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The Darwinian Orthodoxy

"When we look at the plants and bushes clothing an entangled bank, we are
tempted to attribute their proportional numbers and kinds to what we call
chance. But how false a view is this !"

– Charles Darwin, The Origin of Species
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Probabilistic Heresy

Chance enters into the formation of ecological communities in many important ways.
For example,
• Demographic stochasticity : variation in individual birth and death rates,

independent between individuals.
• Environmental stochasticity : fluctuations in the environment, experienced by

all individuals in a correlated manner.
• Random dispersal : organisms arrive in habitats by chance.
• Random mutation : novel variation is created at random.
• Sampling effects : we observe random samples from a population.
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Your Speaker’s Creed

Attributed to John von Neumann by Enrico Fermi :

“With four parameters I can fit an elephant, and with five, I can make him
wiggle his trunk”

Dyson (2004) “A meeting with Enrico Fermi” Nature 427 p. 297

In (stochastic) modelling, simple is beautiful.

In this tutorial, I hope to illustrate some of the tools that we can use to study simple
models in the context of a classical question in community ecology.
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Relative Species Abundance

Perhaps no question in community ecology has commanded more theoretical and
empirical attention than that species diversity and its two components :
• Species Richness : the total number of species in a community, and
• Species Evenness : their relative abundance.

Extensive effort goes into sampling even the rarest species, while theorists try to find
descriptive statistics that can be fit to reveal qualitative features of data and
mechanistic models that predict species abundance from biological principles that
can be compared to data.
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Relative Abundance Plot

Wikipedia, Magurran (2004) and Williams (1964)

We’ll look at (and around) one of the very first efforts to predict and explain these
curves.
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Fisher’s Log-series

• Fisher, Corbet & Williams (1943) was an early and foundational
semi-mechanistic model for species abundances.

• Corbet and Williams had extensively sampled butterflies in the Malay Islands
and at the Rothamsted Experimental Station, observing a consistent trend of
abundant rare species and relatively rare abundant species. They brought their
data to esteemed statistician R. A. Fisher in search of biologically motivated
model that would best fit their data.

• In the first mathematical model of species abundance, Fisher would already
account for both population variability and sampling effects.
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Fisher’s Population Variability
He accounted for population variability by proposing that population abundances
would be random, proposing a Gamma distribution :

P{abundance in [x,x+dx)}= 1
Γ(k)θ k xk−1e−

x
θ dx

This gives a unimodal distribution on [0,∞).

Wikipedia
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Fisher’s Sampllng Effects
He accounted for variability in sampling by supposing that the number collected
would be Poisson distributed with rate proportional to species abundance :

P{n sampled|abundance x}= (λx)ne−λx

n!

Poisson samples arise when we observe any given example of a large number of
individuals with low probability.

Wikipedia
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Fisher’s Log-series

• This Poisson-Gamma mixture model gives us a negative binomial distribution :

P{n sampled}=
∫

∞

0
P{n sampled|abundance x}P{abundance in [x,x+dx)}

=
1

Γ(k)θ k

∫
∞

0

(λx)ne−λx

n!
xk−1e−

x
θ dx

=
Γ(n+ k)
n!Γ(k)

(
1− λθ

λθ +1

)k(
λθ

λθ +1

)n

• When k is a positive integer, we can understand this as the probability we
sample n individuals of a species, assuming we succeed with probability
p = λθ

λθ+1 , and stop sampling once we have sampled k individuals not of the
target species, but it is a well defined for any k > 0.

• The negative binomial is often used to model positive integer valued random
variables more dispersed (i.e. having a greater variance to mean ratio) than the
Poisson distribution.
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Fisher’s Log-series

• Fisher then reasoned that we could only speak of species that were actually
observed, and thus restricted his attention to the probability of observing n > 0
individuals.

• Moreover, if the number of species, S, is sufficiently large, then the law of large
numbers tells us that number that are observed n times is asymptotically

SP{n sampled}= S
Γ(n+ k)
n!Γ(k)

(1−p)kpn

12 / 53



Introduction Fisher’s Log-series Mechanistic I Mechanistic II Preston’s Lognormal

Fisher’s Log-series

• Finally, Fisher reasoned that S was very large, but unobserved, so he took the
limit S→ ∞.

• But, absent other assumptions, this would lead to an infinite number of
individuals sampled, so he further posited that most species had very low
abundance, and thus would not be observed.

• Thus, he simultaneously took k→ 0, making x = 0 the maximal abundance in
his gamma model.

