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Abstract

We consider a natural model of inhomogeneous random graphs that extends the
classical Erd6s—Rényi graphs and shares a close connection with the multiplicative
coalescence, as pointed out by Aldous (Ann Probab 25:812-854, 1997). In this model,
the vertices are assigned weights that govern their tendency to form edges. It is by
looking at the asymptotic distributions of the masses (sum of the weights) of the con-
nected components of these graphs that Aldous and Limic (Electron J Probab 3:1-59,
1998) have identified the entrance boundary of the multiplicative coalescence, which
is intimately related to the excursion lengths of certain Lévy-type processes. We,
instead, look at the metric structure of these components and prove their Gromov—
Hausdorff—Prokhorov convergence to a class of (random) compact measured metric
spaces that have been introduced in a companion paper (Broutin et al. in Limits of
multiplicative inhomogeneous random graphs and Lévy trees: the continuum graphs.
arXiv:1804.05871, 2020). Our asymptotic regimes relate directly to the general con-
vergence condition appearing in the work of Aldous and Limic. Our techniques provide
a unified approach for this general “critical” regime, and relies upon two key ingredi-
ents: an encoding of the graph by some Lévy process as well as an embedding of its
connected components into Galton—Watson forests. This embedding transfers asymp-
totically into an embedding of the limit objects into a forest of Lévy trees, which
allows us to give an explicit construction of the limit objects from the excursions of
the Lévy-type process. The mains results combined with the ones in the other paper
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allow us to extend and complement several previous results that had been obtained
via model- or regime-specific proofs, for instance: the case of Erd6s—Rényi random
graphs obtained by Addario-Berry et al. (Probab Theory Relat Fields 152:367-406,
2012), the asymptotic homogeneous case as studied by Bhamidi et al. (Probab Theory
Relat Fields 169:565-641, 2017), or the power-law case as considered by Bhamidi et
al. (Probab Theory Relat Fields 170:387-474, 2018).

Mathematics Subject Classification 05C80 - 60C05

1 Introduction

Motivation and model Random graphs have generated a large amount of literature.
This is even the case for one single model: the Erd6s—Rényi graph G(n, p) (graph
with n vertices connected pairwise in an i.i.d. way with probability p € [0, 1]). Since
its introduction by Erdds and Rényi [21] more than fifty years ago, and the discovery
of a phase transition where a “giant connected component” gets born, the pursuit of
a deeper understanding of its structure has never stopped. Many landmark results by
Bollobés [14], Luczak [32], Janson, Knuth, Luczak and Pittel [29] have shaped our
grasp of this phase transition. From the point of view of precise asymptotics, one of
the most important papers is certainly the contribution of Aldous [3], who introduced a
stochastic process point of view and paved the way towards the study of scaling limits
of critical random graphs. In that paper, he obtained the asymptotics for the sequence of
sizes of the connected components of G (n, p) in the so-called critical window where
the phase transition actually occurs. His work paved the way to the construction by
Addario-Berry, Goldschmidt and B. [2] of the scaling limits of these connected compo-
nents, seen as metric spaces, which also confirmed the limit fractal (Brownian) nature.

Following [2], the question of identifying the scaling limits has been investigated for
more general models of random graphs. Particular attention has been paid to so-called
inhomogeneous random graphs, which exhibit heterogeneity in the node degrees and
whose behaviours are often quite different from the Erd6s—Rényi graph. (See Fig. 1
for an illustration of this difference). Besides being a theoretical object with intriguing
properties, these graphs are also commonly believed to offer more realistic modelling
for complex real-world networks (see, e.g. [33]).

In the present work, we consider such an inhomogeneous random graph model
that is defined as follows. Let w = (wy, w2, ..., w,) be a sequence of n positive real
numbers sorted in nonincreasing order. Interpreting w; as the propensity of vertex
i to form edges, we define a random graph G, as follows: the set of its vertices is
{1,2,...,n}, the events {{i, j}is an edge of Gy}, I <i < j < n, are independent
and

P({i, j}is anedge of G) =1 —exp (— wjw;/o1(w)), where o1(w)=w;+ -+ wy.
(D

The graph G, extends the classical Erd6s—Rényi random graph in allowing edges to be
drawn with non-uniform probabilities, while keeping the independence among edges.
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Fig. 1 Left: a picture of a large connected component of G(n, p). Right: a picture of a large connected
component of Gy;. Observe the presence of “hubs” (nodes of high degrees) in the latter

The graph G,, has come under different names in the literature, for instance, Pois-
son random graph in [10,34], the Norros—Reittu graph in [10] or rank-1 model in
[9,11,15,38,39]. Here, we will refer to it as the multiplicative graph to emphasise its
close connection with the multiplicative coalescent as pointed out by Aldous in [3].
This connection is the starting point of the work [4] of Aldous & Limic who iden-
tify the entrance boundary of multiplicative coalescent by looking at the asymptotic
distributions of the sizes of the connected components found in G,,. The asymptotic
regime and the limit processes found in Aldous & Limic [4] lie at the heart of this
paper. Namely, we extend this result to the geometry of the connected components of
G, by proving the weak convergence of these connected components as it has been
done by Addario-Berry, Goldschmidt and B. [2] for critical Erd6s—Rényi graphs. Our
approach relies on the results of a companion paper [17] where we provide a specific
coding of G, and an embedding of G, into a Galton—Watson forest, and where we
construct the continuous multiplicative graphs that are proven here to be the scaling
limits of the discrete models.

More precisely, we equip G, with the graph distance dy; and we introduce the
weight measure my, = ), _;_, w;8; on G,,. The goal of our article can be roughly
rephrased as follows: we construct a class of (pointed and measured) compact random
metric spaces (G, d, m) such that the graphs (G, , €xdgr, g, my, ) weakly converge
to (G, d, m) along suitable subsequences (wy, &,, €,). We also prove a similar result
where my,, is replaced by the counting measure, the limit G being the same. Of course,
here the scaling parameters, ¢, and €], go to 0, so that G is not discrete. The limits
we consider hold in the sense of the weak convergence corresponding to Gromov—
Hausdorff—Prokhorov topology on the space of (isometry classes of) compact metric
spaces equipped with finite measures. To achieve the construction of the possible limit
graphs and to prove the convergence of rescaled multiplicative graphs, we rely on
two main new ideas: (1) we encode multiplicative graphs by processes derived from
a LIFO-queue; (2) we embed multiplicative graphs into Galton—Watson trees whose
scaling limits are well-understood. Before discussing further the connections with
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previous works and in order to explain the advantages of our approach, let us give a
brief but precise overview of our results and of the two above mentioned ideas.

Overview of the results Our approach relies first on a specific coding of w-
multiplicative graphs G, via a LIFO-queue and a related stochastic process; the queue
actually yields an exploration of G, and a spanning tree that encompasses almost all
the metric structure of the graph. The LIFO-queue is defined as follows:

— A single server is visited by n clients labelled by 1, ..., n;

— Client j arrives at time E j and she/he requests an amount of time of service w;

— The E; are independent exponentially distributed random variables such that
E[E;] = o1(w)/wj;

— A LIFO (last in first out) policy applies: whenever a new client arrives, the server
interrupts the service of the current client (if any) and serves the newcomer,; when
the latter leaves the queue, the server resumes the previous service.

As mentioned above, the LIFO-queue yields a tree 7, whose vertices are the clients:
namely, the server is the root (Client 0) and Client j is a child of Client i in T, if and
only if Client j interrupts the service of Client i (or arrives when the server is idle if
i = 0). We introduce

wo__ . wo__ w A R w w
Yy = z+1;nw,1{5i5,},1, = inf ¥ and % _#{SE[O”]'réﬁf,”Y’ >YS_}.

@

The quantity Y;” — J;" is the load of the server, i.e. the amount of service due at time
t. We sometimes call Y;” the algebraic load of the server. Note that the LIFO-queue
is encoded by Y". Then, observe that /)’ is the number of clients waiting in the
queue at time ¢. We easily see that H" is the contour (or the depth-first exploration)
of T; this entails that the graph-metric of T, is entirely encoded by H": namely,
the distance between the vertices/clients served at times s and ¢ in 7', is H}' + H} —
2 minre[s/\t,svt] Hy

To get to the graph from the tree 7', we need to include some surplus edges which
are sampled from a Poisson point measure. More precisely, conditionally on YV, let

L

Pu = Z 6(,p_yp) be a Poisson pt. meas. on [0, oo)2 with intensity oy

1=p=py

Lio<y<yy—ywydtdy.

3

Note that p,, < 00 a.s., since Y™ — J¥ is constant and zero after a random time. We
set

I, = ((sp. 1)) where s, =inf {s € [0,7,] : i[nf ]Y;’ —Jy >y}, 1<p=<pu.
u€ls,tp

I=p=pw =
4)
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Next, we define the set of additional edges S,; as the set of the edges connecting the
clients served at times s, and #,,, for all 1 < p < py, and we define the graph G, by

gw = (Tw\{o}) U Sw .

Namely, G, is the graph obtained by removing the root 0 from 7, and adding the
edges in Sy, The following is proved in the companion paper [17]:

Theorem 1.1 (Theorem 2.1 in [17]) G, is distributed as a w-multiplicative random
graph as specified in (1).

From this representation of the discrete graphs, one expects that if Y™ converges,
then the graph should also converge, at least in a weak sense. However, since Y is not
Markovian, it is difficult to obtain a limit for the local-time functional H", which is
the function that encodes the metric. To circumvent this technical difficulty, we embed
the non-Markovian LIFO-queue governed by YV into a Markovian one that is defined
as follows:

— A single server successively receives an infinite number of clients;

— A LIFO policy applies;

— Clients arrive at unit rate;

— Each client has a type that is an integer ranging in {1, ..., n}; the amount of
service required by a client of type j is wj; types are i.i.d. with law v, =
o1 L=jzn W)

Namely, let 7x be the arrival-time of the k-th client and let J; be the type of the
k-th client; then the Markovian LIFO queueing system is entirely characterised by
> k>190(x.) that is a Poisson point measure on [0, 00) x {1, ..., n} with intensity
L@y, where ¢ stands for the Lebesgue measure on [0, co). To simplify the explanation
of the main ideas, we concentrate in this overview only on the (sub)critical cases where
the Markovian queue is recurrent, which amounts to assuming that

o2 (w) < o1(w) .

Here, for all r € (0, 0c0), we use the notation o, (w) = Zlg/gn w'.

The Markovian queue yields a tree T, that is defined as follows: the server is
the root of Ty, and the k-th client to enter the queue is a child of the I-th one if the
k-th client enters when the I-th client is being served. One easily checks that T, is
a sequence of i.i.d. Galton—Watson trees glued at their root and that their common
offspring distribution is

wht!
J —w;
k) =y pmnveLiE k € N. 5)

l<j=n

Observe that ZkeN kit (k) = o2(w)/o1(w) < 1, which implies that the GW-trees are
finite a.s. The tree T, is then encoded by its contour process (H,");¢[0,00): namely,
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H}" stands for the number of clients waiting in the Markovian queue at time ¢ and it
is given by

H' = #{s €[0,7]: inf X > X‘S"’_] where X' = —1+ Zkal[o’,](tk), t € [0, 00).

st
rels.z] =1

(6)

The quantity X}’ is called algebraic load of the Markovian server at time ¢ in the
queueing theory literature (algebraic because it can take negative values). We will see
in Sect. 2 how these definitions extend to the supercritical cases. Note that X" is a
spectrally positive Lévy process with initial value 0; it is characterised by its Laplace
exponent defined by E[e *X/"] = 'V« for¢, A € [0, 00), that is explicitly given by

Yw(A) = ok + Z i(e_M”f —1+iw;) and a,:=1-— o2(w)

o1 (w) oy(w) *
I<j=n

From this tractable model, we derive the LIFO-queue and the tree 7, governed by
Y"¥ by a time-change that “skips” some time intervals and that is defined as follows.
We colour in blue or red the clients of the Markovian queue in the following recursive
way:

(i) ifthe type Ji of the k-th client already appeared among the types of the blue clients
who previously entered the queue, then the k-th client is red;

(ii) otherwise the k-th client inherits her/his colour from the colour of the client who
is currently served when she/he arrives (and this colour is blue if there is no client
served when she/he arrives: namely, we consider that the server is blue).

Note that a client who is the first arriving of her/his type is not necessarily coloured
in blue. We easily check that exactly n clients are coloured in blue and their types
are necessarily distinct. Moreover, while a blue client is served, note that the other
clients waiting in the line (if any) are blue too. Actually, the sub-queue of blue clients
corresponds to the previous LIFO queue governed by Y". More precisely, we set

5
Blue = {t € [0, 0co) : a blue client is served at t} and Q,b’w = inf is € [0, 00) : / 1g1ue(u)du > t}.
0

We refer to (101) in Sect. 3.3 for a precise definition of ®*. Then,

Y, H)tel0.00) = (X;V;b,wa HQ)'ILW),G[O,OO) . @)
We refer to Proposition 3.2 and Lemma 3.4 in Sect. 3.3 for a more precise statement of
this equality. This explains how to encode G, in terms of the two tractable processes
X" and H" derived from the Markovian queue.

The above embedding of LIFO queues is the starting point of our analysis. Let
us also point out that it naturally translates to an “embedding” of the graph G, into
a Galton—Watson forest, which bears a similar flavour to the construction in [34].
However, we have been able to extend the relationship in (7) to a more general setting.
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In particular, the Markovian queues that appear above and their coding processes
(X", H") have analogues in the continous time and space setting. In our context, the
parameters governing such processes are those identified by Aldous & Limic [4] for
the eternal multiplicative coalescent. Namely,

acR, Bel0,00), Kk € (0,00) and ¢ = (c;);j>1 decreasing and such that Zc? < 00.
j=1
(3)
The load of service of the continuous analogue of the Markovian queue is a spectrally
positive Lévy process (X;):c[0,00) Starting at Xo = 0 whose Laplace exponent v is
given by

Hog (E[e ™)) := y (1) =ar + 127+ Y kej(e ™™ =14 Ac)), forallz, 1 € [0, 00).
jzl

€))

To simplify, we restrict our explanations to the cases where X does not drift to oo,
which is equivalent to assuming that & € [0, 00). The tree corresponding to the clients
of the continuous analogue of the Markovian queue that is driven by X is actually the
Lévy tree yielded by X, which is defined through its contour process as introduced by
Le Gall & Le Jan [31]. To that end, we assume that i (as defined in (9)) satisfies

 da

e < 00, (10)
which implies that either ) j c? = oo or B # 0; therefore X has infinite variation
sample paths. The assumption (10) is sometimes referred to as Grey’s condition in the
literature. As a side note, let us also remark that we allow the sequence ¢ to be null; in
that case, we must have 8 > 0 as imposed by (10). Under Assumption (10), Le Gall
& Le Jan [31] (see also Le Gall & D. [19]) prove that there exists a continuous process
(H})te[0,00) Such that the following limit holds true for all ¢ € [0, co) in probability:

t

1
H; = lim = A Lix, —inf, e, X, <e) S - (1)

We explain further how to make sense of this definition in the supercritical cases. The
process H is called the height process associated with X and the processes (X, H) are
the continuous analogues of (X", H").

We explain in Sect. 4.2 how to colour the Markovian queue driven by X: namely,
we explain how to define a right-continuous increasing time-change (6°);¢[0.00) that
is the analogue of the discrete one 6. We refer to (145) in Sect. 4.2 for a formal
definition of #®. Then the cadlag process Y is defined by

Y = Xgo, t€[0,00), (12)
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and represents the load driving the analogue of the LIFO-queue (without repetitions).
As we will see in (144), Sect. 4.2, for each ¢ € [0, 00), Y; can be written as

1
Y, = —at — kBt + /BB + Y _ (L= — cjkt), (13)
Jj=1

where (B;);¢[0,00) 15 a standard linear Brownian motion starting at 0 and where the
E; are independent exponentially distributed random variables that are independent
from B and such that E[E;] = (KC.,')_I. The sum in (13), as it is, is informal: it
has to be understood in the sense of L? semimartingales (see Sect. 4.2 for a precise
explanation). The latter expression of Y can be found in Aldous & Limic [4] who
proved that the lengths of the excursions of ¥ above its running infimum (ranked in
decreasing order) are distributed as the multiplicative coalescent (Theorem 2 in [4]).
We refer to Theorem 4.2 in Sect. 4.2 for a precise statement of (12).

As it is proved in Theorem 2.6 in [17] (that is recalled in Theorem 4.7, Sect. 4.2),
there exists a continuous process (H;)se[0,00) that is an adapted functional of Y such
that for each ¢ € [0, 00),

H, = HQ[b . (14)

Here, H is a.s. a continuous process that is called the height process associated with
Y and we claim that (Y, H) is the continuous analogue of (Y", H"), as justified by
the limit theorems stated further.

As proved in [17] (and recalled in Lemma 4.8, Sect. 4.2), the excursion intervals of
‘H above 0 and the excursion intervals of ¥ above its running infimum are the same.
Moreover, Proposition 14 in Aldous & Limic [4] (recalled in Proposition 4.5, Sect. 4.2)
asserts that these excursions can be indexed in the decreasing order of their lengths.
Namely,

[t €10,00): H, > 0} = {t €[0,00): Y, > [i&f]Y} =kL>J1(lk,rk), (15)

where the sequence ¢ = I — ry, decreases. The continuous analogue of G, is derived
from (Y, H) as follows: first, for all s, ¢ € [0, 00), we define the usual tree pseudo-
metric associated with H: dy (s, t) = Hs + H; — 2 minye[sar,sve] Hu. Then, for each
t € [0, 00), we set
J; = inf Y, (16)
s€[0,1]

and given Y, let

P= Z 8(,1,,yp) be a Poisson pt. meas. on [0, oo)2 with intensity k 1jo<y<y,—j,) dt dy.

p=1
(17)
Then, we set

I= ((s,,, tl’))p>1 where s, =inf {s €[0,1,]: [nf ]Yu—Ju > y,,}, for p > 1.
= t

uels,tp
(13)
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Here II plays the role of IT,,. Fix kK > 1. One can prove that if ¢, € [, r¢], then s, €
[k, ri]. We define Gy as the set [Ig, rx] where we have identified points s, t € [Ix, 7]
such that either dpy(s,1) = O or (s,1) € {(sp,tp); p = 1 : tp € [Ix, r¢]}. It actually
yields a metric, denoted by d, on Gy; note that /; and ry are identified and we denote
by o the corresponding point in G; we denote by my the measure induced by the
Lebesgue measure on [Ii, rr]. The continuous analogue of G, is then the sequence of
pointed measured compact metric spaces

G = ((Gk, dx, 0k, mp)) . 19)

that is called the («, B, k, ¢)-continuous multiplicative graph. We refer to Sect. 2.3
(and more specifically (58)) for a more precise definition.

As already mentioned, the main goal of the paper is to prove that G is the scaling
limit of sequences of rescaled discrete graphs G, for a suitable sequence of weights
with finite support w,, = (w;.”)) j=1 that are listed in the nonincreasing order: namely,

w;-”) > w;-'fﬁl forall j > 1, and w;.”) = 0 for all sufficiently large j. Here, we first set
jni=sup{j=1:w" >0} <oo. (20)

We do not require that j,, is equal to n but we require lim,_, , j, = 00. Our main
result (Theorem 2.4 in Sect. 2.2) asserts the following:

If the Markovian processes (X", H'"), properly rescaled in time and space,
weakly converge to (X, H), then (Y, H"") converges weakly to (Y, H) with the
same scaling.

More precisely, the graphs G, , or their coding functions, are rescaled by two factors
ap and b, tending to oo; a, is a weight factor and b, is an exploration-time factor.

Namely, the rescaled processes to consider are 7 X," (or z Y;"). We now discuss

further natural constraints. First, it is natural to require a priori that b, = O(a,%

by standard results on Lévy processes. Moreover, we assume that the largest weight
"persists" in the limit, or more precisely w{” = O(ay,). In the limit, if two large
weights persist, they cannot fuse and they tend not to be connected by an edge. Namely,

if the two largest weights persist, then 1 — exp(—w\" wS” /o (w,)) — 0 and since

w!"” = w!" =< a,, itentails lim,_, o a,% /o1 (wy,) = 0. Next, since b;, is an exploration-
time factor, we require that b, < E[C,], where C,, stands for the number of clients
who are served before the arrival of Client 1 (i.e. the client corresponding to the largest
weight w!") in the w,-LIFO queue encoding G.,. Let us denote by D,, the sum of
the weights of the vertices explored before visiting Client 1. It is easy to see that
E[C,] = Y jopw!” /" + w}”) and that E[D,] = Y ;oo (w{")*/w}” + w}"”).
So, when w'” persists, we get o1 (w,,) =< a,E[C,] and 02 (w,,) =< a,E[D,]. Moreover,
in the asymptotic regime that we consider, we require that the number of visited
vertices has to be of the same order of magnitude as the sum of the corresponding
weights: namely, E[C,] < E[D,], which corresponds to the criticality assumption:
o1 (wyp) < o2(wy) that also implies a,b,, < o1(w,). These constraints amount to the
following assumptions:
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. . by, . by ) . anby

lim a, = lim — =o00, lim — =: By € [0, 00), w;” = O(a,), lim =K.
2 1

n—00 n—oo ay, n—00 g2 n—00 o7 (wy)

2n

Note it is possible to have Sy = 0. Let us present here a more precise statement of
Theorem 2.4: If (ay, by, w,) satisfies (21),

andif (£X," , “H,") —— (X, H) (22)
n " n n—o00

weakly on D([0, 00), R) x C([0, 00), R) equipped with the product of the Skorokhod
and the continuous topologies, then the joint convergence

(a X Hy s (56" V) 5o Hy) ——— (X H.(6°.Y). H) (23)
holds weakly on D([0, 00), R) x C([0, c0), R) x D([0, c0), R?) x C([0, c0), R)
equipped with the product topology.

Necessary and sufficient conditions on the (a,, b,, wy,) for (22) to hold can be
derived from previous results due to Le Gall & D. [19] (it is not direct, see Proposition

2.2). Namely, suppose that (a,, b, , wy,) satisfy (21); then (22) holds if and only if the
following conditions are satisfied

(A): #X;f: %Xl and (B): 36 €(0,00), linrgioréfP(Z‘fgna/anJ = 0)>O,

(24)
where (Z,‘f" )keN stands for a Galton—Watson branching process with offspring distribu-
tion uy, given by (5) and with initial state ZB’ " = |ay,]. Proposition 2.3 shows that for
alla € R, B € [0, 00), B0 € [0, B,k € (0,00)and ¢ suchthatzj21 ci < ooandsuch
that Grey’s condition (10) is satisfied, there indeed exists a sequence (ay,, by, Wy )neN
satisfying (21) and (24), so that (23) holds. Proposition 2.3 also shows that in (24),
(A) does not necessarily imply (B). Moreover, Proposition 2.3 also provides a more
tractable condition that implies (B) in (24) and that is satisfied in all the examples that
have been considered previously.

By soft arguments (see Lemma 2.7), the convergence (23) of the coding func-
tions implies that the rescaled sequence of graphs G, converges, as random metric
spaces. As already mentioned, the convergence holds weakly on the space G of
(pointed and measure preserving) isometry classes of pointed measured compact
metric spaces endowed with the Gromov—Hausdorff—Prokhorov distance (whose def-
inition is recalled in (53) in Sect. 2.3). Actually, the convergence holds jointly for
the connected components of G, : namely, equip G, with the weight-measure
m" =3y =1 wﬁ")S ;3 let qy, be the number of connected components of G,,,; we
index these connected components (g}f” )1<k<q,, in the decreasing order of their m"" -
measure:

m"(G\") > -+ = m"(Gg" ). (25)

For convenience, we complete this finite sequence of connected components
by point graphs with null measure to get an infinite sequence of G-valued
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rv. (G d", op" . m™)) 4~ Where & stands for the graph-metric on G, ;"
is the first vertex/client of g;’" who enters the queue and m}':" is the restriction of my,,

to gf". Then, Theorem 2.8 asserts that if (a,, b,, w,) satisfy (21) and (22), then

(G md™ o), 5rmy”)) oy —— (G, di ok my)),o,  (26)

n—00

holds weakly on GN" equipped with the product topology. Moreover, Theorem 2.8 also
asserts that in (26) we can replace the weight-measure m*» by the counting measure
# = Zlﬁjfj" 8, where j, :=sup{j > 1: w;-") > 0}, and that under the additional
assumption /j, /b, — 0, the connected components can be listed in the decreasing
order of their number of vertices:

#(G1") = = #(Gy" ). (27)

Discussion We now briefly discuss connections to other works. We refer to Sect. 2.4
for more detailed comments on related papers.

A unified and exhaustive treatment of the limit regimes: While important progress
has been made on the Gromov—Hausdorff scaling limits of the multiplicative graphs,
notably in Bhamidi, Sen & X. Wang, and Bhamidi, van der Hofstad & Sen [8,9],
previous works have distinguished two seemingly orthogonal cases depending on
whether the inhomogeneity is mild enough to be washed away in the limit as in
Addario-Berry, B. & Goldschmidt, Bhamidi, B., Sen & X. Wang and Bhamidi, Sen
& X. Wang [2,7,8], or strong enough to persist asymptotically as in Bhamidi, van
der Hofstad & Sen and Bhamidi, van der Hofstad & van Leeuwaarden [9,11]: the
so-called asymptotic (Brownian) homogeneous case and the power-law case. In these
papers the proof strategies greatly differ in these two cases. On the other hand, the
remarkable work of Aldous and Limic [4] about the weights of large critical connected
components deals with the inhomogeneity in a transparent way. We provide here such
a unified approach for the geometry, which works not only for both cases but also for
graphs which can be seen as a mixture of the two cases.

Furthermore, an easy correspondence (see (61) below) allows us to link our param-
eters («, B, k, ¢) for the limit objects to the ones parametrising all the extremal eternal
multiplicative coalescents, as identified by Aldous & Limic in [4]. We note that our
limit theorems are valid in the Gromov—-Hausdorff-Prokhorov topology, which con-
trols the distances between all pairs of points, and not just in the Gromov—Prokhorov
topology where only distances between typical points are controlled. (A general result
has already been proved by Bhamidi, van der Hofstad & Sen [9] for the Gromov—
Prokhorov topology in the special case when = 0.) In light of this, we believe our
work contains an exhaustive treatment of all the possible limits related to those mul-
tiplicative coalescents. In the mean time, we remove some technical conditions that
had been imposed on the weight sequences in some of the previous works.

Avoiding to compute the law of connected components: The connected components of
the random graphs may be described as the result of the addition of “shortcut edges”
to a tree; this picture is useful both for the discrete models and the limit metric spaces.
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The work of Bhamidi, Sen & X. Wang and Bhamidi, van der Hofstad & Sen [8,9]
yields an explicit description of the law of the random tree to which one should add
shortcuts in order to obtain connected components with the correct distribution. As in
the case of classical random graphs treated in Addario-Berry, B. & Goldschmidt [2],
this law involves a change of measure from one of the “classical” random trees, whose
behaviour is in general difficult to control asymptotically. Our connected components
are described as the metric induced on a subset of a Galton—Watson tree; the bias of
the law of the underlying tree is somewhat transparently handled by the procedure that
extracts the relevant subset.

More general models of random graphs. While we focus on the model of the multi-
plicative graphs, the theorems of Janson [28] on asymptotically equivalent models (see
Sect. 2.4) and the expected universality of the limits confers on the results obtained here
potential implications that go beyond the realm of this specific model: for instance,
random graphs constructed by the celebrated configuration model where the sequence
of degrees has asymptotic properties similar to the weight sequence of the present
paper are believed to exhibit similar scaling limits; see Section 3.1 in [9] for a related
discussion.

Upcoming work. The current version of the limit theorems consider the sequences
of connected components in the product topology. The embedding of the graphs in a
forest of Galton—Watson trees actually also yields a control on the tail of the sequence,
which would allow to strengthen the convergence to ¢”-like spaces as in [2] or [8];
this will be pursued somewhere else.

Organisation of the paper In Sect. 2, after introducing some necessary notation, we
give the precise statements of the main results of the paper, compare them with previous
results, as well as lay out a plan for the subsequent proof. Sections 3—8 constitute the
main body of the proof. In the appendix, we collect some results used in the proof on
Laplace transforms, Skorokhod’s topology, Lévy processes and branching processes.
Although most of these results are standard, we either did not find an exact reference
or we have adapted the existing version to our need here.

2 Main results

Notation Throughout the paper, N stands for the set of nonnegative integers and
N* = N\{0}. A sequence of weights refers to an element of the set £5, = {(wj)jzl €

[0, 00)Y" 1 w; > wjyi}. Forall r € (0,00) and all w = (w))j>1 € €5, we
set o, (w) = Y =1 w; € [0, oo]. The following subsets of 2%, will be of particular
interest to us.

6 ={we s op(w) <o), and £;={wels:3jo=1:wj =0}

We often abbreviate X = (X;);>0 for a process. Occasionally, we write X () for
X if the notation for the time parameter becomes too heavy to stand as subscript.
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2.1 Convergence results for the Markovian queue

We fix a sequence w,, € 6}, and two sequences a,, b, € (0, co) that satisfy the a priori
assumptions (21). As already mentioned the convergence of the graphs G, is obtained
thanks to the convergence of rescaled versions of Y and H"" and the convergence of
these two processes is also obtained by the convergence of the Markovian processes
into which they are embedded: namely, the asymptotic regimes of (Y7, H"") and of
(X", H"n) should be the same. The purpose of this section is to state weak limit-
theorems for X" and H"". Many results of this section rely on standard limit-theorems
on random walks, on results due to Grimvall in [24] on branching processes and on
results due to Le Gall & D. in [19] on the height processes of Galton—Watson trees.
However, the specific form of the jumps and of the offspring distribution of the trees
actually requires a careful analysis done in Sect. 7.

We recall the definition of X" in (6); recall that the Markovian queueing system
induced by X" yields a tree that is an i.i.d. sequence of Galton—Watson trees with
offspring distribution w,,, whose definition is given by (5). Denote by (Z,‘f”)keN a
Galton—Watson branching process with offspring distribution p,,, and with initial
state Z," = |an|. The following proposition is mainly based on Theorem 3.4 in
Grimvall [24] p.1040, that proves weak convergence for Galton—Watson processes to
continuous-state branching processes (CSBP for short). Grimvall’s approach relies
on the close relationship between the CSBP and Lévy processes. Indeed, according to
Lamperti [30], a (conservative) CSBP, which is a [0, oo)-valued Markov process, can
always be represented as a time-changed spectrally positive Lévy process. Thus, the
law of the CSBP is completely characterised by the Lévy process, and thus also by its
Laplace exponent. This Laplace exponent is usually called the branching mechanism of
the CSBP. We refer to Bingham [12] for more details on CSBP (and see Appendix B.2.2
for a very brief account). We denote by D([0, 00), R) the space of cadlag functions
from [0, oo) to R equipped with Skorokhod’s topology and by C([0, co), R) the space
of continuous functions from [0, co) to R, equipped with the topology of uniform
convergence on all compact subsets. Recall the above definitions of X" and Z"".

Proposition 2.1 Let ay, by € (0, 00) andw, € €4, n € N, satisfy (21). Let (X1)1e[0,00)
and (Z;)te[0,00) be two cadlag processes such that Xo = 0 and Zo = 1. Then, the
Jfollowing holds true.

(1) The following convergences are equivalent:

(i-a) There exists t € (0, 00) such that LX‘,;V:I — X; weakly on R;

An

(D) (X} )reto.00) —> (Xr)iel0.00) Weakly on D([0, 00), R);

G-0) (G- Z\h 1 an)rel0,00) — (Z0ielo,00) weakly on D([0, 00), R).

If any of the three convergences in (i) holds true, then X is a spectrally Lévy
process and Z a conservative CSBP; moreover there exist @ € R, B € [Bo, 00),
k € (0,00) and ¢ = (¢j)j>1 € Z; such that the branching mechanism of Z and
the Laplace exponent of X are equal to the same function  given by

Y =ar+ A7+ D kej(e* =1+ iej) . A €0, 00). (28)
j=1

@ Springer



878 N. Broutin et al.

02(Wn)

(ii)) Foralln € N, we set o, = 1 — o1 )

three conditions:

Then, (i) is equivalent to the following

by o3(wy)

CL) : bay,/ay — a  (C2): —> B+ xo3(c),

a2 oy(u,) e
(29)
w'™
(C3): foreachj e N*, —L— —— ¢;. (30)
n n—o0
(iii) Forall » € [0, 00), we set
Yy ) =@+ Y il (e —1 4 2w™) 31)
Wn  Wn o1 (wp) ' J ’
I<j<n

Any of the convergences of (i) is equivalent to (C1) and the following limit for all
A € (0, 00):
bur, Ofan) —— Y (), (32)

@iv) Forall , € [0, 00), sem//’l()») = inf{r € [0, 00) : ¥ (r) > A}, w‘;n] (A) = inf{r €
[0,00) : Yy, (r) > A}, 0 = v~ 10) and Ow, = w;ﬂl (0) that are the largest roots
of the convex functions W and v, . Then, for all 1 € [0, 00),

im_any, [ /b)) = ) (33)

In particular, lim,,_, o a,0w, = 0.

(V) Foralla € R, B € [0,00),k € (0,00) ande = (¢j)j>1 € 2;, there are sequences
a,, b, € (0,00), w, € E}, n € N, satisfying (21) with By € [0, 8], (C1), (C2),
(C3) and \/jn /by — 0 where we recall that j, = max{j > 1 : wj-”) > 0}.

Proof See Sect. 7 (and more specifically Sect. 7.2). As already mentioned, Proposition
2.1 (i) strongly relies on Theorem 3.4 in Grimvall [24] p. 1040. However, the proof
of (i7) and (v) requires arguments tailored to our case where v takes the particular
form (28). O

Remark 2.1 We will see in Theorem 2.8 that the condition +/j, /b, — 0 ensures that
the same scaling limit holds even if we rank the connected components with respect
to the number of vertices. O

Recall the definition of H" in (6), the height process associated with X" . Note
here that we also deal with supercritical cases.

Proposition 2.2 Leta € R, B € [0, 00), k € (0,00) and ¢ = (¢j) j>1 € €3¢. Let Y in

(9) satisfy (10).
Let X be a spectrally positive Lévy process with Laplace exponent . Let H be its
height process as defined in (11). Let a,, b, € (0, 00), w, € E}, n € N, satisfy (21)
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with By € [0, B], (C1), (C2) and (C3). We also assume

(C4): 36 € (0, 00), linlgio%fP(Z‘[V,;’n(;/anJ = O) >0. (34)
Then,
(Gl X reto.000: (G By reio o)) ——> (X, H) (35)

weakly on D([0, 00), R) x C([0, 00), R) equipped with the product topology. Fur-
thermore, for all t € [0, 00),

© da
lim P(Z‘[V[;’nl/[an =0) = e D where / t. (36)

S vy YO

Proof See Sect. 7 (and more specifically Sect. 7.2). Proposition 2.2 strongly relies on
Theorem 2.3.1 in Le Gall & D. [19]. However, its proof requires more care than one
might expect because H"" is not exactly the height process as defined in [19] (it is
actually a time-changed version of the so-called contour process as in Theorem 2.4.1
[19] p. 68). O

The following proposition provides a practical criterion to check (C4). In particular,
it shows that (C4) is always true when Bo > 0. It also shows that Proposition 2.2 is
never void. Recall that j, = max{j > 1 : w” > 0}.

Proposition 2.3 Leta € R, B € [0, 00), k € (0, 00) and ¢ = (¢j) j>1 € Z;. Let  in
(9) satisfy (10). The following statements hold true.

(i) Let ay, b, € (0,00), w, € E;, n € N, satisfy (21), (C1), (C2) and (C3). Denote
by r,, the Laplace exponent of(%XZ:’t)te[o,oo): namely, for all A € [0, 00),

(n)

V() = lﬁ(l B cfz(Wn))}L n a,by, w; (e—xw;n)/an 1t aw™/a )
n an o1(wy) o1 (wy) = an Jj n

(37
Then, (C4) holds true if

. . - dA
lim lim sup =0. (38)
Y70 n—soo Jy Y (A)

In particular, if Bo > 0in (21), then (38) is always satisfied and (C4) holds true.
(ii) There are sequences ay,, b,, € (0, 00), w, € E;, n € N, satisfying (21) with o = 0,
Jn/bn — 0, (C1), (C2) and (C3) but not (C4).
(iii) There are sequences ay, b, € (0, 00), w, € E}, n € N, satisfying (21) with any

Bo € 10, B, V/jn/bn — 0, (C1), (C2), (C3) and (C4).

