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Abstract

Proteomics relies on the separation of complex protein mixtures using bidimensional electrophoresis. This approach is largely used to detect
the expression variations of proteins prepared from two or more samples. Recently, attention was drawn on the reliability of the results published
in literature. Among the critical points identified were experimental design, differential analysis and the problem of missing data, all problems
where statistics can be of help. Using examples and terms understandable by biologists, we describe how a collaboration between biologists and
statisticians can improve reliability of results and confidence in conclusions.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The term “proteomics” appeared in 1995 [1,2]. The primary
goal of this new discipline was to study the protein complement
of a genome but it rapidly appeared that this task was far from
reach even if some ambitious and international initiatives, like
Human Proteome Organisation (HUPO) founded in 2001 [3],
were undertaken.

Proteomics relies mainly on the separation of a complex mix-
ture of proteins by bidimensional electrophoresis (2-DE), mass
measurement of peptides generated after spot proteolysis by
mass spectrometry and search in databases.

Constant technical improvements were performed over the
years, in particular accuracy and easiness of use of mass
spectrometers and database enrichment. However, numerous
publications are now considered of questionable quality. To
improve overall quality and results reliability, four weak points
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to consider were identified recently [4]. These points con-
cern experimental design, analysis of protein abundance data,
confidence in protein identification by mass spectrometry and
analytical incompleteness. The third point has been already dis-
cussed [5,6] and we will turn toward the three other points.

The role and importance of experimental design were
described for transcriptomics but less frequently for proteomics.
While proteomics cannot usually handle as much data as tran-
scriptomics, the importance of experimental design should be
emphasized. We show here how statistics can help to define
suitable experimental designs, using classical knowledge on
this subject [7,8] and knowledge issued from transcriptomics
[9-11]. We show that establishing an experimental design in
a dynamic collaboration between biologists and statisticians is
useful to forecast sampling or experimental biases. In particular,
experimental design allows to limit systematic errors, to improve
precision of subsequent statistical tests and contributes thus to
reduce the number of false positives.

Differential analysis of spot volume is generally handled
by using commercial software packages that propose statistical
tools to help to conclude on the significance of variation. Prob-
ably most biologists consider that these packages are sufficient


mailto:chich@jouy.inra.fr
dx.doi.org/10.1016/j.jchromb.2006.09.033

262 J.-FE. Chich et al. / J. Chromatogr. B 849 (2007) 261-272

for their purpose. We show here that statisticians propose pow-
erful tools that can be used for improving data analysis. These
tools can help to rationalize the decisions on significance and can
draw attention on the imperfections of gels, spot mismatches and
other artifacts of 2-DE gels.

Moreover, analytical incompleteness is encountered in pro-
teomics, especially in spots missing (missing data) on one or
more gels coming from the same series. The particular and dif-
ficult problem of these missing data on 2-DE gels is generally
due to experimental problems and must be taken into account in
the statistical analysis. However, the questions raised by these
problems are not trivial and are discussed.

Lastly, we emphasize the interest of collaborations between
biologists and statisticians at different levels of proteomics
experiments, in order to draw the most robust conclusions from
experimental results.

2. Experimental designs
2.1. A practical example: cell line proteomics

In this part, an example corresponding to a question of
proteomics applied to cell biology is described. The situation
presented here can be easily applied to other situations. Cell
lines are largely used as biological tools to study effects of an
infection, the effect(s) of a drug and so on. These immortalized
cells are easy to grow and are a useful source of large amounts
of proteins needed for proteomic studies.

However, proteomics on these cells is subject to variabili-
ties that must be taken into account when possible. The first
variability is clonal drift due to the number of passages of
cells (a technique for diluting cells that enables them to be
kept alive and growing under cultured conditions for extended
periods of time), acquired chronic contaminations or metabolic
modifications due to culture media. Unfortunately, this vari-
ability cannot be easily considered since cell lines are het-
erogeneous (see for example, in the prion field [12,13]) from
passage to passage. Thus, cloning artifacts can induce false
conclusions.

Another source of variability can be due to small biological
variations (cell growth variability, etc.). If a researcher wants to
study the effect of a drug on a cell line, he adds the drug in a
series of flasks and a placebo in another. However, differences
observed between flasks for the same treatment account for a
variability that can be taken into account by experimental design
and statistical method(s).

