the queue at the moment inf{t ≥ Ei : Y w

t < Y w
Ei−}, namely the first moment when

the service load falls back to the level right before her/his arrival. It follows that the
number of clients waiting in queue at time t is given by

Hw
t = #Jt , where Jt =

{
s ∈ [0, t] : Jw,s−

t < Jw,s
t
}
and where Jw,s

t = inf
r∈[s,t]Y

w
r for s ∈ [0, t].

(112)

Recall that we denote by Tw the tree formed by the clients in the queue governed by
Y w. The process Hw is actually the contour (or the depth-first exploration) of Tw and
the graph-metric dTw of Tw is encoded by Hw in the following way: if we denote by
Vt ∈ {0, 1, . . . , n} the label of the client served at time t (with the understanding that
Vt = 0 if the server is idle), then for all s, t ∈ [0,∞),

dTw(Vs, Vt ) = Hw
t +Hw

s − 2 min
r∈[s∧t,s∨t]H

w
r . (113)
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Xb,w

2 1 3
1 3 6 6 6

3 5 5 4 3 6 3

2 1 3 1
6 6

5 4 3 2 1 3
6

5 43

Y w = Xw ◦ θb,w

Xw

Fig. 3 Decomposition of Xw into Xb,w and Xr,w. Above, the process Xw: clients are in bijection with
its jumps; their types are the numbers next to the jumps. The grey blocks correspond to the set Blue.
Concatenating these blocks yields the blue process Xb,w . The remaining pieces give rise to the red process
Xr,w. Concatenating the grey blocks but without the final jump of each block yields Yw. Alternatively,
we can obtain Yw by removing the temporal gaps between the grey blocks in Xw: this is the graphic
representation of Yw = Xw ◦ θb,w. Observe also that each connected component of Red begins with the
arrival of a client whose type is a repeat among the types of the previous blue ones, and ends with the
departure of this red client, marked by × on the abscissa ��

Similarly for theMarkovian queue governed by the process Xw given in Proposition
3.2, we define its associated height process Hw by setting Hw

t to be the number of the
clients waiting at time t , namely,

Hw
t = #Kt , where Kt =

{
s ∈ [0, t] : Iw,s−

t < Iw,s
t
}
and where Iw,s

t = inf
r∈[s,t] X

w
r for s ∈ [0, t] .

(114)

Then Hw is the contour process of the i.i.d. Galton–Watson forest Tw with offspring
distributionμw characterized by (84).Note that in (sub)critical cases, Hw fully explores
the whole tree Tw. However in supercritical cases, the exploration of Hw does not
go beyond the first infinite line of descent. We shall use the following form of the
previsouly mentioned embedding of Tw into Tw that is recalled in [17].

Lemma 3.4 Following the previous notation, we have

Hw
t = Hw

θ
b,w
t

a.s. for all t ∈ [0, T ∗w ). (115)
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Proof See Lemma 2.3 in [17]. ��

3.4 Estimates on the coloured processes

We keep the notation from Sect. 3.3, and provide here estimates for Aw, Xb,w
�b,w and

Xr,w
�r,w that are used in the course of the proof of Theorem 2.4.
Recall that Aw

t =
∑

j≥1w j (Nw
j (t)−1)+, where the Nw

j (·) are independent homo-
geneous Poisson processes with respective jump-rate w j/σ1(w). Let (Ft )t∈[0,∞) be a
filtration such that for all j≥1, Nw

j is an (Ft )-homogeneous Poisson process. Namely,

• Nw
j is (Ft )-adapted;

• for all a.s. finite (Ft )-stopping time T , set N w,T
j (t) = Nw

j (T + t)−Nw
j (T ). Then,

the sequence of processes (N w,T
j ) j≥1 is independent of FT and distributed as

(Nw
j ) j≥1.

Thus, the process Aw,T =∑ j≥1w j (N
w,T
j (·)−1)+ is independent ofFT and distributed

as Aw. We easily obtain

Aw
T+t − Aw

T = Aw,T
t +

∑

j≥1
w j1{Ew

j ≤T }1{Nw,T
j (t)≥1}, (116)

where we recall that Ew
j stands for the first jump-time of Nw

j ; E
w
j is therefore exponen-

tially distributed with mean σ1(w)/w j . Elementary calculations combined with (116)
immediately entail the following lemma.

Lemma 3.5 We keep the notation from above. For all (Ft )-stopping time T and all
a, t0, t ∈ (0,∞),

a P
(
T ≤ t0 ; Aw

T+t−Aw
T ≥ a

) ≤ E[Aw
t ] +

∑

j≥1
w jP(Ew

j ≤ t0)P(Nw
j (t) ≥ 1). (117)

Note that E[Aw
t ] =

∑
j≥1 w j (e−tw j /σ1(w)−1+ tw j

σ1(w)
). Thus,

a P
(
T ≤ t0 ; Aw

T+t−Aw
T ≥ a

) ≤ t
(
t0 + 1

2 t
) σ3(w)

σ1(w)2
. (118)

We next discuss the oscillations of Xb,w
�b,w and of Xr,w

�r,w . To that end, let us recall
that D([0,∞), R) stands for the space of R-valued càdlàg functions equipped with
Skorokhod’s topology. For all y ∈ D([0,∞), R) and for all intervals I of [0,∞), we
set

osc(y, I ) = sup
{|y(s)−y(t)|; s, t ∈ I

}
, (119)

that is the oscillation of y on I . It is easy to check that for all a<b<c,

osc(y, [a, c) ) ≤ osc(y, [a, b])+ osc(y, [b, c)) ≤ osc(y, [a, b) )+ |�y(b)| + osc(y, [b, c)) ,

(120)
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where we recall that�y(b) = y(b)−y(b−). We also recall the definition of the càdlàg
modulus of continuity of y: let z, η ∈ (0,∞); then, we set

wz(y, η) = inf
{
max
1≤i≤r osc(y, [ti−1, ti ) ) ; 0 = t0< · · ·< tr = z : min

1≤i≤r−1(ti−ti−1) ≥ η
}
,

(121)
Here the infimum is taken over the set of all subdivisions (ti )0≤i≤r , of [0, z], r being
a positive integer; note that we do not require tr − tr−1 ≥ η. We refer to Jacod &
Shiryaev [27] Chapter VI for a general introduction on Skorokhod’s topology. Recall
the definition of T ∗w in (103) and recall the definition of�b,w and�r,w in (104). Recall
also that Xw = Xb,w

�b,w + Xr,w
�r,w (see (105) in Proposition 3.2). The following lemma

is a key argument in the proof of Theorem 2.4.

Lemma 3.6 We keep the notation from above. Let η ∈ (0,∞). Then, the following
statements hold true:

(i) Almost surely, for all z0, z1, z ∈ [0,∞), if z1≤θ
b,w
z0 ≤ z, then

wz1

(
Xb,w

�b,w , η
) ≤ wz+η

(
Xw, η

)+ wz0

(
Xb,w, η

)
. (122)

(ii) Assume that we are in the supercritical cases (namely, αw = 1− σ2(w)

σ1(w) < 0)

where a.s. T ∗w <∞ and θb,w(T ∗w−) <∞. Then a.s. for all z0, z1, z ∈ [0,∞) if
z>θb,w(T ∗w−) and z0>T ∗w >2η, we have

wz1

(
Xb,w

�b,w , η
) ≤ wz+η

(
Xw, η

)+ 3wz0

(
Xb,w, 2η

)
. (123)

(iii) Almost surely on the event {z>�
r,w
z1 }, we have wz1

(
Xr,w

�r,w , η
) ≤ wz

(
Xr,w, η

)
.

Proof First note that for all intervals I , we have

osc
(
Xb,w

�b,w , I
) = sup

{∣∣Xb,w

�
b,w
t
−Xb,w

�
b,w
s

∣∣; s, t ∈ I
} = sup

{∣∣Xb,w
t −Xb,w

s

∣∣; s, t ∈ {�b,w
u ; u ∈ I

}}
.

We fix η, a, b ∈ [0, T ∗w ) such that b−a ≥ η. By the definition (101) of θb,w, we get
θ
b,w
b− −θ

b,w
a ≥b−a≥η. Since �b,w is non-decreasing and continuous, and since θb,w

is strictly increasing, we get {�b,w
t ; t ∈ [θb,w

a , θ
b,w
b− )} = [a, b) and

osc
(
Xb,w

�b,w, [θb,w
a , θ

b,w
b− )

) = osc
(
Xb,w, [a, b)

)
. (124)

We next suppose that �θ
b,w
b > 0. Then, {�b,w

t ; t ∈ [θb,w
a , θ

b,w
b )} = [a, b] and by

(120) it follows that

osc
(
Xb,w

�b,w , [θb,w
a , θ

b,w
b )

) = osc
(
Xb,w, [a, b] ) ≤ osc

(
Xb,w, [a, b)

)+ |�Xb,w
b |.
(125)
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Since the process Xb,w
�b,w is constant on [θb,w

b− , θ
b,w
b ),wegetosc

(
Xb,w

�b,w , [θb,w
b− , θ

b,w
b )

) =
0 and thus

max
(
osc

(
Xb,w

�b,w, [θb,w
a , θ

b,w
b− )

)
,osc

(
Xb,w

�b,w, [θb,w
b− , θ

b,w
b )

)) = osc
(
Xb,w, [a, b)

)
.

(126)
We next assume that �θ

b,w
b ∈ (0, η). We want to control |�Xb,w

b | in terms of the
càdlàg η-modulus of continuity of Xw. To that end, let us introduce z ∈ (0,∞) such
that θ

b,w
b− ≤ z and 0 = t0 < · · · < tr = z + η such that min1≤i≤r−1(ti − ti−1) ≥ η.

Then, there exists i ∈ {1, . . . , r} such that ti−1 ≤ θ
b,w
b− < ti and necessarily i satisfies

ti−ti−1≥η: indeed, it is clear if i <r and if i=r , then tr−1 ≤ θ
b,w
b− ≤ z< z + η= tr .

There are two cases to consider:

– If ti−1 < θ
b,w
b− , then osc(Xw, [ti−1, ti )) ≥ |�Xw(θ

b,w
b− )|. Since θ

b,w
b <∞, (109)

in Lemma 3.3 implies that |�Xw(θ
b,w
b− )| = |�Xb,w

b |. Thus, osc(Xw, [ti−1, ti ))≥
|�Xb,w

b |.
– If ti−1 = θ

b,w
b− , since �θ

b,w
b ∈ (0, η) and since ti − ti−1≥η, we get θb,w

b < ti . Then

osc(Xw, [ti−1, ti ))≥|Xw(θ
b,w
b− )−Xw(θ

b,w
b )|. Since θ

b,w
b <∞, (109) in Lemma 3.3

entails Xw((θ
b,w
b− )−) = Xw(θ

b,w
b ) and |Xw(θ

b,w
b− )−Xw(θ

b,w
b )| = |�Xw(θ

b,w
b− )| =

|�Xb,w
b |. Consequently, osc(Xw, [ti−1, ti ))≥|�Xb,w

b |.
We have proved that if �θ

b,w
b ∈ (0, η) and if θ

b,w
b− ≤ z, then |�Xb,w

b | ≤
max1≤i≤r osc(Xw, [ti−1, ti )); since it holds true for all subdivisions of [0, z + η]
satisfying the conditions as above, it follows that

a.s. on {θb,w
b− ≤ z ; �θ

b,w
b ∈ (0, η)}, |�Xb,w

b | ≤ wz+η

(
Xw, η

)
. (127)

We are now ready to prove (122). Let us fix z0, z ∈ (0,∞) and let 0 = t0 < · · ·<
tr = z0 be such that min1≤i≤r−1(ti − ti−1) ≥ η. We assume that θ

b,w
z0 ≤ z. For all

i ∈ {1, . . . , r}, we set Si = {θb,w
ti } if �θ

b,w
ti < η and we set Si = {θb,w

ti− , θ
b,w
ti } if

�θ
b,w
ti ≥η; we then define S={s0 = 0 < . . .<sr ′ = θ

b,w
z0 } = {0} ∪ S1 ∪ . . . ∪ Sr that

is a subdivision of [0, θb,w
z0 ] such that min1≤i≤r ′−1(si−si−1)≥ η (indeed, recall that

θ
b,w
ti− −θ

b,w
ti−1 ≥ ti−ti−1). By (126) (if Si has two points) and by (125) and (127) (if Si

reduces to a single point), we obtain

w
θ
b,w
z0

(
Xb,w

�b,w , η) ≤ max
1≤i≤r ′

(
osc

(
Xb,w

�b,w , [si−1, si )
)) ≤ wz+η

(
Xw, η

)+ max
1≤i≤r

(
osc

(
Xb,w, [ti−1, ti )

))
.

Since this holds true for all subdivisions (ti ) and since z′ �→ wz′(y(·), η) is nonde-
creasing, it easily entails (122) if z1≤θ

b,w
z0 ≤ z, which completes the proof of (i).

Let us prove (i i). We assume that we are in the supercritical cases. The control of
the càdlàg modulus of continuity of Xb,w ◦ �b,w is more complicated because this
process becomes eventually constant after a last jump at time θb,w(T ∗w−). To simplify
notation we set τ = θb,w(T ∗w−). We suppose that z > τ and z0 > T ∗w > 2η. We fix
z1 ∈ (0,∞). There are several cases to consider.
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•We first assume that z1 ≤ τ . If z1 < τ , then there is z′0 ∈ [0, T ∗w ) such that z1≤θ
b,w
z′0

;

next, note that θ
b,w
z′0
≤ z and z′0 ≤ z0. Thus, applying (122) to (z′0, z1, z), we get that

wz1(X
b,w
�b,w , η) ≤ wz+η(Xw, η)+ wz′0(X

b,w, η) ≤ wz+η(Xw, η)+ wz0(X
b,w, η) for all

z1 < τ . We then extend this to z1 ≤ τ by using a basic property of the càdlàg modulus
of continuity: limz1→τ−wz1(X

b,w
�b,w , η) = wτ (X

b,w
�b,w , η). Thus we have proved for all

z1 ∈ [0, τ ],
wz1

(
Xb,w

�b,w , η
) ≤ wz+η

(
Xw, η

)+ wz0

(
Xb,w, η

)
, (128)

which implies (123) when z1 ≤ τ .
•We next assume that z1>τ . Observe that �(Xb,w◦�b,w)(τ ) = �Xb,w(T ∗w ). There
are two subcases to consider.

◦ We first assume that z1>τ and that�Xb,w(T ∗w ) ≤ wz0(X
b,w, 2η). As an easy con-

sequence of (120) and of the definition (121) of the càdlàg modulus of continuity,
wegetwz1

(
Xb,w

�b,w , η
) ≤ wτ

(
Xb,w

�b,w , η
)+�(Xb,w◦�b,w)(τ )+osc(Xb,w

�b,w , [τ, z1)
)
.

Since Xb,w◦�b,w is constant on [τ,∞), we getwz1

(
Xb,w

�b,w , η
) ≤ wτ

(
Xb,w

�b,w , η
)+

wz0(X
b,w, 2η), which implies (123) thanks to (128) and since wz0(X

b,w, η) ≤
wz0(X

b,w, 2η).
◦ Now assume that �Xb,w(T ∗w ) > wz0(X

b,w, 2η). Then there exists a subdivision
t0 = 0< t1< · · ·< tr = z0 such that min1≤i≤r−1(ti − ti−1)≥2η and such that

max
1≤i≤r osc(Xb,w, [ti−1, ti ))<(2wz0(X

b,w, 2η)) ∧�Xb,w(T ∗w ),

which, combined with the assumption T ∗w > 2η, implies that there exists i ∈
{1, . . . , r−1} such that ti = T ∗w . Thus, osc(Xb,w, [ti−1, T ∗w ))< 2wz0(X

b,w, 2η).
By (124) applied to a = ti−1 and all b < T ∗w , we get osc(Xb,w

�b,w , [θb,w
ti−1 , τ )) <

2wz0(X
b,w, 2η). Recall that τ − θ

b,w
ti−1 ≥ T ∗w − ti−1 ≥ 2η. Consequently, there is

z′1 ∈ (θ
b,w
ti−1 , τ−η) such that

�(Xb,w◦�b,w)(z′1) = 0 and osc
(
Xb,w

�b,w , [z′1, τ )
)
<2wz0(X

b,w, 2η) . (129)

Let s0= 0< s1 < · · ·< sr = z′1 be such that min1≤i≤r−1(si−si−1)≥η. We define
the subdivision (s′i )0≤i≤r+1 of [0, z1] by setting s′i = si for all i ∈ {0, . . . , r−1}
and s′r = τ , s′r+1 = z1. Clearly, min1≤i≤r (s′i−s′i−1)≥η since τ−z′1>η. Note that

osc(Xb,w
�b,w, [τ, z1)) = 0. On the other hand, since �(Xb,w◦�b,w)(z′1) = 0, (120)

and (129) imply that

osc
(
Xb,w

�b,w , [s′r−1, τ )
) ≤ osc

(
Xb,w

�b,w, [sr−1, z′1)
)+ osc

(
Xb,w

�b,w, [z′1, τ )
)

< osc
(
Xb,w

�b,w, [sr−1, z′1)
)+ 2wz0(X

b,w, 2η) .

Putting all these together, we obtain

wz1 (X
b,w
�b,w , η) ≤ max

1≤i≤r+1osc
(
Xb,w

�b,w , [s′i−1, s′i )
) ≤ max

1≤i≤r osc
(
Xb,w

�b,w , [si−1, si )
)+ 2wz0 (X

b,w, 2η).
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Since (si ) is arbitrary,wegetwz1(X
b,w
�b,w , η) ≤ wz′1(X

b,w
�b,w , η)+2wz0(X

b,w, 2η) and

we obtain (123) thanks to (128) and the fact that wz0(X
b,w, η) ≤ wz0(X

b,w, 2η).
This completes the proof of (i i).

The proof of (i i i) is similar and simpler. In (111) recall that θ
r,w
t = inf{s ∈

[0,∞) : �r,w
s > t}. Let b > a. In Lemma 3.3 recall that θ

r,w
b− − θ

r,w
a ≥ b−a and

observe that {�r,w
t ; t ∈ [θr,w

a , θ
r,w
b− )} = [a, b). Thus, osc

(
Xr,w

�r,w, [θr,w
a , θ

r,w
b− )

) =
osc

(
Xr,w, [a, b)

)
. Suppose next that �θ

r,w
b > 0. Then, {�r,w

t ; t ∈ [θr,w
a , θ

r,w
b )} =

[a, b] but since |�Xr,w
b | = 0 by Lemma 3.3, we get osc

(
Xr,w

�r,w , [θr,w
a , θ

r,w
b )

) =
osc

(
Xr,w, [a, b] ) = osc

(
Xr,w, [a, b)

)
. Thus, we have proved for all b>a,

osc
(
Xr,w

�r,w , [θr,w
a , θ

r,w
b− )

) = osc
(
Xr,w

�r,w, [θr,w
a , θ

r,w
b )

) = osc
(
Xr,w, [a, b)

)
.

To complete the proof of (i i i) we then argue as in the proof of (122). ��

4 Previous results on the continuous setting

This section is a recap on the construction of the continuum graph in [17]. In more
detail in Sect. 4.1, we recall the construction of Lévy trees, which constitute the limits
of the Galton–Watson trees, from a spectrally positive Lévy process. We also briefly
explain how to extend this construction to the case where the Lévy process has a
positive drift. In Sect. 4.2, we introduce the analogue of the blue and red processes in
the continuous setting, based on which we are able to define a limit height process for
the graph.

4.1 Preliminary results on spectrally positive Lévy processes and their height
process

In this sectionwe briefly recall the known results that we need on the analogues (X , H)

in the continuous setting of the processes (Xw, Hw) encoding the Markovian queue.
More precisley, we fix α ∈ R, β ∈ [0,∞), κ ∈ (0,∞), c = (c j ) j≥1 ∈ �

↓
3 and we set,

for λ ∈ [0,∞),

ψ(λ) = αλ+ 1
2 βλ2 +

∑

j≥1
κc j
(
e−λc j−1+ λc j

)
.

Let (Xt )t∈[0,∞) be a spectrally positive Lévy process with initial state X0 = 0 and
with Laplace exponent ψ : namely, logE[exp(−λXt )] = tψ(λ), for all t, λ ∈ [0,∞).
The Lévy measure of X is π = ∑ j≥1 κc jδc j , β is its Brownian parameter and α is
its drift.

First, note that these cases include the discrete processes Xw by taking c = w ∈ �
↓
f ,

κ = 1/σ1(w), β = 0 and α = 1− σ2(w)

σ1(w) . However, in the sequel we shall focus
on the cases where X has infinite variation sample paths, which is equivalent to the
following conditions: β > 0 or σ2(c) =

∫
(0,∞)

r π(dr) = ∞, by standard results
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on Lévy processes. If α ≥ 0, then a.s. lim inf t→∞ Xt = −∞ and if α < 0, then
a.s. limt→∞ Xt = ∞. By analogy with the discrete setting, we refer to the following
cases as

the supercritical cases if α<0, the critical cases if α = 0, the subcritical cases if α>0.
(130)

We next introduce the process γ defined for x ∈ [0,∞) by

γx = inf{s ∈ [0,∞) : Xs <−x} . (131)

with the convention that inf ∅ = ∞. For all t ∈ [0,∞), we also set

It = inf
s∈[0,t] Xs and I∞ = lim

t→∞It . (132)

Note that I∞ is a.s. finite in supercritical cases and a.s. infinite in critical or subcritical
cases. Observe that γx <∞ if and only if x <−I∞. Standard results on spectrally
positive Lévy processes (see e.g. Bertoin’s book [6] Ch. VII) assert that (γx )x∈[0,∞) is
a subordinator (a killed subordinator in supercritical cases) whose Laplace exponent
is given for all λ ∈ [0,∞) by

E
[
e−λγx

] = e−xψ−1(λ) where ψ−1(λ) = inf
{
u ∈ [0,∞) : ψ(u)>λ

}
. (133)

We set � = ψ−1(0) that is the largest root of ψ . Note that �>0 if and only if α <0.
The following elementary lemma gathers basic properties of X that are used further
in the proofs.

Lemma 4.1 Let X be a spectrally positive Lévy process with Laplace exponent ψ

given by (9) and with initial value X0 = 0. Assume that there is λ ∈ (0,∞) such that
ψ(λ) > 0. Let ψ−1 be as in (133) and recall that � = ψ−1(0) is the largest root of
ψ . Let X stand for a spectrally positive Lévy process with Laplace exponent ψ(�+ ·)
and with initial value 0. Then, the following statements hold true:

(i) A.s. lim inf t→∞ Xt = −∞. Moreover, for all t ∈ [0,∞) and for any nonnegative
measurable functional F :D([0,∞), R)→R,

E
[
F(X ·∧t )]=E

[
exp(�Xt ) F(X ·∧t )

]
. (134)

(ii) The càdlàg process x ∈ [0,∞) �→ γx (X) := inf{s ∈ [0,∞) : Xs < −x} is a
(conservative) subordinator with Laplace exponent ψ−1(·)−�.

(iii) For all x ∈ [0,∞), we set

γ x = γx if x<−I∞ and γ x = γ ((−I∞)−) if x≥−I∞. (135)

Let E be an exponentially distributed r.v. with parameter � that is independent
from X (with the convention that a.s. E = ∞ if � = 0). Then,

(
(γ x )x∈[0,∞) ,−I∞

) (law)= (
(γx∧E (X))x∈[0,∞) , E) . (136)
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(iv) Let (Gx )x∈[0,∞) be a right-continuous filtration such that for all x, y ∈ [0,∞), γx
is Gx -measurable and γx+y−γx is independent of Gx . Let T be a (Gx )-stopping
time. Then, for all x, ε ∈ (0,∞),

P
(
γ x+T − γ T > ε ; T <∞) ≤ P

(
γx > ε

) ≤ 1− e−xψ−1(1/ε)

1− e−1
. (137)

Proof The assertions in (i), (i i) and (i i i) are (easy consequences of) standard results
that can be found e.g. in Bertoin’s book [6] Chapter VII.We only need to prove (iv). To
that end, first note that the second inequality in (137) is a consequence of a standard
inequality combined with (133). Then, note that in the critical or subcritical cases
where γ = γ , the first inequality in (137) is a straightforward consequence of the fact
that γ is a subordinator. Therefore, we now assume that �>0. Let γ ∗ be a copy of γ

that is independent of G∞. Then, we set γ ′ = γ ·+T − γT if T <∞ and γT <∞, and
γ ′ = γ ∗ otherwise. Then, γ ′ is independent of GT and it is distributed as γ . We next
set E ′ = sup{x ∈ (0,∞) : γ ′x <∞}; we also define γ ′ by setting γ ′x = γ ′x if x < E ′
and γ ′x = γ ′(E ′−) if x≥E ′. Thus,

P(γ x+T−γ T > ε ; T <∞) = P(γ ′x > ε; γT <∞; T <∞) = P(γ ′x > ε)P(γT <∞; T <∞) .

Then observe that P(γ ′x >ε) ≤ P(γ ′x >ε)=P(γx >ε), which completes the proof of
(137). ��

Height process of X We next define the analogue of Hw. To that end, let us recall
that ψ further satisfies Grey’s condition (10). In particular, note that (10) implies that
either β > 0 or σ2(c) = ∞, so that (10) ensures that X has infinite variation sample
paths. Le Gall & Le Jan [31] (see also Le Gall & D. [19]) prove that there exists a
continuous process H = (Ht )t∈[0,∞) such that the following limit holds true for all
t ∈ [0,∞) in probability:

Ht = lim
ε→0

1

ε

∫ t

0
1{Xs−infr∈[s,t] Xr≤ε} ds . (138)

Note that (138) is a local time version of (114). We refer to H as the height process of
X.

Remark 4.1 Let us mention that in Le Gall & Le Jan [31] and Le Gall & D. [19],
the height process H is introduced only for critical and subcritical spectrally positive
processes. However, it easily extends to supercritical cases thanks to (134). ��

We next recall here that the excursions of X above its running infimum process I are
the same as the excursions of H above 0. More specifically, X − I and H have the
same set of zeros:

Z := {t ∈R+ : Ht=0} = {t ∈R+ : Xt= It } (139)
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(see Le Gall & D. [19] Chapter 1). We also recall that since −I is a local time for
X− I at 0, the topological support of the Stieltjes measure d(−I ) is Z . Namely,

P-a.s. for all s, t ∈ [0,∞) such that s< t,
(
(s, t)∩Z �= ∅

)
⇐⇒

(
Is > It

)
(140)

We shall also recall here the following result:

∀x, a ∈ (0,∞), P
(

sup
t∈[0,γx ]

Ht ≤ a
)
= e−xv(a) where

∫ ∞

v(a)

dλ

ψ(λ)
= a .

(141)
Here, γx is given by (131) and we see that the integral equation completely determines
the function v : (0,∞)→ (�,∞) that is bijective, decreasing and C∞. In the critical
and subcritical cases, this result is a consequence from the excursion theory for H
and from Corollary 1.4.2 in Le Gall & D. [19], p. 41. This result remains true in the
supercritical cases thanks to (134): we leave the details to the readers.

4.2 The red and blue processes in the continuous setting

In this section, we give the precise definition of the analogues in the continuous setting
of the processes Xb,w, Xr,w,Y w, Aw, θb,w, etc that have been introduced in [17]. Let
us start with some notation and some convention.

Let (Ft )t∈[0,∞) be a filtration on (�,F ) that is specified further. A process
(Zt )t∈[0,∞) is said to be an (Ft )-Lévy process with initial value 0 if a.s. Z is càdlàg,
Z0 = 0 and if for any a.s. finite (Ft )-stopping time T , the process ZT+ ·− ZT is
independent of FT and has the same law as Z .

Let (Mj (·)) j≥1 be a sequence of càdlàg (Ft )-martingales that are L2-summable and
orthogonal: namely, for all t ∈ [0,∞),

∑
j≥1 E

[
Mj (t)2

]
<∞ and E[Mj (t)Mk(t)] =

0 if k > j . By Doob’s inequality, we have E
[
sups∈[0,t](

∑
j≤l≤k Ml(s)

)2] ≤
4
∑

l> j E[Ml(t)2], for all k ≥ j ≥ 1 and all t ∈ [0,∞). It follows that there is a
unique càdlàg (Ft )-martingale M such that for all t ∈ [0,∞), E

[
sups∈[0,t]

∣∣M(s)−
∑

1≤k≤ j Mk(s)
∣∣2]→ 0, as j →∞. We denote M by

∑⊥
j≥1 Mj .

Blue processesWe fix the parameters α ∈ R, β ∈ [0,∞), κ ∈ (0,∞), c = (c j ) j≥1 ∈
�
↓
3 . Let (Bt )t∈[0,∞), (N j (t))t∈[0,∞), j≥1 be processes that satisfy the following.

(b1) B is an (Ft )-real valued standard Brownian motion.
(b2) For all j ≥ 1, N j is an (Ft )-homogeneous Poisson process with jump-rate
κc j .
(b3) The processes B, N j , j≥1, are independent.

The blue Lévy process is then defined by, for t ∈ [0,∞),

Xb
t = −αt +√βBt +

∑

j≥1
⊥ c j

(
N j (t)−c jκt

)
. (142)
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Clearly Xb is an (Ft )-spectrally positiveLévy processwith initial value 0withLaplace
exponent ψ as defined in (9). We next introduce the analogues of the processes Aw

and Y w in (100). To that end, note that E[c j (N j (t)−1)+] = c j
(
e−c jκt−1+ c jκt

) ≤
1
2 (κt)

2c3j . So it makes sense to define, for t ∈ [0,∞),

At = 1
2 κβt2 +

∑

j≥1
c j
(
N j (t)−1

)
+ and Yt = Xb

t −At . (143)

To view Y as in (13), set E j = inf{t ∈ [0,∞) : N j (t) = 1}; note that c j (N j (t)−
c jκt)−c j (N j (t)−1)+ = c j (1{E j≤t} −c jκt) and check that c j (1{E j≤t} −c jκt) =
M ′j (t)−κc2j (t−E j )+, where M ′j is a centered (Ft )-martingale such that E[M ′j (t)2] =
c2j (1−e−c jκt ) ≤ κtc3j . Since E[κc2j (t−E j )+] ≤ κtc2j (1−e−κc j t ) ≤ κ2t2c3j , it makes
sense to write for all t ∈ [0,∞),

Yt = −αt− 1
2 κβt2 +√βBt +

∑

j≥1
⊥c j
(
1{E j≤t}−κc j (t∧ E j )

)−
∑

j≥1
κc2j (t−E j )+

= −αt− 1
2 κβt2 +√βBt +

∑

j≥1
c j (1{E j≤t}−c jκt). (144)

Namely the jump-times of Y are the E j and �YE j = c j .