Proof See Sects. 7.3.1, 7.3.2 and 7.3.3. O
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2.2 Convergence of the processes encoding the multiplicative graphs

Let us recall that we generate surplus edges with the help of the sequence of points
II,,, as introduced in (18). To deal with limits of (IIy, ), it is convenient to embed
([0, 00)?)? into (R%H)N by extending any sequence ((s;, #;))1<i<p € ([0, 00)%)? by
setting (s;, t;) = (—1, —1),foralli > p.Here, (—1, —1) plays therole of an unspecific
cemetery point. We equip (R%)N" with the product topology. Recall the definition of
Y in (13) and that of H in (14). Recall the notation of IT in (18), (Y, H"") in (2), as
well as IT;, in (4). Then, the main theorem of the paper is the following:

Theorem2.4 Leta € R, B € [0,00), k € (0,00) and e = (cj)j>1 € E;. Let v in (9)
satisfy (10). Let ay,, b,, € (0, 00), and w, € E;, n € N, satisfy (21), (C1) — (C4) as
specified in (29), (30) and (34). Then, the joint convergence

(1 yun an g v I—Hwn) N (Y,'H, 1'[) 39)

an T by by by by s 00

holds weakly on D([0, 00), R) x C([0, 00), R) x (RQ)N* equipped with the product
topology.

Proof See Sect. 5.1. Let us mention that we actually prove a joint convergence of all
the involved processes such as X", HY», " . to their continuous counterparts. CI

Theorem 2.4 implies the convergence of the coding processes of the connected
components of G, , because each connected component of G, is encoded by an
excursion above 0 of H"" and the corresponding pinching points. More precisely,
denote by (1", r"), 1 < k < @y,, the excursion intervals of 1" above 0, that
are exactly the excursion intervals of Y above its running infimum process J;"" =

infyeqo.0) Yy Namely,

U " ={rel0.00): 1" >0} ={t €[0.00) : ¥;" > J;"} . (40)
1<k=<quw,
Here the indexation is such that ¢ > ¢, where we have set ¢ = r" — [;"
if ;" = ¢, then we agree on the convention that [;" < [;".); the excursions
k k+1 g k k+1
processes are then defined as

H" (1) =H Vke{l,...,qu,}. Vi €0, 00). 41)

Wn

A A
We next define the sequences of pinching points of the excursions: to that end, recall
the definition of Iy, = ((sp.1p)),,p. in (4); I, is the sequence of pinching
times of G, ; observe that if 1, € [, r"], then s, € [[;", r;""]; then, it allows to
define the following for all k € {1, ..., qy,}:

Wn _ ((k Lk k .
" = ((s, tp))lgpgpf where (1)) <, <pun increases and where

k
P’

the (" + 55, ;" + t;‘,)’s are exactly the terms (s, t,7) of IL, such that ¢, € [[", r;"].

(42)
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As already specified, we trivially extend each finite sequence IT}" as arandom element
of (R)N", We pass to the limit for rescaled versions of (6 T HEITD | 14 ))1<k<an
Since ¢, tends to oo, it is convenient to extend this sequence by taklng H" as the
null function, [;" = r" = 0 and IT}" as the sequence constant to (—1, —1) for all
k > qu,.-

Similarly, recall the definition of the excursion intervals of H above 0 in (15):
Ugs1 Uk, r) = {t € [0, 00) : H; > 0}, where indexation is chosen in such a way that
the Eequence Cr = rr — I, k > 1, decreases. We define the excursion processes Hy,
k> 1, by

Hi (1) = H+nir (43)
for ¢t € [0, 00). The pinching times are defined as follows: in (17) and (18) recall
the definition of IT = ((s,,, tp))pzl' If t,, € [l, r¢], then note that s, € [I, ], by
definition of s,. For all k > 1, we set

I = ((s )1<p<Pk where (t1’§)1<p<pk increases and where

the (I + sk I + tk) s are exactly the terms (s, t,/) of Il such that ¢,y € [Ig, r¢].

(44)

p’

Then the following theorem holds true.

Theorem 2.5 Under the same assumptions as in Theorem 2.4, the convergence

(( H (bnt))ref0,00)» bn lk ) b e bl HW”))kZI T ((Hk’lkyrk’nk))kzl

(45)
holds weakly on ((C([0, 00), R) x [0, 00)2 x (RHONYN" equipped with the product
topology.

Proof See Sect. 5.2. O
2.3 Convergence of the multiplicative graphs
We recall here a generic procedure described in [17] which allows us to extract the w-

graph G, from the coding processes (Y, H", I1,,) and the continuous multiplicative
graph from (Y, H, IT). We begin with the encoding of trees by real-valued functions.

Encoding trees Let /2 : [0, c0) — [0, 00) be a cadlag function such that
¢n = sup{t € [0,00) : h(t) > 0} < 00 . (46)
We further assume that one of the following conditions is satisfied:
either (a) h takes finitely many values or (b) £ is continuous. @7

Note that the (discrete) height process H" as defined in (2) verifies Condition (a),
while in the continuous setting, the process H defined in (14) verifies Condition (b),
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as asserted by Theorem 4.7 below. For all s, ¢ € [0, &), we set

bu(s,t) = inf k() and  dp(s,t) = h(s) + h(t) — 2bu(s, 1).  (48)

re[sat,svt]

We readily check that dj, satisfies the four-point inequality: for all 51, s2, 53, 54 belong-
ing to [0, ), dn(s1,52) + di(s3,54) < (dn(s1,83) + dp(s2.54)) vV (dn(s1, s4) +
dp(s2, 53)). It follows that dj, is a pseudometric on [0, ¢;,). We denote by s ~, t the
equivalence relation dp, (s, t) = 0 and we set

T, =10, ¢)/ ~n . (49)

Then, dj, induces a true metric on the quotient set 7}, that we keep denoting by dj, and
we denote by py, : [0, ¢,) — Ty, the canonical projection. Note that if & is continuous,
then pj, is a continuous map. It follows that in that case the metric space T}, is a compact
real tree, namely a compact metric space where any pair of points is joined by a unique
injective path that turns out to be a geodesic (see Evans [23] for more references on
this topic). If, on the other hand, / satisfies Condition (a) in (47), then T}, is compact
but not connected. It is still tree-like, as dj, satisfies the four-point inequality.

We will also need some additional features of the metric space (7}, dj,), which are
defined as follows: a distinguished point p, = pj, (0), called the root of Tj,, and the mass
measure mj,, which satisfies that for any Borel measurable function f : 7, — [0, 00),

we have fTh f(o)my(do) = f[o,;h] f(pr())dt.

Pinched metric spaces Let (E, d) be a metric space and let IT = ((x;, yi))1<i<p
where the elements (x;, y;) € E2 1 <i< p, are referred to as pinching points.
Let ¢ € [0, 00), that is interpreted as the length of the edges that are added to E (if
& = 0, then each x; is identified with y;). Set A = {(x,y) : x,y € E} and for all
e = (x,y) € Ag,sete = x and e = y. A path y joining x to y is a sequence of
er,...,eq € Apsuchthate; = x,¢;, = yand ¢; :gH_l,forall 1 <i < g.Forall
e = (x,y) € Ag, we then define its length by [ = & A d(x;, y;) if (x, y) or (¥, x)
is equal to some (x;, y;) € IT; otherwise we set [ = d(x, y). The length of a path
y =(e1,...,eg)is givenby l.(y) = Zlgisq lji, and we setforall x, y € E:

dne(x, y) =inf {l,(y) : y is a path joining x to y} . (50)

We set Anr = {(x4, yi), (3i, xi); 1 <i < p} and we easily check that

dye(x,y) =d(x,y) /\min{ls(V) 1y = (e, e(/), S €1, e;_l, er),
a path joining x to y such that ¢(), ...e._; € A andr < p}.  (51)

Clearly, dn1  is a pseudo-metric and we denote the equivalence relation dy . (x, y) =
0 by x =n y; the (I, )-pinched metric space associated with (E, d) is then the
quotient space E/ =mq . equipped with dp . First note that if (E, d) is compact or
connected, so is the associated (I1, ¢)-pinched metric space since the canonical pro-
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jection wne : E — E/ =n. is 1-Lipschitz. Of course when ¢ > 0, dnp . on E is a
true metric, E = E/ =n ¢ and @y . is the identity map on E.

Encoding pinched trees Let /1 : [0, c0) — [0, 00) be a cadlag function that satisfies
(46) and (47); let IT = ((si, #;))1<i<p Where 0 < s; < 1; < ¢, forall 1 <i < p
and let ¢ € [0, 00). Then, the compact measured metric space encoded by h and the
pinching setup (I, ¢) is the (I1, &)-pinched metric space associated with (7}, dj,) and
the pinching points IT = ((px(si), pr(ti)))1<i<p, Where py, : [0, &) — T}, stands for
the canonical projection. We shall denote by pj 1, the composition of the canonical
projections w0 pp : [0, &p) = Gpom,e;thenop e = prom,e(0) and my, 11 ¢ stands
for the pushforward measure of the Lebesgue on [0, &) via pj .. We shall use the
notation

G(hv Hv 8) = (Gh,n,&‘v dh,l_[,é‘a Qh,n,&‘s mh,l‘[,s)- (52)

Convergence of metric spaces Let (G, d;, p1,m1) and (G2, da, p2, m2) be two
pointed compact measured metric spaces. The pointed Gromov-Hausdorff-Prokhorov
distance of G| and G, is then defined by

Soup(G1, G) = inf {df™(¢1(G 1), ¢2(G2))

+d(@1(p1). $2(02) + dEN(my o ¢y mao g3) ] (53)

Here, the infimum is taken over all Polish spaces (E, dg) and all isometric embeddings
¢; : Gi — E,i € {1,2}; dgaus stands for the Hausdorff distance on the space of
compact subsets of E, dg“’k stands for the Prokhorov distance on the space of finite
Borel measures on E and for all i € {1,2}, m; o ¢; ! stands for the pushforward
measure of m; via ¢;.

We recall Theorem 2.5 in Abraham, Delmas & Hoscheit [1] which asserts the
following: §gup is symmetric and it satisfies the triangle inequality; §gap (G 1, G2) = 0
if and only if G and G, are isometric, namely if and only if there exists a bijective
isometry ¢ : G| — G7 such that ¢(p1) = p2 and that mr, = mj o ¢>‘1. Denote by G
the isometry classes of pointed compact measured metric spaces. Then, we recall the
following result:

Theorem 2.6 (Theorem 2.5 in [1]) (G, dgup) is a complete and separable metric
space.

Actually in our paper, weak-limits are proved for coding functions, which entail gyp-
limits as asserted by the following lemma:
Lemma2.7 Leth, h' : [0, c0) — [0, 00) be two cadlag functions such that &y, and
are finite and that (47) is satisfied. Let TT = ((s;, t;))1<i<p and I1" = ((s], t)))1<i<p be
two sequences such that 0 < s; < t; < {pand 0 < s] <t/ < ¢y, and let § € (0, 00)
be such that

lsi —s;| <& and |t; —1/| <38, iefl,...,p}. (54)

Let ¢,¢' € [0,00). Recall the pointed compact measured metric spaces G =
G(h,I1,¢) and G := G(W, 11, ') in (52). Then,

86up(G, G) < 6(p + D (Ilh — h'lloc + @5 (h)) +3p(e vV &)+ |¢h — Ll . (55)
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where ws(h) = max {|h(s) — h(t)| : s,t € [0,00) : |s —t| < 8} and where |||
stands for the uniform norm on [0, 00).

Proof See Appendix C. The proof is partly adapted from Theorem 2.1 in Le Gall &
D. [20], Proposition 2.4 Abraham, Delmas & Hoscheit [1] and Lemma 21 in Addario-
Berry, Goldschmidt & B. in [2]. O

Limit theorems for multiplicative graphs Recall the definition of the w,, -multiplicative
graph G, in (1). We equip its vertex set with a measure m,,, = Zli i<in wj.") ;.
Recall, as in (40), [[;"™, rZ’”), 1 < k < qy, are the excursion intervals above 0 of
H"n; similarly, HZ"(-) are the excursion intervals of H"». Recall as well the sets of

Wn

pinching times IT;". We recall that each excursion H;" () corresponds to a connected

component G;" of G, and we have my,, (G;") = ¢ = r;” — ;. Thus, we get

m" (g‘{"n) > > m" (g‘(,]\]‘,’én ). (56)
Then, QZV" is the pinched (measured pointed) metric space encoded by (H‘,':” , l'I‘,’:"). So
G, ", 1) is isometric to (G}",d", o", m;") , (57)

and thus, these objects define the same random element in the space G of the isometry
classes of pointed compact measured metric spaces equipped with the Gromov-
Hausdorff-Prokhorov distance dgygp defined in (53). Here, we have denoted the
graph-distance by d,‘f”, the first vertex explored via the LIFO coding by QZ’" and

m;" stands for the restriction to G;" of the weight measure m,,, . Since gy, tends to

00, it is convenient to extend the sequence (g}f”)lsk <q,, DYy taking g;’" equal to the
point space equipped with the null measure for all k > qy, .

Similarly, recall the excursion intervals (/x, rx) and the corresponding excursions
Hr(+),k > 1,0f H, as well as the set of pinching times I in (44). Recall the continuous
(o, B, ¢, k)-multiplicative graph G = ((Gg, dk, 0k, mg))k>1 as seenin (19), where for
all k > 1, Gy is the pinched (measured pointed) metric space encoded by (Hy, g, 0),
namely,

Gy = G(H, I, 0) . (58)
Then, Theorem 2.5 and Lemma 2.7 entail the following theorem:

Theorem 2.8 Under the same assumptions as in Theorem 2.4, the convergence

((g‘lfn’ %d}:”,g}f”, ﬁmycv"))kzl m ((Gk’dk’gk’mk))kzl (59)

holds weakly on e equipped with the product topology. Denote the counting measure
on gZVn by ,L‘l’:" => jegun 8. Then, the convergence

((gy" Z%idZ””’@Z””’ ﬁ/‘“}f"))kzl — ((Gk’dk’gk’mk))kzl (60)

n—oo

holds weakly on el equipped with the product topology.
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Recall the notation j, = max{j > 1 : u);") > 0}. If we furthermore assume

that \/ju/b, — 0, then (60) holds when the connected components are listed in

. . . Wn Wn
thﬁndec;;fasmg order of their numbers of vertices, namely, when | (g 1 ) > .. >
”’l]wn (gqu;n )

Proof See Sect. 5.3. O

Remark 2.2 The assumption v/j, /b, — 0 may notbe optimal for (60) to hold when the
connected components are listed in the decreasing order of their numbers of vertices.
However, foralla € R, 8 € [0, 00),k € (0,00)and¢ = (¢;)j>1 € E; satisfying (10),
this statement is never void since the examples of (a,,, b,,, w,,) provided in Proposition
2.3 (iii) satisfy «/j,/b, — 0. Moreover, let us mention that all the cases that have
been considered previously by other authors satisfy this assumption, as it is pointed
out in the Sect. 2.4. O

Remark 2.3 Theorem 2.8 holds true under the assumption ¥ > 0. When « = 0, the
processes encoding the graphs may converge as in (39) for a wider class of branching
mechanisms (see Theorem 7.1). In these cases, however, it turns out that the compo-
nents that are explored are the exceptionally small ones and they are all trees. O

2.4 Connections with previous results

Entrance boundary of the multiplicative coalescent The model of w-multiplicative
random graphs appears in the work of Aldous [3] as an extension of Erdés—Rényi
random graphs that have close connections with multiplicative coalescent processes.
Relying upon this connection, Aldous and Limic determine in [4] the extremal eternal
versions of the multiplicative coalescent in terms of the excursion lengths of Lévy-
type processes Y (up to rescaling, as explained below); to that end, they consider in
Proposition 7 [4] asymptotics of the masses of the connected components of sequences
of multiplicative random graphs. The asymptotic regime in Proposition 7 [4] is very
close to Assumptions (21) and (C1) — (C3) in our Theorem 2.8.

Let us briefly recall Proposition 7 in [4] since it is used in the proof of Theorem
2.8. Aldous & Limic fix a sequence of weights x,, € Z}, n € N, and their notation for
multiplicative graphs is the following: let (&; ;) j~i>1 be an array of independent and
exponentially distributed r.v. with unit mean; let N(x,) = max{j > 1 : )cj(-"> > 0};
then for all ¢ € [0, 00), Aldous & Limic consider the random graph G, (g) whose set
of vertices is 7 (G,(q)) = {1, ..., N(x,)} and whose set of edges &(G,(q)) is such
that{i, j} € £(G,(¢))ifandonlyif&; ; < gx" x|"; the multiplicative graph G, (¢) is
equipped with the measure m,, = ijl x_;")éj;let 0 q) > > (X q) = -
stand for the (eventually null) sequence of the m,,-masses of the connected components
of G,(gq). Then, it is easy to check that X, : ¢ — (& (x4, g))k>1 is a multiplicative
coalescent process with finite support. Aldous & Limic describe the limit of the pro-
cesses X, in terms of the excursion-lengths of a process (WyAL' AL ALY 1 o) whose
law is characterized by three parameters: ka1, € [0, 00), 7oL € R and caL € £§ ;
this process is connected to the («, B, «, ¢)-process Y defined in (13) as follows: for
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s € [0, 00),
_ o
WAL TIALCAL — ¥ where kAL = E, AL = — and caL =c. (61)
K K

Proposition 7 [4] assumes that

im &’1)3 = kAL + 03(caL), for j € N¥,
n—00 (02 (%))
x\
— =c?" and  lim 0y(x,) =0, (62)
n—o00 09 (xy) n— 00

and asserts that for all tar, € R, X, (az(x,,)’1 —7aAL) = (&k)k>1, weakly in €2¢ , where
(&k)k>1 are the excursion-lengths of W*AL-—TAL-CAL ahove its running infimum, listed
in the decreasing order.

The assumptions in (62) are close to (C2) and (C3). More precisely, let («, 8, «, ¢)
be connected with xar, Tar and car as in (61); let a,, b, € (0,00) and w,, € Z}

satisfy (21) and (C1) — (C3); then, set

(n) 2

w; b oo (w,

Vj € N¥, x/(-”) =—' and AL = 5 I (1 _ o ")) — = TAL.
by =02 (W) o1(wy)/ n—oo K

Recall that G, is the w,,-multiplicative graph in (1). Recall that my,, = ) =1 wf-”)zs j

and g}j" ,k > 1, stand for the connected components of G, listed in the nonincreasing

order of their my,, -mass. Then, it is easy to check that

(lﬂ)v) n

_ - (law) K
Gn(UZ(Xn) l_'L'XL) = gw,, and {k(xn, 02(x,) I—TAL) o

my, (G}") =: kg
bﬂ

(63)
Note that the ¢;' are the excursion-lengths of (% Y,;': ")te[0,00) above its running infi-
mum. Recall the definition of Y (resp. of Y) in (2) (resp. in (13)). Since 7, — o/«
and since multiplicative coalescent processes have no fixed time-discontinuity, Propo-
sition 7 in [4] immediately entails the following proposition that is used in Sect. 5.2

to prove Theorems 2.5 and 2.8:

Proposition 2.9 (Proposition 7 [4]) Let a,, b, € (0,00) and w, € Z} satisfy (21)
and (C1)—(C3), witha € R, B € [0,00), k € (0,00) and ¢ € £3¢. Let (;’,f)lfquw
(resp. ($k)k=1) be the excursion-lengths of(aln Y}an)té[om) (resp. of Y ) above its run-
ning infimum. Then,
weakly in ¢}
(Cf)1<k<qw —— (k1. (64)
=" ="wn n— 00

Limits of Erdds—Rényi graphs in the critical window The first result proving metric
convergence in a strong Hausdorff sense of rescaled Erd6s—Rényi graphs and their
inhomogeneous extensions is due to Addario-Berry, Goldschmidt & B. in [2]. In this
paper, the authors study the scaling limits of the largest components of Erd6s—Rényi
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random graph G(n, p,) in the critical window p, = n~l —an=43, with ¢ € R,
which corresponds to the graph G, where w(/.’” =1j<nyn log(ﬁ), j > 1. Taking,
a, = n'/3 and b, = n?3, we immediately see that a,,, b, and w,, satisfy (21) with
k = Bo = 1, (C1), (C2), (C3) and /jn/bn = n~1/6 — 0, with the parameters
o € R, = 1and ¢ = 0. Namely, the branching mechanism is /(1) = a + 112
Since By > 0, Proposition 2.3 (i) implies that (C4) is automatically satisfied and
Theorem 2.8 applies: in this case, Theorem 2.8 is a weaker version of Theorem 2 in
Addario-Berry, Goldschmidt & B. [2], p. 369: the result in [2] actually provides precise
estimates on the size of metric components. Let us mention that [2] also contains tail-
estimates on the diameters of the small components. Such estimates seem difficult to
obtain in the case of general w;,.

Multiplicative graphs in the same basin of attraction as Erdés—Rényi graphs
Bhamidi, van der Hofstad & van Leeuwaarden in [10] prove the scaling limit of the
component sizes (number of vertices) for examples of multiplicative graphs which
behave asymptotically like the Erd6s—Rényi graphs. Bhamidi, Sen & X. Wang in [8]
and Bhamidi, Sen, X. Wang & B. in [7] investigate instead the scaling limits of these
graphs seen as measured metric spaces. The conditions under which these authors
prove their limit theorems slightly differ. We give here a detailed account of these
conditions so as to make a connection with our results. In all the cases covered by
[7.8,10], the scalings appear to be a,, = n'/3, b, = n*/3 and w,, is a sequence of length
n having the following asymptotic behaviour:

(n)

1

—5 — 0. 3o, o' € (0,00) : 0i(wp) = no +o(n*?), i € {1,2} and o3(w,)
n

=no’ +o(n). (65)
For all ¢ € R, set

(o) = (1 —an™ 3wy = (1 —an™H)wl) ., .

This is a situation covered by Theorem 2.8. Indeed, (65) easily implies that
an, by, wy () satisfy (21), (C1), (C2), (C3), /Ju/bn = n=16 — 0, with the parame-
tersa € R, 80 = 1,8 =0'/o,k = 1/0 and ¢ = 0. Thus, the branching mechanism is
Y(A) =ar+ %%/Az. Since By = 1, Proposition 2.3 (i) implies (C4). Then, Theorem
2.8 applies in this setting, which allows us to extend

— Theorem 1.1 in [10], which has been proved under the supplementary assumption
(Assumption (b) there) that there exists ar.v. W : Q@ — [0, oo) such that

1 Zl{w[m)y} — P(W <x) forallx >0, and o = E[W] = E[W?],¢' = E[W3].
i

— Theorem 3.3 in Bhamidi, Sen & X. Wang in [8] that has been proved by quite
different methods and under two additional technical assumptions (Assumptions
3.1 (c) and (d)).
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Turova in [36] also proved a result similar to Theorem 1.1 of [10] for i.i.d. random
weight sequences. Let us mention that the convergence under the sole assumptions
(65), that we proved, has been conjectured by Bhamidi, Sen and X. Wang in [8],
Section 5, part (c).

Gromov-Prokhorov convergence of multiplicative graphs without Brownian
component In light of the above mentioned result of Aldous & Limic [4] on the
convergence of the component masses of the multiplicative graph in the asymptotic
regime (62), it is natural to expect that the graph itself should also converge in some
sense. The first affirmation in this direction is due to Bhamidi, van der Hofstad and
Sen who prove the following in [9]: Denote by %; (¢) the i-largest (in m,-mass) con-
nected component of G, (q), that is, m, (%;(¢)) = ¢ (X, q). Equip each component
G (—tAL + 00 (x,l)’l) with its graph distance rescaled by 02 (x,) and with the mass
measure m,, they prove that under (62) with ka1, = 0, the collection of rescaled
metric spaces converge in the sense of Gromov—Prokhorov topology to a collection
of measured metric spaces, which are not necessarily compact. They also give an
explicit construction of the limit spaces based upon a model of continuum random
tree called ICRT. The Gromov—Prokhorov convergence is equivalent to the conver-
gence of mutual distance of an i.i.d. sequence with law m,,, which is weaker than the
Gromov—Hausdorff—Prokhorov that we obtain in Theorem 2.8 under the compactness
assumption | *dAr/y¥ (L) < oo. Our approach via coding processes is quite distinct
from that of Bhamidi, van der Hofstad & Sen in [9].

Power-law cases We extend the power-law cases investigated in Bhamidi, van der
Hofstad & van Leeuwaarden [11] and Bhamidi, van der Hofstad & Sen [9]. Let W :
Q — [0, 00) be ar.v. such that

r=E[W]=E[W?] <00 and P(W > x) =x"L(x), (66)

where p € (2, 3) (in the notation of [9], 7 = p + 1 € (3,4)) and where L is slowly
varying at co. We then set for all y € [0, 00),

G(y) =sup{x €[0,00) : P(W > x) > 1 A y}. (67)

Note that G(y) = 0 forall y € [1, co) and that G(y) = y~'/? £(y), where £ is slowly
varying at 0. We assume that for each n € N* we have

P(W=G(/n)=0. (68)
Letx, g € (0, o0) and let a,,, b, w, be such that

an ~ q7'GUm, Viz1 w! =G/, ba ~ Kko1(a)/a . (69)

—00

Then, the following lemma holds true.
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Lemma 2.10 We keep the notation from above and we assume (68). Then a, ~
1
q_lnﬁﬁ(l/n), b, ~ qk nl_%/ﬁ(l/n) and ay, b, and wy satisfy (21) with Bo = 0
1 1
and \/jn/bn ~ %nﬁ_f — 0. Next, for all integers j > 1 and for all @ € R, set

1
n — 1
wi @) = (1= —an)wf", where ao = 2icq” /O Y dy+55 ). (70)

and where {-} stands for the fractional part function. Then, a,,, by, w, (o) satisfy (21),
(C1)—(C4) and \/j, /b, — 0O, with the parameters a € R, k € (0,00), B = o =0
1

andcj=q j 7, forall j > 1.
Proof See Sect. 8. O

Lemma 2.10 implies that Theorem 2.8 applies to a,, b,, and w,, () as defined above.
This extends Theorem 1.1 in Bhamidi, van der Hofstad & van Leeuwaarden [11] that
proves the convergence of the component sizes under the more restrictive assumption
that L(x) = xPP(W > x) — cp € (0,00) as x — o0 (see (1.6) in [11]) as well as
Theorem 1.2 in Bhamidi, van der Hofstad & Sen [9] (Section 1.1.3) that asserts the
convergence of the components as measured metric spaces under the supplementary
assumptions that P(W € dx) = f(x)dx, where f is a continuous function whose
support is of the form [e, oo) with ¢ > 0, and such that x € [g, 00) — xf(x) is
nonincreasing (see Assumption 1.1 in [9], Section 1.1.3). Again, the proofs in [11]
and in [9] are quite different from ours.

Let us also mention that a solution to the Conjecture 1.3 on fractal dimensions of
the components of G right after Theorem 1.2 in [9] is given in the companion paper
[17], Proposition 2.7.

General inhomogeneous ErdGs—Rényi graphs that are close to be multiplicative In
[28], Janson investigates strong asymptotic equivalence of general inhomogeneous
Erd6s—Rényi graphs that are defined as follows: denote by P the set of arrays p =
(pi,j) j>i=1 of realnumbersin [0, 1] such that N, = sup{j > 2: Zl§i<j pi,j >0} <
oo; the p-inhomogeneous Erd6s—Rényi graph G (p) is the random graph whose set of
vertices is {1, ..., N(p)} and whose random set of edges & (G(p)) is such that the
r.v. (L jye& (G (p)))1<i<j<N(p) are independent and such that P({i, j} € &E(G(p)) =
pi,j- The asymptotic equivalence is measured through the following function p that
is defined for all p,q € [0, 11, by p(p,q) = (VP — VO)* + VT—p — JT— )%
More precisely, let p,, q, € P, n € N; then Theorem 2.2 in Janson [28] implies that
there are couplings of G (p,) and G(q,) such that lim,— .o P(G(pn) # G(q,)) =0
if and only if

lim Y p(p.qi) =0. (71)

j>iz1

We then apply this result as follows: let a,,, b, € (0, c0) and w,, € Z;, n € N, satisfy
the assumptions of Theorem 2.8. For j > i > 1, we set '
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(n)

(n) (1) 4q;
w;"w; & =1, if p/) >0
P = —— and u" ={ 0 Pii = (72)
O—l(Wn) 0, lfp(n? =0.

First note that max ;~;>1 P,,— = O((w'" /ay)?a,/b,) — 0by (21); next, as proved in

Janson [28] (2.5) p. 30, if p < 0.9, then p(p,q) < |p — q|(1 ANlg/p— ll). Thus, (71)
is equivalent to

lim E p(”>|u(">| 1A |u(") |) =0, with the convention p(”) |u(")| = q(") fp(”) =0.
n—oo
j>i>1

(73)

In particular, let 2 : [0, 1] — [0, 1] be such that A(x) = x + O(xz) If we set
qf"j) = h( p(’”) then there exists C € (0, co) such that |u<")| < Cp/; ™ In this case, for

all sufficiently large n,

2
() (71) (71) 2 o 3 203(Wn) o 3
E P11 A ) < € E (pij) m C(an/bp)” — 0

Jj>i>1 Jj>i>1

by (C2) and (21). Cases where 1 (x) = 1 Ax have been studied by Chung & Lu [18] and
van der Esker, van der Hofstad & Hooghiemstra [37]; the cases where h(x) = 1 —e™7,
was first studied by Aldous [3], Aldous & Limic [4], as well as [2,7-11,34]; cases where
h(x) = x/(1 4+ x) have been investigated by Britton, Deijfen & Martin-Lof [16]. To
summarise, Janson’s Theorem 2.2 [28], p. 31 combined with Theorem 2.8 imply the

following result.

Theorem 2.11 (Theorem 2.2 in Janson [28]) Assume that a,, by, wy, satisfy the same
assumptions as in Theorem 2.4 (and thus as in Theorem 2.8). We furthermore assume
that \/J, /b, — 0. We define p, by (72). Let q, € P. We define (u; "))]>,>1 by (72)
and we suppose (73). Then, there exist couplings of G(q,) and G, such that

Jlim P(Gy, #G(gn) =0 (74)

and the weak limit (60) in Theorem 2.8 holds true in the same scaling for the connected
components of G(qn) that are listed in the decreasing order of their numbers of
vertices and that are equipped with the graph distance and the the counting measure.
In particular, its holds true when u(") = h(p(”)) j > i =1, for all functions h :

[0, 11— [0, 1] such that h(x) = x + 0(x2).

2.5 An overview of the proof

The rest of the paper is taken up by the proof of the results announced in this section.
We briefly describe how it is organised.

Section 3 collects most of the tools we need for the discrete model. In particular,
we recall some results on the (discrete) red and blue processes established in the
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companion paper [17]. We also provide some estimates on the fluctuations of these
processes (particularly Lemma 3.6), which will be a key ingredient in the proof of the
limit theorems later on.

Section 4 is, on the other hand, our tool box for the continuous model. We explain
the construction of the continuum graph based on the coding processes Y and H as
introduced in [17] in more detail. Let us note that the graph-encoding process Y is a
time change of X (see (12)); a similar relationship (14) also holds between H and H.
However, the dependence between X and the time-change 6 constitutes a point of
subtlety when dealing with the limit theorems and our approach will strongly rely on
the properties of red and blue processes stated in that section.

The proof of the main limit theorems is given in Sects. 5-7. In Sect. 5, we show
that the convergence of the graphs is a consequence of the convergence of the coding
processes (Proposition 5.1). This proves our main results Theorems 2.4, 2.5 and 2.8
subject to Proposition 5.1. In Sect. 6, we explain how to derive Proposition 5.1 from
the convergence of the Markovian queueing system (Propositions 2.1-2.2). The actual
proof of the latter is given in Sect. 7.

Section 8 concerns the specific example of power-law weight sequence, which has
attracted some attention: we show that the assumptions of our main results are verified
in this case.

3 Preliminary results on the discrete model

In this section, we gather the results we need for the discrete model. In Sect. 3.1, we
recall some useful processes encoding Galton—Watson trees: Lukasiewicz path, height
process and contour process. In Sect. 3.2, we use the connection with the Markovian
queue to prove estimates on these coding processes, which will be used in Sect. 7. In
Sect. 3.3, we explain in more detail the embedding of the multiplicative graph into
the Galton—Watson trees, obtained in our construction via the blue and red processes.
Estimates on these processes are then proved in Sect. 3.4.

3.1 Height and contour processes of Galton-Watson trees

Let us briefly recall some basic notation about the coding of trees. We first denote by
U=, n(N¥)" the set of finite words written with positive integers; here, (N*)0 is
taken as {@}. The set U is totally ordered by the lexicographical order <jx (the strict
order is denoted by <1ex).

Letu = [iy,...,i,] € Ubedistinct from &. We set |u| = n that is the length or the
height of u, with the convention that |&| = 0. We next set W= [i1,...,in—1] thatis
interpreted as the parent of u (and if n= 1, then % is taken as &). More generally, for
all p e {1,...,n}, wesetu), = [i1, ..., ip], with the convention: u|) = &. Note that

u = u,—1. Wewill also use the following notation: [&, ull = (&, u1, ..., up—1, u},
12, ul = [9, ul\{2}, [, ul =12, ul\{u} and <, u[ = [<, u]\{2, u}. For all
v=1_[j1,..., jm] € U,wealsosetu*xv =[iy,...,in, j1,---, jm] thatis the concate-

nation of u with v, with the convention that @ xu = u * @ = u.
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A rooted ordered tree can be viewed as a subset ¢+ C U such that the following holds
true:

(a): T €et.

(b): Ifu € t\{@), then U € 1.

(c) : Forall u € t, there exists k, (t) € N U {oo} such that u * [i] € ¢ if and only if
1 <i <ky@).

Here, k, (¢) is interpreted as the number of children of u and if 1 < i < k,(¢), then
u x [i] is the i-th child of u; k, (t) + 1 is the degree of the vertex u in the graph + when
u is distinct from the root. Implicitly, if k, () = 0, then there is no child stemming
from u and assertion (c) is trivially satisfied. Note that the subtree stemming from u
thatis 6,1 ={v € U : u *x v € t} is also a rooted ordered tree.

Let T be the set of rooted ordered trees that is equipped with the o-field .% (T)
generated by the sets {t € T:u € t},u € U. Then, a Galton—Watson tree with offspring
distribution . (a GW(u)-tree, for short) is a (%, % (T))-measurable r.v. 7 : Q — T
that satisfies the following:

(@) : kgz(t) has law u.
(b") : Forallk > 1 suchthat u(k) >0, the subtrees 617, . . ., Ok 7 underP(- [kz (t) =
k) are independent with the same law as t under P.

Assume that £(1) < 1. Recall that 7 is a.s. finite if and only if p is critical or subcritical:
namely, if and only if ) ", ku(k) < 1.

A Galton—Watson forest with offspring distribution i1 (a GW(j)-forest, for short) is
arandom tree T such that k& (T) = oo and such that the subtrees (6% T)x>1 stemming
from @ are i.i.d. GW(u)-trees. We next recall how to encode a GW(u)-forest T thanks
to three processes: its Lukasiewicz path, its height process and its contour process. We
denote by (u;);en the sequence of vertices of T such that ug = & and such that, for
all [, u;41 is the smallest vertex of T with respect to the lexicographical order that is
larger than u;. If p is critical or subcritical, then (u;);cn exhausts all the vertices of T;
however, if u is supercritical (namely if ) ", | ku(k) > 1), then (u;);en exhausts the
vertices of T that are situated before (or on) the first infinite line of descent. We first
set

Voo =0, andfor/>0, VA =V +k,, (T)-1 and Hght]=|u/11|-1. (75)

The process (VZT)leN is the Lukasiewicz path associated with T and (tht;r)leN is
the height process associated with T. We recall the following results in Le Gall & Le
Jan [31]:

(i) VT is distributed as a random walk starting from 0 and with jump-law v (k) =
uk+1), ke NU{—1}.