The second variability is a technical one. It involves the
preparation of cells and the protein solubilization prior to the
separation by 2-DE: for example, if cells are washed using a
cold ice buffer, it is likely that they will express chaperones
that might interfere with the studied phenomenon. A variability
can be due also to the apparatus used for cell culture (variable
heat or humidity of an incubator) or used for protein separation.
One aim of statistical methods presented in this article is to take
account of these sources of variation.

A study using cell lines, was undertook by two of us [14]
and it is used as a basis to present ideas underlying experimental

design. Two cell lines were used to study prion infection. The
first one is GT1-7, a subclone of GT1, a highly differentiated
hypothalamic cell line displaying a number of neuron functions
[15]. The second line results from infection of GT1-7 clone
with the Chandler strain of prion (ScGT1-7: Sc for scrapie,
the prion disease of sheep) [16]. Though GT1 and ScGT1 were
described to be in a steady state after, respectively, 12 passages
[15] and 55 passages post-infection [16], clonal drift could occur
in cell populations grown in so different laboratories for years
and generate variability. In order to study how prion infection
affects cellular metabolism, a proteomic approach was made on
both cell lines.

2.2. Two-phase experiment

Our two-phase experiment was performed as schematized in
Fig. 1A. The first phase consists of the cell cultures. GT1-7 and
ScGT1-7 cells were grown separately for several passages in
order to obtain an amount of proteins compatible with a pro-
teomic analysis. The second phase consists of protein extraction
from these cells and to separate them by 2-DE.

The objective of this two-phase experiment was to compare
protein abundance according to two conditions. These condi-
tions are defined as healthy (H), for GT1-7, and infected (Sc)
for ScGT1-7. In the first phase, cell cultures, sample preparation
and/or pooling represent the biological phase. Separation of pro-
teins by 2-DE, organization of gel runs and staining represent the
technical phase. Technical variability due to the electrophoresis
apparatus was considered to be non-significant because running
conditions (current, buffer and temperature . . . ) were controlled;
thus six 2-DE (IEF then SDS-PAGE) were run for H (represented
by “batch 1 ), followed by six 2-DE for Sc (“batch 2”).

After silver staining, gels were scanned and classically ana-
lyzed using the software ImageMaster 4.01 (GE-Healthcare
Bioscience). After spot volume measurements and match-
ing, differential analysis (Section 3) was performed and
spots showing significant abundancy variations (genome.
jouy.inra.fr/gtl) between H and Sc were identified by mass spec-
trometry. The expression of the proteins corresponding to these
spots can be considered to be specifically affected by prion
chronic infection. They can be potential markers of prion disease
or targets for drug therapy.

Thus, variability arises generally from both phases, call-
ing for rational implementation of work plans [17,18]. It
should be emphasized that establishing an experimental design
allows bias reduction and increased confidence in experimental
results.

2.3. Constructing experimental blocks or blocking

If the researcher suspects variability during gel runs, for
example, he can account for this variability by constructing
blocks. A block is a set of experimental materials considered as
consistent. The objective of blocking is to make the comparison
between observed conditions, with little as possible depen-
dent on artefacts or heterogeneities (differences between gels,
etc.) and as much as possible dependent on the differences the
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Fig. 1. Examples of experimental designs. Squares correspond to flasks in the biological phase and to gels in the technical phase. H denotes healthy GT1-7 cells
and Sc denotes ScGT1-7 (chronically infected GT1-7 cells). (A) Unrandomized design for experiment on cell lines. Healthy cell (H) and infected cell (Sc) were
cultured in several flasks. Samples were pooled and 2-DE were performed. (B) Unrandomized design with “blocks”, the heterogeneities suspected in the technical
phase can be taken into account in differential analysis. (C) Example of a randomized design without blocking. Numbers denote sample landmarks. GT1-7 cells
(H or Sc) were cultured in different flasks. Heterogeneities are suspected in biological and technical phases and a randomization is performed for both phases. The

effect of suspected potential biases is eliminated.

researcher needs to characterize (effect of infection in the exam-
ple). Thus, blocking takes into account heterogeneities known
or suspected from the beginning of the experiment and improves
the precision of the following statistical analysis. When block-
ing is used, both the blocks and the allocation of conditions to
blocks have to be chosen (see [7,8] for more information on
blocking).