• Seeking a nontrivial limit for the number of species observed, Fisher recalled
that Γ(k)∼ 1

k , so for S� 1 and k ∼ 0, the number of species observed was
approximately

Γ(n+ k)
n!Γ(k)

(1−p)kpn ∼ Sk
Γ(n−1)

n!
pn = Sk

pn

n
.

• He thus assumed that Sk tended to a constant in the simultaneous limit :
limS→∞,k→0 Sk = α
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Fisher’s Log-series

• The resulting distribution is now known as Fisher’s log-series, since

− log(1−p) =
∞

∑
n=1

pn

n
,

so the number of species observed at least once is S′ =−α log(1−p).
• If our sampling effort is sufficient, we would expect that S ∝ S′ ∝ α .
• The number of individuals observed is

N = α

∞

∑
n=1

n
pn

n
=

αp
1−p

‘

These two equations can be (numerically) solved to give us estimates for α and
p.
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Fisher’s Log-series

Fisher’s model showed excellent fits to Corbet and Williams’ data :

44 Relation between numnbers of species and individuals in samples 
According to the calculated values, the total species 

and total individuals at levels between n = i and 
n = 24, are 501P92 and 3132-24 respectively. The 
actual values found for the total species and total 
individuals between n = i and 2z4 are 50I and 3306 
respectively. 

For the above series in Table 2, x2 = 19270, 
degrees of freedom=23, and P is between ogo 
and o-8o, showing the deviations of the observed 
results from the calculated values are not signifi- 
cant. 

REFERENCES 
Corbet, A. S. (1942). 'The distribution of butterflies in 

the Malay Peninsula.' Proc. R. Ent. Soc. Lond. (A), 
I6: IoI-i6. 

Evans, W. H. (1927). 'Lepidoptera-Rhopalocera ob- 
tained by Mme J. Visser-Hooft of the Hague (Holland) 
during an exploration of previously unknown country 

in the Western Karakorum, N.W. India.' Tijds. Ent. 
70: 158-62. 

Hinton, H. E. (I940). 'A monographic revision of the 
Mexican water beetles of the family Elmidae.' Nov. 
Zool. 42: 2I7-396. 

PART 2. RESULTS OBTAINED BY MEANS OF A LIGHT-TRAP AT ROTHAMSTED 
By C. B. WILLIAMS 

This gives an account of the application of Fisher's 
series (see Part 3 of this paper) for the frequency 
of occurrence of species of different levels of abun- 
dance in a random sample, to collections of noc- 
turnal Lepidoptera made by means of a light-trap 
at Rothamsted Experimental Station, Harpenden, 
Herts, Ehgland, during the four years 1933-6. The 
trap and insects caught in it have already been dis- 
cussed in a series of papers (Williams, I939, 1940). 

It was necessary to choose, from the material 
collected, groups in which all or nearly all of the 
specimens hadbeen identified to species. For this 
certain families of Lepidoptera Were most suited, 
and the discussion below deals with the captures in 
the Sphingidae, Noctuidae, Arctiidae, Geometridae 
and a few other related families. In the Geometridae 
the genus Eupithecia was omitted owing to diffi- 
culties of identification. Altogether 15,609 indivi- 
duals belonging to 240 species were captured. The 
names and details of numbers for each species will 
be found in Williams (1939, Tables 6-8). 

The frequency of species of different abundance 
Table 3 shows the frequency distribution of the 

species for the four years added together. It will be 
seen that 35 species were represented by a single 
individual each; that 85 (including the 35 above) 
were represented by 5 or fewer individuals; I15 by 
io or fewer; and 205 species by ioo or fewer indi- 
viduals; leaving therefore 35 species with over Ioo 
individuals per species. The highest total of one 
species was 2349 individuals of Agrotis exclama- 
tionis. The results up to 50 individuals per species 
are represented diagrammatically by the vertical lines 
in Fig. I A, giving a curve closely resembling a 
hyperbola. 

If, however, the log number of species is plotted 
against the log number of individuals as in Fig. 2A 
it will be seen that, while the straight-line distribu- 
tion expected for a hyperbola holds approximately 
true for the rarer species, the number of commoner 
species is distinctly below the hyperbolic expectation 

and falls rapidly away from it at higher numbers of 
individuals per species. 

Fisher suggests (see Part 3) that the true series is 
represented not by 

ni ni ni 
n, 34 

which would be the hyperbolic series and which 
would require an infinite number of species and an 
infinite number of individuals; but by the series 

nix n1x2 n1x3 
ni ... ... . 2 3 4 

when ni is the number of species- with i individual 
and x is a number less than I. 