(ii) WesetV] =0Oandforall/>1,VT = infox<,—1 V,T — 1. Note thatu; € 6}, T
if and only if (u;)|1 = p. Then, we get

~Vi =) and V'-V] =#{veT:u <iexvand ¥ el@,ul}. (76)
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(iii) The height process HghtT is derived from VT by setting thtoT = 0 and, for
[>1,
Hoht! = #{m € {0,...,[-1}: V,} = infleT}. (77)
m=j<

The contour process of T is informally defined as follows: suppose that T is embedded
in the oriented half plane in such a way that edges have length one and that orientation
reflects lexicographical order of visit; we think of a particle starting at time O from &
and exploring the tree from the left to the right, backtracking as little as possible and
moving continuously along the edges at unit speed. In (sub)critical cases, the particle
crosses each edge twice (upwards first and then downwards). In supercritical cases,
the particle only explores the edges that are situated before (or on) the first infinite
line of descent in the lexicographical order: the edge on the infinite line of descent are
visited once (upwards only) and the edge strictly before the infinite line of descent
are visited twice (upwards first and then downwards). For all s € [0, 0o0), we define
CT as the distance at time s of the particle from the root &. The associated distance
dcr as defined in (48) is the graph distance of T in the (sub)critical cases. We refer
to Le Gall & D. [19] (Section 2.4, Chapter 2, pp. 61-62) for a formal definition and a

formula relating the contour process to the height process.

3.2 Coding processes related to the Markovian queueing system

We fixw = (wq,...,w,,0,0,...) € Z}i and we briefly recall the definition of the
Markovian queue as in the introduction: a single server is visited by infinitely many
clients; clients arrive according to a Poisson process with unit rate; each client has
a type that is a positive integer ranging in {1, ..., n}; the amount of time of service
required by a client of type j is w;; types are i.i.d. with law

l n
by = > wj; (78)

o1(w) ‘=

Let 7; stand for the time of arrival of the /-th client in the queue and let J; stand for
her/his type; then, the queueing system is entirely characterised by the point measure

L= 8n.30) (79)
k>1
that is distributed as a Poisson point measure on [0, 0o) x {1, ..., n} whith intensity

LRy, where £ stands for the Lebesgue measure on [0, 00). We next introduce

XY = ¢ 1 d I"= inf X", te€[0,00). (80
K +;wm o(@) and [ = inf X; [0,00).  (80)

Then, X}"— 1" is interpreted as the load of the Markovian queueing system at time ¢
and X} is the algebraic load of the queue. Note that X™ is a spectrally positive Lévy
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process whose law is determined by its Laplace exponent v, : [0, c0) — R defined as

E[e_}‘xy] =M where

Yuw(A) = awh + Z &(eikwj —14 )»wj) and oy :=1— 2(w) (81)

o1 (w) op(w) °
1<j<n

Here, recall that o, (w) = w] +...4+wj,r > 0. We call the queueing system recurrent
if a.s. liminf; _, oo X}'=—00, which means that all the clients will eventually depart.
Observe that the system is recurrent if and only if o7 (w)/o1(w) < 1. If, on the other
hand, o2 (w)/o1(w) > 1, then oy < 0 and a.s. lim,_, o X' = 00 (the queue will see
an accumulation of infinitely many clients). As a common practice for branching
processes, in the sequel, we shall refer to the following cases:

supercritical: o5 (w) > o1 (w), critical: 03(w) =01(w), subcritical: 02 (w) <o (w).
(82)
Note that the criticality alluded to above is distinct from the critical regime of the
random graph G, .

The LIFO queueing system governed by 2, generates a tree that can be informally
defined as follows: the clients are the vertices and the server is the root (or the ances-
tor); the j-th client to enter the queue is a child of the i-th one if the j-th client enters
when the i-th client is served; among siblings, clients are ordered according to their
time of arrival. In critical or subcritical cases, it fully defines a Galton—Watson forest;
however in supercritical cases, it only defines the part of a Galton—Watson forest sit-
uated before the first infinite line of descent. To circumvent this problem, we actually
define the tree first and then we couple it with the queueing system.

In what follows, what we mean by a Poisson random subset IT on [0, co) with unit
rate is the set of atoms of a unit-rate Poisson random measure: namely, it is the random
subset {e] + - - - + e,; n> 1}, where the e, are i.i.d. exponentially distributed r.v. with
unit mean. For all u € U\{@}, let J(u) and I, be independent r.v. whose laws are
given as follows: J(u) has law v, as defined in (78) and I1, is a Poisson random
subset of [0, co) with unit rate. We next define I1g as a Poisson random subset of
[0, c0) with unit-rate that is assumed to be independent of (J (1), I1,),eu\ (@} and for
convenience, we set J (&) = 0. For all u € U, we index the points of I, using the
children of u. Formally, we define a map o : {ux[p]; p>1} — I, as follows:

My = {o@x[pD); p=1}, where o(ux[p]) <o@x[p+1D, p=1.  (83)

Note that it defines a collection (o (1)) e\ (@) Oof I.v. It is easy to check that there is a
unique random tree T, : 2 — T such that, for u € T,,\{2},

ku(Tyy) = #(Ty N[0, wyqy]) and kg (Ty) = 0. (84)
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Clearly T, is distributed as a GW(u,,)-forest where 1, is given by

k+1
Vk € N, k _ 85
(k) = X)j pyEy (85)
Namely, kg (T,) = oo and the subtrees (0jx)Ty)r>1 stemming from & are

i.i.d. GW(u)-trees. Note that Zk>0 kit (k) = o2(w) /o1 (w).

Then we define the point process 2, governing the Markovian queueing system
as follows: denote by (u;);en the sequence of vertices of Ty, such that ug = @ and
such that for all /, ;41 is the smallest vertex of T, (with respect to the lexicographical
order) that is larger than u;. Then we set

I=Jw), u= Y wim+ Y, o@ and 2= 8z.u. (86)

vET:v<iexlt] velld,u]l I>1
and v¢[[F,u; ]l

We also set, for each ¢ € [0, 00),

NU(t) =) Ljo.(m) - (87)

>1

In (75), recall that (‘/ITW)[Z() stands for the Lukasiewicz path associated with T,;; we
also recall the notation X?W for the quantity info<x</—1 VkTW - 1.

Lemma 3.1 We keep the notation from above. Then 2, as defined by (86) is a Poisson
point measure on [0, 0c0) x {1, ..., n} with intensity £ Qv and therefore N" in (87)
is a Poisson process on [0, 0c0) with unit rate. Let X and IV be derived from %, by
(80). For all t € [0, 00), the following statements hold true:

(i) Conditional on X}'—1, VNX,’(t) V%‘“;,(t) is distributed as a Poisson r.v. with mean
Xy
(ii) P-almost surely: VNV&’(t) =#I1gy N[0, =1]]).

Then, for all a, x € (0, 00), we get

P(|Vs o —X7| > 2a) < 1n(4x/a®) +P(~ 17" > x) + E[1 A((XF— 1) /a?)]. (88)
Proof We first explain how (741, XV e ,) is derived from (7, X7)) in terms of the
r.v. (J(u), I1,), u € U. To that end, we need notation: fix u € U\{@} then for all
0 < p<|u|, we set

R;’, = (w‘[(u‘p)_o—(u‘p+]))+ and Q’;, = {o(v)—o(u|p+1); veU:upti<iexvand v = u‘,,}.

Note that J(up) = J() = 0 and that wg = oo (by convention); thus, R} =
0o0. We also set R\Mu| = WJju), Q’l‘u| = I,, R(u) = (R},..., |M‘) and Q(u) =
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(95, ---» Qﬁu)' By convention, we finally set Réa = o0, R(¥) = @ and Q(Q) =
(Mg).

We next denote by ¥ (u) the o-field generated by the r.v. (o (v), J(v), [T, N
[0, 0 (V)))vez,up and (J(v), ITy)y<cpu and ve[o,4]- Elementary properties of Pois-
son point processes imply that conditionnally given ¢ (u), the Q%, 0 < p < |u| are
independent Poisson random subsets of [0, co) with unit rate: they are therefore inde-
pendent of ¢ (u); by construction they are also independent from the r.v. (J(v), IT,),
U<iex V.

For all u € U\{&}, we next define s(u) € U and e(u) € [0, co) that satisfy
s(u;) = ujy1 and 1741 = e(u;)+1;. Tothatend, we first set q = sup {p e{0,...,|ul}:
#(Q), N[0, RYD) > l} that is well-defined since R;; = oo.

e If q = |u|, then we set s(u) = ux[1] and e(u) = o (u=*[1]).
o If q < |ul, then |u| > 1 and we set s(u) = [i1,...,iq, ig+1+ 1] (namely, s(u) =
[i1+1]if g = 0), where u = [iy, ..., i}, ]. We also set

e(w) =o(sw)—olugr)+ Y RY. (89)

q<p=lul

Elementary properties on Poisson point processes imply that e(u), J (s(u)) and ¢ (u)
are independent, that e(u) is exponentially distributed with unit mean and that J (u)
has law v,,. Then, we easily derive from (84) that for all [ € N, u;11 = s(uyp),
as already mentioned. It is also easy to deduce from (86) that 7;41 = e(y;) + 7.
Thus, 1741 — 17, J (u;41) are independent and they are also independent of ¢ (u;) and
therefore of the r.v. ((tx, J (ux)))1<k<i. It implies that 2, is a Poisson point measure
on [0, o0) x {1, ..., n} with intensity £ @v.
We next prove inductively that for all [ > 1,

7= Z R’;’ =Xy — Iy and o((u)p) = —13. (90)

1<p=<|u|

Proof of (90): Forl = 1, u is the first customer in the queue. In that case, Z| =
Rﬁ)] | = W) is the size of the first jump of X*. The firstidentity in (90) then follows.
Note also that o (1) = 71 by (86), the latter equal to —I;“f as X" has slope —1. This
proves (90) for/ = 1.

Assume it holds true for /. Set k = (u;)|1; namely u; € 0Ty, Since u; 1 = s(u;),
ui+1 € 0Ty if and only if g = sup {p € {0, ..., [ ]} : #(Q} N[0, Ry =1} > 1.
We first suppose that q > 1. By comparing (89) and (90), we see that e(u;) < Z;. Since
7141 — Ty = e(uy) and since X does not jump on [1;, 7741) (by the definition (80)),
we have

it X=X = X ) = Xy — ) = 71— ) + 1 OD
and thus —I;’I’H = —1I7. Since ujy1 € OTw, k = (w41 = (ur))1 and thus
o ((ui+1)11) = o((ug)1). Then (90) entails —1I7 = o ((us1)1). We also check

T+1
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easily that Z; 1 —Z; = wyq, ) —e(uy) =
[+ 1.

Suppose now that q = 0, which is equivalent to u;+1 = [k + 1]. Then u;4 is
the only one in the queue when it arrives. Thus, R(u;+1) = (W) and Zj4) =
Wy - Since q = 0, e(uy) = Z; + o ([k + 1]) —o ([k]) by (89). As in (91), we get
it X2 = 21 = eu) + 15 = I —o (& + 1) +o(k) = —o(k + 1)), the
last equality bemg a consequence of (90) for [. It implies that — =o(lk+1])>

X%, — X7, which easily entails (90) for

Tl+1
o([k]) = —I. Therefore, X3 —1I7), = AXy | = Wyuw,,) = Zi+1. This proves
that (90) holds forl + 1. It also completes the proof of (90) by induction. O

Next, it is easy to check that

#{v e Ty U <1ex vand v ela, wll} = Z #(Q;’ N [0, RZ’]),

1<p=<|u|

and by (76) we get Y- <] #(0% N[0, RY]) = VITW—V?W By (90) and elementary

properties of Poisson point processes, it shows that given X7 — I, V,TW —X?W is
distributed as a Poisson r.v. with mean XW = I w ThlS proves (z)

Next, we have seen in (76) and (90) that — = (up); and o ((u);1) = —I;“l’.
Namely, —V|* = #(Tlg N [0, — 1) and elementary arguments entail —V )" =
#(Mg N[0, —1"]) forall 1 € [17, Ty41). This easily proves (ii) for all 1 € [r1, 00).
For all t € [0, 71), observe that NJY = 0 and —I} =t < 71. Since KTOW = 0, it entails
(ii) for all t € [0, t1), which completes the proof of (ii).

We next prove (88). We fix t € [0, co) and to simplify we set

Ty

D =Vl =Yt

Ny~ Y

/ T,
Z=X/-1I', D'=-Vy,

and Z' =—1I".

By (i), E[(D — 2)*|Z] = Z; thus P(ID—Z| > a) < E[l A (Z/a®)]. By (i),
D' = #(Ilgz N [0, Z']); then, for all x € (0,00), we get P(|1D' —Z'| > a) <
P(sup,cpo.) [#(Tz N[0, 2D —z| > a) + P(Z' > x) < 1A (4x/a*) + P(Z' > x) by
Doob Lz-inequality for the martingale z+— #(I1x N [0, z]) —z. It implies (88), which
completes the proof of Lemma 3.1. O

The contour of T,: estimates In (6), recall that H," stands for the number of clients
waiting in the line right after time ¢. More precisely, for all s, € [0, co) such that
s < t, we have

= #/KC;, where K;={s € [0, 1]: ;"*” <I;"*} and where I} = mf X" for s € [0, t].

rE s,t

92)

See Fig. 2 for an example. The process H"Y is called the height process associated
with X* by analogy with (77), but H" is actually closer to the contour process of T,.
To see this, recall that (u7);cn stands for the sequence of vertices of T, listed in the
lexicographical order; we identify u; with the /-th client to enter the queueing system.
For all # € [0, 00), we denote by u(?) the client currently served right after time ¢:
namely u(z) = u; where / = sup{k € N: 7 <t and X7 _ <infe[r 1 X{'}. Then,
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HY

T1 T2 T3
= —

SN
AN

Fig.2 An example of X" and the associated height process HY drawn side by side. Observe that at each
7;, both X and H" jump upwards: these are the arrival times of the customers. Note that HY also jumps
down by one unit each time a customer leaves the queue

the length of the word u(z) is the number of clients waiting in the line right after time
t:ju(t)| = H.

We next denote by (&;)m>1 the sequence of jump-times of H": namely, &, =
inf{s > &, : H' # Hg”m }, for all m € N, with the convention &y = 0. We then set, for
t €10, 00),

MY =" 1j0.0Gn) - 93)

m>1

Note that (§,),>1 is also the sequence of jump-times of u and that for all m > 1,
(u(&n—1), u(&y)) is necessarily an oriented edge of T;,. We then set T, (f) = {u(s); s €
[0, #]}, that represents the set of the clients who entered the queue before time ¢ (and
the server ©); T, () has N"(¢) + 1 vertices (including the server represented by &);
therefore, T;,(¢#) has 2N"(¢) oriented edges. Among the 2N"(¢) oriented edges of
T, (), there are |u(z)| edges going down from u(z) to @ which do not belong to the
subset {(w(&,,—1), u(€y)); m>1:§&, <t}. Thus, for each ¢t € [0, c0),

MY =2N"(t)—H" . (94)
Recall the definition of the contour and the height processes of T, introduced in
Sect. 3.1, and denoted resp. by (CtT “) and (tht;fw). Then, observe that, for each

t €10, 00),

C},}’W(t) =H" and sup H <1+ sup tht%“iw. (95)
s€[0,7] s€[0,1] ’

Since N" is a homogeneous Poisson process with unit rate, Doob’s L>-inequality
combined with (94) and (95) imply that for 7, a € (0, 00),

P( sup [MY—2s| > 2a) < IA(16t/a®) +P(1 + sup Hght ), > a).  (96)
s€[0,1] s€[0,1] s
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3.3 Red and blue processes

This section contains no new result and we recall here more precisely the embedding
of the LIFO queue without repetition encoding the multiplicative graph G, into the
Markovian queue considered in the previous Sect. 3.2. This embedding has been
introduced in [17] (and it is informally recalled in the introduction). This embedding
uses two auxiliary processes, the blue and red processes, that we now define. First, we

introduce two independent random point measures on [0, co) x {1, ..., n}:
27 =D Bdapay and 27 =D Sapap, ©7)
k=1 k=1

that are Poisson point measures with intensity £®v,,, where we recall that £ stands for
the Lebesgue measure and that v, = r}w) > 1<j<n W;j8;. The blue process X bW and
the red process X*" are defined respectively by

XY=+ wyplpon(tf) and X[ = -1+ > warloa(rf).  (98)
k>1 k>1

Note that X" and X" are two independent spectrally positive Lévy processes with
Laplace exponent ¥, given by (81). Forall j € {1,...,n}andallt € [0, c0), we next
set

Ny @)= 2.2(10,11x{j}) and EY =inf {r € [0, 00) : 2.°(10,1]x{j}) = 1}.
99)
Then the N;’ are independent homogeneous Poisson processes with jump-rate

wj/o1(w) and the r.v. (% E‘j’.’)ls j<n are ii.d. exponentially distributed r.v. with

unit mean. We next set

Y = —t +Zw,»1{Ey§t} and A7 = X" =Y = Y wi(NY(t)—1) . (100)

I<j=<n 1<j<n

Here YV is the algebraic load of the following queue without repetition that encodes
the multiplicative graph G,, (as explained in the introduction): a single server is visited
by n clients labelled by 1, ..., n; Client j arrives at time E‘]” and she/he requests an
amount of time of service w;; a LIFO (last in first out) policy applies: whenever a
new client arrives, the server interrupts the service of the current client (if any) and
serves the newcomer; when the latter leaves the queue, the server resumes the previous
service.

We embed this queue into a Markovian one that is obtained from (Y%, A¥) and
X" as follows. We first introduce the following time-change process that will play a
prominent role:

0P=1t + Yxo", where forall x € [0, 00), we have set y"=inf {r € [0, 00): X[ "< —x},
t

(101)
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with the convention that inf ) = co. We next recall various properties of 2" that are
used in the sequel. To that end, let us first note that standard results on Lévy processes
(see e.g. Bertoin’s book [6] Chapter VII) assert that (yy ™) xe[0.00) 1S a (possibly killed)
subordinator whose Laplace exponent is given by, for A € [0, 00),

E[e = e ®) where v '(4) = inf {u € [0, 00) : Y(u)>2}. (102)

Set oy = Y, L(0), the largest root of ;. Then, o, = 0 in the subcritical or critical
cases, while p,; > 0 in the supercritical case. Moreover, in the latter case, I3 =
— inf,e[0.00) X7 " is exponentially distributed with parameter o, and y; " < oo if and
only if x < —I53". It follows that the explosion time for 6®¥ is given by

T} = sup{t € [0, 00): 6P < oo} = suplt € [0, 00): AY <—I3"Y, (103)
which is infinite in the critical and subcritical cases and which is a.s. finite in the
supercritical cases. Note that Bb’W(T; —) < 00 in the supercritical cases.

We also introduce the following processes:

APV =inf s €[0,00): 07" >1) and A]"=1—AD" (104)

Both processes A®" and A®™" are continuous and nondecreasing. Moreover,
a.s.lim; o A;" = oo.Incritical and subcritical cases, we also geta.s. lim;_, A?’W =
oo and AP (67") = 1 forall t € [0, co0). However, in supercritical cases, A>™" = T}
for 1 € [6P¥(T*—), 00) and as. for all 1 € [0, T.*), AP¥(6,") = t. The following

proposition was proved in [17].

Proposition 3.2 We keep the previous notation and we define the process X" by, t €
[0, 00),
w __ ybw r,w
X = XA?W + XAIr,w . (105)

Then, X" has the same law as X" and X*V': namely, it is a spectrally positive Lévy
process with Laplace exponent r,, as defined in (81). Furthermore, we have

Y = ng,wa a.s. forallt € [0, T)), (106)

Proof See Proposition 2.2 in [17]. O

Recall that B1ue and Red are the sets of times during which respectively blue and
red clients are served (the server is considered as a blue client). Then formally these
sets are given by

Red = U [677,6°") and Blue = [0,00)\Red.  (107)
1€[0,T*]: AP >0

Note that the union defining Red is countably infinite in critical and subcritical cases
and that it is a finite union in supercritical cases where [0°"(T;¥—), 6>"(T¥)) =
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[0P"(T¥—), 00). Recall the definition of the time-changes A®" and A™" in (104);
then, we easily check that

t
APV = /lBlue(s)ds and Af"=r1—APV= /lRed(s)ds. (108)
0 0

We have the following properties of X", 6", etc. from [17] (see also Figure 3).

Lemma 3.3 A.s. forall b € [0, T.}] such that 9;;‘” < Qf’w, we get the following for all
b,w
s €[00, 0™

f eb U

(109)
Thus, a.s. for all s € [0, 00), X > YW(A?’W). Moreover, a.s. for all sy, s> € [0, 00)
such that A2 < AL, we have

W _ w _ w — w
X Xl =Yy, AXjow = MY and Xipuu = Ko = X

inf Y'= inf XY . (110)

belAT,AG"] s€lsis2]

If the red time-change is defined by

67" =inf {s € [0,00) : ALY > 1}, (111)
Then, for all s, t € [0, 00), 9;4_";—95‘“’ >s and ifA@,r’w >0, then AX,r’W =0.
Proof See Lemma 4.1 in [17]. O

Embedding of the tree The previous embedding of the LIFO queue without repetition
governed by Y" into the Markovian queue governed by X" yields a related embedding
of the trees associated with these queues. More precisely, consider first the queue
governed by Y": the LIFO rule implies that Client i arriving at time E; will leave
the queue at the moment inf{r > E; : ¥}V < YW _}, namely the first moment when
the service load falls back to the level right before her/his arrival. It follows that the
number of clients waiting in queue at time ¢ is given by

Hy = #7;, where J; = {s € [0,1]:J"*" <J"*} and where J;"* = 1nf Y fors € [0, r].

rels,t]

(112)

Recall that we denote by 7, the tree formed by the clients in the queue governed by
Y. The process H" is actually the contour (or the depth-first exploration) of 7, and
the graph-metric d-, of 7y, is encoded by " in the following way: if we denote by

€ {0, 1, ..., n} the label of the client served at time ¢ (with the understanding that
V; = 0 if the server is idle), then for all s, ¢t € [0, 00),

dr,(Vs, Vi) =H +Hy — 2 min H}. (113)

relsat,svt]
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kXW
1 3 6 6 6
5 1 AN oSN 3 5 54 3 63
AN
KXb,w Ayw = XW o oW
\\
6 6 6
2 1 3 M1 3 54 3 2 1 3 54

N\

Fig. 3 Decomposition of X% into X and X**W. Above, the process X": clients are in bijection with
its jumps; their types are the numbers next to the jumps. The grey blocks correspond to the set Blue.
Concatenating these blocks yields the blue process X©%. The remaining pieces give rise to the red process
X*W. Concatenating the grey blocks but without the final jump of each block yields Y. Alternatively,
we can obtain YV by removing the temporal gaps between the grey blocks in X¥: this is the graphic
representation of Y = X" o 62-W_ Observe also that each connected component of Red begins with the
arrival of a client whose type is a repeat among the types of the previous blue ones, and ends with the
departure of this red client, marked by x on the abscissa O

Similarly for the Markovian queue governed by the process X" given in Proposition
3.2, we define its associated height process H" by setting H," to be the number of the
clients waiting at time ¢, namely,

HY = #K,, where K, = {s €0, t]: ;" <I,w’s} and where [;"* = in ] X} fors € [0,1] .
rels,t

(114)

Then H" is the contour process of the i.i.d. Galton—Watson forest T, with offspring

distribution u., characterized by (84). Note thatin (sub)critical cases, H" fully explores

the whole tree T,,. However in supercritical cases, the exploration of H" does not

go beyond the first infinite line of descent. We shall use the following form of the
previsouly mentioned embedding of 7, into T, that is recalled in [17].

Lemma 3.4 Following the previous notation, we have

My = Hy,., as. forallt €0, Tr). (115)
t
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Proof See Lemma 2.3 in [17]. O

3.4 Estimates on the coloured processes

b,w

Abw and

We keep the notation from Sect. 3.3, and provide here estimates for A", X
X'\rw that are used in the course of the proof of Theorem 2.4.

Recall that A} = ijle(N}@’(t) — 1), where the N}?’(~) are independent homo-
geneous Poisson processes with respective jump-rate w; /o (w). Let (F;);e[0,00) be a
filtration such that forall j > 1, N}f’ is an (.%#;)-homogeneous Poisson process. Namely,

° N}’Y is (F;)-adapted,;

e for all a.s. finite (%)-stopping time T, set N;"' (1) = NY(T +1)=N¥(T). Then,
the sequence of processes (N;”’T).jzl is independent of .Zr and distributed as
(N¥)j=1.

Thus, the process A™ T — > j=W) (N}f” T (-)—1)4 isindependent of %7 and distributed
as A". We easily obtain

v
Afy = AL =ATT+ ) wiligg=r et )21y (116)
izl

where we recall that £ ;” stands for the first jump-time of N}f’; E ;’ is therefore exponen-
tially distributed with mean o (w)/w ;. Elementary calculations combined with (116)
immediately entail the following lemma.

Lemma 3.5 We keep the notation from above. For all (%;)-stopping time T and all
a! t07t e (07 Cm))

aP(T <to; AT, —AT > a) <E[A7]+ ijP(EW < to)P(NJ“-’(z) >1). (117)
j=1

twj
o1(w)

Note that E[A}] = ijl wj(g—fwj/al(W)_l +

). Thus,

aP(T <195 AL, —AY > a) < 1(tg + 1) 2 (118)

o1(w)?’

We next discuss the oscillations of X %g?w and of X 7. To that end, let us recall
that D([0, co0), R) stands for the space of R-valued cadlag functions equipped with
Skorokhod’s topology. For all y € D([0, o0), R) and for all intervals / of [0, 0c0), we
set

osc(y, I) =sup{ly(s)—y@®)l; s.t €1}, (119)

that is the oscillation of y on I. It is easy to check that for alla <b <c,

osc(y, [a,c)) < osc(y, [a, b]) + osc(y, [b,c)) < osc(y,la,b)) + |Ay(b)| + osc(y, [b,0)) ,
(120)
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where we recall that Ay (b) = y(b)—y(b—). We also recall the definition of the cadlag
modulus of continuity of y: let z, n € (0, 00); then, we set

wy(y,n) = inf{lrgiagrosc(y, [io1,1)) s 0=to<---<tp=2: min  (G—ti-1) =7 1.
o a (121)
Here the infimum is taken over the set of all subdivisions (¢;)o<i<,, of [0, z], r being
a positive integer; note that we do not require ¢, —t.—1 > 1. We refer to Jacod &
Shiryaev [27] Chapter VI for a general introduction on Skorokhod’s topology. Recall
the definition of 7.} in (103) and recall the definition of AP and AT in (104). Recall
also that XV = X5 + X Arw (see (105) in Proposition 3.2). The following lemma

Abw
is a key argument in the proof of Theorem 2.4.

Lemma 3.6 We keep the notation from above. Let 1 € (0, 00). Then, the following
statements hold true:

(i) Almost surely, for all 7o, z1, z € [0, 00), if 71 592;“’ < z, then

we, (XS0, . 0) < wopy (X n) 4wy (X2 n). (122)

(i1) Assume that we are in the supercritical cases (namely, o, = 1— Z?Ex; <0)

where a.s. T, < 0o and Qb’W(TV’,“—) < 00. Then a.s. for all zg, z1, z € [0, ) if
7> Gb’W(ij‘—) and zo> T > 2n, we have

we, (X5, 0) < wopy (XY 0) + 3wz, (X2 2). (123)

(iii) Almost surely on the event {z> AZ;"}, we have w;, (XR;’VW , n) < w, (Xr*‘“’, n).
Proof First note that for all intervals I, we have

osc(Xi’gw, I) = sup{|Xb’W Xiﬁ'w|; s, t € I} = sup{|X?’w—X§”W|; s, t € {Alu)"”; ue I}}

APV

We fix n,a, b € [0, T.}) such that b—a > 1. By the definition (101) of 62V we get
9}}3’_‘“’— 6}? '>b—a>n. Since APV is non-decreasing and continuous, and since pL-w
is strictly increasing, we get {AP"; 1 € [0, Qf’_w)} = [a, b) and

osc(X50, 1027, 600™)) = osc(XPY, [a, b) ). (124)

Ab,w ’

We next suppose that A@f’w> 0. Then, {A?’W; t e [P, 9,}73"”)} = [a, b] and by
(120) it follows that

osc(XRN,. 1057, 6.)) = osc(X¥, [a,b]) < osc(XPY, [a, b)) + |AX§’1“25)
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b,w

b Is constanton [Qf’_w, 9,}?"”), we getosc (Xb’W [Qf’_w, Qf’w)) =

Since the process X Abaw?

0 and thus

max (osc(XR’};’fw, [0, ef,_w)), osc(XR’g,Vw, [QI?LW, Qf,w))> — OSC(Xb,w, [a.b)).

(126)

We next assume that AQI};’W € (0, n). We want to control |AX§’W| in terms of the

cadlag n-modulus of continuity of X". To that end, let us introduce z € (0, oo0) such

that Qf’_w <zand 0 = fp <--- <t = z 4 n such that minj<;<,—1(t; —ti—1) > 1.

Then, there exists i € {1,...,r}suchthats;_; < Qf;w <t; and necessarily i satisfies

ti—ti_1 > n: indeed, itis clear if i <r and if i =7, then t,_ < 0" < z <z +n=t,.
There are two cases to consider:

— If ;1 < 62", then osc(X", [ti_1, 1)) > |AXY(™)|. Since 6" < oo, (109)
in Lemma 3.3 implies that |AX¥(6,"")| = |AX}""|. Thus, osc(X¥, [t;_1, ;) >
IAXD™).

- Ifti_ = 9,},3;‘”, since A@;”W € (0, n) and since t; — t;_1 > 1, we get 9,}73"” <t;. Then
osc(X¥, [ti—1, 1)) > | X" (0)")—X"(6.")|. Since 6™ < oo, (109) in Lemma 3.3
entails X" ((6,")—) = X¥(6,"") and |X¥(6,"") — X" (@,")| = |AX"(6,")| =
|AXZ”W|. Consequently, osc(X", [ti_1, ;) > IAXf’WL

IA

We have proved that if AQ};’W e (0,n) and if 0;”_‘” < z, then |AX§’W|
maxj<j<r osc(X", [t;_1, t;)); since it holds true for all subdivisions of [0, z + 7]
satisfying the conditions as above, it follows that

as.on {0, <z; AGSV e (0,m), IAXPY] S wepy (X7, m).  (127)

We are now ready to prove (122). Let us fix zg,z € (0,00) and let0 =19 <--- <
t = zo be such that minj<;<,—1(#; —t;—1) > n. We assume that 62)"” < z. For all
i€ {l,....r}, weset §; = {6} if AG>™ < n and we set §; = {67,077} if
AQ;‘WZU;wethendeﬁne S={s0=0<...<sy =02"} ={0}US; U...US, that
is a subdivision of [0, 92,"”] such that minj<;<,»_1(s; —s;—1) > n (indeed, recall that
Gt?fv—@ff“l' >t —t;—1). By (126) (if S; has two points) and by (125) and (127) (if S;
reduces to a single point), we obtain

Wy (Xi’;’fw, n) < max <osc(Xi’1;',vw, [si—1, s,-))) < wen (XM ) + max <osc(Xb’W, [ti—1, ti))).

1<i<r’

Since this holds true for all subdivisions (#;) and since z’ +— w,(y(-), ) is nonde-
creasing, it easily entails (122) if 71 < 92)"” < z, which completes the proof of (7).

Let us prove (ii). We assume that we are in the supercritical cases. The control of
the cadlag modulus of continuity of X*" o A®" is more complicated because this
process becomes eventually constant after a last jump at time V(7 ;*~). To simplify
notation we set T = Gb’W(T;—). We suppose that z > 7 and zo > T, > 2n. We fix
z1 € (0, 00). There are several cases to consider.
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e We first assume that z; < 7.If z; < 1, then there is z6 € [0, T.}) such that z; SQS’W;
-0
next, note that 9;"” <zand z;; < zo. Thus, applying (122) to (z, z1, z), we get that
0

wey (X, ) < wopn (XY )+ wy (XPY ) < Wy (XY ) + wey (X2, 1) for all
71 < t. We then extend this to z; < 7 by using a basic property of the cadlag modulus
of continuity: lim;, ., w;, (X i’gYw o) = w(X ig’w , ). Thus we have proved for all
z1 € [0, 7],

wa, (X580, 0) < wepy (X 1) 4wz (X2 ) (128)

which implies (123) when z; < 7.
e We next assume that z; > 7. Observe that A(XP"o APY) (1) = AXb’W(T;). There
are two subcases to consider.

o We first assume that z; > 7 and that AX®"(T.¥) < w,,(XP¥, 2n). As an easy con-
sequence of (120) and of the definition (121) of the cadlag modulus of continuity,
we getwy, (Xiﬁ'w 1) < we (X?\’Q’w ; n)+A(Xb*WoAb*W)(r)+osc(Xﬁ’g“_’w, [z, z1)).
Since X®"o A" is constant on [, 00), we get w, (Xi‘ﬁfw 1) < we (Xiﬁ'w ,n)+
wZO(Xb*W, 2n), which implies (123) thanks to (128) and since wZO(Xb’W, n) <
W, (XPV, 21).

o Now assume that AXb’W(TV:‘) > Wy, (X®" 2n). Then there exists a subdivision
to =0<t; <--- <t = zo such that min; <;<,—1(#; — ti—1) >2n and such that

max osc(X™", [ti—1, ) < Qg (X", 20)) A AXPY(TH),

1<i<r

which, combined with the assumption 7,F > 2p, implies that there exists i €
{1,...,r—1} such that ; = T}. Thus, osc(X®", [t;_1, T,})) < 2w, (XP, 2n).
By (124) applied to @ = #;_1 and all b < T;¥, we get osc(X5i,. [0, 1)) <
2w, (X" 2n). Recall that T —9,?;"1” > T —t;_1 > 2n. Consequently, there is

7)€ (9,?;‘;’, 7 —n) such that
AXPToAP™)(z)) =0 and osc(X5. [z}, 1)) <2w., (X>¥ 2n) . (129)

Letso=0<s1<---< s, :z’l be such that minj<;<,—1(s; —s;—1) > 7. We define
the subdivision (s/)o<i<,+1 of [0, z1] by setting s/ = s; foralli € {0,...,r—1}

/ / : / / : /
ands, =T, Sy =21 Clearly, minj<;<,(s;—s;_) > 7 since T—z} > n. Note that

osc(X5Y,. [t, 21)) = 0. On the other hand, since A(X>¥oAP™)(z}) = 0, (120)
and (129) imply that

osc(Xi’wa, [s,_1. 7)) < osc(Xi’g'fw, [sr—1.2])) + osc(Xi’g“fw, [z}, D)

< osc(X}Z’ffw, [sr—1.2])) + 2w, (XP7, 2n) .
Putting all these together, we obtain

b,w b,w ’ ’ b,w b,w
b < ’ : D) < . . . s
Wz, (X o, M) = lsrlnggrl osc(XAb,w, [s/_1.sD) < lrgla;(rosc(XAb,w, [si—1. 57)) + 2w, (X™¥, 21).
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Since (s;) is arbitrary, we get w,, (Xﬁ’g'fw, ) < wy (Xi’g“fw, n+2w,, (X®" 2n) and
we obtain (123) thanks to (128) and the fact that wy, (XY ) < Wy, (X2 2n).
This completes the proof of (ii).

The proof of (iii) is similar and simpler. In (111) recall that G,r’w = inf{s €
[0, 00) : AY" > t}. Let b > a. In Lemma 3.3 recall that Gr’W—Gr’W > b—a and
observe that {A;"; ¢ € [6;",0,"")} = la, b). Thus, osc( A 027,65 =
osc(X™", [a, b) ). Suppose next that AG, "> 0. Then, {A;"; ¢ € [6;™",6,")}
[a, b] but since |AX;™| = 0 by Lemma 3.3, we get osc(XArw, 0", 6,")) =
osc(X™", [a,b]) = osc(Xrw [a, b) ). Thus, we have proved for all b>a,

osc(Xjru. 6,7, 6,")) = osc(X i, [657,6,™) ) = osc(X™Y, [a,b)) .

To complete the proof of (iii) we then argue as in the proof of (122). O

4 Previous results on the continuous setting

This section is a recap on the construction of the continuum graph in [17]. In more
detail in Sect. 4.1, we recall the construction of Lévy trees, which constitute the limits
of the Galton—Watson trees, from a spectrally positive Lévy process. We also briefly
explain how to extend this construction to the case where the Lévy process has a
positive drift. In Sect. 4.2, we introduce the analogue of the blue and red processes in
the continuous setting, based on which we are able to define a limit height process for
the graph.