Red and bi-coloured processes We next introduce the red process Xr that satisfies
the following.

(r1) Xr is an (Ft )-spectrally positive Lévy process starting at 0 andwhose Laplace
exponent is ψ in (9).
(r2) Xr is independent of the processes B and (N j ) j≥1.

We next introduce, for x, t ∈ [0,∞),

γ r
x = inf{s ∈ [0,∞) : Xr

s <−x} and θbt = t + γ r
At

, (145)

with the convention that inf ∅ = ∞. For all t ∈ [0,∞), we set Irt = infs∈[0,t] Xr
s

and Ir∞ = limt→∞ Irt that is a.s. finite in supercritical cases and that is a.s. infinite in
critical or subcritical cases. Note that γ r

x <∞ if and only if x <−Ir∞. Recall that �

stands for the largest root of ψ : in supercritical cases, �>0 and−Ir∞ is exponentially
distributed with parameter �, as recalled in Lemma 4.1 (i i i). We next set

T ∗ = sup{t ∈ [0,∞) : θbt <∞} = sup{t ∈ [0,∞) : At <−Ir∞} . (146)

In critical and subcritical cases,T ∗ = ∞ and θb only takesfinite values. In supercritical
cases, a.s. T ∗<∞ and we check that θb(T ∗−)<∞. We next define, for t ∈ [0,∞),

�b
t = inf{s ∈ [0,∞) : θbs > t} and �r

t = t −�b
t . (147)

Both processes�b and�r are continuous andnondecreasing. In critical and subcritical
cases, we also get a.s. limt→∞�b

t = ∞ and �b(θbt ) = t for all t ∈ [0,∞). However,
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in supercritical cases, a.s. �b
t = T ∗ for all t ∈ [θb(T ∗−),∞) and a.s. for all t ∈

[0, T ∗),�b(θbt ) = t . In the following theoremwe quote from [17] the results about the
previous processes that we need; in particular, it contains the analogue of Proposition
3.2.

Theorem 4.2 Let (α, β, κ, c) be as in (8). Assume that either β > 0 or σ2(c) = ∞.
We keep the previous definition for Xb, A, Y , Xr, θb, T ∗, �b and �r.

(i) A.s. the process A is strictly increasing and the process Y has infinite variation
sample paths.

(ii) The process �r is continuous, nondecreasing and a.s. limt→∞�r
t = ∞.

(iii) For all t ∈ [0,∞), we set
Xt = Xb

�b
t
+ Xr

�r
t
; (148)

the processes X, Xb and X r have the same law: namely, X is a spectrally positive
Lévy process with initial value 0 and Laplace exponent ψ as in (9). Moreover,

Yt = Xθbt
a.s. for all t ∈ [0, T ∗). (149)

Proof For (i), see Lemma 2.4 in [17]; for (i i) and (i i i), see Theorem 2.5 in [17]. ��
The red and blue processes behave quite similarly as in the discrete setting (see

Lemma 3.3). More precisely, we recall from [17] the various properties concerning
the red and blue processes that are used in the proof.

Lemma 4.3 We keep the assumption of Theorem 4.2. Then, the following statements
hold true.

(i) P-a.s. for all a ∈ [0, T ∗), if �θba =0, then t = θba is the unique t ∈ [0,∞) such
that �b

t = a.
(ii) P-a.s. for all a ∈ [0, T ∗], if �θba > 0, then �X(θba−) = �Aa and �Ya = 0.

Moreover, for t ∈ (θba−, θba
)
,

Xt ≥ Xt−> X(θba−)−=Ya and if a < T ∗, then X(θba−)−= Xθba
.

(iii) P-a.s. if (�Xr)(�r
t )>0, then there exists a ∈ [0, T ∗] such that θba−< t<θba .

(iv) P-a.s. for all b ∈ [0,∞) such that �Xr
b > 0, there is a unique t ∈ [0,∞) such

that �r
t = b.

(v) For all t ∈ [0,∞), set Qb
t = Xb

�b
t
and Qr

t = Xr
�r

t
. Then, a.s. for all t ∈ [0,∞),

�Qb
t �Qr

t = 0.

Proof For (i) and (i i), see Lemma 5.4 in [17]; for (i i i), (iv) and (v), see Lemma 5.5
in [17]. ��
The excursions of Y above its running infimum Let X be derived from Xb and
Xr as in (148) and recall the notation It = infs∈[0,t] Xs for the running infimum
process of X . Thanks to (140), we can say that −I is a local-time for the set of zeros
Z = {t ∈ [0,∞) : Xt = It }. Let Y be defined by (143) and recall the notation
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Jt = infs∈[0,t] Ys in (16). The following lemma (recalled from [17]) asserts that−J is
a local-time for the set Z b = {t ∈ [0,∞) : Yt = Jt } (more precisely, it shows that
Z b is bijectively sent to Z via �b).

Lemma 4.4 We keep the assumptions of Theorem 4.2. Then, the following holds true.

(i) A.s. for all t ∈ [0,∞), Xt ≥ Y (�b
t ). Then, a.s. for all t1, t2 ∈ [0,∞) such

that �b
t1 < �b

t2 , infs∈[t1,t2] Xs = infa∈[�b(t1),�b(t2)] Ya. It implies that a.s. for all
t ∈ [0,∞), It = J (�b

t ).
(ii) A.s.

{
t ∈ [0,∞) : Xt > It

} = {t ∈ [0,∞) : Y (�b
t )> J (�b

t )
}
.

(iii) A.s. the set E = {a ∈ [0,∞) : Ya > Ja
}
is open. Moreover, if (l, r) is a connected

component of E , then Yl = Yr = Jl = Jr and for all a ∈ (l, r), we get Ja = Jl
and Ya−∧Ya > Jl .

(iv) Set Z b = {a ∈ [0,∞) :Ya = Ja}. Then, P-a.s.

for all a, z ∈ [0,∞) such that a< z,
(
Z b∩ (a, z) �= ∅

)
⇐⇒

(
Jz < Ja

)
.

(150)

Proof See Lemma 5.7 in [17]. ��
We next recall the following result due to Aldous & Limic [4] (Proposition 14,

p. 20) that is used in our proofs.

Proposition 4.5 (Proposition 14 [4])We keep the assumptions of Theorem 4.2 and the
previous notation. Then, the following holds true.

(i) For all a ∈ [0,∞), P(Ya = Ja) = 0.
(ii) P-a.s. the set {a ∈ [0,∞) :Ya= Ja} contains no isolated points.
(iii) Set Ma = max{r−l ; r ≥ l≥a : (l, r) is an excursion interval of Y− J above 0}.

Then, Ma→0 in probability as a→∞.

Proof The process (Ys/κ )s∈[0,∞) is the process W κ ′,−τ,c in [4], where κ ′ = β/κ and
τ=α/κ (note that the letter κ plays another role in [4]). Then (i) (resp. (i i) and (i i i))
is Proposition 14 [4] (b) (resp. (d) and (c)). ��
Thanks to Proposition 4.5 (i i i), the excursion intervals of Y−J above 0 can be listed
as follows

{a ∈ [0,∞) : Ya > Ja} =
⋃

k≥1
(lk, rk) . (151)

where ζk = rk− lk , k ≥ 1, is decreasing. Then, as a consequence of Theorem 2 in
Aldous & Limic [4], p. 4, we recall the following

Proposition 4.6 (Theorem 2 [4]) We keep the assumptions of Theorem 4.2 and the
previous notation. Then, (ζk)k≥1, that is the ordered sequence of lengths of the excur-
sions of Y− J above 0, is distributed as the (β/κ, α/κ, c)-multiplicative coalescent
(as defined in [4]) taken at time 0. In particular, we get a.s.

∑
k≥1 ζ 2

k <∞.

Height process of Y We define the analogue of Hw in the continuous setting thanks
to the following theorem that is recalled from various results in [17].
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914 N. Broutin et al.

Theorem 4.7 Let (α, β, κ, c) be as in (8) and assume that (10) holds, which implies
the assumptions of Theorem 4.2. Let X be derived from Xb and Xr by (148). Let H
be the height process associated with X as defined by (138) (and by Remark 4.1 in the
supercritical cases). Then, there exists a continuous process (Ht )t∈[0,∞) such that for
all t ∈ [0,∞), Ht is a.s. equal to a measurable functional of (Y·∧t , A·∧t ) and such
that

Ht = Hθbt
, a.s. for all t ∈ [0, T ∗). (152)

We refer toH as the height process associated with Y .

Proof See Theorem 2.6 in [17]. ��
As for H and X−I , the following lemma (recalled from [17]) asserts that the excursion
intervals of H and Y− J above 0 are the same.

Lemma 4.8 We keep the same assumptions as in Theorem 4.7. Then, the following
holds true.

(i) Almost surely for all t ∈ [0,∞), Ht ≥H(�b
t ) and a.s. for all t1, t2 ∈ [0,∞) such

that �b
t1 <�b

t2 , infs∈[t1,t2] Hs = infa∈[�b(t1),�b(t2)]Ha.
(ii) Almost surely

{
a ∈ [0,∞) : Ya > Ja

}={a ∈ [0,∞) : Ha >0
}
.

Proof See Lemma 5.11 in [17]. ��

5 Convergence of the graphs

In this section, we derive the convergence of the connected components of the graphs
provided that the coding processes converge. More precisely, recall the definitions of
Y w and Aw in (100) and that of Hw in (112). Recall also the definitions of Y and A
in (143) and that ofH in Theorem 4.7. We prove Theorem 2.4, Theorems 2.5 and 2.8
subject to the following proposition whose proof is postponed to Sect. 6.

Proposition 5.1 Under the assumptions of Theorem 2.4, we have

Qn :=
(

1
an Y

wn
bn ·,

1
an A

wn
bn ·,

an
bn
Hwn

bn ·
) −−−−→

n→∞
(
Y , A,H)=:Q (153)

weakly on (D([0,∞), R))2×C([0,∞), R) equipped with the product-topology.

Proof See Sect. 6. ��

5.1 Proof of Theorem 2.4

Subject to Proposition 5.1, in order to complete the proof of Theorem 2.4, it remains
to prove the convergence of the sequences of pairs of pinching times �wn (see (3) and
(4) for a definition). This is done by a soft argument involving a coupling.

Recall the definition of � in (17) and in (18). By Skorokhod’s representation the-
orem (but with a slight abuse of notation) we can assume without loss of generality
that (153) holds almost surely: namely, a.s. Qn→Q. Then, we couple the �wn and
� as follows.
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– LetR =∑i∈I δ(ti ,ri ,ui ) be a Poisson point measure on [0,∞)3 with intensity the
Lebesgue measure dtdrdv on [0,∞)3. We assume that R is independent of Q
and of (Qn)n∈N.

– We set κn = anbn/σ1(wn) and for all t ∈ [0,∞) we set Znt = 1
an (Y wn

bnt
− Jwnbnt

),

where we recall that Jwnbnt
= infs∈[0,bnt] Y

wn
s . We then set Sn={(t, r , v) ∈ [0,∞)3 :

0< r <Znt and 0 ≤ v≤ κn} and we define Pn = ∑i∈I 1{(ti ,ri ,ui )∈Sn}δ(ti ,ri ,ui ) =:∑
1≤p<pn δ(tnp ,r

n
p,v

n
p)
, where the ordering is such that the finite sequence (tnp)1≤p<pn

increases. Note that since Zn is eventually null, Pn is a finite point process.
– For all t ∈ [0,∞), for all r ∈ R and for all z ∈ D([0,∞), R), we set

τ(z, t, r)= inf
{
s ∈ [0, t] : inf

u∈[s,t] z(u)>r
}
with the convention that inf ∅ = ∞.

(154)
Then, we set

1
bn

�wn =
(
(snp, t

n
p)
)
1≤p<pn

where s pn = τ(Zn, tnp, r
n
p), 1 ≤ p < pn . (155)

Thanks to (3) and (4), we see that given Y wn, 1
bn �wn has the right law. For convenience,

we set (snp, t
n
p) = (−1,−1), for all p≥pn .

Similarly, we set Z∞t = Yt − Jt , where Jt = infs∈[0,t] Ys and we also set
S = {(t, r , v) ∈ [0,∞)3 : 0 < r < Z∞t and 0 ≤ v ≤ κ}; we then define
P = ∑i∈I 1{(ti ,ri ,ui )∈S}δ(ti ,ri ,ui ) =:

∑
p≥1 δ(tp,r ′p,vp), where the indexation is such

that (tp)p≥1 increases. Then, set

� = ((sp, tp)
)
p≥1 where sp = τ(Z∞, tp, r

′
p) for p ≥ 1. (156)

It is easy to check that � has the right law conditional on Y .
First observe that κn → κ > 0, by the last point of (21). Next, we prove that

Zn→Z∞ a.s. inD([0,∞), R): indeed, since Y has no negative jumps, J is continuous
and by Proposition 5.1 and by Lemma B.3 (i i), ( 1

an J
wn
bnt

)t∈[0,∞)→ (Jt )t∈[0,∞) a.s. in
C([0,∞), R). Since J is continuous,Y and J do not share any jump-times, Proposition
5.1 and Lemma B.1 (i i i) imply that ( 1

an (Y wn
bnt

, Jwnbnt
))t∈[0,∞)→((Yt , Jt ))t∈[0,∞) a.s. in

D([0,∞), R
2), which entails that Zn→Z∞ a.s. in D([0,∞), R).

Let us fix a, b, c ∈ (0,∞) such that

b> 2 sup
n∈N∪{∞}

sup
s∈[0,a]

Zns and c> 2 sup
n∈N∪{∞}

κn .

Here b is random but only depends on the Qn . We introduce

∑

1≤l≤N
δ(t∗l ,r∗l ,u∗l ) :=

∑

i∈I
1{ti<a ; ri<b ; ui<c}δ(ti ,ri ,ui ),

where (t∗l )1≤l≤N increases. Conditional on (Qn)n∈N, the r.v. N is a Poisson r.v. with
mean abc. Note that conditional on N and (Qn)n∈N, the law of the r.v. (t∗l , r∗l , u∗l )
is absolutely continuous with respect to Lebesgue measure. Therefore, a.s. for all
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916 N. Broutin et al.

l ∈ {1, . . . , N } (if any), �Z∞t∗l = 0, u∗l �= κ , and r∗l �= Z∞t∗l , and if r∗l < Z∞t∗l , then
we get τ(Z∞, t∗l , r∗l −) = τ(Z∞, t∗l , r∗l ) because by Lemma B.3 (iv), the function
r �→ τ(Z∞, t∗l , r) is right-continuous and it has therefore a countable number of
discontinuities. Since �Z∞t∗l = 0, Lemma B.1 (i i) entails that Znt∗l

→Z∞t∗l , and for all

sufficiently large n, u∗l �=κn and r∗l �=Znt∗l
, and if r∗l <Znt∗l

, then Lemma B.3 (iv) shows

that τ(Zn, t∗l , r∗l )→τ(Z∞, t∗l , r∗l ). This proves that if tp <a, then (snp, t
n
p)→(sp, tp),

since we have tnp = tp for n sufficiently large as a consequence of the above coupling.

Since a can be arbitrarily large, we get 1
bn �wn→� a.s. in (R2)N

∗
equipped with the

product topology. This, combined with Proposition 5.1, completes the proof.

5.2 Proof of Theorem 2.5

FromTheorem2.4,wederiveTheorem2.5 that states the convergenceof the excursions
of the processes encoding the connected components of the graphs.

More precisely, recall the definition of Y in (143). In Theorem 4.7, recall the exis-
tence and the properties ofH, the height process associated with Y . Recall the notation
Jt = infs∈[0,t] Ys , t ∈ [0,∞). Lemma 4.8 (i i) asserts that the excursions ofH above 0
and those of Y−J above 0 are the same. As recalled in Proposition 4.5, Proposition 14
in Aldous & Limic [4] asserts that these excursions can be indexed in the decreasing
order of their lengths. Namely,

{
t ∈ [0,∞) : Ht > 0

} = {t ∈ [0,∞) : Yt > Jt
} =

⋃

k≥1
(lk, rk) , (157)

where the sequence ζk = lk − rk , k ≥ 1, decreases. Moreover, the sequence (ζk)k≥1
appears as a version of the multiplicative coalescent at a fixed time: see Theorem
2 in Aldous & Limic [4] (recalled in Proposition 4.6). In particular, it implies that
a.s.
∑

k≥1 ζ 2
k <∞. Recall the definition of excursion processes ofH and Y−J above

0 in (43): for k≥1 and t ∈ [0,∞), we have

Hk(t) = H(lk+t)∧rk and Yk(t) = Y(lk+t)∧rk − Jlk . (158)

Next recall the definition of � = ((sp, tp)
)
p≥1 introduced in (17) and (18).

Let an, bn ∈ (0,∞) and wn ∈ �
↓
f , n ∈ N, satisfy (21) and (C1)–(C4) as in (29),

(30) and (34). Recall the definition of Y wn in (100), whileHwn is the associated height
process in (112). Recall the definition of �wn in (3) and (4). For all t ∈ [0,∞), to
simplify notation, we introduce the following:

Y (n)

t := 1
an Y

wn
bnt

, J (n)

t := inf
s∈[0,t] Y

(n)
s ,H(n)

t := an
bn
Hwn

bnt
, �(n) := 1

bn
�wn =:

(
(snp, t

n
p)
)
1≤p<pn

.

(159)
Recall that (see (40))

{
t ∈ [0,∞) : H(n)

t >0
} = {t ∈ [0,∞) : Y (n)

t > J (n)

t
} =

⋃

1≤k≤qwn
[lnk , rnk ) (160)
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where the indexation is such that the ζ n
k := rnk − lnk are nonincreasing and such that

lnk < lnk+1 if ζ n
k = ζ n

k+1 (within the notation of (40), lnk = lwnk /bn , rnk = rwnk /bn and
ζ n
k = ζ

wn
k /bn).

By Skorokhod’s representation theorem (but with a slight abuse of notation) we
can assume without loss of generality that (39) in Theorem 2.4 holds P-a.s. We first
prove the following lemma.

Lemma 5.2 We keep the previous notation and we assume that (39) in Theorem 2.4
holds P-a.s. Then, for all k, n≥ 1, there exists a sequence j(n, k) ∈ {1, . . . ,qwn } such
that P-a.s. for all k≥1,

(
lnj(n,k), r

n
j(n,k)

) −−−−→
n→∞

(
lk, rk

)
. (161)

Proof Fix k ≥ 1 and let t0 ∈ (lk, rk); note that lk = sup{t ∈ [0, t0] : Ht = 0} and
rk = inf{t ∈ [t0,∞) :Ht = 0}. For all n≥ 1, set γ (n) = sup{t ∈ [0, t0) :H(n)

t = 0}
and δ(n) = inf{t ∈ [t0,∞) :H(n)

t = 0}. Let q and r be such that lk <q < t0 < r < rk .
Since inf t∈[q,r ]Ht > 0, for all sufficiently large n, we get inf t∈[q,r ]H(n)

t > 0, which
implies that γ (n) ≤ q and r ≤ δ(n). This easily implies that lim supn→∞ γ (n) ≤ lk
and rk ≤ lim infn→∞ δ(n).

Let q and r be such that q < lk and rk < r . Since Hlk =Hrk = 0, (150) in Lemma
4.4 (iv) implies that Jq > Jt0 > Jr . Since J is continuous, Lemma B.1 (i i i) entails that
J (n)→ J a.s. in C([0,∞), R). Thus, for all sufficiently large n, J (n)

q > J (n)

t0 > J (n)
r ; by

definition, it implies that Y (n)−J (n) (and thusH(n)) hits the value 0 between the times
q and t0 and between the times t0 and r : namely, for all sufficiently large n, γ (n)≥q
and δ(n) ≤ r . This easily entails lim infn→∞ γ (n)≥ lk and rk ≥ lim supn→∞ δ(n),
and we have proved that limn→∞ γ (n)= lk and limn→∞ δ(n) = rk .

Let n0 ≥ 1 be such that for all n ≥ n0, H(n)

t0 > 0. Then, for all n ≥ n0, there exists
j(n, k) ∈ {1, . . . ,qwn } such that γ (n) = lnj(n,k) and δ(n) = rnj(n,k); for all n ≤ n0, we
take for instance j(n, k) = 1. Then, (161) holds true, which completes the proof. ��

We next recall that Proposition 2.9 (Proposition 7 in Aldous & Limic [4]) asserts
that

∑
1≤k≤qwn (ζ

n
k )2 → ∑

k≥1(ζk)2 weakly on [0,∞) as n→∞. We use this result
to prove the following

Lemma 5.3 We keep the previous notation and follow the assumptions of Theorem 2.4.
Then

Q′n :=
(
Y (n),H(n),�(n),

∑

1≤k≤qwn
(ζ n

k )2
)
−−−−→
n→∞ Q′ :=

(
Y ,H,�,

∑

k≥1
(ζk)

2
)

(162)

weakly on D([0,∞), R) ×C([0,∞), R)× (R2)N
∗×[0,∞), equipped with product

topology.

Proof First note that the laws of theQ′n are tight. It follows from (39) in Theorem 2.4
combined with the weak convergence

∑
1≤k≤qwn (ζ

n
k )2→∑

k≥1(ζk)2. We only need
to prove that the law of Q′ is the unique limit law. To that end, let (n(p))p∈N be an
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increasing sequence of integers such that Q′n(p)→ (Y ,H,�, Z) weakly. It remains

to prove that Z = ∑k≥1(ζk)2. Without loss of generality (but with a slight abuse
of notation), by Skorokhod’s representation theorem we can assume that Qn(p)→
(Y ,H,�, Z) holds true P-a.s. Then, by Lemma 5.2, observe that for all l ≥1,

Z ←−−−
n→∞

∑

1≤k≤qwn
(ζ n

k )2 ≥
∑

1≤k≤l
(ζ n

j(n,k))
2 −−−→

n→∞
∑

1≤k≤l
(ζk)

2. (163)

Set Z ′ = ∑k≥1(ζk)2; by letting l go to ∞ in (163), we get Z ≥ Z ′, which implies
Z = Z ′ a.s. since Z and Z ′ have the same law. This completes the proof of the lemma.

��
Without loss of generality (but with a slight abuse of notation), by Skorokhod’s

representation theorem we can assume that (162) holds true a.s. on D([0,∞), R) ×
C([0,∞), R)× (R2)N

∗ ×[0,∞), equipped with product topology.
We next prove the following:

Lemma 5.4 We keep the previous notation. Assume that (162) holds true almost surely.
Then,

P-a.s. for all k≥1, (
lnk , rnk

) −−−−→
n→∞

(
lk, rk

)
. (164)

Proof Let ε ∈ (0,∞)\{ζk; k≥1} and let kε be such that ζk >ε for all k ∈ {1, . . . , kε}
and ζk <ε for all k > kε. Let k′ε > kε be such that

∑
k>k′ε (ζk)

2 <ε2/3. Since k′ε > kε,
we also get min1≤k≤k′ε |ε−ζk |<ε. By Lemmas 5.2 and 5.3, there exists n0≥ 1 such
that for all n≥n0,

∣∣∣
∑

1≤k≤qwn
(ζ n

k )2 −
∑

k≥1
(ζk)

2
∣∣∣ < ε2/3,

∑

1≤k≤k′ε

∣∣(ζ n
j(n,k))

2−(ζk)
2
∣∣ < ε2/3

and max
1≤k≤k′ε

∣∣ζk−ζ n
j(n,k)

∣∣ < min
1≤k≤k′ε

|ε−ζk |< ". (165)

Set Sn = {1, . . . ,qwn }\{ j(n, 1), . . . , j(n, k′ε)}. The previous inequalities imply that
for all n ≥ n0,

∑
k∈Sn (ζ

n
k )2 < ε2. Thus, for all n ≥ n0, if k ∈ Sn , then ζ n

k < ε. Next
observe that for all k ∈ {kε + 1, . . . , k′ε},

ζ n
j(n,k) ≤ ε − (ε − ζk)+ max

1≤�≤k′ε

∣∣ζ�−ζ n
j(n,�)

∣∣ < ε + min
1≤�≤k′ε

|ε−ζ�| − |ε − ζk | < ε ,

by (165). Also note that for all k ∈ {1, . . . , kε},

ζ n
j(n,k) ≥ ζk − max

1≤�≤k′ε

∣∣ζ�−ζ n
j(n,�)

∣∣ > ε + |ζk − ε| − min
1≤�≤k′ε

|ε−ζ�| > ε ,

again by (165). To summarise, for all n ≥ n0, ζ n
j(n,k) > ε if k ∈ {1, . . . , kε} and

ζ n
j(n,k) <ε for all k ∈ {kε + 1, . . . ,qwn }. Since ζ1>ζ2>. . .>ζkε , there exists n1≥n0

such that for all n≥n1, ζ n
j(n,1) >ζ n

j(n,2) >. . .>ζ n
j(n,kε)

. Thus, for all n≥n1 and for all
k ∈ {1, . . . , kε}, we have proved that j(n, k) = k, which entails (164) since ε can be
chosen arbitrarily small. ��
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Recall the notation Hk and Yk for the excursions of resp.H and Y−J above 0. We
define the (rescaled) excursion of Y (n)−J (n) and ofH(n) above 0 as follows: for k≥1
and t ∈ [0,∞),

H(n)

k (t) = H(n)

(lnk+t)∧rnk and Y(n)

k (t) = Y (n)

(lnk+t)∧rnk − J (n)

lnk
. (166)

By Lemma 4.4 (iii), we have �Ylk = 0 a.s. Then by (162), Lemma 5.4 and Lemma
B.4 (i i i) in Appendix, we immediately get the following:

Lemma 5.5 We keep the previous notation. Assume that (162) holds true almost surely.
Then, P-a.s. for all k≥1,

(
Y(n)

k ,H(n)

k , lnk , rnk
) −−−−→

n→∞
(
Yk,Hk, lk, rk

)
. (167)

in D([0,∞), R) ×C([0,∞), R)×[0,∞)2.

Recall the definition of � = ((sp, tp)
)
p≥1 in (17) and (18), and recall the notation

�(n) = ((snp, tnp)
)
1≤p≤pn in (159). We next prove the following:

Lemma 5.6 Assume that (162) holds almost surely. Then, a.s. for all p≥1, there exists
k≥1 such that lk < sp ≤ tp <rk and for all sufficiently large n, lnk < snp < tnp <rnk and
(lnk , snp, t

n
p, r

n
k )→(lk, sp, tp, rk).

Proof By Proposition 4.5 (i), P-a.s. for all p ≥ 1, Ytp > Jtp and there exists k ≥ 1
such that tp ∈ (lk, rk). By Lemma 4.4 (i i i), we get Ylk − Jlk = 0. Note that yp ∈
(0,Ytp− Jtp ) and sp = inf

{
s ∈ [0, tp] : infu∈[s,tp] Yu− Ju > yp

}
by definition (18).

Thus, we get lk < sp ≤ tp < rk and the proof is completed by (162) that asserts that
(snp, t

n
p)→(sp, tp) and by Lemma 5.4 that asserts that (lnk , rnk )→(lk, rk). ��

Proof of Theorem 2.5 In (44) recall that for all k ≥ 1, �k =
(
(skp, t

k
p) ; 1 ≤ p ≤ pk

)

where (tkp ; 1 ≤ p ≤ pk) increases and where the (lk + skp, lk + tkp) are exactly the
terms (sp′ , tp′) of � such that tp′ ∈ [lk, rk]. Similarly recall the definition in (42) of
the sequence of pinching times �

wn
k , 1 ≤ k≤qwn : namely, in their rescaled version,

1
bn �

wn
k =

(
(sn,k

p , tn,k
p ) ; 1 ≤ p ≤ pnk

)
, where (tn,k

p ; 1≤ p≤pnk ) increases and where

the (lnk + sn,k
p , lnk + tn,k

p ) are exactly the terms (snp′ , t
n
p′) of �(n) such that tnp′ ∈ [lnk , rnk ].

Thus, Lemma 5.6 immediately entails thatP-a.s. for all k ≥1, 1
bn �

wn
k →�k as n→∞.

This convergence combined with Lemma 5.5 implies Theorem 2.5. ��

5.3 Proof of Theorem 2.8

FromTheorem2.5,we derive Theorem2.8 that states the convergence of the connected
components of the graphs. We first prove (59) in which the connected components
are indexed in the decreasing order of their measure. This result is obtained by soft
arguments that follow from Lemma 2.7. We then prove (60) where the connected
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920 N. Broutin et al.

components are equipped with their counting measures and we also prove that asymp-
totically the connected components are listed in the decreasing order of their numbers
of vertices when

√
jn/bn→0. This result is more difficult to prove.

Proof of (59) We keep the previous notation and recall that
(
Gwn
k , dwnk , �

wn
k ,mwn

k

)
,

1 ≤ k ≤ qwn , stand for the connected components of the wn-multiplicative random
graph Gwn . Here, d

wn
k stands for the graph-metric onGwn

k ,mwn
k is the restriction toGwn

k
of the measuremwn =

∑
j≥1 w

(n)

j δ j , �
wn
k is the first vertex ofGwn

k that is visited during

the exploration ofGwn , and the indexation is such thatm
wn
1

(
Gwn
1

) ≥ · · · ≥ mwn
qwn

(
Gwn
qwn

)
.