An example of blocking is shown in Fig. 1B. Cultures are per-
formed as described in the previous schema. Variabilities being
suspected between “batch 17 and “batch 2”, the researcher con-
structs one block that will run in “batch 1 and a second block
that will run in “batch 2”. Each block is composed of three gels
(isoelectric focusing followed by sodium dodecyl sulfate poly-
acrylamide gel electrophoresis) with proteins from H (sample 1)
and three gels with proteins from Sc (sample 2). If there is a het-

erogeneity due to the electrophoresis apparatus, the researcher
will be able to identify it by comparing gels loaded with sample 1
from both batches and gels loaded with sample 2 also from both
batches. Moreover, the researcher will be able both to quantify
this effect and to improve precision in differential analysis. The
remaining variabilities are due to differences between H and Sc
that the researcher wants to characterize.

The technique of blocking for the technical phase was
described for transcriptomics, to take into account the hetero-
geneities linked to arrays and dyes in microarrays experiments
and complicated designs were proposed [9-11,19]. Pairing is a
particular blocking with blocks of size 2 that was described for
transcriptomics but also for 2D difference gel electrophoresis
(2D-DIGE) experiments [20]. Blocking can also be used in the
biological phase [21].
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2.4. Randomization

Because it is difficult for aresearcher to identify all sources of
variation using his judgement or experience, the use of random-
ization is acommon practice. Randomization was recommended
for microarray experiments [9,10]. To our knowledge, random-
ization for proteomics was described only for experimental
design in mass spectrometry [6].

We will consider again the previously described experiment
but with unknown heterogeneities both in biological and in tech-
nical phases. This experiment thus calls for a randomization
for both phases [18]. The schema of the experimental design
is shown in Fig. 1C. The incubator is supposed to be hetero-
geneous (heat, CO; distribution, etc.) and a randomization is
performed before placing the culture flasks with landmarks (six
“H” and six “Sc”) inside. Cells are cultured and proteins are
extracted individually from each flask. To avoid biases due to,
for example, preferential current run, differences in strip or gel
batches, buffer composition, randomization can be performed
at the different levels of the technical phase: (a) allocation
of proteic samples to strips, (b) strip placement in IEF appa-
ratus, (c) strip deposit at the top of second dimension gels,
after IEF, (d) gel placement in migration tank. Subsequent gel
staining, image analysis and statistical treatment are performed
as usual. The example presented here is a simple randomiza-
tion. However, designs with blocks can also be randomized
[7.8].
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In brief, randomization reduces systematic errors when
comparing the conditions and estimating the precision of the
results.

2.5. Replication

Although randomization and/or blocking allow control of
extraneous variables, the result of a single 2-DE experiment is
not satisfactory due to the intrinsic variability of the method.
In proteomics, variability can be found in biological phase as
well as in technical phase. Variability was estimated to be high
in 2-DE [22] and it can lie in the number of spots detected, on
the variance of the spot volume measured (discussed in Section
3) by software analysis. The authors showed also that a fully
manual analysis is more reliable than a fully automated one.
However, replication in both phases can be problematic due to
the low amount of initial sample or due to low protein content
in a sample (biopsy for example). Some tools are available to
estimate the experiment precision a priori on the basis of the
researcher objectives (www.emphron.com/) .

In order to illustrate the concept of replication, we present
three examples, shown in Fig. 2. The first design (Fig. 2A) has
one biological replication (one flask for H, one flask for Sc)
and six technical replications (six 2-DE per flask). Its drawback
is that biological variance cannot be estimated. The differen-
tial analysis will be based on the technical variance only and
the precision of analysis will be over-estimated. This situation
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Technical :”j (Gels)

phase ilﬁ
® Soogesl [ HHlH| CIEIE] e
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Technical
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Fig. 2. Example of experimental designs using replication. Replication should take into account technical limits and the fiability of expected results. (A) Biological
phase without replication and technical phase with six replications for each sample. (B) Biological phase with three replications and technical phase with two
replications for each sample. (C) Biological phase with six replications and technical phase without replication.
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can increase the number of false positives. Similarly, if protein
extracts from several flasks are pooled into a single sample for
each condition (as in Fig. 1A), the differential analysis will also
be based on technical variance only and the number of false posi-
tives may increase. The use of several pools per condition avoids
this problem (see [9,10] for a discussion on pooling). The second
design (Fig. 2B) shows three biological replications (three flasks
for H and three for Sc) and two technical replications (two 2-DE
per flask). The third design has six biological replications and
only one technical replication. For both designs, six 2-DE were
made for each H and Sc. Both designs have thus the same ability
to account for the technical variance. However, the third design
(Fig. 2C) has more biological replications and the subsequent
analysis will be more accurate.