4.1 Preliminary results on spectrally positive Lévy processes and their height
process

In this section we briefly recall the known results that we need on the analogues (X, H)
in the continuous setting of the processes (X", H") encoding the Markovian queue.
More precisley, we fix @ € R, B € [0, 00), k € (0, 00), ¢ = (¢j)j>1 € Q and we set,
for 1 € [0, c0),

V) =ak+ 537+ kej(e7T =1+ Acj).
j=1

Let (X/)se[0,00) be a spectrally positive Lévy process with initial state Xo = 0 and
with Laplace exponent 1/: namely, log E[exp(—A X;)] =ty (1), forall ¢, A € [0, 00).
The Lévy measure of X is w = ijl KkCjdc;, P is its Brownian parameter and « is
its drift.

First, note that these cases include the discrete processes X" by takingc = w € E;,

Kk = 1/oj(w), B = 0and @ = 1 — Zﬂ; However, in the sequel we shall focus

on the cases where X has infinite variation sample paths, which is equivalent to the
following conditions: g > 0 or o2(¢c) = f(o, )" m(dr) = oo, by standard results
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on Lévy processes. If « > 0, then a.s. liminf;_,o X; = —o0 and if @ < 0, then
a.s. lim;—. » X; = 0o. By analogy with the discrete setting, we refer to the following
cases as

the supercritical cases if @ <0, the critical cases if @« = 0, the subcritical cases if o > 0.

We next introduce the process y defined for x € [0, 00) by 0
yy = inf{s € [0, 00) : Xy <—x}. (131)
with the convention that inf § = oco. For all ¢ € [0, 00), we also set
I, = seiﬁ)f,z] X, and Iy = zl—ifgolt' (132)

Note that /, is a.s. finite in supercritical cases and a.s. infinite in critical or subcritical
cases. Observe that y, < oo if and only if x <—I. Standard results on spectrally
positive Lévy processes (see e.g. Bertoin’s book [6] Ch. VII) assert that (¥ )xe[0,00) 18
a subordinator (a killed subordinator in supercritical cases) whose Laplace exponent
is given for all A € [0, co) by

E[e_)‘)’*]ze_“/’_l()‘) where ¢! (1) =inf {u € [0,00) : y(u)>2}. (133)

We set o = 1~ '(0) that is the largest root of . Note that o > 0 if and only if o < 0.
The following elementary lemma gathers basic properties of X that are used further
in the proofs.

Lemma4.1 Let X be a spectrally positive Lévy process with Laplace exponent

given by (9) and with initial value Xo = 0. Assume that there is . € (0, 00) such that

Y(A) > 0. Let w_l be as in (133) and recall that o = 1//‘1 (0) is the largest root of

V. Let X stand for a spectrally positive Lévy process with Laplace exponent (o + -)

and with initial value 0. Then, the following statements hold true:

(i) A.s. liminf; o X; = —00. Moreover, for all t € [0, 00) and for any nonnegative
measurable functional F :D([0, 00), R) > R,

E[F(X.\)]1=E[ exp(0X:) F(X.n0)]- (134)
(ii) The cadlag process x € [0, 00) > yx X) := inf{s € [0, c0) C X, < —x}isa
(conservative) subordinator with Laplace exponent 1,0_1 ()—o.
(iii) Forall x € [0, 00), we set

Vi=W fx<—loo and Y, =y(=lx)=) fx=—lx. (135)

Let £ be an exponentially distributed r.v. with parameter ¢ that is independent
Sfrom X (with the convention that a.s. £ = oo if o = 0). Then,

(Fxci000)» —To0) "2 ((ene Breio.00) - E) - (136)
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(iv) Let (9y)xe0,00) be a right-continuous filtration such that for all x, y € [0, 00), yyx
is 9-measurable and yy 1, —yy is independent of 9Gy. Let T be a (¢;)-stopping
time. Then, for all x, ¢ € (0, 00),

1 — v '/

P (137)

P(Vpr —Vr >e: T<oo) <P(yy >¢) <

Proof The assertions in (i), (ii) and (iii) are (easy consequences of) standard results
that can be found e.g. in Bertoin’s book [6] Chapter VII. We only need to prove (iv). To
that end, first note that the second inequality in (137) is a consequence of a standard
inequality combined with (133). Then, note that in the critical or subcritical cases
where ¥ = y, the first inequality in (137) is a straightforward consequence of the fact
that y is a subordinator. Therefore, we now assume that o > 0. Let y* be a copy of y
that is independent of ¥,. Then, we set y' = y..7 — yr if T <00 and y7 < 00, and
y' = y* otherwise. Then, y’ is independent of ¢y and it is distributed as y. We next
set & = sup{x € (0, 00): Y, < oo}; we also define ¥’ by setting ¥, = y; if x <&’
andy’, = y/(€'—) if x> &’ Thus,

Py r—Vr>€e; T<o0) =PF, > ¢ yr<o0; T <00) =Py, > e)P(yr <00; T <00) .

Then observe that P(V; >¢) < P(y, >¢)=P(y, >¢), which completes the proof of
(137). O

Height process of X We next define the analogue of H". To that end, let us recall
that ¢ further satisfies Grey’s condition (10). In particular, note that (10) implies that
either 8 > 0 or o2(¢c) = o0, so that (10) ensures that X has infinite variation sample
paths. Le Gall & Le Jan [31] (see also Le Gall & D. [19]) prove that there exists a
continuous process H = (H;)c[0,00) such that the following limit holds true for all
t € [0, 00) in probability:

. Lt
H;, = lim —/ I{Xs_infre[s,r] X, <e} ds . (138)
e—=>0¢ Jo

Note that (138) is a local time version of (114). We refer to H as the height process of
X.

Remark 4.1 Let us mention that in Le Gall & Le Jan [31] and Le Gall & D. [19],
the height process H is introduced only for critical and subcritical spectrally positive
processes. However, it easily extends to supercritical cases thanks to (134). O
We next recall here that the excursions of X above its running infimum process / are

the same as the excursions of H above 0. More specifically, X — I and H have the
same set of zeros:

Y ={teRy . H;=0} ={reRy : X, =1} (139)
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(see Le Gall & D. [19] Chapter 1). We also recall that since —/ is a local time for
X —1 at 0, the topological support of the Stieltjes measure d(—1) is 2. Namely,

P-a.s. forall s, ¢ € [0, 00) such that s <, ((s, NDNZ # (25) — (Is >I,) (140)

We shall also recall here the following result:

_ © di
Vx,a € (0, 00), P( sup H; < a) = ¢ V@D  where / — =
1€[0,yy] v ¥ (A)

(141)
Here, y, is given by (131) and we see that the integral equation completely determines
the function v : (0, 00) — (o, 00) that is bijective, decreasing and C*. In the critical
and subcritical cases, this result is a consequence from the excursion theory for H
and from Corollary 1.4.2 in Le Gall & D. [19], p. 41. This result remains true in the
supercritical cases thanks to (134): we leave the details to the readers.

4.2 The red and blue processes in the continuous setting

In this section, we give the precise definition of the analogues in the continuous setting
of the processes X bw XTW yW AW gPW etc that have been introduced in [17]. Let
us start with some notation and some convention.

Let (:%1):ef0.00) be a filtration on (§2,.%) that is specified further. A process
(Z1)1€[0,00) 15 said to be an (.#;)-Lévy process with initial value 0 if a.s. Z is cadlag,
Zo = 0 and if for any a.s. finite (.%;)-stopping time T, the process Zr,.— Z7 is
independent of .%7 and has the same law as Z.

Let (M;(-)) j>1 be asequence of cadlag (.%;)-martingales that are L?-summable and
orthogonal: namely, for all # € [0, c0), ijl E[Mj (t)z] <ooand E[M; (1) M(t)] =

0 if k > j. By Doob’s inequality, we have E[sup,cjo,j(3 ;<< M[(s))z] <
4Zl>j E[Ml(t)2], for all k > j > 1 and all r € [0, c0). It follows that there is a
unique cadlag (.%;)-martingale M such that for all 7 € [0, 00), E[SuPse[o,t] |M(s)—

Di<k<j Mk(s)‘ ] — 0,as j — co. We denote M by Zpl

Blue processes We fix the parameters @ € R, 8 € [0, 00), k € (0, 00),¢ = (cj)j>1 €
E;. Let (Br)€[0,00)> (Nj(t))1e[0,00)> J = 1 be processes that satisfy the following.

(b1) B is an (%#;)-real valued standard Brownian motion.

(b2) For all j > 1, Nj is an (F;)-homogeneous Poisson process with jump-rate
KCj.

(b3) The processes B, N, j > 1, are independent.

The blue Lévy process is then defined by, for ¢ € [0, 00),

XP = —at +/BB + Y T (Nj()—cjxr). (142)

j=1
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Clearly X is an (.%,)-spectrally positive Lévy process with initial value 0 with Laplace
exponent ¢ as defined in (9). We next introduce the analogues of the processes A"
and Y"in (100). To that end, note that E[c; (N (t)—1)1] = ¢ (e~ %" —1 + cjkt) <
;—(Kt)zc;. So it makes sense to define, for ¢ € [0, 00),

Ar=5kBrP+Y cj(Nj()—1), and ¥, =XP—A,. (143)
j=1

To view Y as in (13), set E; = inf{t € [0, 00) : N;(¢) = 1}; note that c;(N;(t) —
cjkt) —cj(Nj(t)— 1)+ = cj(I(g;<1) —cjkt) and check that ¢;(1{g; <}y —cjkt) =
M} (t)—/cc?(t—Ej)+, where M} is a centered (.%;)-martingale such that E[M} ("% =
c?(l—e‘”/””) < ktc3. Since E[Kc?(t—Ej)jL] < Ktc?(l—e_’“ﬂ) < K2t2c;, it makes
sense to write for all ¢ € [0, 00),

1
Y; = —at—EK,Btz + \/,EB[ + ZLC]‘ (I{Ejft}—/ccj(t/\ Ej)) —Z KC?(I—E]‘)_;_
j=1 Jj=1
= —at— kB> + /BB + Y ¢;( g = —cjk1). (144)
Jj=1

Namely the jump-times of Y are the E; and AYg; = c;.
Red and bi-coloured processes We next introduce the red process X* that satisfies
the following.

(r1) X* is an (%;)-spectrally positive Lévy process starting at 0 and whose Laplace
exponent is ¥ in (9).
(r2) X* is independent of the processes B and (N;) j>1.

We next introduce, for x, t € [0, 00),
Yo =inf{s €[0,00) : X] <—x} and 6P =14y}, (145)

with the convention that inf § = oo. For all ¢ € [0, 00), we set If = infsco,/] X5
and I3, = lim,, oI/ thatis a.s. finite in supercritical cases and that is a.s. infinite in
critical or subcritical cases. Note that 7 < oo if and only if x <—1Z. Recall that o
stands for the largest root of v/: in supercritical cases, ¢ > 0 and —/Z is exponentially
distributed with parameter o, as recalled in Lemma 4.1 (iii). We next set

T* = sup{t € [0, 00): th< oo} = supft € [0, 00): Ay <—1I} . (146)

In critical and subcritical cases, T* = oo and 6® only takes finite values. In supercritical
cases, a.s. T* < oo and we check that #°(7*—) < 0o. We next define, for ¢ € [0, 00),

AP =inf{s € [0,00) : 62>t} and AF =t — AP. (147)

Both processes AP and A* are continuous and nondecreasing. In critical and subcritical
cases, we also get a.s. limy_oc AP = 0o and AP(6P) =1 forall ¢ € [0, 00). However,
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in supercritical cases, a.s. A? = T* for all t € [AP(T*—), 0o) and a.s. for all ¢ €
[0, T%), Ab(etb) = t. In the following theorem we quote from [ 17] the results about the
previous processes that we need; in particular, it contains the analogue of Proposition
3.2.

Theorem 4.2 Let (a, B, k, ¢) be as in (8). Assume that either B > 0 or o2(¢c) = o0.
We keep the previous definition for XP A Y, XT, 00, T* AP and A*.

(1) A.s. the process A is strictly increasing and the process Y has infinite variation
sample paths.
(ii) The process AT is continuous, nondecreasing and a.s. lim;_, oo A} = 00.
(iii) Forallt € [0, 00), we set
b .

the processes X, X® and X" have the same law: namely, X is a spectrally positive
Lévy process with initial value 0 and Laplace exponent r as in (9). Moreover,

Y = Xgo as. forallt €0, T). (149)

Proof For (i), see Lemma 2.4 in [17]; for (ii) and (iii), see Theorem 2.5in [17]. O

The red and blue processes behave quite similarly as in the discrete setting (see
Lemma 3.3). More precisely, we recall from [17] the various properties concerning
the red and blue processes that are used in the proof.

Lemma 4.3 We keep the assumption of Theorem 4.2. Then, the following statements
hold true.

(1) P-a.s. foralla € [0, T™), ifAQl};’ =0, thent = 9}; is the unique t € [0, 00) such
that A° = a.

@ii) P-a.s. for all a € [0, T*], ifA@f > 0, then AX(O;’_) = AA, and AY, = O.
Moreover, fort € (Gb Gb),

a—’"a

thXt_>X(957)_= Y, andifa < T* then X(fo,)—: Xop-

(iil) P-a.s. if (AXT)(AT) >0, then there exists a € [0, T*] such that 93,37 <t <0}f.
(iv) P-a.s. for all b € [0, 00) such that AX} >0, there is a unique t € [0, 00) such
that A7 = b.
(v) Forallt € [0, 00), set Q? = Xlzb and Qf = Xif' Then, a.s. for all t € [0, 00),
t

AQPAQF =0.

Proof For (i) and (ii), see Lemma 5.4 in [17]; for (iii), (iv) and (v), see Lemma 5.5
in [17]. O

The excursions of Y above its running infimum Let X be derived from X* and
X* as in (148) and recall the notation I; = infs¢[o ;] X for the running infimum
process of X. Thanks to (140), we can say that —7 is a local-time for the set of zeros
Z = {t € [0,00) : Xy = I;}. Let Y be defined by (143) and recall the notation
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Ji = infg¢(o,7] Y5 in (16). The following lemma (recalled from [17]) asserts that—J is
a local-time for the set 2P = {r € [0, 00) : ¥; = J;} (more precisely, it shows that
2P is bijectively sent to 2 via AP).

Lemma 4.4 We keep the assumptions of Theorem 4.2. Then, the following holds true.
(1) A.s. for all t € [0,00), X; > Y(A?). Then, a.s. for all t;,t, € [0, 00) such

that A?l < Ag, infsefr ) Xs = inf e(ap(s)), AP ()] Ya- It implies that a.s. for all
t €10, 00), I; = J(AD).

(i) A.s. {r €[0,00) : X, > 1} = {1 €[0,00) : Y(AD) > J(AD)}.

(iii) A.s. the set & = {a €[0,00) : Y, > Ja} is open. Moreover, if (I, r) is a connected
component of &, then Yy =Y, = J; = J, and foralla € (I,r), we get J, = J;
and Y,_NY, > J).

(iv) Set Z* = {a € [0, 00):Y, = J,}. Then, P-a.s.

foralla, z € [0, 00) such that a <z, (ffbﬂ (a,z) # @) — (JZ<Ja>.
(150)

Proof See Lemma 5.7 in [17]. O

We next recall the following result due to Aldous & Limic [4] (Proposition 14,
p- 20) that is used in our proofs.

Proposition 4.5 (Proposition 14 [4]) We keep the assumptions of Theorem 4.2 and the
previous notation. Then, the following holds true.

(1) Foralla € [0, 00), P(Y, = J,) = 0.
(ii) P-a.s. the set {a € [0, 00):Y, = J,} contains no isolated points.
(iii) Set M, = max{r—1; r>1>a:(l,r) is an excursion interval of Y — J above 0}.
Then, M, — 0 in probability as a — oo.

Proof The process (Y /i )se[0,00) iS the process W=7 in [4], where K/ = B/k and
T =o//k (note that the letter k plays another role in [4]). Then (i) (resp. (i) and (iii))
is Proposition 14 [4] (b) (resp. (d) and (c)). O

Thanks to Proposition 4.5 (iii), the excursion intervals of ¥ —J above 0 can be listed
as follows
a €10.00): Ya> Ju} = | J . ) - (151)
k>1

where {y = rp—Ir, k > 1, is decreasing. Then, as a consequence of Theorem 2 in
Aldous & Limic [4], p. 4, we recall the following

Proposition 4.6 (Theorem 2 [4]) We keep the assumptions of Theorem 4.2 and the
previous notation. Then, (Lx)k>1, that is the ordered sequence of lengths of the excur-
sions of Y — J above 0, is distributed as the (B/k, a/k, ¢)-multiplicative coalescent
(as defined in [4]) taken at time 0. In particular, we get a.s. Y -, Ckz < 00.

Height process of ¥ We define the analogue of H" in the continuous setting thanks
to the following theorem that is recalled from various results in [17].

@ Springer



914 N. Broutin et al.

Theorem 4.7 Let (a, B, k, ¢) be as in (8) and assume that (10) holds, which implies
the assumptions of Theorem 4.2. Let X be derived from X® and X by (148). Let H
be the height process associated with X as defined by (138) (and by Remark 4.1 in the
supercritical cases). Then, there exists a continuous process (H;)e[0,00) such that for
all t € [0, 00), H; is a.s. equal to a measurable functional of (Y.ny, A.nr) and such
that

H; = Hetb, as. forallt € [0, T*). (152)

We refer to 'H as the height process associated with Y.
Proof See Theorem 2.6 1in [17]. O

As for H and X—I, the following lemma (recalled from [17]) asserts that the excursion
intervals of H and Y — J above 0 are the same.

Lemma 4.8 We keep the same assumptions as in Theorem 4.7. Then, the following

holds true.

(1) Almost surely for all t € [0, 00), H; Z’H(A?) and a.s. for all ty, ty € [0, 00) such
that A?l < AZ’ infsep, 11 Hs = infae[Ab(,l)’Ab(,z)] Ha.

(ii) Almost surely {a €[0,00):Y,> Ja}z {a € [0,00) : Hy, >O}.
Proof See Lemma 5.11 in [17]. O

5 Convergence of the graphs

In this section, we derive the convergence of the connected components of the graphs
provided that the coding processes converge. More precisely, recall the definitions of
Y% and A" in (100) and that of H" in (112). Recall also the definitions of ¥ and A
in (143) and that of H in Theorem 4.7. We prove Theorem 2.4, Theorems 2.5 and 2.8
subject to the following proposition whose proof is postponed to Sect. 6.

Proposition 5.1 Under the assumptions of Theorem 2.4, we have

Dyi=(a V", ar Ay, My ) —— (Y, A H)=:2 (153)

an <7 an 2 b
b bn> bn n—00

weakly on (D([0, 00), R))? x C([0, 00), R) equipped with the product-topology.

Proof See Sect. 6. |

5.1 Proof of Theorem 2.4

Subject to Proposition 5.1, in order to complete the proof of Theorem 2.4, it remains
to prove the convergence of the sequences of pairs of pinching times II,, (see (3) and
(4) for a definition). This is done by a soft argument involving a coupling.

Recall the definition of IT in (17) and in (18). By Skorokhod’s representation the-
orem (but with a slight abuse of notation) we can assume without loss of generality
that (153) holds almost surely: namely, a.s. £, — 2. Then, we couple the II,,, and
IT as follows.
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— Let R = Y";c; 8(.ri.u;) be a Poisson point measure on [0, 00)? with intensity the
Lebesgue measure dtdrdv on [0, 00)3. We assume that R is independent of .2
and of (2,,),eN.

— We set ki, = apby,/o1(wy) and for all 1 € [0, 00) we set Z} = - (Y," —J,"),
where we recall that JZ;"I =infse[0.p,1 ¥s". We then set S, ={(z, 7, v) € [0, 00)3:
0<r<2z}and 0 < v < k,}and we define B, = D, 1 L. u)€8,)0 i up) =
> i<p<pn 8(un,rn un), Where the ordering is such that the finite sequence (1},) 1< <p,
increases. Note that since z" is eventually null, 7, is a finite point process.

— Forall t € [0, 00), for all » € R and for all z € D([0, o0), R), we set

t(z, t,r)=inf {s € [0, 1] : ir[lf ]z(u) > r} with the convention that inf ¥ = oo.
ue S,t

(154)
Then, we set

%nwn = (5,11, p, Where s =7(z",1%,r0), 1 <p<py (55
Thanks to (3) and (4), we see that given Y™, ;- II,, has the right law. For convenience,
we set (s;‘,, tg) = (-1, —1), for all p>p,.

Similarly, we set Z° = Y; — J;, where J; = infsco Y, and we also set
S = {,r,v) € [0, oo)3 10 <r <2z and 0 < v < «}; we then define
P = Y ict Y riunesiO riuy =1 2 p=1 8(t,.r),.v,)» Where the indexation is such
that (¢,) p>1 increases. Then, set

I = ((sp.1p)) -, Where s, =T(2%,1p,1)) for p > 1. (156)

It is easy to check that IT has the right law conditional on Y.

First observe that k, — x > 0, by the last point of (21). Next, we prove that
z" — 7% a.s.in D([0, 00), R): indeed, since Y has no negative jumps, J is continuous
and by Proposition 5.1 and by Lemma B.3 (i), (& Jgj,nz)fe[om) — (Jr)1e[0,00) a.8. in
C([0, 00), R). Since J is continuous, Y and J do not share any jump-times, Proposition
5.1 and Lemma B.1 (iii) imply that («)T(YZ:",» J;’:’”[)),e[om) — (Y1, J1))ref0.00) 2.8. in
D([0, 00), Rz), which entails that 2" — z°° a.s. in D([0, c0), R).

Let us fix a, b, ¢ € (0, 00) such that

b> 2 sup sup Zj and c¢> 2 sup k.
neNU{oo} s€[0,a] neNU{oo}

Here b is random but only depends on the 2,,. We introduce

Z 8(t,*,rl*,u[*) :ZZ 1{t,-<a iri<b; ui<c}5(t,-,r,-,u,-),

I<I<N ieT
where (1)1 </<y increases. Conditional on (2,),en, the r.v. N is a Poisson r.v. with

mean abc. Note that conditional on N and (Z,)en, the law of the r.v. (¢, r/, uf)
is absolutely continuous with respect to Lebesgue measure. Therefore, a.s. for all
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916 N. Broutin et al.

I e{l,..., N} (if any), AZI =0, uf #«,and r # Zt*, and if r/ < Z;’,?, then
1 !
we get 7(2°°, tl*, rf=) = (2, 1", /") because by Lemma B.3 (iv), the function
r— t(2%°,1f,r) is right- continuous and it has therefore a countable number of
discontinuities. Since AZ% = = 0, Lemma B.1 (ii) entails that Z" — Z:’,?, and for all
1

sufficiently large n, u; ;éfcn and r; £27, and if ] < Z"*, then Lemma B.3 (iv) shows
that (2", 1, 1) — ©(Z%°, 1, r}"). Th1s proves that if tp <a, then (s” t”) — (Sp, tp),
since we have t" =t,forn sufﬁc1ently large as a consequence of the above coupling.

Since a can be arbltranly large, we get ;-II,, — IT as. in (RHN equipped with the
product topology. This, combined with Proposmon 5.1, completes the proof.

5.2 Proof of Theorem 2.5

From Theorem 2.4, we derive Theorem 2.5 that states the convergence of the excursions
of the processes encoding the connected components of the graphs.

More precisely, recall the definition of Y in (143). In Theorem 4.7, recall the exis-
tence and the properties of H, the height process associated with Y. Recall the notation
Jr = 1infgeq0,. Ys, t € [0, 00). Lemma 4.8 (ii) asserts that the excursions of H above 0
and those of Y—J above 0 are the same. As recalled in Proposition 4.5, Proposition 14
in Aldous & Limic [4] asserts that these excursions can be indexed in the decreasing
order of their lengths. Namely,

{tel0,00): H; >0} ={rel0,00):Y > J} =) (157)
k>1

where the sequence ¢ = Iy — ri, kK > 1, decreases. Moreover, the sequence ({x)k>1
appears as a version of the multiplicative coalescent at a fixed time: see Theorem
2 in Aldous & Limic [4] (recalled in Proposition 4.6). In particular, it implies that
as.y. k=1 ;kz < 00. Recall the definition of excursion processes of H and Y —J above
0in (43): fork>1and € [0, o0), we have

Hi (1) = Hiyeronan and Y (@) = Ygennar — Jig- (158)

Next recall the definition of IT = ((s,, tp))p>1 introduced in (17) and (18).

Let a,, b, € (0, 00) and w,, € Z}., n € N, satisfy (21) and (C1)-(C4) as in (29),
(30) and (34). Recall the definition of Y™ in (100), while 7{"" is the associated height
process in (112). Recall the definition of II, in (3) and (4). For all ¢ € [0, 00), to
simplify notation, we introduce the following:

. _ Wi o). ) g ) .__ an 4 Wy . _.

Y=gy = Inf VU= ™= Ty, =2 (55 1)) <y
(159)

Recall that (see (40))

{tel0,00): H" >0} ={re(0,00: V" >J"}= | [{.r) (160)
1<k=<qy,
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where the indexation is such that the ¢! :=r}! —I}! are nonincreasing and such that
I <l if g = ¢, (within the notation of (40), I} = ;" /by, r}l = r;" /b, and
é‘]? = é‘]?’n/bn)

By Skorokhod’s representation theorem (but with a slight abuse of notation) we
can assume without loss of generality that (39) in Theorem 2.4 holds P-a.s. We first
prove the following lemma.

Lemma 5.2 We keep the previous notation and we assume that (39) in Theorem 2.4
holds P-a.s. Then, for all k, n > 1, there exists a sequence j(n, k) € {1, ..., qy,} such
that P-a.s. for all k> 1,

Gy THnty) — (I, re).- (161)
Proof Fix k > 1 and let ty € (Ix, rx); note that [y = sup{t € [0, t9] : H; = 0} and
re = inf{t € [tp, 00) : H; = 0}. For all n > 1, set y(n) = sup{t € [0, 19) : H}" =0}
and 8(n) = inf{r € [tg, 00) :H;”) = 0}. Letg and r be such that [ <g <ty <r <ry.
Since infyc(, ] H; > 0, for all sufficiently large n, we get infycf, ] H;"” > 0, which
implies that y (n) < g and r < §(n). This easily implies that lim sup,,_, ., ¥ (n) <
and r; < liminf,_ o §(n).

Let g and r be such that ¢ </ and ry <r. Since H;, =H,, = 0, (150) in Lemma
4.4 (iv) implies that J, > Jy, > J,.. Since J is continuous, Lemma B.1 (iii) entails that
J™ — J as.in C([0, 00), R). Thus, for all sufficiently large n, J;" > J > I by
definition, it implies that ¥ ®)—J ™ (and thus ™) hits the value 0 between the times
q and #y and between the times #y and r: namely, for all sufficiently large n, y (n) >¢q
and 6(n) < r. This easily entails liminf, ., y(n) > I and ry > lim sup,_, o, 6(n),
and we have proved that lim,,, » ¥ (n) =I; and lim,,_, »c §(n) = 1.

Let ng > 1 be such that for all n > ny, H;;) > (. Then, for all n > n, there exists
jn,k)efl,...,qy,} suchthat y(n) = l;?(n)k) and 8(n) = r;‘(nvk); for all n < ng, we
take for instance j(n, k) = 1. Then, (161) holds true, which completes the proof. O

We next recall that Proposition 2.9 (Proposition 7 in Aldous & Limic [4]) asserts
that 3°1 ;. (&* = Y 4= (&)? weakly on [0, 00) as n — co. We use this result
to prove the following

Lemma 5.3 We keep the previous notation and follow the assumptions of Theorem 2.4.
Then

2y=(YO 1O IO @) —— 2=(Y 1LY @) (162)

1<k<qy, k=1
weakly on D([0, 00), R) x C([0, 00), R) x (Rz)N*x [0, 00), equipped with product
topology.

Proof First note that the laws of the .2, are tight. It follows from (39) in Theorem 2.4
combined with the weak convergence leksqw (;,:1)2 =D i1 (&x)?. We only need
to prove that the law of 2’ is the unique limit law. To that end, let (n(p)) pen be an
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increasing sequence of integers such that 2/ » = (Y, H, II, Z) weakly. It remains

to prove that Z = Zkz 1(Ck)z. Without loss of generality (but with a slight abuse
of notation), by Skorokhod’s representation theorem we can assume that 2,,(,) —
(Y, ’H, II, Z) holds true P-a.s. Then, by Lemma 5.2, observe that for all / > 1,

Z— 3@’z Y Can —2 2@ U6

1<k=quw, I<k<l I=<k=l

Set Z' = Zkzl(g“k)z; by letting [ go to oo in (163), we get Z > Z’, which implies
Z = 7' a.s.since Z and Z' have the same law. This completes the proof of the lemma.
O

Without loss of generality (but with a slight abuse of notation), by Skorokhod’s
representation theorem we can assume that (162) holds true a.s. on D([0, c0), R) x
C([0, 00), R) x (RHN" %[0, 00), equipped with product topology.

We next prove the following:

Lemma 5.4 We keep the previous notation. Assume that (162) holds true almost surely.
Then,
P-a.s. forall k> 1, (l,’zr,?) —_ (lk,rk). (164)
n— oo

Proof Let ¢ € (0, 00)\{¢x; k> 1} and let k. be such that ¢ > ¢ forall k € {1, ..., k.}
and ¢ <e for all k > k. Let k., > k. be such that Y, _,, (¢x)? < &%/3. Since k.. > ke,
we also get minj <x<x/ |¢ — k| <&. By Lemmas 5.2 and£5.3, there exists ng > 1 such
that for all n > ny,

Y @ = @ < B Y @) @] <3

1<k=qu, k=1 1<k<k/
and max -t < min |e—{l< . 165
max, |2 ko] min, e =2l (165)

Set S, = {1,...,qu,\{j(n, 1), ..., j(n, k,)}. The previous inequalities imply that
for all n > ny, ZkeS,, ((,f)z < &2. Thus, for all n > nyg, if k € S,,, then ¢y < e. Next
observe that for all k € {k. + 1, ..., k.},

n <& — (6 — &)+ max =" <&+ min |e—=¢o| — |e — <e,
gy = (& — &) 1§eskg|§g §j(n,4)| lslgkg| Cel — le — &kl

by (165). Also note that for all k € {1, ..., k.},

, .
Cnpy Z k= Max [ee—Cfi | > e+ 10 — el — min Je—gl > ¢,
=+ =Re

1<t<kl
again by (165). To summarise, for all n > ny, g“J’?(n’k) >eifk € {1,...,k;} and
;/’.’(n’k) <eforallk € (ks +1,...,qy,}. Since {1 > L > ... > {,, there exists n1 >nyg
such that for all n >n, gj( > ;“] 2> ; . Thus, for all n>n; and for all
ke{l,..., k:}, we have proved that j (n k) = k Wthh entails (164) since & can be
chosen arbltrarlly small. O
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Recall the notation Hy and Yy for the excursions of resp. H and ¥ —J above 0. We
define the (rescaled) excursion of Y™ _ 7@ and of H™ above 0 as follows: for k > 1
and r € [0, 00),

(1) _ (n) (n) _ym g
B (1) =My and YOO =Y 00— I (166)

By Lemma 4.4 (iii), we have AY;, = 0 a.s. Then by (162), Lemma 5.4 and Lemma
B.4 (iii) in Appendix, we immediately get the following:

Lemma 5.5 We keep the previous notation. Assume that (162) holds true almost surely.
Then, P-a.s. for all k> 1,

(YZI)’H;:)’ZZ’FI?) [N (Yk,Hk,lk,rk). (167)

in D([0, 00), R) x C([0, 00), R) x [0, 00)?.

Recall the definition of IT = ((s, tp))p>1 in (17) and (18), and recall the notation

nm = ((s;‘,, tg)) in (159). We next prove the following:

1=<p=pn
Lemma 5.6 Assume that (162) holds almost surely. Then, a.s. for all p > 1, there exists
k=1 such that ly <sp < t,, <ry and for all sufficiently large n, I}’ <s}, <t, <r;’ and
(l]}:’ s;’ t;y r]’:) g (lka Spv tp’ rk)‘

Proof By Proposition 4.5 (i), P-a.s. for all p > 1, Y:, > I, and there exists k > 1
such that t, € (I, r;). By Lemma 4.4 (iii), we get Y;, —J;, = 0. Note that y, €
(0, Y, —Jtp) and s, = inf {s €[0,1,]: infue[s,,p] Y,—J, > yl,} by definition (18).
Thus, we get [y <5, < t, <r and the proof is completed by (162) that asserts that
(s;’,, IZ) — (sp, tp) and by Lemma 5.4 that asserts that (I}, ;') — (I, rx). O

Proof of Theorem 2.5 In (44) recall that for all k > 1, I = ((sf,, t’lﬁ) ;1< p<m)

where (tk ; 1 < p < pg) increases and where the ([x + s’;), Iy + tllﬁ) are exactly the
terms (s, t,) of II such that ¢, € [Ii, ri]. Similarly recall the definition in (42) of
the sequence of pinching times l'[‘,':”, I < k <qy,: namely, in their rescaled version,

I = ((s;’,‘k, t;’k) i1<p< pZ), where (t}ﬁ’k ; 1< p<p}) increases and where
the (I} +s,’§’k, I+ tz’k) are exactly the terms (sg,, tz,) of II™ such that tZ, e, ml.
Thus, Lemma 5.6 immediately entails that P-a.s. forall k > 1, ,]17 HZ" — I asn— oo.
This convergence combined with Lemma 5.5 implies Theorem 2.5. O

5.3 Proof of Theorem 2.8

From Theorem 2.5, we derive Theorem 2.8 that states the convergence of the connected
components of the graphs. We first prove (59) in which the connected components
are indexed in the decreasing order of their measure. This result is obtained by soft
arguments that follow from Lemma 2.7. We then prove (60) where the connected
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components are equipped with their counting measures and we also prove that asymp-
totically the connected components are listed in the decreasing order of their numbers
of vertices when +/J, /b, — 0. This result is more difficult to prove.

Proof of (59) We keep the previous notation and recall that (G}, 4", o}, m;"),
1 < k < qy,, stand for the connected components of the w,-multiplicative random
graph G, . Here, d;" stands for the graph-metric on G, m;" is the restriction to G
of the measure my,, = >, w;”) 8j, 0" is the first vertex of G} that is visited during
the exploration of G, , and the indexation is such thatm}" (g‘i’”) > ... > m‘&’v"m (ggan )

Next, recall that H}(’” (), defined in (166), stands for the k-th longest excursion of

H"" that is rescaled in time by a factor 1/b, and rescaled in space by a factor a,, /by,;
Wp

similarly, =TI} = ((sZ’k , t';’k); 1 < p < p}) is the (1/b,-rescaled) finite sequence

of pinching times of H}(") . Then, forall k € {1, ..., qy,} the compact measured met-
ric space Gy := (G}, f=d;", o}, =m}") is isometric to G (B", ;- II}", ), the

compact measured metric space encoded by H,(C'” and the pinching setup (- l'[}’:", )

as defined in (52). On the other hand for the limit processes, Hy(-) stands for the
k-th longest excursion of H and Iy = ((s’;,,t’;);l < p < p) is the finite
sequence of pinching times of Hy. Then, for all k > 1, the compact measured met-
ric space Gy := (Gk, dx, ok, mk) is isometric to G (Hy, Ik, 0) that is the compact
measured metric space encoded by Hy and the pinching setup (Ilj,0) as defined
in (52). Without loss of generality (but with a slight abuse of notation), by Sko-
rokhod’s representation theorem we can assume that the convergence in Theorem
2.5 holds almost surely. Namely a.s. for all k> 1, (8", ¢/', = T") — (Hg. &, k)

on C([0, 00), R) x [0, 00) x (R®)N". We next fix k > 1; then for all sufficiently
large n, %HZV” and IT; have the same number of points: namely, p; = px and for
1 <p=<p; =m0
nk .n,k k k

(5 —— ). (168)
Recall the definition in (53) of the Gromov—Hausdorff-Prokhorov distance dggp. We
next apply Lemma 2.7 with (h, h') = (8, ®"), (I, T1') = (I, L"), (s, ¢') =
(0. @y /by) and § = 8, = max|<p=p, sk —sp*| v 1§ —1}"|. Then, by (55),

6up(Gr, Gi") < 6(pr + ) (IHe—H,” [l oo + w5, (Bx)) +3anP /bn + 04— |, (169)

where ws, (Hr) = max{|H(t) —Hi(s)|; s, ¢ € [0, 00) : [s—t] < §,}. By (168), 6, — 0;
since Hy is continuous and since it is null on [{, 00), it is uniformly continuous and
ws, (H;) — 0O; recall that a, /b, — 0. Thus, the right member of (169) goes to 0 as
n— 0. Thus, we have proved that a.s. forall k > 1, gup (Gy, G,(C”)) — 0, which implies
(59) in Theorem 2.8. O

Proof of (60) We next prove the convergence of the connected components equipped
with the counting measure. Recall that in the introduction we have introduced the
discrete tree 7y, encoded by the w,-LIFO queue without repetition (namely, the tree
encoded by H"): the vertices of Iy, are the clients; the server is the root (Client Q)
and Client j is a child of Client i in Ty, if and only if Client j interrupts the service of
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Client i (or arrives when the server is idle if i =0). We denote by C"™ the contour
process associated with 7y, that is informally defined as follows: suppose that 7y, is
embedded in the oriented half plane in such a way that edges have length one and that
orientation reflects lexicographical order of visit; we think of a particle starting at time
0 from the root of 7, and exploring the tree from the left to the right, backtracking
as little as possible and moving continuously along the edges at unit speed. Since 7y,
is finite, the particle crosses each edge twice (upwards first and then downwards). For
all s € [0, 00), we define Cy" as the distance at time s of the particle from the root of
T, . We refer to Le Gall & D. [19] (Section 2.4, Chapter 2, pp. 61-62) for a formal
definition and the connection with the height process (see also the end of Sect. 3.2).

