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Motivated by limits of critical inhomogeneous random graphs, we con-
struct a family of measured metric spaces that we call continuous multiplica-
tive graphs, that are expected to be the universal limit of graphs related to
the multiplicative coalescent (the Erdős–Rényi random graph, more gener-
ally the so-called rank-one inhomogeneous random graphs of various types,
and the configuration model). At the discrete level, the construction relies on a
new point of view on (discrete) inhomogeneous random graphs that involves
an embedding into a Galton–Watson forest. The new representation allows
us to demonstrate that a process that was already present in the pioneering
work of Aldous [Ann. Probab. 25 (1997) 812–854] and Aldous and Limic
[Electron. J. Probab. 3 (1998) 1–59] about the multiplicative coalescent ac-
tually also essentially encodes the limiting metric. The discrete embedding
of random graphs into a Galton–Watson forest is paralleled by an embedding
of the encoding process into a Lévy process which is crucial in proving the
very existence of the local time functionals on which the metric is based; it
also yields a transparent approach to compactness and fractal dimensions of
the continuous objects. In a companion paper, we show that the continuous
multiplicative graphs are indeed the scaling limit of inhomogeneous random
graphs.
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1. Introduction.

1.1. Motivation and results. In this paper we construct random compact metric spaces
that are the analogues in a continuous setting (and the scaling limits) of a large class of critical
inhomogeneous random graphs that includes the classical Erdős–Rényi random graphs and
the configuration model/random graphs with a prescribed degree sequence. Since we are
mostly concerned with the construction of the limit objects, we choose the most convenient
discrete objects namely, the graphs devised by Aldous [4] and Aldous and Limic [5] to study
multiplicative coalescents and that we therefore call multiplicative graphs; the questions of
convergence, and of universality will be treated somewhere else. Still, it should be noted that
the limiting objects considered in [1, 2, 8–12, 18, 25, 33, 35] are all special cases of the family
we construct here, sometimes after ignoring the metric part for those who only consider the
limit of the sizes of the connected components.

In comparison to the classical (homogeneous) random graphs, most real world graphs or
networks exhibit very different structure; for instance, the degrees of vertices may vary con-
siderably. Many models have been devised to account for this. For instance, one may enforce
a prescribed degree distribution and choose a random graph uniformly at random under this
constraint (this corresponds to the configuration model); another option is to enforce the ex-
pected degree distribution only. A considerable number of research papers have studied these
models: their structural properties via the natural graph invariants (independence number,
chromatic number, etc.), their structure (sizes and shapes of connected components, typi-
cal distances, diameter, etc), the behaviour of stochastic processes on such graphs (rumour
spreading, first-passage percolation, etc). We refer to recent books by van der Hofstad [36,
37] for a general and comprehensive introduction and references on this topic; other standard
references include for instance the books by Durrett [21], Barrat, Barthélemy and Vespigani
[6] and Frieze and Karoński [24].

Let us now introduce our discrete model of choice, which we hope makes the construction
of the limit as transparent as possible. We consider a special class of (critical) inhomogeneous
random graphs called rank-one random graphs: we refer to Bollobás, Janson and Riordan [13]
for a careful exposition of this topic. More specifically, we consider the following random
graphs: the set of vertices is {1, . . . , n}, each vertex i ∈ {1, . . . , n} has a weight wi ∈ (0,∞)

and we independently connect two distinct vertices i, j by an edge with probability pi,j that
is a function of the product wiwj of the weights of the endpoints of the edge. There are
various versions of such models: they first appear in Aldous [4] and Aldous and Limic [5] to
study multiplicative coalescents; closely related models have been introduced and studied by
Norros and Reittu [30], Chung and Lu [16], van der Esker, van der Hofstad and Hooghiemstra
[34] and Britton, Deijfen and Martin-Löf [14]; under certains assumptions, Janson [27] shows
that all these random graphs are asymptotically equivalent.
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The model. Because of its remarkable properties, we focus (for the construction) on the
model introduced by Aldous [4] and Aldous and Limic [5]: recall that {1, . . . , n} is the set of
vertices and that w= (w1, . . . ,wn) is a fixed set of weights. The w-multiplicative graph Gw

that we consider corresponds to the cases pi,j = 1 − exp(−wiwj/σ1(w)) where we have set
for all r ∈ (0,∞), σr(w) = wr

1 + · · · + wr
n. When all the weights are equal, it corresponds

to Erdős–Rényi graphs. We call this graph multiplicative because as observed by Aldous, its
connected components provide a natural representation of the multiplicative coalescent. The
graph Gw has come in the literature under different names (and sometimes with a less specific
sense) such as Poisson random graph in [30], the Norros–Reittu graph in [11] or rank-1 model
in [10, 12, 13, 36, 37]. We consider these graphs in the critical case, which, roughly speaking,
occurs when σ2(w) ∼ σ1(w).

Our results. In a companion paper [15], we prove an invariance principle for critical mul-
tiplicative graphs: when their metric is properly rescaled, they converge to random metric
spaces that we call continuous multplicative graphs. This new approach relies on a tractable
coding of these graphs via stochastic processes that is established here. More precisely, in the
present paper we prove the following:

1. We first define a suitable depth-first exploration of the connected components of the
multiplicative graps Gw. This exploration enjoys a nice representation in terms of a queueing
system and it yields two equivalent processes Y w and Hw that code a spanning tree of Gw

and a Poisson point process �w that codes surplus edges, namely the necessary edges to
add to the spanning tree coded by Hw to get Gw. For precise definitions and statements, see
Section 2.1.1 and Theorem 2.1 (or the quick overview below).

2. We then introduce an embedding of Gw into a Galton–Watson forest Tw. This em-
bedding allows us to relate the depth-first exploration of the Galton–Watson forest Tw to the
exploration of the graph Gw. More precisely, the processes coding Gw that result from the
depth-first exploration (namely, Y w, Hw) are obtained as a time-change θw of their counter-
parts for the Galton–Watson forest Tw: Y w = Xw ◦ θw and Hw = Hw ◦ θw, where Xw is the
Lukasiewicz path of Tw and Hw the associated height process. This is very useful to us as
both Xw and Hw are well-understood objects. Let us also point out that this embedding is
new even in the Erdős–Rényi case. For a precise statement see Section 2.1.2, Proposition 2.2
and Lemma 2.3 (or the quick overview below).

Lukasiewicz paths and discrete height processes of Galton–Watson forests have been used
in [29] by Le Gall and Le Jan to introduce Lévy trees: namely, they introduce the analogue
in a continuous setting of the Lukasiewicz path of a Galton–Watson forest that is a spec-
trally positive Lévy process X = (Xt)t∈[0,∞) and they define the analogue of the discrete
height process H = (Ht)t∈[0,∞) as a local-time functional of X; the height process H codes
a random continuum tree called the Lévy tree associated with X. In the Brownian case, X is
the Brownian motion and H is a reflected Brownian motion. We refer to Aldous [3] for the
first invariance principle for Galton–Watson trees with offspring distributions having a sec-
ond moment. Lévy trees are the analogues in a continuous setting (and the scaling limits) of
Galton–Watson forests: we refer to Le Gall and Le Jan [29], Duquesne and Le Gall [19, 20]
for more details (precise definitions are recalled in Section 2.2.1). Here, we rely on a similar
point of view to define multiplicative graphs in a continuous setting. More precisely:

3. We prove that the embedding of the discrete multiplicative graph Gw into the Galton–
Watson forest Tw (i.e., consistent with depth-first exploration and that corresponds to a time-
change for the processes coding Gw and Tw) extends to the continuous setting. Namely, let X

be a spectrally positive Lévy process and let H be its corresponding height process that codes
a Lévy forest. In (38), Section 2.2.1, we introduce a time-change θ and we set Yt := X(θt )
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and Ht := H(θt ) for all t ∈ [0,∞). Then, Theorem 2.5 asserts that Y is the process appearing
in Aldous and Limic [5]. Intuitively speaking, Y can be thought as a Lévy process removed
of repeated jumps; it turns out to be a Brownian motion with a parabolic drift in the so called
Brownian case (limit case for the Erdős–Rényi graph). We next show in Theorem 2.6 that
H is a continuous process which can be regarded as the height process of Y . Thanks to an
additional Poisson point process � that generates surplus edges, we define a random compact
space G that will be referred to as the multiplicative graph in the continuous setting: see
Sections 2.2.2 and 2.2.3 for precise definitions. The embedding of continuous multiplicative
graphs G into Lévy forests simplifies the computation of its fractal dimensions as stated in
Proposition 2.7.

As proved in [15], rescaled discrete critical multiplicative random graphs converge in dis-
tribution (as measured metric spaces with respect to Gromov–Hausdorff–Prokhorov topol-
ogy) to continuous multiplicative random spaces as defined in the present paper: see Sec-
tion 2.3 for a detailed presentation of the convergence proved in [15]. This result on the
convergence of inhomogeneous random graphs encompasses all the cases related to eternal
multiplicative coalescents as described in Aldous and Limic [5]; it also provides a new ap-
proach to a previous theorem in the Brownian case established by Addario-Berry, Broutin
and Goldschmidt [2].

Related works and brief discussion. As already mentioned our starting point is the work
[5] of Aldous and Limic who identify the entrance boundary of multiplicative coalescents
by looking at the asymptotic distributions of the sizes of the connected components found
in Gw. Asymptotic regimes and limiting processes found in Aldous and Limic [5] lie at the
heart of this paper and of the companion paper [15]. We investigate the geometry of the con-
nected components of Gw by proving the weak convergence of these connected components.
For the Erdős–Rényi graphs, this question has been looked at by Addario-Berry, Broutin and
Goldschmidt [2], whose work extends our understanding on the behaviours of a large crit-
ical Erdős–Rényi graph. But perhaps a most striking finding from that work pertains to the
intimate connection between the random graphs and the Brownian CRT [1]. For the multi-
plicative graph Gw, the challenge of the same question stems from the inhomogeneity of the
model and fresh ideas are therefore required to deal with the new difficulties.

Previously, important progress has been made on the Gromov–Hausdorff scaling limits
of the inhomogeneous multiplicative graphs, notably in Bhamidi, Sen and X. Wang and
Bhamidi, van der Hofstad and Sen [9, 10]. These previous works have distinguished two
seemingly orthogonal cases depending on whether the inhomogeneity is mild enough to be
washed away in the limit as in Addario-Berry, Broutin and Goldschmidt [2] Bhamidi, Sen
and Wang [9], Bhamidi et al. [25], or strong enough to persist asymptotically as in Bhamidi,
van der Hofstad and van Leeuwaarden [12], Bhamidi, van der Hofstad and Sen [10]: the so-
called asymptotic (Brownian) homogeneous case and the power-law case. In these papers
the proof strategies greatly differ in these two cases. In our papers, we provide a unified ap-
proach that works not only for both cases but also for graphs that are a mixture of the two
cases. Indeed, we believe that our work contains an exhaustive treatment of all the possible
limits related to those multiplicative coalescents.

The connected components of the multiplicative random graphs may be described as the
result of the addition of “shortcut edges” to a tree; this picture is useful both for the discrete
models and the limit metric spaces. The work of Bhamidi, Sen and Wang [9], Bhamidi,
van der Hofstad and Sen [10] yields an explicit description of the law of the random tree
to which one should add shortcuts in order to obtain connected components with the correct
distribution. As in the case of classical random graphs treated in Addario-Berry, Broutin
and Goldschmidt [2], this law involves a change of measure from one of the “classical”
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random trees, whose behaviour is in general difficult to control asymptotically; for instance,
the compactness of the objects there is only known under very specific and strong conditions.
In our approach, the connected components of the discrete (resp. continuous) multiplicative
graph are described as the metric induced on a subset of a Galton–Watson tree (resp. Lévy
tree); the bias of the law of the underlying tree is somewhat transparently handled by the
time-change; this greatly simplifies the study of the geometric properties of the multiplicative
graph.

While we focus on the model of the multiplicative graphs, Janson’s theorems in [27] on
asymptotic equivalent models and the expected universality of the limits confers on the results
obtained here with potential implications that go beyond this specific model: for instance,
the configuration model where the sequence of degrees has asymptotic properties similar to
the weight sequence of the present paper are believed to exhibit similar scaling limits (see
Section 3.1 in Bhamidi, van der Hofstad and Sen [10] for a related discussion). However,
critical inhomogeneous random graphs with i.i.d. power-law degrees that have been studied
by Joseph [28] (who proves the convergence of the rescaled sizes of the components) and
recently by Conchon-Kerjan and Goldschmidt [17] (who prove a convergence of the corre-
sponding graphs) exhibit different behaviours that do not seem directly related to our work.

Plan of the paper. The paper is organized as follows. We present a brief overview of the
main results in Section 1.2. Section 2 is devoted to a detailed exposition of the setting and the
results: we start with a motivation using the setting of discrete objects, and move towards the
continuum objects. The proofs in the discrete setting, namely of the main respresentation the-
orem and of the embedding of multiplicative graphs into a Galton–Watson forest are found in
Sections 3 and 4. In Section 5, we give the proofs concerning the continuum objects together
with the relevant background on Lévy trees: the focus is on proving the continuum analogue
of the embedding into a forest. Finally, the Appendix contains auxiliary results used to deal
with the fractal dimensions.

1.2. A brief overview of the results. The graphs G = (V(G),E (G)) that we consider are
not oriented, without either loops or multiple edges: E (G) is therefore a set consisting of
unordered pairs of distinct vertices. Let n ≥ 2 and let w = (w1, . . . ,wn) be a set of vertex
weights: namely, it is a set of positive real numbers such that w1 ≥ w2 ≥ · · · ≥ wn > 0.
Recall that for all r ∈ (0,∞), we use the notation σr(w) = wr

1 + · · · + wr
n. Then, the random

graph Gw is said to be w-multiplicative if V (Gw) = {1, . . . , n} and if the random variables
(1{{i,j }∈E (Gw)})1≤i<j≤n, are independent and for each 1 ≤ i < j ≤ n we have

P
({i, j} ∈ E (Gw)

) = 1 − e−wiwj /σ1(w).

As already mentioned, we call this graph multiplicative because as observed by Aldous, its
connected components provide a natural representation of the multiplicative coalescent: see
Aldous [4], and Aldous and Limic [5] for more details.

The first result of the paper (Theorem 2.1) shows that Gw is coded by a natural depth-
first exploration process that gives access to the metric and that is explained in terms of the
following queueing system: a single server serves at most one client at a time applying the
last in first out policy (LIFO, for short); exactly n clients will enter the queue and each client
is labelled with a distinct integer of {1, . . . , n}; Client i enters the queue at a time Ei and
requires a time of service wi ; we assume that the Ej are independent and exponentially
distributed r.v. such that E[Ej ] = σ1(w)/wj . The LIFO-queue yields the following tree T w

whose vertices are the clients: the server is the root (Client 0) and Client j is a child of Client
i in T w if and only if Client j interrupts the service of Client i (or arrives when the server is
idle if i = 0). We claim that the subtrees of T w that stem from the root are spanning trees of
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the connected components of Gw (and thus, T w captures a large part of the metric of Gw). If
one introduces

Y w
t = −t + ∑

1≤i≤n

wi1{Ei≤t}, J w
t = inf

s∈[0,t]Y
w
s and

Hw
t = #

{
s ∈ [0, t] : inf

r∈[s,t]Y
w
r > Y w

s−
}
,

then, Y w
t −J w

t is the load of the server (i.e., the amount of service due at time t) and Hw
t is the

number of clients waiting in the queue at time t (see Figure 1). The process Hw is a contour (or
a depth-first exploration) of T w and Hw codes its graph-metric: namely, the distance between
the vertices/clients served at times s and t in T w is Hw

t +Hw
s −2 minr∈[s∧t,s∨t]Hw

r . We obtain
Gw by adding to T w\{0} a set of surplus edges Sw that is derived from a Poisson point process
on [0,∞)2 of intensity 1

σ1(w)
1{0<y<Yw

t −Jwt } dt dy as follows: an atom (t, y) of this Poisson
point process corresponds to the surplus edge {i, j}, where j is the client served at time t and
i is the client served at time inf{s ∈ [0, t] : infr∈[s,t] Y w

r − J w
r > y}. Then, Theorem 2.1 asserts

that the resulting graph Gw = (T w\{0}) ∪ Sw is a w-multiplicative graph.
In order to define the scaling limits of the previous processes and of w-multiplicative

graphs, the second main idea of the paper consists in embedding Gw into a Galton–Watson
tree by actually embedding the queue governed by Y w into a Markovian queue that is de-
fined as follows: a single server receives in total an infinite number of clients; it applies the
LIFO policy; clients arrive at unit rate; each client has a type that is an integer ranging in
{1, . . . , n}; the amount of service required by a client of type j is wj ; types are i.i.d. with law
νw = 1

σ1(w)

∑
1≤j≤n wjδj . If τk and Jk stand for resp. the arrival time and the type of the kth

client, then, the Markovian LIFO queueing system is entirely characterised by
∑

k≥1 δ(τk,Jk)

that is, a Poisson point measure on [0,∞) × {1, . . . , n} with intensity � ⊗ νw, where � stands
for the Lebesgue measure on [0,∞). The Markovian queue yields a tree Tw that is defined
as follows: the server is the root of Tw and the kth client to enter the queue is a child of
the lth one if the kth client enters when the lth client is being served. To simplify our ex-
planations, let us focus here on the (sub)critical cases where σ2(w) ≤ σ1(w). Then, Tw is a
sequence of i.i.d. Galton–Watson trees glued at their root and whose offspring distribution
is μw(k) = ∑

1≤j≤n wk+1
j exp(−wj)/(σ1(w)k!), k ≥ 0, that is (sub)critical. The tree Tw is

then coded by its contour process (Hw
t )t∈[0,∞): namely, Hw

t stands for the number of clients
waiting in the Markovian queue at time t and it is given by

(1) Hw
t = #

{
s ∈ [0, t] : inf

r∈[s,t]X
w
r > Xw

s−
}
, where Xw

t = −t + ∑
k≥1

wJk
1[0,t](τk)

is the (algebraic) load of the Markovian server: namely Xw
t − infs∈[0,t] Xw

s is the amount of
service due at time t . Note that Xw is a compound Poisson process and let us mention that
the possible scaling limits of (Xw,Hw) are well-understood.

The queue governed by Y w is then obtained by pruning clients from the Markovian queue
in the following way. We colour each client of the queue governed by Xw in blue or in red
according to the following rules: if the type Jk of the kth client already appeared among
the types of the blue clients who previously entered the Markovian queue, then the kth
client is red; otherwise the kth client inherits her/his colour from the colour of the client
who is currently served when she/he arrives (and this colour is blue if there is no client
served when she/he arrives: namely, we consider that the server is blue): see Figure 2.
We claim (see Proposition 2.2 and Lemma 2.3) that if we skip the periods of time during
which red clients are served in the Markovian queue, we get the queue governed by Y w

that can be therefore viewed as the blue sub-queue. Namely, if Blue is the set of times t

when a blue client is served, then one sets θ
b,w
t = inf{s ∈ [0,∞) : ∫ s

0 1Blue(r) dr > t} and
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the above mentioned embedding is formally given by the fact that a.s. for all t ∈ [0,∞),
(Y w

t ,Hw
t ) = (Xw(θ

b,w
t ),Hw(θ

b,w
t )) (see Figure 3).

As proved in a companion paper [15], the only possible scaling limits of processes like Y w

that are relevant for our purpose are the processes already introduced in Aldous and Limic
[5]. These processes Y are parametrized by (α,β, κ, c), where α ∈ R, β ≥ 0, κ ≥ 0 and
c = (ci)j≥1 satisfies cj ≥ cj+1, and

∑
j≥1 c3

j < ∞, and they are informally defined by

(2) Yt := −αt − 1

2
κβt2 + √

βBt +
∑
j≥1

cj (1{Ej≤t} − cjκt), t ∈ [0,∞).

Here, (Bt )t∈[0,∞) is a standard linear Brownian motion, the Ej are exponentially distributed
with parameter κcj and B and the Ej are independent (see (36) and Remark 2 for more de-
tails). To define the analogue of Hw, we proceed in an indirect way that relies on a continuous
version of the embedding of Y into a Markov process. More precisely, the scaling limits of
Xw are Lévy processes (Xt)t∈[0,∞) without negative jump, whose law is characterized by
their Laplace exponent of the form

∀λ, t ∈ [0,∞), ψ(λ) = log E
[
exp(−λXt)

] = αλ + 1

2
βλ2 + ∑

j≥1

κcj

(
e−λcj − 1 + λcj

)
.

To simplify the explanation we focus in this introduction on the (sub)critical cases where α ≥
0. As proved in Le Gall and Le Jan [29], and Duquesne and Le Gall [19], if

∫ ∞
dλ/ψ(λ) <

∞, then there exists a continuous process (Ht)t∈[0,∞) such that for all t ∈ [0,∞), the follow-
ing limit holds in probability:

Ht = lim
ε→0

1

ε

∫ t

0
1{Xs−infr∈[s,t] Xr≤ε} ds,

that is, a local time version of (28). We refer to H as the height process of X and (X,H)

is the continuous analogue of (Xw,Hw). The third main result of the paper (Theorem 2.5
and Theorem 2.6) asserts that, as in the discrete setting, there exists a time-change, namely
an increasing positive process θb and a continuous process (Ht )t∈[0,∞) that is adapted with
respect to Y and such that a.s. for all t ∈ [0,∞), (Yt ,Ht ) = (X(θbt ),H(θbt )).

The continuous versions of multiplicative graphs are obtained as in the discrete setting: we
first define T , the random continuum tree coded by H, namely s, t ∈ [0,∞) correspond to
points in T that are at distance Ht +Hs − 2 minr∈[s∧t,s∨t]Hr and to obtain the (α,β, κ, c)-
continuum multiplicative graph G, we identify points in T thanks to a Poisson point process
on [0,∞)2 with intensity κ1{y<Yt−inf[0,t] Y } dt dy as in the discrete setting: we refer to Sec-
tions 2.2.2 and 2.2.3 for a precise definition. Specifically, our construction shows that G can
be embedded into the tree coded by H , namely a ψ-Lévy tree. It yields a transparent ap-
proach to the main geometric properties of G: an explicit condition for compactness and
the fact that Hausdorff and packing dimensions of G and ψ-Lévy trees are the same, as
shown in Proposition 2.7. Let us mention that, as shown in the companion paper [15], the
(α,β, κ, c)-continuum multiplicative graphs introduced in this paper are the scaling limits of
w-multiplicative subgraphs.

The work [5] of Aldous and Limic already revealed a deep connection between Y as
in (2) and the multiplicative coalescent processes. Their work also suggests that the fam-
ily of continuous multiplicative graphs we construct indeed contains all the possible limits
of random graphs related to the multiplicative coalescent. To be precise, a stochastic pro-
cess (W

κAL,−τAL,cAL
s )s∈[0,∞) is considered in [5]. Its law is characterised by three parameters:

κAL ∈ [0,∞), τAL ∈ R and cAL = (cAL
j )j≥1 satisfying cAL

j ≥ cAL
j+1 and

∑
j≥1(c

AL
j )3 < ∞.

This is actually a rescaled version of the (α,β, κ, c)-process Y defined in (2), simply because

(3) ∀s ∈ [0,∞), WκAL,−τAL,cAL
s = Ys/κ, where κAL = β

κ
, τAL = α

κ
and cAL = c.
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Then Aldous and Limic show (Theorem 2 and Theorem 3 in [5]) that there is a one-to-one cor-
respondence between the laws of the excursion lengths of WκAL,−τAL,cAL and the marginals of
the extremal eternal versions of the multiplicative coalescent. This connection origins from a
representation of the (finite-state) coalescent process in terms of the Gw graph, first observed
in Aldous [4]. The work [4] and [5] is the primary motivation for us to consider these partic-
ular classes of random graphs and part of their results (in particular the convergence of the
excursion lengths) have figured in our proof of the limit theorems in [15]. See Section 2.3.4
in [15] for more details.

As important examples of the family of (α,β, κ, c)-multiplicative graphs, let us mention
that:

– in the scaling limit of the Erdős–Rényi graphs we find a continuous multiplicative graph
with α ∈ R, β = 1 and c = 0. This result is due to Addario-Berry, Broutin and Gold-
schmidt [2]. Let us also mention that as shown by Bhamidi, Sen and Wang in [9], the same
limit object appears in the wn-multiplicative graphs which are in the basin of attraction of
the Erdős–Rényi graph.

– in the scaling limit of the multiplicative graphs with power-law weights, we find continuous

multiplicative graphs parametrised by α ∈ R, κ ∈ (0,∞), β = β0 = 0 and cj = qj
− 1

ρ ,
for all j ≥ 1. This result is due to Bhamidi, van der Hofstad and Sen [10]. Let us also
mention that Conjecture 1.3 right after Theorem 1.2 in [10] is solved by our Proposition
2.7 that asserts the following: if α ∈ [0,∞), κ ∈ (0,∞), β = 0 and cj = qj−1/ρ , then
η = γ = ρ − 1 (which corresponds to τ − 2 in [10]) and

P-a.s. for all k ≥ 1, dimH (Gk) = dimp(Gk) = ρ − 1

ρ − 2
,

where dimH and dimp stand respectively for the Hausdorff and for the packing dimensions.