35 
40 

7 = 30 _ Lepidoptera 
l 35 in light trap at 

A 3 25 Rothainsted L A 3 
20 

| B A - total of 4 years 
B = 1/8th of year 1933 l Vertical lines=observed 

25 t Dotted lines -calculated 

20, a E z 10 
15 Number of individuals per species 

s I . " X illfe.-.q0 .., I 20 -1. 

L 1o25 30 -35 40_ 45 
Numer ofin ividuals pr species 

Fig. I 

If this is correct he shows that (I) the total number 

of individuals (N) is finite and =- .-, (z) the total 
I - x 

number of species (S) is finite and 
-log, (I - X) 

=nj x 

Fisher, Corbet & Williams (1943).

Fisher’s α has become a commonly used measure of species richness.
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Fisher’s Log-series

However. . . Fisher’s modelling is based upon a number of reasonable, but not a priori
justified assumptions :
• A large number of species,
• most of which are vanishingly rare,
• whose abundance is gamma distributed.
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Two Paths to Fisher’s Gamma (and One Direct to his Negative
Binomial)

• Fisher chose a gamma distribution with shape k > 0 and scale θ > 0 as his
population model.

• Why? Because for him, it had desired properties (only taking positive real
values, having a mean and mode that he could adjust).

• Is there a mechanistic species model, based on biological processes like birth,
death, and migration, that can give us Fisher’s gamma?

• What are the biological interpretations of θ and k or α and p? What is the
biological interpretation of the limit k→ 0?
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A Stochastic Model for Species Number

• About the simplest possible stochastic model is a Markovian birth and death
process.

• Formulated in continuous time, we assume that individuals independently give
birth and die at per-capita rates b and d :

P{a given individual gives birth in [t, t+∆t}= b∆t+o(∆t)

• Let N(t) denote the the number of individuals alive at time t.
• When N(t) = n , the population increases by 1 at rate qn,n+1 = bn and decreases

by 1 at rate qn,n−1 = dn. These are the transition rates.
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Simulating (and Constructing) the Markov Model

• How would we simulate this model ?
• In practice, we can’t deal with infinitesimals dt, so we could discretize time into

small segments ∆t.

• Suppose N(t) = n. Provided ∆t < min
{

1
bn ,

1
dn

}
, then we have a birth in

[t, t+∆t) with probability bn∆t, a death with probability dn∆t, and nothing
happens with probability 1− (b+d)n∆t.

• Obvious shortcomings : ∆t has to be very small if n is large, and if ∆t� 1
n , then

one has to wait a long time for events.
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Simulating (and Constructing) the Markov Model

• Consider the waiting time, T , until the next event if N(t) = n.
• Starting with discretized time,

P{T > t}= (1− (b+d)n∆t)
t

∆t .

so, as ∆t→ 0 (i.e., passing to the infinitesimal limit),

P{T > t}→ e−(b+d)nt,

so the waiting time is exponentially distributed with rate (b+d)n and mean
1

(b+d)n .
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Simulating (and Constructing) the Markov Model

• Next, we know that nothing happens until time t+T .
• At this time, a birth happens with probability proportional bn∆t, a death

happens with probability proportional bn∆t, and one or the other must happen,
so the probability a birth or death occurs is

bn∆t
bn∆t+dn∆t

=
b

b+d
and

dn∆t
bn∆t+dn∆t

=
d

b+d

respectively.
• The discrete time Markov chain that keeps the transitions, but ignores the

waiting time between events, is called the skeleton.
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Simulating (and Constructing) the Markov Model

Subcritical : b = 1
2 , d = 1 Critical : b = 1, d = 1 Supercritical : b = 2, d = 1
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Gillespie’s Algorithm

Although the construction considerably predates Gillespie (1976), this is commonly
called Gillespie’s algorithm :
• Assume a continuous-time Markov chain on an arbitrary state space S with

transition rates qx,y from state x ∈S to state y ∈S .
• Pick an arbitrary initial state x0 at time t = 0.
• Suppose that the chain is in state x at time t. The waiting time T to the next

event is exponentially distributed with rate ∑z qx,z.
• At time t+T the process jumps to state y with probability qx,y

∑z qx,z
.

• Repeat.
• Many, many refinements for speed, large populations, e,g, τ-leaping, adaptive

τ-leaping,. . .

23 / 53



Introduction Fisher’s Log-series Mechanistic I Mechanistic II Preston’s Lognormal

Shortcomings of the Birth and Death Process (For Our Purposes)

• The three cases simulated are characteristic : if b < d, the population quickly
goes extinct ; if b = d, it goes extinct, but slowly ; if b > d, it can grow
(exponentially) indefinitely.