It is important to notice that the trees encoded by C*» and by H"" are the same:
the only difference is the measure induced by the two different coding functions.
More precisely, C" is derived from H" by the following time-change: recall that
jn = max{j>1: w_(,”) >0} and let (§;)1<k<2j, be the sequence of jump-times of H"":
namely, &' | = inf{s > & : Hy" # H‘gg}, for all 1 < k < 2j,, with the convention
&y = 0. We then set, for 7 € [0, 00),

@, () = Z 10,1 (&) and ¢, (s) = inf {7 € [0, 00): @, (1) =5}, 5 € [0, 2ju],
1<k=<2j,
(170)
Note that ¢, (k) = 5,2’. Then, we obtain, for t € [0, 00),

Cwn _ H‘tf"n and C;:’n _ Hwn _ Hwn

W = = Mg =Hylgy o forallk € {0.....25).  (I71)

We next set, for t € [0, 00),

R = 21{53@5,} (172)
Jj=1

that counts the number of clients who entered the w,-LIFO queue governed by Y ™.
Note that E‘]'.]” is the first jump-time of N;V": namely the Ey” are independent expo-

nentially distributed r.v. with respective parameters w;") /o1(wy). In terms of the tree
T,,. R} is the number of distinct vertices that have been explored by H"" up to time
t. By arguing as in the proof of (94), we easily check that, for each ¢ € [0, c0), we
have

@, (1) = 2R — H;" . (173)

We prove the following

Lemma 5.7 We keep the previous notation. Then for all t € [0, c0), we have

2

102 (wy)

E[ sup R —s :I < 2\/;4- _— . (174)
SG[O,I]| y ‘ 2al(Wn)z

Moreover, there exists a positive r.v. Q, that is a measurable function of (N;J") i1

such thatE[Q,zl] <d4j, (recall that j,, :=max{j >1: w;") > 0}) and such that P-a.s. for
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all s, t € [0, 00),
Ry — R <s5+20,. (175)

(n>
Proof Set Mj (1) = 1(gwn _y—
. <

associated with the (N;f”" ) j>1. Standard results on point processes tell us that (M ;) j>1

) (tA Ew”) and denote by (%) the natural filtration

o] (w

are independent (%;)-martingales with o wWp) (M), = fé wﬁ.")l{KE;vn}ds, so that
E[M;(1)?*] = E[(M;);] = 1 —exp(—w{"t/01(wp)) < w}"t/o1(w,). We then set
M(t) = lejsjn M;(t). Then M is a (¢;)-martingale and Doob’s L? inequality
implies that E[supco 1 M (5)?] < 4E[M(1)?] < 4¢. Thus, E[sup,cio IM(s)]] <
2./t. Next, we set M (1) = R} — M;. We easily check the following:

w (n)

t—M(t) = Z T;m)(t—E;’")l{EynS,} ,

j=1

which is nonnegative and nondecreasing in 7 so that sup,cg ;1 5 —M(s)| =t—M ).
Moreover, for all j > 1, we check that

w(_n) (n) w(_")
Wn _—wt/or(wy) 1 ( )
oo EL—E] )I{E}’"St}] =e T 4 st < 5 ( /o1 (Wn))

This implies that E[sup¢[o  |s —M(@s)|] = E[t —M@1)] < t?02(wyp) /o1 (wp)?),
which easily completes the proof of (174) thanks to the previous inequality regarding
M.

Let us prove (175). To that end, observe that lim,_,» E[M (t)2] = 1. Thus,
lim;— oo E[M (1)?] = j, and Doob’s inequality entails that E[sup, ¢ oc) M?(1)] < 4jy.
We then set Q, = SUP; [0, 00) |M(t)| and we get almost surely for all ¢, s € [0, 00),
R —RM=M(t+s)—M(t) + M(t +5)—M(t) <20, + M(t +5)—M(t). Since
for all a € [0, 00), the function ¢ + t A a is 1-Lipschitz and since M is a convex
combination of these functions, M is also 1-Lipschitz: namely, [M(t+s)—M(1)| < s,
which completes the proof of (175). O

By (173) and (174) we easily get for all 7, ¢ € (0, c0)

P( sup |b D, (bys)—2s| > 28) <P( sup  |R{—s| > bn8/2)+P( sup  H{" > bns)

s€[0,1] s€[0,b,t] s€[0,b,t]
2
t°b, 00 (W,

54871 l‘/bn—f—L(;)-FP( sup b" Hwn >an€)-
&0 (wp) sef0,0] "

Thus, by (21) and (39) in Theorem 2.4, we getlim,,_, o P( SuPsefo.1] |5y Pn(bns)—2s| >
2 8) =0. This proves that ;- ®,,(b,-) converges to 2Id in probability on C([0, c0), R),
where Id stands for the identity map on [0, co). Then, standard arguments also imply
that ;-¢, (b,-) converges to $1d in probability on C([0, co), R). We also note that on
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any interval [k, k + 1] where k is an integer, C;" is a linear interpolation between C,”

and C,‘fil. These convergences combined with Theorem 2.4 imply

(arAp s ar Yo oMyt s 5 Cpt s 3 Mg, s 5 @n (T, ) — (A, Y, H,H.pp, I, 200),
(176)
weakly on the appropriate space.

We now deal with the excursions of C* above 0, that are the contour processes
of the spanning trees 7;", 1 < k < qy,, of the qy,, connected components of G, .
Note that the trees 7, are also the connected components obtained from the tree
T, after removing its root. Recall that [lkw”, rZ’”) are the excursion intervals of H"»
above 0. Namely, UlkaqW,, (", ry"y = {t € [0,00) : H;" > 0}. Recall that the
excursion intervals are listed in the decreasing order of their lengths and H}':" () =
HYn ((IZ'” + A r,‘("”), t € [0, 00), is the k-th longest excursion process of H"" above
0. Recall the notation IT}" = ((s;',’k, t;’k); 1 < k < p}) for the sequence of pinching
times falling into the k-th longest excursion. Also recall thatm™ =3, w!”§; and
m;" is the restriction to Z;"" of m". Note that (7", dgr, 0", m;") stands for the
measured tree encoded by H;" and that (G;", d;", ¢;", m;") is the measured graph
encoded by H;" and the pinching setup (IT;", 1), which means that G} is isometric
to the graph G(Hz” , l'[f" , 1) as defined in (52) and it is the k-th largest (with respect to
the measure m"”) connected component of G, . We next set forall k € {1, ..., qy,},

Iy = ©u ("), 7} = Du™),

Cl () = H™ (¢a ([ + 1) ATD) = B (¢ Ty + ) =1")
and

I = (@u " + sy =T @u @ + 135 =1)

I<k<p}"
Then, we easily check the following:

(i) {1 €10,00):C" >0} = cpeq,, [T T1)-
(i) C"(-) — 1 is the contour process of Z,"". We denote by v;" the measure that the
contour process induces on 7,": namely, (7, dgr, 0", v;") is the measured
tree encoded by C;" (-) — 1.
i) (G, )", o), vi") is isometric to G(C}"(-) — 1, T,", 1).
Since (b, ' ®, (by-), b, ¢ (by-)) — (21d, +1d) in probability on C([0, o), R)?, we
easily get from Theorem 2.5 that

(e Gn. ST 7l STy~ (/20,20 20, 20)),
- 177)
weakly on (C([0, 00), R) x [0, 00)? x (R)N)N" equipped with the product topology,
with obvious notation. Then, by Lemma 2.7 and the same argument as in the proof of
(59), we get

((gl‘cﬂ'l7 %dZ””a@Z””, ﬁ";:"))kzl — ((Gk’dk’gk’zmk))kzl (178)

n—o00
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weakly on GN* equipped with the product topology. The last step in the proof of (60)
consists in comparing the measure v‘,’f” with the counting measure u,‘,':". We will rely
on the following: O

Lemma 5.8 Let us denote by ;L}f" the counting measure on g,Z’ ". We equip QZ’ " with

the graph distance and for all non-empty subsets of vertices A we denote by AV the
set of vertices at graph-distance at most 1 from A. Then

v (A) <20 (AD) + 1 and 2" (A) < v (AD) + 1. (179)

Proof Since adding edges only diminishes the graph distance, it is sufficient to prove
(179) on 7, " equipped with the graph-distance dg;. Recall that Qw" is the root of
T,". To s1mp11fy notation we set 7 = 7,”", 0 = ¢;", v = v;", v = §, + v and
n = ;1,}2'". Since the contour process of T crosses twice each edge, we easily get
vV =8,+  crdeg(v)dy = u+po f~! where f(v) is the parent of v € T for
v#oand f(o) =o0.Let M =} 7(8,v) + (v, r(v))) that is a measure on 7 x 7T~
such that M(Ax7T) = 2u(A) and M(T x A) = v'(A). Then, set D = {(v, V') €
T x T :dg (v, V') < 1}. Since dgr (f (v), v) < 1, M is supported on D. Next, observe
that (Ax7T) N D C T x AW and similarly D N (T x A) € AD x T, which easily
entails (179). O

Since dw is the graph-distance on G, we easily see that on the rescaled space
(g,i’", o dW") (179) implies that ;-v}" (A) < =" (A“"™) 4 71 and - p" (A) <
b vk” (AP + 5, for any subset of Vertlces A. Since b, I' < a,/b, (for all suf-

1 . Wn

ficiently large n), we get dgrv?k(b—vk s 5 ;") < an/by. This combined with (178)
k

entails

(G 5rde™ e 57200 izr —m ((Gue di on 2mu))

n—oo

weakly on G equipped with the product topology, which easily implies (60).
End of proof of Theorem 2.8 We next make the following additional assumption :
Jn/bn — 0 and we complete the proof of Theorem 2.8. To that end, it is sufficient
to prove that for all fixed k > 1, the probability that p|"(G") > ... > u;" (G") >
max - [L‘}I" (g]“.”") tends to 1 as n — oo.

In Lemma 5.7 recall that E[Qﬁ] < 4j,. Thus, Q, /b, — 0 in probability. Recall
that

(b, ' @ (bn), by G (bn ))—>(2Id 1d)

in probability on (C([0, 00), R))?. By Slutzky’s theorem, we get a joint convergence
of

(by ' Quy by @, (by-), by ' (by))
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with (177). Without loss of generality (but with a slight abuse of notation), by Sko-
rokhod’s representation theorem we can assume that the convergence

(i Q- 2y @n ). e n o ): (GG ). i 576 5T )) )

——— (0.21d, 51d: ((He(-/2). 20k 27, 2T ) (180)

n—oo

holds almost surely on the appropriate space

Recall the notation & = ri — Iy, §" = r" =" = m"(G") and set p =
= ZZ = w” (QW") First, we easily derive from the argument of the proof of (179)
that v;" (gW") = 21" (G")+1. Let 0, be a permutation of {1, ..., q;"} such that
@ on () 1<k <q" is nonincreasing. To complete the proof of Theorem 2.8, it is then
sufficient to prove that for all k > 1, there exists ny such that for all n > ny, o, (k) =k.

To prove that, we then fix k > 1 and we recall that §| > ... > {x > {x41 so it makes
sense to fix & € (0, 00) such that & < { minj<;<x({; —¢;+1). Observe first that (180)
implies that for all j > 1, b, 1;}"” — ¢ and by, 12’; — 2¢; almost surely. Therefore,
there exists n; € N such that for all n > ny,

—1 —15n 1 n
b @0+ D max 15175205+ max b1 =g < (18D
Then, we fix n>ny and forall j € {1, ..., k}, Lemma 5.7 and (173) imply

—n . 7n n n
Couti) = Tou(j) — Lowiiy = Pnlrg () = Pn 5" )
= 2R" (rwn(])) 2Rn(l<7 (1)) H™ (VWH(J)) + H (")

on(J)
by (175)
=2R"(ry" ) 2R"U )+ = 260 40, + L
Thus, 2b;,! g“;"‘( Hzbn {U (j) —€- Moreover,

by T = 20 — e=2(0— i) + 2041 — & = 66+ (241 +6) —28 = de+ b, T,

which implies that E’f >... > EZ for all n > nj. Next, set § = {EZ; 1 <€ <qyl;
the previous inequality implies that, for all j € {1,...,k}, #(S N [Elj1 o00)) >j =
#(S N [Ty, ;). 00)). It follows that ¢, ;) > ¢, j € {1.....k}. Combined with the
previous lower bound for 2b, ! ;(‘T”;l”( iy this implies that for all j € {1, ..., k},

2b, §a(,) b, g“(,(j) e>b, g“ —& > 20 —4de.

Consequently, b_lgw"( =8 2¢. This implies that 0, (j) < j. Indeed, suppose
that o, (j) > j + 1; thus §/+1 > 2’"(])
(181) would entail £ +¢&> b, CW" > b_lg“;”(j) > {j—2¢, which would contradict
&< iming<¢<x({¢—&e+1). Thus, for alln>ny and forall j € {1,...,k}, 0,(j) < J,
which entails that 0, (j) = j, and therefore completes the proof. O

and the previous inequality combined with
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6 Proof of Proposition 5.1

In this section, we prove Proposition 5.1 subject to Proposition 2.1 and Proposition
2.2, whose proofs are later given in Sect. 7.2. The proof of Proposition 5.1 relies upon
the representations ¥ = X 06, H = H 06® and their discrete counterparts. Note that
although the convergence of (X", H"") is provided by Proposition 2.2, their joint
convergence with #2" in Skorokhod’s topology is a very delicate matter, as X and
0® share jumps. Therefore, we need to proceed with utmost care.

Let us first recall two general lemmas from Ethier & Kurtz [22] that we use several
times.

Lemma 6.1 (Lemma3.8.2 [22]) Foralln € N, let (SZ)keN be a nondecreasing [0, oo]-
valued sequence of r.v. such that sg =0, a.s. limy_ o SZ = o0 and SZ < SZ 4l for all
k € N such that s}l < oo. Fix z € (0, 00) and set k, = max{k € N : s} <z}. Then

lim sup P( min s}, —S} < n) =0<4<= lim sup sup P(s} <z; s}, ,—si<n)=0
k+1 Sk P Sup BASp <25 Spy =S <7 .
10+ peN O<k=k, ‘" 10+ neN keN ( * )

Proof See Lemma 3.8.2 in Ethier & Kurtz [22] (p. 134). Note that Lemma 3.8.2 in [22]
only deals with sequences that take finite values but the proof extends immediately to
our case. O

The previous lemma entails a tightness result for nondecreasing processes that is a
consequence of Proposition 3.8.3 in Ethier & Kurtz [22]. To recall this statement we
need to introduce the following notation. Let y € D([0, c0), R) that is the space of
cadlag functions equipped with Skorokhod’s topology, and let z, n € (0, 00). Recall
the notation w, (y, n) in (121) of the cadlag modulus of continuity of y € D([0, c0), R).
Assume that y(-) is nonnegative and nondecreasing; then for all ¢ € (0, c0), we
inductively define times (7} (y))ren by setting

() =0 and 17, (y) =inf{r >t (»): yO—y(r{ () > ¢}, (182)

with the convention that inf # = oo. Observe that if z > 5 and if w, (y,n) > &,
then there exists k > 1 such that 7/ (y) < z and 7,/ (y) —7;_,(y) < 1. Indeed, set
r = 1+ max{k € N:7/(y) < z}. Note that z > n and w.(y,n) > & imply that
r>2;thenforalli € {0,...,r—1},sett; = rf(y) and t, = z. By definition of the
rf(y), we get maxj<;<, osc(y, [ti—1,%)) < e. Since w,(y, n) > &, we necessarily
get miny<;<,—1 (¢ —ti—1) <n, which is the desired result. This observation combined
with Lemma 3.8.2 of [22] (recalled above as Lemma 6.1) immediately entails the
following.

Lemma 6.2 Foralln € N, let (R}!)¢[0,00) be a cadlag nonnegative and nondecreasing
process. Then, the laws of the R are tight in D([0, 00), R) if for all t € [0, c0) the
laws of the R, (t), n € N are tight on R and if for all z, ¢ € (0, 00) we have

lim lim sup sup P(t,f(R”) <z; i (R -1 (R") < r]) =0. (183)
10+ jeN  keN
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Proof See the previous arguments or Lemma 3.8.1 and Proposition 3.8.3 in Ethier &
Kurtz [22] (pp. 134-135). O

Recall the definition of A" in (100). We immediately apply Lemma 6.2 in combi-
nation with the estimates in Lemma 3.5 to prove the tightness of a rescaled version of
A,

Lemma 6.3 Let («, B, k, ¢) be as in (8). Let ¥ in (9) satisfy foo dr/y(A) < oo. Let
an, b, € (0, 00) and w, € E}, n € N, satisfy (21) and (C1)—(C3) as in (29) and (30).
Then, the laws Of(#A‘;',V:,)ze[o,oo) are tight on D([0, c0), R).

Proof We repeatedly use the following estimates on Poisson r.v. N with mean r €
(0, 00):

E[(N-1);]=e"—1+4r and var((N—1)y)=r>~(e"—1+r)(e”"+r) < r?. (184)

rw™

—l+5my) =

o1 (wn)

_twj'n) /o1 (Wn)

By the definition (100), we get E[A;"] = Y~ w{” (e
Lo3tom) Thus, by (C1)—(C3) and the Markov inequality, we get

201 (wn)? "

1i£sogpp(aln,4“;;t > x) < 537k (kos(e) + B) —— 0.
This shows that for any ¢ € [0, 00), the laws of the #A‘,’;jt are tight on R.

We next prove (183) with R} = #AZV:V t € [0, 00). To that end, we fix z, ¢ €
(0, 00) and k € N, and we set T, :=t; (R"). Then, (118) in Lemma 3.5 witha = a,e¢,
T=b,T,,t = byn and ty = b,z implies the following:

P(tf(R") <z; 15 (RD) =1 (R") <n) = P(by T <byz; AZ’:’T"+hnn—A2':T’Z > ane)
o3(wy)

(<) (Wn)2
anby bpo3(wy)

IA

(ang)ilbnn(bnz + %bnn)

IA

-1
&R S o)

Then (C1)—(C3) entails (183) and Lemma 6.2 completes the proof. O

Recall the definition of X®¥ in (98) and that of the Poisson processes N}f’(-), j>1

in (99). Recall also the definition of X® in (142) and that of the Poisson processes
N;(), j=1

Lemma 6.4 Under the assumptions of Lemma 6.3, the following convergence

((I_Xb’wn)te[o,oo)’ (N;Jn(bnt))tG[O,OO); J= 1) - (Xb’ Nf; J= 1) (185)

an
bnt n—oo

holds weakly on (D([0, co), R)N equipped with the product topology.
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Proof Let u € R. Note that
E[exp(iuN;" (bat))] = exp(—th,w!(1—e™) /o1 (wy)) —> exp(—tkcj(1—e™))

by (21) and (C3). Thus, for all ¢ € [0, 00), N}“’" (but) — N(t) in law. Next, fix k> 1
and set, for 7 € [0, 00),

n__ 1 b,w, —1. .(n) A7W, __ vyb AT
Of = Xy = D ay ' w'Ny (but) and Q= XP— ) ciN;(@®) .
1<j<k 1<j<k

Since we assume that Proposition 2.1 holds true, #Xfr;:”” — XP weakly on R. Since
Q7 (resp. Q) is independent of (N;V")lf j<k (resp. independent of (N;)1<j<k), we
easily check

w(.")
QL _ R[uX" fan —iu— N (but) iuxP —iuciNj(t)] — [ ,iuQ
E[¢"@'] = E[e" T ] /T ] E[e PO B[]/ [T B[N O] =[],

1<j<k 1<j<k

Thus, QF — QO weakly on R. Since Lévy processes weakly converge in D([0, 00), R)
if and only if unidimensional marginals weakly converge on R (see Lemma B.8 for
precise references), we get Q" — Q and for all j > 1, N;’" (by-) — Nj, weakly on
D([0, c0), R).

Since Q", Ni”", R N,‘(” " are independent Lévy processes, they have a.s. no com-
mon jump-times and Lemma B.2 asserts that

(Qr, N‘f’” (bpt), ..., NZ”’ (but))tef0,00) — (Q, N1, ..., Nr) weakly on D([0, c0), Rk+1).
Since XP " is a linear combination of Q" and the (N;V")l <j<k» We get

((ixfr;j’", N{"(but), ..., N (bt)) — (X, Ny, ..., Ni) weakly on D([0, co), R¥*1y,

te[0,00)

whichimplies the weaker statement: (#X]l;:%’ le" by, ..., N,ZV" (by)) — (X°, Ny,
..., Ni), weakly on (D([0, o0), R))**! equipped with the product topology. Since it
holds true for all k, an elementary result (see Lemma B.7) entails (185). O

Recall the definition of A in (100) and recall the definition of A in (143).

Lemma 6.5 Under the assumptions of Lemma 6.3, we have

(G X5 000y (AR ret0.00) ——— (X®. A) weakly on (D(0. 00), R)>.
(186)

Proof Lemma 6.3 and Lemma 6.4 imply that the laws of (L A}" , L Xl}:):‘_“’” , N‘}f’" (bn); j=

by-» an

1) are tight on (D([0, 00), R))N equipped with the product topology. We want to prove
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that there is a unique limit law: let (n(p)) pen be an increasing sequence of integers
such that

1 Wa(p) 1 b.Wa(p)  ArWn(p) N / yvb o
(anm Abn<p>" an(p) an(p) N Gnp )i =1 p—o0 (A" X2 Nj: j = 1),
(187)

holds weakly on (D([0, 00), R)YN. Since D([0, c0), R)HN equipped with the product
topology is a Polish space, Skorokhod’s representation theorem applies and without
loss of generality (but with a slight abuse of notation), we can assume that (187) holds
true P-almost surely on (D([0, c0), R))N.

Recall that A, = LkBr> + > =16 (N; (t)—1)+, t € [0, 00). Then, to prove (186),
we claim that it is sufficient to prove that for all 7 € [0, 00),

1 Wn(p) . J
%A bupyt A; in probability. (188)
Indeed, let t be such that AA; = AA; = 0 and let ¢, ¢’ be rational numbers such
¥n(p) i (p) np) L ;o
that ¢ <t < q'; thus, A0, < Al =< Ay s Since AA; = 0, we get
n(/)

as. A, ! /an(py — Aj; the convergence in probability entails that A, < A} < Ay/;

since it holds true for all rational numbers g, g’ such that ¢ < ¢ < ¢/, we get
A~ < A} < A; which implies A, = A} since AA; = 0. Thus, a.s. A and A’
coincide on the dense subset {r € [0,00) : AA; = AA, = 0}: it entails that
as. A = A’ and the law of (A, XP, Nj;j = 1) is the unique weak limit of the
laws of (7 Ab , Xb W NW” (bp-); j=1).

Let us prove (188). To s1mp11fy notation let v, € Z} be defined by

v/ =w/a,, forjeN*. (189)
By (C3), v/ — ¢;3 by (21) and (C2), b, /01 (vs) — k and 03(v,) > 03(¢) + k.
We next claim that there exists j, — oo such that
; (n) _ : 3 _ . m\3 _
lim v =0, lim_ > ") =o03(c) and lim > ") =p/k. (190)
1<j<jn J>Jn

Proof of (190). Indeed, suppose first that sup{j > 1:c; >0} = oo and set j, =sup { j >
1: v_i-") >0 and leigi(vf"))3 < 03 (c)}, with the convention that sup ¥ = 0. Here
Jjn—> 00, and it is easy to check that it satisfies (190).

Next suppose that j, = sup{j>1:c; >0} < oo. Clearly Zl<j<j (v“’))3 — 03(¢)
and ), ;. (v}" )3 — B/k. Since forall j > j*, v "’ — 0 itis possible to find a sequence

(Jn) that tends to oo sufficiently slowly to get Z je<j< jn(vj-”))3 — 0, which implies
(190). O

Next, we use (190) to prove (188). To that end, we fix ¢t € [0, o0) and we fix k € N
that will be specified later; since j, — 00, we can assume p is such that k < j,(p). To

simplify, we set &7 = v"")(N"? (b 1) 1), and &; = c;(N;()—1), and
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= Y el—g RV = Y0 =Y g, ¢/ =D €' —EIE] and d,y()=kpr>-Y E[EF].

1<j<k k<j<jnpy  J>k J>Jn(p) J>Jn(p)

Thus, A""®) (by(pyt)/anpy — Ar = Df’p + Rf’p + Cl[7 —dp(t) and we prove that each
term on the right-hand side goes to 0 in probability.

We first show that d, (1) — 0. Since N, " (bn(pyt) is a Poisson r.v. with mean r,, ;
that is equal to v{""” by ()1 /01 (Va(p)), by (184) we get E[E]] = v (777 —1 +
rp,j). We next use the following elementary inequality, valid for y € [0, 00),

0< 2y — (e =1+4y) < 232 (1—e) < 1y7AY°, (191)

-2

that holds true since y~2(e > —1 4 y) = foldv Jo dw e, Thus,

1 (n(p)) 2 L @p) 3 L o(py Gy 1)? (n(p)y3
< -E[¢]] =< . < I, —
0= 2V Z Vi T = 2% o) Z( ) 0,
J>Jn(p) J>Jn(p) J>Jn(p)
by (190). Next,notethat -, _;  v""r2 = (bu(pyt /01 Vu(p)* X, () —
y J>Jn(p) v; n(p) 1\Va(p) J>],,(p>

kBt%, which implies that dp(t)— 0as p — 00.
We next consider C/: by (184), Var(E;’) < (v;"(p)))zrf7 i Since the EJI.) are indepen-
dent, we get

E[(C?)] —Zvar(& ) < p®® (baip)? Z( [ .

/Vl(ﬂ) o1 (v (p))2
J>Jn(p) J>Jn(p)

by (190), which proves that C/ — 0 in probability when p — co.
We next deal with R;"p. By (184), (190) and (191), we first get

L@ 2 1 (apt)? WeNy3 2 3

0< E E[£7] < y E v; Kt E c.

- . [EJ ]7 - 2% T2 01(Vn (17>), ( ) p—>00 2( ) ‘ J
k<j<jnp) k<j<jnp) k<j<jn(p) j>k

(192)

Similarly, observe that E[§;] = ¢;(e™' —1 + k1c;) < ;—(Kt)2c3. This inequality
combined with (192) entails that

limsup E[|R|] < (c1)? dad —— 0. (193)

p—>00 i~k k— 00

Finally, we consider D7 Since a.s. ¢ is not a jump-time of Nj, a.s. v"(") (Nw"(")

bupyt) =)y — ¢j(Nj(t)—1)1. Thus, for all k € N, as. D, — 0. These limits

combined with (193) (and with the convergence to 0 in probability of C,p and d (1))

easily imply (188), which completes the proof of the lemma. O
Recall the definition of YV in (100) and that of Y in (143).
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Lemma 6.6 Under the assumptions of Lemma 6.3, we have

1 weakly

(O RS ) N (Y 5)

an bnt 0 ay Cbat? a, b,,t))ze[O,oo) 1 00

in D([0, 00), RY).
(194)

te[0,00)

Proof Without loss of generality (but with a slight abuse of notation), by Sko-
rokhod’s representation theorem we can assume that the convergence in (186) holds
true P-almost surely. We first prove that ((#XZ;W", #A‘g:.)) — ((XP, A)) as. in
D([0, 00), R?) thanks to Lemma B.1 (iii). To that end, first recall that by definition,
the jumps of A (resp. of A"") are jumps of X (resp. of X®¥): namely if AA; >0,
then AXP = AA,. The same holds true for A¥» and X>¥r.

Let t € (0, 00). First suppose that AA, > 0. Thus, AX? = AA,. By Lemma
B.1 (i), there exists a sequence of times #, — ¢ such that ;TAAZV:tn — AA;. Thus,

for all sufficiently large n, a; AA}", > 0, which entails 7- AA}”, = %AXZ;Z" and
b,w,

we get #AXW" — AA, = AXP. Suppose next that AA, = 0; by Lemma B.1
(i), there exists a sequence of times #, — ¢ such that ,}—nAXZ;X” — AX}’. Since
AA; =0, Lemma B.1 (ii) entails that #AA};’:M — AA; = 0. In both cases, we

have proved that for all # € (0, co), there exists a sequence of times f, — ¢ such

that #AX[};’;‘I’:” — AXP and ar AAy", — AA;: by Lemma B.1 (iii), it implies that

((#XZ‘,”", ,#AZ’:_)) — ((XP, A)) as. in D([0, 00), R?). This entails (194), since the
function (x, a) € R (x,a,x—a) € R3 is Lipschitz and since XPWn _ AV — yWn
and XP—A =Y. O

Recall that X*" (resp. X¥) is an independent copy of X" (resp. of X®). Recall
the definition of y =" (resp. of ) in (101) (resp. in (131)). Recall that I;"" =
infye0.) X5 and recall the notation 155" = lim;_, o0 1" Similarly, recall that I7 =
infyefo,,) X5 and recall the notation /2, = lim;_, « /. Recall the definition of ™ in
(135) in Lemma 4.1. We also set

—r,w

iU =yl ifx<—IZY and YV =y t((—13"—-) ifx>=—13". (195)

O
Lemma 6.7 Under the assumptions of Lemma 6.3, we have
1 r,wn 1 —r,wy 1 Wn)y o k2
(G bat )te[O,oo)’ (5 Varn )xe[O,oo)’ —ar 1%™) 00 (X=. 7" —1%)
(196)

weakly on (D([0, 00), R))2 x [0, oo].

Proof Let " (resp. ¥) be a conservative subordinator with Laplace exponent
a1 (-/bn) — an0w, (resp. ¥~'(-)—@). By (33) in Proposition 2.1 , a, ¥, ' (A /by)—
an0w, — ¥ '(A) —o for all A € [0, 00), which implies that for all x € [0, c0),
yI — ¥, weakly on [0, co). Since the " are Lévy processes, Theorem B.8 entails
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that " — ¥ weakly on D([0, 00), R). Let &, (resp. £) be an exponentially dis-
tributed r.v. with parameter a,0y, (resp. o) that is independent of y" (resp. of ¥),
with the convention that a.s. £, = oo if g, = 0 (resp. a.s. £ = oo if o = 0).
We then get (", &,) — (¥, €) weakly on D([0, 00), R) x [0, 0o]. An easy applica-
tion of Lemma B.4 (i) entails that ((y AE, )xe[0.00)> En ) ((1’7)6/\5))66[0,00)7 5) weakly
on D([0, c0), R) x [0, oo]. By (136), we get (b Vo, — a—lnlégw”) — (7,1", —Icfo)
weakly on D([0, 00), R) x [0, co]. Under our assumptions, Proposition 2.1 implies
that —- r Y s XT weakly on D([0, 00), R). Then the laws of the processes on the

left hand s1de of (196) are tight on D([0, 00), R)Zx[0, oo]; we only need to prove that
the joint law of the processes on the right hand side of (196) is the unique limit law:
to that end, let (n(p)) pen be an increasing sequence of integers such that

(( 1 l’,Wn(p)) ( 1 _—r, Wn(p)) _ 1 I,Wn(p))
an(p) “bnpyt /1€[0,00)> \byp) Va,,(l,)x x€[0,00)"  an(p) "

— (X798,
p—00
197)

where (', £) has the same law as (™, —I%). Without loss of generality (but with
a slight abuse of notation), by Skorokhod’s representation theorem we can assume
that the convergence in (197) holds P-a.s. and we only need to prove that (y’, &) =
T, —1%) as.

We first prove that a.s. &’ = —I%. Since X* is a spectrally positive Lévy pro-
cess, it has no fixed discontinuity. Moreover, ¢ +— inf[p ;) X~ is continuous. Then,

by Lemma B.3 (ii), for all t € [0,00), as. a,, infsepo, q X, e

Bu(pyS — infjp, X*.

—1 75Wn(p) /
Since — n(m infse[o,7] X n(p)s < =, lx — &', for all t € [0, o0), we get

a.s. —infjo, X* < &'. Namely, —1%, < &'. Since £ and —I%, have the same law on
[0, 00], we get &' = —I% as.

We next prove that a.s. for all x € [0, —I%), y, = ¥,. Indeed, fix x < —I%
such that Ay = 0. Then, by Lemma B.3 (iv), we get yan(p"(") /bn(py = vy . Since

x < =155 Jay( ) for all sufficiently large p, it shows that yan(p”)%’) [bu(py— VE = VE.

Thus, a.s. for all x € [0, —1%) such that AyT = 0, we get ¥, = ¥, which implies
the desired result. Note that it completes the proof of the lemma in the critical and
subcritical cases.

To avoid trivialities, we now assume that we are in the supercritical cases. Namely,
0>0and —I1% <oo a.s. To simplify notation, we set

Wa(p)

= oy (15 ) and =y (12

First note that the proof is complete as soon as we prove that #! — .. To prove this
limit, we want to use Lemma B.3 (ii7). To that end, we first fix x > — I . Since (y', &)
has the same law as (7", —1%), v’ is constant on [£’, 00) and since &’ = —17, ¥’
is constant on [—1%,, 00), which implies Ay, = 0 and thus 7;’!?:")%’) /bn(p) = V- We
next fix r > y; + t4. Thus, there is po such that for all p > po, 7;‘(':")({) [bnpy <t

T\ Wn(p) : p
(X /bn(p). Since t >ty V ty,

we get t! = inf{s € [0, ¢]:inf,¢[0.q] an(p’;(rp) inf 0.1 Xb (';(r’”} and t, = inf{s €

and x > —I."""/ay( ), which implies that 1! = 7,
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[0, ] :inf|o 5} X* = inf|p,;) X*}. Thus Lemma B.3 (ii7) entails that t? — t,, which
completes the proof of the lemma. O

Recall the definition of #®* in (101) and that of =¥ in (195). We next set, for
t €10, 00),
—b,W —T,
0, =t+yA¥§”. (198)
Note also that 7. = sup{t € [0, 00): A} < —1%"} by definition (103). Note also §b’w
coincides with 6®* on [0, T)).

Lemma 6.8 Under the assumptions of Lemma 6.3, the laws of the processes
—b,w,

(b ant )rel0,00) are tight on D([0, co), R).

Proof To simplify notation we set R} = b 0 ZD ;N "t = —yr Vi (AW" ); we only need
to prove that the R" are tight on D([O oo) R). To that end we use Lemma 6.2. First,

observe that for all K, z € (0, 00),

P(R! > K) =P(5-7""" (A" (but)) > K) < P(5-75%" > K) +P(5- Ay > 7).