Next, recall that H(n)

k (·), defined in (166), stands for the k-th longest excursion of
Hwn that is rescaled in time by a factor 1/bn and rescaled in space by a factor an/bn ;
similarly, 1

bn �
wn
k =

(
(sn,k

p , tn,k
p ); 1 ≤ p ≤ pnk

)
is the (1/bn-rescaled) finite sequence

of pinching times of H(n)

k . Then, for all k ∈ {1, . . . ,qwn } the compact measured met-
ric space G(n)

k :=
(
Gwn
k , an

bn d
wn
k , �

wn
k , 1

bn m
wn
k

)
is isometric to G

(
H(n)

k , 1
bn �

wn
k , an

bn

)
, the

compact measured metric space encoded by H(n)

k and the pinching setup ( 1
bn �

wn
k , an

bn )

as defined in (52). On the other hand for the limit processes, Hk(·) stands for the
k-th longest excursion of H and �k =

(
(skp, t

k
p); 1 ≤ p ≤ pk

)
is the finite

sequence of pinching times of Hk . Then, for all k ≥ 1, the compact measured met-
ric space Gk :=

(
Gk, dk, �k,mk

)
is isometric to G(Hk,�k, 0) that is the compact

measured metric space encoded by Hk and the pinching setup (�k, 0) as defined
in (52). Without loss of generality (but with a slight abuse of notation), by Sko-
rokhod’s representation theorem we can assume that the convergence in Theorem
2.5 holds almost surely. Namely a.s. for all k ≥ 1,

(
H(n)

k , ζ n
k , 1

bn �
wn
k

)→ (
Hk, ζk,�k

)

on C([0,∞), R) × [0,∞) × (R2)N
∗
. We next fix k ≥ 1; then for all sufficiently

large n, 1
bn �

wn
k and �k have the same number of points: namely, pnk = pk and for

1 ≤ p ≤ pnk = pk ,
(sn,k

p , tn,k
p ) −−−−→

n→∞ (skp, t
k
p) . (168)

Recall the definition in (53) of the Gromov–Hausdorff–Prokhorov distance δGHP. We
next apply Lemma 2.7 with (h, h′) = (Hk,H

(n)

k ), (�,�′) = (�k,
1
bn �

wn
k ), (ε, ε′) =

(0, an/bn) and δ = δn = max1≤p≤pk |skp−sn,k
p | ∨ |tkp−tn,k

p |. Then, by (55),

δGHP(Gk,G
(n)

k ) ≤ 6(pk+1)
(‖Hk−H(n)

k ‖∞+ωδn (Hk)
)+3anpk/bn+|ζk−ζ n

k |, (169)

where ωδn (Hk) = max{|Hk(t)−Hk(s)|; s, t ∈ [0,∞) : |s−t |≤ δn}. By (168), δn→0;
since Hk is continuous and since it is null on [ζk,∞), it is uniformly continuous and
ωδn (Hk)→ 0; recall that an/bn→ 0. Thus, the right member of (169) goes to 0 as
n→0. Thus, we have proved that a.s. for all k≥1, δGHP(Gk,G

(n)

k )→0, which implies
(59) in Theorem 2.8. ��
Proof of (60) We next prove the convergence of the connected components equipped
with the counting measure. Recall that in the introduction we have introduced the
discrete tree Twn encoded by the wn-LIFO queue without repetition (namely, the tree
encoded by Hwn ): the vertices of Twn are the clients; the server is the root (Client 0)
and Client j is a child of Client i in Tw if and only if Client j interrupts the service of
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Client i (or arrives when the server is idle if i = 0). We denote by Cwn the contour
process associated with Twn that is informally defined as follows: suppose that Twn is
embedded in the oriented half plane in such a way that edges have length one and that
orientation reflects lexicographical order of visit; we think of a particle starting at time
0 from the root of Twn and exploring the tree from the left to the right, backtracking
as little as possible and moving continuously along the edges at unit speed. Since Twn
is finite, the particle crosses each edge twice (upwards first and then downwards). For
all s ∈ [0,∞), we define Cwns as the distance at time s of the particle from the root of
Twn . We refer to Le Gall & D. [19] (Section 2.4, Chapter 2, pp. 61-62) for a formal
definition and the connection with the height process (see also the end of Sect. 3.2).

It is important to notice that the trees encoded by Cwn and by Hwn are the same:
the only difference is the measure induced by the two different coding functions.
More precisely, Cwn is derived from Hwn by the following time-change: recall that
jn = max{ j≥1 :w(n)

j >0} and let (ξnk )1≤k≤2jn be the sequence of jump-times ofHwn :
namely, ξnk+1 = inf{s > ξnk : Hwn

s �=Hwn
ξnk
}, for all 1 ≤ k < 2jn , with the convention

ξn0 = 0. We then set, for t ∈ [0,∞),

�n(t) =
∑

1≤k≤2jn
1[0,t](ξnk ) and φn(s) = inf

{
t ∈ [0,∞) :�n(t)≥s

}
, s ∈ [0, 2jn],

(170)
Note that φn(k) = ξnk . Then, we obtain, for t ∈ [0,∞),

Cwn�n(t)
= Hwn

t and Cwnk = Hwn
ξnk
= Hwn

φn(k)
, for all k ∈ {0, . . . , 2jn}. (171)

We next set, for t ∈ [0,∞),
Rn
t =

∑

j≥1
1{Ewn

j ≤t} (172)

that counts the number of clients who entered the wn-LIFO queue governed by Y wn .
Note that Ewn

j is the first jump-time of Nwn
j : namely the Ewn

j are independent expo-

nentially distributed r.v. with respective parameters w
(n)

j /σ1(wn). In terms of the tree
Twn , R

n
t is the number of distinct vertices that have been explored by Hwn up to time

t . By arguing as in the proof of (94), we easily check that, for each t ∈ [0,∞), we
have

�n(t) = 2Rn
t −Hwn

t . (173)

We prove the following

Lemma 5.7 We keep the previous notation. Then for all t ∈ [0,∞), we have

E
[
sup
s∈[0,t]

∣∣Rn
s −s

∣∣
]
≤ 2
√
t + t2σ2(wn)

2σ1(wn)2
. (174)

Moreover, there exists a positive r.v. Qn that is a measurable function of (Nwn
j ) j≥1,

such thatE[Q2
n]≤4jn (recall that jn :=max{ j≥1 : w(n)

j >0}) and such that P-a.s. for
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922 N. Broutin et al.

all s, t ∈ [0,∞),
Rn
t+s − Rn

t ≤ s + 2Qn . (175)

Proof Set Mj (t) = 1{Ewn
j ≤t}−

w
(n)
j

σ1(wn)
(t ∧ Ewn

j ) and denote by (Gt ) the natural filtration

associated with the (Nwn
j ) j≥1. Standard results on point processes tell us that (Mj ) j≥1

are independent (Gt )-martingales with σ1(wn)〈Mj 〉t =
∫ t
0 w

(n)
j 1{s<Ewn

j }ds, so that

E
[
Mj (t)2

] = E[〈Mj 〉t ] = 1− exp(−w
(n)

j t/σ1(wn)) ≤ w
(n)

j t/σ1(wn). We then set

M(t) = ∑
1≤ j≤jn M j (t). Then M is a (Gt )-martingale and Doob’s L2 inequality

implies that E[sups∈[0,t] M(s)2] ≤ 4E[M(t)2] ≤ 4t . Thus, E[sups∈[0,t] |M(s)] ] ≤
2
√
t . Next, we set M(t) = Rn

t −Mt . We easily check the following:

t−M(t) =
∑

j≥1

w
(n)
j

σ1(wn)

(
t−Ewn

j

)
1{Ewn

j ≤t} ,

which is nonnegative and nondecreasing in t so that sups∈[0,t] |s−M(s)| = t−M(t).
Moreover, for all j≥1, we check that

w
(n)
j

σ1(wn)
E
[(
t−Ewn

j

)
1{Ewn

j ≤t}
] = e−w

(n)
j t/σ1(wn)−1+ w

(n)
j

σ1(wn)
t ≤ 1

2 t
2(w(n)

j /σ1(wn)
)2

.

This implies that E[sups∈[0,t] |s−M(s)| ] = E[t−M(t)] ≤ t2σ2(wn)/(2σ1(wn)2),
which easily completes the proof of (174) thanks to the previous inequality regarding
M .

Let us prove (175). To that end, observe that limt→∞ E[Mj (t)2] = 1. Thus,
limt→∞ E[M(t)2] = jn andDoob’s inequality entails thatE[supt∈[0,∞) M

2(t)] ≤ 4jn .
We then set Qn = supt∈[0,∞) |M(t)| and we get almost surely for all t, s ∈ [0,∞),
Rn
t+s−Rn

t = M(t + s)−M(t)+ M(t + s)−M(t) ≤ 2Qn + M(t + s)−M(t). Since
for all a ∈ [0,∞), the function t �→ t ∧ a is 1-Lipschitz and since M is a convex
combination of these functions, M is also 1-Lipschitz: namely, |M(t+ s)−M(t)| ≤ s,
which completes the proof of (175). ��

By (173) and (174) we easily get for all t, ε ∈ (0,∞)

P
(
sup

s∈[0,t]
| 1
bn

�n(bns)−2s| > 2 ε
) ≤ P

(
sup

s∈[0,bn t]
|Rn

s −s| > bnε/2
)+ P

(
sup

s∈[0,bn t]
Hwn

s > bnε
)

≤ 4ε−1
√
t/bn + t2bnσ2(wn)

εσ1(wn)2
+ P

(
sup

s∈[0,t]
an
bn
Hwn

bns
> anε

)
.

Thus, by (21) and (39) inTheorem2.4,weget limn→∞ P
(
sups∈[0,t] | 1bn �n(bns)−2s| >

2 ε
)=0. This proves that 1

bn �n(bn ·) converges to 2Id in probability on C([0,∞), R),
where Id stands for the identity map on [0,∞). Then, standard arguments also imply
that 1

bn φn(bn ·) converges to 1
2 Id in probability on C([0,∞), R). We also note that on
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any interval [k, k + 1] where k is an integer, Cwnt is a linear interpolation between Cwnk
and Cwnk+1. These convergences combined with Theorem 2.4 imply

(
1
an Awnbn · ,

1
an Y

wn
bn ·,

an
bn
Hwn

bn · ,
an
bn
Cwnbn · ,

1
bn

�wn , 1
bn

�n(�wn )
)−−−→
n→∞

(
A, Y ,H,H·/2, �, 2�

)
,

(176)
weakly on the appropriate space.

We now deal with the excursions of Cwn above 0, that are the contour processes
of the spanning trees T wn

k , 1 ≤ k ≤ qwn , of the qwn connected components of Gwn .
Note that the trees T wn

k are also the connected components obtained from the tree
Twn after removing its root. Recall that [lwnk , rwnk ) are the excursion intervals of Hwn

above 0. Namely,
⋃

1≤k≤qwn [l
wn
k , rwnk ) = {t ∈ [0,∞) : Hwn

t > 0}. Recall that the
excursion intervals are listed in the decreasing order of their lengths and Hwnk (t) =
Hwn ((lwnk + t)∧ rwnk ), t ∈ [0,∞), is the k-th longest excursion process of Hwn above

0. Recall the notation �
wn
k = ((sn,k

p , tn,k
p ); 1 ≤ k ≤ pnk ) for the sequence of pinching

times falling into the k-th longest excursion. Also recall thatmwn =∑ j≥1 w
(n)

j δ j and
mwn

k is the restriction to T wn
k of mwn . Note that

(
T wn
k , dgr, �

wn
k ,mwn

k ) stands for the
measured tree encoded by Hwnk and that

(
Gwn
k , dwnk , �

wn
k ,mwn

k

)
is the measured graph

encoded by Hwnk and the pinching setup (�
wn
k , 1), which means that Gwn

k is isometric
to the graph G(Hwnk ,�

wn
k , 1) as defined in (52) and it is the k-th largest (with respect to

the measuremwn ) connected component of Gwn . We next set for all k ∈ {1, . . . ,qwn },
l
n
k = �n(l

wn
k ), rnk = �n(r

wn
k ),

Cwnk (t) = Hwn
(
φn((l

n
k + t) ∧ rnk )

) = Hwnk
(
φn(l

n
k + t)−lwnk

)
,

and

�
wn
k =

(
(�n(l

wn
k + sn,k

p )−lnk , �n(l
wn
k + tn,k

p )−lnk )
)
1≤k≤pnk .

Then, we easily check the following:

(i) {t ∈ [0,∞) :Cwnt >0}=⋃1≤k≤qwn [l
n
k , r

n
k ).

(i i) Cwnk (·)− 1 is the contour process of T wn
k . We denote by ν

wn
k the measure that the

contour process induces on T wn
k : namely,

(
T wn
k , dgr, �

wn
k , ν

wn
k ) is the measured

tree encoded by Cwnk (·)− 1.
(i i i)

(
Gwn
k , dwnk , �

wn
k , ν

wn
k

)
is isometric to G

(
Cwnk (·)− 1,�

wn
k , 1).

Since (b−1n �n(bn ·), b−1n φn(bn ·))→ (2Id, 1
2 Id) in probability on C([0,∞), R)2, we

easily get from Theorem 2.5 that
(( an

bn
Cwnk (bn ·), 1

bn
l
n
k ,

1
bn
rnk ,

1
bn

�
wn
k

))
k≥1 −−−−→n→∞

((
Hk(·/2), 2lk, 2rk, 2�k

))
k≥1
(177)

weakly on (C([0,∞), R)×[0,∞)2×(R2)N
∗
)N
∗
equipped with the product topology,

with obvious notation. Then, by Lemma 2.7 and the same argument as in the proof of
(59), we get

((
Gwn
k ,

an
bn
dwnk , �

wn
k , 1

bn
ν
wn
k

))
k≥1 −−−−→n→∞

((
Gk, dk, �k, 2mk

))
k≥1 (178)
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weakly on G
N
∗
equipped with the product topology. The last step in the proof of (60)

consists in comparing the measure ν
wn
k with the counting measure μ

wn
k . We will rely

on the following: ��
Lemma 5.8 Let us denote by μ

wn
k the counting measure on Gwn

k . We equip Gwn
k with

the graph distance and for all non-empty subsets of vertices A we denote by A(1) the
set of vertices at graph-distance at most 1 from A. Then

ν
wn
k (A) ≤ 2μwn

k

(
A(1))+ 1 and 2μwn

k (A) ≤ ν
wn
k

(
A(1))+ 1. (179)

Proof Since adding edges only diminishes the graph distance, it is sufficient to prove
(179) on T wn

k equipped with the graph-distance dgr. Recall that �
wn
k is the root of

T wn
k . To simplify notation we set T = T wn

k , � = �
wn
k , ν = ν

wn
k , ν′ = δ� + ν and

μ = μ
wn
k . Since the contour process of T crosses twice each edge, we easily get

ν′ = δ� +∑v∈T deg(v)δv = μ + μ ◦ f −1 where f (v) is the parent of v ∈ T for
v �=� and f (�) = �. Let M =∑v∈T (δ(v,v) + δ(v, f (v))) that is a measure on T ×T
such that M(A×T ) = 2μ(A) and M(T × A) = ν′(A). Then, set D = {(v, v′) ∈
T ×T :dgr(v, v′) ≤ 1}. Since dgr( f (v), v) ≤ 1, M is supported on D. Next, observe
that (A×T ) ∩ D ⊂ T × A(1) and similarly D ∩ (T × A)⊂ A(1)×T , which easily
entails (179). ��

Since dwnk is the graph-distance on Gwn
k , we easily see that on the rescaled space

(Gwn
k , an

bn
dwnk ), (179) implies that 1

bn
ν
wn
k (A) ≤ 2

bn
μ
wn
k (A(an/bn )

)+ 1
bn

and 2
bn

μ
wn
k (A) ≤

1
bn

ν
wn
k (A(an/bn )

) + 1
bn
, for any subset of vertices A. Since b−1n ≤ an/bn (for all suf-

ficiently large n), we get dProkGwn
k

( 1
bn

ν
wn
k , 2

bn
μ
wn
k

) ≤ an/bn . This combined with (178)

entails

((
Gwn
k ,

an
bn
dwnk , �

wn
k , 1

bn
2μwn

k

))
k≥1 −−−−→n→∞

((
Gk, dk, �k, 2mk

))
k≥1

weakly on G
N
∗
equipped with the product topology, which easily implies (60).

End of proof of Theorem 2.8 We next make the following additional assumption :√
jn/bn→ 0 and we complete the proof of Theorem 2.8. To that end, it is sufficient

to prove that for all fixed k ≥ 1, the probability that μ
wn
1 (Gwn

1 ) > . . . > μ
wn
k (Gwn

k ) >

max j>k μ
wn
j (Gwn

j ) tends to 1 as n→∞.

In Lemma 5.7 recall that E[Q2
n] ≤ 4jn . Thus, Qn/bn→ 0 in probability. Recall

that

(b−1n �n(bn ·), b−1n φn(bn ·))→(2Id, 1
2 Id)

in probability on (C([0,∞),R))2. By Slutzky’s theorem, we get a joint convergence
of

(b−1n Qn, b
−1
n �n(bn ·), b−1n φn(bn ·))
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with (177). Without loss of generality (but with a slight abuse of notation), by Sko-
rokhod’s representation theorem we can assume that the convergence

(
1
bn
Qn,

1
bn

�n(bn ·), 1
bn

φn(bn ·);
(( an

bn
Cwnk (bn ·), 1

bn
l
n
k ,

1
bn
rnk ,

1
bn

�
wn
k

))
k≥1
)

−−−−→
n→∞

(
0, 2Id, 1

2 Id;
((
Hk(·/2), 2lk, 2rk, 2�k

))
k≥1
)

(180)

holds almost surely on the appropriate space.
Recall the notation ζk = rk − lk , ζ

wn
k = rwnk − lwnk = mwn

k (Gwn
k ) and set ζ

n
k =

rnk− l
n
k = ν

wn
k (Gwn

k ). First, we easily derive from the argument of the proof of (179)
that ν

wn
k (Gwn

k ) = 2μwn
k (Gwn

k )+1. Let σn be a permutation of {1, . . . ,qwnk } such that
(ζ

n
σn(k))1≤k≤qwnk is nonincreasing. To complete the proof of Theorem 2.8, it is then

sufficient to prove that for all k≥1, there exists nk such that for all n≥nk , σn(k)=k.
To prove that, we then fix k≥1 and we recall that ζ1>. . .>ζk >ζk+1 so it makes

sense to fix ε ∈ (0,∞) such that ε< 1
3 min1≤ j≤k(ζ j−ζ j+1). Observe first that (180)

implies that for all j ≥ 1, b−1n ζ
wn
j → ζ j and b−1n ζ

n
j→ 2ζ j almost surely. Therefore,

there exists nk ∈ N such that for all n≥nk ,
b−1n (4Qn + 1)+ max

1≤ j≤k+1 |b
−1
n ζ

n
j−2ζ j | + max

1≤ j≤k+1 |b
−1
n ζ

wn
j −ζ j | < ε . (181)

Then, we fix n≥nk and for all j ∈ {1, . . . , k}, Lemma 5.7 and (173) imply

ζ
n
σn( j) = rnσn( j) − l

n
σn( j) = �n(r

wn
σn( j)

)−�n(l
wn
σn( j)

)

= 2Rn(rwnσn( j)
)−2Rn(lwnσn( j)

)−Hwn (rwnσn( j)
)+Hwn (lwnσn( j)

)

= 2Rn(rwnσn( j)
)−2Rn(lwnσn( j)

)+ 1
by (175)≤ 2ζwn

σn( j)
+ 4Qn + 1.

Thus, 2b−1n ζ
wn
σn( j)
≥b−1n ζ

n
σn( j)−ε. Moreover,

b−1n ζ
n
j ≥ 2ζ j − ε=2(ζ j−ζ j+1)+ 2ζ j+1 − ε ≥ 6ε + (2ζ j+1 + ε)− 2ε ≥ 4ε + b−1n ζ

n
j+1,

which implies that ζ
n
1 > . . . > ζ

n
k for all n ≥ nk . Next, set S = {ζ n

� ; 1 ≤ � ≤ qwn };
the previous inequality implies that, for all j ∈ {1, . . . , k}, #(S ∩ [ζ n

j ,∞)) ≥ j =
#(S ∩ [ζ n

σn( j),∞)). It follows that ζ
n
σn( j) ≥ ζ

n
j , j ∈ {1, . . . , k}. Combined with the

previous lower bound for 2b−1n ζ
wn
σn( j)

, this implies that for all j ∈ {1, . . . , k},

2b−1n ζ
wn
σn( j)
≥b−1n ζ

n
σn( j)−ε > b−1n ζ

n
j−ε > 2ζ j − 4ε.

Consequently, b−1n ζ
wn
σn( j)

> ζ j −2ε. This implies that σn( j) ≤ j . Indeed, suppose

that σn( j) ≥ j + 1; thus ζ
wn
j+1 ≥ ζ

wn
σn( j)

and the previous inequality combined with

(181) would entail ζ j+1+ε>b−1n ζ
wn
j+1≥b−1n ζ

wn
σn( j)

>ζ j−2ε, which would contradict
ε< 1

3 min1≤�≤k(ζ�−ζ�+1). Thus, for all n≥nk and for all j ∈ {1, . . . , k}, σn( j) ≤ j ,
which entails that σn( j) = j , and therefore completes the proof. ��
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6 Proof of Proposition 5.1

In this section, we prove Proposition 5.1 subject to Proposition 2.1 and Proposition
2.2, whose proofs are later given in Sect. 7.2. The proof of Proposition 5.1 relies upon
the representations Y = X ◦θb,H = H ◦θb and their discrete counterparts. Note that
although the convergence of (Xwn , Hwn ) is provided by Proposition 2.2, their joint
convergence with θb,wn in Skorokhod’s topology is a very delicate matter, as X and
θb share jumps. Therefore, we need to proceed with utmost care.

Let us first recall two general lemmas from Ethier & Kurtz [22] that we use several
times.

Lemma 6.1 (Lemma 3.8.2 [22]) For all n ∈ N, let (snk )k∈N be a nondecreasing [0,∞]-
valued sequence of r.v. such that sn0 = 0, a.s. limk→∞ snk = ∞ and snk < snk+1 for all
k ∈ N such that snk <∞. Fix z ∈ (0,∞) and set kn = max{k ∈ N : snk < z}. Then

lim
η→0+ sup

n∈N
P
(

min
0≤k≤kn

snk+1−snk < η
)
=0⇐⇒ lim

η→0+ sup
n∈N

sup
k∈N

P
(
snk < z ; snk+1−snk <η

) = 0.

Proof See Lemma 3.8.2 in Ethier &Kurtz [22] (p. 134). Note that Lemma 3.8.2 in [22]
only deals with sequences that take finite values but the proof extends immediately to
our case. ��

The previous lemma entails a tightness result for nondecreasing processes that is a
consequence of Proposition 3.8.3 in Ethier & Kurtz [22]. To recall this statement we
need to introduce the following notation. Let y ∈ D([0,∞), R) that is the space of
càdlàg functions equipped with Skorokhod’s topology, and let z, η ∈ (0,∞). Recall
the notationwz(y, η) in (121) of the càdlàgmodulus of continuity of y ∈ D([0,∞), R).
Assume that y(·) is nonnegative and nondecreasing; then for all ε ∈ (0,∞), we
inductively define times (τ ε

k (y))k∈N by setting

τ ε
0 (y) = 0 and τ ε

k+1(y) = inf
{
t > τε

k (y) : y(t)−y
(
τ ε
k (y)

)
> ε
}
, (182)

with the convention that inf ∅ = ∞. Observe that if z > η and if wz(y, η) > ε,
then there exists k ≥ 1 such that τ ε

k (y) ≤ z and τ ε
k (y)− τ ε

k−1(y) < η. Indeed, set
r = 1 + max{k ∈ N : τ ε

k (y) < z}. Note that z > η and wz(y, η) > ε imply that
r ≥ 2; then for all i ∈ {0, . . . , r−1}, set ti = τ ε

i (y) and tr = z. By definition of the
τ ε
i (y), we get max1≤i≤r osc(y, [ti−1, ti ) ) ≤ ε. Since wz(y, η) > ε, we necessarily
get min1≤i≤r−1(ti−ti−1)<η, which is the desired result. This observation combined
with Lemma 3.8.2 of [22] (recalled above as Lemma 6.1) immediately entails the
following.

Lemma 6.2 For all n ∈ N, let (Rn
t )t∈[0,∞) be a càdlàg nonnegative and nondecreasing

process. Then, the laws of the Rn are tight in D([0,∞), R) if for all t ∈ [0,∞) the
laws of the Rn(t), n ∈ N are tight on R and if for all z, ε ∈ (0,∞) we have

lim
η→0+ lim sup

n∈N
sup
k∈N

P
(
τ ε
k (Rn)< z ; τ ε

k+1(Rn)−τ ε
k (Rn)<η

) = 0. (183)
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Proof See the previous arguments or Lemma 3.8.1 and Proposition 3.8.3 in Ethier &
Kurtz [22] (pp. 134-135). ��

Recall the definition of Awn in (100). We immediately apply Lemma 6.2 in combi-
nation with the estimates in Lemma 3.5 to prove the tightness of a rescaled version of
Awn .

Lemma 6.3 Let (α, β, κ, c) be as in (8). Let ψ in (9) satisfy
∫∞ dλ/ψ(λ) <∞. Let

an, bn ∈ (0,∞) and wn ∈ �
↓
f , n ∈ N, satisfy (21) and (C1)–(C3) as in (29) and (30).

Then, the laws of ( 1
an A

wn
bnt

)t∈[0,∞) are tight on D([0,∞), R).

Proof We repeatedly use the following estimates on Poisson r.v. N with mean r ∈
(0,∞):

E
[
(N−1)+

]=e−r−1+r and var
(
(N−1)+

)=r2−(e−r−1+r)(e−r+r) ≤ r2. (184)

By the definition (100), we get E[Awn
t ] =

∑
j≥1 w

(n)

j (e
−tw(n)

j /σ1(wn)−1 + tw(n)
j

σ1(wn)
) ≤

t2σ3(wn)
2σ1(wn)2

. Thus, by (C1)–(C3) and the Markov inequality, we get

lim sup
n→∞

P
(

1
an

Awn
bnt
≥ x

)
≤ 1

2 x
−1t2κ

(
κσ3(c)+ β

) −−−−→
x→∞ 0.

This shows that for any t ∈ [0,∞), the laws of the 1
an A

wn
bnt

are tight on R.
We next prove (183) with Rn

t = 1
an A

wn
bnt

, t ∈ [0,∞). To that end, we fix z, ε ∈
(0,∞) and k ∈ N, and we set Tn :=τ ε

k (Rn). Then, (118) in Lemma 3.5 with a = anε,
T =bnTn , t = bnη and t0 = bnz implies the following:

P
(
τ ε
k (Rn)< z ; τ ε

k+1(Rn)−τ ε
k (Rn)<η

) = P
(
bnTn <bnz ; Awn

bnTn+bnη−Awn
bnTn

>anε
)

≤ (anε)
−1bnη

(
bnz + 1

2 bnη
) σ3(wn)

σ1(wn)2

≤ ε−1η(z + η)
anbn

σ1(wn)

bnσ3(wn)

a2nσ1(wn)
.

Then (C1)–(C3) entails (183) and Lemma 6.2 completes the proof. ��
Recall the definition of Xb,w in (98) and that of the Poisson processes Nw

j (·), j≥1
in (99). Recall also the definition of Xb in (142) and that of the Poisson processes
N j (·), j≥1.
Lemma 6.4 Under the assumptions of Lemma 6.3, the following convergence

((
1
an X

b,wn
bnt

)
t∈[0,∞)

, (Nwn
j (bnt))t∈[0,∞); j ≥ 1

) −−−−→
n→∞

(
Xb, N j ; j ≥ 1

)
(185)

holds weakly on (D([0,∞), R))N equipped with the product topology.
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Proof Let u ∈ R. Note that

E
[
exp(iuNwn

j (bnt))
] = exp(−tbnw(n)

j (1−eiu)/σ1(wn))−→ exp(−tκc j (1−eiu))

by (21) and (C3). Thus, for all t ∈ [0,∞), Nwn
j (bnt)→N j (t) in law. Next, fix k≥1

and set, for t ∈ [0,∞),

Qn
t = 1

an
Xb,wn
bnt
−
∑

1≤ j≤k
a−1n w

(n)

j Nwn
j (bnt) and Qt = Xb

t −
∑

1≤ j≤k
c j N j (t) .

Since we assume that Proposition 2.1 holds true, 1
an X

b,wn
bnt
→ Xb

t weakly on R. Since
Qn

t (resp. Qt ) is independent of (Nwn
j )1≤ j≤k (resp. independent of (N j )1≤ j≤k), we

easily check

E
[
eiuQ

n
t
] = E

[
eiuX

b,wn
bn t

/an
]/∏

1≤ j≤k
E
[
e−iu

w
(n)
j
an

Nwn
j (bn t)

]−−−→
n→∞ E

[
eiuX

b
t
]/ ∏

1≤ j≤k
E
[
e−iuc j N j (t)

]=E
[
eiuQt

]
.

Thus, Qn
t →Qt weakly onR. Since Lévy processes weakly converge inD([0,∞), R)

if and only if unidimensional marginals weakly converge on R (see Lemma B.8 for
precise references), we get Qn→ Q and for all j ≥ 1, Nwn

j (bn ·)→ N j , weakly on
D([0,∞), R).

Since Qn, Nwn
1 , . . . , Nwn

k are independent Lévy processes, they have a.s. no com-
mon jump-times and Lemma B.2 asserts that

(Qn
t , N

wn
1 (bnt), . . . , N

wn
k (bnt))t∈[0,∞)−→(Q, N1, . . . , Nk) weakly on D([0,∞), R

k+1).

Since Xb,wn is a linear combination of Qn and the (Nwn
j )1≤ j≤k , we get

(
( 1
an Xb,wn

bn t
, Nwn

1 (bnt), . . . , N
wn
k (bnt)

)
t∈[0,∞)

−→(Xb, N1, . . . , Nk) weakly on D([0,∞), R
k+1),

which implies theweaker statement: ( 1
an X

b,wn
bn · , Nwn

1 (bn ·), . . . , Nwn
k (bn ·))−→(Xb, N1,

. . . , Nk), weakly on (D([0,∞), R))k+1 equipped with the product topology. Since it
holds true for all k, an elementary result (see Lemma B.7) entails (185). ��

Recall the definition of Aw in (100) and recall the definition of A in (143).