Cell lines do not give the opportunity to perform true bio-
logical independent replications because all cells derive from a
unique cell. However, several factors (clonal drift, culture media
modifications, de novo latent infections, etc.) can induce, at least
theoretically, variations that can be assessed by replication of
flask cultures without pooling. True biological replications can
be envisaged using primary culture cells [23] because these cul-
tures can be designed to be as independent as possible from each
other.

Replications are necessary to assess and increase the preci-
sion of the subsequent analysis results. From a statistical point
of view, biological replications are more efficient than techni-
cal replications. In practice, biologists use technical replications
due to the well known variability of the 2-DE technique. Litera-
ture studying the experimental design of microarray experiments
emphasizes using replications to assess and control experimental
variability [9-11]. However, these recommendations are dis-
cussed since a system of unreplicated experiments was described
[11]. For proteomics, discussions on the number of observations
are available in [20,24].

2.6. Discussion

In summary, experimental design is an important part of bio-
logical experiments, especially in proteomics where technical
methods are long, difficult with intrinsic technical variability.
The situation of two-phase experiment is often encountered
in proteomics [21] and transcriptomics [10] and experimental
design offers several tools that can be useful to minimize the
effect of variabilities on the results. The choice of a suitable
experimental design can improve the reliability of true positives
detection and reduces the number of false positives in the sub-
sequent differential analysis.

While general guidelines can be drawn from the examples
shown here, it should be kept in mind that establishing an
experimental design is a compromise between the availability
of biological material, the technical difficulties of the approach
and the reliability of the expected results.

3. Differential analysis

The aim of the differential analysis is to detect the proteins
whose abundance differs according to the condition. In statis-

tical terms, this comes to test simultaneously a large number of
hypotheses: for each spot j, we have to test the hypothesis H;
that the spot volume does not differ according to the condition,
or in other words that the corresponding protein is not variant
in abundance. This problem has been extensively studied for
the determination of the differentially expressed genes in
microarray experiments [25-30]. Nevertheless, the adaptation
of these works to data coming from 2-DE is not direct for the
following reasons:

e The data present a great variability due to the complexity of
the image analysis [31-35].

e The number of missing data is large, up to 50-60% [36].

e Generally the replication number is small, between 3 and 6.

e Some observations are irrelevant. This is the case when the
image analysis process detects spots in trails or overlapping
spots.

The statistical analysis provides a list of variant spots, using
a procedure that is based on a statistical model and on the data.
The parameters controlling the procedure, for example, the prob-
ability of deciding wrongly that a spot is variant, are estimated.
In reality, because some observations are irrelevant, this list is
only a list of potentially interesting spots and must be carefully
examined before validation.

Detection of pertinent spots is thus an iterative procedure
between the researcher and the results of the statistical analysis.
Nevertheless, providing methodological tools for detecting irrel-
evant observations and variant spots, may help to best analyze
the data.

The testing procedure consists of choosing a fest statistic
and deciding if the hypothesis H; is rejected or not. These
problems are treated in Section 3.1. The next question to con-
sider is what does the procedure control? This is the object of
Section 3.2.

In practice, preliminary analysis is necessary in order to verify
that the statistical model is consistent with the data. Another
important question is which strategy for missing data? All this
will be discussed in Section 3.3.

3.1. Statistical models and testing methods

Statistical problems involved in gel analysis have been dis-
cussed [34,36-39]. In this paper we consider two approaches,
the spot by spot approach (or univariate analysis) where the
test statistic for testing the hypothesis H; is based on the
data observed for the spot j only, and the global approach
(or multivariate analysis) where the test of H; is based on
the results of an analysis of variance considering all the
observations together. The methods taking into account the
experimental design, for example blocking, are mentioned in
Section 3.1.3.

Let us denote by Y., the response for spot j, under condition
¢, on gel g. The response is the percentage of volume on gel g or
a suitable transformation of spot volume, that is a transforma-
tion for which the statistical assumptions needed for applying
the methods described below will be reasonably satisfied. The
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problem of choosing a transformation is discussed in Section
3.3.3.

3.1.1. Spot by spot analysis

In the spot by spot analysis, we assume that the Yj.,’s are
distributed as Gaussian independent variables with mean m j.
and variance 012-. Testing H; comes to test that the mj.’s are
all equal using the classical Fisher or Student statistics test (see
Box 1). Several variants of Student statistics have been pro-
posed [40]. Non-parametric tests can also be applied such as the
Mann—Whitney (or Kolmogorov) test. If we denote by F, the dis-
tribution function of the observations of spot j under condition c,
the Mann—Whitney test consists in testing that the distributions
F, areidentical. It does not need to assume Gaussian distribution.