2. Exposition of the main results.

2.1. Exploration of discrete multiplicative random graphs. We briefly describe the model
of discrete random graphs that are considered in this paper and we discuss a combinato-
rial construction thanks to a LIFO-queue. Unless the contrary is specified, all the random
variables that we consider are defined on the same probability space (�,F ,P). The graphs
G = (V (G),E (G)) that we consider are not oriented, without either loops or multiple edges:
E (G) is therefore a set consisting of unordered pairs of distinct vertices.

Let n ≥ 2 and let w= (w1, . . . ,wn) be a set of weights: namely, it is a set of positive real
numbers such that w1 ≥ w2 ≥ · · · ≥ wn > 0. We shall use the following notation:

(4) ∀r ∈ (0,∞), σr(w) = wr
1 + · · · + wr

n.

The random graph Gw is said to be w-multiplicative if V (Gw) = {1, . . . , n} and if

the r.v. (1{{i,j}∈E (Gw)})1≤i<j≤n, are independent and

P
({i, j} ∈ E (Gw)

) = 1 − e−wiwj /σ1(w).
(5)

In the entire article, for a stochastic process X we use interchangeably Xt and X(t) de-
pending on which is more convenient or readable.

2.1.1. A LIFO queueing system exploring multiplicative graphs. Let us first explain how
to generate a w-multiplicative graph Gw thanks to the queueing system that is described as
follows: there is a single server; at most one client is served at a time; the server applies the
last in first out policy (LIFO, for short). Namely, when a client enters the queue, it interrupts
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the service of the previously served client (if any) and the new client is immediately served.
When the server completes the service of a client, it comes back to the last arrived client
whose service has been interrupted (if there is any). Exactly n clients will enter the queue;
each client is labelled with a distinct integer of {1, . . . , n} and wi stands for the total amount
of time of service that is needed by Client i who enters the queue at a time denoted by Ei ;
we refer to Ei as the time of arrival of Client i; we assume that E1, . . . ,En ∈ (0,∞) are
distinct. For the sake of convenience, we label the server by 0 and we set w0 = ∞. The
single-server LIFO queueing system is completely determined by the (always deterministic)
times of service w and the times of arrival E = (E1, . . . ,En), that are random variables whose
laws are specified below. We introduce the following processes:

(6) ∀t ∈ [0,∞), Y w
t = −t + ∑

1≤i≤n

wi1{Ei≤t} and J w
t = inf

s∈[0,t]Y
w
s .

The load at time t (namely the time of service still due by time t) is then Y w
t − J w

t . We shall
sometimes call Y w the algebraic load of the queue. The LIFO queue policy implies that Client
i arriving at time Ei will leave the queue at time inf{t ≥ Ei : Y w

t < Y w
Ei−}, namely the first

moment when the service load falls back to the level right before her/his arrival. We shall
refer to the previous queueing system as the w-LIFO queueing system.

The exploration tree. Denote by Vt ∈ {0, . . . , n} the label of the client who is served at time
t if there is one; namely, if the server is idle right after time t , we set Vt = 0 (see Section 3 for
a formal definition). First observe that V0 = 0 and that t �→ Vt is càdlàg. For convenience, we
set V0− = 0. Next note that VEj

= j and that VEj− is the label of the client who was served
when Client j entered the queue. Then, the w-LIFO queueing system induces an exploration
tree T w with vertex set V (T w) and edge set E (T w) that are defined as follows:

(7) V (T w) = {0, . . . , n} and E (T w) = {{VEj−, j};1 ≤ j ≤ n
}
.

The tree T w is rooted at 0, which allows us to view it as a family tree: the ancestor is 0 (the
server) and Client j is a child of Client i if Client j enters the queue while Client i is served.
In particular, the ancestors of Client i are those waiting in queue while i is being served. See
Figure 1 for an example.

Additional edges. We obtain a graph Gw by adding edges to T w as follows. Conditionally
given E, let

Pw = ∑
1≤p≤pw

δ(tp,yp) be a Poisson point measure on [0,∞)2

with intensity
1

σ1(w)
1{0<y<Yw

t −Jwt } dt dy.

(8)

Note that a.s. the number of atoms pw is finite since Y w − J w is null eventually. We set

�w = (
(sp, tp)

)
1≤p≤pw

where sp = inf
{
s ∈ [0, tp] : inf

u∈[s,tp]Y
w
u − J w

u > yp

}
,1 ≤ p ≤ pw.

(9)

Note that sp is well defined since yp < Y w
tp

− J w
tp

. We then derive Gw from T w and �w by
setting: V (Gw) = {1, . . . , n} and E (Gw) =A � S , where

(10) A= {{i, j} ∈ E (T w) : i, j ≥ 1
}

and S = {{Vsp,Vtp};1 ≤ p ≤ pw : Vsp �= Vtp

}\A.

Note that Vsp is necessarily an ancestor of Vtp ; in other words, Vsp is in the queue at time tp .
Moreover, we have Vsp �= 0 a.s., since Y w

sp
− J w

sp
≥ yp > 0. It follows that the endpoints of an
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FIG. 1. An example of Yw and the associated exploration tree. Above, an illustration of Yw. The black squares
� on the abscissa correspond to the arrival times of clients, namely, the points of {Ei,1 ≤ i ≤ n}. The white
squares � on the abscissa mark the departures of clients: By the LIFO rule, the client arriving at time Ei leaves
at time inf{t > Ei : Ywt < YwEi−}. Below, the exploration tree associated to this queue. Observe that each grey
block contains a subtree above the root 0 and is encoded by an excursion of Yw − Jw.

edge belonging to S necessarily belong to the same connected component of T w \ {0}. Note
that 0 is not a vertex of Gw; we call S the set of surplus edges. When E is suitably distributed,
Gw is distributed as a w-multiplicative graph: this is the content of the following theorem that
is the key to our approach.

THEOREM 2.1. Keep the previous notation; suppose that E1, . . . ,En are independent
exponential r.v. such that E[Ej ] = σ1(w)/wj , for all j ∈ {1, . . . , n}. Then, Gw is a w-
multiplicative random graph as specified in (5).

PROOF. See Section 3. �

Height process of the exploration tree. For all t ∈ [0,∞), let Hw
t be the number of clients

waiting in the line at time t . Recall that by the LIFO rule, a client entered at time s is still in
the queue at time t if and only if infs≤u≤t Y

w
u > Y w

s−. In terms of Y w, Hw
t is defined by

Hw
t = #Jt ,

where Jt = {
s ∈ [0, t] : J w,s−

t < J
w,s
t

}
and where ∀s ∈ [0, t], J w,s

t = inf
r∈[s,t]Y

w
r .

(11)

We refer to Hw as the height process associated with Y w. Note that Hw
t is also the height of

the vertex Vt in the exploration tree T w. Actually, this process is a specific contour of the
exploration tree T w and we easily check that it (a.s.) codes its graph-metric dT w as follows:

(12) ∀s, t ∈ [0,∞), dT w(Vs,Vt ) =Hw
t +Hw

s − 2 min
r∈[s∧t,s∨t]H

w
r .

See Figure 1 for more details.
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The connected components of the w-multiplicative graph. The above LIFO-queue construc-
tion of the w-multiplicative graph Gw has the following nice property: the vertex sets of the
connected components of Gw coincide with the vertex sets of the connected components of
T w \ {0}, since surplus edges from S are only added inside the connected components of the
latter. We equip Gw with the measure mw = ∑

1≤j≤n wjδj that is the push-forward measure
of the Lebesgue measure via the map V restricted to the set of times {t ∈ [0,∞) : Vt �= 0}.
Denote by qw the number of connected components of Gw that are denoted by Gw

1 , . . ., Gw
qw ;

here indexation is such that

mw
(
V

(
Gw

1
)) ≥ · · · ≥ mw

(
V

(
Gw

qw

))
.

Note that for all k ∈ {1, . . . ,qw}, Gw
k corresponds to a connected component T w

k of T w\{0}
such that

V
(
Gw

k

) = V
(
T w

k

)
and E

(
Gw

k

) = E
(
T w

k

) � Sk where Sk = {{i, j} ∈ S : i, j ∈ V
(
T w

k

)}
.

Let dGw
k

and dT w
k

be the respective graph-metrics of Gw
k and of T w

k and denote by
mw

k the restriction of mw to V (Gw
k ). Then, Hw and �w completely encode the sequence

((Gw
k , dGw

k
,mw

k ))1≤k≤qw of connected components viewed as measured metric spaces. Indeed,
we will see that each excursion of Hw above zero corresponds to a connected component
T w

k of T w\{0}, the length of the excursion interval is mw(V (T w
k )) and Sk corresponds to

pinching times that fall in this excursion interval. A formal description of this requires some
preliminary work on the measured metric spaces and is therefore postponed to Section 2.2.2.

2.1.2. Embedding the exploration tree into a Galton–Watson tree. The embedding is in-
duced by the following embedding of the LIFO queues.

A Markovian LIFO queueing system. We embed the w-LIFO queueing system governed by
Y w into the following Markovian LIFO queueing system:

A single server receives in total an infinite number of clients; it applies the LIFO
policy; clients arrive at unit rate; each client has a type that is an integer ranging in
{1, . . . , n}; the amount of service required by a client of type j is wj ; types are i.i.d. with
law νw = 1

σ1(w)

∑
1≤j≤n wjδj .

Let τk be the arrival-time of the kth client and let Jk be the type of the kth client. Then, the
Markovian LIFO queueing system is entirely characterised by

∑
k≥1 δ(τk,Jk) that is, a Poisson

point measure on [0,∞) × {1, . . . , n} with intensity � ⊗ νw, where � stands for the Lebesgue
measure on [0,∞). We also introduce the following:

(13) ∀t ∈ [0,∞), Xw
t = −t + ∑

k≥1

wJk
1[0,t](τk) and Iwt = inf

s∈[0,t]X
w
s .

Then, Xw
t − Iwt is the load of the Markovian LIFO-queueing system and Xw is called the

algebraic load of the queue. Note that Xw is a spectrally positive Lévy process with initial
value 0 whose law is characterized by its Laplace exponent ψw : [0,∞) → R given for all
t, λ ∈ [0,∞) by

E
[
e−λXw

t
] = etψw(λ) where

ψw(λ) = αwλ + ∑
1≤j≤n

wj

σ1(w)

(
e−λwj − 1 + λwj

)
and αw := 1 − σ2(w)

σ1(w)
.

(14)

Here, recall from (4) that σ2(w) = w2
1 + · · · + w2

n. Note that if σ2(w)/σ1(w) ≤ 1, then αw ≥
0, a.s. lim inft→∞ Xw

t = −∞ and the queueing system is recurrent: all clients are served
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FIG. 2. Colouring the clients of the Markovian LIFO queue. In this example, we use the exploration tree rep-
resentation of the queue. Clients correspond to nodes in the tree; their types are the numbers next to them. The
lexicographic order of the tree (bottom to top, left to right in the picture) corresponds to the order of arrival of the
clients. Applying the colouring rules, we color the clients one by one in this order: blue clients are depicted by
•, red ones by ◦. Observe that the blue clients form a subtree of the initial tree. Also observe in this example that
the first blue client of type 6 is not the first type-6 client in the queue: there is one previous to it, which has been
coloured in red because her/his parent also has been.

completely; if σ2(w)/σ1(w) > 1, then αw < 0, a.s. limt→∞ Xw
t = ∞ and the queueing system

is transient: the load tends to ∞ and infinitely many clients are not served completely. In
what follows we shall refer to the following cases:

(15) supercritical:σ2(w) > σ1(w), critical:σ2(w) = σ1(w), subcritical:σ2(w) < σ1(w).

Colouring the clients of the Markovian queueing system. In critical or subcritical cases, we
recover the w-LIFO queueing system governed by Y w from the Markovian one by colouring
each client in the following recursive way.

Colouring rules. Clients are coloured in red or blue. If the type Jk of the kth
client already appeared among the types of the blue clients who previously entered the queue,
then the kth client is red. Otherwise the kth client inherits her/his colour from the colour of
the client who is currently served when she/he arrives (and this colour is blue if there is no
client served when she/he arrives: namely, we consider that the server is blue).

Note that the colour of a client depends in an intricate way on the types of the clients
who entered the queue previously. For instance, a client who is the first arriving of her/his
type is not necessarily coloured in blue; see Figure 2 for an example. In critical or subcritical
cases, one can check that exactly n clients are coloured in blue and their types are necessarily
distinct. While a blue client is served, note that her/his ancestors (namely, the other clients
waiting in the line, if any) are blue too. Actually, we will see that the sub-queue constituted
by the blue clients corresponds to the previous w-LIFO queue in critical and subcritical cases.

In supercritical cases, however, we could end up with (strictly) less than n blue clients so
the blue sub-queue is only a part of the w-LIFO queue governed by Y w. To deal with this
problem and to get a definition of the blue/red queue in a way that can be extended to the
continuous setting, we proceed as follows. We first introduce the two following independent
random point measures on [0,∞) × {1, . . . , n}:
(16) X b

w = ∑
k≥1

δ(τbk ,Jbk ) and X r
w = ∑

k≥1

δ(τrk ,Jrk ),
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that are Poisson point measures with intensity � ⊗ νw, where � stands for the Lebesgue mea-
sure on [0,∞) and where νw = 1

σ1(w)

∑
1≤j≤n wjδj . From X b

w , we extract the w-LIFO queue

(without repetition) that generates the desired graph and we explain below how to mix X b
w

and X r
w in order to get the coloured Markovian queue seen at the beginning of the section.

To that end, we first set

X
b,w
t = −t + ∑

k≥1

wJbk
1[0,t]

(
τbk

)
,

X
r,w
t = −t + ∑

k≥1

wJrk
1[0,t]

(
τrk

)
and I

r,w
t = inf

s∈[0,t]X
r,w
s .

(17)

Consequently, Xb,w and Xr,w are two independent spectrally positive Lévy processes, both
with Laplace exponent ψw given by (14). For all j ∈ {1, . . . , n} and all t ∈ [0,∞), we next
set

(18) Nw
j (t) = X b

w

([0, t] × {j}) and Ew
j = inf

{
t ∈ [0,∞) : X b

w

([0, t] × {j}) = 1
}
.

Thus, the Nw
j are independent homogeneous Poisson processes with jump-rate wj/σ1(w)

and the r.v. (
wj

σ1(w)
Ew

j )1≤j≤n are i.i.d. exponentially distributed r.v. with unit mean. Note that

X
b,w
t = −t + ∑

1≤j≤n wjN
w
j (t). Thanks to the “blue” r.v. contained in X b

w , we next define
the processes coding the w-LIFO queue (without repetition) that generates the exploration
tree of the graph:

(19) Y w
t = −t + ∑

1≤j≤n

wj 1{Ew
j ≤t} and Aw

t = X
b,w
t − Y w

t = ∑
1≤j≤n

wj

(
Nw

j (t) − 1
)
+.

Thanks to (Y w,Aw) and Xr,w, we reconstruct the Markovian LIFO queue as follows: we
first define the “blue” time-change that is, the increasing càdlàg process θb,w defined for all
t ∈ [0,∞) by

θ
b,w
t = t + γ

r,w
Aw

t
,

where for all x ∈ [0,∞), we have set: γ r,w
x = inf

{
t ∈ [0,∞) : Xr,w

t < −x
}
,

(20)

with the convention that inf∅ = ∞. Note that γ r,w
x < ∞ iff x < −Ir,w∞ = limt→∞ −I

r,w
t

that is, a.s. finite in supercritical cases (and −Ir,w∞ is a.s. infinite in critical and subcritical
cases). Standard results on spectrally positive Lévy processes (see, e.g., Bertoin’s book [7],
Chapter VII.) assert that (γ r,w

x )x∈[0,∞) is a subordinator (i.e., defective in supercritical cases)
whose Laplace exponent is given for all λ ∈ [0,∞) by

(21) E
[
e−λγ

r,w
x

] = e−xψ−1
w (λ) where ψ−1

w (λ) = inf
{
u ∈ [0,∞) : ψw(u) > λ

}
.

We set �w = ψ−1
w (0) that is, the largest root of ψw. Note that ψw has at most two roots since

it is strictly convex: in subcritical or critical cases, �w = 0 is the only root of ψw and in
supercritical cases, the roots of ψw are 0 and �w > 0. Note that ψ−1

w is continuous and strictly
increasing and that it maps [0,∞) onto [�w,∞). As a consequence of (21), in supercritical
cases −Ir,w∞ is exponentially distributed with parameter �w. We then set

(22) T ∗
w = sup

{
t ∈ [0,∞) : θb,w

t < ∞} = sup
{
t ∈ [0,∞) : Aw

t < −Ir,w∞
}
.

In critical and subcritical cases, T ∗
w = ∞ and θb,w only takes finite values. In supercritical

cases, a.s. T ∗
w < ∞ and we check that θb,w(T ∗

w−) < ∞. Imagine that the bi-coloured Marko-
vian LIFO queue has a set of two clocks that never run simultaneously (as in chess clocks):
one clock for the blue queue and one for the red. Then θ

b,w
t is the (global) time that has been

spent when the clock for the blue queue shows t . If we denote by Blue (resp. Red) the set
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of times when blue (resp. red) clients are served, then we can derive these service times from
θb,w as follows (recalling that the server is considered as a blue client)

(23) Red= ⋃
t∈[0,∞)

[θb,w
t− , θ

b,w
t ) and Blue= [0,∞)\Red.

Note that Red is a countably infinite union of intervals in critical and subcritical cases and
that it is a finite union in supercritical cases since [θb,w(T ∗

w−), θb,w(T ∗
w )) = [θb,w(T ∗

w−),∞).
We next introduce the inverse time-changes �b,w and �r,w as follows:

�
b,w
t =

∫ t

0
1Blue(s) ds = inf

{
s ∈ [0,∞) : θb,w

s > t
}

and

�
r,w
t = t − �

b,w
t =

∫ t

0
1Red(s) ds,

(24)

where for the second identity for �
b,w
t we have used the fact that Blue is the range of θb,w:

Blue = {θb,w
t : t ≥ 0}. The processes �b,w and �r,w are continuous, nondecreasing and

a.s. limt→∞ �
r,w
t = ∞. In critical and subcritical cases, we also get a.s. limt→∞ �

b,w
t = ∞

and �b,w(θ
b,w
t ) = t for all t ∈ [0,∞). However, in supercritical cases, �

b,w
t = T ∗

w for all
t ∈ [θb,w(T ∗

w−),∞) and a.s. for all t ∈ [0, T ∗
w ), �b,w(θ

b,w
t ) = t . We next derive the load of

the Markovian queue Xw from X b
w and X r

w as follows.

PROPOSITION 2.2. Let X b
w and X r

w be as in (16). Let Xb,w and Xr,w be defined by
(17) and let �b,w and �r,w be given by (24). We define the process Xw by

(25) ∀t ∈ [0,∞), Xw
t = X

b,w

�
b,w
t

+ X
r,w
�
r,w
t

.

Then, Xw has the same law as Xb,w and Xr,w: namely, it is a spectrally positive Lévy process
with Laplace exponent ψw as defined in (14). Furthermore, recall from (19) the definition of
Y w and recall from (22) the definition of the time T ∗

w ; then, we also get:

(26) a.s. ∀t ∈ [0, T ∗
w ), Y w

t = Xw
θ
b,w
t

.

PROOF. See Section 4 for a proof and see Figure 3 for an explanation. �

Tree embeddings. Recall from (11) the definition of the height process Hw:

Hw
t = #Jt ,

whereJt = {
s ∈ [0, t] : J w,s−

t < J
w,s
t

}
and where ∀s ∈ [0, t], J w,s

t = inf
r∈[s,t]Y

w
r .

(27)

Recall that Hw
t is the number of clients waiting in the w-LIFO queue (without repetition)

governed by Y w and that it is the contour process of the exploration tree T w. Similarly, we
denote by Hw

t the number of clients waiting in the Markovian LIFO queue governed by the
process Xw given in Proposition 2.2: Hw

t is defined as follows.

Hw
t = #Kt ,

where Kt = {
s ∈ [0, t] : Iw,s−

t < I
w,s
t

}
and where ∀s ∈ [0, t], Iw,s

t = inf
r∈[s,t]X

w
r .

(28)

We shall refer to Hw as the height process associated with Xw. The process Hw is the contour
process of a tree that is given as follows: vertices are the clients and the server is viewed as
the root; the kth client to enter the queue is a child of the lth one if the kth client enters when
the lth client is served. It is easy to check that in critical and subcritical cases, this tree is
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FIG. 3. Decomposition of Xw into Xb,w and Xr,w. We take the same example as in Figure 2. Above, the
process Xw: clients are in bijection with its jumps; their types are the numbers next to the jumps. The grey blocks
correspond to the set Blue. Concatenating these blocks yields the blue process Xb,w. The remaining pieces give
rise to the red process Xr,w. Concatenating the grey blocks but without the final jump of each block yields Yw.
Alternatively, we can obtain Yw by removing the temporal gaps between the grey blocks in Xw: this is the graphic
representation of Yw = Xw ◦ θb,w. Observe also that each connected component of Red begins with the arrival
of a client whose type is a repeat among the types of the previous blue ones, and ends with the departure of this
red client, marked by × on the abscissa.

made of a forest of i.i.d. Galton–Watson trees whose roots are all joined to a common vertex
representing the server, and the common offspring distribution is given by

(29) μw(k) = ∑
1≤j≤n

wk+1
j e−wj

σ1(w)k! , k ≥ 0.

Observe that
∑

k≥0 kμw(k) = ∑
1≤j≤n w2

j /σ1(w) = σ2(w)/σ1(w). Thus, in critical and sub-
critical cases, the Galton–Watson trees are a.s. finite and Hw fully explores the whole tree.
In supercritical cases, we can still think of a sequence of i.i.d. Galton–Watson trees whose
offspring distribution μw is given by (29), but we only see in Hw a subsequence of these
trees up to (part of) the first infinite member. Namely, the exploration of Hw does not go
beyond the first infinite line of descent. The embedding of the tree T w coded by Hw into the
Galton–Watson tree coded by Hw is given by the following lemma.

LEMMA 2.3. Let X b
w and X r

w be as in (16). Let θb,w be defined by (20) and let T ∗
w be

given by (22). Let Hw and Hw be defined resp. by (27) and (28). Then,

(30) a.s.∀t ∈ [0, T ∗
w ), Hw

t = Hw
θ
b,w
t

.
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PROOF. See Section 4. �

Although the law of T w is complicated, (30) allows to define its height process in a
tractable way which can then be passed to the limit. Note that the embedding is not com-
plete in supercritical cases; however, it is sufficient to characterise the law of T w in terms of
Xw.

REMARK 1. Note that the height process of Xb,w is actually distinct from Hw. Although
related to Hw, the tree coded by Xb,w is not relevant to our purpose.

2.2. The multiplicative graph in the continuous setting.

2.2.1. The continuous exploration tree and its height process. Let N stand for the set of
nonnegative integers and let N∗ = N\{0}. We denote by �

↓∞ = {(wj )j≥1 ∈ [0,∞)N
∗ : wj ≥

wj+1} the set of weights. By an obvious extension of the notation of (4), for all r ∈ (0,∞) and

all w= (wj )j≥1 ∈ �
↓∞, we set σr(w) = ∑

j≥1 wr
j ∈ [0,∞]. We also introduce the following:

�↓
r = {

w ∈ �↓∞ : σr(w) < ∞}
, and �

↓
f = {

w ∈ �↓∞ : ∃j0 ≥ 1 : wj0 = 0
}
.

Let (Ft )t∈[0,∞) be a filtration on (�,F ) that is specified further. A process (Zt )t∈[0,∞) is
said to be a (Ft )-Lévy process with initial value 0 if a.s. Z is càdlàg, Z0 = 0 and if for all
a.s. finite (Ft )-stopping time T , the process ZT +· − ZT is independent of FT and has the
same law as Z.

Let (Mj(·))j≥1 be a sequence of càdlàg (Ft )-martingales that are L2-summable and or-
thogonal: namely, for all t ∈ [0,∞),

∑
j≥1 E[Mj(t)

2] < ∞ and E[Mj(t)Mk(t)] = 0 if k > j .
Then

∑⊥
j≥1 Mj stands for the (unique up to indistinguishability) càdlàg (Ft )-martingale

M(·) such that for all j ≥ 1 and all t ∈ [0,∞), E[sups∈[0,t] |M(s) − ∑
1≤k≤j Mk(s)|2] ≤

4
∑

l>j E[Ml(t)
2], by Doob’s inequality.

Blue processes. We fix the following parameters:

(31) α ∈R, β ∈ [0,∞), κ ∈ (0,∞), c = (cj )j≥1 ∈ �
↓
3 .

These quantites are the parameters of the continuous multiplicative graph: c plays the same
role as w in the discrete setting, α is a drift coefficient similar to αw, β is a Brownian coeffi-
cient and the interpretation of κ is explained later.

Next, let (Bt )t∈[0,∞), (Nj (t))t∈[0,∞), j ≥ 1 be processes that satisfy the following:

(b1) B is a (Ft )-real valued standard Brownian motion with initial value 0.
(b2) For all j ≥ 1, Nj is a (Ft )-homogeneous Poisson process with jump-rate κcj .
(b3) The processes B , Nj , j ≥ 1 are independent.

The blue Lévy process is then defined by

(32) ∀t ∈ [0,∞), Xb
t = −αt + √

βBt +
∑
j≥1

⊥
cj

(
Nj(t) − cjκt

)
.