Lemma 6.5 Under the assumptions of Lemma 6.3, we have

((
1
an X

b,wn
bnt

)
t∈[0,∞)

,
(

1
an A

wn
bnt

)
t∈[0,∞)

) −−−−→
n→∞

(
Xb, A

)
weakly on (D([0,∞), R))2.

(186)

Proof Lemma6.3 andLemma6.4 imply that the lawsof ( 1
an A

wn
bn ·,

1
an X

b,wn
bn · , Nwn

j (bn ·); j≥
1) are tight on (D([0,∞), R))N equipped with the product topology.Wewant to prove
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that there is a unique limit law: let (n(p))p∈N be an increasing sequence of integers
such that

(
1

an(p)
A
wn(p)
bn(p)·,

1
an(p)

X
b,wn(p)
bn(p)· , N

wn(p)
j (bn(p)·); j≥1) −−−−→

p→∞
(
A′, Xb, N j ; j ≥ 1

)
,

(187)
holds weakly on (D([0,∞), R))N. Since (D([0,∞), R))N equipped with the product
topology is a Polish space, Skorokhod’s representation theorem applies and without
loss of generality (but with a slight abuse of notation), we can assume that (187) holds
true P-almost surely on (D([0,∞), R))N.

Recall that At = 1
2 κβt2+∑ j≥1 c j

(
N j (t)−1

)
+, t ∈ [0,∞). Then, to prove (186),

we claim that it is sufficient to prove that for all t ∈ [0,∞),

1
an(p)

A
wn(p)
bn(p)t
−→ At in probability. (188)

Indeed, let t be such that �A′t = �At = 0 and let q, q ′ be rational numbers such
that q < t < q ′; thus, A

wn(p)
b(n(p))q ≤ A

wn(p)
b(n(p))t ≤ A

wn(p)
b(n(p))q′ ; since �A′t = 0, we get

a.s. A
wn(p)
bn(p) t

/an(p)→ A′t ; the convergence in probability entails that Aq ≤ A′t ≤ Aq ′ ;

since it holds true for all rational numbers q, q ′ such that q < t < q ′, we get
At− ≤ A′t ≤ At which implies At = A′t since �At = 0. Thus, a.s. A and A′
coincide on the dense subset {t ∈ [0,∞) : �A′t = �At = 0}: it entails that
a.s. A = A′ and the law of (A, Xb, N j ; j ≥ 1) is the unique weak limit of the
laws of ( 1

an A
wn
bn ·,

1
an X

b,wn
bn · , Nwn

j (bn ·); j≥1).
Let us prove (188). To simplify notation let vn ∈ �

↓
f be defined by

v
(n)
j = w

(n)
j /an , for j ∈ N

∗. (189)

By (C3), v
(n)
j → c j ; by (21) and (C2), bn/σ1(vn)→ κ and σ3(vn)→ σ3(c) + β/κ .

We next claim that there exists jn →∞ such that

lim
n→∞v

(n)
jn
= 0, lim

n→∞
∑

1≤ j≤ jn

(v
(n)

j )3 = σ3(c) and lim
n→∞

∑

j> jn

(v
(n)

j )3=β/κ. (190)

Proof of (190). Indeed, suppose first that sup{ j≥1 :c j >0} = ∞ and set jn=sup
{
j ≥

1 : v(n)

j > 0 and
∑

1≤i≤ j (v
(n)

i )3 ≤ σ3(c)
}
, with the convention that sup ∅ = 0. Here

jn→∞, and it is easy to check that it satisfies (190).
Next suppose that j∗ = sup{ j ≥1 : c j >0}<∞. Clearly

∑
1≤ j≤ j∗(v

(n)

j )3→σ3(c)
and

∑
j> j∗(v

(n)

j )3→β/κ . Since for all j > j∗, v(n)

j →0 it is possible to find a sequence

( jn) that tends to ∞ sufficiently slowly to get
∑

j∗< j≤ jn(v
(n)

j )3→ 0, which implies
(190). ��

Next, we use (190) to prove (188). To that end, we fix t ∈ [0,∞) and we fix k ∈ N

that will be specified later; since jn→∞, we can assume p is such that k< jn(p). To

simplify, we set ξ p
j = v

(n(p))
j

(
N

wn(p)
j (bn(p)t)−1

)
+ and ξ j = c j

(
N j (t)−1

)
+ and
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Dk,p
t =

∑

1≤ j≤k
ξ
p
j −ξ j , Rk,p

t =
∑

k< j≤ jn(p)

ξ
p
j −

∑

j>k

ξ j , C p
t =

∑

j> jn(p)

ξ
p
j −E[ξ p

j ] and dp(t)= 1
2 κβt2−

∑

j> jn(p)

E[ξ p
j ].

Thus, Awn(p) (bn(p)t)/an(p)− At = Dk,p
t + Rk,p

t +C p
t −dp(t) and we prove that each

term on the right-hand side goes to 0 in probability.
We first show that dp(t)→0. Since N

wn(p)
j (bn(p)t) is a Poisson r.v. with mean rp, j

that is equal to v
(n(p))
j bn(p)t/σ1(vn(p)), by (184) we get E

[
ξ
p
j

] = v
(n(p))
j

(
e−rp, j −1 +

rp, j ). We next use the following elementary inequality, valid for y ∈ [0,∞),

0 ≤ 1
2 y

2 − (e−y−1+ y
) ≤ 1

2 y
2(1−e−y) ≤ 1

2 y2∧y3 , (191)

that holds true since y−2(e−y−1+ y) = ∫ 10 dv
∫ v

0 dw e−wy . Thus,

0 ≤
∑

j> jn(p)

1
2 v

(n(p))
j r2p, j−E

[
ξ
p
j

] ≤
∑

j> jn(p)

1
2 v

(n(p))
j r3p, j ≤ 1

2 v
(n(p))
jn(p)

(bn(p)t)3

σ1(vn(p))
3

∑

j> jn(p)

(v
(n(p))
j )3 −→ 0,

by (190).Next, note that
∑

j> jn(p)
v

(n(p))
j r2p, j =(bn(p)t/σ1(vn(p))

2∑
j> jn(p)

(v
(n(p))
j )3−→

κβt2, which implies that dp(t)→ 0 as p→∞.
We next consider C p

t : by (184), var(ξ
p
j ) ≤ (v

(n(p))
j )2r2p, j . Since the ξ

p
j are indepen-

dent, we get

E
[
(C p

t )2
]=
∑

j> jn(p)

var(ξ p
j ) ≤ v

(n(p))
jn(p)

(bn(p)t)2

σ1(vn(p))
2

∑

j> jn(p)

(v
(n(p))
j )3 −→ 0

by (190), which proves that C p
t →0 in probability when p→∞.

We next deal with Rk,p
t . By (184), (190) and (191), we first get

0 ≤
∑

k< j≤ jn(p)

E
[
ξ
p
j

]≤
∑

k< j≤ jn(p)

1
2 v

(n(p))
j r2p, j = 1

2

(bn(p)t)2

σ1(vn(p))
2

∑

k< j≤ jn(p)

(v
(n(p))
j )3 −−−−→

p→∞
1
2 (κt)2

∑

j>k

c3j .

(192)

Similarly, observe that E[ξ j ] = c j
(
e−κtc j −1 + κtc j

) ≤ 1
2 (κt)

2c3j . This inequality
combined with (192) entails that

lim sup
p→∞

E
[|Rk,p

t |
] ≤ (κt)2

∑

j>k

c3j −−−−→
k→∞

0. (193)

Finally, we consider Dk,p. Since a.s. t is not a jump-time of N j , a.s. v
n(p)
j (N

wn(p)
j

(bn(p)t)−1)+→ c j (N j (t)−1)+. Thus, for all k ∈ N, a.s. Dk,p
t → 0. These limits

combined with (193) (and with the convergence to 0 in probability of C p
t and dp(t))

easily imply (188), which completes the proof of the lemma. ��
Recall the definition of Y w in (100) and that of Y in (143).

123



Limits of multiplicative inhomogeneous random graphs and… 931

Lemma 6.6 Under the assumptions of Lemma 6.3, we have

(( 1
an

Xb,wn
bn t

,
1
an

Awn
bn t

,
1
an
Y wn
bn t

))
t∈[0,∞)

weakly−−−−→
n→∞

(
(Xb

t , At , Yt )
)
t∈[0,∞)

in D([0,∞), R
3).

(194)

Proof Without loss of generality (but with a slight abuse of notation), by Sko-
rokhod’s representation theorem we can assume that the convergence in (186) holds
true P-almost surely. We first prove that (( 1

an X
b,wn
bn · , 1

an A
wn
bn ·)) → ((Xb, A)) a.s. in

D([0,∞), R
2) thanks to Lemma B.1 (i i i). To that end, first recall that by definition,

the jumps of A (resp. of Awn ) are jumps of Xb (resp. of Xb,wn ): namely if �At > 0,
then �Xb

t = �At . The same holds true for Awn and Xb,wn .
Let t ∈ (0,∞). First suppose that �At > 0. Thus, �Xb

t = �At . By Lemma
B.1 (i), there exists a sequence of times tn→ t such that 1

an �Awn
bntn
→�At . Thus,

for all sufficiently large n, 1
an �Awn

bntn
> 0, which entails 1

an �Awn
bntn
= 1

an �Xb,wn
bntn

and

we get 1
an �Xb,wn

bntn
→ �At = �Xb

t . Suppose next that �At = 0; by Lemma B.1

(i), there exists a sequence of times tn → t such that 1
an �Xb,wn

bntn
→ �Xb

t . Since
�At = 0, Lemma B.1 (i i) entails that 1

an �Awn
bntn
→ �At = 0. In both cases, we

have proved that for all t ∈ (0,∞), there exists a sequence of times tn → t such
that 1

an �Xb,wn
bntn
→�Xb

t and 1
an �Awn

bntn
→�At : by Lemma B.1 (i i i), it implies that

(( 1
an X

b,wn
bn · , 1

an A
wn
bn ·))→ ((Xb, A)) a.s. in D([0,∞), R

2). This entails (194), since the

function (x, a) ∈ R
2 �→ (x, a, x−a) ∈ R

3 is Lipschitz and since Xb,wn−Awn = Y wn

and Xb−A = Y . ��
Recall that Xr,w (resp. Xr) is an independent copy of Xb,w (resp. of Xb). Recall

the definition of γ r,w (resp. of γ r) in (101) (resp. in (131)). Recall that Ir,w
t =

infs∈[0,t] Xr,w
s and recall the notation Ir,w∞ = limt→∞ Ir,w

t . Similarly, recall that Irt =
infs∈[0,t] Xr

s and recall the notation Ir∞ = limt→∞ Irt . Recall the definition of γ r in
(135) in Lemma 4.1. We also set

γ r,w
x = γ r,w

x if x<−Ir,w∞ and γ r,w
x = γ r,w((−Ir,w∞ )−) if x≥−Ir,w∞ . (195)

��
Lemma 6.7 Under the assumptions of Lemma 6.3, we have

((
1
an X

r,wn
bnt

)
t∈[0,∞)

,
(

1
bn

γ r,wn
anx

)
x∈[0,∞)

,− 1
an I

r,wn∞
) −−−−→

n→∞
(
Xr, γ r,−Ir∞

)

(196)

weakly on (D([0,∞), R))2×[0,∞].
Proof Let γ̃ n (resp. γ̃ ) be a conservative subordinator with Laplace exponent
anψ−1wn (·/bn)− an�wn (resp. ψ

−1(·)−�). By (33) in Proposition 2.1 , anψ−1wn (λ/bn)−
an�wn → ψ−1(λ)−� for all λ ∈ [0,∞), which implies that for all x ∈ [0,∞),
γ̃ n
x → γ̃x weakly on [0,∞). Since the γ̃ n are Lévy processes, Theorem B.8 entails
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that γ̃ n → γ̃ weakly on D([0,∞), R). Let En (resp. E) be an exponentially dis-
tributed r.v. with parameter an�wn (resp. �) that is independent of γ̃ n (resp. of γ̃ ),
with the convention that a.s. En = ∞ if �wn = 0 (resp. a.s. E = ∞ if � = 0).
We then get (γ̃ n, En)→ (γ̃ , E) weakly on D([0,∞), R)×[0,∞]. An easy applica-
tion of Lemma B.4 (i) entails that

(
(γ̃ n

x∧En )x∈[0,∞), En
)→((γ̃x∧E )x∈[0,∞), E

)
weakly

on D([0,∞), R) × [0,∞]. By (136), we get
( 1
bn

γ
r,wn
an · ,− 1

an
Ir,wn∞

) → (
γ r· ,−Ir∞

)

weakly on D([0,∞), R) × [0,∞]. Under our assumptions, Proposition 2.1 implies
that 1

an
Xr,wn
bn · → Xr· weakly on D([0,∞), R). Then the laws of the processes on the

left hand side of (196) are tight onD([0,∞), R)2×[0,∞]; we only need to prove that
the joint law of the processes on the right hand side of (196) is the unique limit law:
to that end, let (n(p))p∈N be an increasing sequence of integers such that

(( 1
an(p)

X
r,wn(p)
bn(p)t

)
t∈[0,∞)

,
( 1
bn(p)

γ
r,wn(p)
an(p)x

)
x∈[0,∞)

,− 1
an(p)

I
r,wn(p)∞

) −−−−→
p→∞

(
Xr, γ ′,E ′) ,

(197)

where (γ ′, E ′) has the same law as (γ r,−Ir∞). Without loss of generality (but with
a slight abuse of notation), by Skorokhod’s representation theorem we can assume
that the convergence in (197) holds P-a.s. and we only need to prove that (γ ′, E ′) =
(γ r,−Ir∞) a.s.

We first prove that a.s. E ′ = −Ir∞. Since Xr is a spectrally positive Lévy pro-
cess, it has no fixed discontinuity. Moreover, t �→ inf [0,t] Xr is continuous. Then,
by Lemma B.3 (i i), for all t ∈ [0,∞), a.s. a−1n(p) infs∈[0,t] X

r,wn(p)
bn(p)s

→ inf [0,t] Xr.

Since −a−1n(p) infs∈[0,t] X
r,wn(p)

bn(p)s
≤ −a−1n(p) I

r,wn(p)∞ → E ′, for all t ∈ [0,∞), we get

a.s. − inf [0,t] Xr ≤ E ′. Namely, −Ir∞ ≤ E ′. Since E ′ and −Ir∞ have the same law on
[0,∞], we get E ′ = −Ir∞ a.s.

We next prove that a.s. for all x ∈ [0,−Ir∞), γ ′x = γ x . Indeed, fix x < −Ir∞
such that �γ r

x = 0. Then, by Lemma B.3 (iv), we get γ
r,wn(p)
an(p)x /bn(p)→ γ r

x . Since

x<−Ir,wn(p)∞ /an(p) for all sufficiently large p, it shows that γ
r,wn(p)
an(p)x /bn(p)→γ r

x = γ r
x .

Thus, a.s. for all x ∈ [0,−Ir∞) such that �γ r
x = 0, we get γ ′x = γ x , which implies

the desired result. Note that it completes the proof of the lemma in the critical and
subcritical cases.

To avoid trivialities, we now assume that we are in the supercritical cases. Namely,
�>0 and −Ir∞<∞ a.s. To simplify notation, we set

t p∗ = 1
bn(p)

γ r,wn(p) ((−Ir,wn(p)∞ )−) and t∗=γ r((−Ir∞)−) .

First note that the proof is complete as soon as we prove that t p∗ → t∗. To prove this
limit, wewant to use LemmaB.3 (i i i). To that end, we first fix x>−Ir∞. Since (γ ′, E ′)
has the same law as (γ r,−Ir∞), γ ′ is constant on [E ′,∞) and since E ′ = −Ir∞, γ ′
is constant on [−Ir∞,∞), which implies �γ ′x = 0 and thus γ

r,wn(p)
an(p)x /bn(p)→γ ′x . We

next fix t > γ ′x + t∗. Thus, there is p0 such that for all p ≥ p0, γ
r,wn(p)
an(p)x /bn(p) < t

and x >−Ir,wn(p)∞ /an(p), which implies that t p∗ = γ
r,wn(p)
an(p)x /bn(p). Since t > t p∗ ∨ t∗,

we get t p∗ = inf{s ∈ [0, t] : infr∈[0,s] Xr,wn(p)
bn(p)r

= infr∈[0,t] X
r,wn(p)
bn(p)r

} and t∗ = inf{s ∈
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[0, t] : inf [0,s] Xr = inf [0,t] Xr}. Thus Lemma B.3 (i i i) entails that t p∗ → t∗, which
completes the proof of the lemma. ��

Recall the definition of θb,w in (101) and that of γ r,w in (195). We next set, for
t ∈ [0,∞),

θ
b,w
t = t + γ

r,w
Aw
t

. (198)

Note also that T ∗w = sup{t ∈ [0,∞) : Aw
t <−Ir,w∞ } by definition (103). Note also θ

b,w

coincides with θb,w on [0, T ∗w ).

Lemma 6.8 Under the assumptions of Lemma 6.3, the laws of the processes

( 1
bn

θ
b,wn
bnt )t∈[0,∞) are tight on D([0,∞), R).

Proof To simplify notation we set Rn
t = 1

bn
θ
b,wn
bnt − t = 1

bn
γ r,wn (Awn

bnt
); we only need

to prove that the Rn are tight on D([0,∞), R). To that end, we use Lemma 6.2. First,
observe that for all K , z ∈ (0,∞),

P(Rn
t > K ) = P

(
1
bn

γ r,wn (Awn (bnt)) > K
) ≤ P

(
1
bn

γ r,wn
anz > K

)+ P
(

1
an A

wn
bnt

> z) .

This easily implies that for fixed t the laws of the Rn
t are tight on [0,∞) since it is the

case for the laws of γ
r,wn
anz /bn and Awn

bnt
/an by resp. Lemma 6.7 and Lemma 6.3.

Next, denote by Ft the σ -field generated by the r.v. Nwn
j (s) and γ r,wn (Awn

s ) with
s ∈ [0, t] and j ≥ 1; note that Nwn

j (t + ·)− Nwn
j (t) are independent of Ft . Fix

ε ∈ (0,∞) and recall the definition of the times τ ε
k (Rn) in (182): clearly bnτ ε

k (Rn) is
a (Ft )-stopping time. Next, fix k ∈ N and set, for x ∈ [0,∞),

g(x)= 1
bn

γ r,wn
(
an(x + 1

an A
wn (bnτ

ε
k (Rn)))

)− 1
bn

γ r,wn (Awn (bnτ
ε
k (Rn))) .

Set uε = inf{x ∈ [0,∞) :g(x)>ε}; thus by (182),

τ ε
k+1(Rn) = inf

{
t > τε

k (Rn) : 1
an A

wn (bnt)− 1
an A

wn (bnτ
ε
k (Rn)) > uε

}
.

Fix z, η ∈ (0,∞) and set qn,k(η) = P
(
τ ε
k (Rn) < z ; τ ε

k+1(Rn)−τ ε
k (Rn) ≤ η

)
. By

(118) in Lemma 3.5 (applied to the (Ft )-stopping time T = bnτ ε
k (Rn), to t0 = bnz,

to t = bnη and to a = anx), we get the following:

qn,k(η) ≤ P
(
bnτ

ε
k (Rn) < bnz ; Awn (bnη + bnτ

ε
k (Rn))−Awn (bnτ

ε
k (Rn)) > anuε

)

≤ P
(
bnτ

ε
k (Rn) < bnz ; Awn (bnη + bnτ

ε
k (Rn))−Awn (bnτ

ε
k (Rn)) > anx

)

+P(uε ≤ x)

≤ x−1η(z + 1
2 η)

anbn
σ1(wn)

bnσ3(wn)

a2nσ1(wn)
+ P(uε ≤ x)

≤ x−1η(z + 1
2 η)

anbn
σ1(wn)

bnσ3(wn)

a2nσ1(wn)
+ P

(
g(x)≥ε

)
. (199)
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Denote byG o
x theσ -field generated by the processes (Nwn

j ) j≥1 and byγ
r,wn
y , y ∈ [0, x]

and set Gx = G o
x+. Then, it is easy to see that 1

an
Awn (bnτ ε

k (Rn)) is a (Gx )-stopping
time. By (137) in Lemma 4.1 applied to T = Awn (bnτ ε

k (Rn)), we get

P
(
g(x)≥ε

) ≤ 1−exp (−xanψ−1wn

( 1
εbn

))

1− e−1
.

This, combined with (199) and (33) in Proposition 2.1, implies that

lim sup
n→∞

sup
k∈N

qn,k(η) ≤ x−1η(z + η)κ(β + κσ3(c))+ 1−e−xψ−1(ε−1)
1− e−1

−−−→
η→0+

1−e−xψ−1(ε−1)
1− e−1

−−−→
x→0+

0,

which completes the proof by Lemma 6.2. ��
Recall the definition of θb in (145) and that of γ r in (135) in Lemma 4.1. Then,

we define
∀t ∈ [0,∞), θ

b
t = t + γ r

At
. (200)

Recall that T ∗ = sup{t ∈ [0,∞) : At <−Ir∞}. Then, note that θ
b
coincides with θb

on [0, T ∗).
Lemma 6.9 Under the assumptions of Lemma 6.3,

((
1
an X

b,wn
bn · , 1

an A
wn
bn ·,

1
an Y

wn
bn ·
)
, 1

bn
θ
b,wn
bn · , 1

bn
γ r,wn
an · , 1

an X
r,wn
bn · ,− 1

an I
r,wn∞ , 1

bn
T ∗wn
)

−−−→
n→∞

(
(Xb, A,Y ), θ

b
, γ r, Xr,−Ir∞, T ∗

)
(201)

weakly onD([0,∞), R
3)×(D([0,∞), R))3×[0,∞]2 equipped with the product topol-

ogy.

Proof Recall the definition of T ∗wn in (103). We first prove that 1
bn T

∗
wn→T ∗ in law on

[0,∞]. To that end, first observe that from the independence between the blue and red
processes, we deduce that ( 1

an
Awn
bn ·,− 1

an
Ir,wn∞ )→(A,−Ir∞)weakly onD([0,∞), R)×

[0,∞]. In the (sub)critical cases α ∈ [0,∞), −Ir∞ = ∞. Then, clearly 1
bn T

∗
wn→T ∗

in law on [0,∞]. We next suppose α<0; thus −Ir∞ is exponentially distributed with
parameter � > 0 (that is the largest root of ψ); namely −Ir∞ has a diffuse law which
allows to apply Proposition 2.11 in Jacod & Shiryaev [27] (Chapter VI, Section 2a
p. 341) that discusses continuity properties of specific hitting times; thus, we get that
1
bn T

∗
wn→T ∗ in law on [0,∞].
By Lemmas 6.6, 6.7 and 6.8, the laws of the r.v. on the left hand side of (201) are

tight on D([0,∞), R
3)×(D([0,∞), R))3×[0,∞]2; we only need to prove that the

joint law of the processes on the right hand side of (201) is the unique limit law. To this
end, we note that by the aforementioned three lemmas, the independence between the
red processes and blue ones, as well as the uniqueness of the limit law of ( 1

bn T
∗
wn ) as
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implied by Jacod & Shiryaev’s proposition, it suffices to consider the situation where
(n(p))p∈N is an increasing sequence of integers such that

(( 1
an(p)

X
b,wn(p)
bn(p)· ,

1
an(p)

A
wn(p)
bn(p)·,

1
an(p)

Y
wn(p)
bn(p)·

)
,

1
bn(p)

θ
b,wn(p)
bn(p)· ,

1
bn(p)

γ
r,wn(p)
an(p)· ,

1
an(p)

X
r,wn(p)
bn(p)· ,− 1

an(p)
I
r,wn(p)∞ ,

1
bn(p)

T ∗wn(p)

)

−−−−→
p→∞

(
(Xb, A,Y ), θ ′, γ r, Xr,−Ir∞, T ∗

)
, (202)

and then prove that θ ′ = θ
b . Without loss of generality (but with a slight abuse of

notation), by Skorokhod’s representation theoremwe can assume that (202) holds true
P-almost surely. We say that càdlàg process L = (Lt )t∈R+ has no fixed discontinuity
if P(Lt− = Lt ) = 1 for all t ∈ R+. Observe that A has no fixed discontinuity.
Therefore, a.s. for all q ∈ Q∩ [0,∞), �Aq = 0, and thus A

wn(p)
bn(p)q

/an(p)→ Aq . Since
γ r has no fixed discontinuity and is independent of A, the same properties hold for
γ r. Therefore, a.s. for all q ∈ Q ∩ [0,∞), �γ r(Aq) = 0, which easily entails that

γ r,wn(p) (Awn(p) (bn(p)q))/bn(p)→ γ r(Aq); thus, θ
b,wn(p)

(bn(p)q)/bn(p)→ θ
b
q for all

q ∈ Q ∩ [0,∞) a.s. Therefore, θ ′ = θ
b
, which completes the proof. ��

Lemma 6.10 Under the assumptions of Lemma 6.3,

Qn(1) :=
((

1
an X

b,wn
bn · , 1

an A
wn
bn ·,

1
an Y

wn
bn ·,

1
bn

θ
b,wn
bn ·

)
, 1

bn
γ r,wn
an · , 1

an X
r,wn
bn · ,− 1

an I
r,wn∞ , 1

bn
T ∗wn
)

−−−→
n→∞

(
(Xb, A,Y , θ

b
), γ r, Xr,−Ir∞, T ∗

)
(203)

weakly onD([0,∞), R
4)×(D([0,∞), R))2×[0,∞]2 equipped with the product topol-

ogy.

Proof Without loss of generality (but with a slight abuse of notation), Skorokhod’s
representation theorem allows to assume that (201) holds P-almost surely. To simplify
notation, we next set Rn = 1

an
(Xb,wn

bn · , Awn
bn ·,Y

wn
bn ·) and R = (Xb, A,Y ). Let us fix

a ∈ (0,∞).
We consider several cases. We first suppose that�Ra �=0. By Lemma B.1 (i), there

is sn→a such that Rn
sn−→ Ra−, Rn

sn→ Ra and thus �Rn
sn→�Ra .

– Let us suppose more specifically that �Ya >0. By definition of Y , we get �Xb
a =

�Ya and�Aa = 0. Suppose that a ∈ [0, T ∗]; by Lemma 4.3 (i i), we get�θba = 0

and thus �θ
b
(a) = 0. Note that �θ

b
(a) = 0 for all a ∈ (T ∗,∞). Consequently,

for all a ∈ (0,∞), if �Ya > 0, then �θ
b
(a) = 0 and Lemma B.1 (i i) entails

1
bn �θ

b,wn
(bnsn)→�θ

b
a = 0.

– We next consider the case where �Ra �= 0 but �Ya = 0; then, by definition of A
and Y , we get �Xb

a =�Aa >0. Since γ r, and therefore γ r is independent of R, it
has a.s. no jump at the times Aa− and Aa ; therefore: 1

bn γ r,wn (Awn
bnsn−)→γ r(Aa−)

and 1
bn γ r,wn (Awn

bnsn ) → γ r(Aa). This implies that 1
bn

�θ
b,wn

(bnsn) → �θ
b
a =

γ r(Aa)−γ r(Aa−).
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936 N. Broutin et al.

– We finally suppose that �Ra = 0; by Lemma B.1 (i), there exists a sequence
s′n → a such that 1

bn �θ
b,wn

(bns′n)→ �θ
b
a . Since, �Ra = 0, Lemma B.1 (i i)

entails that �Rn
s′n
→�Ra .

Thus, we have proved the following: for all a ∈ (0,∞), there exists a sequence
s′′n → a such that 1

bn
�θ

b,wn
(bns′′n ) → �θ

b
a and �Rn

s′′n
→ �Ra . Then, by Lemma

B.1 (i i i), (Rn, 1
bn

θ
b,wn

(bn ·))→ (R, θ
b
) a.s. on D([0,∞), R

4), which completes the
proof. ��

Recall next that for all t ∈ [0,∞) and all n ∈ N,

�
b,wn
t = inf

{
s ∈ [0,∞) : θb,wn

s > t
}
, �b

t = inf
{
s ∈ [0,∞) : θbs > t

}
, (204)

that �r,wn
t = t−�

b,wn
t and that �r

t = t−�b
t .

Lemma 6.11 Recall the notation Qn(1) in (203). Under the assumptions of Lemma
6.3,

Qn(2) :=
(
Qn(1),

1
bn

�
b,wn
bn · , 1

bn
�

r,wn
bn ·

)−−−→
n→∞

(
(Xb, A, Y , θ

b
), γ r, Xr,−Ir∞, T ∗,�b,�r)

(205)

weakly onD([0,∞), R
4)×(D([0,∞), R))2×[0,∞]2×(C([0,∞), R))2 equipped with

the product topology.

Proof Without loss of generality (but with a slight abuse of notation), by Skorokhod’s
representation theorem we can assume that the convergence in (203) holds P-almost
surely. Since θ

b
(resp. θ

b,wn ) is constant on [T ∗,∞) (resp. on [T ∗wn ,∞)), we easily

derive from (203) that θ
b,wn

(T ∗wn )/bn→θ
b
(T ∗) a.s. on [0,∞].

Next, we take t ∈ (0,∞) distinct from θ
b
(T ∗). Suppose first that t < θ

b
(T ∗).

Then, for all sufficiently large n, we get t<θ
b,wn

(T ∗wn )/bn and we can write

1
bn

�
b,wn
bnt
= inf

{
s ∈ [0,∞) : 1

bn
θ
b,wn
bns > t

}
.

Since θ
b
is strictly increasing on [0, T ∗), standard arguments entail�b,wn (bnt)/bn→

�b
t .

Suppose next that t>θ
b
(T ∗), which is only meaningful in the supercritical cases.

Then, for all sufficiently large n, we get t>θ
b,wn

(T ∗wn )/bn and we can write �
b,wn
bnt
=

T ∗wn and �b
t = T ∗. Thus, we get �b,wn (bnt)/bn→�b

t .

We have proved that �b,wn (bnt)/bn→�b
t for all t ∈ (0,∞) distinct from θ

b
(T ∗).