• None of these are conducive to having a distribution of population sizes (0 or ∞

are not terribly useful).
• We’ll can fix this by assuming source-sink dynamics :

• Assume d > b, so the population isn’t self-sustaining
• Assume that the population is sustained by immigration from a larger source

population.

• These are conjectured to be the population dynamics sustaining many island
communities.

• But first, let’s examine my claim above.
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An Aside on Exponential Growth

• Consider the expected size of the population, or more precisely, it’s change in a
small time step ∆t :

E [N(t+∆t)] = E [E [N(t+∆t)|N(t)]]

= E [(N(t)+1)bN(t)∆t+(N(t)−1)dN(t)+(1− (b+d)∆t)N(t)]

= ((b−d)∆t+1)E [N(t)] ,

• Rearranging gives the Newton quotient :

E [N(t+∆t)]−E [N(t)]
∆t

= (b−d)E [N(t)] ,

• Taking ∆t→ 0 gives us an ODE : d
dtE [N(t)] = (b−d)E [N(t)].

• Solving gives E [N(t)] = N(0)e(b−d)t, so exponential growth or decay as b > d
or b < d, whereas E [N(t)] = N(0) for all t ≥ 0.
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An Aside on Extinction

• In the simulated populations, those with b≤ d went extinct
• This is easily shown via the skeleton. Let q be the probability of extinction

starting from a single individual.
• Consider a population with N(0) = 1, and consider the first event that happens,

birth or death :

q = P{death}+P{birth}q2 =
d

b+d
+

b
b+d

q2.

• Either the ancestor dies, or it and it’s offspring both give rise to independent
birth and death processes starting from a single individual. Extinction occurs if
both populations go extinct.

• Solving this quadratic, we find that q = 1 is always a solution, and if b > d
q = d

b .
• Thus, extinction is certain if b≤ d (despite E [N(t)] = 1 for all t ≥ 0 is b = d).
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A (Last) Aside on Indefinite Growth
• What about b > d ? Look at the maximum M of the birth and death process.
• Fix m and let Tm be the first time that N(t) = m. M > m if and only if Tm < T0.
• Let pn,m be the probability that, starting from n, Tm < T0.
• Clearly, p0,m = 0 and pm,m = 1.

• In between, using the skeleton : pn,m = b
b+d pn+1,m + d

b+d pn−1,m.

• Rearranging, pn+1,m−pn,m = d
b (pn,m−pn−1,m).

• Iterating, pn,m−pn−1,m = · · ·=
(

d
b

)n−1
(p1,m−p0,m) =

(
d
b

)n−1
p1,m.

• Summing, pn,m−p0,m = ∑
n
i=1 pi,m−pi−1,m = p1,m ∑

n
i=1

(
d
b

)n−1
= p1,m

1−( d
b )

n

1− d
b

.

• Lastly, 1 = pm,m = p1,m
1−( d

b )
m

1− d
b

gives us p1,m and thus

pn,m =
1−
(

d
b

)n

1−
(

d
b

)m → 1−
(

d
b

)n
.

as m→ ∞.
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A Birth, Death, and Migration Process

• Suppose that in addition to births and deaths as previously, we allow migrants to
arrive at rate ν .

• Our transition rates are now qn,n+1 = bn+ν and qn,n−1 = dn.
• Migration prevents extinction.
• Proceeding as above, we find d

dtE[N(t)] = (b−d)E[N(t)]+ν , with solution

E[N(t)] = e(b−d)tN(0)+ν
e(b−d)t−1

b−d
.

• If d > b, this converges to 1
d−b as t→ ∞, so no indefinite growth.

• What is the behaviour of the stochastic model ?
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The Master Equation

• If we knew the probability distribution pn(t) = P{N(t) = n}, we would have a
complete description of the process.

• We’ll attack it again, by looking at it’s change over a time step ∆t :

pn(t+∆t)= (b(n−1)+ν)∆tpn−1(t)+d(n+1)∆tpn+1(t)+(1−(bn+ν+dn)∆t)pn(t)

• Just as before, we can rearrange this to get a Newton quotient on the right hand
side, and take ∆t→ 0 to get a system of ODEs :

dpn

dt
= (b(n−1)+ν)pn−1(t)+d(n+1)pn+1(t)− (bn+ν +dn)pn(t).

• We could solve this, but in general, it gives only limited insight. Still, it’s very
useful.
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The Stationary Distribution

• To posit, as Fisher did, time-independent distribution of species abundances, we
need to ignore transient behaviour and consider

π(n) = lim
t→∞

pn(t)

(if it exists).
• The existence of this stationary distribution does not imply that the process

stops changing.
• Rather, as we observe the process at different times, it will be in different states,

but the probability of being in those states (and thus the fraction of times we
will observe any given state) remain constant.