Clearly Xb is a (Ft )-spectrally positive Lévy process with initial value 0 whose law is char-
acterized by the Laplace exponent ψ : [0,∞) →R given for all t, λ ∈ [0,∞) by

(33) E
[
e−λXb

t
] = etψ(λ), where ψ(λ) = αλ + 1

2
βλ2 + ∑

j≥1

κcj

(
e−λcj − 1 + λcj

)
.
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If α ≥ 0, then a.s. lim inft→∞ Xb
t = −∞ and if α < 0, then a.s. limt→∞ Xb

t = ∞. By analogy
with the discrete situation of the previous section, we distinguish the following cases:

(34) supercritical cases:α < 0, critical cases:α = 0, subcritical cases:α > 0.

Most of the time, we shall assume that:

(35) either β > 0 or σ2(c) = ∞.

This assumption is equivalent to the fact that Xb has infinite variation sample paths.
We next introduce the analogues of Aw and Y w defined in (19). To that end, note that

E[cj (Nj (t) − 1)+] = cj (e
−cj κt − 1 + cjκt) ≤ 1

2(κt)2c3
j . Since σ3(c) < ∞, it makes sense to

set the following:

(36) ∀t ∈ [0,∞), At = 1

2
κβt2 + ∑

j≥1

cj

(
Nj(t) − 1

)
+ and Yt = Xb

t − At .

REMARK 2. To view Y as in (6), set Ej = inf{t ∈ [0,∞) : Nj(t) = 1}, note that
cj (Nj (t)−cjκt)−cj (Nj (t)−1)+ = cj (1{Ej≤t}−cjκt) and check that cj (1{Ej≤t}−cjκt) =
M ′

j (t) − κc2
j (t − Ej)+ where M ′

j is a centered (Ft )-martingale such that E[M ′
j (t)

2] =
c2
j (1 − e−cj κt ) ≤ κtc3

j (indeed, M ′
j (t) = Mj(t ∧ Ej), where Mj(t) = cj (Nj (t) − κcj t)).

Since E[κc2
j (t − Ej)+] ≤ κtc2

j (1 − e−κcj t ) ≤ κ2t2c3
j , it makes sense to write for all t ∈

[0,∞):

Yt = −αt − 1

2
κβt2 + √

βBt +
∑
j≥1

⊥
cj

(
1{Ej≤t} − κcj (t ∧ Ej)

) − ∑
j≥1

κc2
j (t − Ej)+

(informal)= −αt − 1

2
κβt2 + √

βBt +
∑
j≥1

cj (1{Ej≤t} − cjκt).

(37)

Namely the jump-times of Y are the Ej and �YEj
= cj . Let us quickly mention that the

process Y appears in the Aldous–Limic’s approach to the entrance boundary problem for
general multiplicative processes [5].

LEMMA 2.4. Let (α,β, κ, c) be as in (31). Assume that (35) holds. Recall from (36) the
definiton of A and Y . Then, a.s. the process A is strictly increasing and the process Y has
infinite variation sample paths.

PROOF. See Section 5.2.1. �

Red and bi-coloured processes. We next introduce the red process Xr that satisfies the
following:

(r1) Xr is a (Ft )-spectrally positive Lévy process starting at 0 and whose Laplace expo-
nent is ψ as in (33).

(r2) Xr is independent of the processes B and (Nj )j≥1.

To keep the filtration (Ft ) minimal, we may assume that Ft is the completed sigma-field
generated by Bs , (Nj (s))j≥1 and Xr

s , s ∈ [0, t]. We next introduce the following processes:

(38) ∀x, t ∈ [0,∞), γ r
x = inf

{
s ∈ [0,∞) : Xr

s < −x
}

and θbt = t + γ r
At

,

with the convention: inf∅ = ∞. For all t ∈ [0,∞), we set Irt = infs∈[0,t] Xr
s and Ir∞ =

limt→∞ Irt that is a.s. finite in supercritical cases and that is a.s. infinite in critical or subcriti-
cal cases. Note that γ r

x < ∞ iff x < −Ir∞. Again, standard results on spectrally positive Lévy
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processes (see, e.g., Bertoin’s book [7], Chapter VII.) assert that (γ r
x )x∈[0,∞) is a subordina-

tor (i.e., defective in supercritical cases) whose Laplace exponent is given for all λ ∈ [0,∞)

by

(39) E
[
e−λγ rx

] = e−xψ−1(λ) where ψ−1(λ) = inf
{
u ∈ [0,∞) : ψ(u) > λ

}
.

We set � = ψ−1(0) that is, the largest root of ψ . Again, note that ψ has at most two roots
since it is strictly convex: in subcritical or critical cases, � = 0 is the only root of ψ and in
supercritical cases, the roots of ψ are 0 and � > 0. Note that ψ−1 is continuous and strictly
increasing and that it maps [0,∞) onto [�,∞). As a consequence of (39), in supercritical
cases −Ir∞ is exponentially distributed with parameter �. We then set

(40) T ∗ = sup
{
t ∈ [0,∞) : θbt < ∞} = sup

{
t ∈ [0,∞) : At < −Ir∞

}
.

In critical and subcritical cases, T ∗ = ∞ and θb,w only takes finite values. In supercritical
cases, a.s. T ∗ < ∞ and we check that θb(T ∗−) < ∞. We next introduce the following:

(41) ∀t ∈ [0,∞), �b
t = inf

{
s ∈ [0,∞) : θbs > t

}
and �r

t = t − �b
t .

The process �b is continuous, nondecreasing and in critical and subcritical cases, we also
get a.s. limt→∞ �b

t = ∞ and �b(θbt ) = t for all t ∈ [0,∞). However, in supercritical cases,
a.s. �b

t = T ∗ for all t ∈ [θb(T ∗−),∞) and a.s. for all t ∈ [0, T ∗), �b(θbt ) = t . We next prove
the analogue of Proposition 2.2.

THEOREM 2.5. Let (α,β, κ, c) be as in (31). Assume that (35) holds. Recall from (32)
the definition of Xb and recall from (41) the definition of �b and �r. Then, �r is continuous,
nondecreasing and a.s. limt→∞ �r

t = ∞. Furthermore, if we set

(42) ∀t ∈ [0,∞), Xt = Xb
�b

t
+ Xr

�r
t
,

then, X is a spectrally positive Lévy process with initial value 0 and Laplace exponent ψ as
in (33). Namely, X, Xb and Xr have the same law. Moreover,

(43) a.s.∀t ∈ [0, T ∗), Yt = Xθbt
.

PROOF. See Section 5.2.2 for the first statement and see Section 5.2.3 for the second one.
�

Height process and pinching points. We next define the analogue of Hw. To that end, we
assume that ψ defined in (33) satisfies the following:

(44)
∫ ∞ dλ

ψ(λ)
< ∞.

Note that in particular (44) entails (35).
Le Gall and Le Jan [29] (see also Duquesne and Le Gall [19]) prove that there exists a

continuous process H = (Ht )t∈[0,∞) such that the following limit holds true for all t ∈ [0,∞)

in probability:

(45) Ht = lim
ε→0

1

ε

∫ t

0
1{Xs−infr∈[s,t] Xr≤ε} ds.

Note that (45) is a local time version of (28). We refer to H as the height process of X.
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REMARK 3. Let us mention that in Le Gall and Le Jan [29], and Duquesne and Le
Gall [19], the height process H is introduced only for critical and subcritical spectrally pos-
itive processes. However, it easily extends to supercritical cases thanks to the following fact
that is proved, for example, in Bertoin’s book [7], Chapter VII: denote by D([0,∞),R) the
space of càdlàg functions equipped with Skorokhod’s topology; then for all t ∈ [0,∞) and
for all nonnegative measurable functional F : D([0,∞),R) →R,

(46) E
[
F(X·∧t )

] = E
[
exp(�Xt)F (X·∧t )

]
,

where X stands for a subcritical spectrally Lévy process with Laplace exponent ψ(� + ·).

Our main result, given below, introduces the analogue of Hw in the continuous setting.

THEOREM 2.6. Let (α,β, κ, c) be as in (31). Assume that (44) holds, which implies (35).
Recall from (36) the definition of Y and A; recall from (38) the definition of θb; recall from
(40) the definition of T ∗; recall from (42) the definition of X and recall from (45) how H is
derived from X.

Then, there exists a continuous process (Ht )t∈[0,∞) such that for all t ∈ [0,∞), Ht is
a.s. equal to a measurable functional of (Y·∧t ,A·∧t ) and such that

(47) a.s.∀t ∈ [0, T ∗), Ht = Hθbt
.

We refer to H as the height process associated with Y .

PROOF. See Section 5.2.4. �

We next define the pinching times as in (9): we first set

(48) ∀t ∈ [0,∞), Jt = inf
s∈[0,t]Ys.

Then, conditionally given Y , let

P = ∑
p≥1

δ(tp,yp) be a Poisson point measure on [0,∞)2

with intensity κ1{0<y<Yt−Jt } dt dy.

(49)

Then, set

(50) � = (
(sp, tp)

)
p≥1 where sp = inf

{
s ∈ [0, tp] : inf

u∈[s,tp]Yu − Ju > yp

}
,p ≥ 1.

In the next section, after some necessary setup on the coding of graphs, we will see that the
triple (Y,H,�) completely characterises the continuous version of the multiplicative graph.

2.2.2. Coding graphs. Our primary goal here is to introduce the notions on measured
metric spaces which will allow us to build the continuum graph from the processes (Y,H,�).
We will actually consider a slightly more general situation, which permits to include the
coding for discrete graphs as well.



CONTINUOUS MULTIPLICATIVE GRAPHS 2467

Coding trees. First let us briefly recall how functions (not necessarily continuous) code
trees. Let h : [0,∞) → [0,∞) be càdlàg and such that

(51) ζh = sup
{
t ∈ [0,∞) : h(t) > 0

}
< ∞.

For all s, t ∈ [0, ζh), we set

(52) bh(s, t) = inf
r∈[s∧t,s∨t]h(r) and dh(s, t) = h(s) + h(t) − 2bh(s, t).

Note that dh satisfies the four-point inequality: for all s1, s2, s3, s4 ∈ [0, ζh), one has

dh(s1, s2) + dh(s3, s4) ≤ (
dh(s1, s3) + dh(s2, s4)

) ∨ (
dh(s1, s4) + dh(s2, s3)

)
.

Taking s3 = s4 shows that dh is a pseudometric on [0, ζh). We then denote by s ∼h t the
equivalence relation dh(s, t) = 0 and we set

(53) Th = [0, ζh)/ ∼h .

Then, dh induces a true metric on the quotient set Th that we keep denoting by dh and we
denote by ph : [0, ζh) → Th the canonical projection. Note that ph is not necessarily contin-
uous.

REMARK 4. The metric space (Th, dh) is tree-like but in general it is not necessarily
connected or compact. However, we shall consider the following cases:

(a) h takes finitely many values.
(b) h is continuous.

In Case (a), Th is not connected but it is compact; Th is in fact formed by a finite number
of points. In particular, Hw is in this case: by (12), the exploration tree T w as defined in (7)
is actually isometric to THw , that is, the tree coded by the height process Hw that is derived
from Y w by (11).

In Case (b), Th is compact and connected. Recall that real trees are metric spaces such that
any pair of points is joined by a unique injective path that turns out to be a geodesic and recall
that real trees are exactly the connected metric spaces satisfying the four-point condition (see
Evans [23] for more references on this topic). Thus, Th is a compact real tree in this case.

The coding function provides two additional features: a distinguished point ρh = ph(0)

that is called the root of Th and the mass measure mh that is the pushforward measure of
the Lebesgue measure on [0, ζh) induced by ph on Th: for any Borel measurable function
f : Th → [0,∞),

(54)
∫
Th

f (σ )mh(dσ) =
∫ ζh

0
f

(
ph(t)

)
dt.

Pinched metric spaces. We next briefly explain how additional “shortcuts” will modify the
metric of a graph. Let (E,d) be a metric space and let � = ((xi, yi))1≤i≤p where (xi, yi) ∈
E2, 1 ≤ i ≤ p, are pairs of pinching points. Let ε ∈ [0,∞) that is interpreted as the length
of the edges that are added to E (if ε = 0, then each xi is identified with yi ). Set AE =
{(x, y);x, y ∈ E} and for all e = (x, y) ∈ AE , set e = x and e = y. A path γ joining x to y is
a sequence of e1, . . . , eq ∈ AE such that e1 = x, eq = y and ei = ei+1, for all 1 ≤ i < q . For
all e = (x, y) ∈ AE , we then define its length by le = ε ∧ d(xi, yi) if (x, y) or (y, x) is equal
to some (xi, yi) ∈ �; otherwise we set le = d(x, y). The length of a path γ = (e1, . . . , eq) is
given by l(γ ) = ∑

1≤i≤q lei
, and we set

(55) ∀x, y ∈ E, d�,ε(x, y) = inf
{
l(γ );γ is a path joining x to y

}
.
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It can be readily checked by standard arguments that d�,ε is a pseudo-metric. We refer to
Section 5.2.5 for more details. Denote the equivalence relation d�,ε(x, y) = 0 by x ≡�,ε y;
the (�, ε)-pinched metric space associated with (E,d) is then the quotient space E/ ≡�,ε

equipped with d�,ε . First note that if (E,d) is compact or connected, so is the associ-
ated (�, ε)-pinched metric space since the canonical projection ��,ε : E → E/ ≡�,ε is
1-Lipschitz. Of course when ε > 0, d�,ε on E is a true metric, E = E/ ≡�,ε and ��,ε is the
identity map on E.

Coding pinched trees. Let h : [0,∞) → [0,∞) be a càdlàg function that satisfies (51) and
(a) or (b) in Remark 4; let � = ((si, ti))1≤i≤p where 0 ≤ si ≤ ti < ζh, for all 1 ≤ i ≤ p and
let ε ∈ [0,∞). Then, the compact measured metric space coded by h and the pinching setup
(�, ε) is the (�, ε)-pinched metric space associated with (Th, dh) and the pinching points
� = ((ph(si),ph(ti)))1≤i≤p , where ph : [0, ζh) → Th stands for the canonical projection.
We shall use the following notation:

(56) G(h,�,ε) = (Gh,�,ε, dh,�,ε, �h,�,ε,mh,�,ε).

We shall denote by ph,�,ε the composition of the canonical projections ��,ε ◦ph : [0, ζh) →
Gh,�,ε; then �h,�,ε = ph,�,ε(0) and mh,�,ε stands for the pushforward measure of the
Lebesgue measure on [0, ζh) via ph,�,ε .

Coding w-multiplicative graphs. Recall from Section 2.1.1 that (Gw
k )1≤k≤qw , are the con-

nected components of Gw. Here, qw is the total number of connected components of Gw;
Gw

k is equipped with its graph-metric dGw
k

and with the restriction mw
k of the measure

mw = ∑
1≤j≤n wjδj on Gw

k ; the indexation satisfies mw(Gw
1 ) ≥ · · · ≥ mw(Gw

qw). Let us briefly
explain how the excursions of Hw above 0 code the measured metric spaces Gw

k .
First, denote by (lwk , rwk ), 1 ≤ k ≤ qw, the excursion intervals of Hw above 0, that are exactly

the excursion intervals of Y w above its infimum process J w
t = infs∈[0,t] Y w

s . Namely,

(57)
⋃

1≤k≤qw

[lwk , rwk ) = {
t ∈ [0,∞) :Hw

t > 0
} = {

t ∈ [0,∞) : Y w
t > J w

t

}
.

Here, we set ζwk = rwk − lwk = mw
k (Gw

k ) and thus ζw1 ≥ · · · ≥ ζwqw ; moreover, if ζwk = ζwk+1, then
we agree on the convention that lwk < lwk+1; excursions processes are then defined as follows:

(58) ∀k ∈ {1, . . . ,qw},∀t ∈ [0,∞), Hwk (t) =Hw
(lwk +t)∧rwk

and Ywk (t) = Y w
(lwk +t)∧rwk

−J w
lwk

.

We next define the sequences of pinching points of the excursions: to that end, recall from
(8) and (9) the definition of �w = ((sp, tp))1≤p≤pw the sequence of pinching points of Gw;
observe that if tp ∈ [lwk , rwk ], then sp ∈ [lwk , rwk ]; then, it allows to define the following for all
k ∈ {1, . . . ,qw}:

�w
k = ((

sk
p, tkp

))
1≤p≤pwk

where
(
tkp

)
1≤p≤pwk

increases and where the
(
lwk + sk

p, lwk + tkp
)

are exactly the terms (sp′, tp′) of �w such that tp′ ∈ [
lwk , rwk

]
.

(59)

Then, for all k ∈ {1, . . . ,qw}, we easily see that Gw
k is coded by (Hwk ,�w

k ,1) as defined in (56).
Namely,

(60) G
(
Hwk ,�w

k ,1
)

is isometric to Gw
k .

Here, isometric means that there is a bijective isometry from G(Hwk ,�w
k ,1) onto Gw

k sending
mw

k to mHwk ,�w
k ,1. This implies in particular that ζwk = mw

k (Gw
k ).
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2.2.3. The continuous multiplicative random graph and fractal properties. We fix
(α,β, κ, c) as in (31) and we assume that (44) holds true. By analogy with the discrete cod-
ing, we now define the (α,β, κ, c)-continuous multiplicative random graph, the continuous
version of w-multiplicative graph.

First, recall from (36) the definition of Y ; recall from Theorem 2.6 the definition of H, the
height process associated with Y ; recall from (48) the notation, Jt = infs∈[0,t] Ys , t ∈ [0,∞).
Lemma 5.11 (see further in Section 5.2.4) asserts that the excursion intervals of H above 0
and the excursion intervals of Y −J above 0 are the same; moreover Proposition 14 in Aldous
and Limic [5] (recalled further in Proposition 5.8, Section 5.2.3), asserts that Jt → −∞ and
that these excursions can be indexed in the decreasing order of their lengths. Namely,

(61)
{
t ∈ [0,∞) :Ht > 0

} = {
t ∈ [0,∞) : Yt > Jt

} = ⋃
k≥1

(lk, rk),

where the sequence ζk = rk − lk , k ≥ 1 decreases. This proposition also implies that {t ∈
[0,∞) : Ht = 0} has no isolated point, that P(Ht = 0) = 0 for all t ∈ [0,∞) and that the
continuous function t �→ −Jt can be viewed as a sort of local-time for the set of zeros of H.
We refer to Sections 5.2.3 and 5.2.4 for more details. These properties allow us to define the
excursion processes as follows.

(62) ∀k ≥ 1,∀t ∈ [0,∞), Hk(t) =H(lk+t)∧rk and Yk(t) = Y(lk+t)∧rk − Jlk .

The pinching times are defined as follows: recall from (49) and (50) the definition of � =
((sp, tp))p≥1. If tp ∈ [lk, rk], then note that sp ∈ [lk, rk], by definition of sp . For all k ≥ 1, we
then define

�k = ((
sk
p, tkp

))
1≤p≤pk

where
(
tkp

)
1≤p≤pk

increases and where

the
(
lk + sk

p, lk + tkp
)

are exactly the terms (sp′, tp′) of � such that tp′ ∈ [lk, rk].
(63)

The connected components of the (α,β, κ, c)-continuous multiplicative random graph are
then defined as the sequence of random compact measured metric spaces coded by the excur-
sions Hk and the pinching setups (�k,0). Namely, we shall use the following notation: for
all k ≥ 1,

(64) Gk := (Gk,dk, �k,mk) stands for G(Hk,�k,0) as defined by (56).

The above construction of the continuous multiplicative random graph via the height pro-
cess H highlights the intimate connection between the graph and the Lévy trees that are
the continuum trees coded by the excursions of H above 0, where H is the height process
associated with the Lévy process X. We conclude this section with a study of the fractal prop-
erties of the graphs where this connection with the trees plays an essential role. Indeed, as a
consequence of Theorem 2.6, each component Gk of the graph can be embedded in a Lévy
tree whose branching mechanism ψ is derived from (α,β, κ, c) by (33); roughly speaking
the measure mk is the restriction to Gk of the mass measure of the Lévy tree; this measure
enjoys specific fractal properties and as a consequence of Theorem 5.5 in Duquesne and Le
Gall [20], we get the following result.

PROPOSITION 2.7. Let (α,β, κ, c) as in (31). Assume that (44) holds true, which implies
(35). Let (Gk)k≥1 be the connected components of the continuous (α,β, κ, c)-multiplicative
random graph as defined in (64). We denote by dimH the Hausdorff dimension and by dimp
the packing dimension. Then, the following assertions hold true a.s. for all k ≥ 1:

(i) If β �= 0, then dimH(Gk) = dimp(Gk) = 2.
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(ii) Suppose β = 0, which implies σ2(c) = ∞ by (35). Then, set

∀x ∈ (0,1), J (x) = 1

x

∑
j :cj≤x

κc3
j + ∑

j :cj>x

κc2
j = ∑

j≥1

κc2
j

(
1 ∧ (cj /x)

)

that tends to ∞ as x ↓ 0. We next define the following exponents:

γ = 1 + sup
{
r ∈ [0,∞) : lim

x→0+xrJ (x) = ∞
}

and η = 1 + inf
{
r ∈ [1,∞) : lim

x→0+xrJ (x) = 0
}
.

(65)

In particular, if c varies regularly with index −ρ−1 ∈ (−1
2 ,−1

3), then γ = η = ρ − 1.
Then, if γ > 1, we get a.s.

dimH(Gk) = γ

γ − 1
and dimp(Gk) = η

η − 1
.

PROOF. See Section 5.2.5. �

2.3. Limit theorems for the multiplicative graphs. The family of continuous multiplica-
tive random graphs, as defined previously, appears as the scaling limits of the w-multiplicative
graphs. This convergence is proved in [15]. We give here a short description of the main re-
sults of this paper.

Recall from Section 2.1 the various coding processes for the discrete graphs: Xw, Hw

for the Markovian queue/Galton–Watson tree, Y w and Hw for the graph, and θb,w is the
time-change so that Hw = Hw ◦ θb,w. Then recall from 2.2 their analogues X, H , Y , H, θ

in the continuous setting. Let wn = (w
(n)
j )j≥1 ∈ �

↓
f , n ≥ 1, be a sequence of weights. The

asymptotic regime considered in [15] is determined by two sequences of positive numbers
an, bn → ∞. More precisely, we prove in [15] (Theorem 2.4) the following convergence of
the coding processes:

(66) If
(

1

an

X
wn

bn·,
an

bn

H
wn

bn·
)

−→
n→∞ (X,H)

weakly on D([0,∞),R) × C([0,∞),R) equipped with the product of the Skorokhod and the
continuous topologies, then the following joint convergence

(67)
(

1

an

X
wn

bn·,
an

bn

H
wn

bn·,
1

an

Y
wn

bn·,
an

bn

Hwn

bn·
)

−→
n→∞ (X,H,Y,H)

holds weakly on D([0,∞),R)×C([0,∞),R)×D([0,∞),R)×C([0,∞),R) equipped with
the product topology.

For (66) to hold, it is necessary and sufficient that (see Duquesne and Le Gall [19], Theo-
rem 2.3.1 and Corollary 2.5.1)

(68) (A) : 1

an

X
wn

bn

(weakly)−→
n→∞ X1 and (B) : ∃δ ∈ (0,∞), lim inf

n→∞ P
(
Z
wn�bnδ/an� = 0

)
> 0.

Above, (Z
wn

k )k∈N stands for a Galton–Watson Markov chain with offspring distribution μwn

(as defined in (29)) and with initial state Z
wn

0 = �an�. In [15], for each X satisfying the
conditions (31) and (44), we construct examples of (an, bn,wn)n∈N for (68) to take place,
so that every member of the continuous multiplicative graph family appears in the limits
of discrete graphs. Our construction there employs a sufficient condition for (B) in (68)
which can be readily checked in a wide range of situations. Moreover, in the near critical
regime where σ1(wn) � σ2(wn) and when large weights persist to the limit, [15] shows that



CONTINUOUS MULTIPLICATIVE GRAPHS 2471

(α,β, κ, c)-spectrally Lévy processes are the only possible scaling limits of the Xw. Thus, in
some sense, (α,β, κ, c)-continuum multiplicative graphs as introduced in this paper, are the
only possible nondegenerate scaling limits of near critical multiplicative graphs.

In terms of the convergence of the graphs, (67) implies the following. Recall from (60) the
graph (Gwn

k , d
wn

k , �
wn

k ,mwn

k ) encoded by (Hwk ,�w
k ,1). Put another way, (Gwn

k )1≤k≤qwn
forms

the sequence of the connected components of Gwn sorted in decreasing order of their mwn-
masses: mwn(Gwn

1 ) ≥ · · · ≥ mwn(Gwn
qwn

). Analogously, recall from (64) the connected compo-
nents (Gk)k≥1 of the (α,β, κ, c)-continuous multiplicative random graph (ranked in decreas-
ing order of their m-masses). Completing the finite sequence with null entries, we have that
(Theorem 2.8 in [15])

(69)
((

Gwn

k ,
an

bn

d
wn

k , �
wn

k ,
1

bn

mwn

k

))
k≥1

−→
n→∞

(
(Gk,dk, �k,mk)

)
k≥1

holds weakly with respect to the product topology induced by the Gromov–Hausdorff–
Prokhorov distance. Moreover, the same type of convergence holds if we replace in (69)
the weight-measure mwn by the counting measure # = ∑

1≤j≤jn δj , where jn := sup{j ≥ 1 :
w

(n)
j > 0}. We can also list the connected components of Gwn in the decreasing order of their

numbers of vertices. Then again, Theorem 2.13 in [15] asserts that under the additional as-
sumption that

√
jn/bn → 0, we have this (potentially) different list of connected components

converging to the same limit object. Theorem 2.8 in the companion paper [15] completes the
previous scaling limits of truely inhomogeneous graphs due to: Bhamidi, Sen and X. Wang
[9], Bhamidi et al. [25], Bhamidi, van der Hofstad and van Leeuwaarden [12] and Bhamidi,
van der Hofstad and Sen [10]. We refer to [15] for a more precise discussion on the previous
works dealing with the scaling limits of inhomogeneous graphs.