Since �b is nondecreasing and continuous, a theorem due to Dini (see for instance
[35], Theorem 7.13) implies that 1

bn �
b,wn
bn · →�b uniformly on all compact subsets; it

entails a similar convergence for �r, which completes the proof of (205). ��
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Here is one of the key technical point of the proof that relies on the estimates of
Lemma 3.6.

Lemma 6.12 Under the assumptions of Lemma 6.3, the laws of the processes
( 1
an X

b,wn (�
b,wn
bnt

))t∈[0,∞) and ( 1
an X

r,wn (�
r,wn
bnt

))t∈[0,∞) are tight on D([0,∞), R).

Proof Fix t ∈ [0,∞); then for all t0, K ∈ (0,∞), note that

P
(
sup
s∈[0,t]

1
an |Xb,wn (�

b,wn
bns

)| > K
)
≤ P

(
sup

s∈[0,t0]
1
an |Xb,wn

bns
| > K

)
+ P

(
1
bn

�
b,wn
bnt

> t0
)
.

Then, we deduce from (205) that

lim
K→∞ lim sup

n→∞
P
(
sup
s∈[0,t]

1
an |Xb,wn (�

b,wn
bns

)| > K
)
≤ lim sup

n→∞
P
(

1
bn

�
b,wn
bnt

> t0
) −−→
t0→∞

0 .

A similar argument shows that limK→∞ lim supn→∞ P(sups∈[0,t] |Xr,wn (�
r,wn
bns

)| >
anK

)
=0.

Next, Proposition 3.2 says that a.s. for all n ∈ N and for all t ∈ [0,∞)

Xwn
t = Xb,wn

�
b,wn
t
+ Xr,wn

�
r,wn
t

. (206)

Recall that for all y ∈ D([0,∞), R), wz(y, η) stands for the η-càdlàg modulus of
continuity of y(·) on [0, z]. Let z1, z, z0, η, ε ∈ (0,∞). Let us consider first the
(sub)critical cases. By (122) in Lemma 3.6 (i), we easily get

P
(
wz1

(
1
an Xb,wn (�

b,wn
bn · ), η

)
> ε
) ≤ P

(
wz+η

(
1
an Xwn

bn ·, η
)

> ε/2
)+ P

(
wz0

(
1
an Xb,wn

bn · , η
)

> ε/2
)

+P( 1
bn

θ
b,wn
bn z0

< z1
)+ P

(
1
bn

θ
b,wn
bn z0

> z
)

.

ByProposition 3.2, Xwn has the same lawas Xb,wn and Xr,wn . Then, byProposition 2.1,
the lawsof the processes 1

an X
wn
bn · (or equivalently of

1
an X

b,wn
bn · ) are tight onD([0,∞), R).

Consequently,

lim
η→0

lim sup
n→∞

P
(
wz1

(
1
an X

b,wn (�
b,wn
bn · ), η

)
> ε
)

≤ lim sup
n→∞

P
(

1
bn

θ
b,wn
bnz0
≤ z1

)+ lim sup
n→∞

P
(

1
bn

θ
b,wn
bnz0
≥ z
)

. (207)

Recall that in the (sub)critical cases, θ
b = θb. Moreover, since θbt− = θbt a.s. for

all t , (203) easily entails: 1
bn θ

b,wn
bnz0

→ θbz0 weakly on [0,∞). It first implies:

lim supn→∞ P
(

1
bn θ

b,wn
bnz0
≥ z
) ≤ P

(
θbz0 ≥ z

)→ 0 as z →∞ since a.s. θbz0 <∞ in

(sub)critical cases. Similarly, we also get lim supn→∞ P
(

1
bn θ

b,wn
bnz0
≤ z1

) ≤ P
(
θbz0 ≤

z1
)→0 as z0→∞ since a.s. limz0→∞ θbz0 = ∞. Then, (207) and the previous argu-

ments imply that the laws of ( 1
an X

b,wn (�
b,wn
bnt

))t∈[0,∞) are tight on D([0,∞), R) in
(sub)critical cases.

123



938 N. Broutin et al.

Let us consider the supercritical cases: Lemma 3.6 (i i) implies that for all z1 ∈
[0,∞),

P
(
wz1

(
1
an Xb,wn (�

b,wn
bn · ), η

)
> ε
) ≤ P

(
wz+η

(
1
an Xwn

bn ·, η
)

> ε/2
)+ P

(
wz0

(
1
an Xb,wn

bn · , 2η
)

> ε/6
)

+P( 1
bn
T ∗wn ≥ z0

)+ P
(

1
bn
T ∗wn ≤ 2η

)+ P
(

1
bn

θ
b,wn
T ∗wn− ≥ z

)
.

Then, recall that θ
b,wn
T ∗wn− ≤ θ

b,wn
T ∗wn

and observe that (203) easily entails 1
bn

θ
b,wn
T ∗wn
→ θ

b
T ∗

weakly on [0,∞). By (203) again, 1
bn
T ∗wn→T ∗, weakly on [0,∞). Consequently,

lim
η→0

lim sup
n→∞

P
(
wz1

(
1
an X

b,wn (�
b,wn
bn · ), η

)
> ε
) ≤ P

(
T ∗≥ z0

)+ P
(
θ
b
T ∗ ≥ z

) −−→
z,z0→∞

0 ,

by the fact that in the supercritical cases T ∗ < ∞ a.s. Thus, the laws of
( 1
an X

b,wn (�
b,wn
bnt

))t∈[0,∞) are tight in supercritical cases.
We derive a similar result for the red processes by a quite similar (but simpler)

argument based on Lemma 3.6 (i i i): we leave the details to the reader. ��
Using the relationship (206) and its continuous counterpart (148), we prove the

next lemma:

Lemma 6.13 Recall the definition ofQn(2) in (205). Under the assumptions of Lemma
6.3, we have

Qn(3) :=
(
Qn(2),

1
an

(
Xb,wn

�
b,wn
bn ·

, Xr,wn
�

r,wn
bn ·

, Xwn
bn ·
))

−−−→
n→∞

(
(Xb, A,Y , θ

b
), γ r, Xr,−Ir∞, T ∗,�b,�r, (Xb

�b , X
r
�r , X)

)
,

(208)

weakly onD([0,∞), R
4)×(D([0,∞), R))2×[0,∞]2×(C([0,∞), R))2×D([0,∞), R

3)

equipped with the product-topology.

Proof We first prove the following

Q′n(3) :=
(
Qn(2),

1
an X

b,wn
�

b,wn
bn ·

, 1
an X

r,wn
�

r,wn
bn ·

)

−−−→
n→∞

(
(Xb, A,Y , θ

b
), γ r, Xr,−Ir∞, T ∗,�b,�r, Xb

�b , X
r
�r

)
,

(209)

weakly onD([0,∞), R
4)×D([0,∞), R)2×[0,∞]2×C([0,∞), R)2×D([0,∞), R)2

equipped with the product-topology. Note that the laws of Q′n(3) are tight thanks to
(205) and Lemma 6.12. We only need to prove that the joint law of the processes on
the right hand side of (209) is the unique limit law: to that end, let (n(p))p∈N be an
increasing sequence of integers such that

Q′n(p)(3)−−−→p→∞
(
(Xb, A,Y , θ

b
), γ r, Xr,−Ir∞, T ∗,�b,�r, Qb, Qr) (210)
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weakly onD([0,∞), R
4)×D([0,∞), R)2×[0,∞]2×C([0,∞), R)2×D([0,∞), R)2

equipped with the product topology. Without loss of generality (but with a slight
abuse of notation), by Skorokhod’s representation theorem we can assume that the
convergence in (210) holds P-a.s. and we only need to prove that Qb = Xb◦�b and
Qr = Xr◦�r.

We first prove that Qb = Xb◦�b. Note that {t ∈ [0,∞) : (�Xb)(�b
t )> 0} is, in

general, not countable (it contains all the red intervals starting with a jump), so we
have to proceed with care. To that end, we first set S1 =

{
t ∈ [0,∞) : �Y (�b

t )>0
}

that is a countable set of times (indeed, by Lemma 4.3 (i i), for all a ∈ [0, T ∗w ],�Ya >0
implies �θba = 0 and by Lemma 4.3 (i), there exists a unique time t ∈ [0,∞) such
that �b

t = a). We also set S2 = {θbT ∗−} ∪ {θba−, θba ; a ∈ [0, T ∗) : �θba > 0} and
S = S1 ∪ S2. Then S is countable. We then consider several cases.

We first fix t ∈ (0, T ∗)\S and we assume that (�Xb)(�b
t ) = 0. Then, by Lemma

B.1 (i i), Xb,wn(p)
(
�b,wn(p) (bn(p)t)

)
/an(p)→ Xb(�b

t ), since�b,wn(p) (bn(p)t)/bn(p)→
�b

t .
We next assume that t ∈ (0, T ∗)\S and that (�Xb)(�b

t ) > 0. Since t /∈ S1,
�Y (�b

t ) = 0, and thus �Xb(�b
t ) = �A(�b

t ) > 0, by definition of A and Y . We
then set a = �b

t and we necessarily get a < T ∗, �θba > 0 and t ∈ [θba−, θba ]. Since
t /∈ S2, we then get t ∈ (θba−, θba ). To simplify the notation, we set

Rp =
(

1
an(p)

X
b,wn(p)
bn(p)· ,

1
an(p)

A
wn(p)
bn(p)· ,

1
an(p)

Y
wn(p)
bn(p)· ,

1
bn(p)

θ
b,wn(p)
bn(p)·

)
and R = (Xb, A, Y , θ

b
) .

By (210), Rp → R a.s. on D([0,∞), R
4). Since a < T ∗, �θba = �θ

b
a > 0 and

a is a jump-time of R. By Lemma B.1 (i), there is a sequence sp → a such that
(Rp

sp−, Rp
sp ) → (Ra−, Ra): in particular, we get Xb,wn(p) (bn(p)sp)/an(p) → Xb

a =
Xb(�b

t ). It also implies that θb,wn(p) (bn(p)sp−)/bn(p) = θ
b,wn(p)

(bn(p)sp−)/bn(p)→
θ
b
a− = θba− and θb,wn(p) (bn(p)sp)/bn(p) = θ

b,wn(p)
(bn(p)sp)/bn(p)→ θ

b
a = θba ; thus,

for all sufficiently large p, we get

1
bn(p)

θb,wn(p) (bn(p)sp−) < t <
1

bn(p)
θb,wn(p) (bn(p)sp) and thus 1

bn(p)
�

b,wn(p)
bn(p)t

= sp,

which implies that Xb,wn(p)
(
�b,wn(p) (bn(p)t)

)
/an(p)→ Xb

a = Xb(�b
t ).

Thus, we have proved a.s. for all t ∈ (0, T ∗)\S that Xb,wn(p)
(
�b,wn(p) (bn(p)t)

)
/an(p)

→ Xb(�b
t ). Since S is countable, it easily implies that for all t ∈ [0, T ∗), Qb

t =
Xb(�b

t ). In (sub)critical cases, it simply means that Qb = Xb
�b .

We now complete the proof that Qb = Xb
�b in the supercritical cases. To that

end, we first observe the following. Let t1, t2 ∈ (T ∗,∞) be distinct times such that
�Qb

t1 = �Qb
t2 = 0. By Lemma B.1 (i i), Xb,wn(p)

(
�b,wn(p) (bn(p)ti )

)
/an(p)→Qb

ti for
i ∈ {1, 2}. Then, by (210), we get ti > T ∗wn(p)

/bn(p) for all sufficiently large p which

implies Xb,wn(p)
(
�b,wn(p) (bn(p)t1)

) = Xb,wn(p)
(
�b,wn(p) (bn(p)t2)

)
. Consequently, we

get Qb
t1 = Qb

t2 . This argument easily implies that for all t ∈ [T ∗,∞), Qb
t = Qb

T ∗ .
Thus, to complete the proof that Qb = Xb

�b in the supercritical cases, we only need to
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prove that Xb,wn(p) (T ∗wn(p)
)/an(p)→ Xb(T ∗). If�Xb(T ∗) = 0, then it is a consequence

of (210) and of Lemma B.1 (i i).
Therefore, it remains to address cases where �Xb(T ∗)>0. In this case, we clearly

get �θb(T ∗) = ∞; by Lemma 4.3 (i i) with a = T ∗, we get �Y (T ∗) = 0 and
therefore �Xb(T ∗)=�A(T ∗)>0 by definition of Y and A.

We first claim that it is sufficient to prove Awn(p) (T ∗wn(p)
)/an(p) → AT ∗ . Indeed,

suppose it holds true; since �Y (T ∗) = 0, Lemma B.1 (i i) and (210) imply that
Y wn(p) (T ∗wn(p)

)/an(p)→YT ∗ ; and it is sufficient to recall that Xb,wn(p) = Awn(p)+Y wn(p) .

Thus, we assume that we are in the supercritical cases and that �Xb(T ∗)>0, and
we want to prove that Awn(p) (T ∗wn(p)

)/an(p)→ AT ∗ . By Lemma B.1 (i), there exists
tp→T ∗ such that Awn(p) (bn(p)tp−)/an(p)→ AT ∗− and Awn(p) (bn(p)tp)/an(p)→ AT ∗ .
Suppose that tp > T ∗wn(p)

/bn(p) for infinitely many p; by the definition (103) of T ∗wn ,
this implies that Awn(p) (bn(p)tp−)≥−Ir,wn(p)∞ for infinitely many p and (210) implies
AT ∗− ≥ −Ir∞; since T ∗ = sup{t ∈ [0,∞) : At < −Ir∞}, we get AT ∗− = −Ir∞;
however, −Ir∞ is an exponentially distributed r.v. that is independent of A which
a.s. implies that−Ir∞ /∈ {Aa−; a ∈ (0,∞)}. This proves that a.s. tp ≤ T ∗wn(p)

/bn(p) for
all sufficiently large p. Then,LemmaB.1 (iv) implies that Awn(p) (T ∗wn(p)

)/an(p)→ AT ∗ .

As observed previously, it completes the proof of Xb,wn(p) (T ∗wn(p)
)/an(p)→ Xb(T ∗)

and thus that of Qb = Xb
�b in the supercritical cases.

We next prove that Qr = Xr
�r : to that end, we set S3 = {t ∈ [0,∞) :(�Xr)(�r

t )>

0}. Lemma 4.3 (iv) entails that a.s. S3 is countable and by Lemma B.1 (i i), a.s. for all
t ∈ [0,∞)\S3, we get Xr,wn(p)

(
�r,wn(p) (bn(p)t

)
/an(p)→ Xr(�r

t ); this easily entails
that a.s. Qr = Xr ◦�r, which completes the proof of (209).

We now prove (208): without loss of generality (but with a slight abuse of nota-
tion), Skorokhod’s representation theorem allows to assume that (209) holds P-a.s. By
Lemma 4.3 (v), a.s. for all t ∈ [0,∞), �Qb

t �Qr
t = 0, and Lemma B.1 (i i i) entails

that

((
1
an X

b,wn
�

b,wn
bn t

, 1
an X

r,wn
�

r,wn
bn t

))
t∈[0,∞)

−−−→
n→∞

(
(Qb

t , Q
r
t )
)
t∈[0,∞)

a.s. on D([0,∞), R
2).

which implies (208) since Xwn
t = Xb,wn (�

b,wn
t )+ Xr,wn (�

r,wn
t ) and Xt= Xb(�b

t )+
Xr(�r

t ). ��

Recall the definition of the height process Hwn associated with Xwn in (114). Recall
the definition of (Ht )t∈[0,∞) in (138) that is the height process associated with X : H
is a continuous process and note that (138) implies that H is an adapted measurable
functional of X . Then, recall the definition of the offspring distributionμwn in (85) and
denote by (Zwn

k )k∈N a Galton–Watson branching process with initial state Zwn
0 = �an�

and offspring distributionμwn ; recall Assumption (C4) in (34): there exists δ ∈(0,∞)

such that lim infn→∞ P(Zwn
�bn δ/an� = 0)>0.
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Lemma 6.14 RecallQn(3) in (208). Under (C4) and the assumptions of Lemma 6.3,

Qn(4) :=
(
Qn(3),

an
bn

Hwn
bn ·,

an
bn

Hwn◦θb,wn
bn ·

)

−−−→
n→∞

(
(Xb, A, Y , θ

b
), γ r, Xr,−Ir∞, T ∗,�b,�r, (Xb

�b , X
r
�r , X), H , H◦θb),

(211)

weakly onD([0,∞), R
4)×(D([0,∞), R))2×[0,∞]2×(C([0,∞), R))2×D([0,∞), R

3)×
(C([0,∞), R))2 equipped with the product topology.

Proof We first prove that

Q′n(4) =
(
Qn(3),

an
bn

Hwn
bn ·
)

−−−→
n→∞Q′(4) = ((Xb, A, Y , θ

b
), γ r, Xr,−Ir∞, T ∗,�b,�r, (Xb

�b , X
r
�r , X), H

)
,

(212)

weakly on the appropriate product-space. By Proposition 2.2, the laws of the processes
an
bn
Hwn
bn · are tight on C([0,∞), R). Then, the laws of Q′n(4) are tight thanks to (208).

We only need to prove that the law of Q′(4) is the unique limit law, which is an easy
consequence of (208), of the joint convergence (35) in Proposition 2.2 and of the fact
that H is an adapted measurable deterministic functional of X .

To complete the proof of the lemma, we use a general (deterministic) result on
Skorokhod’s convergence for the composition of functions that is recalled in Theorem
B.5 (seeAppendixB.1).Without loss of generality (butwith a slight abuse of notation),
Skorokhod’s representation theorem allows to assume that (212) holds P-a.s.: since
an
bn
Hwn
bn ·→H a.s. on C([0,∞), R), since 1

bn θ
b,wn
bn · →θ

b a.s. on D([0,∞), R) and since

H ◦θb is a.s. continuous by (152) Theorem 4.7, Theorem B.5 (i) applies and asserts
that an

bn
Hwn ◦ θ

b,wn
bn · → H ◦ θ

b in C([0,∞), R), which completes the proof of the
proposition. ��
End of the proof of Proposition 5.1 Recall the definition of Hwn (that is the height
process associated with Y wn ) in (112). By Lemma 3.4, we have Hwn

t = Hwn (θ
b,wn
t )

for all t ∈ [0, T ∗wn ). On the other hand, recall the existence and the properties of H
as stated in Theorem 4.7. In particular, note that Ht = H(θbt ) for all t ∈ [0, T ∗).
First observe that in (sub)critical cases, the convergence (153) in Proposition 5.1 is an
immediate consequence of (211) in Lemma 6.14. Thus, we only need to focus on the
supercritical cases.

To simplify notation, we denote by (Y (n), A(n),H(n)) the rescaled processes on
the left hand side of (153) and we also set (Y (∞), A(∞),H(∞)) = (Y , A,H). We fix
t ∈ (0,∞), a bounded continuous function F :D([0,∞), R)2×C([0,∞), R)→R,
and for all n ∈ N ∪ {∞}, we set un = E

[
F
(
Y (n)
·∧t , A

(n)
·∧t ,H(n)

·∧t
)]
. Clearly, we only need

to prove that un→ u∞. To that end, we introduce for all K ∈ (0,∞), a continuous
function φK : [0,∞) → [0, 1] such that 1[0,K ] ≤ φK (·) ≤ 1[0,K+1] and we set
un(K ) = E

[
F
(
Y (n)
·∧t , A

(n)
·∧t ,H(n)

·∧t
)
φK
(
A(n)

t

)]
, for all n ∈ N∪ {∞}. We first observe

that 0 ≤ un−un(K ) ≤ ‖F‖∞P
(
A(n)

t ≥ K
)
. Since A(n)

t → At , standard arguments
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imply lim supn→∞ |un−un(K )| ≤ ‖F‖∞P
(
At ≥ K

)
. Next recall that Theorem 4.7

asserts that H is a functional of (Y , A); then recall also that −Ir∞ (resp. −Ir,wn∞ /an)
is an exponentially distributed r.v. independent of (Y , A) and thus independent of
(Y , A,H) (resp. independent of (Y (n), A(n),H(n))) and whose parameter is �(∞) :=�

(resp. �(n) := an�wn ). We set H(n)· = an
bn H

wn ◦ θ
b,wn
bn · . Then, for all n ∈ N ∪ {∞}, we

have

un(K ) = E
[
e�(n)A(n)

t F
(
Y (n)
·∧t , A

(n)
·∧t ,H(n)

·∧t
)
φK
(
A(n)

t

)
1{

A(n)
t <−Ir,wn∞ /an

}
]
, (213)

where the right-hand side is bounded thanks to the term φK . Note that the above
identity holds since the events {A(n)

t <−Ir,wn∞ /an
}
and {T ∗wn/bn > t} coincide a.s. and

on these events, we get H(n)
t = H(n)

t .
Next, recall that Proposition 2.1 (iv) asserts that limn→∞ �(n) = �(∞). Since

P(At = −Ir∞) = 0, the joint convergence (211) in Lemma 6.14 combined with
(213) entails that un(K )→ u∞(K ) by dominated convergence. Since |u∞−un| ≤
|u∞−u∞(K )| + |u∞(K )−un(K )| + |un(K )−un|, we get lim supn→∞ |u∞−un| ≤
2‖F‖∞P

(
At ≥ K

) → 0 as K tends to ∞. This completes the proof of (153) in
supercritical cases and it also completes the proof of Proposition 5.1. ��

7 Proof of the limit theorems for theMarkovian processes

The aim of this section is to prove Propositions 2.1-2.3. We will proceed as follows.
In Sect. 7.1, we will address a slightly more general situation: we will temporarily
remove the requirement that anbn/σ1(wn)→ κ . In that case, we will see that the Lévy
measure π in the limit can take a more general form than the one in (28); in particular
π is not necessarily purely atomic. With this requirement back in place, we then show
in Sect. 7.2 that the only possible limits are of the form (28). This then allows us to
prove aforementioned propositions in the rest of the section.

7.1 Convergence of theMarkovian queueing system: the general case

We say that an R-valued spectrally positive Lévy process (Rt )t∈[0,∞) with initial
value R0 = 0 is integrable if for at least one t ∈ (0,∞) we have E[|Rt |] <∞. It
implies that E[|Rt |] <∞ for all t ∈ (0,∞). In Sect. B.2.1, we recall that there is
a one-to-one correspondence between the laws of R-valued spectrally positive Lévy
processes (Rt )t∈[0,∞) with initial value R0 = 0 that are integrable and the triplets
(α, β, π) where α ∈ R, β ∈ [0,∞) and π is a Borel-measure on (0,∞) satisfying∫
(0,∞)

π(dr) (r∧r2)<∞. More precisely, the correspondence is given by the Laplace
exponent of spectrally positive Lévy processes: for all t, λ ∈ [0,∞),

E
[
e−λRt

] = etψα,β,π (λ), where ψα,β,π (λ) = αλ+ 1
2 βλ2 +

∫

(0,∞)

(e−λr−1+ λr) π(dr).

(214)
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The main result used to obtain the convergence of branching processes is a theorem
due to Grimvall [24], that is recalled in Theorem B.11: it states the convergence of
rescaled Galton–Watson processes to Continuous State Branching Processes (CSBP
for short). We say that a process (Zt )t∈[0,∞) is an integrable CSBP if it is a [0,∞)-
valued Feller Markov process obtained from spectrally positive Lévy processes via
Lamperti’s time-change which further satisfiesE[Zt ] <∞ for all t ∈ [0,∞). The law
of such a CSBP is completely characterised by the Laplace exponent of its associated
Lévy process that is usually called the branching mechanism of the CSBP, which is
necessarily of the form (214): see Sect. B.2.2 for a brief account on CSBP.

Let wn ∈ �
↓
f , n ∈ N. Let us recall the notation νwn = σ1(wn)−1

∑
j≥1 w

(n)

j δ j and

μwn (k)=σ1(wn)−1
∑

j≥1(w
(n)

j )k+1 exp(−w
(n)

j )/k!, for all k ∈ N. Recall the definition
in Sect. 3.2 of theMarkovian LIFO-queueing system associated with the set of weights
wn : clients arrive at unit rate; each client has a type that is a positive integer; the amount
of service required by a client of type j is w

(n)

j ; the types are i.i.d. with law νwn . If one
denotes by τ nk the time of arrival of the k-th client in the queue and by Jnk his type,
then the queueing system is entirely characterised by Xwn =

∑
k≥1 δ(τ nk ,Jnk )

that is a
Poisson point measure on [0,∞)×N

∗ with intensity �⊗ νwn , where � stands for the
Lebesgue measure on [0,∞). Next, for all j ∈ N

∗ and all t ∈ [0,∞), we introduce
the following:

Nwn
j (t) =

∑

k≥1
1{τ nk ≤t ;Jnk= j} and Xwn

t = −t +
∑

k≥1
w

(n)

Jnk
1[0,t](τ nk ) = −t +

∑

j≥1
w

(n)

j Nwn
j (t).

(215)

Observe that (Nwn
j ) j≥1 are independent homogeneous Poisson processes with rates

w
(n)

j /σ1(wn) and Xwn is a càdlàg spectrally positive Lévy process.
Let an, bn ∈ (0,∞), n ∈ N be two sequences that satisfy the following conditions.

an and
bn
an
−−−→
n→∞ ∞,

bn
a2n
−−−→
n→∞ β0 ∈ [0,∞), and sup

n∈N

w
(n)

1

an
<∞. (216)

Remark 7.1 It is important to note that these assumptions are weaker than (21):
namely, we temporarily do not assume that anbn

σ1(wn)
→ κ ∈ (0,∞), which explains

why the possible limits in the theorem below are more general. ��
Theorem 7.1 Let wn ∈ �

↓
f and an, bn ∈ (0,∞), n ∈ N, satisfy (216). Recall the

definition of Xwn
t in (215); recall the definition of μwn in (85) and let (Z (n)

k )k∈N be a
Galton–Watson process with offspring distribution μwn and initial state Z (n)

0 =�an�.
Then, the following convergences are equivalent.

(I)
(

1
an Z

(n)

�bnt/an�
)
t∈[0,∞)

−→(Zt )t∈[0,∞) weakly on D([0,∞), R).

(II)
(

1
an X

wn
bnt

)
t∈[0,∞)

−→(Xt )t∈[0,∞) weakly on D([0,∞), R).

If (I) or (II) holds true, then Z is necessarily an integrableCSBPand X is an integrable
(α, β, π)-spectrally positive Lévy process (as defined at the beginning of Sect. 7.1)
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whose Laplace exponent is the same as the branching mechanism of Z. Here (α, β, π)

necessarily satisfies

β ≥ β0 and ∃ r0 ∈ (0,∞) such that π((r0,∞)) = 0 , (217)

which implies
∫
(0,∞)

r2 π(dr)<∞. Moreover, (I)⇔ (II)⇔ (IIIabc)⇔((IIIa)&(IV))

where

(IIIa)
bn
an

(
1− σ2(wn)

σ1(wn)

)
−→ α.

(IIIb)
bn

(an)2
σ3(wn)

σ1(wn)
−→ β +

∫

(0,∞)

r2 π(dr).

(IIIc)
anbn

σ1(wn)

∑

j≥1

w
(n)
j

an
f
(
w

(n)
j /an

) −→
∫

(0,∞)

f (r) π(dr), for all continuous

bounded f : [0,∞)→R vanishing in a neighbourhood of 0.

(IV)
anbn

σ1(wn)

∑

j≥1

w
(n)
j

an

(
e−λw

(n)
j /an−1+ λ w

(n)
j /an

) −→ ψα,β,π (λ)− αλ, for all

λ ∈ (0,∞), where ψα,β,π is defined by (214).

Remark 7.2 We recall that β0 is the limit of the ratio bn/a2n . Combined with (217), we
see that if bn  a2n , then necessarily the limit process X will have a non-zero Brownian
component. The converse is not true in general: it is possible to have β0 = 0 < β; see
the construction in the proof of Propositions 2.1 and 2.2.

Proof We easily check that (Xwn
bnt

/an)t∈[0,∞) is an (αn, βn, πn)-spectrally positive
Lévy process where

αn= bn
an

(
1− σ2(wn)

σ1(wn)

)
, βn = 0 and πn = anbn

σ1(wn)

∑

j≥1

w
(n)
j

an
δ
w

(n)
j /an

.

We immediately see that βn+
∫
r2πn(dr) = bnσ3(wn)/a2nσ1(wn). Then, Theorem B.9

implies that (II)⇔(IIIabc). We then apply Lemma A.3 to�n
k = (Xwn

k −Xwn
k−1)/an and

qn = �bn�: it shows that theweak limit Xwn�bn�/an→ X1 is equivalent to the convergence
of the Laplace exponentsψαn ,βn ,πn (λ)→ ψα,β,π (λ), for all λ ∈ [0,∞). Then note that
the left hand side of (IV) is ψαn ,βn ,πn (λ)−αnλ. This shows that (II)⇔

(
(IIIa)&(IV)).

It remains to prove that β≥β0 and that (I)⇔ (IIIabc). Let (ζ n
k )k∈N be a sequence

of i.i.d. random variables with law μwn as defined in (85). By Theorem B.11, (I) is
equivalent to the weak convergence on R of the r.v. Rn := a−1n

∑
1≤k≤�bn�

(
ζ n
k −1

)
.

We next apply Lemma A.3 to �n
k := a−1n (ζ n

k − 1) qn = �bn�, which implies that (I)
is equivalent to

∃ψ ∈ C([0,∞), R) : ψ(0) = 0 and ∀λ ∈ [0,∞), Ln(λ) :=E
[
e−λRn

]−−−→
n→∞ eψ(λ). (218)

We next compute Ln(λ)more precisely. To that end, let (Wn
k )k∈N be an i.i.d. sequence

of r.v. with the same law as w
(n)

Jn1
, where Jn1 has law νwn . Namely, E[ f (Wn

k )] =
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σ1(wn)−1
∑

j≥1 w
(n)

j f (w(n)

j ) for any nonnegative measurable function Note that for

all k ∈ N, μwn (k) = E[ (Wn
1 )ke−Wn

1/k! ], which implies that

Ln(λ) = eλ�bn�/an (E
[
e−λζ n1 /an

])�bn� = eλ�bn�/an (E
[
exp

(−Wn
1

(
1− e−λ/an

))])�bn�.
(219)

We next set Sn1 = a−1n
∑

1≤k≤�bn�
(
Wn

k −1
)
and Ln(λ)=E[exp(−λSn1 )]. By (219), we

get for all λ ∈ [0,∞),

Ln
(
an
(
1− e−λ/an

)) = Ln(λ) exp
( �bn�

(
1−e−λ/an

)−λ�bn�/an
)
.