This easily implies that for fixed ¢ the laws of the R' are tight on [0, oo) since it is the
case for the laws of 77;,%" /b, and A}, /a, by resp. Lemma 6.7 and Lemma 6.3.
Next, denote by .% the o-field generated by the r.v. N;f"‘ (s) and y ¥ (A" with
s € [0,¢] and j > 1; note that NY"(t + -) — N'"(¢) are independent of .%. Fix
& € (0, 0o) and recall the definition of the times 77 (R") in (182): clearly b, t; (R") is
a (%)-stopping time. Next, fix k € N and set, for x € [0, 00),
g(x) ==y (an (x + 2= A" (baT( (R™)))) — =7 (A" (buT{ (RM))) .

bn
Setu, = inf{x € [0, 00):g(x) > ¢}; thus by (182),

r,f_H(R") = inf {t > 1 (R") : #AW" (b,,t)—WAW” (bnti (RM)) > ug} .
Fix z, 1 € (0, 00) and set g, x(n) = P(tf (R") < z; Tk+1(R")—T (R") < 7). By
(118) in Lemma 3.5 (applied to the (.7;)-stopping time T = b, t; (R"), to ty = byz,
tot = b,n and to a = a,x), we get the following:

qni () < P(bpti (R") < bpz; A" (ban + by (R"))— A" (bt (R™)) > ayug)
< P(bpti (R") < bpz; A" (bun + byt (R") — A" (byT (R")) > anx)

+P(u; < x)
anb,  byo3(wy)
o1(wy) a,zlm (wp)
anby an3 (wn)

<x'n@+1in +Pu, <x)

<x'nz+ 1ty P(g(x)>e¢). (199)

o1(Wy) a%GI (Wn)
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r,Wnp

Denote by ¢4 the o -field generated by the processes (N ) j=1andby yy "™,y € [0, x]

and set ¢, = %7, . Then, it is easy to see that A" (b, (R")) is a (%,)-stopping
time. By (137) in Lemma 4.1 applied to 7T = AW" (b T (R")), we get

1—exp (—xantﬁ‘;nl (%ﬂ))
_1 *

P(g(x)>¢) <

1—e

This, combined with (199) and (33) in Proposition 2.1, implies that

. l—e v '™ l—ex¥ '™
lim sup sup gk (1) < x~ 1z + Mk (B + ko3(0)) + - — 0,
n—>o00 keN 1—e n—0+ l1—e x—0+
which completes the proof by Lemma 6.2. O

Recall the definition of 8% in (145) and that of T in (135) in Lemma 4.1. Then,
we define -
Vi €[0,00), 6, =t +7£1 . (200)

Recall that 7* = sup{r € [0, 00): A; < —I%}. Then, note that §b coincides with 6°
on [0, T*).

Lemma 6.9 Under the assumptions of Lemma 6.3,

s an

1 ybwy Wn Wn) 20 1 —rw, r w,, 1 ogrw, 1o )
((“n an Ab ’ fln by-)° bn ebn ’ bp ya,«, ? an X L IOO > bp Twn

——((X*, A, 7), 8°, 7%, X*, —I15,T%) (201)

n—o0

weakly on D([0, 00), R3)x(D([0, 00), R))3X[0, 00]? equipped with the product topol-
0gy.

Proof Recall the definition of 7.7 in (103). We first prove that ;.-7.7 — 7™ in law on
[0, oo]. To that end, first observe that from the independence between the blue and red

processes, we deduce that( Aw” I ") = (A, —IZ,) weakly on D([O 00), R)x
[0, oo]. In the (sub)crltlcal cases o € [0 00), —15, = oc. Then, clearly ;- T‘;‘” —T*

in law on [0, oo]. We next suppose « < 0; thus —IZ is exponentially distributed with
parameter ¢ > O (that is the largest root of v); namely —/Z has a diffuse law which
allows to apply Proposition 2.11 in Jacod & Shiryaev [27] (Chapter VI, Section 2a
p. 341) that discusses continuity properties of specific hitting times; thus, we get that
a Ty — T* inlaw on [0, oo].

By Lemmas 6.6, 6.7 and 6.8, the laws of the r.v. on the left hand side of (201) are
tight on D([0, 00), R?) x (D([0, 00), R))? x [0, 00]?; we only need to prove that the
joint law of the processes on the right hand side of (201) is the unique limit law. To this
end, we note that by the aforementioned three lemmas, the independence between the
red processes and blue ones, as well as the uniqueness of the limit law of (7 T‘;‘n) as
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implied by Jacod & Shiryaev’s proposition, it suffices to consider the situation where
(n(p)) pen is an increasing sequence of integers such that

(( 1 Xb’wnw) LW 1 YWn<p))

anp) “bu(py: 7 An(p) * bu(p) n(p) " bu(py )’

1 Zbwnp) 1 —_r,w(p) 1 Xr-,Wn(p) _ 1 Irywn(p) 1 *

buipy  bup) * bupy T anp) Tbuipy T dngp) ~ P " bu(p) " Vin(p)
—— ((XP, A ), 0., 7", X", —15. T"), (202)
p—>00

and then prove that 8’ = #°. Without loss of generality (but with a slight abuse of
notation), by Skorokhod’s representation theorem we can assume that (202) holds true
P-almost surely. We say that cadlag process L = (L;);er, has no fixed discontinuity
if P(L;— = L;) = 1 for all t € R;. Observe that A has no fixed discontinuity.
Therefore, a.s. for all g € QN [0, 00), AA, = 0, and thus A‘Z:((pp;q /an(p) — Aq. Since

y* has no fixed discontinuity and is independent of A, the same properties hold for
y . Therefore, a.s. for all ¢ € Q N [0, c0), Ay (A ) = 0, which easily entalls that

FEI (AYD (b @) /Bu(py — T (Ag); thus, 8P (b)) /bu(p) — eq for all
q € QNI0, 00) a.s. Therefore, 8’ = 5b, which completes the proof. O

Lemma 6.10 Under the assumptions of Lemma 6.3,

2,(1) = ((a'n Xfwn _Awn 1 Ywn 1 ezlwn) 1_7rwn _ern7__1rwn —T*)

ne 0 an by’ bn bp ¥ ap- ° an an “00 by

— ((X",A,Y, %), 7%, X*, —1Z,T%) (203)
n—oQ
weakly on D([0, 00), R*)x(D([0, 00), R))2X[0, 0o]? equipped with the product topol-
0gYy.
Proof Without loss of generality (but with a slight abuse of notation), Skorokhod’s
representation theorem allows to assume that (201) holds P-almost surely. To simplify
notation, we next set R" = 1 (Xb v AW” ;;",) and R = (XP, A, Y). Let us fix
a € (0, 0).
We consider several cases. We first suppose that AR, #0. By Lemma B.1 (i), there
is 5, — a such that RY _ — R4—, R{ — R, and thus AR} — AR,.

— Let us suppose more specifically that AY, > 0. By definition of Y, we get AXE’ =
AY,and AA, = 0. Suppose thata € [0, T*]; by Lemma4.3 (i), we get AO}; =0
and thus A8 °(a) = 0. Note that A8 °(a) = 0 for all a € (T*, 00). Consequently,
for all a € (0, 00), if AY, > 0, then A@b(a) = 0 and Lemma B.1 (i) entails
L AT (bysy) > AT = 0.

— We next consider the case where AR, # 0 but AY, =0; then, by definition of A
and Y, we get AX®=AA, > 0. Since y*, and therefore 7~ is independent of R, it
has a.s. no jump at the times A,_ and A,; therefore: ;- r (AL )=V (Ag)

and Ly =" (Ay" ) — YT (Ag). This implies that b— (bpsy) — AGU =
r(Aa) Y (Ag-).

bw,,
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— We finally suppose that AR, = 0; by Lemma B.1 (i), there exists a sequence
s/ — a such that =A™ (b,s) — AB.. Since, AR, = 0, Lemma B.1 (ii)
entails that AR), — AR,.

Thus, we have proved the following: for all a € (0, 00), there exists a sequence

s — a such that ,}A@b’w" (bns)) — A0 and AR" e AR,. Then, by Lemma

B.1 (iii), (R”, 15> W”(b ) — (R, 9° ) a.s. on D([0, 00), R*), which completes the
proof. O

Recall next that for all # € [0, c0) and all n € N,
AP =inf {5 € [0,00): 07" >1}, AP =inf{s €[0,00): 62 >1},  (204)

that A" = r—A>™ and that AT = 1 — AP,

Lemma 6.11 Recall the notation 2,(1) in (203). Under the assumptions of Lemma
6.3,

2,(2) 1= (L2u(D) - AP LAY —— (XD, A Y. 8)), 75, XF, —I5, T*, AP, AY)
(205)

weakly on D([0, 00), R*)x(D([0, 00), R))?x[0, 00]>x(C([0, 00), R))? equipped with
the product topology.

Proof Without loss of generality (but with a slight abuse of notation), by Skorokhod’s
representation theorem we can assume that the convergence in (203) holds P-almost
surely. Since gb (resp. §b’w") is constant on [T*, co) (resp. on [T;ﬂ, 00)), we easily
derive from (203) that 8™ (Ty%)/bn —0°(T*) as. on [0, oa].

Next, we take 1 € (0, oo0) distinct from 8" (T*). Suppose first that ¢ < 8°(T*).

Wn

Then, for all sufficiently large n, we get t < §b' ( TV;‘”)/ b,, and we can write

bwn

LAy =inf {s € [0,00): 16, "> 1}.

Since 8" is strictly increasing on [0, T*), standard arguments entail A>" (b,,t) /b, —
AP, N

Suppose next that ¢ > 6 (T*), which is only meaningful in the supercritical cases.
Then, for all sufficiently large n, we get 1 > 6 Do (T,;)/by and we can write Af’;‘;”” =
T and AY = T*. Thus, we get A" (b,1) /b, — AY.

We have proved that A" (b,t) /b, — AP for all € (0, 0o) distinct from 8°(1%).
Since AP is nondecreasing and continuous, a theorem due to Dini (see for instance
[35], Theorem 7.13) implies that ;- b "Wt _» AP uniformly on all compact subsets; it

entails a similar convergence for Ar, Wthh completes the proof of (205). O
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Here is one of the key technical point of the proof that relies on the estimates of
Lemma 3.6.

Lemma 6.12 Under the assumptions of Lemma 6.3, the laws of the processes
(& X2 (AL sef0.00) and (a= X7 (AF"))e0,00) are tight on D([0, 00), R).

Proof Fix t € [0, 00); then for all 7y, K € (0, 00), note that

P( sup £ IX2 (AP > K) < P( sup 2 IXp] > K) + P AR > 1),

s€[0,7] s€[0,19]

Then, we deduce from (205) that

hm hmsupP< sup - |wa"(AbW")| > K) < hmsupP( ]Z‘;’" > to) —>0.

K—00 p—soo s€[0,7] n—o00 fp— 00

A similar argument shows that limg —, oc lim sup,,_, o, P(sup¢[o . [X™™" (A,f:g”ﬂ >
K) —0.
Next, Proposition 3.2 says that a.s. for all » € N and for all ¢ € [0, co)

Xwn _ Xb Wy,

bwn + Xr ;"7‘7:]” . (206)
Recall that for all y € D([0, 00), R), w;(y, ) stands for the n-cadlag modulus of
continuity of y(-) on [0, z]. Let z, z,z0,7n,& € (0,00). Let us consider first the
(sub)critical cases. By (122) in Lemma 3.6 (i), we easily get

P(ws, (g X2 (AR, 0) > &) < Plwery (a7 Xj'n) > £/2) +Pws (5 X5 1) > £/2)

FP(LOT < z1) + P16 > 7).

bnzo bn " bnzo
By Proposition 3.2, X" has the same law as X" and X =", Then, by Proposition 2.1,

the laws of the processes X }'j: (orequivalently of =X Z;‘f'” )aretight on D([0, 00), R).
Consequently,

lim lim sup P(w;, (& X ™" (Ab ", n) > ¢)

=0 n—soo

< limsupP(;- f;'? < z1) + lim sup P( ;- ,f”z'g" >z). (207)
n— o0 n— o0
Recall that in the (sub)critical cases, & = 6°. Moreover, since #> = 6 a.s. for

all ¢, (203) easily entails: - 91}; yo” — 9b weakly on [0, 00). It first implies:

: b,wp b H b :
limsup,,_, (,,n Op zg = z) < P(QZO > z) — 0 as z — oo since a.s. O < 00 in

Ao < z1) < P65 <

(sub)critical cases. Similarly, we also get lim sup,,_, o, P(,,n buzo

zl) — 0 as zp — oo since a.s. limz; 0 9b = 00. Then, (207) and the previous argu-

ments imply that the laws of (Z X" (Ab "))sel0,00) are tight on D([0, 00), R) in
(sub)critical cases.
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Let us consider the supercritical cases: Lemma 3.6 (ii) implies that for all z; €
[0, 00),

P(we, (£ X2 (A"™), ) > &) < P(wepy (- Xp".0) > /2) + P(wgy (X, 2n) > £/6)

>20) +P(5- Tk 2r))+P(‘6ij>z).

bn Wu

+P(

bn Wu

—b,wy . . —b,wy, —b
Then, recall that O%Yf < GTV?:] and observe that (203) easily entails ﬁ@m‘:" — O«

weakly on [0, 00). By (203) again, %T‘;‘n — T*, weakly on [0, co). Consequently,

lim Lim sup P(w;, (& X" (AP, 1) > €) < P(T* > 20) + P(F7->2) —> 0,

=0 nooo 2,20 =00

by the fact that in the supercritical cases T* < oo a.s. Thus, the laws of
o il (A o "))te[0,00) are tight in supercritical cases.

We derive a similar result for the red processes by a quite similar (but simpler)

argument based on Lemma 3.6 (iii): we leave the details to the reader. O

Using the relationship (206) and its continuous counterpart (148), we prove the
next lemma:

Lemma 6.13 Recall the definition of 2, (2) in (205). Under the assumptions of Lemma
6.3, we have

2,(3) == (2,(2), %(Xi’ff;;n X3 X))
bn- bn-
——((XP, A, Y,8°), 77, X¥, =I5, T*, A®, A", (X"

n—o00

X/r\r’ X)),
(208)

AbP>

weakly onD([0, 00), RHx(D([0, 00), R))*X[0, 00]X(C([0, 00), R))*>D([0, 00), R?)
equipped with the product-topology.

Proof We first prove the following

2,(3) = (2,(2), 2 X2 X 3E)

’ an bwn7 an
bn bn-

——((X", A, Y, %), 7%, X*, —15,T*, A°, A", X5, X3-),
n—oo
(209)
weakly on D([0, c0), R*)xD([0, 00), R)?x [0, 00]>*xC([0, 00), R)>xD([0, 00), R)?
equipped with the product-topology. Note that the laws of 2, (3) are tight thanks to
(205) and Lemma 6.12. We only need to prove that the joint law of the processes on

the right hand side of (209) is the unique limit law: to that end, let (n(p)) pen be an
increasing sequence of integers such that

2,»3) p—~ (X, A, Y,8°), 75, X7, —1%, T*, A, A%, 0, Q%) (210)
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weakly on D([0, 00), R*)xD([0, 00), R)?x [0, c0]*x C([0, o0), R)>xD([0, o0), R)>
equipped with the product topology. Without loss of generality (but with a slight
abuse of notation), by Skorokhod’s representation theorem we can assume that the
convergence in (210) holds P-a.s. and we only need to prove that Q® = XPo AP and
OF = XToA~.

We first prove that Q® = X o AP. Note that {t € [0, 00) : (AXP)(AP) >0} is, in
general, not countable (it contains all the red intervals starting with a jump), so we
have to proceed with care. To that end, we first set S} = {7 € [0, 00) : AY(AP) >0}
that is a countable set of times (indeed, by Lemma 4.3 (ii), foralla € [0, T;], AY, >0
implies AP =0 and by Lemma 4.3 (i), there exists a unique time ¢ € [0, co) such
that A? = a). We also set S, = {H}TD*_} U {02’_, 93?; a € [0, T%: AGEZO > 0} and
S = §1 US,. Then S is countable. We then consider several cases.

We first fix ¢ € (0, T*)\S and we assume that (AX®)(AP) = 0. Then, by Lemma
B.1 (i), X" (APY0) (by(p)1)) /an(p) = XP(AP), since AP (byp)1) /bn(p) —
AP.

We next assume that ¢+ € (0, 7%)\S and that (AXb)(A?) > 0. Since ¢ ¢ Si,
AY(AP) = 0, and thus AXP(AP) = AA(AP) > 0, by definition of A and Y. We
then set a = AP and we necessarily get a < T*, A6 > 0 and t € [6°_, 6°]. Since
t ¢S, we then get ¢ € (9P, 6). To simplify the notation, we set

Rp:( Ly L g Ly éb’w”“)) and R=(XP AY.0).

anp)y “bupy  an(p) T bn(p)? n(p) T bup)’ bu(py  bupy

By (210), R” — R a.s. on D([0, 00), R*). Since @ < T*, AG® = AF. > 0 and
a is a jump-time of R. By Lemma B.1 (i), there is a sequence s, — a such that

(pr_, Rsl;) — (R4—, Ry): in particular, we get XP-¥n(p) Bu(pysp)/anipy — X? =
Xbb(A?). It also implies that ™" (by, (s pb—) [bu(p) = g (bu(p)s fj_) /bu(p)—>
—] —b,w, "

0,_ = 0> and 02w (bypysp) /bapy = 0" (bupysp) /buipy — 0, = 62 thus,

a

for all sufficiently large p, we get

1
bn(p)

1 b,Wn(p) -5
bn(p) ba(pyt P

620 (bu(pysp=) < 1 < o=0”"" (bu(p)s) and thus
n(p

which implies that X ") (APWo) (by (1)) /an(p) = X2 = XP(AP).

Thus, we have proved a.s. forallz € (0, T*)\S that X"} APYew) (by 1)) [an(p)
— XP(AP). Since S is countable, it easily implies that for all # € [0, T*), QP =
Xb(Af’). In (sub)critical cases, it simply means that Qb = Xﬁb.

We now complete the proof that 0 = X ib in the supercritical cases. To that
end, we first observe the following. Let 71,1, € (T*, 0o) be distinct times such that
AQP = AQP = 0.By Lemma B.1 (ii), X>"r®( AP0 (by(p)ti)) /an(py — OF for
i € {1, 2}. Then, by (210), we get t; > T;n(p) /bu(p) for all sufficiently large p which
implies Xb’W"(l’>(Ab'W'l<P> (bn(p)n)) = Xb’w"@)(Ab’W"(P) (b,,(p)tz)). Consequently, we
get Qﬁ = Qg. This argument easily implies that for all r € [T*, c0), Q? = 0b..
Thus, to complete the proof that O = X ]Xb in the supercritical cases, we only need to
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prove that X" (T o) Gn(p) = XP(T*).If AXP(T*) = 0, then itis aconsequence
of (210) and of Lemma B.1 (ii).

Therefore, it remains to address cases where A X®(7T*) > 0. In this case, we clearly
get AG®(T*) = oo; by Lemma 4.3 (ii) with a = T*, we get AY(T*) = 0 and
therefore AXP(T*)=AA(T*)> 0 by definition of ¥ and A.

We first claim that it is sufficient to prove AW"@J(T;W)) [an(py — Ar+. Indeed,
suppose it holds true; since AY(7T*) = 0, Lemma B.1 (ii) and (210) imply that
Yo (Tys ) fan(p) — Yr+: and itis sufficient to recall that X©n(r) = A¥n(p) 4",

Thus, we assume that we are in the supercritical cases and that AX®(T*) >0, and
we want to prove that A¥»» (T;n (p)) /an(py = Ar+. By Lemma B.1 (i), there exists
tp— T* such that AW”(”) bupytp=)/an(p) — A= and AP (by(pytp)/An(p) —> ATx.
Suppose that 7, > /bn(p) Tor 1nﬁn1tely many p; by the definition (103) of 737 ,

T, 1(p)
this implies that A" (b (p)tp—) > — 12" for infinitely many p and (210) implies
Ars_ > =13 ;since T* = sup{r € [0,00) : A, < =13}, we get Ap«_ = —11;
however, —I(fo is an exponentially distributed r.v. that is independent of A which
a.s. implies that — I3 ¢ {A,_; a € (0, 00)}. This proves that a.s. tp wn(p)/bn(p) for
all sufficiently large p. Then, LemmaB.1 (iv) implies that A™»®) (T * " )) [an(py —> ATx.
As observed previously, it completes the proof of X" (T‘;‘n(p)) [n(py — X b(T*)

and thus that of O = X ib in the supercritical cases.

We next prove that 0¥ = X7, :tothatend, weset S3 = {r € [0, 00) : (AXT)(A]) >
0}. Lemma 4.3 (iv) entails that a.s. S3 is countable and by Lemma B.1 (i7), a.s. for all
t € [0, 00)\ S3, we get erwn(m(Ar*W"(P) (bn(p)t)/an(p) — XT(A7); this easily entails
that a.s. Q¥ = X* o A", which completes the proof of (209).

We now prove (208): without loss of generality (but with a slight abuse of nota-
tion), Skorokhod’s representation theorem allows to assume that (209) holds P-a.s. By
Lemma 4.3 (v), a.s. for all ¢ € [0, 00), AQ?A Q; =0, and Lemma B.1 (iii) entails
that

((‘%X?\g‘ﬁ’"’ eryg’” ))te[O ) , ((Qf ’ Qt ))te[O,oo) a.s. on D([0, c0), R2)'

bt

which implies (208) since X} = XP¥r (A>"™) 4 XT% (AF™) and X, = XP(AP) +
X*(AY). O

Recall the definition of the height process H"" associated with X" in (114). Recall
the definition of (H;);e[0,00) In (138) that is the height process associated with X: H
is a continuous process and note that (138) implies that H is an adapted measurable
functional of X. Then, recall the definition of the offspring distribution 1, in (85) and
denote by (Z,‘f” )keN a Galton—Watson branching process with initial state ZE')V "= |ay]
and offspring distribution ji, ; recall Assumption (C4) in (34): there exists § < (0, 00)
such that liminf,, oo P(Z}} 5,,,) = 0) >0.
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Lemma 6.14 Recall 2,/ (3) in (208). Under (C4) and the assumptions of Lemma 6.3,

Wn ﬂn Wn bw")
s Hy' g Ho0

2,4) = (2,0,
Xi:, X), H, Hof"),

@211)

— (X, A, Y, 80,77, X7, =15, T*, A®, A7, (X

b
n—00 A

weakly onD([0, 00), RH)x(D([0, 00), R))2x[0, 0o]*x(C([0, 00), R))2xD([0, co), R3)x
(C([0, 00), R))? equipped with the product topology.

Proof We first prove that

2,4) = (2,3), = H,")

by by
b, _
—— @) = (X7, A,Y,00), 7%, X7, =I5, T", A®, A%, (XRp, X3s, X), H),
(212)

weakly on the appropriate product-space. By Proposition 2.2, the laws of the processes
Z—ZHZ;’{ are tight on C([0, 00), R). Then, the laws of 2, (4) are tight thanks to (208).
We only need to prove that the law of 2’(4) is the unique limit law, which is an easy
consequence of (208), of the joint convergence (35) in Proposition 2.2 and of the fact
that H is an adapted measurable deterministic functional of X.

To complete the proof of the lemma, we use a general (deterministic) result on
Skorokhod’s convergence for the composition of functions that is recalled in Theorem
B.5 (see Appendix B.1). Without loss of generality (but with a slight abuse of notation),
Skorokhod’s representation theorem allows to assume that (212) holds P-a.s.: since
”" HW” — H a.s. on C([0, c0), R), since ;- gbw" — 6" a.s. on D([0, 00), R) and since
H 06" is a.s. continuous by (152) Theorem 4.7, Theorem B.5 (i) applies and asserts
that Z—ZH Wn o 5,?;1“_’" — H 006" in C([0, 00), R), which completes the proof of the
proposition. O

End of the proof of Proposition 5.1 Recall the definition of " (that is the height
process associated with Y*#) in (112). By Lemma 3.4, we have H," = H" (9,b Wy
for all + € [O, ij, 1)' On the other hand, recall the existence and the properties of H
as stated in Theorem 4.7. In particular, note that H; = H (Otb) for all r € [0, T™).
First observe that in (sub)critical cases, the convergence (153) in Proposition 5.1 is an
immediate consequence of (211) in Lemma 6.14. Thus, we only need to focus on the
supercritical cases.

To simplify notation, we denote by (Y, A® H™) the rescaled processes on
the left hand side of (153) and we also set (Y (°, A H(®)) = (v, A, H). We fix
t € (0, 00), a bounded continuous function F : D([0, 00), R)? x C([0, o), R) — R,
and for all n € N U {00}, we set u,, = E[ ( Yo, AD, H<”))] Clearly, we only need
to prove that u, — us. To that end, we introduce for all K € (0, 00), a continuous
function ¢k : [0, 00) — [0, 1] such that 1j0.x] < ¢k (-) < 1jo,k+1) and we set
un(K) = E[F(Y), A% HY)pk (Af”)], for all n € NU{oo}. We first observe

that 0 < uy —uy(K) < | FlloP(A” > K). Since A" — A,, standard arguments
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imply lim sup,,_, o |un —un(K)| < | FllocP(A; > K). Next recall that Theorem 4.7
asserts that 7 is a functional of (Y, A); then recall also that —I3 (resp. —13"" ay)
is an exponentially distributed r.v. independent of (Y, A) and thus independent of
(Y, A, H) (resp. independent of (Y™ A H()) and whose parameter is 0(® :=p
(resp. o™ := a0y, ). We set H" = = H" o gf,’f”. Then, for all n € N U {oco}, we
have

un(K) = B[ F (Y2, A% ) g (A (213)

A <= 15" fan ] ’

where the right-hand side is bounded thanks to the term ¢g. Note that the above
identity holds since the events {Af”) <—I"™ /ay, } and {T;; /b, > t} coincide a.s. and

on these events, we get H," = H.".
Next, recall that Proposition 2.1 (iv) asserts that lim,_, . 0™ = 0*. Since
P(A; = —1) = 0, the joint convergence (211) in Lemma 6.14 combined with

(213) entails that u,(K) — u~(K) by dominated convergence. Since |uco —un| <
[thoo —too (K)| + |too (K)—un(K)| + |uy(K)—uy|, we get lim Supy, o oo —tn| <
2||F||OOP(At > K) — 0 as K tends to oco. This completes the proof of (153) in
supercritical cases and it also completes the proof of Proposition 5.1. O

7 Proof of the limit theorems for the Markovian processes

The aim of this section is to prove Propositions 2.1-2.3. We will proceed as follows.
In Sect. 7.1, we will address a slightly more general situation: we will temporarily
remove the requirement that a,, b, /o1 (w,) — k. In that case, we will see that the Lévy
measure 7 in the limit can take a more general form than the one in (28); in particular
7 is not necessarily purely atomic. With this requirement back in place, we then show
in Sect. 7.2 that the only possible limits are of the form (28). This then allows us to
prove aforementioned propositions in the rest of the section.

7.1 Convergence of the Markovian queueing system: the general case

We say that an R-valued spectrally positive Lévy process (R;)se[0,00) With initial
value Ry = 0 is integrable if for at least one r € (0, 0o) we have E[|R;|] < oo. It
implies that E[|R;|] < oo for all # € (0, 00). In Sect. B.2.1, we recall that there is
a one-to-one correspondence between the laws of R-valued spectrally positive Lévy
processes (R;);e[0,00) With initial value Ry = O that are integrable and the triplets
(o, B, ) where ¢ € R, B € [0, 00) and 7 is a Borel-measure on (0, co) satisfying
/. (0.00) 7(dr) (rar?) < co. More precisely, the correspondence is given by the Laplace
exponent of spectrally positive Lévy processes: for all z, A € [0, 00),

E[e’)‘R’] = Vs @ where Va.pr(h) = ar + %ﬂkz +/ (e —1 + ar) 7w (dr).
(0,00)

(214)
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The main result used to obtain the convergence of branching processes is a theorem
due to Grimvall [24], that is recalled in Theorem B.11: it states the convergence of
rescaled Galton—Watson processes to Continuous State Branching Processes (CSBP
for short). We say that a process (Z;):¢[0,00) 15 an integrable CSBP if it is a [0, 00)-
valued Feller Markov process obtained from spectrally positive Lévy processes via
Lamperti’s time-change which further satisfies E[Z;] < oo forall# € [0, c0). The law
of such a CSBP is completely characterised by the Laplace exponent of its associated
Lévy process that is usually called the branching mechanism of the CSBP, which is
necessarily of the form (214): see Sect. B.2.2 for a brief account on CSBP.

Letw, € E}, n € N. Let us recall the notation vy, = o] (wy) 1 Z;>1 w(">6‘ and

fag, (k) =01 (W) ™1 Y i (wi)EH exp(—w!”) /k!, forall k € N. Recall the definition
in Sect. 3.2 of the Mark0v1an LIFO-queueing system associated with the set of weights
wy,: clients arrive at unit rate; each client has a type that is a positive integer; the amount
of service required by a client of type j is w;.") ; the types are i.i.d. with law vy, . If one
denotes by ;' the time of arrival of the k-th client in the queue and by J}; his type,
then the queueing system is entirely characterised by 24, = > k>1 6(1121%) that is a
Poisson point measure on [0, o) x N* with intensity £ ® v, , where £ stands for the
Lebesgue measure on [0, 0co). Next, for all j € N* and all ¢ € [0, 0co0), we introduce
the following:

N (0) = lef,?sncr;j:j] and X" = —1+ Zanl[o @) = —t + Zw(")NW"(t)
k>1 k>1 j>1

215)

Observe that (N;””) j>1 are independent homogeneous Poisson processes with rates

w(j")/ o1(wy,) and X" is a cadlag spectrally positive Lévy process.
Leta,, b, € (0,0),n € N be two sequences that satisfy the following conditions.

w(n)

Ny

n
42
an

<oo. (216)

by
a, and — —— o0,

—> Bo€[0,00), and sup
a, n—>o0o n—o0

neN dn

Remark 7.1 It is important to note that these assumptions are weaker than (21):
namely, we temporarily do not assume that ’z ") — k € (0, 00), which explains
why the possible limits in the theorem below are more general. O

Theorem 7.1 Let w, € KL and an, b, € (0,00), n € N, satisfy (216). Recall the

definition of X, in (215); recall the definition of (., in (85) and let (Z("’)keN be a
Galton—Watson process with offspring distribution v, and initial state Z( D= la].
Then, the following convergences are equivalent.

D (& Z{htJan ) ref0.00) — (ZD)rel0,00) weakly on D([0, 00), R).
(II) (#ant)te[o,oo) —> (X1)te[0,00) weakly on D([0, 00), R).

If (1) or (1) holds true, then Z is necessarily an integrable CSBP and X is an integrable
(e, B, m)-spectrally positive Lévy process (as defined at the beginning of Sect. 7.1)
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whose Laplace exponent is the same as the branching mechanism of Z. Here («, B, 1)
necessarily satisfies

B> Bo and Try € (0, 00) such that 7 ((rg, 00)) =0, 217)

which implies f(O,oo) r2 (dr) < oo. Moreover, (I) < (I) < (Illabc) < ((IIIa)&(IV))
where

(M) 2 (1 -
dn

— .

az(wn))

o1(wy)

(ITIb) bu M — ,B—i—/ r? 7 (dr).
(

(an)z o1(wy) 0,00)
()

b w;
(IIlc) nOn Z;f(w;")/an) — / f(r)m(dr), for all continuous
(0,00)

o1(wy) =1 ()

bounded f :[0, co0) —R vanishing in a neighbourhood of 0.

b ws R
(Iv) % S :a;(e P 0w ay) —> Vo pn () — ok, forall
n . n

Jj=1

X € (0, 00), where Ja,ﬂ,ﬂ is defined by (214).
Remark 7.2 'We recall that 8 is the limit of the ratio b, / a,%. Combined with (217), we
see thatif b,, =< a,zl, then necessarily the limit process X will have a non-zero Brownian

component. The converse is not true in general: it is possible to have fy = 0 < B; see
the construction in the proof of Propositions 2.1 and 2.2.

Proof We easily check that (X};V:t /@n)ie[0,00) 1S an (@, Bn, m,)-spectrally positive
Lévy process where

(n)

b b )
an:—"(l—@(w")), Bp=0 and m, = nn Z;S m,
dn o1(wy) o1(wn) =1 a, v /an

We immediately see that B, + [ r>7,(dr) = b,03(wy)/a2o1 (wy). Then, Theorem B.9
implies that (II) < (Illabc). We then apply Lemma A3 to A} = (X,"—X," |)/a, and
qn = | b, ]:itshows that the weak limit X ‘E’i’,’n | /a, — X1 isequivalent to the convergence
of the Laplace exponents Y, g, 7, (A) = Vo g, (A), forall A € [0, 0o). Then note that
the left hand side of (IV) is ¥y, g,,7, (A) —a, A. This shows that (II) < ((IIIa)&(IV)).

It remains to prove that 8 > B and that (I) < (Illabc). Let (¢} )xen be a sequence
of i.i.d. random variables with law p,, as defined in (85). By Theorem B.11, (I) is
equivalent to the weak convergence on R of the r.v. R, :=a, ! Zlgkﬂb,, [ ({,’,:’ - 1).
We next apply Lemma A.3 to A} := a,; 1(;,? — 1) g, = |b,], which implies that (I)
is equivalent to

3y € C(10,00),R): ¥(0) =0 and V2 €[0,00), Ly(A):=E[e *1]——eV ™. (218)

We next compute L, (1) more precisely. To that end, let (W}');en be ani.i.d. sequence

of r.v. with the same law as wg‘lli, where J7 has law vy,. Namely, E[f(W})] =
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o1(wy)" 'Y =1 w;’” f (wﬁ-”)) for any nonnegative measurable function Note that for
allk e N, py, (k) = E[ (Wf)kefwil/k! ], which implies that

Ln()\) — e)ll.bnj/an (E[e_)@ln/an]) Lbn] — e)ll.bnj/an (E[exp (_W{”(l _ e_}t/an))]) I-b”J_

(219)
We next set ST = a,, ! Y i<k<ip, (Wi —=1) and £, (1) =E[exp(=2S])]. By (219), we
get for all A € [0, 00),

Ln(an(1 —e ) = Ly(0) exp (1bn)(1—e ") =A|bn] /an) .

Since Lan (l_e_)h/an)—)\, Lan/an + %bnan—z)\? zo(bnan—S) 5 0 and since bn/af, N
Bo, (218) is equivalent to

o € C([0,00).R) : 9(0) =0 and Vi €[0,00). lim L,(3)= Vo)
(220)
and if (218) or (220) holds true, then ¥ (1) = ¥o(A) + L BoA2, for all A € [0, c0).
Next, by Lemma A.3 applied to A? := a,’! (W} —1), we see that (220) is equivalent
to the weak convergence S} — S} in R and Theorem B.10 asserts that is equivalent
to the conditions (Rw3abc) there with &' = Wl" — 1. Namely, there exists a triplet
(a*, B*, r*) with ™ € R, 8* € [0, 0co) such that there exists rg € (0, co) satisfying
*([ro, 00)) = 0 and that the following holds true:

bn bn GZ(Wn)

dn [El ] dn (01 (wp,) )_> o
by, n by, o3(wy) by (02(wy)\2 % / 2 %
On _ In93Wn)  On dr),
a? var() atoy(w,) a2 <61(Wn)> B <or,o$ @

(n) (n)
nbn w wi —1 .
buE[f (6 /an)] = 3 () > | Jnman,

o
1(wy) IS 0,00)

for all continuous bounded f : [0, c0) — R vanishing in a neighbourhood of 0. It is
easy to see that these conditions are equivalent to (Illabc) with @ = o*, 8 = By + B*
and 7 = 7r*. This completes the proof of the theorem. O

Next, as recalled in Sect. 3.2, the Markovian w,, -LIFO queueing system governed by
2, induces a Galton—Watson forest T, with offspring distribution p,, : informally,
the clients are the vertices of T,,, and the server is the root (or the ancestor); the j-
th client to enter the queue is a child of the i-th one if the j-th client enters when
the i-th client is served; among siblings, the clients are ordered according to their
time of arrival. We denote by H,™ the number of clients waiting in the line right
after time 7; in (114), recall how H" is derived from X" : for all s < 1, if one sets
I = infrcs.q X3, then, H™ = #{s € [0,¢] : I/ < I;"""}. As recalled in
Sect. 3.2, X" and H"" are close to the Lukasiewicz path and the contour process of
T, . Therefore, the convergence results for Lukasiewicz paths and contour processes
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of Galton—Watson trees in Le Gall & D. [19] (see Theorem B.12, Sect. B.2.3) allow
us to prove the following theorem.

Theorem 7.2 Let X be an integrable («, B, w)-spectrally positive Lévy process,
as defined at the beginning of Sect. 7.1. Assume that (217) holds and that
foodz/d/a,,g,ﬂ(z) <00, where Yy, .5 is given by (214). Let (H;)tc[0,00) be the contin-
uous height process derived from X as defined by (138).