• With time dependence gone, the derivative in the Master Equation disappears,
leaving a system of linear equations for the π(n) :

(b(n−1)+ν)π(n−1)+d(n+1)π(n+1) = (bn+ν +dn)π(n)
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Detailed Balance

• Rather than try and solve this infinite system of linear equations, we can make a
simplifying observation :

(b(n−1)+ν)π(n−1)+d(n+1)π(n+1)− (bn+ν +dn)π(n)

= ((b(n−1)+ν)π(n−1)−dnπ(n))− ((bn+ν)π(n)−d(n+1)π(n+1)) .

• This will equal zero provided for each n≥ 1,

(b(n−1)+ν)π(n−1) = dnπ(n)

• These are known as detailed balance relations : the rate of flow from state x to
state y balances the flow from y to x.

• A stationary distribution can still exist when detailed balance fails, but it holds
in almost every example where we can easily compute the stationary
distribution.
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Solving Detailed Balance

• Rearranging the detailed balance condition gives us π(n)
π(n−1) =

b(n−1)+ν

dn .
Mutliplying,

π(n)
π(0)

=
π(n)

π(n−1)
π(n−1)
π(n−2)

· · · π(2)
π(1)

π(1)
π(0)

=
n

∏
m=1

b(m−1)+ν

dm
.

• Still must determine π(0) : π(n) is a probability distribution, so

1 =
∞

∑
n=0

π(n) = π(0)
∞

∑
n=0

n

∏
m=1

b(m−1)+ν

dm

• And we can recognize the sum as a binomial series :

∞

∑
n=0

n

∏
m=1

b(m−1)+ν

dm
=

∞

∑
n=0

∏
n
m=1

ν

b +m−1
n!

(
b
d

)n

=
∞

∑
n=0

Γ
(

ν

b +n
)

n!Γ
(

ν

b
) (b

d

)n
=

(
1− b

d

)− ν

b
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A Negative Binomial Stationary Distribution

• Putting all of the above together, we see that the stationary distribution is
negative binomially distributed with k = ν

b and p = b
d :

π(n) =
Γ
(

ν

b +n
)

n!Γ
(

ν

b
) (1− b

d

) ν

b
(

b
d

)n
.

• Parameters now have biological meaning : taking k→ 0 means considering a
very low migration rate. The success rate p is

b× 1
d
= birth rate×E[lifespan] = E[total reproductive output] = fitness

• Unlike Fisher’s, however, this doesn’t account for sampling effects.
• We can, however, account for these by assuming that each extant species is

sampled with probability q.
• The resulting distribution is most easily characterized by using its probability

generating function (pgf).

33 / 53



Introduction Fisher’s Log-series Mechanistic I Mechanistic II Preston’s Lognormal

Probability Generating Functions

• The probability generating function of a random variable, say N, taking
non-negative integer values is

G(z) = E[zN ] =
∞

∑
n=0

P{N = n}zn,

where z is a dummy variable.
• It’s also a handy way to calculate moments :

E [Nm] =

(
z

d
dz

)m
G(z),

• When it exists, it uniquely characterizes the probability distribution, as

dn

dzn

∣∣∣∣
z=0

G(z) = n!P{N = n}.
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(Motivated) Examples of Probability Generating Functions

• Using the binomial series as above, one finds that the negative binomial with
rates r and p has pgf

Gk,p(z) =
(

1−p
1−pz

)k
.

• Now, let B be a Bernoulli random variable with success probability q, i.e.
P{B = 1}= q, P{B = 0}= 1−q. This has pgf

Gq(z) = (1−q)+qz.
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The Sampled Negative Binomial Distribution

• Now, suppose a species has N individuals (N is a NB(k,p) random variable), and
suppose that we labelled them i = 1, . . . ,N and let Bi be a Bernoulli random
variable which is 1 if we observe i (so with probability q).

• Then, the number observed is N′ = ∑
N
i=1 Bi.

• Now, assume N is known. N′ has pgf

E
[
zN ′
]
= E

[
z∑

N
i=1 Bi

]
=

N

∏
i=1

E
[
zBi
]
= ((1−q)+qz)N .

• Now, if N is unknown, but negatively binomially distributed. We have to take
the expectation over N as well :

E
[
((1−q)+qz)N]= Gk,p((1−q)+qz) =

(
1− pq

1−p+pq

1− pq
1−p+pq z

)k

,

so still negative binomial, but with p replaced by pq
1−p+pq
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FIsher’s Gamma

• But what about the gamma distribution for the abundance?
• We can recover it in the limit : recall

π(n) =
Γ(k+n)
n!Γ(r)

(1−p)k (p)n .