3. Proof of Theorem 2.1. Let G = (V (G),E (G)) be a graph with V (G) ⊂ N\{0}. We
suppose that G has q connected components CG

1 , . . . ,CG
q that are listed in an arbitrary de-

terministic way, the increasing order of their least vertex: namely, minCG
1 < · · · < minCG

q .
Let w= (wj )j∈V (G) be a set of strictly positive weights; we set m= ∑

j∈V (G) wjδj that is, a
measure on V (G).

We call the set of the atoms of a Poisson point measure a Poisson random set. We then
define a law �G,m on ((0,∞) × V (G))q as follows. Let (�j )j∈V (G) be independent Pois-
son random subsets of (0,∞) with rate wj/σ1(w). For all nonempty subset S ⊂ V (G) we
set �(S) := ⋃

j∈S �j (in particular �({j}) = �j , for all j ∈ V (G)). Then �(S) is a Pois-
son random set with rate m(S)/σ1(w). For all k ∈ {1, . . . , q}, we then define (Tk,Uk) : � →
(0,∞) × V (G) by

Tk = inf�
(
CG

s(k)

)
= inf�Uk

where the permutation s is such that inf�
(
CG

s(1)

)
< · · · < inf�

(
CG

s(q)

)
.

Namely, Tk is the kth order statistic of (inf�(CG
1 ), . . . , inf�(CG

q )). We denote by �G,m the
joint law of ((Tk,Uk))1≤k≤q and we easily check that

�G,m(dt1 . . . dtq; j1, . . . , jq)

= P(T1 ∈ dt1; . . . ;Tq ∈ dtq;U1 = j1; . . . ;Uq = jq)

= 1{0≤t1≤···≤tq }
wj1

σ1(w)
. . .

wjq

σ1(w)
exp

(
− 1

σ1(w)

∑
1≤k≤q

tkm
(
CG

s(k)

))
dt1 . . . dtq,

(70)
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where s is the unique permutation of {1, . . . , q} such that jl ∈ V (CG
s(l) ), for all l ∈ {1, . . . , q}.

Moreover, we set �∗
j = �j ∩ (Tk,∞), for all j ∈ CG

s(k) . Then, note that

(71) �j = �∗
j ∪ {Tk} if j = Uk and �j = �∗

j if j ∈ CG
s(k)\{Uk}.

Elementary results on Poisson point processes imply the following:

Conditionally given (Tk,Uk)1≤k≤q, the �∗
j , j ∈ V , are independent and

for all j ∈ CG
s(k) , �∗

j is a Poisson random subset of (Tk,∞)

with intensity wj/σ1(w).

(72)

The following lemma, whose elementary proof is left to the reader, provides a description of
the law of ((Tk,Uk))2≤k≤q conditionally given (T1,U1). Let us mention that it is formulated
with specific notation for further use.

LEMMA 3.1. Let Go be a finite graph with qo connected components; let wo =
(wo

j )j∈V (Go) be strictly positive weights; let mo = ∑
j∈V (Go) w

o
j δj . We fix k∗ ∈ {1, . . . , qo}.

Then, we set G′ = Go\CGo

k∗ and a = (σ1(wo) −mo(CGo

k∗ ))/σ1(wo); we equip G′ with the set of
weights w′

j = awo
j , j ∈ V (G′) and we set m′ = ∑

j∈V (G′) w
′
j δj . Let T and (T ′

k,U
′
k)1≤k≤qo−1

be independent r.v. such that T is exponentially distributed with unit mean and such that
(T ′

k,U
′
k)1≤k≤qo−1 has law �G′,m′ . We set

T o
1 = T and ∀k ∈ {

1, . . . , qo − 1
}
, T o

k+1 = T + 1

a
T ′

k and Uo
k+1 = U ′

k.

Then, for all j∗ ∈ CGo

k∗ ,

wo
j∗

σ1(wo)
P

(
T o

1 ∈ dt1; . . . ;T o
qo ∈ dtqo;Uo

2 = j2; . . . ;Uo
qo = jqo

)
= �Go,mo

(
dt1 . . . dtqo; j∗, j2, . . . , jqo

)
.

Next we briefly recall how to derive a graph from the LIFO queue (and from an additional
point process) as discussed in Section 2.1.1. Let V ⊂ N\{0} be a finite set of vertices (or
finite set of labels of clients) associated with a set of strictly positive weights denoted by
w= (wj )i∈V (recall that the total amount of service of Client j is wj ); let E = (Ej )j∈V be
the times of arrival of the clients. We assume that the clients arrive at distinct times and that
no client enters exactly when another client leaves the queue. These restrictions correspond
to a Borel subset of (0,∞)#V for E that has a full Lebesgue measure. We next set

(73) Yt = −t + ∑
j∈V

wj 1{Ej≤t} and Jt = inf
r∈[0,t]Yr .

We then define V : [0,∞) → V such that Vt is the label of the client who is served at time t .
Since Y only increases by jumps, for all t ∈ [0,∞), we get the following:

• either {s ∈ [0, t] : Ys− < inf[s,t] Y } is empty and we set Vt = 0,
• or there exists j ∈ V such that Ej = max{s ∈ [0, t] : Ys− < inf[s,t] Y } and we set Vt = j .

Note that Vt = 0 if the server is idle. Observe that V is càdlàg. As mentioned in Section 2.1.1,
the LIFO-queue yields an exploration forest whose set of vertices is V and whose set of edges
are

A= {{i, j} : i, j ∈ V and VEj− = i
}
.
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Additional edges are created thanks to a finite set of points � = {(tp, yp);1 ≤ p ≤ pw} in
D = {(t, y) ∈ (0,∞)2 : 0 < y < Yt − Jt } as follows. For all (t, y) ∈ D, define τ(t, y) =
inf{s ∈ [0, t] : infu∈[s,t] Yu > y + Jt }. Then, the set of additional edges is defined by

S = {{i, j} : i, j ∈ V distinct and ∃(t, y) ∈ � such that Vτ(t,y) = i and Vt = j
}
.

Then the graph produced by E, w and � is G = (V (G) = V ;E (G) =A∪ S).
Theorem 2.1 asserts that if E and � have the appropriate distribution, then G is a w-

multiplicative graph, whose law is denoted by MV ,w given as follows: for all graphs G such
that V (G) = V ,

(74) MV ,w(G) = ∏
{i,j}∈E (G)

(
1 − e−wiwj /σ1(w)) ∏

{i,j}/∈E (G)

e−wiwj /σ1(w).

We actually prove a result that is slightly more general than Theorem 2.1 and that involves
additional features derived from the LIFO queue. More precisely, denote by q the number
of excursions of Y strictly above its infimum and denote by (lk, rk), k ∈ {1, . . . ,q} the corre-
sponding excursion intervals listed in the increasing order of their left endpoints: l1 < · · · < lq
(of course, this indexation does not necessarily coincide with the indexation of the connected
components of the graph G in the increasing order of their least vertex, nor with the decreas-
ing order of their mw-measure). Then, we set

(75) ∀k ∈ {1, . . . ,q}, Tk = −Jlk and Uk ∈ V is such that EUk
= lk.

From the definition of G as a deterministic function of (E,w,�) as recalled above, we
easily check the following: G has q connected components CG1 , . . . ,CGq (recall that they are

listed in the increasing order of their least vertex: namely, minCG1 < · · · < minCGq ). Then,

we define the permutation s on {1, . . . ,q} that satisfies Uk ∈ CGs(k) for all k ∈ {1, . . . ,q}. Ob-

serve that rk − lk = m(CGs(k) ) and that the excursion (Yt+lk −Jlk )t∈[0,rk−lk] codes the connected

component CGs(k) . The quantity Tk is actually the total amount of time during which the server
is idle before the kth connected component is visited, and Uk is the first visited vertex of
the kth component. We denote by � the (deterministic) function that associates (E,w,�) to
(G, Y, J, (Tk,Uk)1≤k≤q):

(76) �(E,w,�) = (
G, Y, J, (Tk,Uk)1≤k≤q

)
.

We next prove the following theorem that implies Theorem 2.1.

THEOREM 3.2. We keep the notation from above. We assume that E = (Ej )j∈V are
independent exponentially distributed r.v. such that E[Ej ] = σ1(w)/wj , for all j ∈ V . We
assume that conditionally given E, � is a Poisson random subset of D = {(t, y) ∈ (0,∞)2 :
0 ≤ y < Yt − Jt } with intensity σ1(w)−11D(t, y) dt dy. Let (G, (Tk,Uk)1≤k≤q) be derived
from (E,w,�) by (76). Then, for every graph G whose set of vertices is V and that has q

connected components, we get

P(G = G;T1 ∈ dt1; . . . ;Tq ∈ dtq;U1 = j1; . . . ;Uq = jq)

= MV ,w(G)�G,m(dt1, . . . , dtq; j1, . . . , jq),
(77)

where MV ,w is defined by (74) and �G,m is defined by (70).

PROOF. We proceed by induction on the number of vertices of G. When G has only one
vertex, then (77) is obvious. We fix an integer n ≥ 1 and we assume that (77) holds for all
V ⊂N\{0} such that #V = n and all sets of positive weights w= (wj )j∈V .
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Then, we fix V o ⊂ N\{0} such that #V o = n + 1; we fix strictly positive weights wo =
(wo

j )j∈V o and we also fix Eo = (Eo
j )j∈V o in (0,∞)n+1; we assume that in the corresponding

LIFO queue, clients arrive at distinct times and that no client enters exactly when another
client leaves the queue. We next set Yo

t = −t +∑
j∈V o wo

j 1{Eo
j ≤t} and J o

t = inf[0,t] Yo. Let qo

be the number of excursions of Yo strictly above its infimum process J o; let (T o
k ,Uo

k )1≤k≤qo

be as in (75): namely T o
k = −J o

lok
and Eo

Uo
k
= lok , where (lok , ro

k ) is the kth excursion interval of

Yo strictly above J o listed in the increasing order of their left endpoints (namely, lo1 < · · · <
loqo ).

The main idea for the induction is to shift the LIFO queue at the time of arrival T o
1 of the

first client (with label Uo
1 ) and to consider the resulting graph. More precisely, we set

V := V o\{
Uo

1
}
, a :=

σ1(wo) − wo
Uo

1

σ1(wo)
,

∀j ∈ V ,wj = awo
j and Ej = a

(
Eo

j − T o
1

)
.

(78)

Let Y and J be derived from E := (Ej )j∈V and w := (wj )j∈V as in (73). Then observe that

(79) a
(
Yo

a−1t+T o
1

− Yo
T o

1

) = Yt = −t + ∑
j∈V

wj 1{Ej≤t}, t ∈ [0,∞).

Note that T o
1 = minj∈V o Eo

j . Then, the alarm clock lemma implies the following.

(I) Suppose that (Eo
j )j∈V o are independent exponentially distributed r.v. such that

E[Eo
j ] = σ1(wo)/wo

j , for all j ∈ V o. Then, T o
1 is an exponentially distributed r.v. with unit

mean, P(Uo
1 = j) = wo

j/σ1(wo), for all j ∈ V o, T o
1 and Uo

1 are independent and under the
conditional probability P(·|Uo

1 = j∗), (Ej )j∈V , as defined in (78), are independent exponen-
tially distributed r.v. such that E[Ej ] = σ1(w)/wj , for all j ∈ V (where V = V o\{j∗}).

We next explain how the surplus edges of the graph generated by Y depend on Yo. Namely,
we denote by � the Poisson point process on {(t, y) ∈ [0,∞)2 : 0 ≤ y < Yt − Jt } that yields
the surplus edges of the graph coded by Y and we explain how it is related to �o that is,
the point process on {(t, y) ∈ [0,∞)2 : 0 ≤ y < Yo

t − J o
t } that yields the surplus edges of the

graph coded by Yo. We further identify which part of �o corresponds to �.
To that end, we fix Q1 and Q2, two discrete (i.e., without limit-point) subsets of [0,∞)2.

Let us mention that eventually Q1 and Q2 are taken random and distributed as independent
Poisson point processes whose intensity is Lebesgue measure on (0,∞)2. Roughly speaking,
Q1 yields � and Q2 completes � to yield �o. More specifically, we set

D1 := {
(t, y) ∈ [0,∞)2 : 0 ≤ y < Yt − Jt

}
, � :=Q1 ∩ D1

and D2 = {
(t, y) ∈ [0,∞)2 : −Jt < y ≤ awo

Uo
1

}
, �2 :=Q2 ∩ D2.

(80)

We next define f1 and f2 from [0,∞)2 to [0,∞)2 and we define a set of points �o by

f1(t, y) =
(

1

a
t + T o

1 ,
1

a

(
y + (

awo
Uo

1
+ Jt

)
+

))
,

f2(t, y) =
(

1

a
t + T o

1 ,wo
Uo

1
− 1

a
y

)

and �o = f1(�) ∪ f2
(
�2)

.

(81)

We check the following (see also Figure 4).
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FIG. 4. An example of Y ◦ − J ◦ and D◦. Darkly shaded area corresponds to f1(D1); lightly shaded area
corresponds to f2(D2). Together they form a partition of D◦

(II) Fix Eo; suppose that Q1 and Q2 are two independent Poisson random subsets of
[0,∞)2 with intensity 1

σ1(w)
dt dy. Then, �o is a Poisson random subset of Do = {(t, y) ∈

[0,∞)2 : 0 ≤ y < Yo
t − J o

t } with intensity 1
σ1(wo)

1Do(t, y) dt dy.

Indeed, observe that f1(D1) and f2(D2) form a partition of Do. Then, note that f1 is
piecewise affine with slope 1/a in both coordinates on the excursion intervals of Y −J strictly
above 0, and that f2 is affine with slope 1/a in both coordinates. Standard results on Poisson
subsets entail that �o is a Poisson random subset on Do with intensity a2

σ1(w)
1Do(t, y) dt dy

and by (78) a2

σ1(w)
= 1

σ1(wo)
, which implies (II). �

Recall notation (76). We next introduce the two following graphs:

�
(
Eo,wo,�o) = (

Go, Y o, J o,
(
T o

k ,Uo
k

)
1≤k≤qo

)
and

�(E,w,�) = (
G, Y, J, (Tk,Uk)1≤k≤q

)
.

(82)

Then, the previous construction of �o combined with (79) easily implies the following:

(III) Fix Eo, Q1 and Q2. Then, G is obtained by removing the vertex Uo
1 from Go: namely,

V (G) = V = V o\{Uo
1 } and E (G) = {{i, j} ∈ E (Go) : i, j ∈ V (G)}.

We next consider which connected components of G are attached to Uo
1 in Go. To that

end, recall that the CG
o

l (resp. the CGl ) are the connected components of Go (resp. of G)
listed in the increasing order of their least vertex; recall that so (resp. s) is the permutation on
{1, . . . ,qo} (resp. on {1, . . . ,q}) such that Uo

k ∈ CG
o

so(k) for all k ∈ {1, . . . ,qo} (resp. Uk ∈ CGs(k)

for all k ∈ {1, . . . ,q}). We first introduce

(83) G′ := Go\CGo

so(1) and K := sup
{
k ∈ {1, . . . ,q} : Tk ≤ awo

Uo
1

}
with the convention sup∅ = 0. The graph G′ is the graph Go where the first (in the order of
visit) connected component has been removed. Note that G′ is possibly empty: it has qo − 1
connected components. We easily check that qo = q − K + 1. Here again, we recall that the
connected components of G′ are listed in the increasing order of their least vertex: minCG

′
1 <

· · · < minCG
′

qo−1. Then, when qo ≥ 2, denote by s′ the permutation of {1, . . . ,qo − 1} such
that

(84) ∀k ∈ {
1, . . . ,qo − 1

}
, CG

′
s′(k) = CG

o

so(k+1).

We also set

(85) ∀k ∈ {
1, . . . ,qo − 1

}
, T ′

k = TK+k − awo
Uo

1
and U ′

k = UK+k.
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Suppose that Eo, Q1, Q2 are fixed, then we also check that

(86) ∀k ∈ {
1, . . . ,qo − 1

}
, T o

k+1 = T o
1 + 1

a
T ′

k, Uo
k+1 = U ′

k and CG
′

s′(k) = CGs(K+k).

We now explain how additional edges are added to connect G to Uo
1 . For all j ∈ V , let

Ij = {t ∈ [0,∞) : Vt = j}; Ij is the set of times during which Client j is served; we easily
check that Ij is a finite union of disjoint intervals of the form [x, y) whose total Lebesgue
measure is wj : namely, �(Ij ) = wj .We also set

�∗
j = {

y ∈ [0,∞) : ∃t ∈ Ij such that (t, y) ∈Q2 and y > −Jt

}
.

Note that if j ∈ CGs(k) and t ∈ Ij , then −Jt = Tk . Combined with elementary results on Poisson
random sets, it implies the following.

(IV) Fix Eo and Q1; suppose that Q2 is a Poisson random subset of [0,∞)2 with inten-
sity 1

σ1(w)
dt dy. Then, the (�∗

j )j∈V are independent and �∗
j is a Poisson random subset of

(Tk,∞) with rate wj/σ1(w), where k is such that j ∈ CGs(k) .

We next introduce the following:

∗ We set �j := {Tk} ∪ �∗
j if there is k ∈ {1, . . . ,q} such that j = Uk .

∗ We set �j := �∗
j if j ∈ V \{U1, . . . ,Uq}.

∗ We set �′
j := {y − awo

Uo
1
;y ∈ �j ∩ (awo

Uo
1
,∞)}.

∗ For all nonempty S ⊂ V , we set �′(S) := ⋃
j∈S �′

j .

The following claim can be checked deterministically. For the sake of clarity, its proof is
postponed to the end of the section.

(V) Fix Eo, Q1, Q2. Then,

(Va) for all j ∈ V , {Uo
1 , j} ∈ E (Go) iff �j ∩ [0, awo

Uo
1
] �=∅;

(Vb) for all k ∈ {1, . . . ,qo − 1}, TK+k − awo
Uo

1
= inf�′(CGs(K+k)) = inf �′

UK+k
;

namely,

(87) ∀k ∈ {
1, . . . ,qo − 1

}
, T ′

k = inf�′(CG′
s′(k)

) = inf �′
U ′

k
,

with the notation of (83), (84), (85) and (86).

We now complete the proof of Theorem 3.2 as follows: let (Eo
j )j∈V o be independent

exponentially distributed r.v. such that E[Eo
j ] = σ1(wo)/wo

j for all j ∈ V o. We then fix
j∗ ∈ V o and we work under Pj∗ := P(·|Uo

1 = j∗). Under Pj∗ , by (78), we get V = V o\{j∗},
a = (σ1(wo) − wo

j∗)/σ1(wo) and for all j ∈ V , wj = awo
j and Ej = a(Eo

j − T o
1 ). Under Pj∗ ,

we take Q1 and Q2 to be two independent Poisson random subsets of [0,∞)2 with inten-
sity 1

σ1(w)
dt dy; Q1 and Q2 are also assumed to be independent of Eo. Recall from (80) and

(81) the definitions of � and �o and from (82) the definition (G, (Tk,Uk)1≤k≤q). By (I),
under Pj∗ , (E,w,�) has the required distribution so that the induction hypothesis applies to
(G, (Tk,Uk)1≤k≤q): namely, under Pj∗ , G has law MV ,w (as defined in (74)) and condition-
ally given G, (Tk,Uk)1≤k≤q has law �G,m as defined in (70) (namely, (77) holds). We next
claim the following.

(VI) Under Pj∗ and conditionally given (T o
1 ,G), the (�j )j∈V are independent and �j is

a Poisson random subset of (0,∞) with rate wj/σ1(w); therefore, under Pj∗ , the (�j )j∈V

are independent of (T o
1 ,G) and the very definition of �j implies that for all {1, . . . ,q},

Tk = inf�
(
CGs(k)

) = inf�Uk
where s is such that inf�

(
CGs(1)

)
< · · · < inf�

(
CGs(q)

)
.
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PROOF OF (VI). By (IV), under Pj∗ and conditionally given (T o
1 ,G, (Tk,Uk)1≤k≤q),

the (�∗
j )j∈V are independent and �∗

j is a Poisson random subset of (Tk,∞) with rate

wj/σ1(w), where k is such that j ∈ CGs(k). Recall that �j := {Tk}∪�∗
j if there is k ∈ {1, . . . ,q}

such that j = Uk and that �j := �∗
j if j ∈ V \{U1, . . . ,Uq}. Thus, conditionally given

(T o
1 ,G, (Tk,Uk)1≤k≤q), the law of the �j only depends on the �∗

j and on (Tk,Uk)1≤k≤q.
Since conditionally given (T o

1 ,G), (Tk,Uk)1≤k≤q has law �G,m, (70), (71) and (72) imply
that conditionally given (T o

1 ,G), the �j are independent Poisson random subsets on (0,∞)

with respective intensity wj/σ1(w). �

Consequently, under Pj∗ , by (Va) and (VI), Go only depends on G and on �j ∩ [0, awo
j∗],

j ∈ V . This, combined with elementary results on Poisson processes, implies that Go

is independent from (�′
j )j∈V and from T o

1 ; (Va) and (VI) also imply that under Pj∗ ,
the events {{j∗, j} ∈ E (Go)}, j ∈ V , are independent and occur with probabilities 1 −
exp(−wjawo

j∗/σ1(w)). Then, note that wjawo
j∗/σ1(w) = wo

jw
o
j∗/σ1(wo). Thus, under Pj∗ ,

Go has law MV o,wo and it is independent from (T o
1 ;�′

j , j ∈ V ).
Recall from (83), (84), (85) and (86) the notation G′, s′ and (T ′

k,U
′
k)1≤k≤qo−1. Then, ob-

serve that under Pj∗ and conditionally given Go, (Vb) and (VI) imply that (T ′
k,U

′
k)1≤k≤qo−1

has conditional law �G′,m′ , where m′ = ∑
j∈V (G′) wj δj . Then, under Pj∗ and conditionally

given Go, Lemma 3.1 applies and (86) entails that

wo
j∗

σ1(wo)
Pj∗

(
T o

1 ∈ dt1; . . . ;T o
qo ∈ dtqo;Uo

2 = j2; . . . ;Uo
qo = jqo |Go)

= �Go,mo

(
dt1 . . . dtqo; j∗, j2, . . . , jqo

)
.

Since P(Uo
1 = j∗) = wo

j∗/σ1(wo), it implies that for all graph Go whose set of vertices is V o

and that has qo connected components, we get

P
(
Go = Go;T o

1 ∈ dt1; . . . ;T o
qo ∈ dtqo;Uo

1 = j∗;Uo
2 = j2; . . . ;Uo

qo = jqo

)
= MV o,wo

(
Go)�Go,mo

(
dt1 . . . dtqo; j∗, j2, . . . , jqo

)
.

This completes the proof of Theorem 3.2 by induction on the number of vertices. �

PROOF OF (V). The argument is deterministic and elementary. Suppose that {Uo
1 , j} ∈

E (Go). There are two cases to consider.
• (Case 1): {Uo

1 , j} is part of the exploration tree generated by (Eo,wo) which means
that V o

Eo
j − = Uo

1 . Namely, it means that T o
1 = sup{s ∈ [0,Eo

j ] : Yo
s− < inf[s,Eo

j ] Y
o} because

Eo
Uo

1
= T o

1 , by definition of (Uo
1 , T o

1 ); since Yo
T o

1 − + wo
Uo

1
= Yo

T o
1

and by (79), it is equivalent

to −awo
Uo

1
< JEj

= YEj−. It implies that Ej is the left endpoint of an excursion of Y strictly
above its infimum; therefore, there exists k ∈ {1, . . . ,q} such that j = Uk and −JEj

= Tk , by
(75); thus Tk ∈ [0, awo

Uo
1
], which implies that �j ∩ [0, awo

Uo
1
] �= ∅ (since Tk ∈ �j as we are

in the case where j = Uk).
Conversely, let j = Uk be such that �j ∩ [0, awo

Uo
1
] �= ∅. It implies that Tk ≤ awo

Uo
1

and

the previous arguments can be reversed verbatim to prove that {Uo
1 , j} is an edge of Go that

is, part of the exploration tree generated by (Eo,wo).
• (Case 2): {Uo

1 , j} is an additional edge of Go. Then, there exists (t ′, y′) ∈ �o such
that V o

t ′ = j and V o
τo(t ′,y′) = Uo

1 , where τo(t ′, y′) = inf{s ∈ [0, t ′] : inf[s,t ′] Yo > y′ + J o
t ′ }.