Letw, € Z and ay, b, € (0,00), n € N, satisfy (216). Let (Z("))keN be a Galton—
Watson process with offspring distribution v, (defined by (85)), and initial state
Zy w = |a, |. Assume that the three conditions (Illabc) in Theorem 7.1 hold true and
assume that there exists a § € (0, 00) such that

hmlan( Lb 5/an] _0) 0. (221)

n—o00

Then, the following joint convergence holds true:
1 Wp An Wn
(GXmreto.o0 (2 Hyteto.00)) ——— (X, H) (222)
n n n—o00

weakly on D([0, 00), R) x C([0, 00), R), equipped with the product topology. Fur-
thermore, fort € [0, 00),

o
dz
lim P(Z(I_’Z t/an) = 0) = e_v(t) where f —Z =1. (223)
n—00 v(r) Wa,ﬂ,n (2)

Proof Recall the definition of the Lukasiewicz path V1w associated with the
GW(1ty,)-forest T, in (75) (Sect. 3.1). Recall the definition of its height process
HghtTw in (77) and recall that CTw stands for the contour process of T, . We first
assume that (IlTabc) in Theorem 7.1 and that (221) hold true. Then, Theorem B.12
applies with p, := u, . In consequence, the joint convergence (265) holds true and
we get (223).

Recall that (z;/)x>1 are the arrival-times of the clients in the queue governed by
X"n and recall the notation N (t) = Zkzl 110, (zy') in (87) that is a homogeneous
Poisson process with unit rate. Then, by Lemma B.6 (see Appendix B.1) the joint
convergence (265) entails the following:

1 Wy, W W an. T,
2n(5) = (5 VEn(N,?), GEHGERH(N,"), 52C," ) —— (X, H, (Hip)ieio o)

weakly on D([0, 00), R) x (C([0, 00), R))?> equipped with the product topology.
Here X is an integrable («, B, m)-spectrally positive Lévy process (as defined at
the beginning of Sect. 7.1) and H is the height process derived from X by (138).
By Theorem 7.1, the laws of the processes %X}'f””. are tight in D([0, c0), R). Thus,
if one sets 2,(6) = (& XW" , 2,(5)), then the laws of the 2, (6) are tight on

D([0, 00), R)? x (C([0, 00), R))z. Thus, to prove the weak convergence 2,(6) —
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(X, X, H, H ) :=2(6), we only need to prove that the law of 2(6) is the unique
limit law: to that end, let (n(p)) pen be an increasing sequence of integers such that

Pnip) (6)m (X', X, H, Hp). (224)

Actually, we only have to prove that X’ = X. Without loss of generality (but with a
slight abuse of notation), by Skorokhod’s representation theorem we can assume that
(224) holds P- almost surely. We next use (88) in Lemma 3.1: fix 7, ¢, y € (0, 00), set
I = infse[0.1] X5"; by applying (88) at time b, 7, with a = a,e and x = a,y, we get
the following:

i W
P(| Ly X |>2) < 1 P(— L S s
(lar N (byt) ™~ an >2¢) < Naa T Car by >0+ A 2ar
By Lemma B.3 (ii) (X" —1,"Py - X!—1I/ and ") s I almost surely.
> dn(p) byt n(p)f n(p) L n(p)! ! ’

where we have set I, = inf¢(0,s) X;. Thus, for all & € (0, 00),

lim sup P(

T
e Lx," " | >2¢) < P(=1/>y/2) — 0.
p—00 y—>00

An(p) w"(p) (bn(p)l) An(p) n(mt

Compared with (224), this implies that for all r € [0, 00) a.s. X; = X, and thus,
as. X' =X.

We have proved that 2,,(6) — (X, X, H, H.j3) = 2(6) weakly on D([0, c0), R)2 x
(C([0, 00), R))2. Without loss of generality (but with a slight abuse of notation), by
Skorokhod’s representation theorem we can assume that the convergence holds true
P-almost surely. In (94) and in (95) recall that

T,

M" (1) =2N"" ()= H,", Cyi, )= H™ and  sup H™ <1+ sup thtNWJJ,,@
s€[0,1] s€[0.1]

Then, we fix ¢, ¢ € (0, 00), and we apply (96) at time b, t, with a = b, ¢ to get

P( sup [, My —2s| > 2¢) < 1A

+P(b + sup Z” thtNW(h 5> san>
s€[0,1] " "

s€[0,7]

Since Z—;thtTW(Nw(bn-)) — H as. in C([0, 00), R), it easily entails that #MW

tends in probability to twice the identity map on [0, 00) in C([0, 00), R). Since H,"" =
CTon (MY (1)), and since C T (b,,-) — H(-/2) a.s.in C([0, 00), R), Lemma B.6 easily
entails the joint convergence (222), which completes the proof. O

As explained right after Theorem 2.3.1 in Le Gall & D. [19] (see Chapter 2, pp. 54-
55) Assumption (221) is actually a necessary condition for the height process to
converge. However it is not always easy to check this condition in practice. The
following proposition provides a handy way of doing it.
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Proposition 7.3 Let X be an integrable («, B, 7w)-spectrally positive Lévy process, as
defined at the beginning of Sect. 7.1. Assume that («, B, ) satisfies (217) and that
foo dz/ Ve p,x(2) <00, where Yy g 5 is given by (214). Let H be the continuous height
process derived from X by (138). Let wy, € Z} and a,, b, € (0,00), n € N, satisfy
(216). We recall the definition of X in (215) and denote by Vr,, the Laplace exponent
Of(éx;j:t)te[o,oo)- Namely, for all X € [0, 00),

b o2 (wy) a,b wt™ )
wn(x)z_(1— 280 )x+ 2N (M away) L (225)

n
an o1(wp) o1(wy) “ (2]
j=1

We assume that the three conditions (Illabc) in Theorem 7.1 hold true. Then, (221) in
Theorem 7.2 holds true when

L - d
lim lim sup / =0. (226)
Y70 n—soo Jy Y ()

Proof We first prove a lemma that compares the total height of Galton—Watson trees
with i.i.d. exponentially distributed edge-lengths and the total height of their discrete
skeleton. More precisely, let p € (0, oo) and let x be an offspring distribution such
that £(0) > 0 and whose generating function is denoted by g, (r) = ZleN u(l)rl .
Note that g, ([0, 1]) C [0, 1]; let g/ik be the k-th iterate of g,, with the convention
that gl‘io(r) =vr,r € [0,1]. Let T : 2 — T be a random tree whose distribution is
characterised as follows.

— The number of children of the ancestor (namely the 1.v. k(7)) is a Poisson r.v. with
mean p;

— Forall/>1,under P(- | kz(t) = [), the [ subtrees O1y7, ..., Oy T stemming from
the ancestor @ are independent Galton—Watson trees with offspring distribution

“w.

We next denote by Zj; the number of vertices of 7 that are situated at height k + 1:
namely, Z; = #{u € t: |u| = k + 1} (see Sect. 3.1 for the notation on trees). Then,
(Zr)ken is a Galton—Watson process whose initial value Z is distributed as a Poisson
r.v. with mean p. We denote by I' () the total height of 7: namely, I'(t) = max,e; 1|
is the maximal graph-distance from the root &. Note that if p is supercritical, then
I'(t) may be infinite). Observe that I'(t) =min{k € N : Z; = 0}. Thus,

P(I(t) <k+1) =P(Z =0) =exp (— p(1—¢g (D)) . (227)

We next equip each individual u of the family tree t with an independent lifetime e (u)
that is distributed as follows.

— The lifetime e(2) of @ is 0.
— Conditional on t, the r.v. e(#), u € t\{Q} are independent and exponentially
distributed r.v. with parameter g € (0, 00).
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Within our notation, the genealogical order on t is defined as follows: a vertex
v € t is an ancestor of u € 71, which is denoted as v =< u, if there exists
v/ € U such that u = v * v/; < is a partial order on 7. For all u € 7\ {2}, we
denote by ¢ (u) = )Y 5, <, €(v), the time of death of u; then §(<u_) is the time of
birth of u, where % stands for the parent of u. For all # € [0, co), we next set
Z; = Zuer\{g} 1[5(7)’4(,4))0). Then (Z)¢[0,00) 1 @ continuous-time Galton—Watson
process (or a Harris process) with offspring distribution p, with time parameter g and
with Poisson(p)-initial distribution. We denote by I' = max,e; {(«) the extinction
time of the population; then I' = max{t € [0, 00) : Z; # 0}. Standard results on
continuous-time GW-processes imply the following. For all ¢ € (0, 00),

1

d

P(T<t) =Pz, =0)=e ", where / W g (28
rt) gul=r)—1+r

For a formal proof, see for instance Athreya & Ney [5], Chapter III, Section 3, Equation
(7) p. 106 and Section 4, Equation (1) p. 107.

We next compare I'(t) and I'. To that end, we introduce (e,),>1, a sequence of
i.i.d. exponentially distributed r.v. with mean 1, and we set, for each ¢ € (0, 1),

8(e) = sup P(n (e + - +ey) & (e, ). (229)

n>1
The Law of Large Numbers easily implies that §(¢) — 0 as e — 0. Note that Zg = Z
and a.s. I'(t) < oo if and only if I' < co. We argue on the event {I"(t) < 0o}: we first
assume that Zg # 0; let u* € 7\{@} be the first vertex in the lexicographical order
such that |u*| = I'(t); since ¢ (#*) < I' and since conditional on 7, ¢ (u*) is the sum

of |u*| (conditionally) independent exponential r.v. with parameter ¢, we get for all
t € (0, 00),

P(I<t: 29#0) <Y P(I(1)=n: Zo#0)P(ej + -+ +e,=q1) .

n>1

Then, let ¢ € (0, 1) and observe that P(e1 + -4 < qt) < 8(8) + Ljn<qgr/e)-
Consequently,

P(I'<t; 20#0) < 8(e) + P(I'(x) < lgt/e]; Zo#0).
Ifzo = Zy=0,T =TI'(r) = 0, which implies that
P(I'<r) < 8(e) + P(T(v) < gt/e]).
Thus by (228) and (227), we have proved the following lemma: O

Lemma7.4 Letp, g € (0, 00) and let i be an offspring distribution such that £ (0) >0
and whose generating function is denoted by g,,; denote by glik the k-th iterate of g,
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with the convention gfLO(r) =r,r €[0,1]. Lett € (0, 00). Recall the definition of r (t)
in (228). Let € € (0, 1). Recall the definition of 6(¢) in (229). Then, for all t € (0, 00),

e P _5(e) < exp(_P(l—é’;Lw/sJ ©)). (230)

We are now ready to prove Proposition 7.3. Recall the definition of the offspring
distribution fty;, in (85). We apply Lemma 7.4 with . = py,, p = an, g = bp/ay
and we denote by r, (¢) the solution of (228) with g, replaced by g,,,, . The change of
variable A = a,r then implies that r, (¢) satisfies

/”" “ =1 (231)
w0 b, (1= 2) 1 +2)

Next, it is easy to check from (85) that b, (guw,, (1— ail) -1+ al,,) =Y, (A), where ¥,
is defined in (225). Then, Lemma 7.4 asserts for all ¢ € (0, c0) and for all ¢ € (0, 1),
that

n dxr
e O=5(e) < exp (~an(I=g;l"/*0))) where f £ 232)

ayry(t) 1!fn ()\) N

Next, fix t € (0,00) and set C := limsup,,_, ., a,r,(t) € [0, co]. Suppose that
C = oo. Then, there is an increasing sequence of integers (ni)ren such that
limg s 00 ap, 1y (t) = 00. Let y € (0, 0o); then, for all sufficiently large k, we have
an, Tny (t) >y, which entails that

/ g di g d)
t= < .
Gy Ty, (1) I;0nk () y Ipnk A)

Thus, forall y € (0, 00), ¢ < limsup,,_, f ;O dX\ /Yy, ()), which contradicts Assump-
tion (226). This proves that C < oco. Since lim,_,¢ 8(¢) = 0, we can choose ¢ such
that §(¢) < %e’c; then, we set 6 = ¢/¢ and (232) implies that

lim sup a, (1 —g;&ib"/“”J(O)) <00. (233)

n—oo

Recall that (Z,i’” )ken stands for a Galton—Watson branching process with offspring

distribution 1, such that Zg') = |ay,]. Then, P(Z (L'(';)b" Jan] = 0) = (g,iaih"/anj(o)) Ll
and (233) easily implies that lim inf,,—, oo P(Z{§, , /=0) >0, which completes the
proof of Proposition 7.3. O

7.2 Proof of Propositions 2.1 and 2.2

In this section we shall assume that the sequence (a,) and (b,) satisfy (216) and
@by, 4 where k € (0, 00). This dramatically restricts the possible limit triplets
(e, B, ). To see this point, we first prove the following lemma:
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Lemma7.5 For all n € N, let v, = (U;n))jzl € Z} and set ¢,(A) =

()
ijl v}") (e_)‘vj -1+ )ij.")), for all A € [0, 00). Then, the following assertions
are equivalent:

(L) Forall A € [0, 00), there exists ¢ (1) € [0, 00) such that lim,_ 5 ¢, (L) = ¢ (A).
(S) There arec € E; and B’ € [0, 00) such that, for j € N*,

lim v}") =c; and lim o3(vy)—o3(c) = .
n—oo n—oQ

Moreover, if (L) or (S) holds true, then ¢ in (L) is given by, for 1 € [0, 00),

609 = 12+ X e~ 1420)) @
j>1

Proof We first prove (S) = (L). For all x € [0, 00), we set f(x) =e*—1 + x.
Elementary arguments entail that, for x € [0, 00),

0< 322 f(x) < Sx2(1—e7). (235)

We set (x) =sup,cjo ¥ 213 y?=f (s thus, n(x) < 3(1—™) < 1Axand n(x) L 0
as x | 0. Then, fix A € [0, co) and define ¢ (A) by (234); fix jo > 2 and observe the
following:

0i=90) = Y (' F O =¢; Fep)) + 12 (a3 —as@—F + Y (¢]=0")?))

I=j<jo I=j<jo
+ 3 (0 O = 120 + Y52 —eif ).
i>Jjo i=Jo

Then, note that

D o F o) =522} < () )os(va) -
Jj>Jjo
Similarly, )"

i~ H—Azc; —¢jf(xcj)| < 2*n(rcjy)o3(c). Thus, by assumption,

limsup ¢, (1) — p(V)| < (B' + 203(e)A*n(Acj)) — 0,

Jo—>0o0

since ¢, — 0 as jo — oo. This proves (L) and (234).

Conversely, we assume (L). Note that vi”)f(vi")) < ¢,(1). Thus, xo =
sup,ey V) < oo. By (235), for all y € [0,x], f(y) > re *y? which implies
03(v) < 2e* sup, y ¢n (1) =:z0. Consequently, for all n € N, (03(v,), v,,) belongs
to the compact space [0, zo] x [0, xolV equipped with the product topology. Let
(gn)nenN be an increasing sequence of integers such that lim, o 03(vy,) = a for

some a € [0, zo] and such that for all j > 1, lim,_, o v;-"”) = c} for certain c;- € [0, xo].
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By Fatou’s Lemma, 03(¢’) < a and we then set 8’ =a—o3(c¢’). By applying (S) = (L)
10 (Vg, JneN, We get g (1) = %,3’)»24-2]21 ¢ ( exp(—Ac)—1 —ch;), forall & € [0, 00).
We easily show that it characterises 8’ and ¢’. Thus, ((03(v), v;1))neN, has a unique
limit point in [0, zo] x [0, xo]N*, which easily entails (S). ]

Recall the definition of X" in (215).

Lemma7.6 Letw, € 6} and ay, b, € (0,00), n € N, satisfy (21). Then the following
assertions hold true:

(1) Letus suppose that (I1) in Theorem 7.1 holds true; namely, % X Z’:. —> X weakly on
D([0, 00), R). Then, X is an integrable («, B, ) spectrally positive Lévy process
(as defined at the beginning of Sect. 7.1) and («, B, 7) is necessarily such that

B=PBo, thereexists ¢ = (cj)j>1 € E; such that w = ZKC]'(SCJ. (236)
izl

and the following statements hold true:

(1) : @(1—M) — o (€2 bn o3(wn) gt oo,

an o1(wy) az o1(w,) o
o
(C3) : V] eN y ar m} Cj.

(ii) Conversely, (C1)—(C3) are equivalent to (I1) in Theorem 7.1; it is also equivalent
to (), or to (Illabc) or to ((I1la) & (IV)).

Proof To simplify notation, we set k, = a,b, /o (w,). By the last point of (21), x,, —
k € (0,00). We also set v = w'” /a, for all j > 1. We first prove (i). Suppose
Theorem 7.1 (II), which first implies that 8 > Bp; then recall that Theorem 7.1 (II) is
equivalent to ((C1) & (IV)) and Theorem 7.1 (IV) can be rewritten as follows: for all

A € [0, 00),

—a® \
Kn Zv;") (e AL )Lv})) m) Ya,px (M) —ak .
j=1

This entails Condition (L) in Lemma 7.5 with ¢ (1) = (¥ 8,7 (A) — @A)/k. Lemma
7.5 then implies that there are ¢ € E; and B8’ € [0, co0) such that for all j € N*,
lim,— o0 v;.'” = ¢j and lim,_, » 03(v,,) —03(c) = B’ and that

g o A)—ai
bt [ @b aan = epr B
0.00) K

=¢(\) = %ﬁ/ﬁ + ch-(ef}‘“f —1+2cj) .

Jj=1

This easily entails that k' = 8, m = ) j=1kcjdc; and we easily get (C2) and (C3).
We next prove (ii): we assume that 8 > By and that 7 = > j=1KC j5c_, where
c=(cj)j>1 € £3¢ . Then observe that (C1) is (IIIa) in Theorem 7.1, that (C2) is (IIIb)
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in Theorem 7.1; moreover, (C3) easily entails (ITlc) in Theorem 7.1. Then (ii) follows
from Theorem 7.1. This completes the proof of the lemma.

Proof of Propositions 2.1 and 2.2 We note that Lemma 7.6 combined with Theorem
7.1 implies Proposition 2.1 (i), (ii) and (iii).

Let us prove Proposition 2.1 (iv). Since yr, is a convex function, the convergence
(32) in Proposition 2.1 (ii7) is uniform in A on all compact subsets of [0, c0), which
easily entails the convergence of the inverses: lim,_, o a, w;n e /bp) = x[r’] ).

Next observe that Lemma 7.6 combined with Theorem 7.2 implies Proposition 2.2.

It remains to prove Proposition 2.1 (v). Let @ € R, B € [0, 00), k¥ € (0, 00), and
¢ =(cj)j=1 € £3¢. Let us show that there are sequences a;,, b, € (0, 00), w, € E},
n € N, that satisfy (21) with By € [0, 8] and (C1), (C2) and (C3) and +/j,, /b, — 0
where we recall the notation j, = max{j > 1 : w;”) > 0}. To that end, first let
(pn)neN be a sequence of positive integers such that p, < n, lim, . p, = 00 and
ZlSjSpn cj+ c? <n,foralln>cy + c%. To construct the sequence (wy,), <N Which
will have the desirable limits, let us start with the following definition:

Cj 1 if je{l,...,pn},
g0 =V B=Po/0in™l il jelpn+ 1, o0, (237)
! Up if je{pn+n3+1,...,pn+n3+n8},
0 if j>pn+n3+n8,

where u, = n=3 if Bo = 0 and u, = (/30//()%71’8/3 if Bp > 0. We denote by
V= (vj.”)) j>1 the nonincreasing rearrangement of g, = (q_;")) j>1. Thus, we get
0p (Vi) = 0p(qy) for any p € (0, 00) and we observe the following:

xn’ if Bp = 0,
: ,BgnT if Bo >0,
kn? if Bp =0,

Koy (vy) ~ : ! s if o= 0. and «o3(vy,) ~ko3(e)+ 6. (238)

ko (vy) ~ {

We next set

ko1 (V)

by =ko1(vy), ap = and w' = anv;'”, for j>1. (239)

ko (vy) o

We then see that a, b, /o1 (w,) = «, that sup, <y w}") /an, < 00. Moreover, we get

(n)
w:

=B +«koz(c)and  lim —— =c;, forall j € N*,
n—o00 ay,

by 02(wy) . by 03(wy)
—(1 — ) =, lim —-
an o1 (wy,) n—ooay o] (wp)

which are the limits (C1), (C2) and (C3). Itis easy to derive from (238) and from (239)
that a,, and b, /a, tend to oo and that b,, / a,% tends to Bo. Moreover, since j, < nd+n34n,
it is also easy to check that /j,, /b, — 0. This completes the proof of Proposition 2.1
(iv). O
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7.3 Proof of Proposition 2.3
7.3.1 Proof of Proposition 2.3 (i)

Fixx € R, B € [0,00), k € (0,00) and ¢ = (cj)>1 € £5. For all A € [0, 00), set
V() = a4+ 3BT+ kej(e =1+ hc;) and we assume that [ d2 /v (h) <
oo. Let a,, b, € (0,00) and w,, € Z;, n € N, satisfy (21), (C1), (C2) and (C3) (as
recalled in Lemma 7.6). Recall the definition of X" in (215). Recall the definition
of ¥, in (225) that is the Laplace exponent of %X‘g’:’ To simplify notation, set o, =

Z—Z(l — gf E% ). It remains to prove the last point of Proposition 2.3 (i): assume that

o> 0in Q1) let V; : @ = [0.00) be a ry. with law o)™ o w8,

First, observe the following:

02(Wn) 1 An
B[V, = = s = a(1—%5) and ¥, (M) —a,) = bE[f(AV,)],

where we recall that f(x) = e™*—1 + x. Since f is convex and by Jensen’s inequal-
ity, we get ¥, (A) —ayA > b, f(AE[V,]). Moreover, (235) implies f(AE[V,]) >
%(AE[V,I])2 exp(—AE[V,]). Since E[V,,] ~ 1/a,, since &, — « by (C1) and since
bn/az — Bo >0, there is n; € N such that for all n >ny, we get 1/2 < a,E[V,,] < 2,
o, >—2(a)_ and b, /a,% > Bo/2. Thus, there exists n| € N such that for all n >n and
for all A € [0, a,],

1 2
Yn () = —20e) A+ 5 oi? |
which clearly implies (38). This completes the proof of Proposition 2.3 (7). O

7.3.2 Proof of Proposition 2.3 (ii)

Let us mention that, here, we closely follow the counterexample given in Le Gall
& D. [19], p. 55. Fixa € R, B € [0,00), k € (0,00) and ¢ = (c;)j>1 € £3¢. For
all 1 € [0, 00), set Y (1) = ah + LBA% + Zj>1 KCj (e_)‘“/ -1+ ch); assume that
f *d /¥ (1) < oo. For all positive integers n, we next define ¢, = (c;.") )j=1 by setting

c;’” =cj if j <n, c;.”) = (ﬁ/(/cn))% ifn<j<2n and c;") =0 if j>2n.

We also set ¥,,(A) = ai + ijl Kc;">(exp(—kc;")) -1+ )\c;.”)), A € [0, 00). Let
(UM1e10,00)> be a CSBP with branching mechanism v, and with initial state U6’ =1.
As L — oo, observe that ¥, (1) ~ (¢ 4+ xoz(¢y))A. Thus, food)»/wn()») = 00; by
standard results on CSBP (recalled in Sect. B.2.2 in Appendix), it follows that, for all
n € Nand 1 €[0, 00),

P(U'>0)=1. (240)
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Let Z = (Z;)1¢[0,00) stands for a CSBP with branching mechanism v and with initial
state Zg = 1. Observe that for all A € [0, 00), lim,— o0 ¥, (A) = ¥ (X). Standard
results on CSBP (see Helland [25], Theorem 6.1, p. 96) yield

U" ——— Z weakly on D([0, 00), R). (241)

n—00

Next, for each n € N, we construct a sequence of Galton—Watson processes
(ZmP))y p>1 to approximate U". To that end, note that by Proposition 2.1 (iv) there
exist sequences wy, , = (w;-""’))jzl GK} and ay, p, by, p € (0, 00), p €N, such that

2
b b a b
n,pbn.p K, anpy 222 and 2P s, Cmp (1 _ Uz(wn,p)> w
Ul(wn,p) Aan,p bn,p p=oo Aan,p (o8] (Wn,p) P
(242)
bup 03(Wnp) P
np XML kos(e,) and VjeNF, L —— o) (243)
ay,p 91 (Wn,p) p—>0 dp,p p—>x0 ]
and the following weak limit holds true on D([0, c0), R):
L Sop n
(an,p Zl_bn,ﬂt/an,PJ>tE[0‘oo) p—o0 (Ut )IE[0,00) ’ (244)
where (Z\"”)ren is a Galton—Watson branching process with Z\"” = |a,. »] and

with offspring distribution iy, , as in (85). We also have lim,—.0 \/jn.p/bn.p = 0,

where j, , = max{j >1: w;"'p) > 0}. By Portemanteau’s theorem for all ¢ € [0, 00),

liminfp—oo P(Z[;" /1 >0) = P(U]'>0) = 1,by (240). Thus, there exists p, €N,
such that for p> p,,,
(n.p) -
P(Z00 e,y >0) = 1=27" (245)

Without loss of generality we can furthermore assume that \/j,. p, /bn,p, < 27" and

2

bn, p, an, p, bn,p,

a and n.pn > " bu.p, (l - Gz(W"’p”)> - a‘ <27 - K‘ <27
n,pps = s = s =
! an,Pn bann a",Pn o1 (qupn ) o1 (w"spn )
(n,pn)
b 03 (Wn, p,) i
Znpn BWnp) e <277 and Vieqt,... n), ‘ L <o,

a%,pn (<] (Wn,p,,) an,p,
Seta, =ap, p,, by = by, p, andw, =wy ,,. Note that ko3 (¢,) — B+ko3(c) asn— oo.
Thus, a,, b, and w, satisfy (21) with fo = 0, (C1), (C2), (C3) and /j, /by —> 0.
Set Z;" = z;""™ . By (245), for all § € (0, 00), and all integers n > &, we easily get

() ) - : )
P(ZLb,,zS/u,,J = 0) < P(thnn/anJ =O) < 27, Consequently, lim,,_, o, P(ZLbn(S/a,,J =
O) = 0, for all 6 € (0, 0o). Namely, (C4) is not satisfied, which completes the proof
of Proposition 2.3 (ii). O

@ Springer



956 N. Broutin et al.

7.3.3 Proof of Proposition 2.3 (iii)

Fixx € R, B € [0,00), k € (0,00) and ¢ = (cj)j>1 € £5. For all A € [0, 00), set
Y = ak+ 1A% + X o kej(e7 =1 4 hej); assume that [“di/r (1) < oo
We consider several cases.

e Case 1: we first assume that 8 > Bo > 0. By Proposition 2.1 (iv) there exists
an, by, wy, satisfying (21) with By > 0, (C1), (C2) and (C3). But Proposition 2.3 (i)
(proved in Sect. 7.3.1) asserts that a,, b,, w, necessarily satisfy (C4). This proves
Proposition 2.3 (iii) in Case 1.

e Case 2. We next assume that 8 >0 and Sy = 0. Similar to the construction in (246),
let us first introduce the folllowing:

Cj if jE{l,...,n},
11 . . 3
qj(_n)z (,3_/3/()311 ?f J.e{n+1,3...,n+n }, X . (246)
if Je{n+n +1,...,n4+n’+n },
0 if j>n+n3+nd.

Denote by v, = (v;-")) j>1 the nonincreasing rearrangement of g, = (qj(-")) j=1. Thus,
op(va) = op(ay) for any p € (0, 00). Since 3°,_;, cf < c/n, we easily get
ko1 (V) ~kn, kor (V) ~kn? and ko3 (vy,) — B+xo3(c). We next set b, =«o1(vy),
an =ko1(vy)/(koa(v,) + ) and forall j > 1, w?"” =a,v?" . Note that a, ~ n>. Then,
it is easy to check that a,, b, and w,, satisfy (21) with By = 0, (C1), (C2) and (C3).
Since j, = max{j > 1:w{" >0} < n+n’ + n®, we easily get \/j,/b, — 0. Here
observe that « = a, b, /o1 (w,) and bn(l —(02(wy) /01 (w,,)))/a,, =a.

We next prove that (C4) holds true by proving that (38) in Proposition 2.3 (i) holds
true. To that end, we introduce f; (x) = x(e™**—1 + Ax), for all x, A € [0, 00), and
we recall the definition of X" in (215). We denote by v, the Laplace exponent of
alnXZ':,. We first observe that for all A € [0, 00),

Un () = ah kY filg ) =antic Y filep)+in’ fu((B0)Sn ) +in® (7).
j>1 1<j=n
! : (247)
Set so = (B/k)/3. In (235), recall that f; (x) > x3A2e=*. Thus, if 1 € [1, 2n/s0],
then

V() + (@)1 = kn fi(so/n) = ye 2pa% =t 5102,

As aresult, ¥, (1) > slkz(l — %) for A € [1, 2n/sp]. Next observe that, fj(x) >
x(kx — 1). It follows that for A € [2n/sq, n°],

V(3 = =@+ fi(s0/m) = —(@)-h + kson® (B —1) = eson? (1 = ©9=) 2% — 1),

n kson’ 1
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Thus, for all y > Z2%= 2(0‘) Vv 1landforalln > 330 v 2(a), , we get
0
n? 2 n?
di s dA dxr 2 3log(2son%2—1) +31lo 3
/ 52/0 2+/ & .2, 3ogGson’—1) +3log
vy Ya(d) y  S1h % KSon (3—,?)»—1) s1y 2KS0

Since a,, ~ n3, it proves that the right-hand side vanishes, so that v, satisfies (38),
and (C4) holds true. This proves Proposition 2.3 (iii) in Case 2.

e Case 3: We now assume that 8 = o = 0. Let 8, € (0, 0o) be a sequence decreasing
to0. Foralln € N*, weset W, (1) = ¥ (M) +1B,A% = a)»—i—%,Bn)»z—i-ZjZl Kej(e -
1+ ch). We now fix n € N*; by Case 2, there exists w, , = (wf-""’))jzl € Z}
and ay p, by p € (0,00), p € N, that satisfy \/E/bn,p — 0 as p — oo, where
Jn,p = max{j>1:w{"” >0}, and

2
an,pbn,p =K. dnp. bn,p and an,p 0, bn,p (1 _ UZ(Wn,p)) —a,
Ul(wn,p) Aan,p bn,p P00 Qn,p o] (Wn,p)
(248)
bu.p 03(W,p) w]"”
;’p P 5 B, +ko3(c) and, for each j € N¥, I —— ¢
ay p o1 (wp p) p—>0 an,p p—>X0
(249)
Furthermore, for n € N* and r € [0, 00),
(n,p) —vp (1) * di
lim P(ZLb tan y] = O) =e where =t. (250)
nmoo gt fanp (1) Y ()

Here, (Z,((""’ "Vken is a Galton—Watson process with offspring distribution M, , given
by (85) and where Z(” R lan,pl. Let v : (0,00) — (0, 00) be such that t =
fv(t) d)/vyr(A) for allt € (0, 00). Since ¥, (1) > ¥ (1), we getf(t) dr/y(A) =t =
fu 0 A/ W (1) = " A2/ ¥ (M); thus v, () < v(1). Thus, there exists p, € N such
that for all p > p,, P(Z(L’},:;/anpj 0) > 4 exp(—v, (1)) = L exp(—v(1)). Without
loss of generality, we can assume that M/bn,pn < 27", an,p,, bu,p,/an,p, and

H (n,pn) —
Ay po/bn.p, = 2", thatforall 1 < j < n, [w{"™ fay p, —c;| <27" and

bn On, pu 03 (Wn,p,, )
g ——
ay p, 01 (Wn,pn)

— KO'3(C)‘ <28, — 0.

If one sets a, = ay,p,, bn,p, and w, = wy,_ p,, then we have proved that ay,, by, wy,
satisfy (21) with 8 = Bo = 0, \/jn /b, — 0 and (C1)—(C4), which proves Proposition
2.3 (iii) in Case 3. This completes the proof of Proposition 2.3 (iii). O

@ Springer



958 N. Broutin et al.

8 Proof of Lemma 2.10

In this section, we consider the power-law example in [9,11]. We check that the weight
sequence (wy (a)) and the renormalising sequences (a,), (b,) in Lemma 2.10 satisfy
the assumptions of Theorem 2.8. Let us start with the following lemma:

Lemma 8.1 Let £: (0, 1] — (0, 00) be a measurable slowly varying function at 0+
such that for all xog € (0, 1), SUPyelxo.1] £(x) <o00. Then, forall § € (0, 00), there exist
ns € (0, 1] and c5 € (1, 00) such that, for y € (0, ns) and z € (y, 1], one has

é(i)_ﬁs % < c(;(i)‘S . 251)

Proof The measurable version of the representation theorem for slowly varying func-
tions (see for instance Bingham, Goldie & Teugels [13]) implies that there exist
two measurable functions ¢ : (0,1] — R and ¢ : (0,1] — [—1, 1] such that
limy_,0+c(x) = y € R, such that lim,_, o4 &e(x) = 0, and such that ¢(x) =
exp(c(x) + fxl dse(s)/s), for all x € (0, 1]. Since, supxe[xo’l]ﬁ(x) < 00, for all
xo € (0, 1), we can assume without loss of generality that ¢ is bounded. Fix § € (0, co)
and let ns € (0, 1] be such that sup(y ,;lé] < 8. Fix y € (0,75) and z € (y, 1]; if
z < ns, then note that fyz dsle(s)|/s < dlog(z/y); if ns < z, then observe that

5 dsle(s)l/s < 8log(ns/y) + f,,ls dsle(s)|/s < 8log(z/y) + log(1/ns). Thus

m[z'lc'lm(%)_si % — exp (c(z)_c(y)_/zds @) =< nglezuc||oo(§>8 .
y

which implies the desired result. O

Let us recall that W:Q — [0, co) is a r.v. satisfying r :=E[W] = E[W?2] <00 and
that P(W > x)=x"PL(x), where L is a slowly varying function at co and p € (2, 3).
Recall also the notation G(y) = sup{x € [0,00) : P(W >x) > 1Ay}, ¥y € [0, 00).
Note that G is non increasing and null on [1, 00). Then, G(y) = y_l/"’ £(y), where £ is
slowly varying at 0. Recall also the parameters «, g € (0, 0c0) as well as the assumption
that a, ~g~'G(1/n), w{"=G(j/n), j =1, and b, ~ ko1 (w,)/ay.

Fix a €[1, 2] and observe that o, (w,,) = Zlqu fOG(l/")dz az® ! 1i:<G(j/n))- But
observe that z < G(y) implies y < P(W >z). Thus,

G(1/n) | G(1/n) 1
ACHESDY / dzaz"" 1ij<ppw=2)) 2/ dzaz*"" Y 1jj<upw=o)
0 0

1<j<n 1<j<n

G(1/n) G(1/n)
:/ dzaz? ' |InP(W>7)] :/ dzaz 'nP(W>7z)
0 0
G /n)
—/ dzaz " nP(W >27)}
0

o0
=n/ dzaz '"P(W>7)
0
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[ee) G(1/n)
—/ dzaz“_lnP(sz)—/ dzaz* "nP(W=>2)}. (252)
G(1/n) 0

Note that [;° dzaz* '"P(W >z) = E[W*] < co. Note that P(W = G(1/n)) = 0 by
assumption (68), which easily implies that P(W > G(1/n)) = 1/n. Thus,

nP(W>z2)=P(W > z2)/P(W > G(1/n)) = (z/G(1/n)) P L(z)/L(G(1/n))
and by (252) and the change of variable z+— z/G(1/n), we get

‘ 1 [ a1, LEG(H) a [l iy LEGG))
0 (W) = nE[W ]—G(;)/1 deaz'™' 0 LS =Gl /dzaz E i I
The measurable version of the representation theorem for slowly varying functions (see
for instance [13]) implies that there exist two measurable functions c: (0, co) — R and
€:(0,00) — [—1, 1] such that limy_,» c(x) = y € R, such that lim,_, 5 ¢(x) = 0,
and such that L(x) = exp(c(x) + flx dse(s)/s), for all x € (0, c0). We then set
u = (p—a)/2 that is a strictly positive quantity since a < 2 < p. Let ng be such that
for all n>no, Supse(y o) 1€(sG(1/n))| < u. Thus, forall z € [1, 00),

N

a1, L@GGE) i 1 1
0=z pm =z P exp (‘(ZG(;))_C(G(E)) +/1ds

Sinceforallz € [1, 00), L(zG(1/n))/L(G(1/n))— 1, dominated convergence entails
that

% ,LEGG) | a [, LEGGY)
a—1—p _ a—1 ]
ey = e i e Gy |
1
:/dzaz"*]{z*p}.