Box 1. Spot by spot analysis: test of H;.

(A) Comparison of two conditions

Let us denote Y. as the empirical mean of the
Ycq, njc the number of observations of spot junder
condition ¢, and SCRj. as the residual sum of
squares defined as follows:

nje
SCRje = Y (Yjeg — Yje) .
g=1
If nj; +n,p >3, the test statistic for testing H;:
"mji =mp" against “m; # mp" is defined as fol-
lows:
5. — [Yj1.—Yp.|
7 V/SCR}1 + SCR2)/(nj1 + njp=2)((1/nj1) + (1/n )
Let us denote by Z; a Student variable with
d degrees of freedom. If H; is true, then §; is

distributed as |Z,,4x,—2| and the p-value p; is
defined as

Pj = pr(|an1+nj272| > S])

(B) Comparison of C conditions, C > 3. If nj,
the total number of observations for spot j, is
greater than C + 1, the test statistic for testing
Hj: "mj =---=mjc" against the alternative that
there exist two conditions ¢, ¢’ such that “m . #
mj-" is defined as follows:

= C Y nie(Yie —Yi)
c—-1 ¢, SCR,

where Yj., nj. and SCR . are defined as above, and
Y;. is the mean of the responses for spot j.

Let us denote by Fy, 4, a Fisher variable with d;
and d, degrees of freedom. If H; is true, then §;
is distributed as Fc-1,;—c and the p-value p; is
defined as

S

pj = pr(Fc—1,n,—c > Sj).

Box 2. Global ANOVA approach: test of H;.
Assume that we compare two conditions. The
test statistic S;, is based on the least squares
estimators of the differences (SpC)j1 — (SpC)j2's
divided by their estimated standard errors. The
Sj'S are distributed as |Z,_gc——1yc-1nl. where
n= ij-zl nj is the total number of observations,
Jthe number of spots, Gis the number of gels for
each condition.

The p-values p; are defined as in Box 1.

3.1.2. Global analysis
In the global analysis, we start with an analysis of variance
(ANOVA) model, where the response Y j.¢ is modeled as follows:

Yijeg = (G)g + (SpC)jc + Ejeg

where (G)y is the effect of gel g (the part of variability due to gel
g in the response Y), and (SpC) . is the spot x condition effect
defined as the effect of spot j under condition ¢ on the response
Y. The random errors E j, are distributed as centered Gaussian
independent variables with the same variance 0. Testing H fi
comes to test that the differences between the spot x condition
effects (SpC) . are zero using the Student or Fisher statistic (see
Box 2).

3.1.3. Analyses with block effects

The block effects in the experimental design have to be taken
into account in the modeling [10,17-19,21]. Let us consider the
example given by Design 2 of Fig. 1B. Let ¥ j.4¢ be the response
of spot j under condition ¢ measured on gel g in experimental
apparatus a. In the spot by spot approach, for each spot j, we
consider the following ANOVA model,

chag =(A)g +(O) + (Ac)ac + chag

where (A), is the mean effect of apparatus a, (C). the mean
effect of condition ¢, and (AC),. is an apparatus x condition
effect. The last effect is called an interaction effect meaning that
the condition effect may differ according to the apparatus. For
each spot j the model parameters are estimated, and testing H;
comes to test that the (C),’s are all equal. In the global approach
model, the response Y jcqe is modeled as follows:

Yjcag = (G)g + (SpA) ju + (SpC)jc + (SPAC) jac + Ejeag

where (G), is the gel effect, (SpA)j, the effect of spot j
observed in apparatus a, (SpAC) j,c an apparatus x condition x
spot effect, and (SpC) . is the effect of spot j under condition c.
As before, testing H; comes to test that the differences between
the spot x condition effects are zero.

3.1.4. Decision rules

The decision rule for rejecting H; is the following: for each
spot j, we calculate the p-value p;, defined as the probability
for rejecting H; when H is true. The hypothesis H is rejected
when p; is small. Therefore the set of variant spots corresponds
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to the smallest p-values. For example, we can choose to reject
H; when p; is smaller than 5%.

3.2. Controlling the testing procedure

The question that arises is how many errors are we doing
when testing J hypotheses? We commit an error in two situations:

1. When we decide that a spot is a variant when it is not. Such
an error leads to a false positive. The number of such errors
is denoted FPos.