Note that V o
t ′ = j implies that t ′ > T o

1 since j �= Uo
1 and since Uo

1 is the first visited ver-
tex (or the first client). Also observe that V o

τo(t ′,y′) = Uo
1 implies τo(t ′, y′) = T o

1 . It also
implies that t ′ lies in the first excursion interval of Yo strictly above its infimum, which
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entails that J o
t ′ = J o

T o
1

= −T o
1 . Then, we set t = a(t ′ − T o

1 ) and, thanks to (79), we rewrite
the previous conditions in terms of Y , J and V as follows: Vt = j and 0 = inf{s ∈ [0, t] :
awo

Uo
1
+ inf[s,t] Y > ay′}, which is equivalent to t ∈ Ij and y := a(wo

Uo
1
− y′) > −Jt . This

proves that there is (t, y) ∈ D2 (as defined in (80)) such that (t ′, y′) = f2(t, y) as defined in
(81). Since f1(�) and f2(�

2) form a partition of �o, (t, y) ∈ �2 and this proves that there
is (t, y) ∈Q2 such that t ∈ Ij and awo

Uo
1
≥ y > −Jt , which implies �j ∩ [0, awo

Uo
1
] �=∅.

Conversely, suppose that �j ∩ [0, awo
Uo

1
] �= ∅ and that j ∈ V \{U1, . . . ,Uq}. Then, �∗

j ∩
[0, awo

Uo
1
] �=∅ and the previous arguments can be reversed verbatim to prove that {Uo

1 , j} is

an (additional) edge of Go, which completes the proof of (Va).
Let us prove (Vb). Let k ∈ {1, . . . ,qo − 1}. By definition UK+k ∈ CGs(K+k) . Let y ∈ �∗

UK+k
:

namely, there exists t such that Vt = UK+k , (t, y) ∈Q2 and y > −Jt . But Vt = UK+k implies
that −Jt = TK+k . Since �UK+k

= �∗
UK+k

∪ {TK+k}, we get inf�UK+k
= TK+k . By definition

of K , TK+k > awo
Uo

1
, which entails inf�′

UK+k
= TK+k − awo

Uo
1
.

Let j ∈ CGs(K+k)\{UK+k} (if any) and let y ∈ �j . Necessarily, j ∈ V \{U1, . . . ,Uq}, which
entails �j = �∗

j , by definition. Then there exists t such that Vt = j , (t, y) ∈Q2 and y > −Jt .
Note that Ij is included in the excursion interval of Y strictly above its infimum whose left
endpoint is EUK+k

, which implies that Jt = −TK+k , for all t ∈ Ij . Thus y > TK+k . This
proves that inf�′(CGs(K+k)) = inf�′

UK+k
, which completes the proof of (Vb). �

4. Embedding the multiplicative graph in a GW-tree. We recall from Section 2.1.2
the definition of the Markovian algebraic load process Xw that is derived from the blue and
red processes Xb,w and Xr,w as in (25). Namely recall from (16) that X b

w = ∑
k≥1 δ(τbk ,Jbk )

and X r
w = ∑

k≥1 δ(τrk ,Jrk ) are two independent Poisson random point measures on [0,∞) ×
{1, . . . , n} with intensity � ⊗ νw, where � stands for the Lebesgue measure on [0,∞) and
where νw = 1

σ1(w)

∑
1≤j≤n wjδj . Recall from (17) the following notation

X
b,w
t = −t + ∑

k≥1

wJbk
1[0,t]

(
τbk

)
,

X
r,w
t = −t + ∑

k≥1

wJrk
1[0,t]

(
τrk

)
and I

r,w
t = inf

s∈[0,t]X
r,w
s .

For all j ∈ {1, . . . , n} and all t ∈ [0,∞), recall from (18) that Nw
j (t) = X b

w ([0, t] × {j})
and that Ew

j = inf{t ∈ [0,∞) : X b
w ([0, t] × {j}) = 1}; the Nw

j are independent homogeneous

Poisson processes with jump-rate wj/σ1(w) and the r.v. (
wj

σ1(w)
Ew

j )1≤j≤n are i.i.d. exponen-

tially distributed r.v. with unit mean. Note that X
b,w
t = −t + ∑

1≤j≤n wjN
w
j (t). Then recall

from (19) that

(88) Y w
t = −t + ∑

1≤j≤n

wj 1{Ew
j ≤t} and Aw

t = X
b,w
t − Y w

t = ∑
1≤j≤n

wj

(
Nw

j (t) − 1
)
+.

Thanks to (Y w,Aw) and Xr,w we reconstruct the Markovian LIFO queue as follows. First
recall from (20) the definition of the “blue” time-change θb,w: for all t ∈ [0,∞),

θ
b,w
t = t + γ

r,w
Aw

t
,

where for all x ∈ [0,∞), we have set: γ r,w
x = inf

{
t ∈ [0,∞) : Xr,w

t < −x
}
,

(89)

with the convention that inf∅= ∞. Note that γ r,w
x < ∞ iff x < −Ir,w∞ = limt→∞ −I

r,w
t that

is, a.s. finite in supercritical cases (and −Ir,w∞ is a.s. infinite in critical and subcritical cases).
We also need to recall from (22) the definition of

(90) T ∗
w = sup

{
t ∈ [0,∞) : Aw

t < −Ir,w∞
} = sup

{
t ∈ [0,∞) : θb,w

t < ∞}
.
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In critical and subcritical cases, T ∗
w = ∞ and θb,w only takes finite values. In supercritical

cases, a.s. T ∗
w < ∞ and we check that θb,w(T ∗

w−) < ∞. We next recall from (23) the defini-
tion of Blue and Red that are the sets of times during which blue and red clients are served
(recall that the server is considered as a blue client):

(91) Red= ⋃
t∈[0,T ∗

w ]:�θ
b,w
t >0

[θb,w
t− , θ

b,w
t ) and Blue= [0,∞)\Red.

Note that the union defining Red is countably infinite in critical and subcritical cases and that
it is a finite union in supercritical cases since [θb,w(T ∗

w−), θb,w(T ∗
w )) = [θb,w(T ∗

w−),∞). We
next recall from (24) the definition of the time-changes �b,w and �r,w:

�
b,w
t =

∫ t

0
1Blue(s) ds = inf

{
s ∈ [0,∞) : θb,w

s > t
}

and

�
r,w
t = t − �

b,w
t =

∫ t

0
1Red(s) ds.

(92)

The processes �b,w and �r,w are continuous and nondecreasing and a.s. limt→∞ �
r,w
t = ∞.

In critical and subcritical cases, we also get a.s. limt→∞ �
b,w
t = ∞ and �b,w(θ

b,w
t ) = t for

all t ∈ [0,∞). However, in supercritical cases, �b,w is eventually constant and equal to T ∗
w

and a.s. for all t ∈ [0, T ∗
w ), �b,w(θ

b,w
t ) = t . We next recall from (25) the definition of the load

of the Markovian queue Xw:

(93) ∀t ∈ [0,∞), Xw
t = X

b,w

�
b,w
t

+ X
r,w
�
r,w
t

.

PROOF OF (26) IN PROPOSITION 2.2. Note that for all t ∈ [0, T ∗
w ), �b,w(θ

b,w
t ) = t and

thus �r,w(θ
b,w
t ) = θ

b,w
t − t = γ r,w(Aw

t ). Therefore,

Xw
θ
b,w
t

= X
b,w

�b,w(θ
b,w
t )

+ X
r,w

�r,w(θ
b,w
t )

= X
b,w
t + X

r,w
γ r,w(Aw

t )
= X

b,w
t − Aw

t = Y w
t ,

which proves (26) in Proposition 2.2. �

We next prove Lemma 2.3. To that end we need the following lemma.

LEMMA 4.1. Almost surely, for all b ∈ [0, T ∗
w ] such that θ

b,w
b− < θ

b,w
b , we get for all

s ∈ [θb,w
b− , θ

b,w
b )

Xw
s > Xw

(θ
b,w
b− )− = Y w

b , �Xw
θ
b,w
b−

= �Aw
b and

Xw
(θ
b,w
b− )− = Xw

θ
b,w
b

= Xw
(θ
b,w
b )− if θ

b,w
b < ∞.

(94)

Thus, a.s. for all s ∈ [0,∞), Xw
s ≥ Y w(�b,w

s ). Moreover, a.s. for all s1, s2 ∈ [0,∞) such that
�b,w

s1
< �b,w

s2
, then

(95) inf
b∈[�b,w

s1 ,�
b,w
s2 ]

Y w
b = inf

s∈[s1,s2]
Xw

s .

We next introduce the red time-change:

(96) θ
r,w
t = inf

{
s ∈ [0,∞) : �r,w

s > t
}
.

Then, for all s, t ∈ [0,∞), θ
r,w
s+t − θ

r,w
t ≥ s and if �θ

r,w
t > 0, then �X

r,w
t = 0.
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FIG. 5. Colouring of the Markovian queue. The grey blocks form the set Blue. Observe that the sequence
(tl )l∈N (i.e., the moments when the queue switches its colours), marks the boundaries of the blocks. Recall the
point measure X w formed by the jumps of Xw. The jumps corresponding to those of Y have the colour b (blue)
and they are marked by • on the abscissa. The jumps corresponding to those of A have the colour b′ (for repeated
blue as defined in the end of the proof of Proposition 2.2) and they are marked by ×. The jumps of colour r (red)
are marked by ◦. Observe also that jumps inside the grey blocks are of colour b, the right endpoint of each grey
block corresponds to a jump of colour b′, which is also a jump of Aw. Jumps outside these blocks are of colour r.

PROOF. As defined by (93), the process Xw is obtained by concatenating alternatively
successive parts of Xb,w and Xr,w as follows: recall from (88) that Aw is the sum of the
jumps of Xb,w that already occurred once; it is therefore a nondecreasing process; denote by
sl the lth jump-time of Aw and to simplify, set s′

l = γ r,w(Aw
sl
) (note that in supercritical cases,

s′
l may be infinite). Let us agree on saying that the colour of the queue is defined by the colour

of the client currently served. We then introduce a sequence (tl)l∈N which corresponds to the
times when the queue switches its colour. For convenience, we first set s0 = s′

0 = 0 and then
we introduce

(97) ∀l ∈N, t2l := sl + s′
l and t2l+1 := sl+1 + s′

l .

See also Figure 5. Next set l∗ = inf{l ≥ 0 : s′
l = ∞} (i.e., infinite in the subcritical and the

critical cases). Then, tl < ∞ for all l < 2l∗ and t2l∗ = ∞. Fix l < l∗. Then, note that t2l+1 −
t2l = sl+1 − sl , that t2l+2 − t2l+1 = s′

l+1 − s′
l and observe that (93) can be rewritten as follows:

∀s ∈ [0, t2l+1 − t2l), Xw
t2l+s − Xw

t2l
= X

b,w
sl+s − Xb,w

sl
,

and ∀s ∈ [0, t2l+2 − t2l+1), Xw
t2l+1+s − Xw

t2l+1
= X

r,w
s′
l+s

− X
r,w
s′
l

.
(98)

Moreover, we get Red= ⋃
0≤l<l∗[t2l+1, t2l+2) and Blue= ⋃

0≤l<l∗[t2l , t2l+1). Namely,{
θ
b,w
t− ; t ∈ [

0, T ∗
w

] : �θ
b,w
t > 0

} = {
t2l+1;0 ≤ l < l∗

}
and

{
θ
b,w
t ; t ∈ [

0, T ∗
w

] : �θ
b,w
t > 0

} = {
t2l;0 ≤ l < l∗

}
.
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Next fix l < l∗. Note that Xr,w(s′
l ) = −Aw(sl) = −Aw(sl+1−) and that �Xw(t2l+1) =

�Aw(sl+1) = �Xb,w(sl+1). Thus, for all s ∈ [0, t2l+2 − t2l+1), Xw(t2l+1 +s)−Xw(t2l+1−) =
Xr,w(s′

l + s) + Aw(sl+1) > 0. Namely, for all t ∈ [t2l+1, t2l+2), we get Xw(t) > Xw(t2l+1−)

and if t2l+2 < ∞, then we also get Xw(t2l+2) = Xw(t2l+1−), which completes the proof of
(94).

Clearly, (94) implies that a.s. for all s ∈ [0,∞), Xw
s ≥ Y w(�b,w

s ). We next prove (95): let
s1, s2 ∈ [0,∞) such that b1 := �b,w

s1
< �b,w

s2
=: b2, which implies that b1 < T ∗

w . We have

proved that Y w
b = Xw(θ

b,w
b ) for all b ∈ [0, T ∗

w ); since by construction, �Y w(T ∗
w ) = 0, we

also get Y w
T ∗
w

= Xw(θ
b,w
T ∗
w−−). This implies that inf[b1,b2] Y w ≥ inf[θb,w(b1),θ

b;w(b2−)] Xw. Since

s1 ≤ θ
b,w
b1

< θ
b,w
b2− ≤ s2, we get inf[b1,b2] Y w ≥ inf[s1,s2] Xw. But we have proved also that Xw

s ≥
Y w(�b,w

s ) for all s ∈ [0,∞): therefore, inf[s1,s2] Xw ≥ inf[b1,b2] Y w, which entails (95).
We now complete the proof of the lemma. Since �b,w + �r,w is the identity map, we get

θ
r,w
t = �b,w(θ

r,w
t )+ t , which shows that θr,w is super-linear. Next observe that if �θ

r,w
t > 0,

then there exists l < l∗ such that θ
r,w
t = t2l+1 and t = �r,w(t2l+1) = s′

l = γ r,w(Aw
sl
). Thus,

we get �X
r,w
t = 0, which completes the proof of the lemma. �

PROOF OF LEMMA 2.3. Namely, we prove that a.s. for all a ∈ [0, T ∗
w ), Hw

a = Hw(θb,w
a ).

To that end, we fix a ∈ [0, T ∗
w ) and we set Ja = {r ∈ [0, a] : J w,r−

a < J w,r
a } where J w,r

a =
inf[r,a] Y w. By the definition (27) of H, we get #Ja = Hw

a . For any t ∈ [0,∞), we next set
K(t) = {s ∈ [0, t] : I

w,s−
t < I

w,s
t } where I

w,s
t = inf[s,t] Xw. By the definition (28), we get

#K(t) = Hw
t . Then, it is sufficient to prove that �b,w is one-to-one from K(θb,w

a ) onto Ja .
We first prove: Ja ⊂ �b,w(K(θb,w

a )). First observe that a = �b,w(θb,w
a ), which implies

that, when a ∈ Ja , we also have a ∈ �b,w(K(θb,w
a )). Let r ∈ Ja and suppose that r < a. By

(95), we get J w,r
a = inf{Xw

s ; s ∈ [θb,w
r , θb,w

a ]}. Moreover, since r ∈ Ja , �Y w
r > 0. Suppose

that θ
b,w
r− < θb,w

r , then (94) would easily entail that �Y w
r = �Xw(θb,w

r ) = 0. Thus, θ
b,w
r− =

θb,w
r and θb,w

r lies therefore in the interior of Blue; therefore for all sufficiently small ε > 0,
θ
b,w
r−ε = θb,w

r − ε, and thus, J w,r−ε
a = inf{Xw

s ; s ∈ [θb,w
r − ε, θb,w

a ]}. This implies that θb,w
r ∈

K(θb,w
a ) and it completes the proof that Ja ⊂ �b,w(K(θb,w

a )).
Conversely, let us prove that �b,w(K(θb,w

a )) ⊂ Ja . Let s ∈ K(θb,w
a ). To simplify notation

we set r = �b,w
s . Note that r < T ∗

w . We first prove that s lies in the interior of Blue. Indeed,
suppose the contrary: namely suppose that s lies in the closure of Red; then we would get
θ
b,w
r− < θb,w

r and s ∈ [θb,w
r− , θb,w

r ], and (94) would entail that Xw
s− ≥ Xw(θb,w

r ) ≥ I
w,s

θ
b,w
a

and

thus, I
w,s

θ
b,w
a

= I
w,s−
θ
b,w
a

, which contradicts I
w,s−
θ
b,w
a

< I
w,s

θ
b,w
a

. Thus, s lies in the interior of Blue.

Consequently, for all sufficiently small ε ∈ (0,∞), �
b,w
s−ε = �b,w

s − ε = r − ε and (95) entails
J w,r−ε

a = I
w,s−ε

θ
b,w
a

, which implies that r = �b,w
s ∈ Ja because

J w,r−
a = I

w,s−
θ
b,w
a

< I
w,s

θ
b,w
a

= J w,r
a .

We have proved that �b,w(K(θb,w
a )) = Ja . But recall that we have also proved that K(θb,w

a )

is included in the interior of Blue on which �b,w is one-to-one, by definition. Consequently,
we get Hw(θb,w

a ) = #K(θb,w
a ) = #Ja =Hw

a , which proves Lemma 2.3. �

REMARK 5. By (94), we actually get Hw
t = Hw(�

b,w
t ) + Hr,w(�

r,w
t ), where we have

set H
r,w
t = #{s ∈ [0, t] : I ′w,s−

t < I
′w,s
t } and I

′w,s
t = inf[s,t] Xr,w.

END OF THE PROOF OF PROPOSITION 2.2. It remains to prove that Xw has the same
law as Xb,w (or Xr,w). To that end, we first define a point measure that records the successive
jump-times of Xw, along with their types and their colours. Actually, here it will be convenient
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to distinguish three colours: b (blue) for the jumps of Y w, b′ (repeated blue) for the jumps
of A and r (red) for the jumps of Xr,w. More precisely, set k∗ = inf{k ≥ 1 : θb,w(τbk ) = ∞}
(i.e., infinite in the critical or subcritical cases). Recall from (16) that X b

w = ∑
k≥1 δ(τbk ,Jbk ).

Let us fix k < k∗.

Colour b: If τbk is a jump-time of Y w, then τbk is in the interior of Blue: namely,
θb,w(τbk −) = θb,w(τbk ). On the interior of Blue, θb,w is continuous. Thus, if τbk is a jump-
time of Y w, then τbk corresponds to the jump-time θb,w(τbk ) of Xw.
Colour b′: If τbk is a jump-time of Aw, then τbk is an endpoint of a connected component

of Blue: namely, θb,w(τbk −) < θb,w(τbk ), θb,w(τbk −) is a time when the queue changes its
colour and the corresponding jump-time in Xw is θb,w(τbk −). By the definition (97) of the
times tl , there exists l such that θb,w(τbk −) = t2l+1 and θb,w(τbk ) = t2l+2.
Colour r: Recall from (16) that X r

w = ∑
k≥1 δ(τrk ,Jrk ) and recall from (96) the red time-

change θr,w. Then, for all k ≥ 1, τrk corresponds to the jump-time θr,w(τrk ) of the process
Xw.

We then define as follows the increasing sequence of jump-times τp , of Xw, the corre-
sponding types Jp and their colour col(p) ∈ {b,b′,r}.
X w = ∑

1≤k<k∗
1{�Yw(τbk ) �=0}δ(θ

b,w

τb
k

,Jbk ,b)
+ ∑

1≤k<k∗
1{�Aw(τbk ) �=0}δ(θ

b,w

τb
k

−,Jbk ,b′) + ∑
k≥1

δ(θ
r,w
τr
k

,Jrk ,r)

=: ∑
p≥1

δ(τp,Jp,col(p)).

See Figure 5 for an example. We get:

∀t ∈ [0,∞), Xw
t = −t + ∑

p≥1

wJp1[0,t](τp).

To prove Proposition 2.2, it is then sufficient to prove that Xw := ∑
q≥1 δ(τq ,Jq ) is a Poisson

point measure on [0,∞) × {1, . . . , n} with intensity � ⊗ νw.
To that end, we introduce the following notation: let M = ∑

q≥1 δ(rq ,jq) be a point measure
on [0,∞) × {1, . . . , n} and let a ∈ [0,∞); then denote by R(M,a) = ∑

q≥1 1[0,a](rq)δ(rq ,jq)

the restriction of M on [0, a]×{1, . . . , n} and denote by S(M,a) = ∑
q≥1 1(a,∞)(rq)δ(rq−a,jq)

the a-time shifted measure M .

LEMMA 4.2. We fix an integer p ≥ 1. Then, conditionally given Z := R(X b
w ,�b,w

τp
) and

Z ′ := R(X r
w ,�r,w

τp
), the shifted measures Y := S(X b

w ,�b,w
τp

) and Y ′ := S(X r
w ,�r,w

τp
) are

independent Poisson point measures on [0,∞) × {1, . . . , n} with intensity � ⊗ νw.

PROOF. We introduce red(p) = #{l ∈ {1, . . . , p} : col(l) = r} that counts the number
of red jump-times of the process Xw among its first p jump-times. For all k ∈ {0, . . . , p},
we introduce the events A(k,p) = {red(p) = k;col(p) = r} and A′(k,p) = {red(p) =
k;col(p) �= r}.

We first observe that on A(k,p), �r,w
τp

= τrk and �b,w
τp

= τbp−k . Namely, Z = R(X b
w ,

τbp−k), Z ′ = R(X r
w , τrk ), Y = S(X b

w , τbp−k) and Y ′ = S(X r
w , τrk ). To simplify, denote by

H the sigma-field generated by R(X b
w , τbp−k) and R(X r

w , τrk ). By elementary properties of

Poisson point measures, conditionally given H , S(X b
w , τbp−k) and S(X r

w , τrk ) are indepen-
dent Poisson point measures on [0,∞) × {1, . . . , n} with intensity � ⊗ νw. Then, remark that
A(k,p) belongs to H . Thus, we get

(99) E
[
G

(
Z ,Z ′)F (

Y ,Y ′)1A(k,p)

] = E
[
G

(
Z ,Z ′)1A(k,p)

]
E

[
F

(
X b

w ,X r
w

)]
,
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where F and G are arbitrary positive measurable functionals on the appropriate space.
Next observe that on A′(p, k), �b,w

τp
= τbp−k and �r,w

τp
= γ r,w(Aw(τbp−k−)) < ∞,

where γ r,w is given by (89). Thus, Z = R(X b
w , τbp−k), Z ′ = R(X r

w , γ r,w(Aw(τbp−k−))),

Y = S(X b
w , τbp−k) and Y ′ = S(X r

w , γ r,w(Aw(τbp−k−))). Then, for all a ∈ [0,∞), de-

note by G r
a (resp. G b

a ) the sigma-field generated by R(X r
w , a) (resp. R(X b

w , a)). Note
that for all x ∈ [0,∞), γ r,w

x is a (G r
a )-stopping time and by standard results, condi-

tionally given G r(γ r,w
x ) under P(·|γ r,w

x < ∞), R(X r
w , γ r,w

x ) and S(X r
w , γ r,w

x ) are in-
dependent and the conditional law of S(X r

w , γ r,w
x ) is that of a Poisson point measure

on [0,∞) × {1, . . . , n} with intensity � ⊗ νw. To simplify, denote by H ′ the sigma-
field generated by G b(τbp−k) and G r(γ r,w(Aw(τbp−k−))). Note that A′(p, k) ∈ H ′, that

R(X b
w , τbp−k) and R(X r

w , γ r,w(Aw(τbp−k−))) are H ′-measurable and that conditionally

given H ′, S(X b
w , τbp−k) and S(X r

w , γ r,w(Aw(τbp−k−))) are distributed as two independent
Poisson point measures on [0,∞)×{1, . . . , n} with intensity �⊗ νw. Thus, it implies that for
any positive measurable functionals F and G,

E
[
G

(
Z ,Z ′)F (

Y ,Y ′)1A′(k,p)

] = E
[
G

(
Z ,Z ′)1A′(k,p)

]
E

[
F

(
X b

w ,X r
w

)]
.

Since the events A(k,p), A′(k,p), k ∈ {0, . . . , p} form a partition of �, the previous equality
combined with (99) entails the desired result. �

We fix p ≥ 1 and we recall notation Z , Z ′, Y , Y ′ from Lemma 4.2. Denote by (eb, J b)

the first atom of Y and denote by (er, J r) the first atom of Y ′. Recall the notation Xw =∑
q≥1 δ(τq ,Jq ) and observe that R(Xw, τp) is a deterministic function of Z and Z ′. Then, by

Lemma 4.2,

(100)
(
eb, J b)

,
(
er, J r)

and R(Xw, τp) are independent

and P(eb > t;J b = j) = P(er > t;J r = j) = e−t νw(j), for all t ∈ [0,∞) and all j ∈
{1, . . . , n}.

We next explain how (τp+1 − τp,Jp+1) (i.e., the first atom of S(Xw, τp)) is derived
from Xw·∧τp

, (eb, J b) and (er, J r). First observe that p − red(p) is the number of jumps

of Xw whose colour is b or b′. Therefore, the time τ := θb,w(τbp−red(p)−) is the largest
nonred jump-time of Xw before τp (thus, if col(p) ∈ {b,b′}, then τ = τp). We next set
� := Xw(τp) − Xw(τ−). By construction of Xw, we easily check that � > 0 and that the
following holds true (see also Figure 5 for an example):

• (τp+1 − τp,Jp+1) = (eb, J b) if col(p) = b.
• (τp+1 − τp,Jp+1) = (er, J r) if col(p) ∈ {r,b′} and er ≤ �.
• (τp+1 − τp,Jp+1) = (� + eb, J b) if col(p) ∈ {r,b′} and er > �.