• r = ν

b , p = b
d = 1− s < 1 is individual fitness. Suppose that s� 1.

π(n) =
Γ(k+n)
n!Γ(k)

sken ln(1−s) ∼ Γ(k+n)
n!Γ(k)

ske−ns

• Simultaneously assume that n� 1. Then, using Stirling’s approximation,
Γ(k+n)∼ Γ(k)nk,

π(n)∼ 1
Γ(k)

(ns)ke−(ns)

• So, if we let x measure n in units of 1
s , x = ns, we get Fisher’s gamma

distribution.
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Density Dependence

• We saw that keeping the population finite, but non-zero, was necessary to speak
of an abundance distribution.

• If we assumed source-sink dynamics sustained by migration, we could satisfy
that demand.

• Another way to keep a population finite is to impose density dependence via a
carrying capacity, say K.

• We can express this as a birth and death process N(t) with state dependent birth
and/or death dates, e.g.

qn,n+1 = bn and qn,n−1 = dn
(

1+
n
K

)
• Unfortunately, like our birth and death processes with b≤ d, this eventually

goes extinct with probability 1 (see e.g. Parsons (2018) for a relatively
elementary proof).

• But, if b > d, the process takes a long time to go extinct, on the order of ecK for
c > 0, so if K� 1 it has a quasi-stationary distribution.
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K� 1 Approximation

• Unlike previously, there’s no stationary distribution to be found by detailed
balance.

• The Master Equation still proves useful to analyze the problem. Recall,
pn(t) = P{N(t) = n}

dpn

dt
= b(n−1)pn−1(t)+d(n+1)

(
1+

n+1
K

)
pn+1(t)−

(
bn+dn

(
1+

n
K

))
pn(t).

• Make a change of variable x = n
K (i.e. replace N(t) by N(t)

K ), and set
p(x, t) = pKx(t) = P{X(t) = x} and Taylor expand the result :

∂p(x, t)
∂ t

=
Kb
(

x− 1
K

)
p
(

x− 1
K , t
)
+Kd

(
x+ 1

K

)(
1+ x+ 1

K

)
p
(

x+ 1
K , t
)

− (b+d(1+ x))Kxp(x, t)

=− ∂

∂x
[x(b−d(1+ x))p(x, t)]+

1
2K

∂ 2

∂x2 [x(b+d(1+ x))p(x, t)]+O
(

1
K2

)
.
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A Transport Equation

• If we take K→ ∞, we get a transport equation :

∂p(x, t)
∂ t

=− ∂

∂x
[x(b−d(1+ x))p(x, t)] .

• This tells us that if p(x,0) = δx0(x) (i.e. P{X(0) = x0}= 1), then X(t) is just the
solution of the logistic ODE :

dX(t)
dt

= X(t)(b−d−dX(t)) = rX(t)
(

1− X(t)
κ

)
for r = b−d and κ = 1− b

d .
• More precisely, p(x, t) = δX(t)(x).

• To think about : X(t) = N(t)
K , so if we take K→ ∞, X(t) = 0 unless we assume

that N(t) ∝ K
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Adding Environmental Stochasticity

• In this K� 1 limit, we have a finite, persistent population, but no variability.
• (If we kept terms of order 1

K , we would have had demographic stochasticity, but
that’s a story for another day).

• But, what if populations are subject to environmental variability? This is
commonly approached by replacing the logistic ODE with a logistic SDE with
multiplicative noise :

dX(t) = rX(t)
(

1− X(t)
κ

)
dt+σX(t)dB(t)

• This is a phenomenological approach to noise, and not without it’s issues
(forthcoming paper in Oikos proposing a more mechanistic alternative
approach).

• Why is this called multiplicative? The factor X(t) multiplying dB(t). It’s role is
to ensure X(t)≥ 0.

41 / 53



Introduction Fisher’s Log-series Mechanistic I Mechanistic II Preston’s Lognormal

Brownian Motion aka Wiener Process
B(t) is Brownian motion, it’s defining characteristics are that :
• B(t) is a continuous, random function, and
• ∆B(t) = B(t+∆t)−B(t) is a normally distributed random variable with mean 0

and variance ∆t :

P{∆B(t) ∈ [x,x+dx)}= 1√
2π∆t

e−
x2
2∆t .

• Non-overlapping increments ∆B(t1), ∆B(t2) are independent.
• Standard Brownian motion has initial condition B(0) = 0.

Wikipedia
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Stochastic Differential Equations : Understanding and Simulating
Them

• One can say a lot about SDEs, but like our Markov processes, we can get a
handle on them for practical purposes by discretizing time.