2. When we decide that a spot is not a variant when it is. Such
an error leads to a false negative.

The control and elimination of false positives is impor-
tant in order to avoid drawing false conclusions, particularly
when the conclusions are the starting point of a new costly
experiment.

If we run the testing procedure with & = 0.05, then we expect
up to 5% of the total number of spots to be variants by chance
alone. In other words, if the differential analysis is performed
with J = 1000, then we expect up to 50 spots to be wrongly
detected as variants. Such a control is not acceptable. Two meth-
ods described below overcome this problem.

3.2.1. The family-wise error rate or FWER

The FWER is defined as the probability of having at least
one false positive. It can be shown that if each hypothesis H; is
rejected when p; < «,then FWER < «J.Choosinga = 0.05/J
leads to FWER < 0.05. This choice of « is known as the Bon-
ferroni correction. This procedure allows very few occurrences
of false positives, but makes the decision rule that a spot is dif-
ferentially expressed very strict.

0.1

P 4
) +
1 +
0.07 #*'*
4
0.05
0.03 4’"
o
E e
I—
0.0001+
v v v v v v U v U v v T
0 20 40 60 80 100 120
R=5 R=100 I

3.2.2. The false discovery rate or FDR

If R denotes the number of rejected hypotheses, the FDR is
defined as the expected value of the ratio FPos/R when R is
positive. Controlling the FDR at level 0.05 means that up to 5%
of spots among the spots detected as variants, are identified by
chance. This procedure proposed by Benjamini and Hochberg
[41] is detailed in Fig. 3. Several variants and improvements of
this procedure have been proposed [40,30,42].

3.2.3. Which one to choose?

The choice between FDR or FWER procedure should be
made on the basis of the aim of the research. If the differential
analysis is a work whose objective is to list potential proteins
involved in a physiological process, FDR method provides
a reliable tool. If the objective is to determine if a protein is
a potential biomarker, according to [4], false positives must
be totally eliminated and FWER method should be preferred.
However, in this case, further investigation is needed after this
step to validate the biomarker.

3.3. Preliminary analyses

3.3.1. Removing irrelevant data

Testing simultaneously a large number of hypotheses has a
cost: the larger the J, the more the procedure is strict. Therefore
retaining in the differential analysis spots for which the observa-
tions are not relevant may compromise the differential analysis
for the other spots. The amount of protein quantified in each
spot can be computed when the spots are correctly detected by
the image analysis software, but 2-DE images present smears
and trails corresponding to migration artifacts. Those spots are
frequently located near the left or right side of the image, corre-
sponding to zones of accumulation of protein not within the pH
gradient used, and around overabundant proteins, such as actin

0.00394

0.0034 +

0.002+4

0.001+

0.00014
T

R=5 R=39 |

Fig. 3. Decision rules. Once the p-values p; are calculated, it remains to define a threshold, such that the hypothesis Hj is rejected as soon as p; is smaller than
the threshold. Let us formulate the problem in another way by considering the set of ordered p-values into ascending order, p(1) < p2) < --- < p(J), and a set of

thresholds that may depend on j denoted ;. The number of rejected hypotheses Hj, R, is defined as the largest j such that p(;) < t;. Finally, we reject H; if p; < k.

If all the pj)’s satisfy p(;) > 7;, then R = 0: none of the hypotheses H; is rejected.

e If 7; is constant and equal to «, then R is simply the number of p-values that are smaller than o. We can take o = 0.05, or apply the Bonferroni correction with

a=005/J.

e The method proposed by Benjamini and Hochberg takes t; = 0.05,/J. Then H; is rejected if p; < 0.05R/J. They have shown that the FDR is controlled as
follows: FDR < 0.057/J where T is the number of spots that are not differentially expressed.

These methods are illustrated by the graphics of p-values p(;) in ascending order as function of j, for j = 1,..., 125 on the left and j =1, ..., 42 on the right.

These data are coming from a simulated example with J = 500. The number of rejected H; equals 100 if 7; = 0.05, 5 if 7; = 0.05/500 and 39 if the Benjamini and

Hochberg’s method is used with z; = 0.05/J.
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Fig. 4. Removing irrelevant spots. Spots near the left and right sides of the gel
and near the top are deleted as well as spots located near actin and tubulin that
are overabundant.

or tubulin for example. To improve the analysis, those spots are
deleted (see Fig. 4).

3.3.2. Checking gel replications within conditions

The experiment can be used for differential analysis if within
each condition, the gels can be viewed as replications of the same
observation. However, the classification of gels into conditions
may be uncertain because of biological or technical variability
in the experiment.