Since (�,col(p)) are deterministic functions of (Z ,Z ′), elementary properties of expo-
nentially distributed r.v. combined with (100) entail that R(Xw, τp) and (τp+1 −τp, Jp+1) are
independent and that P(τp+1 − τp > t;Jp+1 = j) = e−t νw(j), for all t ∈ [0,∞) and for all
j ∈ {1, . . . , n}. This easily implies that Xw is a Poisson point measure on [0,∞)×{1, . . . , n}
with intensity �⊗νw. Consequently, Xw has the same distribution as Xb,w (or as Xr,w), which
completes the proof of Proposition 2.2. �

5. Properties of the continuous processes.

5.1. The height process of a Lévy tree. In this section, we collect the various properties
of the height process associated with a Lévy process that will be used later. In Section 5.1,
there is no new result, the only exception being the technical Lemma 5.1.
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5.1.1. Infimum process of a spectrally positive Lévy process. We first recall several re-
sults on the following specific Lévy processes: we fix α ∈ R, β ∈ [0,∞), κ ∈ (0,∞),
c = (cj )j≥1 ∈ �

↓
3 and we set

(101) ∀λ ∈ [0,∞), ψ(λ) = αλ + 1

2
βλ2 + ∑

j≥1

κcj

(
e−λcj − 1 + λcj

)
.

Let (Xt)t∈[0,∞) be a spectrally positive Lévy process with initial state X0 = 0 and with
Laplace exponent ψ : namely, log E[exp(−λXt)] = tψ(λ), for all t, λ ∈ [0,∞). The Lévy
measure of X is π = ∑

j≥1 κcj δcj
, β is its Brownian parameter and α is its drift. Note that it

includes the Lévy process Xw by taking c = w ∈ �
↓
f , κ = 1/σ1(w), β = 0 and α = 1 − σ2(w)

σ1(w)
.

Recall from (35) that X has infinite variation sample paths if and only if either β > 0 or
κσ2(c) = ∫

(0,∞) rπ(dr) = ∞, which is implied by the following condition:

(102)
∫ ∞ dλ

ψ(λ)
< ∞,

that is, assumed in various places in the paper.
Recall from (38) the notation: γx = inf{s ∈ [0,∞) : Xs < −x}, for all ∈ [0,∞), with

the convention: inf∅ = ∞.For all t ∈ [0,∞), we set It = infs∈[0,t] Xs and I∞ = limt→∞ It

that is, a.s. finite in supercritical cases and a.s. infinite in critical or subcritical cases. Ob-
serve that γx < ∞ iff x < −I∞. Standard results on spectrally positive Lévy processes (see,
e.g., Bertoin’s book [7], Chapter VII) assert that (γx)x∈[0,∞) is a càdlàg subordinator (a killed
subordinator in supercritical cases) whose Laplace exponent is given for all λ ∈ [0,∞) by

(103) E
[
e−λγx

] = e−xψ−1(λ) where ψ−1(λ) = inf
{
u ∈ [0,∞) : ψ(u) > λ

}
.

We set � = ψ−1(0) that is, the largest root of ψ . Note that � > 0 iff α < 0. Let us also
recall from Chapter VII in Bertoin’s book [7] the following absolute continuity relationship
between a supercritical spectrally positive Lévy process and a subcritical one. More precisely,
for all t ∈ [0,∞) and for all nonnegative measurable functional F : D([0,∞),R) →R,

(104) E
[
F(X·∧t )

] = E
[
exp(�Xt)F (X·∧t )

]
,

where X stands for a subcritical spectrally Lévy process with Laplace exponent ψ(� + ·).

5.1.2. Local time at the supremum. We assume (35), namely that X has infinite variation
sample paths. For all t ∈ [0,∞), we set St = sups∈[0,t] Xs . Basic results of fluctuation theory
entail that S − X is a strong Markov process in [0,∞) and that 0 is regular for (0,∞) and
recurrent with respect to this Markov process (see for instance, Bertoin [7] VI.1). We denote
by (Lt )t∈[0,∞) the local time of X at its supremum (namely, the local time of S − X at 0),
whose normalisation is such that for all t ∈ [0,∞) the following holds in probability:

(105) Lt = lim
ε→0

1

ε

∫ t

0
1{Ss−Xs≤ε} ds.

See Duquesne and Le Gall [19] (Chapter 1, Lemma 1.1.3 p. 21) for more details. If
β > 0, then standard results about subordinators imply that a.s. for all t ∈ [0,∞), Lt =
2
β
Leb({Ss; s ∈ [0, t]}). We also need the following approximation of L that holds when

σ2(c) = ∞: for all ε ∈ (0, c1), we set

q(ε) =
∫
(ε,∞)

dxπ
(
(x,∞)

) = ∑
j≥1

κcj (cj − ε)+ and

L ε
t = {

s ∈ (0, t] : Ss− + ε < Xs

}
.

(106)
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If σ2(c) = ∞, then the following approximation holds true:

(107) ∀x, t ∈ (0,∞), E
[
1{Lt≤x} sup

s∈[0,t]

∣∣∣∣Ls − 1

q(ε)
#L ε

s

∣∣∣∣2
]
≤ 4x

q(ε)
.

This is a standard consequence of the decomposition of X into excursions under its supremum
(see Bertoin [7], Chapter VI) combined with Doob’s inequality applied to a Poisson process.

5.1.3. The height process. For all t ∈ (0,∞), we denote by X̂t = (Xt − X(t−s)−)s∈[0,t]
that is, the process X reversed at time t ; recall that X̂t has the same law as (Xs)s∈[0,t]. Under
(102), Le Gall and Le Jan [29] (see also Duquesne and Le Gall [19]) prove that there exists a
continuous process H = (Ht)t∈[0,∞) such that

(108) ∀t ∈ [0,∞), a.s. Ht = Lt

(
X̂t ).

As previously mentioned in Remark 3, this result has been established only in subcritical or
critical cases. By (104), it easily extends to the supercritical case. In particular, one can show
that

(109) If α < 0, then a.s. lim
t→∞Ht = ∞.

We next derive from the two approximations of L mentioned in Section 5.1.2, similar
approximations for the height process H . For all real numbers t ≥ s ≥ 0, we first introduce
the following:

(110) I s
t = inf

r∈[s,t]Xr, It = I 0
t = inf

r∈[0,t]Xr and H ε
t = {

s ∈ (0, t] : Xs− + ε < Is
t

}
.

Then we easily derive from (108) and (105) that (45) holds true: namely, for all t ∈ [0,∞),
the following limit holds in probability:

Ht = lim
ε→0

1

ε

∫ t

0
1{Xs−I s

t ≤ε} ds.

Of course, we also get the following.

(111) If β > 0, then a.s. for all t ∈ [0,∞), Ht = 2

β
Leb

({
I s
t ; s ∈ [0, t]}).

If σ2(c) = ∞, then (108) and (107) easily imply that for all t ∈ [0,∞), Ht = limε→0
1

q(ε)
#H ε

t

in probability. Actually, a closer look at the uniform approximation (107) shows the follow-
ing.

If σ2(c) = ∞, then ∀t ∈ [0,∞), ∃(εk)k∈N decreasing to 0 such that:

P-a.s. for all s ∈ [0, t] such that Xs− ≤ I s
t , Hs = lim

k→∞
1

q(εk)
#H εk

s .
(112)

Thanks to approximations (111) and (112), we next prove the following lemma.

LEMMA 5.1. We assume (102). Then P-a.s. for all t1 > t0, if for all t ∈ (t0, t1), Xt >

Xt0− = Xt1 , then for all t ∈ (t0, t1), Ht ≥ Ht0 = Ht1 .

PROOF. Let t1 > t0 be such that for all t ∈ (t0, t1), Xt > Xt0− = Xt1 . Since X has only
positive jumps, it implies that �Xt1 = 0; thus, for all s ∈ [t0, t1], we get I s

t1
= Xt1 . Moreover,

for all s ∈ [0, t0) and for all t ∈ [t0, t1], we get I s
t1

= I s
t0

= I s
t . It implies for all t ∈ [t0, t1], that

{I s
t0
; s ∈ [0, t0)}\{Xt0−} = {I s

t1
; s ∈ [0, t1)}\{Xt1} ⊂ {I s

t ; s ∈ [0, t)} which entails the desired
result when β > 0 by (111).



2486 N. BROUTIN, T. DUQUESNE AND M. WANG

Suppose next that σ2(c) = ∞. By a diagonal argument and (112), there is a sequence
(εk)k∈N decreasing to 0 such that P-a.s. for all t ∈ [0,∞) ∩ Q and for all s ∈ [0, t] such
that Xs− ≤ I s

t , Hs = limk→∞ q(εk)
−1#H εk

s . First observe that for all t ∈ (t0, t1) ∩Q, we get
Xt0− ≤ I

t0
t and that H εk

t0
⊂ H εk

t , for all k. Consequently, Ht0 ≤ Ht , for all t ∈ (t0, t1) ∩ Q,
and thus for all t ∈ [t0, t1] since H is continuous.

Let t ∈ (t1,∞) ∩ Q. Let s ∈ [t1, t] be such that Xs− = I
t1
t . Then observe that Xs− ≤ I s

t

and that H εk
s ⊂ H εk

t0
for all k. Consequently, Hs ≤ Ht0 . Since s can be arbitrarily close to

t1, the continuity of H entails that Ht1 ≤ Ht0 and the previous inequality implies Ht1 = Ht0 ,
which completes the proof of the lemma. �

5.1.4. Excursion of the height process. Let us make a preliminary remark: the results of
this section are recalled from Duquesne and Le Gall [19] Chapter 1 that only deals with the
critical or subcritical cases. However, they easily extend to the supercritical cases thanks to
(104).

Here we assume that (102) holds, which implies that X has unbounded variation sample
paths. Then, basic results of fluctuation theory entail that X− I is a strong Markov process in
[0,∞), that 0 is regular for (0,∞). Moreover, −I is a local time at 0 for X − I (see Bertoin
[7], Theorem VII.1). We denote by N the corresponding excursion measure of X − I above
0. It is not difficult to derive from the previous approximations of H that Ht only depends on
the excursion of X − I above 0 that straddles t . Moreover, the following holds true:

(113) Z = {
t ∈ [0,∞) : Ht = 0

} = {
t ∈ [0,∞) : Xt = It

}
.

Since −I is a local time for X−I at 0, the topological support of the Stieltjes measure d(−I )

is Z . Namely,

(114) P-a.s. for all s, t ∈ [0,∞) such that s < t ,
(
(s, t) ∩ Z �=∅

) ⇐⇒ (Is > It ).

Denote by (ai, bi), i ∈ I , the connected components of the open set {t ∈ [0,∞) : Ht > 0}
and set Hi

s = H(ai+s)∧bi
, s ∈ [0,∞). We set ζi = bi − ai that is, the lifetime of Hi . In the

supercritical cases, there is one excursion with an infinite lifetime; more precisely, there exists
i0 ∈ I such that −Iai0

= supi∈I(−Iai
) = −I∞ and ζi0 = ∞ (recall that in the supercritical

case, −I∞ is exponentially distributed with parameter �). Then, the point measure

(115)
∑
i∈I

δ(−Iai
,H i)

is distributed as 1{x≤E}N (dxdH) where N is a Poisson point measure on R+×C([0,∞),R)

with intensity dxN(dH) and where E = inf{x ∈ [0,∞) : N ([0, x] × {ζ = ∞}) �= 0}. Note
that E is exponentially distributed with parameter N(ζ = ∞) that is therefore equal to �. Here
we slightly abuse notation by denoting N(dH) the “distribution” of H(X) under N(dX).
In the Brownian case, up to scaling, N is Itô’s measure of positive excursion of Brownian
motion and the decomposition (115) corresponds to the Poisson decomposition of a reflected
Brownian motion above 0.

As a consequence of (113), X and H under N have the same lifetime ζ (i.e., possibly
infinite in the supercritical case) that satisfies the following:

N-a.e. ∀t ∈ [ζ,∞), X0 = H0 = Xt = Ht = 0

and ∀t ∈ (0, ζ ), Xt − It > 0 and Ht > 0.
(116)

By (109), in the supercritical cases, N-a.e. on the event {ζ = ∞}, we get limt→∞ Ht = ∞.
Recall from (38) the definition of the subordinator (γx)x∈[0,∞) whose Laplace exponent

is ψ−1. Note that limλ→∞ ψ−1(λ)/λ = 0; consequently, (γx) is a pure jump-process and
a.s. γx = ∑

i∈I 1[0,x](−Iai
)ζi . Thus (115) entails

(117) ∀λ ∈ (0,∞), N
[
1 − e−λζ ] = ψ−1(λ),
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with the convention that e−∞ = 0. We next recall the following.

(118) ∀a ∈ (0,∞), v(a) := N
(

sup
t∈[0,ζ ]

Ht > a
)

satisfies
∫ ∞
v(a)

dλ

ψ(λ)
= a.

In the critical and subcritical cases, (118) is proved in Duquesne and Le Gall [19] (Chapter 1,
Corollary 1.4.2, p. 41). As already mentioned, this result remains true in the supercritical case:
we leave the details to the reader. Note that v : (0,∞) → (�,∞) is a bijective decreasing C∞
function. Elementary arguments derived from (109) and (118) entail the following.

(119) ∀x, a ∈ (0,∞), P
(

sup
t∈[0,γx ]

Ht ≤ a
)
= e−xv(a).

5.2. Properties of the coloured processes. Let α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c =
(cj )j≥1 ∈ �

↓
3 . For all j ≥ 1, let (Nj (t))t∈[0,∞) be a homogeneous Poisson process with jump

rate κcj ; let B be a standard Brownian motion with initial value 0. We assume that the
processes B and Nj , j ≥ 1, are independent. Let (Br;N ′

j , j ≥ 1) be an independent copy of
(B;Nj, j ≥ 1). Recall from (32) that for all t ∈ [0,∞), we have set

Xb
t = −αt + √

βBt +
∑
j≥1

⊥
cj

(
Nj(t) − cjκt

)
and

Xr
t = −αt + √

βBr
t + ∑

j≥1

⊥
cj

(
N ′

j (t) − cjκt
)
,

where
∑⊥

j≥1 stands for the sum of orthogonal L2-martingales. Then Xb and Xr are two
independent spectrally positive Lévy processes whose Laplace exponent ψ is defined by
(101). We assume (35), namely: either β > 0 or σ2(c) = ∞. We recall from (36) the definition
of (At , Yt )t∈[0,∞):

(120) ∀t ∈ [0,∞), At = 1

2
κβt2 + ∑

j≥1

cj

(
Nj(t) − 1

)
+ and Yt = Xb

t − At .

Recall from (38) the following definitions:

(121) ∀x, t ∈ [0,∞), γ r
x = inf

{
s ∈ [0,∞) : Xr

s < −x
}

and θbt = t + γ r
At

,

with the convention: inf∅= ∞. Recall that γ r is a possibly killed subordinator with Laplace
exponent ψ−1.

Recall from (40) that:

(122) T ∗ = sup
{
t ∈ [0,∞) : θbt < ∞} = sup

{
t ∈ [0,∞) : At < −Ir∞

}
.

In critical and subcritical cases, T ∗ = ∞ and θb only takes finite values. In supercritical
cases, a.s. T ∗ < ∞ and we check that θb(T ∗−) < θb(T ∗) = ∞. We next recall the following
from (41):

(123) ∀t ∈ [0,∞), �b
t = inf

{
s ∈ [0,∞) : θbs > t

}
and �r

t = t − �b
t .

The processes �b and �r are continuous and nondecreasing. In critical and subcritical
cases, we get a.s. limt→∞ �b

t = ∞ and �b(θbt ) = t for all t ∈ [0,∞). In supercritical cases,
�b(θbt ) = t for all t ∈ [0, T ∗) and �b is constant and equal to T ∗ on [θb(T ∗−),∞).
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5.2.1. Properties of A. We start with the following proof.

PROOF OF LEMMA 2.4. We assume (35): either β > 0 or σ2(c) = ∞. If β > 0, then
clearly a.s. A is increasing. Suppose that σ2(c) = ∞. With the notation of (120), observe that
for all s, t ∈ (0,∞),∑

j≥1

1{Nj (t)≥1;Nj (t+s)−Nj (t)≥1} ≤ #
{
a ∈ (t, t + s] : �Aa > 0

}
.

Note that P(Nj (t) ≥ 1;Nj(t + s)−Nj(t) ≥ 1) = (1 − exp(−κcj t))(1 − exp(−κcj s)). Since
there exists K ∈ (0,∞) depending on t and s such that (1−exp(−κcj t))(1−exp(−κcj s)) ≥
Kc2

j for all j ≥ 1, Borel–Cantelli’s Lemma implies that a.s. #{a ∈ (t, t + s] : �Aa > 0} = ∞.
This easily implies that A is strictly increasing. To complete the proof of the lemma, observe
that under (35), Xb has infinite variation sample paths. Since A is increasing, Y = Xb − A

has infinite variation sample paths. �

We shall need the following estimates on A in the proof of Theorem 2.5.

LEMMA 5.2. Let α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c = (cj )j≥1 ∈ �
↓
3 . Assume (35):

namely, either β > 0 or σ2(c) = ∞. For all t ∈ [0,∞) we set A−1
t = inf{s ∈ [0,∞) : As > t},

that is well defined. Then, A−1 is continuous and there exists a0, a1, a2 ∈ (0,∞) that depend
on β , κ and c, such that

(124) ∀t ∈ [0,∞), E
[
A−1

t

] ≤ a1t + a0 and E
[(

A−1
t

)2] ≤ a2t
2 + a1t + a0.

PROOF. By Lemma 2.4, A is strictly increasing, which implies that A−1 is continuous
by standard arguments. We first suppose that c1 > 0. Then, by (120) At ≥ c1(N1(t) − 1)+ ≥
c1N1(t)−c1. This entails that A tends to ∞ and therefore that A−1 is well defined. Moreover,
we get A−1

t ≤ N−1
1 (1 + (t/c1)), where: N−1

1 (t) = inf{s ∈ [0,∞) : N1(s) > t}. Note that
N−1

1 (t) is the sum of ≤ �t� + 1 exponentially distributed r.v. with parameter κc1, which
implies that E[N−1

1 (t)] ≤ (t + 1)/(κc1) and E[N−1
1 (t)2] ≤ (t + 1)(t + 2)/(κc1)

2. Thus,

E
[
A−1

t

] ≤ 1

κc2
1

t + 2

κc1
and E

[(
A−1

t

)2] ≤ 1

κ2c4
1

t2 + 5

κ2c3
1

t + 6

κ2c2
1

.

If c = 0, then (35) entails β > 0. Thus, A−1
t = √

2t/(βκ) and it is then possible to choose
a0, a1, a2 ∈ (0,∞) such that (124) holds. �

5.2.2. Proof of Theorem 2.5. Using stochastic calculus arguments, we provide here a
proof for the first statement of Theorem 2.5, namely, X has the same distribution as Xb. See
Lemma 5.4(i) in Section 5.2.3 for the proof of the second statement.

Let us first introduce notation. We say that a martingale (Mt)t∈[0,∞) is of class (M ) if:

(a) a.s. M0 = 0,
(b) M is càdlàg,
(c) there exists c ∈ [0,∞) such that a.s. for all t ∈ [0,∞), 0 ≤ �Mt ≤ c,
(d) for all t ∈ [0,∞), E[M2

t ] < ∞.

Let M be a class (M ) martingale with respect to a filtration (Ft )t∈[0,∞). Then, 〈M〉 stands
for the predictable quadratic variation process: namely, the unique (Ft )-predictable nonde-
creasing process (provided by the Doob–Meyer decomposition) such that (M2

t −〈M〉t )t∈[0,∞)

is a (Ft )-martingale with initial value 0. We shall repeatedly use the following standard op-
tional stopping theorem:
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(Stp) Let S and T be two (Ft )-stopping times such that a.s. S ≤ T < ∞ and E[〈M〉T ] <

∞. Then, E[M2
T ] = E[〈M〉T ] and a.s. MS = E[MT |FS].

Then, the characteristic measure of M is a random measure V on [0,∞) × (0,∞) such
that:

• for all ε ∈ (0,∞), the process t �→ V([0, t] × [ε,∞)) is (Ft )-predictable;
• for all ε ∈ (0,∞), t �−→ ∑

s∈[0,t] 1[ε,∞)(�Ms) − V([0, t] × [ε,∞)) is a (Ft )-martingale.

(See Jacod and Shiryaev [26], Chapter II, Theorem 2.21, p. 80.) The purely discontinuous
part of M is obtained as the V-compensated sum of its jumps: namely, the L2-limit as ε

goes to 0 of the martingales t �−→ ∑
s∈[0,t] �Ms1[ε,∞)(�Ms) − ∫

[0,t]×[ε,∞) rV(dsdr). The
purely discontinuous part of M is denoted by Md and it is a (Ft )-martingale of class (M ).
The continuous part of M is the continuous (Ft )-martingale Mc = M − Md . Note that Mc

is also a (Ft )-martingale of class (M ). We call (〈Mc〉,V) the characteristics of M . For
more detail on the canonical representation of semi-martingales, see Jacod and Shiryaev [26]
Chapter II, Definition 2.6 page 76 and §2.c, Theorem 2.34, page 84.

Let (FN
t )t∈[0,∞) (resp. (FB

t )t∈[0,∞)) be the right-continuous filtration associated with
the natural filtration of the process (Nj (·))j≥1 (resp. B); then, we set F 0

t = σ(FN
t ,FB

t ),
t ∈ [0,∞), and

∀t ∈ [0,∞), X∗b
t = Xb

t + αt = √
βBt +

∑
j≥1

⊥
cj

(
Nj(t) − cjκt

)
.

By standard arguments on Lévy processes, X∗b is a (F 0
t )-martingale. We set a3 = β+κσ3(c)

and we easily check that

(125) t �−→ (
X∗b

t

)2 − a3t is a
(
F 0

t

)
-martingale.

Moreover, we easily check that X∗b is in the class (M ) and that its (deterministic) char-
acteristics are the following: its characteristic measure is dt ⊗ π(dr), where π(dr) =∑

j≥1 κcj δcj
; its continuous part is

√
βB , whose predictable quadratic variation process is

t �→ βt . To prove Theorem 2.5, we shall use the converse of this result: namely, a martingale
whose characteristics are dt ⊗π(dr) and t �→ βt has necessarily the same law as X∗b (for a
proof see Jacod and Shiryaev [26] Chapter II, §4.c, Corollary 4.19, p. 107). To that end, one
computes the characteristics of several time-changes of X∗b and of Xr.

First, recall from Lemma 5.2 that A−1 is continuous and note that A−1
t is a (F 0

r )-stopping
time. We set

∀t ∈ [0,∞), M
(1)
t = X∗b(

A−1(t)
)

and F 1
t = F 0(

A−1
t

)
.

By (125), 〈X∗b〉t = a3t and (124) combined with (Stp) imply that M
(1)

is a square integrable
(F 1

t )-martingale and that E[(M(1)
t )2] = a3E[A−1

t ]. Then, set g(r) = inf{s ∈ [0,∞) : A−1
s =

r}, for all r ∈ [0,∞), so that g(r) = Ar−. Since A−1 is continuous, we see that

(126) g : {
r ∈ [

0,A−1
t

] : �X∗b
r > 0

} −→ {
s ∈ [0, t] : �M(1)

s > 0
}

is one-to-one.

Moreover, if s and r are such that g(r) = s and �M
(1)
s > 0, then �M

(1)
s = �X∗b

r . This

implies that M
(1)

is of class (M ).
For all ε ∈ (0,∞), we next set

∀r ∈ [0,∞), J ε
r = ∑

r ′∈[0,r]
1[ε,∞)

(
�X∗b

r ′
) − rπ

([ε,∞)
)

that is, a (F 0
r )-martingale of class (M ) such that 〈J ε〉r = π([ε,∞))r ; (124) combined with

(Stp) entails that J ε ◦ A−1 is a square integrable (F 1
t )-martingale. Moreover, (126) entails
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that J ε(A−1
t ) = ∑

s∈[0,t] 1[ε,∞)(�M
(1)
s ) − A−1

t π([ε,∞)). Since A−1 continuous, it is (F 1
t )-

predictable and dA−1
t ⊗ π(dr) is the characteristic measure of M

(1)
. It easily entails that the

continuous part of M
(1)

is
√

βB ◦A−1. We next set Qt = βB2
t −βt , which is a martingale. We

intend to apply (Stp) to show that Q◦A−1 is a martingale. Note that by Itô’s formula 〈Q〉t =
4β2 ∫ t

0 B2
s ds and thus, E[〈Q〉t ] = 2β2t2. Since A−1 is independent of B , E[〈Q〉(A−1

t )] =
2β2E[(A−1

t )2] that is, a finite quantity by (124). Then, by (Stp), we see that 〈√βB ◦A−1〉 =
βA−1. We have proved that βA−1 and dA−1

t ⊗π(dr) are the characteristics of M
(1)

. It is easy

to realize that M
(1)

is also a martingale with respect to the natural filtration of (A−1,M
(1)

)

with the same characteristics βA−1 and dA−1
t ⊗ π(dr) since A−1 is continuous.

REMARK 6. Note that in the previous arguments, the continuity of A−1 plays a key role.
Since this property does not hold in the discrete cases, the above arguments cannot be adapted
to give a proof in such cases.