• We numerically integrate ODEs via Euler’s algorithm : if dX
dt = b(X(t)) and

X(0) = x0, then we iteratively evaluate the ODE :

X(t+∆t) = X(t)+b(X(t))∆t.

• We numerically integrate a sample path of the SDE
dX(t) = b(X(t))dt+σ(X(t))dB(t) with X(0) = x0, via the Euler-Maruyama
algorithm : we iteratively evaluate

X(t+∆t) = X(t)+b(X(t))∆t+σ(X(t))∆B(t),

independently drawing a new N(0,∆t) random variable ∆B(t) at each time step.
• Important : I’m only talking about Itô SDEs.
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Stochastic Differential Equations : Itô Integral
• Why the notation dX(t) = b(X(t))dt+σ(X(t))dB(t)?

• It is meant to evoke derivatives, without being derivatives : dB(t)
dt doesn’t exist

(Paley, Wiener and Zygmund 1933) because B(t) is too rough to have well
defined tangents.

• The integral
∫ t

0 f (X(t))dB(t) does exist, and is defined analogously to the
Riemann-Stieltjes integral :∫ t

0
f (X(t))dB(t) = lim

∆t→0

n

∑
i=1

f (X(ti))∆B(ti).

• Just as we can interpret a differential equation dX
dt = b(X(t)) as an integral

equation :

X(t)−X(0) =
∫ t

0

dX
ds

ds =
∫ t

0
b(X(s))ds,

the SDE dX(t) = b(X(t))dt+σ(X(t))dB(t) is properly understood as an
integral equation :

X(t)−X(0) =
∫ t

0
dX(t) =

∫ t

0
b(X(s))ds+

∫ t

0
b(X(s))σ(X(t))dB(s).
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The Fokker-Planck Equation

• Just as the Master Equation characterizes the probability distribution function
for a Markov chain, the Fokker-Planck equation characterizes the probability
density function p(x, t) for the solution of an SDE
dX(t) = b(X(t))dt+σ(X(t))dB(t) :

P{X(t) ∈ [x,x+dx)}= p(x, t)dx.

• p(x, t) satisfies

∂p(x, t)
∂ t

=− ∂

∂x
[b(x)p(x, t)]+

1
2

∂ 2

∂x2

[
σ(x)2p(x, t)

]
• If X(t) approaches a stationary distribution, limt→∞ p(x, t) = π(x), we can

similarly obtain it via the Fokker-Planck equation :

0 =− ∂

∂x
[b(x)π(x)]+

1
2

∂ 2

∂x2

[
σ(x)2

π(x)
]
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Zero-flux Solution

• We can write our equation for the stationary distribution as

0 =
∂

∂x

[
−b(x)π(x)+

1
2

∂

∂x

[
σ(x)2

π(x)
]]

• For finite t, J(x, t) =−b(x)p(t,x)+ 1
2

∂

∂x

[
σ(x)2p(t,x)

]
is called the flux.

• Analogous to detailed balance relations, we can find the stationary distribution
as a zero-flux solution, J(x, t) = 0.

• Solving this gives

π(x) =
C

σ(x)2 e
−2
∫ b(x)

σ(x)2
dx
,

and a stationary solution exists if and only if there exists a non-zero normalizing
constant C that ensures that π(x) integrates to 1.
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Another Path to Fisher’s Gamma

• For our logistic equation with environmental noise,
dX(t) = rX(t)

(
1− X(t)

κ

)
dt+σX(t)dB(t), we get

π(x) =

(
2r

σ 2κ

) 2r
σ2 −1

Γ

(
2r
σ 2 −1

) x
2r
σ2 −2e−

2r
σ2κ

x
,

provided r > σ 2

2 .
• Otherwise, the normalizing constant – and the stationary distribution – don’t

exist : noise can drive the population to extinction.
• This gives another biologically motivated derivation – based on very different

mechanisms – for Fisher’s Gamma.
• An object lesson : pattern doesn’t imply process.
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Preston’s Lognormal
• Unfortunately, Preston (1948) found that Fisher’s log series was a poor fit to

bird and moth data sets.
• Plotting numbers numbers of species against their abundance on a logarithmic

scale, Preston found the bell-shaped curves :

Preston (1948).

• He argued that inadequate sampling concealed the decline in the number of
exceedingly rare species.

• Such lognormal distributions have since been shown to be ubiquitous across
diverse species.

• Let’s make one last effort to find a lognormal model of species abundance.
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Gompertz Growth
• In keeping with our last example, let’s consider density dependent growth with

environmental noise.
• Fits to data often improve on the logistic equation by making density

dependence non-linear :

dX(t)
dt

= rX(t)

(
1−
(

X(t)
κ

)θ
)
.