Since �bn�
(
1−e−λ/an

)−λ�bn�/an + 1
2 bna

−2
n λ2=O(bna−3n )→0 and since bn/a2n →

β0, (218) is equivalent to

∃ψ0 ∈ C([0,∞), R) : ψ0(0) = 0 and ∀λ ∈ [0,∞), lim
n→∞Ln(λ) = eψ0(λ),

(220)
and if (218) or (220) holds true, then ψ(λ) = ψ0(λ)+ 1

2 β0λ
2, for all λ ∈ [0,∞).

Next, by LemmaA.3 applied to�n
k := a−1n (Wn

k −1), we see that (220) is equivalent
to the weak convergence Sn1 → S1 in R and Theorem B.10 asserts that is equivalent
to the conditions (Rw3abc) there with ξn1 = Wn

1 −1. Namely, there exists a triplet
(α∗, β∗, π∗) with α∗ ∈ R, β∗ ∈ [0,∞) such that there exists r0 ∈ (0,∞) satisfying
π∗([r0,∞)) = 0 and that the following holds true:

bn
an

E[ξn1 ] =
bn
an

(σ2(wn)

σ1(wn)
− 1
)
→−α∗,

bn
a2n

var(ξn1 ) = bn
a2n

σ3(wn)

σ1(wn)
− bn

a2n

(σ2(wn)

σ1(wn)

)2→β∗ +
∫

(0,∞)

r2π∗(dr),

bnE
[
f
(
ξn1 /an

)] = anbn
σ1(wn)

∑

j≥1

w
(n)
j

an
f
(w

(n)
j − 1

an

)
→
∫

(0,∞)

f (r) π∗(dr),

for all continuous bounded f : [0,∞)→R vanishing in a neighbourhood of 0. It is
easy to see that these conditions are equivalent to (IIIabc) with α = α∗, β = β0 + β∗
and π = π∗. This completes the proof of the theorem. ��

Next, as recalled in Sect. 3.2, theMarkovianwn-LIFOqueueing systemgoverned by
Xwn induces a Galton–Watson forest Twn with offspring distribution μwn : informally,
the clients are the vertices of Twn and the server is the root (or the ancestor); the j-
th client to enter the queue is a child of the i-th one if the j-th client enters when
the i-th client is served; among siblings, the clients are ordered according to their
time of arrival. We denote by Hwn

t the number of clients waiting in the line right
after time t ; in (114), recall how Hwn is derived from Xwn : for all s ≤ t , if one sets
Iwn ,st = infr∈[s,t] Xwn

r , then, Hwn
t = #{s ∈ [0, t] : Iwn ,s−t < Iwn ,st }. As recalled in

Sect. 3.2, Xwn and Hwn are close to the Lukasiewicz path and the contour process of
Twn . Therefore, the convergence results for Lukasiewicz paths and contour processes
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of Galton–Watson trees in Le Gall & D. [19] (see Theorem B.12, Sect. B.2.3) allow
us to prove the following theorem.

Theorem 7.2 Let X be an integrable (α, β, π)-spectrally positive Lévy process,
as defined at the beginning of Sect. 7.1. Assume that (217) holds and that∫∞dz/ψα,β,π (z)<∞, where ψα,β,π is given by (214). Let (Ht )t∈[0,∞) be the contin-
uous height process derived from X as defined by (138).

Let wn ∈ �
↓
f and an, bn ∈ (0,∞), n ∈ N, satisfy (216). Let (Z (n)

k )k∈N be a Galton–
Watson process with offspring distribution μwn (defined by (85)), and initial state
Z (n)

0 =�an�. Assume that the three conditions (IIIabc) in Theorem 7.1 hold true and
assume that there exists a δ ∈ (0,∞) such that

lim inf
n→∞ P

(
Z (n)

�bnδ/an� = 0
)

> 0 . (221)

Then, the following joint convergence holds true:

(
(
1
an

Xwn
bnt

)t∈[0,∞), (
an
bn

Hwn
bnt

)t∈[0,∞)

)
−−−−−→

n→∞ (X , H) (222)

weakly on D([0,∞), R) × C([0,∞), R), equipped with the product topology. Fur-
thermore, for t ∈ [0,∞),

lim
n→∞P

(
Z (n)

�bnt/an� = 0
) = e−v(t) where

∫ ∞

v(t)

dz

ψα,β,π (z)
= t . (223)

Proof Recall the definition of the Lukasiewicz path VTwn associated with the
GW(μwn )-forest Twn in (75) (Sect. 3.1). Recall the definition of its height process
HghtTwn in (77) and recall that CTwn stands for the contour process of Twn . We first
assume that (IIIabc) in Theorem 7.1 and that (221) hold true. Then, Theorem B.12
applies with μn :=μwn . In consequence, the joint convergence (265) holds true and
we get (223).

Recall that (τ nk )k≥1 are the arrival-times of the clients in the queue governed by
Xwn and recall the notation Nwn (t) =∑k≥1 1[0,t](τ nk ) in (87) that is a homogeneous
Poisson process with unit rate. Then, by Lemma B.6 (see Appendix B.1) the joint
convergence (265) entails the following:

Qn(5) =
( 1
an
VTwn(Nwn

bn ·),
an
bn
HghtTwn(Nwn

bn ·),
an
bn
C
Twn
bn ·
)−−−→

n→∞
(
X , H , (Ht/2)t∈[0,∞)

)

weakly on D([0,∞), R) × (C([0,∞), R))2 equipped with the product topology.
Here X is an integrable (α, β, π)-spectrally positive Lévy process (as defined at
the beginning of Sect. 7.1) and H is the height process derived from X by (138).
By Theorem 7.1, the laws of the processes 1

an X
wn
bn · are tight in D([0,∞), R). Thus,

if one sets Qn(6) = ( 1
an X

wn
bn ·,Qn(5)), then the laws of the Qn(6) are tight on

D([0,∞), R)2 × (C([0,∞), R))2. Thus, to prove the weak convergence Qn(6)→
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(X , X , H , H·/2) :=Q(6), we only need to prove that the law of Q(6) is the unique
limit law: to that end, let (n(p))p∈N be an increasing sequence of integers such that

Qn(p)(6)−−−−→
p→∞

(
X ′, X , H , H·/2

)
. (224)

Actually, we only have to prove that X ′ = X . Without loss of generality (but with a
slight abuse of notation), by Skorokhod’s representation theorem we can assume that
(224) holds P-almost surely. We next use (88) in Lemma 3.1: fix t, ε, y ∈ (0,∞), set
Iwnt = infs∈[0,t] Xwn

s ; by applying (88) at time bnt , with a = anε and x = an y, we get
the following:

P
(∣∣ 1

an V
Twn
Nwn (bn t)

− 1
an Xwn

bn t

∣∣>2ε
) ≤ 1∧ 4y

ε2an
+ P

(− 1
an Iwnbn t

> y)+ E
[
1 ∧

1
an

(Xwn
bn t
− Iwnbn t

)

ε2an

]
.

By LemmaB.3 (i i), 1
an(p)

(X
wn(p)
bn(p)t
−Iwn(p)

bn(p)t
)→ X ′t−I ′t and 1

an(p)
I
wn(p)
bn(p)t
→ I ′t almost surely,

where we have set I ′t = infs∈[0,t] X ′s . Thus, for all ε ∈ (0,∞),

lim sup
p→∞

P
(∣∣ 1

an(p)
V

Twn(p)

Nwn(p) (bn(p)t)
− 1

an(p)
X
wn(p)
bn(p)t

∣∣>2ε
) ≤ P

(− I ′t > y/2) −−−−→
y→∞ 0.

Compared with (224), this implies that for all t ∈ [0,∞) a.s. X ′t = Xt and thus,
a.s. X ′ = X .

We have proved thatQn(6)→(X , X , H , H·/2)=Q(6)weakly onD([0,∞), R)2×
(C([0,∞), R))2. Without loss of generality (but with a slight abuse of notation), by
Skorokhod’s representation theorem we can assume that the convergence holds true
P-almost surely. In (94) and in (95) recall that

Mwn (t) = 2Nwn (t)−Hwn
t , C

Twn
Mwn (t) = Hwn

t and sup
s∈[0,t]

Hwn
s ≤ 1+ sup

s∈[0,t]
Hght

Twn
Nwn (s).

Then, we fix t, ε ∈ (0,∞), and we apply (96) at time bnt , with a = bnε to get

P
(
sup

s∈[0,t]
| 1
bn
Mwn

bns
−2s| > 2ε

) ≤ 1∧ 16t

ε2bn
+ P

(
an
bn
+ sup

s∈[0,t]
an
bn
HghtTw

Nw(bns)
> εan

)
.

Since an
bn Hght

Tw(Nw(bn ·))→ H a.s. in C([0,∞), R), it easily entails that 1
bn M

wn
bn ·

tends in probability to twice the identity map on [0,∞) inC([0,∞), R). Since Hwn
t =

CTwn (Mwn (t)), and sinceCTwn (bn ·)→H(·/2) a.s. inC([0,∞), R), LemmaB.6 easily
entails the joint convergence (222), which completes the proof. ��

As explained right after Theorem 2.3.1 in Le Gall & D. [19] (see Chapter 2, pp. 54-
55) Assumption (221) is actually a necessary condition for the height process to
converge. However it is not always easy to check this condition in practice. The
following proposition provides a handy way of doing it.
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Proposition 7.3 Let X be an integrable (α, β, π)-spectrally positive Lévy process, as
defined at the beginning of Sect. 7.1. Assume that (α, β, π) satisfies (217) and that∫∞ dz/ψα,β,π (z)<∞, whereψα,β,π is given by (214). Let H be the continuous height
process derived from X by (138). Let wn ∈ �

↓
f and an, bn ∈ (0,∞), n ∈ N, satisfy

(216). We recall the definition of Xwn in (215) and denote by ψn the Laplace exponent
of ( 1

an
Xwn
bnt

)t∈[0,∞). Namely, for all λ ∈ [0,∞),

ψn(λ) = bn
an

(
1− σ2(wn)

σ1(wn)

)
λ+ anbn

σ1(wn)

∑

j≥1

w
(n)
j

an

(
e−λw

(n)
j /an−1+ λ w

(n)
j /an

)
. (225)

We assume that the three conditions (IIIabc) in Theorem 7.1 hold true. Then, (221) in
Theorem 7.2 holds true when

lim
y→∞ lim sup

n→∞

∫ an

y

dλ

ψn(λ)
= 0 . (226)

Proof We first prove a lemma that compares the total height of Galton–Watson trees
with i.i.d. exponentially distributed edge-lengths and the total height of their discrete
skeleton. More precisely, let ρ ∈ (0,∞) and let μ be an offspring distribution such
that μ(0) > 0 and whose generating function is denoted by gμ(r) = ∑l∈N μ(l)rl .
Note that gμ([0, 1]) ⊂ [0, 1]; let g◦kμ be the k-th iterate of gμ, with the convention
that g◦0μ (r) = r , r ∈ [0, 1]. Let τ : �→ T be a random tree whose distribution is
characterised as follows.

– The number of children of the ancestor (namely the r.v. k∅(τ )) is a Poisson r.v. with
mean ρ;

– For all l≥1, under P( · | k∅(τ ) = l), the l subtrees θ[1]τ, . . . , θ[l]τ stemming from
the ancestor ∅ are independent Galton–Watson trees with offspring distribution
μ.

We next denote by Zk the number of vertices of τ that are situated at height k + 1:
namely, Zk = #{u ∈ τ : |u| = k + 1} (see Sect. 3.1 for the notation on trees). Then,
(Zk)k∈N is a Galton–Watson process whose initial value Z0 is distributed as a Poisson
r.v. with mean ρ. We denote by �(τ) the total height of τ : namely, �(τ) = maxu∈τ |u|
is the maximal graph-distance from the root ∅. Note that if μ is supercritical, then
�(τ) may be infinite). Observe that �(τ)=min{k ∈ N : Zk = 0}. Thus,

P
(
�(τ) < k + 1

) = P(Zk = 0) = exp
(− ρ

(
1−g◦kμ (0)

))
. (227)

We next equip each individual u of the family tree τ with an independent lifetime e(u)

that is distributed as follows.

– The lifetime e(∅) of ∅ is 0.
– Conditional on τ , the r.v. e(u), u ∈ τ\{∅} are independent and exponentially
distributed r.v. with parameter q ∈ (0,∞).
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Within our notation, the genealogical order on τ is defined as follows: a vertex
v ∈ τ is an ancestor of u ∈ τ , which is denoted as v ' u, if there exists
v′ ∈ U such that u = v ∗ v′; ' is a partial order on τ . For all u ∈ τ \ {∅}, we
denote by ζ(u) =∑

∅'v'u e(v), the time of death of u; then ζ(
←−u ) is the time of

birth of u, where ←−u stands for the parent of u. For all t ∈ [0,∞), we next set
Zt =∑u∈τ\{∅} 1[ζ(

←−u ),ζ(u))(t). Then (Zt )t∈[0,∞) is a continuous-time Galton–Watson
process (or a Harris process) with offspring distribution μ, with time parameter q and
with Poisson(ρ)-initial distribution. We denote by � = maxu∈τ ζ(u) the extinction
time of the population; then � = max{t ∈ [0,∞) : Zt �= 0}. Standard results on
continuous-time GW-processes imply the following. For all t ∈ (0,∞),

P
(
�< t

) = P(Zt = 0) = e−ρr(t), where
∫ 1

r(t)

dr

gμ(1−r)−1+ r
= qt . (228)

For a formal proof, see for instanceAthreya&Ney [5], Chapter III, Section 3, Equation
(7) p. 106 and Section 4, Equation (1) p. 107.

We next compare �(τ) and �. To that end, we introduce (en)n≥1, a sequence of
i.i.d. exponentially distributed r.v. with mean 1, and we set, for each ε∈(0, 1),

δ(ε) = sup
n≥1

P
(
n−1(e1 + · · · + en) /∈ (ε, ε−1)

)
. (229)

The Law of Large Numbers easily implies that δ(ε)→0 as ε→0. Note that Z0 = Z0
and a.s. �(τ)<∞ if and only if � <∞. We argue on the event {�(τ)<∞}: we first
assume that Z0 �= 0; let u∗ ∈ τ\{∅} be the first vertex in the lexicographical order
such that |u∗| = �(τ); since ζ(u∗) ≤ � and since conditional on τ , ζ(u∗) is the sum
of |u∗| (conditionally) independent exponential r.v. with parameter q, we get for all
t ∈ (0,∞),

P
(
�< t ; Z0 �=0

) ≤
∑

n≥1
P
(
�(τ) = n; Z0 �=0

)
P
(
e1 + · · · + en≤qt

)
.

Then, let ε ∈ (0, 1) and observe that P
(
e1 + · · · + en ≤ qt

) ≤ δ(ε) + 1{n≤qt/ε}.
Consequently,

P
(
�< t ; Z0 �=0

) ≤ δ(ε)+ P
(
�(τ) ≤ �qt/ε� ; Z0 �=0

)
.

If Z0 = Z0 = 0, � = �(τ) = 0, which implies that

P
(
�< t

) ≤ δ(ε)+ P
(
�(τ) ≤ �qt/ε�).

Thus by (228) and (227), we have proved the following lemma: ��
Lemma 7.4 Let ρ, q ∈ (0,∞) and letμ be an offspring distribution such thatμ(0)>0
and whose generating function is denoted by gμ; denote by g◦kμ the k-th iterate of gμ
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with the convention g◦0μ (r) = r , r ∈ [0, 1]. Let t ∈ (0,∞). Recall the definition of r(t)
in (228). Let ε∈(0, 1). Recall the definition of δ(ε) in (229). Then, for all t ∈(0,∞),

e−ρr(t) −δ(ε) ≤ exp
(−ρ

(
1−g◦�tq/ε�

μ (0)
))

. (230)

We are now ready to prove Proposition 7.3. Recall the definition of the offspring
distribution μwn in (85). We apply Lemma 7.4 with μ = μwn , ρ = an , q = bn/an
and we denote by rn(t) the solution of (228) with gμ replaced by gμwn

. The change of
variable λ = anr then implies that rn(t) satisfies

∫ an

anrn(t)

dλ

bn
(
gμwn

(
1− λ

an

)−1+ λ
an

) = t . (231)

Next, it is easy to check from (85) that bn
(
gμwn

(1− λ
an

)−1+ λ
an

)=ψn(λ), where ψn

is defined in (225). Then, Lemma 7.4 asserts for all t ∈ (0,∞) and for all ε ∈ (0, 1),
that

e−anrn(t)−δ(ε) ≤ exp
(−an

(
1−g◦�tbn/anε�μwn

(0)
))

where
∫ an

anrn(t)

dλ

ψn(λ)
= t . (232)

Next, fix t ∈ (0,∞) and set C := lim supn→∞ anrn(t) ∈ [0,∞]. Suppose that
C = ∞. Then, there is an increasing sequence of integers (nk)k∈N such that
limk→∞ ank rnk (t) = ∞. Let y ∈ (0,∞); then, for all sufficiently large k, we have
ank rnk (t)≥ y, which entails that

t =
∫ ank

ank rnk (t)

dλ

ψnk (λ)
≤
∫ ank

y

dλ

ψnk (λ)
.

Thus, for all y ∈ (0,∞), t ≤ lim supn→∞
∫∞
y dλ/ψn(λ), which contradicts Assump-

tion (226). This proves that C <∞. Since limε→0 δ(ε) = 0, we can choose ε such
that δ(ε)< 1

2 e
−C ; then, we set δ = t/ε and (232) implies that

lim sup
n→∞

an
(
1−g◦�δbn/an�μwn

(0)
)

<∞ . (233)

Recall that (Z (n)

k )k∈N stands for a Galton–Watson branching process with offspring

distribution μwn such that Z (n)

0 = �an�. Then, P
(
Z (n)

�δbn/an� = 0
)= (g◦�δbn/an�μwn

(0)
)�an�

and (233) easily implies that lim infn→∞ P
(
Z (n)

�δbn/an�= 0
)
> 0, which completes the

proof of Proposition 7.3. ��

7.2 Proof of Propositions 2.1 and 2.2

In this section we shall assume that the sequence (an) and (bn) satisfy (216) and
anbn

σ1(wn)
→ κ where κ ∈ (0,∞). This dramatically restricts the possible limit triplets

(α, β, π). To see this point, we first prove the following lemma:
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Lemma 7.5 For all n ∈ N, let vn = (v
(n)

j ) j≥1 ∈ �
↓
f and set φn(λ) =

∑
j≥1 v

(n)

j

(
e−λv

(n)
j −1 + λv

(n)

j

)
, for all λ ∈ [0,∞). Then, the following assertions

are equivalent:

(L) For all λ ∈ [0,∞), there exists φ(λ) ∈ [0,∞) such that limn→∞ φn(λ) = φ(λ).
(S) There are c ∈ �

↓
3 and β ′ ∈ [0,∞) such that, for j ∈N

∗,

lim
n→∞ v

(n)

j = c j and lim
n→∞ σ3(vn)−σ3(c) = β ′.

Moreover, if (L) or (S) holds true, then φ in (L) is given by, for λ ∈ [0,∞),

φ(λ) = 1
2 β ′λ2 +

∑

j≥1
c j
(
e−λc j − 1+ λc j

)
. (234)

Proof We first prove (S)⇒ (L). For all x ∈ [0,∞), we set f (x) = e−x −1 + x .
Elementary arguments entail that, for x ∈ [0,∞),

0 ≤ 1
2 x

2− f (x) ≤ 1

2 x
2(1−e−x ) . (235)

We set η(x)=supy∈[0,x] y−2| 12 y2− f (y)|; thus, η(x) ≤ 1
2 (1−e−x ) ≤ 1∧x and η(x)↓0

as x ↓ 0. Then, fix λ ∈ [0,∞) and define φ(λ) by (234); fix j0 ≥ 2 and observe the
following:

φn(λ)−φ(λ) =
∑

1≤ j≤ j0

(
v

(n)

j f (λv
(n)

j )−c j f (λc j )
)
+ 1

2 λ2
(
σ3(vn)−σ3(c)−β ′ +

∑

1≤ j≤ j0

(
c3j−(v

(n)

j )3
))

+
∑

j> j0

(
v

(n)

j f (λv
(n)

j )− 1
2 λ2(v

(n)

j )3
)
+
∑

j> j0

(
1
2 λ2c3j−c j f (λc j )

)
.

Then, note that

∑

j> j0

∣∣v(n)

j f (λv
(n)

j )− 1
2 λ2(v

(n)

j )3
∣∣ ≤ λ2η

(
λv

(n)

j0

)
σ3(vn) .

Similarly,
∑

j> j0

∣∣ 1
2 λ2c3j − c j f (λc j )

∣∣ ≤ λ2η
(
λc j0

)
σ3(c). Thus, by assumption,

lim sup
n→∞

∣∣φn(λ)− φ(λ)
∣∣ ≤ (β ′ + 2σ3(c))λ2η

(
λc j0

) −−−−→
j0→∞

0 ,

since c j0 → 0 as j0 →∞. This proves (L) and (234).
Conversely, we assume (L). Note that v

(n)

1 f (v(n)

1 ) ≤ φn(1). Thus, x0 :=
supn∈N v

(n)

1 < ∞. By (235), for all y ∈ [0, x], f (y) ≥ 1
2 e
−x y2, which implies

σ3(vn) ≤ 2ex0 supn∈N φn(1)=: z0. Consequently, for all n ∈ N, (σ3(vn),vn) belongs
to the compact space [0, z0] × [0, x0]N∗ equipped with the product topology. Let
(qn)n∈N be an increasing sequence of integers such that limn→∞ σ3(vqn ) = a for
some a ∈ [0, z0] and such that for all j≥1, limn→∞ v

(qn )

j =c′j for certain c′j ∈ [0, x0].
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By Fatou’s Lemma, σ3(c′) ≤ a andwe then set β ′ =a−σ3(c′). By applying (S)⇒ (L)

to (vqn )n∈N, we getφ(λ)= 1
2 β
′λ2+∑ j≥1 c′j

(
exp(−λc′j )−1+λc′j

)
, for allλ ∈ [0,∞).

We easily show that it characterises β ′ and c′. Thus, ((σ3(vn),vn))n∈N, has a unique
limit point in [0, z0]×[0, x0]N∗ , which easily entails (S). ��

Recall the definition of Xwn in (215).

Lemma 7.6 Let wn ∈ �
↓
f and an, bn ∈ (0,∞), n ∈ N, satisfy (21). Then the following

assertions hold true:

(i) Let us suppose that (II) in Theorem7.1 holds true; namely, 1
an
Xwn
bn · −→ X weakly on

D([0,∞), R). Then, X is an integrable (α, β, π) spectrally positive Lévy process
(as defined at the beginning of Sect. 7.1) and (α, β, π) is necessarily such that

β≥β0 , there exists c = (c j ) j≥1 ∈ �
↓
3 such that π =

∑

j≥1
κc jδc j (236)

and the following statements hold true:

(C1) : bn
an

(
1− σ2(wn)

σ1(wn)

)
−−−→
n→∞ α (C2) : bn

a2n
· σ3(wn)
σ1(wn)

−−−→
n→∞ β + κσ3(c) ,

(C3) : ∀ j ∈ N
∗,

w
(n)
j

an
−−−→
n→∞ c j .

(ii) Conversely, (C1)–(C3) are equivalent to (II) in Theorem 7.1; it is also equivalent
to (I), or to (IIIabc) or to ((IIIa)& (IV)).

Proof To simplify notation, we set κn = anbn/σ(wn). By the last point of (21), κn→
κ ∈ (0,∞). We also set v

(n)

j = w
(n)

j /an for all j ≥ 1. We first prove (i). Suppose
Theorem 7.1 (II), which first implies that β≥β0; then recall that Theorem 7.1 (II) is
equivalent to ((C1)& (IV)) and Theorem 7.1 (IV) can be rewritten as follows: for all
λ ∈ [0,∞),

κn
∑

j≥1
v

(n)

j

(
e−λv

(n)
j −1+ λv

(n)

j

)−−−→
n→∞ ψα,β,π (λ)− αλ .

This entails Condition (L) in Lemma 7.5 with φ(λ) = (ψα,β,π (λ)− αλ)/κ . Lemma
7.5 then implies that there are c ∈ �

↓
3 and β ′ ∈ [0,∞) such that for all j ∈ N

∗,
limn→∞ v

(n)

j = c j and limn→∞ σ3(vn)−σ3(c) = β ′ and that

1
2 κ−1βλ2 + κ−1

∫

(0,∞)

(e−λr−1+ λr) π(dr) = ψα,β,π (λ)−αλ

κ
= φ(λ) = 1

2 β ′λ2 +
∑

j≥1
c j
(
e−λc j −1+ λc j

)
.

This easily entails that κβ ′ = β, π =∑ j≥1 κc jδc j and we easily get (C2) and (C3).
We next prove (i i): we assume that β ≥ β0 and that π = ∑

j≥1 κc jδc j where

c = (c j ) j≥1 ∈ �
↓
3 . Then observe that (C1) is (IIIa) in Theorem 7.1, that (C2) is (IIIb)
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in Theorem 7.1; moreover, (C3) easily entails (IIIc) in Theorem 7.1. Then (i i) follows
from Theorem 7.1. This completes the proof of the lemma.

Proof of Propositions 2.1 and 2.2 We note that Lemma 7.6 combined with Theorem
7.1 implies Proposition 2.1 (i), (i i) and (i i i).

Let us prove Proposition 2.1 (iv). Since ψwn is a convex function, the convergence
(32) in Proposition 2.1 (i i i) is uniform in λ on all compact subsets of [0,∞), which
easily entails the convergence of the inverses: limn→∞ anψ−1wn (λ/bn) = ψ−1(λ).

Next observe that Lemma 7.6 combined with Theorem 7.2 implies Proposition 2.2.
It remains to prove Proposition 2.1 (v). Let α ∈ R, β ∈ [0,∞), κ ∈ (0,∞), and

c = (c j ) j≥1 ∈ �
↓
3 . Let us show that there are sequences an, bn ∈ (0,∞), wn ∈ �

↓
f ,

n ∈ N, that satisfy (21) with β0 ∈ [0, β] and (C1), (C2) and (C3) and
√
jn/bn→ 0

where we recall the notation jn = max{ j ≥ 1 : w(n)

j > 0}. To that end, first let
(ρn)n∈N be a sequence of positive integers such that ρn ≤ n, limn→∞ ρn = ∞ and∑

1≤ j≤ρn
c j + c2j ≤ n, for all n≥c1 + c21. To construct the sequence (wn)n∈N which

will have the desirable limits, let us start with the following definition:

q (n)

j =

⎧
⎪⎪⎨

⎪⎪⎩

c j if j ∈{1, . . . , ρn
}
,

((β−β0)/κ)
1
3 n−1 if j ∈{ρn + 1, . . . , ρn + n3

}
,

un if j ∈{ρn + n3 + 1, . . . , ρn + n3 + n8
}
,

0 if j > ρn + n3 + n8,

(237)

where un = n−3 if β0 = 0 and un = (β0/κ)
1
3 n−8/3 if β0 > 0. We denote by

vn = (v
(n)

j ) j≥1 the nonincreasing rearrangement of qn = (q (n)

j ) j≥1. Thus, we get
σp(vn) = σp(qn) for any p∈(0,∞) and we observe the following:

κσ1(vn) ∼
{

κn5 if β0 = 0,

κ
2
3 β

1
3
0 n

16
3 if β0>0,

κσ2(vn) ∼
{

κn2 if β0 = 0,

κ
1
3 β

2
3
0 n

8
3 if β0>0,

and κσ3(vn) ∼ κσ3(c)+ β . (238)

We next set

bn = κσ1(vn), an = κσ1(vn)

κσ2(vn)+ α
and w

(n)

j = anv
(n)

j , for j≥1. (239)

We then see that anbn/σ1(wn) = κ , that supn∈N w
(n)

1 /an <∞. Moreover, we get

bn
an

(
1− σ2(wn)

σ1(wn)

)
= α, lim

n→∞
bn
a2n
· σ3(wn)

σ1(wn)
= β + κσ3(c)and lim

n→∞
w

(n)

j

an
= c j , for all j ∈ N

∗,

which are the limits (C1), (C2) and (C3). It is easy to derive from (238) and from (239)
thatan andbn/an tend to∞ and thatbn/a2n tends toβ0.Moreover, since jn≤n8+n3+n,
it is also easy to check that

√
jn/bn→0. This completes the proof of Proposition 2.1

(iv). ��
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7.3 Proof of Proposition 2.3

7.3.1 Proof of Proposition 2.3 (i)

Fix α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c = (c j ) j≥1 ∈ �
↓
3 . For all λ ∈ [0,∞), set

ψ(λ) = αλ+ 1
2 βλ2+∑ j≥1 κc j

(
e−λc j−1+λc j

)
and we assume that

∫∞dλ/ψ(λ)<

∞. Let an, bn ∈ (0,∞) and wn ∈ �
↓
f , n ∈ N, satisfy (21), (C1), (C2) and (C3) (as

recalled in Lemma 7.6). Recall the definition of Xwn in (215). Recall the definition
of ψn in (225) that is the Laplace exponent of 1

an
Xwn
bn ·. To simplify notation, set αn =

bn
an

(1− σ2(wn)
σ1(wn)

). It remains to prove the last point of Proposition 2.3 (i): assume that

β0 > 0 in (21); let Vn :�→ [0,∞) be a r.v. with law σ1(wn)−1
∑

j≥1 w
(n)

j δ
w

(n)
j /an

.