Data-mining methods are suitable for checking this assump-
tion, considering the gels as the experimental units (the cases)
and the spots as the variables. Unsupervised methods such as
principal component analysis (PCA) or hierarchical clustering,
ignores the condition under which the gels were observed. Their
aim is to discover structures from the evidence of the data matrix
alone. If the structure proposed by the analysis consists of split-
ting the gels into conditions, then we are allowed to use the data
set for differential analysis. If not, such an analysis may give
information on what is going wrong in the data set.

Some of these methods such as PCA, cannot be used when
many spots are missing, particularly in the context of 2-DE gels,
because they are not missing at random. It is then possible to
run the method only on spots observed on all the gels. Another
possibility is to attribute values to missing data. This point will
be discussed in Section 3.4.

3.3.3. Choice of a suitable transformation of the observed
volumes

The testing procedures presented in Section 3.1 rely on sta-
tistical assumptions that should be checked.

The global approach assumes that there exists a suitable trans-
formation of the observed volumes such that an ANOVA model

is appropriate for modeling the data. The spot by spot approach
assumes that there exists a transformation such that the gels
within a condition are replications of the same observation, and
the variance of the resulting response does not depend on the
condition c. If these assumptions are not satisfied, then the test-
ing procedures are false, that is, the calculation of the p-values
is no longer valid. Usually the gel effect is eliminated by calcu-
lating for each spot the percentage of volume on the gel. Then
the Student test or the Mann—Whitney test is used for testing H;
for each spot j. However, it has been observed that the larger the
spot, the larger the variance [43,38]. It is therefore worthwhile to
look for a transformation in order to stabilize the variance. This
heterogeneity in the data variability is mainly due to a scale phe-
nomenon, well-known when the observation (the spot volume)
is a count (number of pixel x intensity).

In practice the problem is to find a transformation 7 of the vol-
umes V¢, or the percentage of volumes on each gel %V, such
that the transformed data Y, = T(Vieg) or T(%Vje,) satisty
the assumptions of Section 3.1. In some cases the logarithmic
transformation is applied with success. In other cases, other
transformations are more appropriate. The Box—Cox method
allows to estimate an optimal transformation from the data
[38,44]. Other normalization methods based on the data have
been proposed [39,45]. In any case, graphics and statistical anal-
yses are useful for detecting the presence of structures in the
variance of the data [38,46]. Precisely let us denote by R ., the
residuals defined as Rjcg = Yo — f’jcg , Where f’jcg is the pre-
dicted value for spot j on gel g under condition c: in the spot
by spot apProach,/I:/jcg is simply equal to Yj..; in the global
approach, Y., = (G)g + (SpC)jC, where (G)g and (SpC)jc are,
respectively, the estimated gel and spot x condition effects. The
residuals are estimating the random errors E jc,. If the chosen
model is correct, then their distribution is nearly the same than
the errors distribution. Therefore, structures in the variance of the
observations may be detected for example by examining graph-
ics of residuals versus the predicted values, or the position on
the gel. If such structures exist, they can be taken into account in
the global ANOVA model. Moreover, looking carefully at spots
J whose absolute residuals | R ;.| or empirical variances are very
high, may reveal problems during the image analysis process,
as mismatching for example. It gives the opportunity to correct
the data if necessary.

A residual analysis for studying the variability of data coming
from example of Section 2 is shown in Fig. 5. The graphic of
residuals versus the predicted values shows that the residuals are
increasing with the spot volume. The optimal transformation for
stabilizing the variance is estimated by the Box—Cox method: we
found T(%V) = (%V)'/3. For that example, we did not find that
the data variability was depending on the spots position on the
gel.

Other sources of heterogeneity may exist in the data, and
the distribution of residuals may be much more spread out
than the Gaussian distribution though no particular structure
was detected in the variance of the observations. Some authors
[47,27] proposed in the context of differential analysis of gene
expression, to use bootstrap methods to address the problem of
non-Gaussian distribution of the test statistic. Nevertheless it
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Fig. 5. Graphics for studying the data variability. The two first graphics represent the absolute values of the residuals Rjc; = Yjcg — ¥jcg Vs. the predicted values
g icg for the data coming from example of Section 2. Only spots whose volume ratio was greater than 2 were considered in the differential analysis. On the left,
the Y, are the percentage of volumes on each gel: Y., = %V ;. The lines are smoothed fits of the data, one for each condition. They clearly show that the
residuals are increasing with the mean. The logarithmic transformation Y., = log(%V ), see the graphic on the middle, inverts the tendency: the smoothed fits
of the residuals are decreasing functions of the predicted values. On the right, Y., = (% Vj(g)'/ 3. This power transformation allows to stabilize the variance of the
observations, the smoothed fits being nearly horizontal. The last graphic represents the distribution of the standardized residuals after the power transformation. The
standardized residuals should be distributed as independent Gaussian variables with mean 0 and variance 1. The two first boxplots consider the residuals under each
condition. They do not show any particular difference between the conditions. The third boxplot represents the distribution of all the residuals, and the last one the
distribution of n simulated Gaussian (0,1) variates, where # is the total number of residuals. Looking at these graphics, there is no reason to suspect that the responses