We next prove the following lemma.

LEMMA 5.3. Let E be a Polish space and let (Zt )t∈[0,∞) be an E-valued càdlàg pro-
cess. Let (Mr)r∈[0,∞) be a càdlàg martingale with respect to the natural filtration of Z. Let
(φt )t∈[0,∞) be a nondecreasing càd process that is adapted to a filtration (Gt )t∈[0,∞). We as-
sume that Z and G∞ are independent and that for all t ∈ [0,∞),

∫
P(φt ∈ dr)E[|Mr |] < ∞.

We set Ft = σ(Z·∧φt ,Gt ), for all t ∈ [0,∞). Then, M ◦ φ is a càdlàg (Ft )-martingale.

PROOF. Let t, r1, . . . , rn ∈ [0,∞) and let s ∈ [0, t]. Let G : En → [0,∞) be bounded
and measurable and let Q be a nonnegative bounded Gs -measurable random variable. We
get:

E
[
Mφt QG

(
(Zrk∧φs )1≤k≤n

)] =
∫

P
(
φt ∈ dr ′;φs ∈ dr;Q ∈ dq

)
qE

[
Mr ′G

(
(Zrk∧r )1≤k≤n

)]
=

∫
P

(
φt ∈ dr ′;φs ∈ dr;Q ∈ dq

)
qE

[
MrG

(
(Zrk∧r )1≤k≤n

)]
= E

[
MφsQG

(
(Zrk∧φs )1≤k≤n

)]
and we complete the proof by use of the monotone class theorem. �

Recall from the beginning of Section 5.2 the definitions of the processes Br, (N ′
j (·))j≥1

and Xr; recall that Xr is an independent copy of Xb. We next need the following result. For
all t ∈ [0,∞), we set Irt = infs∈[0,t] Xr

s . Then,

(127) ∀p, t ∈ (0,∞), E
[(−Irt

)p]
< ∞.

Indeed, recall that γ r
x = inf{t ∈ [0,∞) : Xr

t < −x} and that x �→ γ r
x is a (possibly killed)

subordinator with Laplace exponent ψ−1. Then for all λ ∈ (0,∞) we get the following

E
[(−Irt

)p] =
∫ ∞

0
pxp−1P

(−Irt > x
)
dx ≤

∫ ∞
0

pxp−1P
(
γ r
x ≤ t

)
dx

≤
∫ ∞

0
pxp−1eλtE

[
e−λγ rx

]
dx = p�(p)

(
ψ−1(λ)

)−p
eλt ,

which entails (127). �
We apply Lemma 5.3 to Z = (A−1,M

(1)
), to φt = −Irt , to (Gt ) that is, taken as the right-

continuous filtration associated with the natural filtration of (Br;N ′
j , j ≥ 1), and first to
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M = M
(1)

and next to M = J ε ◦ A−1. Recall that E[(M(1)
t )2] = a3E[A−1

t ] ≤ a3(a1t + a0)

and E[J ε(A−1
t )2] = π([ε,∞))E[A−1

t ] ≤ π([ε,∞))(a1t + a0), by (124). In both cases (M =
M

(1)
or M = J ε ◦ A−1), we get

∫
P(−Irt ∈ dr)E[M2

r ] < ∞, by (127). Then, we set for all
t ∈ [0,∞),

M
(2)
t = M

(1)
−Irt

, J ′ε
t = J ε

A−1(−Irt )
and F 2

t = σ
(
Gt ,A

−1
·∧(−Irt ),M

(1)
·∧(−Irt )

)
.

Lemma 5.3 asserts that M
(2)

and J ′ε are (F 2
t )-martingales and we proved just above that

they are square integrable. Since they are càdlàg processes standard arguments entail they are
also (F 2

t+)-martingales.
We next set Ir∞ = limt→∞ Irt (i.e., a.s. infinite if α ≥ 0 and, i.e., a.s. finite if α < 0). For all

r ∈ [0,−Ir∞), we next set g′(r) = inf{s ∈ [0,∞) : −Irs = r} (note that g′(r) = γ r
r−). Since Ir

is continuous, it is easy to check that a.s. for all t ∈ [0,∞), g′ is a one-to-one correspondence
between {r ∈ [0,−Irt ] : �M

(1)
r > 0} and {s ∈ [0, t] : �M

(2)
s > 0}. Moreover, if s and r are

such that �M
(2)
s > 0 and g′(r) = s, then �M

(2)
s = �M

(1)
r . This first entails that M

(2)
is of

class (M ). It also implies that

(128) J ′ε
t = ∑

s∈[0,t]
1[ε,∞)

(
�M

(2)
t

) − A−1(−Irt
)
π

([ε,∞)
)
.

Since t �→ A−1(−Irt ) is continuous and (F 2
t+)-adapted it is (F 2

t+)-predictable; therefore, the

characteristic measure of M
(2)

(with respect to the filtration (F 2
t+)) is d(A−1 ◦ (−Ir))(t) ⊗

π(dr).
It is easy to deduce that the continuous part of M

(2)
is

√
βB ◦A−1 ◦ (−Ir). We then apply

Lemma 5.3 to M = (B ◦ A−1)2 − A−1: to that end note that E[|Mt |] ≤ 2E[A−1
t ] ≤ 2(a1t +

a0), by (124); by (127), we get
∫

P(−Irt ∈ dr)E[|Mr |] < ∞; thus, Lemma 5.3 applies and
asserts that M ◦(−Ir) is a (F 2

t )-martigale; by standard arguments, it is also a martingale with
respect to (F 2

t+). This entails that βA−1 ◦ (−Ir) is the quadratic variation of
√

βB ◦ A−1 ◦
(−Ir) that is, the continuous part of M

(2)
. Thus, βA−1 ◦ (−Ir) and d(A−1 ◦ (−Ir))(t) ⊗

π(dr) are the (F 2
t+)-characteristics of M

(2)
.

Recall from (121) and (123) the definitions of θb, �b and �r. Then, we next check that
a.s.

(129) ∀t ∈ [0,∞), θrt := inf
{
s ∈ [0,∞) : �r

s > t
} = t + A−1(−Irt

)
.

Indeed, since A is strictly increasing, z < A−1(−Irt ) implies Az < −Irt (resp. z > A−1(−Irt )

implies Az > −Irt ), which then yields γ r(Az) < t (resp. γ r(Az) > t). Since θbz − z =
γ r(Az), we get θbz < t + z < t + A−1(−Irt ) (resp. θbz > t + z > t + A−1(−Irt )). Conse-
quently, z = �b(θbz ) ≤ �b(t + A−1(−Irt )) (resp. z = �b(θbz ) ≥ �b(t + A−1(−Irt ))). We
then easily get A−1(−Irt ) = �b(t + A−1(−Irt )). By (123), we get �r(t + A−1(−Irt )) = t

for all t ≥ 0. Note that this identity implies in particular that �r is strictly increasing, as both
A−1 and Ir are continuous. This in turn implies (129). �

We next set for all t ∈ [0,∞),

X∗r
t = Xr

t + αt and Mt = X∗r
t + M

(2)
t .

Clearly, M is a (F 2
t+)-martingale (as the sum of two such martingales) that belongs to the

class (M ). Note that a.s. X∗r and M
(2)

do not jump simultaneously. Thus, by (128) and
(129), we get a.s.

J ′′ε
t = J ′ε

t + ∑
s∈[0,t]

1[ε,∞)

(
�X∗r

s

) − tπ
([ε,∞)

) = ∑
s∈[0,t]

1[ε,∞)(�Ms) − θrt π
([ε,∞)

)
.
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Moreover, J ′′ε is clearly a (F 2
t+)-martingale (as the sum of two such martingales). Next,

(129) implies that θr is continuous, strictly increasing and (F 2
t+)-adapted; therefore it is

(F 2
t+)-predictable. This implies that the characteristic measure of M is dθrt ⊗ π(dr).
Consequently, the continuous component of M is Mc

t = √
β(Br

t + B(A−1(−Irt ))). The
independence of B , A−1 and Br easily entails that t �→ Br

t + B(A−1(−Irt ))) is a (F 2
t+)-

martingale. Moreover, recall that the predictable quadratic variation of
√

βB ◦ A−1 ◦ (−Ir)

is equal to β.A−1 ◦(−Ir). Thus, it is easy to see that the predictable quadratic variation of Mc

is equal to βθr. We then have proved that the characteristics of M are βθr and dθrt ⊗π(dr).
We next recall from (129) that �r is the inverse of θr that is, also strictly increasing and

continuous. We set X∗ = M ◦ �r and we see that a.s. for all t ∈ [0,∞),

X∗
t = X∗r(

�r
t

) + X∗b(
A−1(−Ir

(
�r

t

)))
= X∗r(

�r
t

) + X∗b(
�b

t

)
(130)

= Xr(
�r

t

) + Xb(
�b

t

) + αt.

Indeed, the first equality is a direct consequence of the definition; then recall from (129) that
A−1(−Irt ) = θrt − t , thus, A−1(−Ir(�r

t )) = t −�r
t = �b

t , which entails the second equality
and also (130).

Observe that for all t ∈ [0,∞), �r
t is a (F 2

t+)-stopping time such that �r
t ≤ t . We then set

Ft = F 2(�r
t +). The optional stopping theorem applies to M and J ′′ε to show that X and

J ′′ε ◦�r are (Ft )-square integrable martingales. Since �r is strictly increasing and continu-
ous, X is of class (M ) and J ′′ε(�r

t ) = ∑
s∈[0,t] 1[ε,∞)(�X∗

s ) − tπ([ε,∞)). This proves that
dt ⊗ π(dr) is the characteristic measure of X∗. Consequently, Mc ◦ �r is the continuous
part of X∗. Since �r is a bounded stopping-time, the optional stopping theorem applies to
the martingale (Mc)2 − βθr and it entails that 〈Mc ◦ �r〉t = βt . Thus, the characteristics of
X∗ are t �→ βt and dt ⊗ π(dr). By [26] Corollary 4.19 in Jacod and Shiryaev [26] (Chapter
II, §4.c, p. 107), it implies that X∗ has the same law as X∗b, which completes the proof of
Theorem 2.5 by (130).

5.2.3. Properties of X and Y . Recall from the beginning of Section 5.2 the definition of
the processes Xb, A, Y , Xr, γ r, θb, �b and �r. Recall from (122) the definition of T ∗. In
supercritical cases, also recall that a.s. T ∗ < ∞ and θb(T ∗−) < θb(T ∗) = ∞. Recall from
(42) that Xt = Xb(�b

t ) + Xr(�r
t ) for all t ∈ [0,∞). Let us mention that the proof of the

following lemma does not use the fact that X is a Lévy process, and note that (i) completes
the proof of Theorem 2.5 of the previous section.

LEMMA 5.4. Let α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c = (cj )j≥1 ∈ �
↓
3 satisfy (35).

Namely: either β > 0 or σ2(c) = ∞. Then, the following holds true.

(i) P-a.s. for all a ∈ [0, T ∗), Xθba
= Ya .

(ii) P-a.s. for all a ∈ [0, T ∗), if �θba = 0, then t = θba is the unique t ∈ [0,∞) such that
�b

t = a.
(iii) P-a.s. for all a ∈ [0, T ∗], if �θba > 0, then �X(θba−) = �Aa and �Ya = 0. Moreover,

∀t ∈ (
θba−, θba

)
, Xt ≥ Xt− > X(θba−)− = Ya and if a < T ∗, then X(θba−)− = Xθba

.

PROOF. Suppose that a < T ∗. Thus, θba < ∞, by definition of T ∗. Then observe that
�r(θba ) = θba − �b(θba ) = θba − a = γ r(Aa) and thus, X(θba ) = Xb

a + Xr(γ r(Aa)) = Xb
a −

Aa = Ya , which proves (i).
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Then, (ii) is an immediate consequence of the definition: indeed since �b is the pseudo-
inverse of θb, if �b

t = a < T ∗, then θba− ≤ t ≤ θba .
Let us prove (iii): we fix a ∈ [0, T ∗] and we suppose that �θba > 0. Observe that for all

z ∈ [0, a), θbz < θba− < ∞ and Ya− = limz→a−Yz = limz→a−X(θbz ) = X(θba−−) by (i) and
since θb increases strictly.

We first assume that �Aa > 0. Since Y and A have distinct jump-times, we get �Ya = 0
and Ya = Ya− = X(θba−−). Since the processes A and Xr are independent, it is easy to
check that a.s. {x ∈ [0,∞) : �γ r

x > 0} ∩ {Aa−;a ∈ [0,∞) : �Aa > 0} = ∅. Thus, θba− =
a + γ r(Aa−) and for all t ∈ [θba−, θba ), �b

t = a and �r
t = t − a = t − θba− + γ r(Aa−). Thus,

for all s ∈ [0,�θba ),

(131) Xs+θba− = Xb
a + Xr

s+γ r(Aa−) = Ya + Aa + Xr
s+γ r(Aa−).

Taking s = 0 in the previous equality first entails X(θba−) = Ya + �Aa . Recall that Ya =
Ya− = X(θba−−). Thus, �X(θba−) = �Aa . Moreover, for all s ∈ (0,�θba ), Aa + Xr((s +
γ r(Aa−))−) > 0. Thus, (131) entails that for all t ∈ (θba−, θba ), we get Xt ≥ Xt− > Ya . Fur-
thermore, note that if a < T ∗, namely if θba < ∞, then by (i), we see that X(θba ) = Ya . This
proves (iii) when �Aa > 0.

We next assume that �θba > 0 and �Aa = 0 (which occurs when β > 0). Consequently,
θba− = a+γ r((Aa)−). Since (Y,A) and Xr are independent, we a.s. get {x ∈ [0,∞) : �γ r

x >

0} ∩ {Aa;a ∈ [0,∞) : �Ya > 0} =∅. Therefore, �Ya = 0. We also check that

(132) ∀s ∈ [
0,�θba

)
, Xs+θba− = Ya + Aa + Xr

s+γ r((Aa)−).

Since θba = a + γ r(Aa), (132) at s = 0 entails X(θba−) = Ya . Since X(θba−−) = Ya−, we
get �X(θba−) = �Ya = �Aa = 0. Next observe that for all s ∈ (0,�θba ), Aa + Xr((s +
γ r(Aa−))−) > 0; thus by (132), for all t ∈ (θba−, θba ), we get Xt ≥ Xt− > Ya . Furthermore, if
a < T ∗, namely if θba < ∞, then (i) entails that X(θba ) = Ya . This proves (iii) when �Aa = 0
and it completes the proof of the lemma. �

LEMMA 5.5. Let α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c = (cj )j≥1 ∈ �
↓
3 satisfy (35).

Namely: either β > 0 or σ2(c) = ∞. Then, the following holds true.

(i) P-a.s. if (�Xr)(�r
t ) > 0, then there exists a ∈ [0, T ∗] such that θba− < t < θba .

(ii) P-a.s. for all b ∈ [0,∞) such that �Xr
b > 0, there is a unique t ∈ [0,∞) such that

�r
t = b.
(iii) For all t ∈ [0,∞), set Qb

t = Xb
�b

t
and Qr

t = Xr
�r

t
. Then, almost surely for all t ∈

[0,∞), �Qb
t �Qr

t = 0.

PROOF. Suppose that (�Xr)(�r
t ) > 0. To simplify notation, we set b = �r

t and x =
− infs∈[0,b] Xr

s . Since Xr is a spectrally positive Lévy process, Xr
b > −x. Thus, b < γ r

x ;
moreover, since no excursion above the infimum of the spectrally positive Lévy process Xr

starts with a jump we also get γ r
x− < b. Thus, γ r

x− < b < γ r
x . We next set a = sup{s ∈ [0,∞) :

As < x}. Then, Aa− ≤ x ≤ Aa and we first prove the following:

(133) θba− − a ≤ γ r
x− < b < γ r

x ≤ θba − a.

Let us first suppose that �Aa > 0, then a.s γ r(As) → γ r(Aa−) as s → a−, since a.s. {y ∈
[0,∞),�γ r

y > 0} ∩ {Az−; z ∈ [0,∞) : �Az > 0} = ∅ because A and γ r are independent.
Since A strictly increases, γ r(Aa−) ≤ γ r(x−). Similarly, a.s. γ r(As) → γ r(Aa) as s →
a+, which implies that γ r(x) ≤ γ r(Aa). Note that γ r(Aa−) = θba− − a; and that γ r(Aa) =
θba − a, by definition. This implies (133). Now suppose that �Aa = 0. Then, Aa− = Aa = x

and θba− − a = γ r(Aa−) = γ r(x−), which also implies (133).
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We next use (133) to prove (i): first observe that it implies that θba− < b + a < θba . But
for all s ∈ (θba−, θba ), �b

s = a and thus �r
s = s − a, which shows that on (θba−, θba ), �r is

strictly increasing: since b = �r
a+b = �r

t , we get t = a + b and finally θba− < t < θba , which
completes the proof of (i).

Next observe that (ii) is a simple consequence of (129) that shows that �r is continuous
and strictly increasing.

Let us prove (iii): suppose that �Qr
t > 0. Since �r is continous, it implies that

�Xr(�r
t ) > 0 and by (i) there exists a ∈ (0,∞), such that θba− < t < θba ; now observe that for

all s ∈ (θba−, θba ), �b
s = a. Thus, Qb is constant on this interval and it implies that �Qb

t = 0.
This proves (iii). �

The following result is quite useful to deal with the supercritical cases.

LEMMA 5.6. Let α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c = (cj )j≥1 ∈ �
↓
3 satisfy (35).

Namely: either β > 0 or σ2(c) = ∞. Assume that α < 0 and recall that �, the largest
root of ψ , is positive. For all a ∈ [0,∞) and for all bounded measurable functionals
F : D([0,∞),R)2 →R

(134) E
[
F(Y·∧a,A·∧a)

] = E
[
e�AaF (Y·∧a,A·∧a);a < T ∗].

Moreover, let R ⊂ � belong to the P-completion of the natural filtration generated by (Y,A).
If {T ∗ > a} ∩ R is P-negligible then R is P-negligible.

PROOF. By (40), a.s. 1{a<T ∗} = 1{Aa<−Ir∞} where −Ir∞ = − inf[0,∞) X
r; −Ir∞ is an ex-

ponentially distributed r.v. with parameter � that is, independent from (Y,A), which easily
implies (134). Next, denote by G the P-completion of the natural filtration generated by
(Y,A) and let R ∈ G be such that {T ∗ > a} ∩R is P-negligible. Thus, {T ∗ > a} ∩R ∈ G and

P-a.s. 0 = E[1R1{T ∗>a}|G ] = E[1R1{Aa<− infXr}|G ] = e−�Aa 1R,

which implies that R is P-negligible. �

We next consider the excursions of X and Y above their respective infimum.

LEMMA 5.7. Let α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c = (cj )j≥1 ∈ �
↓
3 satisfy (35).

Namely: either β > 0 or σ2(c) = ∞. For all t ∈ [0,∞), we recall the following notation:
It = infs∈[0,t] Xs and Jt = infs∈[0,t] Ys . Then, the following holds true.

(i) A.s. for all t ∈ [0,∞), Xt ≥ Y(�b
t ). Then, a.s. for all t1, t2 ∈ [0,∞) such that �b

t1
<

�b
t2

, infs∈[t1,t2] Xs = infa∈[�b(t1),�
b(t2)] Ya . It implies that a.s. for all t ∈ [0,∞), It = J (�b

t ).
(ii) A.s. {t ∈ [0,∞) : Xt > It } = {t ∈ [0,∞) : Y(�b

t ) > J (�b
t )}.

(iii) A.s. the set E = {a ∈ [0,∞) : Ya > Ja} is open. Moreover, if (l, r) is a connected
component of E , then Yl = Yr = Jl = Jr and for all a ∈ (l, r), we get Ja = Jl and Ya− ∧Ya >

Jl .
(iv) Set Z b = {a ∈ [0,∞) : Ya = Ja}. Then, P-a.s.

(135) ∀a, z ∈ [0,∞) such that a < z,
(
Z b ∩ (a, z) �=∅

) ⇐⇒ (Jz < Ja).

Proof. We first prove (i). To that end, we fix t ∈ (0,∞) and we set a = �b
t . Thus, θba− ≤ t ≤

θba . If �θba > 0, then Lemma 5.4(iii) implies that Xs ≥ Ya = X(θba−−), for all s ∈ [θba−, θba ].
Thus, Xt ≥ Ya (note that a is possibly equal to T ∗ and in this case, θba− < ∞ = θba ). If �θba =
0, t = θba and Xt = Ya by Lemma 5.4(i). Thus, we have proved that a.s. for all t ∈ [0,∞),
Xt ≥ Y(�b

t ).
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We next fix t1, t2 ∈ [0,∞) such that a1 := �b
t1

< �b
t2

=: a2, which implies that a1 < T ∗.
Since Ya = X(θba ) for all a ∈ [0, T ∗) and since YT ∗ = X(θbT ∗−−) (by Lemma 5.4(iii)
with a = T ∗), we get inf[a1,a2] Y ≥ inf[θb(a1),θ

b(a2−)] X. Since t1 ≤ θba1
< θba2− ≤ t2, we get

inf[a1,a2] Y ≥ inf[t1,t2] X. But we have proved also that Xt ≥ Y(�b
t ) for all t ∈ [0,∞): there-

fore, inf[t1,t2] X ≥ inf[a1,a2] Y . Thus, inf[t1,t2] X = inf[a1,a2] Y , which completes the proof of
(i).

Let us now prove (ii). We first fix t ∈ (0,∞) such that Xt > It and we set

gt = sup{s < t : Xs = Is} and dt = inf{s > t : Xs = Is},
with the convention that inf∅ = ∞ (namely, in supercritical cases, dt = ∞ iff It =
infs∈[0,∞) Xs ). Standard results on the excursions of spectrally positive processes above their
infimum entails that �X(gt ) = 0 and that �X(dt ) = 0 if dt < ∞. Consequently, for all
s ∈ [gt , dt ), Is = It = X(gt ) (and we also get X(dt ) = X(gt) if dt < ∞).

We still assume that Xt > It and we next suppose that Y(�b
t ) = J (�b

t ) and to simplify,
we set a = �b

t so that θba− ≤ t ≤ θba . We first prove that �θba > 0. Indeed suppose the con-
trary: namely, suppose that �θba = 0; then, Lemma 5.4(i) asserts that Xt = X(θba ) = Ya = Ja ;
however Ja = It by (i), which contradicts Xt > It . Thus, �θba > 0 and Lemma 5.4(iii) as-
serts that for all s ∈ (θba−, θba ), Xs > Ya = X((θba−)−). Since (i) entails It = Ja and since we
suppose Ya = Ja , then for all s ∈ (θba−, θba ), we get Xs > It = X((θba−)−). Thus, gt = θba−
and dt = θba (which includes the possibility that dt = ∞ in the supercritical cases). Since
�X(gt ) = 0, Lemma 5.4(iii) entails that �Aa = �X(θba−) = 0. Thus, we have proved that
a.s. for all t ∈ (0,∞), if Xt > It and if Y(�b

t ) = J (�b
t ) then gt = θba− < dt = θba (where

a = �b
t ) and �Aa = 0. We next use the following: for all ε ∈ (0,∞),

(136) P-a.s.
∑

a∈[0,∞)

1{�Aa=0;�θba >ε;Ya=Ja} = 0.

Before proving (136), let us complete the proof of (ii): first note that (136) and the previous
arguments entail that a.s. for all t ∈ (0,∞), if Xt > It , then Y(�b

t ) > J (�b
t ). Then by (i), if

Xt = It , then J (�b
t ) = Y(�b

t ), which completes the proof of (ii), provided that (136) holds
true.

PROOF OF (136). Suppose that �θba > ε (which does not exclude that �θba = ∞ in the
supercritical cases) and suppose that �Aa = 0. Then θba− = a + γ r(Aa−) and thus, �θba =
(�γ r)(Aa). Recall that for all x ∈ [0,∞), we have set A−1

x = inf{a ∈ [0,∞) : Aa > x}. By
Lemma 2.4, a.s. A is strictly increasing and A−1 is continuous and we get A−1(Aa) = a;
moreover, by definition we get A(A−1

x −) ≤ x ≤ A(A−1
x ) for all x ∈ (0,∞). Then, (136) is

clearly a consequence of the following

(137) P-a.s. Q(ε) = ∑
x∈[0,∞)

1{�A(A−1
x )=0;�γ r(x)>ε;Y (A−1

x )=J (A−1
x )} = 0.

Let us prove (137). Recall from (117) that the measure N(ζ ∈ dr) on (0,∞] is the Lévy
measure of the possibly defective subordinator γ r and recall that N(ζ = ∞) = �, that is
the largest root of ψ . More precisely, set M = ∑

δ(x,�γ r(x)), where the sum is over the
countable set of times x where �γ r(x) > 0; then, M is distributed as 1{x≤E}N (dx dr) where
N is a Poisson point process on (0,∞) × (0,∞] with intensity dxN(ζ ∈ dr) and where
E = inf{x ∈ [0,∞) : N ([0, x] × {∞}) �= 0} (therefore, E is exponentially distributed with
parameter N(ζ = ∞) = �). Since (Y,A) and Xr are independent, we get the following.