First, observe the following:

E[Vn] = σ2(wn)

anσ1(wn)
= 1

an

(
1−αn

an
bn

)
and ψn(λ)−αnλ = bnE

[
f
(
λVn

)]
,

where we recall that f (x) = e−x−1+ x . Since f is convex and by Jensen’s inequal-
ity, we get ψn(λ)− αnλ ≥ bn f (λE[Vn]). Moreover, (235) implies f (λE[Vn]) ≥
1
2 (λE[Vn])2 exp(−λE[Vn]). Since E[Vn] ∼ 1/an , since αn → α by (C1) and since
bn/a2n→β0>0, there is n1 ∈ N such that for all n≥n1, we get 1/2 ≤ anE[Vn] ≤ 2,
αn≥−2(α)− and bn/a2n≥β0/2. Thus, there exists n1 ∈ N such that for all n≥n1 and
for all λ ∈ [0, an],

ψn(λ) ≥ −2(α)−λ+ 1

16e2
β0λ

2 ,

which clearly implies (38). This completes the proof of Proposition 2.3 (i). ��

7.3.2 Proof of Proposition 2.3 (ii)

Let us mention that, here, we closely follow the counterexample given in Le Gall
& D. [19], p. 55. Fix α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c = (c j ) j≥1 ∈ �

↓
3 . For

all λ ∈ [0,∞), set ψ(λ) = αλ + 1
2 βλ2 +∑ j≥1 κc j

(
e−λc j −1 + λc j

)
; assume that

∫∞dλ/ψ(λ)<∞. For all positive integers n, we next define cn=(c(n)

j ) j≥1 by setting

c(n)

j = c j if j ≤ n, c(n)

j = (β/(κn))
1
3 if n< j ≤ 2n and c(n)

j = 0 if j >2n.

We also set ψn(λ) = αλ +∑ j≥1 κc(n)

j

(
exp(−λc(n)

j )−1 + λc(n)

j

)
, λ ∈ [0,∞). Let

(Un
t )t∈[0,∞), be a CSBP with branching mechanism ψn and with initial stateUn

0 = 1.
As λ→∞, observe that ψn(λ) ∼ (α + κσ2(cn))λ. Thus,

∫∞dλ/ψn(λ) = ∞; by
standard results on CSBP (recalled in Sect. B.2.2 in Appendix), it follows that, for all
n ∈ N and t ∈[0,∞),

P
(
Un
t >0

) = 1 . (240)
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Let Z = (Zt )t∈[0,∞) stands for a CSBP with branching mechanism ψ and with initial
state Z0 = 1. Observe that for all λ ∈ [0,∞), limn→∞ ψn(λ) = ψ(λ). Standard
results on CSBP (see Helland [25], Theorem 6.1, p. 96) yield

Un −−−−→
n→∞ Z weakly on D([0,∞), R). (241)

Next, for each n ∈ N, we construct a sequence of Galton–Watson processes
(Z (n,p))p≥1 to approximate Un . To that end, note that by Proposition 2.1 (iv) there
exist sequences wn,p = (w

(n,p)
j ) j≥1∈�

↓
f and an,p, bn,p∈(0,∞), p∈N, such that

an,pbn,p

σ1(wn,p)
→ κ, an,p,

bn,p

an,p
and

a2n,p

bn,p
−−−→
p→∞ ∞,

bn,p

an,p

(
1− σ2(wn,p)

σ1(wn,p)

)
−−−→
p→∞ α

(242)

bn,p

a2n,p
· σ3(wn,p)

σ1(wn,p)
−−−→
p→∞ κσ3(cn) and ∀ j ∈ N

∗,
w

(n,p)
j

an,p
−−−→
p→∞ c(n)

j , (243)

and the following weak limit holds true on D([0,∞), R):

(
1

an,p
Z (n,p)
�bn,pt/an,p�

)

t∈[0,∞)
−−−−→

p→∞ (Un
t )t∈[0,∞) , (244)

where (Z (n,p)
k )k∈N is a Galton–Watson branching process with Z (n,p)

0 = �an,p� and
with offspring distribution μwn,p as in (85). We also have limp→0

√
jn,p/bn,p = 0,

where jn,p = max{ j ≥ 1 :w(n,p)
j > 0}. By Portemanteau’s theorem for all t ∈ [0,∞),

lim inf p→∞ P
(
Z (n,p)
�bn,pt/an,p�>0

)≥P(Un
t >0) = 1, by (240). Thus, there exists pn ∈N,

such that for p≥ pn ,
P
(
Z (n,p)
�bn,pn/an,p�>0

) ≥ 1− 2−n . (245)

Without loss of generality we can furthermore assume that
√
jn,pn/bn,pn ≤ 2−n and

an,pn ,
bn,pn

an,pn
and

a2n,pn

bn,pn
≥ 2n,

∣∣∣
bn,pn

an,pn

(
1− σ2(wn,pn )

σ1(wn,pn )

)
− α

∣∣∣ ≤ 2−n,
∣∣∣
an,pn bn,pn

σ1(wn,pn )
− κ

∣∣∣ ≤ 2−n

∣∣∣
bn,pn

a2n,pn

· σ3(wn,pn )

σ1(wn,pn )
− κσ3(cn)

∣∣∣ ≤ 2−n and ∀ j ∈ {1, . . . , n},
∣∣∣
w

(n,pn )

j

an,pn
− c(n)

j

∣∣∣ ≤ 2−n .

Set an=an,pn , bn = bn,pn and wn=wn,pn . Note that κσ3(cn)→ β+κσ3(c) as n→∞.
Thus, an, bn and wn satisfy (21) with β0 = 0, (C1), (C2), (C3) and

√
jn/bn → 0.

Set Z (n)

k = Z (n,pn )

k . By (245), for all δ ∈ (0,∞), and all integers n≥ δ, we easily get
P
(
Z (n)

�bnδ/an� = 0
) ≤ P

(
Z (n)

�bnn/an� = 0
) ≤ 2−n . Consequently, limn→∞ P

(
Z (n)

�bnδ/an� =
0
) = 0, for all δ ∈ (0,∞). Namely, (C4) is not satisfied, which completes the proof

of Proposition 2.3 (i i). ��
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7.3.3 Proof of Proposition 2.3 (iii)

Fix α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c = (c j ) j≥1 ∈ �
↓
3 . For all λ ∈ [0,∞), set

ψ(λ) = αλ + 1
2 βλ2 +∑ j≥1 κc j

(
e−λc j −1 + λc j

)
; assume that

∫∞dλ/ψ(λ)<∞.
We consider several cases.
• Case 1: we first assume that β ≥ β0 > 0. By Proposition 2.1 (iv) there exists
an, bn,wn satisfying (21) with β0 > 0, (C1), (C2) and (C3). But Proposition 2.3 (i)
(proved in Sect. 7.3.1) asserts that an, bn,wn necessarily satisfy (C4). This proves
Proposition 2.3 (i i i) in Case 1.
• Case 2. We next assume that β >0 and β0 = 0. Similar to the construction in (246),
let us first introduce the folllowing:

q (n)

j =

⎧
⎪⎪⎨

⎪⎪⎩

c j if j ∈{1, . . . , n},
(β/κ)

1
3 n−1 if j ∈{n + 1, . . . , n + n3

}
,

n−3 if j ∈{n + n3 + 1, . . . , n + n3 + n8
}
,

0 if j > n + n3 + n8.

(246)

Denote by vn = (v
(n)

j ) j≥1 the nonincreasing rearrangement of qn = (q (n)

j ) j≥1. Thus,
σp(vn) = σp(qn) for any p ∈ (0,∞). Since

∑
1≤ j≤n c

p
j ≤ cp1 n, we easily get

κσ1(vn)∼κn5, κσ2(vn)∼κn2 and κσ3(vn)→β+κσ3(c). We next set bn=κσ1(vn),
an=κσ1(vn)/(κσ2(vn)+α) and for all j≥1, w(n)

j =anv
(n)

j . Note that an ∼ n3. Then,
it is easy to check that an, bn and wn satisfy (21) with β0 = 0, (C1), (C2) and (C3).
Since jn = max{ j ≥ 1 :w(n)

j > 0} ≤ n + n3 + n8, we easily get
√
jn/bn→ 0. Here

observe that κ = anbn/σ1(wn) and bn
(
1−(σ2(wn)/σ1(wn))

)
/an = α.

We next prove that (C4) holds true by proving that (38) in Proposition 2.3 (i) holds
true. To that end, we introduce fλ(x) = x

(
e−λx−1+ λx

)
, for all x, λ ∈ [0,∞), and

we recall the definition of Xwn in (215). We denote by ψn the Laplace exponent of
1
an
Xwn
bn ·. We first observe that for all λ ∈ [0,∞),

ψn(λ) = αλ+κ
∑

j≥1
fλ(q

(n)

j )=αλ+κ
∑

1≤ j≤n
fλ(c j )+κn3 fλ((β/κ)

1
3 n−1)+κn8 fλ(n

−3).

(247)
Set s0 = (β/κ)1/3. In (235), recall that fλ(x)≥ 1

2 x
3λ2e−λx . Thus, if λ ∈ [1, 2n/s0],

then

ψn(λ)+ (α)−λ ≥ κn3 fλ(s0/n) ≥ 1
2 e
−2βλ2 =: s1λ2.

As a result, ψn(λ) ≥ s1λ2(1 − (α)−
s1λ

) for λ ∈ [1, 2n/s0]. Next observe that, fλ(x)≥
x(λx − 1). It follows that for λ ∈ [2n/s0, n3],

ψn(λ) ≥ −(α)−λ+ κn3 fλ(s0/n) ≥ −(α)−λ+ κs0n
2( s0λ

n −1
) = κs0n

2
((
1− (α)−

κs20n

) s0λ
n − 1

)
.
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Thus, for all y>
2(α)−
s1
∨ 1 and for all n ≥ ys0

2 ∨ 3(α)−
κs20

, we get

∫ n3

y

dλ

ψn(λ)
≤ 2

∫ 2n
s0

y

dλ

s1λ2
+
∫ n3

2n
s0

dλ

κs0n2
( 2s0
3n λ−1) ≤

2

s1y
+ 3 log( 23 s0n

2−1)+ 3 log 3

2κs20n
.

Since an ∼ n3, it proves that the right-hand side vanishes, so that ψn satisfies (38),
and (C4) holds true. This proves Proposition 2.3 (i i i) in Case 2.
•Case 3:We now assume that β = β0 = 0. Let βn ∈ (0,∞) be a sequence decreasing
to 0. For all n ∈ N

∗, we set�n(λ) = ψ(λ)+ 1
2 βnλ

2 = αλ+ 1
2 βnλ

2+∑ j≥1 κc j
(
e−λc j−

1 + λc j
)
. We now fix n ∈ N

∗; by Case 2, there exists wn,p = (w
(n,p)
j ) j≥1 ∈ �

↓
f

and an,p, bn,p ∈ (0,∞), p ∈ N, that satisfy
√
jn,p/bn,p → 0 as p → ∞, where

jn,p = max{ j≥1 :w(n,p)
j >0}, and

an,pbn,p

σ1(wn,p)
= κ, an,p,

bn,p

an,p
and

a2n,p

bn,p
−−−→
p→∞ ∞,

bn,p

an,p

(
1− σ2(wn,p)

σ1(wn,p)

)
= α ,

(248)

bn,p

a2n,p
· σ3(wn,p)

σ1(wn,p)
−−−→
p→∞ βn + κσ3(c) and, for each j ∈ N

∗,
w

(n,p)
j

an,p
−−−→
p→∞ c j .

(249)

Furthermore, for n ∈ N
∗ and t ∈ [0,∞),

lim
n→∞P

(
Z (n,p)
�bn,pt/an,p� = 0

) = e−vn(t) where
∫ ∞

vn(t)

dλ

�n(λ)
= t . (250)

Here, (Z (n,p)
k )k∈N is a Galton–Watson process with offspring distribution μwn,p given

by (85) and where Z (n,p)
0 = �an,p�. Let v : (0,∞) → (0,∞) be such that t =∫∞

v(t) dλ/ψ(λ) for all t ∈ (0,∞). Since �n(λ)≥ψ(λ), we get
∫∞
v(t) dλ/ψ(λ) = t =

∫∞
vn(t)

dλ/�n(λ) ≤ ∫∞
vn(t)

dλ/ψ(λ); thus vn(t) ≤ v(t). Thus, there exists pn ∈N such

that for all p ≥ pn , P
(
Z (n,p)
�bn,p/an,p� = 0

) ≥ 1
2 exp(−vn(1)) ≥ 1

2 exp(−v(1)). Without

loss of generality, we can assume that
√
jn,pn/bn,pn ≤ 2−n , an,pn , bn,pn/an,pn and

a2n,pn/bn,pn ≥ 2n , that for all 1 ≤ j ≤ n, |w(n,pn )

j /an,pn−c j | ≤ 2−n and

∣∣∣
bn,pn

a2n,pn

· σ3(wn,pn )

σ1(wn,pn )
− κσ3(c)

∣∣∣ ≤ 2βn −→ 0.

If one sets an = an,pn , bn,pn and wn = wn,pn , then we have proved that an, bn,wn
satisfy (21) with β = β0 = 0,

√
jn/bn→0 and (C1)–(C4), which proves Proposition

2.3 (i i i) in Case 3. This completes the proof of Proposition 2.3 (i i i). ��
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8 Proof of Lemma 2.10

In this section, we consider the power-law example in [9,11].We check that the weight
sequence (wn(α)) and the renormalising sequences (an), (bn) in Lemma 2.10 satisfy
the assumptions of Theorem 2.8. Let us start with the following lemma:

Lemma 8.1 Let � : (0, 1] → (0,∞) be a measurable slowly varying function at 0+
such that for all x0 ∈ (0, 1), supx∈[x0,1] �(x)<∞. Then, for all δ ∈ (0,∞), there exist
ηδ ∈ (0, 1] and cδ ∈ (1,∞) such that, for y ∈ (0, ηδ) and z ∈ (y, 1], one has

1

cδ

( z
y

)−δ≤ �(z)

�(y)
≤ cδ

( z
y

)δ

. (251)

Proof The measurable version of the representation theorem for slowly varying func-
tions (see for instance Bingham, Goldie & Teugels [13]) implies that there exist
two measurable functions c : (0, 1] → R and ε : (0, 1] → [−1, 1] such that
limx→0+ c(x) = γ ∈ R, such that limx→0+ ε(x) = 0, and such that �(x) =
exp(c(x) + ∫ 1x ds ε(s)/s), for all x ∈ (0, 1]. Since, supx∈[x0,1] �(x) < ∞, for all
x0 ∈ (0, 1), we can assumewithout loss of generality that c is bounded. Fix δ ∈ (0,∞)

and let ηδ ∈ (0, 1] be such that sup(0,ηδ] |ε| ≤ δ. Fix y ∈ (0, ηδ) and z ∈ (y, 1]; if
z ≤ ηδ , then note that

∫ z
y ds |ε(s)|/s ≤ δ log(z/y); if ηδ ≤ z, then observe that

∫ z
y ds |ε(s)|/s ≤ δ log(ηδ/y)+

∫ 1
ηδ
ds |ε(s)|/s ≤ δ log(z/y)+ log(1/ηδ). Thus

ηδe
−2‖c‖∞

( z
y

)−δ≤ �(z)

�(y)
= exp

(
c(z)−c(y)−

∫ z

y
ds

ε(s)

s

)
≤ η−1δ e2‖c‖∞

( z
y

)δ

,

which implies the desired result. ��
Let us recall that W :�→ [0,∞) is a r.v. satisfying r :=E[W ] = E[W 2]<∞ and

that P(W ≥ x)= x−ρL(x), where L is a slowly varying function at∞ and ρ ∈ (2, 3).
Recall also the notation G(y) = sup{x ∈ [0,∞) : P(W ≥ x)≥ 1∧ y}, y ∈ [0,∞).
Note that G is non increasing and null on [1,∞). Then, G(y)= y−1/ρ �(y), where � is
slowly varying at 0. Recall also the parameters κ, q ∈ (0,∞) as well as the assumption
that an∼q−1G(1/n), w(n)

j =G( j/n), j≥1, and bn∼κσ1(wn)/an .

Fix a∈[1, 2] and observe that σa(wn) =∑1≤ j<n

∫ G(1/n)

0 dz aza−11{z<G( j/n)}. But
observe that z<G(y) implies y ≤ P(W ≥ z). Thus,

σa(wn) =
∑

1≤ j<n

∫ G(1/n)

0
dz aza−11{ j≤nP(W≥z)} =

∫ G(1/n)

0
dz aza−1

∑

1≤ j<n

1{ j≤nP(W≥z)}

=
∫ G(1/n)

0
dz aza−1�nP(W ≥ z)� =

∫ G(1/n)

0
dz aza−1nP(W ≥ z)

−
∫ G(1/n)

0
dz aza−1{nP(W ≥ z)}

= n
∫ ∞

0
dz aza−1P(W ≥ z)
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−
∫ ∞

G(1/n)

dz aza−1nP(W ≥ z)−
∫ G(1/n)

0
dz aza−1{nP(W ≥ z)}. (252)

Note that
∫∞
0 dz aza−1P(W ≥ z) = E[Wa]<∞. Note that P(W = G(1/n)) = 0 by

assumption (68), which easily implies that P(W ≥G(1/n)) = 1/n. Thus,

nP(W ≥ z)=P(W ≥ z)/P(W ≥ G(1/n)) = (z/G(1/n))−ρL(z)/L(G(1/n))

and by (252) and the change of variable z �→ z/G(1/n), we get

σa(wn) = nE[Wa] − G
( 1
n

)a
∫ ∞

1
dz aza−1−ρ

L(zG( 1
n ))

L(G( 1
n ))
− G

( 1
n

)a
∫ 1

0
dz aza−1

{
z−ρ

L(zG( 1
n ))

L(G( 1
n ))

}
.

Themeasurable version of the representation theorem for slowly varying functions (see
for instance [13]) implies that there exist twomeasurable functions c :(0,∞)→R and
ε : (0,∞)→[−1, 1] such that limx→∞ c(x) = γ ∈ R, such that limx→∞ ε(x) = 0,
and such that L(x) = exp(c(x) + ∫ x1 ds ε(s)/s), for all x ∈ (0,∞). We then set
u = (ρ−a)/2 that is a strictly positive quantity since a ≤ 2<ρ. Let n0 be such that
for all n≥n0, sups∈[1,∞) |ε(sG(1/n))| ≤ u. Thus, for all z ∈ [1,∞),

0 ≤ za−1−ρ
L(zG( 1

n ))

L(G( 1
n ))
= za−1−ρ exp

(
c
(
zG
( 1
n

))−c(G( 1
n

))+
∫ z

1
ds

ε
(
sG
( 1
n

))

s

)
≤ e2‖c‖∞ z−1−u .

Since for all z ∈ [1,∞), L(zG(1/n))/L(G(1/n))→1, dominated convergence entails
that

lim
n→∞

∫ ∞

1
dz aza−1−ρ

L(zG( 1
n ))

L(G( 1
n ))
= a

ρ−a and lim
n→∞

∫ 1

0
dz aza−1

{
z−ρ

L(zG( 1
n ))

L(G( 1
n ))

}

=
∫ 1

0
dz aza−1{z−ρ}.

We then set Qa = a/(ρ−a) + ∫ 10 dz aza−1{z−ρ} and since an ∼ q−1G(1/n), we
have proved that

σa(wn) = nE[Wa] − qaQa(an)
a + o((an)

a). (253)

Recall that as the graph is critical, we have r = E[W ] = E[W 2]. We then take (253)
with a = 1 to get σ1(wn)−rn ∼−Q1n1/ρ�(1/n) since an ∼ q−1n1/ρ�(1/n); thus
bn ∼ κqrn1−1/ρ/�(1/n). It implies that an and bn/an go to∞ and that bn/a2n→ 0.
Moreover for all j ≥ 1, w

(n)

j /an→ q j−1/ρ . This implies that an , bn and wn satisfy
(21) with β0 = 0 (and (C3)). Since anbn ∼ κσ1(wn) ∼ κrn, (253) with a = 1 and 2
implies that

σ2(wn)

σ1(wn)
= nr−q2Q2a2n + o(a2n)

nr−qQ1an + o(an)
=1−κq2Q2

an
bn
+ o
(an
bn

)
=1−α0

an
bn
+ o
(an
bn

)
,

(254)
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where α0 = κq2Q2 as defined in (70).
Next, for all α ∈ R, set w

(n)

j (α) = (1− an
bn

(α − α0))w
(n)

j . By (254), we get
σ2(wn(α))/σ1(wn(α))=1− αan/bn + o(an/bn). Namely, wn(α) satisfies (C1). Since
w

(n)

j (α) ∼ w
(n)

j as n→∞, wn(α) also satisfies (C3) with c j = q j−1/ρ , j≥1.
Let us prove that (wn(α)) satisfies (C2). First observe that σ3(wn(α))∼σ3(wn). So

we only need to prove that the wn satisfy (C2). To that end, for all n and j ≥ 1, we
set fn( j) = (G( j/n)/G(1/n))3 = j−3/ρ�3( j/n)/�3(1/n) and δ = 1

2 (
3
ρ −1) that is

strictly positive. We apply Lemma 8.1 to �3: let cδ ∈ (1,∞) and ηδ ∈ (0, 1] such that
(251) holds true; then, for all n > 1/ηδ , 0 ≤ fn( j) ≤ cδ j−1−δ . Since for all j ≥ 1,
limn→∞ fn( j) = j−3/ρ , by dominated convergence we get

G(1/n)−3σ3(wn) =
∑

1≤ j≤n
fn( j) −−−−→

n→∞
∑

j≥1
j−3/ρ = q−3σ3(c),

which easily implies (C2).
Let us prove that wn(α) satisfies (C4) thanks to (38) in Proposition 2.3. To that end,

we fix n ∈ N
∗ and λ ∈ [0,∞) such that λ ∈ [1, an]. For all x ∈ [0,∞), recall that

fλ(x) = x(e−λx−1+ λx) and for all j≥1, set

φn( j) = fλ
(w

(n)
j (α)

an

)
= fλ

(
qn j
−1/ρ �( j/n)

�(1/n)

)
where qn =

(
1− an

bn
(α−α0)

)
G(1/n)

an
∼ q .

To simplify, we also set κn = anbn/σ1(wn(α)); note that κn ∼ κ . Let δ ∈ (0,∞) be
specified further; by Lemma 8.1 and the previous arguments, there exists cδ ∈ (0,∞)

and nδ such that for all n ≥ nδ , w
(n)

j (α)/an ≥ cδ j−δ−1/ρ and κn ≥ 1
2 κ , which entails

κnφn( j)≥ 1
2 κ fλ(cδ j−δ−1/ρ). We next set

αn := bn
an

(
1− σ2(wn(α))

σ1(wn(α))

)
∼ α .

Recall that ψn , defined in (37), is the Laplace exponent of ( 1
an
Xwn(α)
bnt

)t∈[0,∞). The
previous inequalities then imply that

ψn(λ)−αnλ =
∑

1≤ j<n

κnφn( j) ≥ 1
2 κ
∑

1≤ j<n

fλ(cδ j
−δ− 1

ρ ) ≥ 1
2 κ

∫ n

1
dx fλ(cδx

−δ− 1
ρ ) ,

where we have used the fact that x �→ fλ(x) is increasing. We set a = ρ/(1 + ρδ),
namely 1/a = δ + 1/ρ and we use the change of variables y = λx−1/a in the last
term of the inequality to get

∀n≥nδ, ∀λ ∈ [1, an], ψn(λ)−αnλ ≥ 1
2 κaλa−1

∫ λ

λn−1/a
dy y−a−1 f1(cδ y)

≥ 1
2 κaλa−1

∫ 1

ann−1/a
dy y−a−1 f1(cδ y).
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Now observe that ann−1/a ∼ q−1n−δ�(1/n) → 0. Thus, without loss of gener-
ality, we can assume that for all n ≥ nδ , ann−1/a ≤ 1/2. Then, we set Kδ =
1
2 κa

∫ 1
1/2dy y

−a−1 f1(cδ y) > 0 and we have proved that for all n ≥ nδ , and for all

λ ∈ [1, an], ψn(λ)−αnλ≥Kδλ
a−1. Since ρ > 2, it is possible to choose a sufficiently

small δ>0 such that a−1 = ρ/(1+ ρδ)−1>1. Then, we get (38) in Proposition 2.3
(i) which implies (C4). This completes the proof of Lemma 2.10. ��
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A Laplace exponents

We state here a proposition on the Laplace transform ofmeasures onR. To that end, we
briefly recall standard results on theLaplace transformof finitemeasures on [0,∞) and
on [0,∞]. Namely, letμ be a Borel-measure on the compact space [0,∞]; its Laplace
transform is given by Lμ(λ) = ∫[0,∞)

e−λx μ(dx), for all λ ∈ (0,∞). In particular,
we take Lμ(0) = Lμ(0+) = μ([0,∞)). Let μ, ν be finite Borel measures on [0,∞].
Recall that if μ([0,∞]) = ν([0,∞]) and if I = {λ ∈ (0,∞) : Lμ(λ) = Lν(λ)} has
a limit point in (0,∞), then μ = ν. The continuity theorem for Laplace transform can
be stated as follows: let μ and μn , n ∈ N, be finite Borel measures on [0,∞]. Then,
the following holds true.

μn
weak−−−→
n→∞ μ ⇐⇒ lim

n→∞μn([0,∞]) = μ([0,∞]) and lim
n→∞ Lμn (λ)

= Lμ(λ), λ ∈ [0,∞). (255)

We next easily deduce from (255) the following lemma.

Lemma A.1 Let (μn)n∈N be a sequence of probability measures on [0,∞). Let I ⊂
(0,∞) have a limit point in (0,∞); let L : I → [0,∞) be such that for all λ ∈ I ,
limn→∞ Lμn (λ) = L(λ). Then, there exists a probability measure μ on [0,∞] such
that μn → μ weakly on [0,∞]. If furthermore the μn are tight on [0,∞), then
μ({∞}) = 0.

Proof Since [0,∞] is compact, {μn; n ∈ N} is tight on [0,∞]; by (255), the Laplace
transform of two limit probability measures coincide on I : there are therefore equal.

��
Let μ be a finite Borel-measure on R; we extends its Laplace transform on R by

simply setting for all λ ∈ R, Lμ(λ) = ∫
R
e−λxμ(dx) ∈ [0,∞]. Let us mention that
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if in a right-neighbourhood of 0, Lμ and Lν are finite and coincide, then μ = ν. We
easily prove the following result.

Lemma A.2 Let (μn)n∈N be a sequence of probability measures on [0,∞). Suppose
that there exists λ∗ ∈ (0,∞) such that for all λ ∈ [0, λ∗], �(λ) := limn→∞ Lμn (−λ)

exists and is finite. Then, μn → μ weakly on [0,∞), �(λ) = Lμ(−λ), λ ∈ [0, λ∗),
which implies that limλ→0+�(λ) = 1.

Proof For all λ0 ∈ (0, λ∗), set νn,λ0(dx) = eλ0xμn(dx)/Lμn (−λ0) that is a well-
defined probability measure. Note that for all λ ∈ [λ0 − λ∗, λ0], Lνn,λ0

(λ) =
Lμn (λ−λ0)/Lμn (−λ0)→ �(λ0 − λ)/�(λ0). This limit for λ < 0 entails that the
νn,λ0 are tight on [0,∞); the same limit for λ>0 combined with Lemma A.1 implies
that there is a probability measure νλ0 on [0,∞) such that νn,λ0 → νλ0 weakly on
[0,∞). Since μn(dx) = Lμn (−λ0)e−λ0xνn,λ0(dx), we easily see that μn → μ :=
�(λ0)e−λ0xνλ0(dx) weakly on [0,∞) we easily check that Lμ(−λ) = �(−λ) for all
λ ∈ [0, λ∗). ��

We next recall a result essentially due to Grimvall [24] (Theorem 2.1, p. 1029).

Lemma A.3 For all n ∈ N, let (�n
k )k∈N be an i.i.d. sequence of real-valued random

variables such that there exists a ∈ (0,∞) such that, for n, k ∈ N,

P(�n
k ≥ −a) = 1 . (256)

Let (qn)n∈N be a sequence of integers that tends to ∞. Set Yn =∑0≤k≤qn �n
k and

Ln(λ) = E
[
e−λYn

]
(that is finite thanks to (256)). Then, the following assertions are

equivalent.

(a) The r.v. Yn converge in law to a real-valued r.v. Y .
(b) There exists a function L : [0,∞)→[0,∞) that is right-continuous at 0, such that

L(0)=1 and such that limn→∞ Ln(λ) = L(λ) for all λ ∈ [0,∞).

Moreover, if (a) or (b) holds, then L(λ) = E[e−λY ] and L is positive and continuous.
Furthermore, Ln→ L holds true uniformly on every compact subset of (0,∞).

Proof Grimvall’s Theorem 2.1 [24] (p. 1029) asserts (a)⇒ (b). It also asserts that if
(a) holds true, then L(λ)= E[exp(−λY )] and limn→∞ Ln = L uniformly on every
compact subset of (0,∞).

It only remains to prove that (b)⇒(a): first suppose that Ypn is a subsequence that
converges in distribution to Y ′: by applying (a)⇒ (b), we get L(λ)=E[exp(−λY ′)],
λ ∈ [0,∞), which characterizes the law of Y ′. Consequently, the laws of Yn have at
most one weak limit. Therefore, we only need to prove that the laws of Yn are tight on
R.

Since [−∞,∞] is compact, the laws of the Yn are tight on [−∞,∞] and we only
need to prove that for all increasing sequence of integers (n p)p∈N

such that Ynp→ Y in law on [−∞,∞], we necessarily get P(|Y | = ∞) = 0. To
that end, first note that the convergence Ynp → Y in law on [−∞,∞] implies that
(Ynp )+/−→(Y )+/− in law on [0,∞]. By (255), we get

lim
p→∞E

[
exp(−λ(Ynp )+)

] = E
[
exp(−λ(Y )+)

]
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for all λ ∈ [0,∞). Since Ln(λ)=E
[
exp(λ(Yn)−)

]+ E
[
exp(−λ(Yn)+)

]−1, we get

lim
p→∞E

[
exp(λ(Ynp )−)

] = L(λ)+ 1−E[ exp(−λ(Y )+)
]
.