0

We then set Q, = a/(p—a) + fol dzaz* '{z7P} and since a, ~ ¢~ 'G(1/n), we
have proved that

0q(wn) = nE[W*] — q“ Qa(an)* + o((an)*). (253)

Recall that as the graph is critical, we have r = E[W] = E[W?2]. We then take (253)
with a = 1 to get o1 (w,) —rn ~ —Qn'/Pe(1/n) since a, ~ q~'n'/?L(1/n); thus
by ~ kqrn'=1? /¢(1/n). 1t implies that a,, and b, /a, go to co and that b, /a2 — 0.
Moreover for all j > 1, w;") /a, — qj~/P. This implies that a,, b, and w, satisfy
(21) with By = 0 (and (C3)). Since a,b,, ~ ko1 (w,) ~ krn, (253) witha = 1 and 2
implies that

o2(wa) _ nr—gq*Qaay +o(ay)
o1 (wp) nr—quan + o(ay)

dn an

1—/cq2sz—: +0(Z_:>:1_O[OE +o<b—n(25,4)
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where ag = kg% Q> as defined in (70).

Next, for all @ € R, set w(”) () = (1— (a ao))w(") By (254), we get

o (wy (@) /o1 (wy (@) =1 —aa, /b + o(an/bn) Namely, wy, (@) satisfies (C1). Since
(”) (o) ~ w(") as n — 00, wy(a) also satisfies (C3) with ¢; = gj —r =1,

Let us prove that (w, («)) satisfies (C2). First observe that 03 (w, () ~o03(wy). So
we only need to prove that the w, satisfy (C2). To that end, for all » and j > 1, we
set fu(j) = (G(j/n)/G(1/n))> = j73/PE3(j/n)/€3(1/n) and § = 4 (3 —1) that is
strictly positive. We apply Lemma 8.1 to £3: let ¢ € (1, 00) and ns € (0, 1] such that
(251) holds true; then, for all n > 1/5s, 0 < f,(j) < csj~'~°. Since for all j > 1,
lim, o0 fn(j) = j 3/, by dominated convergence we get

GA/mo3m) = Y ful) ——— Y i =q 7030,

I<j=n Jj=1

which easily implies (C2).

Let us prove that w, («) satisfies (C4) thanks to (38) in Proposition 2.3. To that end,
we fix n € N* and A € [0, o0) such that A € [1, a,]. For all x € [0, 00), recall that
fr.(x) = x(e™ =1+ Ax) and for all j > 1, set

7 (@) n a n
u() = fi(“) = (g L) where gy = (1- 52 (@—an)) S22 ~
To simplify, we also set «,, = a,b, /o1 (wy,(«)); note that x,, ~«. Let § € (0, oco) be
specified further; by Lemma 8.1 and the previous arguments, there exists cs € (0, 0o)
and ng such that for all n > ns, wj-") (@)/a, = csj 1P and k, > Lk, which entails
KnPn(j) =i fo(cs j~071/P). We next set
. by ( 02(Wp (Ol))>
api=—(1—-—=) ~
an o1 (wy(e))

Recall that v, defined in (37), is the Laplace exponent of ( X ”(“)),e[o,oo). The
previous inequalities then imply that

Yn(A) —aph = ZKn¢n(]) = %KZ fk(caj_3—%) > %K/Idx fx(cax_‘s_%) ,

1<j<n 1<j<n

where we have used the fact that x — f; (x) is increasing. We set a = p/(1 + p§),
namely 1/a = 8 + 1/p and we use the change of variables y = Ax~!/“ in the last
term of the inequality to get

Vn=ns, VA € [L,anl, Yn(A)—onh > %Kak“_lf dy y~*! filcsy)
A

n—1/a

1/a

> Ka)»“ 1/dyy £ (csy).
a,

nh
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Now observe that a,n™'/* ~ ¢='n=%¢(1/n) — 0. Thus, without loss of gener-

ality, we can assume that for all n > ns, an~ Ve < 1/2. Then, we set K5 =
tka fll/zdy y~4 1 fi(csy) > 0 and we have proved that for all n > ng, and for all

A€l anl, YN —aph > K29~ Since p > 2, itis possible to choose a sufficiently
small § >0 such thata—1 = p/(1 4+ pé)—1> 1. Then, we get (38) in Proposition 2.3
(i) which implies (C4). This completes the proof of Lemma 2.10. O
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A Laplace exponents

We state here a proposition on the Laplace transform of measures on R. To that end, we
briefly recall standard results on the Laplace transform of finite measures on [0, co) and
on [0, oo]. Namely, let u be a Borel-measure on the compact space [0, oo]; its Laplace
transform is given by L, (1) = f[o’ ) e u(dx), for all A € (0, 00). In particular,
we take L, (0) = L, (0+) = u([0, 00)). Let u, v be finite Borel measures on [0, co].
Recall that if p ([0, oo]) = v([0, oc]) and if I = {A € (0, 00) : L, (A) = L, (A)} has
a limit point in (0, 00), then u = v. The continuity theorem for Laplace transform can
be stated as follows: let « and u,, n € N, be finite Borel measures on [0, co]. Then,
the following holds true.

weak
fn —> = lim g, ([0, 00]) = p([0, 00]) and lim L, (1)
n—oo n—o0 n— 00

=L,(}), A €[0,00). (255)

We next easily deduce from (255) the following lemma.

Lemma A.1 Let (n)nen be a sequence of probability measures on [0, 00). Let I C
(0, 00) have a limit point in (0, 00); let L : I — [0, 00) be such that for all A € I,
lim,, oo Ly, (M) = L(X). Then, there exists a probability measure p on [0, 00] such
that w, — @ weakly on [0, o). If furthermore the i, are tight on [0, 00), then
u(foo}) = 0.

Proof Since [0, oo] is compact, {u,; n € N} is tight on [0, oo]; by (255), the Laplace
transform of two limit probability measures coincide on /: there are therefore equal.
O

Let p be a finite Borel-measure on R; we extends its Laplace transform on R by
simply setting forall A € R, L, (}) = fRe_“,u(dx) € [0, oo]. Let us mention that
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if in a right-neighbourhood of 0, L, and L, are finite and coincide, then y = v. We
easily prove the following result.

LemmaA.2 Let (n)neN be a sequence of probability measures on [0, 00). Suppose
that there exists A* € (0, 00) such that for all » € [0, A*], A(X):=lim,, .0 L, (=)
exists and is finite. Then, p, — w weakly on [0, 00), A(X) = L, (=A), A € [0, A%),
which implies that limy_, o4 A(A) = 1.

Proof For all 1o € (0, A*), set v, 3,(dx) = er* (dx)/Ly, (—Xo) that is a well-
defined probability measure. Note that for all A € [Ag — A%, Xol, L,,MO i) =
Ly, (A—=x0)/Ly,(=Xo) — A(ro — A)/A(Ao). This limit for A < O entails that the
Vn, 3o are tight on [0, 0o); the same limit for A > 0 combined with Lemma A.1 implies
that there is a probability measure v;,, on [0, co) such that v, 3, — v, weakly on
[0, 00). Since w,(dx) = L,Ln(—)\o)e_’\oxvn,;\o(dx), we easily see that u, — p:=
A(ko)e’xoxv,\o (dx) weakly on [0, oco) we easily check that L, (—A) = A(—2) for all
A € [0, A%). O

We next recall a result essentially due to Grimvall [24] (Theorem 2.1, p. 1029).

LemmaA3 Foralln € N, let (A})ren be an i.i.d. sequence of real-valued random
variables such that there exists a € (0, 00) such that, forn,k € N,

P(A! > —a)=1. (256)

Let (gn)nen be a sequence of integers that tends to oo. Set Y, = Zo<k<qn A’,: and

L,(\) = E[e’)‘Y "] (that is finite thanks to (256)). Then, the following assertions are
equivalent.

(a) The rv. Y, converge in law to a real-valued rv. Y.

(b) There exists a function L : [0, co) — [0, 00) that is right-continuous at 0, such that
L(0)=1 and such that lim, ., L,(A) = L(X) for all » € [0, c0).

Moreover, if (a) or (b) holds, then L(L) = E[e Y] and L is positive and continuous.

Furthermore, L,, — L holds true uniformly on every compact subset of (0, 00).

Proof Grimvall’s Theorem 2.1 [24] (p. 1029) asserts (a) = (b). It also asserts that if
(a) holds true, then L(1) = E[exp(—AY)] and lim,,_, o, L, = L uniformly on every
compact subset of (0, 00).

It only remains to prove that (b) = (a): first suppose that Y, is a subsequence that
converges in distribution to Y’: by applying (a) = (b), we get L(A) =E[exp(—AY")],
A € [0, 00), which characterizes the law of Y’. Consequently, the laws of Y, have at
most one weak limit. Therefore, we only need to prove that the laws of Y;, are tight on
R.

Since [—00, oo] is compact, the laws of the Y, are tight on [—00, oo] and we only
need to prove that for all increasing sequence of integers (1) peN

such that ¥, , — Y in law on [—00, 00], we necessarily get P(|Y| = o0) = 0. To
that end, first note that the convergence Y, , > 7Y in law on [—o0, co] implies that
(Y,,],)Jr/, — (¥)4/— inlaw on [0, oo]. By (255), we get

Jim E[ exp(=2(¥a,)1)] = B[ exp(=2.(1)+)]
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for all & € [0, 00). Since L, (A) =E[ exp(*(Y,)-)] + E[ exp(—A(Y,)4)]— 1, we get
pan;O E[exp(A(Yn,) )] = L(W) + 1—E[exp(—A(Y))].

This easily entails that the laws of the (Y} ,) are tight on [0, 00). Thus P(Y = —o00) =
0. We then apply Lemma A.2 to the laws of the r.v. (¥,,)— and as p — co we get
E[ exp(A(Y)_)] =L\)+ l—E[ exp(—k(Y)+)] and as A — 0+, since E[ exp(A(Y)_)]
and L(}) tend to 1, we get P((Y)4 < 00) = limy—.04+ E[ exp(—A(Y)4)] = 1, which
completes the proof of the lemma. O

B Skorokhod’s topology
B.1 General results

In this section, we adapt and we recall results on Skorokhod’s topology and weak
convergence on D([0, 00), Rd) in Jacod & Shiryaev’s book [27]. These results are
stated within our notation and ready to be used in our proofs.

Lemma B.1 (Propositions 2.1 & 2.2 in [27]) Let x, — x in D([0, 00), RY) and let
yp—y in D([0, 00), R, Then, the following holds true.

(i) Forallt € [0, 00), there exists a sequence of times t, — t such that x,(t,—) —
x(t—=), x,(t,) = x(t) and thus, Ax,(t,) — Ax(t).

(i) For allt € [0, 00) such that Ax(t) = 0 and for all sequences of times s, — t, we
get x, (sp—) — x(t) and x,,(s,) — x(t), and thus Ax, (s,)— 0.

(iii) Assume that for all t € (0,00) there is a sequence of times t, — t such
that Ax, (t,) — Ax(t) and Ay,(ty) — Ay(t). Then ((x, (1), yn(t))le[(),oo) —
((x(1), y())e[0,00) for the Skorokhod topology on D([O, 00), R‘Hd,). In particu-
lar, this joint convergence holds true whenever x and'y have no common jump-time.

(iv) Let (t,) be as in (i) and (s,) be such that s, — t and s, > t,, n € N. Then,
Xp ($p) = x(2).

Proof See Jacod & Shiryaev [27], Chapter VI, Section 2, pp. 337-338. More precisely,
for (i) (resp. (ii)), see [27], Prop. 2.1 (a) (resp. (b.5)); for (iii), see [27], Prop. 2.2 (b).
For (iv) see Prop. 2.1 (b.3) in [27]. O

As an immediate consequence of Lemma B.1 (iii), we get the following lemma:

LemmaB.2 Let k € N*. Foralln € Nand j € {1,...,k}, let R’;(~) and R;(-) be

RY -valued cadlag processes. Assume that (RY, ..., R’k“) — (Ry, ..., Ry) weakly on
D([0, 00), R4) x ... x D([0, 00), R%) equipped with the product topology. Assume
that a.s. the processes Ry, ..., Ry have no (pairwise) common jump-times. Then,

((RY(0), ..., RE()))ief0,00) —2 ((R1(1), ..., Ri(1)))1e[0,00)
weakly on D([0, 00), RY), where d = d + ... + di.
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LemmaB.3 Let y, — y in D([0, 00), R). Then the following holds true.

(1) Lets,t € [0, 00) be such that s <t and such that Ay(s) = Ay(t) = 0. Then, for
all (sp, t,) = (s, 1), we get infue[s,,,tn] Yn(u) — infue[s,t] y(u).

(i1) Suppose that t € [0, 00) — infse[o 1] y(s) is a continuous function. Then, the
following convergence (infse(o,1] Yn(8))te[0,00) — (infse(0,] ¥($))re[0,00) holds
uniformly on every compact subsets.

(iii) Let0 <ty < t besuchthat Ay(t) = 0and (infsc[o,1,—] Y ($))A(nfse[r, 46,11 Y(5)) >
infsepo,. y(s) for all sufficiently small ¢ > 0. Set t] = inf{s e [0,¢] :
infye(0,5) Yo () = inf, (0,1 yo ()} for all n € N. Then, we get t}} — t,.

Next, for all r € [0, 00) and all 7z € D([0, 00), R). We set y,(z) = inf{t € [0, 00):
z(t) < —r}, with the convention that inf ) = oo. Note that r — y,(2) is a nondecreas-
ing [0, oo]-valued cadlag function. Then, we get the following:

(iv) Suppose that t € [0, 00) = infsc[o.1] ¥(5) is continuous. Then, for all r € [0, 00)
such that y,(y) < oo and Ay, (y) = 0, we get y, (yn) = yr (¥).

Forallt € [0,00), all r € R and all z € D([0, 00), R) we next set

7(z,t,r)=inf {s e[0,1]: il[lf ]z(u) > r} with the the convention that inf ) = oo.
uels,t

(257)
Then, the following holds true:

(v) Suppose that y(t) >0 = y(0). Then, r € [0, y(¢))— t(y, t, r) is right-continuous
and nondecreasing. Furthermore, suppose that Ay(t) = 0 and that r € (0, y(t))
satisfies T(y,t,r—) = t(y,t,r). Then, for all (ty,ry) = (t,1), T(Yn, tn, Tn) =
T(y,t,r).

Proof We will use the shorthand notation inf[, ;) y for inf,¢[s¢] ¥ () when there is no
risk of confusion. Since y, — y in D([0, 00), R) there is a sequence of continuous
increasing functions 1, : [0, c0) — [0, 00), n € N, such that A, (0) = 0, such that
SUP; [0, 00) |)m (1) —t| — 0 and such that SUPsepo, p) [yn =Y (An(s))| — 0 as n — oo for
all p € N (take the inverse of A, in Theorem 1.14 in Jacod & Shiryaev [27], Chapter
VI, Section 1.b, p. 328). To simplify we set s, = A, (s,) and ¢, = A,(#,); note that
(Sy» t,) = (s, 1) and that inf[y, ;| yo—inf[y )y — 0. Next observe that for all & > 0,

n’

inf y <liminf inf y <limsup inf y < inf
[s—e,t+¢] n—o0 [s/ .t/ n—oo [s).t)] [s+e,t—¢]

Since Ay(s) = Ay(t) = 0, we get limg_oinf[s—¢ 116y = limeoinfs4e -1y =
inf[ ;] v, which entails (i). The point (ii) is an immediate consequence of Dini’s
Theorem (see for instance [35], Theorem 7.13).

To prove (iii), we first set S = {¢ € (0, A (t —1)) : Ay(t, £ &) = 0}. By
(i), forall e € S, inf|o 1, —¢] Yo — Inf[0,1,—¢] ¥, IDf[1, 46,1) Yo — Inf[1, 46 ) ¥. Moreover,
inf[o ;] y» — inf[o ;] y. Thus, for all € € S, there is n, € N such that for all n > n,,
(inf[o,4,—e] Yn) A (inf[z, 46,1 Yn) > inf(o 1] yn, which implies that |¢] —z,| < e and (iii)
since 0 is a limit point of S.
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Under the assumption that t € [0, 00) — infs¢(o,/] ¥(s) is continuous, (iv) is a
consequence of Proposition 2.11, Chapter VI, Section 2a p. 341 in Jacod & Shiryaev
[27] applied to the functions ¢t € [0, 00) +— infs¢o,s yn(s): to be specific, for all
r € [0,00), set S = inf{r € [0, 00) : infye0,/] Yu(s) < —r} and S, = inf{r €
[0, 00) : infgeqo,,) ¥(s) < —r}; then r — S, is left continuous with right-limits (see
Lemma 2.10 (b) [27], p. 340) and Proposition 2.11 [27] p. 341 asserts the following: if
Sy = Sy, then S — §,. Now, observe that S, = v, (), S}y = ¥, (Yn), Sr = yr—(¥)
and S, = y»—(yn), which implies (iv).

Let us prove (v): suppose y(¢) >0 = y(0); it is easy to check that r € [0, y(¢))+—
t(y, t, r) is right-continuous and nondecreasing. Suppose next that Ay(r) = 0 and
thatr € (0, y(¢)) satisfies t(y, t,r—) = (v, t,r). Letqg € (t(y, t,r), t) be such that
Ay(q) = 0; then inf|, ;) y > r; by (i), for all sufficiently large n, we getinf(y 1, yn >
ry and thus, T (y,, t,, rp) < g <t,. This easily entails that lim sup,,_, ., T (V. tn, Fn) <
7(y, t,r). Next, fix g <t(y, f, r—) such that Ay(g) = 0: then, there exists r’ € (0, r)
suchthatg <t (y, t, "), whichimplies thatinf, ;1 y < r’ <r;by (i), for all sufficiently
large n, we get infg 1,1 Yo <7, and thus, ¢ < ©(yp, t,, ). This easily entails that
liminf,_ o T(Vn, tn, 7n) =T (¥, t, r—), which implies the desired result. O

We shall use the following elementary lemma whose proof is left to the reader:

LemmaB.4 Let r, — r in [0,00) and let y, — y in D([0, 00), R). Assume that
Ay(r) = 0. Then the following holds true:

@) n(t Aru))iero,00) = (Y& AT))1ef0,00) in D([0, 00), R).
(i) (Yn(rn + )ref0,00) = (Y + 1))1ef0,00) in D([0, 00), R).
(iii) Letl, € [0, r,] be such that l,, — I. Assume that Ay(l) = 0. Then (y,((l, + )N
n)iel0,00) = (Y((L + 1) AT))1e[0,00) in D([0, 00), R).

Theorem B.5 (Theorem 3.1 in Whitt [40]) Let h,, — h and *, — X in D([0, 00), R).
We assume that A,(0) = 0 and that X, is nondecreasing. Then, the following holds
true:

(i) Ifh,— hin C([0, 00), R), then hy o A, — h o A in D([0, 00), R).

@ii) If A, — A in C([0, 00), R) and if A is strictly increasing, then h, o ., — h o A in
D([0, 00), R).

Proof See Whitt [40], Theorem 3.1, p. 75. O
As a consequence of Theorem B.5 (ii), let us prove the following:

Lemma B.6 Let (B,),eN be a sequence of nonnegative real numbers such that 3, — oo.
For all n € N, let (0} )k>1 be an increasing sequence of random times such that
limg o0 0 = 00, then, for all t € [0, 00), we set M]' = Zkzl 1o, (o). Let
(R™)pen be a sequence of R-valued cadlag processes. We first assume that R — R
weakly on D([0, 00), R). We also assume that there is a deterministic strictly increasing
A € C([0, 00), R) such that ﬁ'—nME,,. — A weakly on C([0, 00), R). Then,

n
(Rﬂ;lMgn,)te[O’oo) ﬁ (R)u(t))tE[O,OO) (258)
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weakly on D([0, 00), R). In particular, this result applies if M" are homogeneous
Poisson processes with unit rate and ) is the identity map.

Proof We set A,(t) = M"(B,t)/Bn. Since A is deterministic, Slutzky’s argument
implies that (R", A,) — (R, A) weakly on D([0, 0c0), R) x C([0, 00), R) and The-
orem B.5 (ii) implies (258). To complete the proof of the lemma, assume that
M" are homogeneous Poisson processes with unit rate. By Doob’s L? inequality,
B, IMZ,,;)te[O,oo) — 1Id, weakly on D([0, 00), R), where Id stands for the identity
map on [0, 00). O

We next recall the following elementary lemma whose proof is left to the reader.

LemmaB.7 Let E be a Polish space. For all n,k € N, let X} and XZ be E-valued
rv. such that for all k € N, (Xg, ..., X})) = (Xo, ..., Xx) weakly on E*Y equipped
with the product topology. Then (X} )ken — (Xi)ken weakly on EN equipped with the
product topology.

B.2 Weak limits of Lévy processes, random walks and branching processes
B.2.1 Lévy processes and rescaled random walks

We first recall the following
theorem on functional limits of Lévy processes that is proved in Jacod & Shiryaev
[27]. This result is used several times in our proofs.

Theorem B.8 Let (R});c[0,00), 1t € N, be a sequence of R-valued Lévy processes with
initial value 0. Then, the following assertions are equivalent.

(a) There exists a time t € (0, 00) such that the rv. R} converge weakly on R.
(b) The processes R" weakly converge on D([0, 00), R).

Moreover, if (a) or (b) holds true, then the limit of the processes R" is necessarily a
Lévy process.

Proof This is a consequence of Corollary 3.6 in Jacod & Shiryaev [27], Chapter VII,
Section 3.a, p. 415. To understand the notation and the terminology, let us mention
that in [27], a PIIS stands for a Lévy process and that the form of the characteristics
of a PIIS is given in Corollary 4.19, Chapter II, Section 4.c, p. 107. O

Let us briefly recall some notation. Let (R;);¢[0,00) be an R-valued Lévy process
with initial value Ry = 0. We assume it is spectrally positive, namely that R has no
negative jump: a.s. for all # € [0, c0), AR; > 0. We also assume that the process
is integrable: namely, we assume that there exists a certain ¢ € (0, co) such that
E[|R;|] < co.Letus mention thatif R is integrable, then E[| R;|] < oo forallt € [0, 00).
There is a one-to-one correspondence between the laws of integrable spectrally positive
Lévy processes and triplets («, 8, ) where ¢ € R, 8 € [0, 00) and 7 is a Borel-
measure on (0, oo) such that f(o, OO)Jr(dr) (r Ar?) < o0; the correspondence is given
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via the Laplace exponent of R (that is well-defined): namely, for all ¢, A € [0, c0),

E[e—AR,] — et%‘ﬂ.n(k), where wa,ﬁ,n()»)=a)»+%ﬁk2 +/ (ef)‘r—l—i—)»r)n(dr).

(0,00)
(259)
We shall say that R is an integrable («, 8, 7)-spectrally Lévy process to mean that its
Laplace exponent is given by (259). We next recall the following specific version of a
limit-theorem for Lévy processes.

Theorem B.9 Let (R"),cN be a sequence of integrable («,, By, 7w,)-spectrally posi-
tive Lévy processes. Assume that there exists ro € (0, 00) such that for all n € N,
1, ([ro, 00)) = 0, which implies: f(o,oo) r2 7, (dr) < oo. Let R be an R-valued cadlag
process. Then, the following assertions are equivalent:

e (Lvl) : R — Ry weakly on R.
e (Lv2) : R" — R weakly on D([0, oo, R).

If (Lvl) or (Lv2) hold true, then R is necessarily an integrable (a, B, m)-spectrally
positive Lévy process such that 7 ([rg, 00)) = 0, which entails f(o 00) r2 (dr) < .
Moreover, (Lvl) or (Lv2) are equivalent to the following conditions:

e (Lv3a) :ap— a.

o (Lv3b) : By +f(0’00) rzn'n(dr) — B+ f(O,oo) r2 7 (dr).

e (Lv3c) : f(O,oo) f@r)m,(dr) — f(o’oo) f(r)m(dr), for all bounded continuous
f :R— R vanishing on a neighbourhood of 0.

Proof (Lvl) < (Lv2) is a specific case of Corollary 3.6 in Jacod & Shiryaev [27],
Chapter VII, Section 3.a, p. 415 (already recalled in Theorem B.8). For the proof of
(Lvl) & (Lv3abc), see Theorem 2.14 in Jacod & Shiryaev [27], Chapter VII, Section
2.a,p. 398. O

Here is the random walk version of the previous theorem.

TheoremB.10 Let a,, b, € (0,00), n € N, that both tend to co. For all n € N,
let (§])keN be an i.i.d. sequence of real-valued rv. Assume that there exists ro €
(0, 00) such that for all n, k € N, P(a,ro > E,? >—rg) = 1. Forall t € [0, 00), set
R} = an’l lekng,,tJ &.. Let R be an R-valued cadlag process. Then, the following
assertions are equivalent:

e (Rwl) : R —> Ry weakly on RR.

o (Rw2) : R" —> R weakly on D([0, oo, R).
If (Rwl) or (Rw2) hold true, then R is necessarily an integrable («, B, m)-spectrally
positive Lévy process such that 7 ([rg, 00)) = 0, which entails f(O,oo) r2 w(dr) < oo.
Moreover, (Rwl) or (Rw2) are equivalent to the following conditions:

o (Rw3a) : bya, 'E[£]'] — —a.

o (Rw3b) : bya, 2var(El) —> B+ [ig o0y r27(dr).

e (Rw3c) : bnE[f(Sl”/an)] — f(o,oo) f(r)ym(dr), for all bounded continuous f :

R — R vanishing on a neighbourhood of 0.
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Proof (Rw1) < (Rw3abc) is a specific case of Theorem 2.36 Jacod & Shiryaev [27],
Chapter VII, Section 2.c p. 404. The equivalence (Rw1) < (Rw2) is standard: see for
instance Theorem 3.2 p. 342 in Jacod [26]. m]

B.2.2 Continuous state branching processes and rescaled Galton-Watson processes

We next recall convergence theorems for rescaled Galton—Watson processes to inte-
grable Continuous State Branching Processes (CSBP for short). Recall that (Z;);¢[0,00)
is an integrable CSBP if itis a [0, co)-valued Feller Markovian process whose absorb-
ing state is 0 and that satisfies E[Z;] < oo for all ¢ € [0, 00); transition probabilities
are characterised by a function ¢ : [0, co) — R called the branching mechanism;  is
necessarily the Laplace exponent of an integrable spectrally positive process: namely,
it is of the form ¥y = ¥ g 5 as in (259). The branching mechanism characterises the
transition probabilities as follows: for all z, s, A € [0, c0),

t
E[e 44|z ] = e %™ where u,(A) = A — / VU (ug(L))ds. (260)
0

Since ¥ = Vo g7 is as in (259), ¥'(0+) = « and the equation on the right-hand
side has a unique solution. Since ¥ is convex and since ¥ (0) = 0, it has at most one
positive root; denote by ¢ the largest root of y; then, the equation on the right hand
side of (260) is equivalent to the following.

A
d
Vi € [0, 00), VA € (0, 0o)\{q}, / Loy 261)
ur (L) ¥ (2)
This easily implies the following conditions of non-absorption in 0:
P(3:Z, =0)=0 < fooﬁ =00 (262)
- v ()

We shall say that Z satisfies the Grey condition if it has a positive probability to be
absorbed in 0, namely if foo dz/v¥ (z) <o0;in that case, one can show that P(37: Z, =
0)=P(lim;_, o Z; = 0) and if a.s. Zp = x, then we get

—xv(t) . * dz
P(Z,=0)=¢e where v satisfies t. (263)

v(t) m -

We refer to Bingham [12] for more details on CSBP. We next recall the following
convergence result due to Grimvall [24].

Theorem B.11 (Theorems 3.1 and 3.4 [24]) Let a,, b, € (0,00), n € N, such that
both a, and b, /a, tend to co. For all n € N, let u,, be a probability measure on N,
let (Z;(("))keN be a Galton—Watson process with offspring distribution [, and initial
state Z(()") = lay], and let (5! )en be an i.i.d. sequence of r.v. with law (v,. Then, the
following assertions are equivalent:
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(Brl): & ZlngLan ({,?—1) —> Ry weakly on R, and R\ is integrable and it has
a spectrally positive infinitely divisible law whose Laplace exponent is .

(Br2): (#ZE’ZM/QM)E[OW) —> (Z1)1€]0.00) Weakly on D([0, 00), R) and Z is an
integrable CSBP with branching mechanism .

Proof See Theorem 3.1 p. 1030 and Theorem 3.4 p. 1040 in Grimvall [24]; in [24],
b /a, =n, however, the above extension is straightforward. O

B.2.3 Height and contour processes of Galton-Watson trees

Let (i,)nen be a sequence of offspring distributions with finite mean and such that
1 (0) >0. For all u,,, we denote by T, a Galton—Watson forest with offspring distri-
bution w, as defined in Sect. 3.1. Recall the definition of the Lukasiewicz path, the
height and the contour processes of T, that are denoted respectively by (VkT”)keN,

(thtZ")keN and (C ,T ")tel0,00)- We shall use the following result from Le Gall & D.
[19].

Theorem B.12 Let X be an integrable («, B, w)-spectrally positive Lévy process, as
defined at the beginning of Sect. 7.1. Assume that foo dz [V, p,x(2) <00, where Yo g
is given by (259). Let H be the continuous height process derived from X by (138).
Let ay, b, € (0,00), n € N, be two sequences tending to oo; foralln € N, let T, be a
GW(u, )-forest. Let (Z;(("))keN be a Galton—Watson process with offspring distribution
Wn and initial state Zg‘) = |ay|. We assume that

1 T, weakly on R . . ) .
—— > X1 and 35€(0,00), hmlan(ZLb S/aJ—O)>O.
n—oo n=/%n

an " Lbn] n—>00
(264)
Then, the following joint convergence holds true:
1 T, an T, an ~T,
<(thbntJ)ze[o,oo)’ (Etht bt ] )te[O,oo)’ (E bnt)te[O,oo))
—_— ((Xt)te[(),oo), (Ht)te[(),oo), (Hz/z)ze[o,oo)) (265)

n—oo

weakly on D([0, 00), R) x (C([0, 00), R))? equipped with the product topology. We
also get

— =1. (266
) Ya,p,7(2) r (260

vVt € [0, 00), nllﬁrrg() P(Z(\;))nt/anj =0) =e "D where /
v

Proof The convergence of the height process for (sub)critical offspring distribution
is done in Theorem 2.3.2 in Le Gall & D. [19], Chapter 2, p. 60. However, the proof
works verbatim in the supercritical cases. In (sub)critical cases, convergence (265) is
a direct consequence of Corollary 2.5.1 in Le Gall & D. [19], Chapter 2, p. 69, whose
proof extends verbatim to supercritical cases.
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Next, set y, = inf {k € N: V11 (k) = —[a,]}. Then, SUP| <<y, Hght T (k) is the
total height of the | ay ] first independent Galton—Watson trees 611, .. ., 64, 1 Tn. It
is easy to deduce from the joint convergence (265) and Lemma B.3 (iii) that

P(Z(L’Znt/anj =0) = P(sup tht{" < Lb,,t/anj) —>P(supHS < t) =P(Z, =0),

1<k<yn n—=>00 s€[0,y]

where y = inf{r € [0,00) : X; < —1} and where Z is a CSBP with branching
mechanism Y g . Then, (263) implies (266). O

C Proof of Lemma 2.7

Several key arguments of the proofs can be found in Le Gall & D. [20] (Lemma
2.3, p. 563), Addario-Berry, Goldschmidt & Broutin [2] (Lemma 21, p. 390) and
Abraham, Delmas & Hoscheit [1] (Proposition 2.4); therefore our proofis brief. Recall
the notation and the assumption of Lemma 2.7. We control the Gromov-Hausdorff
distance by bounding the distorsion of an explicit correspondence between G and G’.
Namely, recall that a correspondence R between the two metric spaces (E, d) and
(E’,d’) is a subset R C E x E’ such that for all (x,x’) € ExE’, RN ({x} x E")
and R N (E x {x'}) are not empty; the distorsion of R is then given by dis(R) =
sup{ld(x, y)—d'(x’, y)|; (x,x") € R, (v, ') € R}. We first define a correspondence
between T, and Tj. Recall that pj : [0, &) — T, and py : [0, &) — Ty are the
canonical projections and recall that the roots are defined by p; (0) = pp and py (0) =
pp. We first set

Ro={(pn(0), pi (1)); 1 € [0, 00)}U{(pn(si), pi(5))), (pu (1), pir(t))); 1<i < p},

where we have adopted the convention that p, = pj(¢) if t > ¢, and ppy = pp(2) if
t > &yr: indeed, recall that for all £ > ¢, (resp. t > &), h(t) = 0 (resp. h'(t) = 0),
which implies ¢t ~j, 0 (resp. t ~j 0). Then, Ry is clearly a correspondence between
(Ty, dp) and (Ty, dy) and we easily check that dis(Ro) < 4(|lh—h'|loc + ws(h)).

Wenextset T = ((py(s;), ph (i) 1<i<pand U = ((py(s)), pr (¢))))1<i<p: recall
that (G, d) (resp. (G’, d")) stands for the (II, &)-pinched metric space associated with
(Th, dp) (resp. the (IT', &’)-pinched metric space associated with (7}, dj)); recall
that d = dp ¢ (resp. d’ = dyy ) is given by (51); we denote by @ : T, — G and
@’ : Tjy — G’ the canonical projections and we set

R={(@x), o' ) (x,x) € Ro} .

It is easy to check that R is a correspondence between (G, d) and (G’, d"). Moreover,
since the pinched metric can be expressed by finite sums as in (51) with at most 2p + 1
terms, we easily check that

dis(R) < (p + Ddis(Ro) + 2p(eve’) <4(p + D(lh—h'llco+ ws(h)) +2p(eve’) .
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We next construct an ambient space into which G and G’ are embedded: we first
set E = G UG’ and we define dg : E2 — [0, 00) as follows: first dpioxe = d,
de|g'xgr =d' and forall x € G and all X" € G/,

dp(x,x") =inf {d(x,2) + 3dis(R) +d'(z/, x'); (z.Z) e R} .

Standard arguments easily imply that dg is a distance on E. Note that the inclusion
maps of resp. G and G’ into E are isometries. Since G and G’ are compact, so
is (E, dg). Moreover, we easily check that dga”S(G, G') < 1dis(R). Recall that
p=uw (pn), that p’ =o' (py) and that (p, p’) € R; thus, dg(p, p') < +dis(R).

Denote by M ¢(E) the space of finite Borel measures; recall that for all u, v €
M ¢ (E), their Prokhorov distance is dgmk(u, v) = inf{n € (0, 00):v(K) < u(K"+
nand u(K) < v(K")+n, forall K C E compact}; here, K" = {y € E:dg(y, K) <
n}. Recall that m (resp. m”) is the pushforward measure of the Lebesgue measure Leb
on [0, &) (resp. on [0, ¢;,/)) via the function @ o pj, (resp. @’ o py). Let K C G be
compact; set C = (wo ph)_l(K ) N[0, ¢x]: if h is a pure-jump function with finitely
many jumps, C is a finite union of half-open half closed intervals; if % is continuous,
so is @ o py and C is also a compact of [0, ¢,]. We next set C’ = [0, &y] N C and
K’ = @’ opy/(C'): if b’ is continuous, then K’ is a compact subset of G'; if A’ is
pure-jump function with finitely many jumps, then K is a finite subset of G’: it is also
a compact subset. Note that C' C (zzr’oph/)_1 (K"). Thus, we get

m(K) = Leb(C) < Leb(C") + [t — | < Leb((@ opw) ™ (K")) + 160 — 2w
m' (K" 4 |¢n =

Then, observe that for all x’ € K, thereis x € K such that (x, x") € R, which implies
dg(x, x") < 1dis(R). It implies that K’ C K", where n = 1dis(R). By exchanging
the roles of m and m’, we get dll;mk(m, m') < Ldis(R) + |¢n — ¢pr|. Thus,

Soup(G, G') < di™(G, G') +dg(p. p') + 5 (m, m') < Sdis(R) + g5 —Ew|

which entails (55). This completes the proof of Lemma 2.7. O
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