E
[
Q(ε)|(Y,A)

] = N(ζ ∈ (ε,∞])
∫ ∞

0
dxe−�x1{�A(A−1

x )=0;Y (A−1
x )=J (A−1

x )}

= N(ζ ∈ (ε,∞])
∫ ∞

0
dAae

−�Aa 1{�Aa=0;Ya=Ja},
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the last equality being a consequence of an easy change of variable and of the fact that
A(A−1

x ) = x if �A(A−1
x ) = 0. Set c = N(ζ ∈ (ε,∞]) and observe that dAa = κβa da +∑

a′∈[0,∞) �Aa′δa′(da). Thus,

(138) E
[
Q(ε)|(Y,A)

] = cκβ

∫ ∞
0

ae−�Aa 1{�Aa=0;Ya=Ja} da= cκβ

∫ ∞
0

ae−�Aa 1{Ya=Ja} da.

The second equality holds true because the set of jump-times of A is countable and thus
Lebesgue negligible. Then, we only need to prove that a.s. Leb({a ∈ [0,∞) : Ya = Ja}) = 0.
To that end, recall from Lemma 5.4(i) that for all a ∈ [0, T ∗), X(θba ) = Ya and recall from (i)
above that I (θba ) = Ja . The change of variable t = θba , entails that∫ T ∗

0
1{Ya=Ja} da =

∫ T ∗

0
1{X(θba )=I (θba )} da ≤

∫ ∞
0

1{Xt=It } d�b
t = 0,

because �b is 1-Lipschitz and because a.s. the Lebesgue measure of {t ∈ [0,∞) : Xt = It }
is null. It then shows that a.s. on {a < T ∗}, the Lebesgue measure of {b ∈ [0, a] : Yb = Jb}
is null. By Lemma 5.6, a.s. Leb({a ∈ [0,∞) : Ya = Ja}) = 0 which implies (137) (and thus
(136)) by (138). It completes the proof of (ii).

Let us prove (iii). By standard results, E ′ := {t ∈ [0,∞) : Xt > It } is open and if (g, d)

is a connected component of E ′, then Xg = Ig = Id (and Xg = Xd if d < ∞) and for all
t ∈ (g, d), Xt− ∧ Xt > Ig . Let a ∈ [0,∞) be such that Ya > Ja ; we set l = sup{b ∈ [0, a] :
Yb = Jb} and r = inf{b ∈ (a,∞) : Yb = Jb}. We assume that r < T ∗. Then, X(θba ) = Ya >

Ja = I (θba ); let (g, d) be the connected component of E ′ containing θba . By (i), Xd = Xg =
Y(�b

g) = Y(�b
d ) = J (�b

g) = J (�b
d ) and by (ii), �b

g = l and �b
d = r and (l, r) is a connected

component of E = {b ∈ [0,∞) : Yb > Jb}. It easily shows that [0, T ∗) ∩ E is an open subset.
Together with Lemma 5.6 this concludes the proof of (iii).

Let us prove (iv). First recall from Section 5.1.4 the notation: Z = {t ∈ [0,∞) : Xt = It }
and recall that the continuous process t �→ −It is a local-time for Z : in particular, recall
from (114) that Z ∩ (s, t) �= ∅ iff It < Is . By (ii), Z = {t ∈ [0,∞) : Y(�b

t ) = J (�b
t )}; it

easily implies the following: Z b ∩ (a, z) �= ∅ iff Z ∩ (θba , θbz ) �= ∅ which is equivalent to
I (θbz ) = Jz < Ja = I (θba ) (by (i)), which completes the proof of (iv). �

We next recall the following result due to Aldous and Limic [5] (Proposition 14, p. 20).

PROPOSITION 5.8 (Proposition 14 [5]). Let α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c =
(cj )j≥1 ∈ �

↓
3 satisfy (35). Namely: either β > 0 or σ2(c) = ∞. Then, the following holds

true.

(i) For all a ∈ [0,∞), P(Ya = Ja) = 0.
(ii) P-a.s. the set {a ∈ [0,∞) : Ya = Ja} contains no isolated points.

(iii) Set Ma = max{r − l; r ≥ l ≥ a : (l, r) is an excursion interval of Y − J above 0}.
Then, Ma → 0 in probability as a → ∞.

PROOF. The process (Ys/κ)s∈[0,∞) is the the process Wκ ′,−τ,c in [5], where κ ′ = β/κ

and τ = α/κ (note that the letter κ plays another role in [5]). Then (i) (resp. (ii) and (iii)) is
Proposition 14 [5] (b) (resp. (d) and (c)). �

Thanks to Proposition 5.8(iii), the excursion intervals of Y − J above 0 can be listed as
follows

(139)
{
a ∈ [0,∞) : Ya > Ja

} = ⋃
k≥1

(lk, rk),

where ζk = rk − lk , k ≥ 1, is nonincreasing. Then, as a consequence of Theorem 2 in Aldous
and Limic [5], page 4, we recall the following.



CONTINUOUS MULTIPLICATIVE GRAPHS 2497

PROPOSITION 5.9 (Theorem 2 [5]). Let α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c =
(cj )j≥1 ∈ �

↓
3 satisfy (35). Namely: either β > 0 or σ2(c) = ∞. Then, (ζk)k≥1, that is,

the ordered sequence of lengths of the excursions of Y − J above 0, is distributed as the
(β/κ,α/κ, c)-multiplicative coalescent (as defined in [5]) taken at time 0. In particular, we
get a.s.

∑
k≥1 ζ 2

k < ∞.

5.2.4. Proof of Theorem 2.6. We first prove the following lemma.

LEMMA 5.10. Let α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c = (cj )j≥1 ∈ �
↓
3 satisfy (102).

Then, the following holds true.

(i) Almost surely, a ∈ [0, T ∗) �→ H(θba ) is continuous.
(ii) For all a ∈ [0,∞), there exists a Borel measurable functional Fa : D([0,∞),R)2 →

[0,∞) such that a.s. on the event {a < T ∗}, H(θba ) = Fa(Y·∧a,A·∧a).

PROOF. We first prove (i). Since H is continuous, H ◦θb is càdlàg on [0, T ∗) and the left-
limit at a is H(θba−). If �θba = 0, then H(θba−) = H(θba ). Suppose that �θba > 0: by Lemma
5.4(iii), for all t ∈ (θba−, θba ), we get Xt > X((θba−)−) = X(θba ); we then apply Lemma 5.1 to
t0 = θba− and t1 = θba : in particular we get Ht0 = Ht1 , namely: H(θba−) = H(θba ). This proves
that a.s. H ◦ θb is continuous on [0, T ∗).

We next prove (ii) and we first suppose that β > 0. In that case recall from (111) that Ht

is the 2/β times the Lebesgue measure of the set {infr∈[s,t] Xr; s ∈ [0, t]}. We fix a < T ∗ and
s ∈ [0, θba ]. To simplify, we also set b = �b

s . If s ∈ [θba−, θba ], then b = a and Lemma 5.4(iii)
entails that infr∈[s,θba ] Xr = X(θba ) = Ya ; if s ∈ [0, θba−), then b < a and Lemma 5.7(i) entails
that infz∈[b,a] Yz = infr∈[s,θba ] Xr . This easily implies that{

inf
r∈[s,θba ]

Xr; s ∈ [
0, θba

]} =
{

inf
z∈[b,a]Yz;b ∈ [0, a]

}
.

Consequently, a.s. on {a < T ∗}, H(θba ) = 2β−1Leb({infz∈[b,a] Yz;b ∈ [0, a]}), which implies
(ii) when β > 0.

We next suppose that β = 0. Recall that (102) implies (35), so we get σ2(c) = ∞. Then,
recall from (110) the following notation: H ε(t) = {s ∈ (0, t] : Xs−+ε < infr∈[s,t] Xr}, for all
ε, t ∈ (0,∞). We next fix a < T ∗ such that �Aa > 0. Note that we necessarily have �θba ∈
(0,∞). Let s1, s2 ∈ H ε(θba−) be such that s1 < s2 < θba−. For all i ∈ {1,2}, we set bi = �b

si
;

by definition θbbi− ≤ si ≤ θbbi
. If si > θbbi−, then Lemma 5.4(iii) implies that Xsi− ≥ X(θbbi

),
which contradicts si ∈ H ε(θba−). Therefore, si = θbbi−, which implies that b1 < b2 < a. On
the other hand, Lemma 5.4(i) and Lemma 5.7(i) tell us that Ybi− = X(θbbi−−) = Xsi− and
infz∈[bi ,a] Yz = infr∈[si ,θba−] Xr . Therefore, b1, b2 belong to the set Y ε

a := {b ∈ [0, a] : Yb− +
ε < infz∈[b,a] Yz}. Next, suppose that b1, b2 ∈ Y ε

a . Since a.s. �Ya = 0 (because Y and A

have distinct jump times), we get bi < a, i = 1,2. Then a similar argument based on Lemma
5.4(i) and Lemma 5.7(i) show that si = θbbi− < θba− and that si is an element of H ε(θba−). We
have proved that �b is one-to-one from H ε(θba−) \ {θba−} onto Y ε

a , which then implies the
following: for all ε ∈ (0,∞),

a.s. for all a ∈ [0, T ∗) such that �Aa > 0, #Y ε
a ≤ #H ε

θba−
≤ #Y ε

a + 1.

Then, (112) easily implies that there is (εk)k∈N decreasing to 0 such that a.s. for all t ∈
[0,∞) ∩Q and for all s ∈ [0, t] such that Xs− ≤ infr∈[s,t] Xr , Hs = limk→∞(#H εk

s )/q(εk).
Then observe that for all a ∈ [0, T ∗) such that �Aa > 0, there is t ∈ Q ∩ (θba−, θba ) and by
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Lemma 5.4(iii), we get X(θba−−) ≤ infr∈[θba−,t] Xr . Thus, a.s. for all a ∈ [0, T ∗) such that
�Aa > 0, we get

(140) H
(
θba

) = H
(
θba−

) = lim
k→∞

1

q(εk)
#H εk

θba−
= lim

k→∞
1

q(εk)
#Y εk

a .

Since σ2(c) = ∞, the jump-times of A form a dense subset of [0,∞). Thus it makes sense to
set the following for all a ∈ (0,∞):

Fa(Y·∧a,A·∧a) = lim sup
z→a−,�Az>0

lim sup
k→∞

1

q(εk)
#Y εk

z if this quantity is finite and 0 otherwise.

Since H ◦ θb is continuous on [0, T ∗), (140) entails (ii). �

Note that in (sub)critical cases, the previous lemma proves Theorem 2.6. We next assume
that α < 0: then � > 0 and T ∗ < ∞ a.s. For all a ∈ [0,∞), we set

Ha = lim sup
q→a−,q∈Q

Fq(Y·∧q,A·∧q)if this quantity is finite and 0 otherwise.

For all a ∈ (0,∞), we set Ra = {ω ∈ � : z ∈ [0, a] �→ Hz(ω) not continuous}. By Lemma
5.10(ii), a.s. on {T ∗ > a}, for all q ∈ [0, a] ∩ Q, Fq(Y·∧q,A·∧q) = H(θbq ); consequently,
by Lemma 5.10(i), a.s. on {T ∗ > a}, for all z ∈ [0, a], Hz = H(θbz ) and Ra ∩ {T ∗ > a}
is a P-negligible set. Then, Lemma 5.6 entails that Ra is P-negligible, which implies that P-
a.s. H is continuous since a can be chosen arbitrarily large. Moreover, the previous arguments
imply that a.s. H = H ◦ θb on [0, T ∗). Therefore, for all a ∈ [0,∞) a.s. on {T ∗ > a}, for all
z ∈ [0, a], Hz = Fz(Y·∧z,A·∧z). By Lemma 5.6, it implies that for all a ∈ [0,∞), a.s. Ha =
Fa(Y·∧a,A·∧a), which completes the proof of Theorem 2.6.

We shall need the following lemma that concerns the excursions of H above 0.

LEMMA 5.11. Let α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c = (cj )j≥1 ∈ �
↓
3 satisfy (102).

Then, the following holds true.

(i) Almost surely for all t ∈ [0,∞), Ht ≥H(�b
t ) and a.s. for all t1, t2 ∈ [0,∞) such that

�b
t1

< �b
t2

, infs∈[t1,t2] Hs = infa∈[�b(t1),�
b(t2)]Ha .

(ii) Almost surely {a ∈ [0,∞) : Ya > Ja} = {a ∈ [0,∞) :Ha > 0}.

PROOF. Let t ∈ [0,∞) and set a = �b
t . Then, by definition θba− ≤ t ≤ θba . If �θba = 0,

then θb(�b
t ) = t and Ht = H(�b

t ). Suppose next that �θba > 0; by Lemma 5.4(iii), Xs >

X((θba−)−) = Ya = X(θba ), for all s ∈ (θba−, θba ); thus, we can apply Lemma 5.1 with t0 = θba−
and t1 = θba , to get Ht ≥ H(θba−) = H(θba ) = Ha = H(�b

t ). To complete the proof of (i) we
argue exactly as in Lemma 5.7(i).

Let us prove (ii). Recall from (113) and from Lemma 5.7(ii) that {t ∈ [0,∞) : Xt > It } =
{t ∈ [0,∞) : Ht > 0} = {t ∈ [0,∞) : Y(�b

t ) > J (�b
t )}. Then, observe that on {T ∗ > a},

Ya > Ja iff X(θba ) = Ya > Ja = I (θba ), which is also equivalent to Ha = H(θba ) > 0. This
proves that for all a ∈ (0,∞) a.s. on {T ∗ > a}, {z ∈ (0, a) : Yz > Jz} = {z ∈ (0, a) : Hz > 0},
which proves (ii) in (sub)critical cases; in supercritical cases, Lemma 5.6 applies. �

5.2.5. Embedding into a Lévy tree. Proof of Proposition 2.7. We now explain how con-
tinuous multiplicative graphs are embedded in Lévy trees. We first fix a ∈ (0,∞) and we
argue on the event {T ∗ > a}. Let (l, r) be an excursion interval of H above 0 such that r < a.
By Lemma 5.7(ii), there exists an excursion interval (l, r) of X above its infimum process I ,
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or equivalently (see (113)) an excursion interval of H above 0, such that �b
l = l and �b

r = r ,
which also entails θbl = l and θbr = r. To simplify notation, for all s ∈ [0,∞),we set

H(s) =H(l+s)∧r , Hs = H(l+s)∧r, θ s = θb(l+s)∧r − l, ζ = r − l and ζ = r − l.

Recall that H(θba ) =Ha on (l, r), thus H(θa) = H(a), a ∈ [0, ζ ]. Recall from (52) the defini-
tion of the pseudometric dh coded by a function h. The previous arguments, combined with
Lemma 5.11(i) imply the following.

(141) ∀a, b ∈ [0, ζ ], dH(a, b) = dH(θa, θb).

Recall from (53) in Section 2.2.2 that (Th, dh, ρh,mh) stands for the rooted compact mea-
sured real tree coded by h and recall that ph : [0, ζh) → Th is the canonical projection. To
simplify notation, we set (

T, δ, ρ,m∗) := (TH, dH, ρH,mH).

Then (141) implies the following: set T = pH(θ([0, ζ ])), then

(142)
(
T , δ|T ×T , ρ,m∗(· ∩ T )

)
is isometric to (TH, dH, ρH,mH).

Namely, we view the tree coded by H as a compact subtree (namely, a compact connected
subset) of the ψ-Lévy tree coded by the excursion H.

Next, recall from (49) and (50) the definition of the set of pinching times � on (0,∞)2;
for all k ≥ 1, recall from (63) the definition of the set of pinching times �k that fall in
the kth longest excursion of Y above its infimum process J ; note that there exists a k such
that lk = l and rk = r and then set � = �k that is, therefore the set of pinching times
of � that fall in the excursion interval (l, r). Denote by (G,d,ρ,m) the compact metric
space coded by H and the pinching setup (�,0) as defined in (56) (then, (G,d,ρ,m) =
(Gk, dk, ρk,mk), the kth largest connected component of the multiplicative graph). We then
set �∗ = {(pH(θ s),pH(θ t )); (s, t) ∈ �}. Then, thanks to (141), we see that:

(G,d,ρ,m)is isometric to the
(
�∗,0

)
-metric space

associated to
(
T , δ|T ×T , ρ,m∗(· ∩ T )

)
.

(143)

To summarise, up to the identifications given by (142) and (143), the connected component
G of the multiplicative continuous random graph corresponding to excursion interval (l, r)

is obtained as a finitely pinched metric space associated with the real tree T coded by H that
is a subtree of the Lévy tree T coded by H. This allows to prove Proposition 2.7 as follows.

PROOF OF PROPOSITION 2.7. We introduce the following exponents:

γ = sup
{
r ∈ [0,∞) : lim

λ→∞ψ(λ)λ−r = ∞
}

and

η = inf
{
r ∈ [0,∞) : lim

λ→∞ψ(λ)λ−r = 0
}
.

Recall from (115) that N stands for the excursion measure of the ψ-height process H

above 0 and denote by (TH , dH ,ρH ,mH) the generic rooted compact measured real tree
coded by H under N(dH). Theorem 5.5 in Duquesne and Le Gall [20], page 590, asserts
that if γ > 1, then N(dH)-a.e. dimH(TH ) = η/(η − 1) and dimp(TH ) = γ /(γ − 1) (this
statement is a specific case of Theorem 5.5 in [20] where E = [0,∞)). Moreover, in the
proof of the Theorem 5.5 [20], two estimates for the local upper- and lower-densities of the
mass measure mH are given at (45) and (46) in [20], page 593: for all u ∈ (0,

η
η−1) and

v ∈ (0,
γ

γ−1), N(dH)-a.e. for mH -almost all σ ∈ TH , lim supr→0 r−umH (B(σ, r)) < ∞ and
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lim infr→0 r−vmH (B(σ, r)) < ∞ (actually, within the notation of [20], if E = [0,∞), then
d(E) = 1 and κ(dσ) = mH(dσ)). Since T is the tree coded by H that is, an excursion of H

above 0, the previous estimates and Theorem 5.5 in [20] show that for all u ∈ (0,
η

η−1) and

for all v ∈ (0,
γ

γ−1), we have the following:

P-a.s. on
{
T ∗ > a

}
, dimH(T) = η

η − 1
and dimp(T) = γ

γ − 1

and for m∗-almost all σ ∈ T lim sup
r→0

m∗(B(σ, r))

ru
< ∞

and lim inf
r→0

m∗(B(σ, r))

rv
< ∞.

(144)

We now apply Lemma A.1 in the Appendix to E0 = T, E = T and E′ = G (Lemma A.1
applies since m∗(T ) > 0). Informally speaking, Lemma A.1 asserts the following: since G is
obtained from T by identifying only a finite number of points, it does not modify Hausdorff
and packing dimensions that are obtained here as local exponents of m∗; moreover since
m∗(T ) > 0 and since the local exponents are constant on Lévy trees, the local exponents of
m∗ are the same on T (and thus on G) and on T. Thus, Lemma A.1 and (144) entail that
P-a.s. on {T ∗ > a}, dimH(G) = η/(η − 1) and dimp(G) = γ /(γ − 1). Lemma 5.6 easily
entails that it holds true for all excursions of H above 0 (not just for those ending before T ∗).
Namely, P-a.s. for all k ≥ 1, dimH(Gk) = η/(η − 1) and dimp(Gk) = γ /(γ − 1).

Observe that if β > 0, then γ = η = 2. Thus, to complete the proof of Proposition 2.7,
it remains to prove that the exponents γ and η are given by (65) when β = 0: set π(dr) =∑

j≥1 κcj δcj
, the Lévy measure of X. By an immediate calculation, we get ψ ′(λ) − α =∫

(0,∞)(1 − e−λr)rπ(dr). We next introduce

J (x) = x−1
∫ x

0
du

∫
(u,∞)

rπ(dr) =
∫
(0,∞)

r
(
1 ∧ (r/x)

)
π(dr) = ∑

j≥1

κc2
j

(
1 ∧ (cj /x)

)

as in Proposition 2.7(ii). Since there exists some c ∈ (0,∞) such that c(1 ∧ x) ≤ 1 − e−x ≤
1 ∧ x for all x > 0, we deduce that

cJ (1/λ) ≤ ψ ′(λ) − α ≤ J (1/λ).

Since ψ(λ) ≤ λψ ′(λ) by convexity and x(1 − e−x) ≤ 4(e−x − 1 + x) for all x ≥
0 so that λψ ′(λ) ≤ 4ψ(λ), the previous inequality entails: γ = 1 + sup{r ∈ (0,∞) :
limx→0+ xrJ (x) = ∞} and η = 1 + inf{r ∈ (0,∞) : limx→0+ xrJ (x) = 0}, which completes
the proof of Proposition 2.7. �

APPENDIX: PINCHED METRIC SPACES AND THEIR FRACTAL DIMENSIONS

Let (E,d) be a metric space. We briefly recall from Section 2.2.2 the definition of pinched
metrics: for all i ∈ {1, . . . , p}, let (xi, yi) ∈ E2; set � = ((xi, yi))1≤i≤p; let ε ∈ [0,∞). Set
AE = {(x, y);x, y ∈ E} and for all e = (x, y) ∈ AE , we set e = x and e = y. A path γ

joining x to y is a sequence of e1, . . . , eq ∈ AE such that e1 = x, eq = y and ei = ei+1,
for all i ∈ {1, . . . , q − 1}. Next, we set A� = {(xi, yi), (yi, xi);1 ≤ i ≤ p} and we define
the length le of an edge e by setting le = ε ∧ d(e, e) if e ∈ A� and le = d(e, e) otherwise.
The length of a path γ = (e1, . . . , eq) is given by l(γ ) = ∑

1≤i≤q lei
. Then, recall from (55)

that the (�, ε)-pinched pseudo-distance between x and y in E is given by d�,ε(x, y) =
inf{l(γ );γ is a path joining x to y}. We easily check that

d�,ε(x, y) = d(x, y) ∧ min
{
l(γ );γ = (

e0, e
′
0, . . . , er−1, e

′
r−1, er

)
,

a path joining x to y such that e′
0, . . . e

′
r−1 ∈ A� and r ≤ p

}
.

(145)
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Clearly, d�,ε is a pseudo-metric and we denote the equivalence relation d�,ε(x, y) = 0 by
x ≡�,ε y; the quotient space E/ ≡�,ε equipped with d�,ε is the (�, ε)-pinched metric space
associated with (E,d). Recall that ��,ε : E → E/ ≡�,ε stands for the canonical projection
that is 1-Lipschitz. Note of course that if ε > 0, then d�,ε is a true metric on E, which is
obviously identified with E/ ≡�,ε and ��,ε is the identity map on E.

Next, set S = {xi, yi;1 ≤ i ≤ p} and for all x ∈ E, set d(x,S) = miny∈S d(x, y). Then,
(145) immediately entails that

(146) ∀x, y ∈ E, d(x, y) ≤ d(x,S) + d(y,S) =⇒ d(x, y) = d�,ε(x, y).

Then, for all r ∈ (0,∞), denote by Bd(x, r) (resp. by Bd�,ε
(��,ε(x), r)) the open ball in

(E,d) (resp. in (E/ ≡�,ε, d�,ε)) with center x (resp. ��,ε(x)) and radius r . Then, (146)
entails the following: if x ∈ E\S and if 0 < r < 1

4d(x,S)), then

(147) ��,ε : Bd(x, r) → Bd�,ε

(
��,ε(x), r

)
is a surjective isometry.

Namely, outside the pinching points, the metric is locally unchanged.
We now prove a result on Hausdorff and packing dimensions that is used in the proof of

Proposition 2.7. To that end, we suppose that there exists (E0, d), a compact metric space
such that E ⊂ E0 and such that E is a compact subset of E0. To simplify notation we set
(E′, d ′,�) = (E/ ≡�,ε, d�,ε,��,ε). We denote by dimH and dimp respectively the Haus-
dorff and the packing dimensions.

LEMMA A.1. We keep the notation from above. We first assume that dimH(E0) ∈ (0,∞)

and dimp(E0) ∈ (0,∞). Let a ∈ (0,dimH(E0)) and b ∈ (0,dimp(E0)); we assume that there
is a finite measure m0 on the Borel subsets of E0 such that m0(E) > 0 and

for m0-almost all x ∈ E0

lim sup
r→0

m0(Bd(x, r))

ra
< ∞ and lim inf

r→0

m0(Bd(x, r))

rb
< ∞.

(148)

Then, a ≤ dimH(E′) ≤ dimH(E0) and b ≤ dimp(E
′) ≤ dimp(E0).

PROOF. Since � is Lipschitz, dimH(E′) ≤ dimH(E) ≤ dimH(E0), with the same in-
equality for packing dimensions. We set m = m0(· ∩ E) and m′ = m ◦ �−1 that is, the
pushforward measure of m via � . Since m(E) > 0, (148) holds true with m0 replaced by
m. Observe that (148) implies that m0 has no atom. Thus, m has no atom and since there is
a finite number of pinching points, (147) entails that (148) holds true for m′ which entails
dimH(E′) ≥ a and dimp(E

′) ≥ b by standard comparison results on Hausdorff and packing
measures due to Rogers and Taylor in [31] (Hausdorff case), and Taylor and Tricot in [32]
(packing case) in Euclidian spaces that have been extended in Edgar [22] (see Theorem 4.15
and Proposition 4.24 for the Hausdorff case and see Theorem 5.9 for the packing case). �
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