This easily entails that the laws of the (Ynp )− are tight on [0,∞). Thus P(Y =−∞) =
0. We then apply Lemma A.2 to the laws of the r.v. (Ynp )− and as p→∞ we get
E
[
exp(λ(Y )−)

] = L(λ)+1−E[ exp(−λ(Y )+)
]
and asλ→0+, sinceE[ exp(λ(Y )−)

]

and L(λ) tend to 1, we get P((Y )+<∞) = limλ→0+ E
[
exp(−λ(Y )+)

] = 1, which
completes the proof of the lemma. ��

B Skorokhod’s topology

B.1 General results

In this section, we adapt and we recall results on Skorokhod’s topology and weak
convergence on D([0,∞), R

d) in Jacod & Shiryaev’s book [27]. These results are
stated within our notation and ready to be used in our proofs.

Lemma B.1 (Propositions 2.1 & 2.2 in [27]) Let xn → x in D([0,∞), R
d) and let

yn→ y in D([0,∞), R
d ′). Then, the following holds true.

(i) For all t ∈ [0,∞), there exists a sequence of times tn→ t such that xn(tn−)→
x(t−), xn(tn)→ x(t) and thus, �xn(tn)→�x(t).

(ii) For all t ∈ [0,∞) such that �x(t) = 0 and for all sequences of times sn→ t , we
get xn(sn−)→ x(t) and xn(sn)→ x(t), and thus �xn(sn)→0.

(iii) Assume that for all t ∈ (0,∞) there is a sequence of times tn → t such
that �xn(tn)→ �x(t) and �yn(tn)→ �y(t). Then ((xn(t), yn(t))t∈[0,∞) −→
((x(t), y(t))t∈[0,∞) for the Skorokhod topology on D

([0,∞), R
d+d ′). In particu-

lar, this joint convergence holds truewhenever x and y have no common jump-time.
(iv) Let (tn) be as in (i) and (sn) be such that sn → t and sn ≥ tn, n ∈ N. Then,

xn(sn)→ x(t).

Proof See Jacod&Shiryaev [27], Chapter VI, Section 2, pp. 337–338.More precisely,
for (i) (resp. (i i)), see [27], Prop. 2.1 (a) (resp. (b.5)); for (i i i), see [27], Prop. 2.2 (b).
For (iv) see Prop. 2.1 (b.3) in [27]. ��

As an immediate consequence of Lemma B.1 (i i i), we get the following lemma:

Lemma B.2 Let k ∈ N
∗. For all n ∈ N and j ∈ {1, . . . , k}, let Rn

j (·) and R j (·) be
R
d j -valued càdlàg processes. Assume that (Rn

1 , . . . , R
n
k )→ (R1, . . . , Rk) weakly on

D([0,∞), R
d1)× . . .× D([0,∞), R

dk ) equipped with the product topology. Assume
that a.s. the processes R1, . . . , Rk have no (pairwise) common jump-times. Then,

((Rn
1 (t), . . . , R

n
k (t)))t∈[0,∞) −−−→

n→∞ ((R1(t), . . . , Rk(t)))t∈[0,∞)

weakly on D([0,∞), R
d), where d = d1 + . . .+ dk.
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Lemma B.3 Let yn→ y in D([0,∞), R). Then the following holds true.

(i) Let s, t ∈ [0,∞) be such that s< t and such that �y(s) = �y(t) = 0. Then, for
all (sn, tn)→(s, t), we get infu∈[sn ,tn ] yn(u)→ infu∈[s,t] y(u).

(ii) Suppose that t ∈ [0,∞) �→ infs∈[0,t] y(s) is a continuous function. Then, the
following convergence (infs∈[0,t] yn(s))t∈[0,∞) → (infs∈[0,t] y(s))t∈[0,∞) holds
uniformly on every compact subsets.

(iii) Let0< t∗< t be such that�y(t) = 0and (infs∈[0,t∗−ε] y(s))∧(infs∈[t∗+ε,t] y(s))>
infs∈[0,t] y(s) for all sufficiently small ε > 0. Set tn∗ = inf{s ∈ [0, t] :
infu∈[0,s] yn(u) = infu∈[0,t] yn(u)} for all n ∈ N. Then, we get tn∗ → t∗.

Next, for all r ∈ [0,∞) and all z ∈ D([0,∞), R). We set γr (z) = inf{t ∈ [0,∞) :
z(t)<−r}, with the convention that inf ∅ = ∞. Note that r �→ γr (z) is a nondecreas-
ing [0,∞]-valued càdlàg function. Then, we get the following:

(iv) Suppose that t ∈ [0,∞) �→ infs∈[0,t] y(s) is continuous. Then, for all r ∈ [0,∞)

such that γr (y)<∞ and �γr (y) = 0, we get γr (yn)→γr (y).

For all t ∈ [0,∞), all r ∈ R and all z ∈ D([0,∞), R) we next set

τ(z, t, r)= inf
{
s ∈ [0, t] : inf

u∈[s,t] z(u) > r
}
with the the convention that inf ∅ = ∞.

(257)
Then, the following holds true:

(v) Suppose that y(t)>0 = y(0). Then, r ∈ [0, y(t)) �→τ(y, t, r) is right-continuous
and nondecreasing. Furthermore, suppose that �y(t) = 0 and that r ∈ (0, y(t))
satisfies τ(y, t, r−) = τ(y, t, r). Then, for all (tn, rn)→ (t, r), τ(yn, tn, rn)→
τ(y, t, r).

Proof We will use the shorthand notation inf [s,t] y for infu∈[s,t] y(u) when there is no
risk of confusion. Since yn→ y in D([0,∞), R) there is a sequence of continuous
increasing functions λn : [0,∞)→ [0,∞), n ∈ N, such that λn(0) = 0, such that
supt∈[0,∞)

∣∣λn(t)−t
∣∣→ 0 and such that sups∈[0,p] |yn− y(λn(s))|→ 0 as n→∞ for

all p ∈ N (take the inverse of λn in Theorem 1.14 in Jacod & Shiryaev [27], Chapter
VI, Section 1.b, p. 328). To simplify we set s′n = λn(sn) and t ′n = λn(tn); note that
(s′n, t ′n)→(s, t) and that inf [sn ,tn ] yn−inf [s′n ,t ′n ] y→0. Next observe that for all ε > 0,

inf[s−ε,t+ε] y ≤ lim inf
n→∞ inf

[s′n ,t ′n ]
y ≤ lim sup

n→∞
inf
[s′n ,t ′n ]

y ≤ inf[s+ε,t−ε] y.

Since �y(s) = �y(t) = 0, we get limε→0 inf [s−ε,t+ε] y = limε→0 inf [s+ε,t−ε] y =
inf [s,t] y, which entails (i). The point (i i) is an immediate consequence of Dini’s
Theorem (see for instance [35], Theorem 7.13).

To prove (i i i), we first set S = {ε ∈ (0, t∗ ∧ (t− t∗)) : �y(t∗ ± ε) = 0}. By
(i), for all ε ∈ S, inf [0,t∗−ε] yn→ inf [0,t∗−ε] y, inf [t∗+ε,t] yn→ inf [t∗+ε,t] y. Moreover,
inf [0,t] yn→ inf [0,t] y. Thus, for all ε ∈ S, there is nε ∈ N such that for all n ≥ nε,
(inf [0,t∗−ε] yn)∧ (inf [t∗+ε,t] yn)> inf [0,t] yn , which implies that |tn∗−t∗| ≤ ε and (i i i)
since 0 is a limit point of S.
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Under the assumption that t ∈ [0,∞) �→ infs∈[0,t] y(s) is continuous, (iv) is a
consequence of Proposition 2.11, Chapter VI, Section 2a p. 341 in Jacod & Shiryaev
[27] applied to the functions t ∈ [0,∞) �→ infs∈[0,t] yn(s): to be specific, for all
r ∈ [0,∞), set Snr = inf{t ∈ [0,∞) : infs∈[0,t] yn(s) ≤ −r} and Sr = inf{t ∈
[0,∞) : infs∈[0,t] y(s) ≤ −r}; then r �→ Sr is left continuous with right-limits (see
Lemma 2.10 (b) [27], p. 340) and Proposition 2.11 [27] p. 341 asserts the following: if
Sr = Sr+, then Snr → Sr . Now, observe that Sr+ = γr (y), Snr+ = γr (yn), Sr = γr−(y)
and Sr = γr−(yn), which implies (iv).

Let us prove (v): suppose y(t)>0 = y(0); it is easy to check that r ∈ [0, y(t)) �→
τ(y, t, r) is right-continuous and nondecreasing. Suppose next that �y(t) = 0 and
that r ∈ (0, y(t)) satisfies τ(y, t, r−) = τ(y, t, r). Let q ∈ (τ (y, t, r), t) be such that
�y(q) = 0; then inf [q,t] y > r ; by (i), for all sufficiently large n, we get inf [q,tn ] yn >

rn and thus, τ(yn, tn, rn) ≤ q< tn . This easily entails that lim supn→∞ τ(yn, tn, rn) ≤
τ(y, t, r). Next, fix q<τ(y, t, r−) such that �y(q) = 0: then, there exists r ′ ∈ (0, r)
such thatq<τ(y, t, r ′), which implies that inf [q,t] y ≤ r ′<r ; by (i), for all sufficiently
large n, we get inf [q,tn ] yn < rn and thus, q ≤ τ(yn, tn, rn). This easily entails that
lim infn→∞ τ(yn, tn, rn)≥τ(y, t, r−), which implies the desired result. ��

We shall use the following elementary lemma whose proof is left to the reader:

Lemma B.4 Let rn → r in [0,∞) and let yn → y in D([0,∞), R). Assume that
�y(r) = 0. Then the following holds true:

(i) (yn(t ∧ rn))t∈[0,∞)→(y(t ∧ r))t∈[0,∞) in D([0,∞), R).
(ii) (yn(rn + t))t∈[0,∞)→(y(r + t))t∈[0,∞) in D([0,∞), R).
(iii) Let ln ∈ [0, rn] be such that ln→ l. Assume that �y(l) = 0. Then (yn((ln + t)∧

rn))t∈[0,∞)→(y((l + t)∧r))t∈[0,∞) in D([0,∞), R).

Theorem B.5 (Theorem 3.1 in Whitt [40]) Let hn→ h and λn→ λ in D([0,∞), R).
We assume that λn(0) = 0 and that λn is nondecreasing. Then, the following holds
true:

(i) If hn→h in C([0,∞), R), then hn ◦ λn→h ◦ λ in D([0,∞), R).
(ii) If λn→λ in C([0,∞), R) and if λ is strictly increasing, then hn ◦ λn→h ◦ λ in

D([0,∞), R).

Proof See Whitt [40], Theorem 3.1, p. 75. ��
As a consequence of Theorem B.5 (i i), let us prove the following:

Lemma B.6 Let (βn)n∈N be a sequence of nonnegative real numbers such thatβn→∞.
For all n ∈ N, let (σ n

k )k≥1 be an increasing sequence of random times such that
limk→∞ σ n

k = ∞; then, for all t ∈ [0,∞), we set Mn
t =

∑
k≥1 1[0,t](σ n

k ). Let
(Rn)n∈N be a sequence of R-valued càdlàg processes. We first assume that Rn → R
weakly onD([0,∞), R).Wealsoassume that there is a deterministic strictly increasing
λ ∈ C([0,∞), R) such that 1

βn M
n
βn ·→λ weakly on C([0,∞), R). Then,

(
Rn

β−1n Mn
βn t

)
t∈[0,∞)

−−−−→
n→∞ (Rλ(t))t∈[0,∞) (258)
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weakly on D([0,∞), R). In particular, this result applies if Mn are homogeneous
Poisson processes with unit rate and λ is the identity map.

Proof We set λn(t) = Mn(βnt)/βn . Since λ is deterministic, Slutzky’s argument
implies that (Rn, λn)→ (R, λ) weakly on D([0,∞), R)×C([0,∞), R) and The-
orem B.5 (i i) implies (258). To complete the proof of the lemma, assume that
Mn are homogeneous Poisson processes with unit rate. By Doob’s L2 inequality,
(β−1n Mn

βn t
)t∈[0,∞) → Id, weakly on D([0,∞), R), where Id stands for the identity

map on [0,∞). ��
We next recall the following elementary lemma whose proof is left to the reader.

Lemma B.7 Let E be a Polish space. For all n, k ∈ N, let Xk and Xn
k be E-valued

r.v. such that for all k ∈ N, (Xn
0 , . . . , X

n
k )→(X0, . . . , Xk) weakly on Ek+1 equipped

with the product topology. Then (Xn
k )k∈N→(Xk)k∈N weakly on EN equipped with the

product topology.

B.2 Weak limits of Lévy processes, randomwalks and branching processes

B.2.1 Lévy processes and rescaled randomwalks

We first recall the following
theorem on functional limits of Lévy processes that is proved in Jacod & Shiryaev

[27]. This result is used several times in our proofs.

Theorem B.8 Let (Rn
t )t∈[0,∞), n ∈ N, be a sequence of R-valued Lévy processes with

initial value 0. Then, the following assertions are equivalent.

(a) There exists a time t ∈ (0,∞) such that the r.v. Rn
t converge weakly on R.

(b) The processes Rn weakly converge on D([0,∞), R).

Moreover, if (a) or (b) holds true, then the limit of the processes Rn is necessarily a
Lévy process.

Proof This is a consequence of Corollary 3.6 in Jacod & Shiryaev [27], Chapter VII,
Section 3.a, p. 415. To understand the notation and the terminology, let us mention
that in [27], a PIIS stands for a Lévy process and that the form of the characteristics
of a PIIS is given in Corollary 4.19, Chapter II, Section 4.c, p. 107. ��

Let us briefly recall some notation. Let (Rt )t∈[0,∞) be an R-valued Lévy process
with initial value R0 = 0. We assume it is spectrally positive, namely that R has no
negative jump: a.s. for all t ∈ [0,∞), �Rt ≥ 0. We also assume that the process
is integrable: namely, we assume that there exists a certain t ∈ (0,∞) such that
E[|Rt |]<∞. Let usmention that if R is integrable, thenE[|Rt |]<∞ for all t ∈ [0,∞).
There is a one-to-one correspondence between the lawsof integrable spectrally positive
Lévy processes and triplets (α, β, π) where α ∈ R, β ∈ [0,∞) and π is a Borel-
measure on (0,∞) such that

∫
(0,∞)

π(dr) (r∧r2) <∞; the correspondence is given
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via the Laplace exponent of R (that is well-defined): namely, for all t, λ ∈ [0,∞),

E
[
e−λRt

] = etψα,β,π (λ), where ψα,β,π (λ)=αλ+ 1
2 βλ2+

∫

(0,∞)

(e−λr−1+λr) π(dr).

(259)
We shall say that R is an integrable (α, β, π)-spectrally Lévy process to mean that its
Laplace exponent is given by (259). We next recall the following specific version of a
limit-theorem for Lévy processes.

Theorem B.9 Let (Rn)n∈N be a sequence of integrable (αn, βn, πn)-spectrally posi-
tive Lévy processes. Assume that there exists r0 ∈ (0,∞) such that for all n ∈ N,
πn([r0,∞)) = 0, which implies:

∫
(0,∞)

r2 πn(dr)<∞. Let R be an R-valued càdlàg
process. Then, the following assertions are equivalent:

• (Lv1) : Rn
1 −→ R1 weakly on R.

• (Lv2) : Rn−→ R weakly on D([0,∞, R).

If (Lv1) or (Lv2) hold true, then R is necessarily an integrable (α, β, π)-spectrally
positive Lévy process such that π([r0,∞)) = 0, which entails

∫
(0,∞)

r2 π(dr)<∞.
Moreover, (Lv1) or (Lv2) are equivalent to the following conditions:

• (Lv3a) : αn−→α.
• (Lv3b) : βn +

∫
(0,∞)

r2πn(dr)−→β + ∫
(0,∞)

r2 π(dr).

• (Lv3c) : ∫
(0,∞)

f (r) πn(dr) −→
∫
(0,∞)

f (r) π(dr), for all bounded continuous
f :R→R vanishing on a neighbourhood of 0.

Proof (Lv1)⇔ (Lv2) is a specific case of Corollary 3.6 in Jacod & Shiryaev [27],
Chapter VII, Section 3.a, p. 415 (already recalled in Theorem B.8). For the proof of
(Lv1)⇔(Lv3abc), see Theorem 2.14 in Jacod & Shiryaev [27], Chapter VII, Section
2.a, p. 398. ��

Here is the random walk version of the previous theorem.

Theorem B.10 Let an, bn ∈ (0,∞), n ∈ N, that both tend to ∞. For all n ∈ N,
let (ξnk )k∈N be an i.i.d. sequence of real-valued r.v. Assume that there exists r0 ∈
(0,∞) such that for all n, k ∈ N, P(anr0 ≥ ξnk ≥−r0) = 1. For all t ∈ [0,∞), set
Rn
t = a−1n

∑
1≤k≤�bnt� ξ

n
k . Let R be an R-valued càdlàg process. Then, the following

assertions are equivalent:

• (Rw1) : Rn
1 −→ R1 weakly on R.

• (Rw2) : Rn−→ R weakly on D([0,∞, R).

If (Rw1) or (Rw2) hold true, then R is necessarily an integrable (α, β, π)-spectrally
positive Lévy process such that π([r0,∞)) = 0, which entails

∫
(0,∞)

r2 π(dr)<∞.
Moreover, (Rw1) or (Rw2) are equivalent to the following conditions:

• (Rw3a) : bna−1n E
[
ξn1

]−→ −α.
• (Rw3b) : bna−2n var(ξn1 )−→β + ∫

(0,∞)
r2π(dr).

• (Rw3c) : bnE
[
f
(
ξn1 /an

)]−→ ∫
(0,∞)

f (r) π(dr), for all bounded continuous f :
R→R vanishing on a neighbourhood of 0.
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Proof (Rw1)⇔(Rw3abc) is a specific case of Theorem 2.36 Jacod & Shiryaev [27],
Chapter VII, Section 2.c p. 404. The equivalence (Rw1)⇔(Rw2) is standard: see for
instance Theorem 3.2 p. 342 in Jacod [26]. ��

B.2.2 Continuous state branching processes and rescaled Galton–Watson processes

We next recall convergence theorems for rescaled Galton–Watson processes to inte-
grableContinuous StateBranching Processes (CSBP for short). Recall that (Zt )t∈[0,∞)

is an integrable CSBP if it is a [0,∞)-valued Feller Markovian process whose absorb-
ing state is 0 and that satisfies E[Zt ]<∞ for all t ∈ [0,∞); transition probabilities
are characterised by a function ψ : [0,∞)→R called the branching mechanism; ψ is
necessarily the Laplace exponent of an integrable spectrally positive process: namely,
it is of the form ψ = ψα,β,π as in (259). The branching mechanism characterises the
transition probabilities as follows: for all t, s, λ ∈ [0,∞),

E
[
e−λZs+t ∣∣Zs

] = e−Zs ut (λ), where ut (λ) = λ−
∫ t

0
ψ(us(λ)) ds. (260)

Since ψ = ψα,β,π is as in (259), ψ ′(0+) = α and the equation on the right-hand
side has a unique solution. Since ψ is convex and since ψ(0) = 0, it has at most one
positive root; denote by q the largest root of ψ ; then, the equation on the right hand
side of (260) is equivalent to the following.

∀t ∈ [0,∞), ∀λ ∈ (0,∞)\{q},
∫ λ

ut (λ)

dz

ψ(z)
= t . (261)

This easily implies the following conditions of non-absorption in 0:

P
(∃t : Zt = 0

)=0 ⇐⇒
∫ ∞ dz

ψ(z)
= ∞. (262)

We shall say that Z satisfies the Grey condition if it has a positive probability to be
absorbed in 0, namely if

∫∞ dz/ψ(z)<∞; in that case, one can show that P(∃t : Zt =
0)=P(limt→∞ Zt = 0) and if a.s. Z0 = x , then we get

P(Zt = 0) = e−xv(t) where v satisfies
∫ ∞

v(t)

dz

ψ(z)
= t . (263)

We refer to Bingham [12] for more details on CSBP. We next recall the following
convergence result due to Grimvall [24].

Theorem B.11 (Theorems 3.1 and 3.4 [24]) Let an, bn ∈ (0,∞), n ∈ N, such that
both an and bn/an tend to∞. For all n ∈ N, let μn be a probability measure on N,
let (Z (n)

k )k∈N be a Galton–Watson process with offspring distribution μn and initial
state Z (n)

0 =�an�, and let (ζ n
k )k∈N be an i.i.d. sequence of r.v. with law μn. Then, the

following assertions are equivalent:
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(Br1): 1
an

∑
1≤k≤�bn�

(
ζ n
k −1

)−→ R1 weakly on R, and R1 is integrable and it has
a spectrally positive infinitely divisible law whose Laplace exponent is ψ .
(Br2):

(
1
an Z

(n)

�bnt/an�
)
t∈[0,∞)

−→ (Zt )t∈[0,∞) weakly on D([0,∞), R) and Z is an
integrable CSBP with branching mechanism ψ .

Proof See Theorem 3.1 p. 1030 and Theorem 3.4 p. 1040 in Grimvall [24]; in [24],
bn/an=n, however, the above extension is straightforward. ��

B.2.3 Height and contour processes of Galton–Watson trees

Let (μn)n∈N be a sequence of offspring distributions with finite mean and such that
μn(0)>0. For all μn , we denote by Tn a Galton–Watson forest with offspring distri-
bution μn as defined in Sect. 3.1. Recall the definition of the Lukasiewicz path, the
height and the contour processes of Tn that are denoted respectively by (VTn

k )k∈N,
(HghtTnk )k∈N and (CTn

t )t∈[0,∞). We shall use the following result from Le Gall & D.
[19].

Theorem B.12 Let X be an integrable (α, β, π)-spectrally positive Lévy process, as
defined at the beginning of Sect. 7.1. Assume that

∫∞ dz/ψα,β,π (z)<∞, whereψα,β,π

is given by (259). Let H be the continuous height process derived from X by (138).
Let an, bn ∈ (0,∞), n ∈ N, be two sequences tending to∞; for all n ∈ N, let Tn be a
GW(μn)-forest. Let (Z

(n)

k )k∈N be a Galton–Watson process with offspring distribution
μn and initial state Z (n)

0 = �an�. We assume that

1
an
VTn�bn�

weakly on R−−−−−−→
n→∞ X1 and ∃ δ∈(0,∞), lim inf

n→∞ P
(
Z (n)

�bnδ/an� = 0
)

> 0 .

(264)
Then, the following joint convergence holds true:

(( 1
an
V Tn�bnt�

)
t∈[0,∞)

,
( an
bn
HghtTn�bnt�

)
t∈[0,∞)

,
( an
bn
CTn
bnt

)
t∈[0,∞)

)

−−−−−→
n→∞

(
(Xt )t∈[0,∞), (Ht )t∈[0,∞), (Ht/2)t∈[0,∞)

)
(265)

weakly on D([0,∞), R) × (C([0,∞), R))2 equipped with the product topology. We
also get

∀t ∈ [0,∞), lim
n→∞P

(
Z (n)

�bnt/an�=0
) = e−v(t) where

∫ ∞

v(t)

dz

ψα,β,π (z)
= t . (266)

Proof The convergence of the height process for (sub)critical offspring distribution
is done in Theorem 2.3.2 in Le Gall & D. [19], Chapter 2, p. 60. However, the proof
works verbatim in the supercritical cases. In (sub)critical cases, convergence (265) is
a direct consequence of Corollary 2.5.1 in Le Gall & D. [19], Chapter 2, p. 69, whose
proof extends verbatim to supercritical cases.
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Next, set γn = inf
{
k ∈ N : V Tn (k) = −�an�

}
. Then, sup1≤k≤γn

HghtTn (k) is the
total height of the �an� first independent Galton–Watson trees θ[1]Tn, . . . , θ[�an�]Tn . It
is easy to deduce from the joint convergence (265) and Lemma B.3 (i i i) that

P
(
Z (n)

�bnt/an� = 0
) = P

(
sup
1≤k≤γn

HghtTn
k <�bnt/an�

)
−−−−→
n→∞ P

(
sup
s∈[0,γ ]

Hs ≤ t
)
= P(Zt = 0),

where γ = inf{t ∈ [0,∞) : Xt < −1} and where Z is a CSBP with branching
mechanism ψα,β,π . Then, (263) implies (266). ��

C Proof of Lemma 2.7

Several key arguments of the proofs can be found in Le Gall & D. [20] (Lemma
2.3, p. 563), Addario-Berry, Goldschmidt & Broutin [2] (Lemma 21, p. 390) and
Abraham, Delmas&Hoscheit [1] (Proposition 2.4); therefore our proof is brief. Recall
the notation and the assumption of Lemma 2.7. We control the Gromov-Hausdorff
distance by bounding the distorsion of an explicit correspondence between G and G ′.
Namely, recall that a correspondence R between the two metric spaces (E, d) and
(E ′, d ′) is a subset R ⊂ E× E ′ such that for all (x, x ′) ∈ E× E ′, R ∩ ({x}× E ′)
and R ∩ (E×{x ′}) are not empty; the distorsion of R is then given by dis(R) =
sup{|d(x, y)−d ′(x ′, y′)|; (x, x ′) ∈ R, (y, y′) ∈ R}. We first define a correspondence
between Th and Th′ . Recall that ph : [0, ζh)→ Th and ph′ : [0, ζh′)→ Th′ are the
canonical projections and recall that the roots are defined by ph(0) = ρh and ph′(0) =
ρh′ . We first set

R0=
{
(ph(t), ph′(t)); t ∈ [0,∞)

}∪{(ph(si ), ph′(s′i )), (ph(ti ), ph′(t ′i )); 1≤ i ≤ p
}
,

where we have adopted the convention that ρh = ph(t) if t ≥ ζh and ρh′ = ph′(t) if
t ≥ ζh′ : indeed, recall that for all t ≥ ζh (resp. t ≥ ζh′ ), h(t) = 0 (resp. h′(t) = 0),
which implies t ∼h 0 (resp. t ∼h′ 0). Then, R0 is clearly a correspondence between
(Th, dh) and (Th′, dh′) and we easily check that dis(R0) ≤ 4

(‖h−h′‖∞ + ωδ(h)
)
.

Wenext set� = ((ph(si ), ph(ti )))1≤i≤p and�′ = ((ph′(s′i ), ph′(t ′i )))1≤i≤p; recall
that (G, d) (resp. (G ′, d ′)) stands for the (�, ε)-pinched metric space associated with
(Th, dh) (resp. the (�′, ε′)-pinched metric space associated with (Th′, dh′)); recall
that d = d�,ε (resp. d ′ = d�′,ε′ ) is given by (51); we denote by � : Th → G and
� ′ :Th′ →G ′ the canonical projections and we set

R = {(�(x),� ′(x ′)); (x, x ′) ∈ R0
}

.

It is easy to check thatR is a correspondence between (G, d) and (G ′, d ′). Moreover,
since the pinched metric can be expressed by finite sums as in (51) with at most 2p+1
terms, we easily check that

dis(R) ≤ (p + 1)dis(R0)+ 2p(ε∨ε′) ≤ 4(p + 1)
(‖h−h′‖∞+ ωδ(h)

)+ 2p(ε∨ε′) .
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We next construct an ambient space into which G and G ′ are embedded: we first
set E = G � G ′ and we define dE : E2 → [0,∞) as follows: first dE |G×G = d,
dE |G ′×G ′ = d ′ and for all x ∈ G and all x ′ ∈ G ′,

dE (x, x ′) = inf
{
d(x, z)+ 1

2 dis(R)+ d ′(z′, x ′) ; (z, z′) ∈ R} .

Standard arguments easily imply that dE is a distance on E . Note that the inclusion
maps of resp. G and G ′ into E are isometries. Since G and G ′ are compact, so
is (E, dE ). Moreover, we easily check that dHausE (G,G ′) ≤ 1

2 dis(R). Recall that
ρ=�(ρh), that ρ′ =� ′(ρh′) and that (ρ, ρ′) ∈ R; thus, dE (ρ, ρ′) ≤ 1

2 dis(R).
Denote by M f (E) the space of finite Borel measures; recall that for all μ, ν ∈

M f (E), their Prokhorov distance is dProkE (μ, ν) = inf{η ∈ (0,∞) :ν(K ) ≤ μ(K η)+
η and μ(K ) ≤ ν(K η)+η, for all K ⊂E compact}; here, K η = {y ∈ E :dE (y, K ) ≤
η}. Recall thatm (resp.m′) is the pushforward measure of the Lebesgue measure Leb
on [0, ζh) (resp. on [0, ζh′)) via the function � ◦ ph (resp. � ′ ◦ ph′ ). Let K ⊂ G be
compact; set C = (� ◦ ph)−1(K ) ∩ [0, ζh]: if h is a pure-jump function with finitely
many jumps, C is a finite union of half-open half closed intervals; if h is continuous,
so is � ◦ ph and C is also a compact of [0, ζh]. We next set C ′ = [0, ζh′ ] ∩ C and
K ′ = � ′ ◦ ph′(C ′): if h′ is continuous, then K ′ is a compact subset of G ′; if h′ is
pure-jump function with finitely many jumps, then K ′ is a finite subset of G ′: it is also
a compact subset. Note that C ′ ⊂(� ′◦ ph′)−1(K ′). Thus, we get

m(K ) = Leb(C) ≤ Leb(C ′)+ |ζh−ζh′ | ≤ Leb
(
(� ′◦ ph′)−1(K ′)

)+ |ζh−ζh′ |
= m′(K ′)+ |ζh−ζh′ |.

Then, observe that for all x ′ ∈ K ′, there is x ∈ K such that (x, x ′) ∈ R, which implies
dE (x, x ′) ≤ 1

2 dis(R). It implies that K ′ ⊂ K η, where η = 1
2 dis(R). By exchanging

the roles of m and m′, we get dProkE (m,m′) ≤ 1
2 dis(R)+ |ζh−ζh′ |. Thus,

δGHP(G,G ′) ≤ dHausE (G,G ′)+ dE (ρ, ρ′)+ dProkE (m,m′) ≤ 3
2 dis(R)+ |ζh−ζh′ |

which entails (55). This completes the proof of Lemma 2.7. ��
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