• If we take r = ρ

θ
, then in the limit as θ → 0, we get Gompertz’s growth

equation :
dX(t)

dt
= ρX(t) ln

(
κ

X(t)

)
.

• Let’s consider this with multiplicative environmental noise :

dX(t) = ρX(t) ln
(

κ

X(t)

)
dt+σX(t)dB(t).

• We end up with one of the relatively few examples of an SDE that can be solved
exactly (Engen and Lande, 1996). To do so, use Itôs Stochastic Calculus.
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Itô Calculus

• We’ve already said that stochastic differentials dX(t) are analogous to
derivatives.

• An important similarity with derivatives is Itô’s chain rule : if
dX(t) = b(X(t))dt+σ(X(t))dB(t) and Y(t) = f (X(t)), then

dY(t) = f ′(X(t))dX(t)+
1
2

f ′′(X(t))σ(X(t))2 dt

=

(
f ′(X(t))b(X(t))+

1
2

f ′′(X(t))σ(X(t))2
)

dt+ f ′(X(t))σ(X(t))dB(t).

• Informally this arises from Taylor expansion if we assume that
dB(t)dB(s)“ =′′ δ (t− s)dt (recall, ∆B(t) = N(0,∆t), so E

[
(∆B(t))2]= ∆t) :

• There’s also an analogue to the product rule : if, for i = 1,2,
dXi(t) = bi(Xi(t))dt+σi(Xi(t))dB(t), then

d (X1(t)X2(t)) = X1(t)dX2(t)+X2(t)dX1(t)+σ1(X1(t))σ2(X2(t))dt

• We can (sometimes, not often) use these to solve SDEs.
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Solving the Noisy Gompertz Equation
• Let Y(t) = lnX(t). Using Ito’s chain rule,

dY(t) =
1

X(t)

(
ρX(t) ln

(
κ

X(t)

)
dt+σX(t)dB(t)

)
− 1

2
1

X(t)2 σ
2X(t)2 dt

= ρ

(
lnκ− σ2

2
−Y(t)

)
dt+σ dB(t).

• This linear SDE is known as the Ornstein-Uhlenbeck process, and can be solved
exactlty. Let Z(t) = eρtY(t). Using Itô’s product rule :

dZ(t) = eρt (ρY(t)dt+dZ(t)) = ρeρt
(

lnκ− σ2

2

)
dt+ eρt

σ dB(t)

• Solve by integrating :

Z(t) = Z(0)+
lnκ− σ 2

2
ρ

(eρt−1)+σ

∫ t

0
eρs dB(s)

Y(t) = e−ρtY(0)+
(

lnκ− σ2

2

)
(1− eρt)+σ

∫ t

0
e−ρ(t−s) dB(s)
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Interpreting the Stochastic Integral

• Recall the meaning of the stochastic integral :∫ t

0
e−ρ(t−s) dB(s) = lim

∆t→0

n

∑
i=1

e−ρ(t−ti)∆B(ti).

• It is a sum of independent mean-zero normal random variables ∆B(ti), and thus
also a mean zero normal random variate.

• Let’s compute it’s variance :

E

[(∫ t

0
e−ρ(t−s) dB(s)

)2
]
= E

[(∫ t

0
e−ρ(t−s) dB(s)

)(∫ t

0
e−ρ(t−u) dB(u)

)]
= E

[∫ t

0

∫ t

0
e−ρ(t−s)e−ρ(t−u) dB(s)dB(u)

]
= E

[∫ t

0
e−2ρ(t−s) ds

]
=

1
2ρ

(
1− e−2ρt

)
.
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Interpreting X(t) and Y(t)

• Recall Y(t) = e−ρtY(0)+
(

lnκ− σ 2

2

)
(1− eρt)+σ

∫ t
0 e−ρ(t−s) dB(s)

• We just saw that the stochastic integral term is a normal distribution with mean
0 and variance σ 2

2ρ

(
1− e−2ρt).

• Y(t) has mean e−ρtY(0)+
(

lnκ− σ 2

2

)
(1− eρt)

• As t→ 0, the mean and variance converge to lnκ− σ 2

2 and σ 2

2ρ
.

• Thus, X(t) is lognormally distributed, with a stationary distribution with mean

e
lnκ−

(
1− 1

ρ

)
σ2
2 = κe

−
(

1− 1
ρ

)
σ2
2 and variance(

e
σ2
2ρ −1

)
e

2lnκ−
(

1− 1
2ρ

)
σ 2

.

• So, logistic growth plus environmental noise can also explain Preston’s
lognormal.
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