Yieg = (% Vjcg)l/ 3 are not Gaussian distributed with the same variance.

should be noted that bootstrap method is not well adapted to the
spot by spot approach because of the small number of replica-
tions. Moreover applying bootstrap methods for the differential
analysis of 2-DE in a global ANOVA model, leads to heavy
computation. Indeed, because of missing data, the algorithm for
estimating the parameters is time consuming.

3.4. Strategy for missing data

Missing data cannot be ignored in differential analysis of 2-
DE, because they affect a large number of spots, and because

the lack of observation may be due to proteins variant in
abundance.

Several reasons lead to missing observations, for example
the actual absence of a given protein, or a mismatching. In some
cases, it is possible to guess the reason. For example, when
the spot is not observed on any gels within a condition, the
protein may be absent. But generally it is hazardous to interpret
missing data without a tedious inspection of the data, spot by
spot.

The usual testing procedures used for the differential analy-
sis does not need a complete data set, but they need a minimum
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Box 3. Effect of the sample size on the estimated
variance variability.

Let X4,..., X, be nindependent Gaussian obser-
vations with mean m and variance 2. The empir-
ical variance s> defined as follows

1

n n
1
52 = 1 E (X; — X.)2, where X. = — E X,
n— n
i=1 i=1

is an unbiased estimator of the variance ¢2. Its
coefficient of variation is equal to

CV(s) = 100 standard-error(s2) 100 [ 2 .
mean(s?) n—1

It follows immediately that if n = 3, CV(s?) = 100%,
ifn =9, CV(s?) = 50%.

Let us now apply these results to the Student
test used for testing H; in the spot by spot
approach. For the sake of simplicity, assume that
nji =njp =n;j/2. The denominator of §; is the
square-root of the estimated variance of the dif-
ference Y. — Yj».. More precisely, the variance of
Yji. — Yj. is estimated by S7 = 4s7/n; where s7 is
the empirical variance. Using the results given
above, we get that the coefficient of variation of S%

equals 100,/2/(n; — 2). For example, n; = 6 leads
to CV(4s3/n;) = 71%, n; = 12 leads to 456%. These
simple calculations show the importance of the
number of replications in the differential analysis.

number of observations for each spot, at least one observation
for each spot under each condition. If we use the spot by spot
approach, at least three observations for each spot for the com-
parison of two conditions ( see Box 1A) are needed. But, as it is
shown in Boxes 3 and 4, one should prefer to have at least five
or six observations for each spot.

Some authors proposed to set the missing data to the value
0, or to the lowest observed value in the data set [46]. Such
a procedure assumes that all missing data are due to lack of
protein. Others proposed to replace the missing data for one
spot on one gel by the mean of the observations for this spot.
More sophisticated methods have been proposed as the k-nearest
neighbour method [48,49]. Nevertheless they are not adapted to
the case where values are missing on all the gels corresponding
to one condition.

Another solution is to replace missing data by some simu-
lated values, for example by drawing Gaussian variables with
mean m and variance s*. The values of m and s> may be cho-
sen with the help of the data. For example, m is the smallest
or one of the smallest observed values as the 0.025 quantile of
the data, and s2 is the median of the empirical variances calcu-
lated for each spot. The question is now how many missing data
must be replaced by simulation? One possibility is to simulate
missing data in order to get the minimum number of observa-
tions required for the statistical analysis. At the opposite end

Box 4. Spot by spot approach and Student statis-
tic: variations of the p-values as function of the
estimated standard-error and the number of repli-
cations.

Let us consider a differential analysis of 2-DE com-
paring two conditions, based on a spot by spot
approach, where the number of spots J is equal
to 500. Suppose that

e After the logarithmic transformation of the vol-
ume percentages, the responses are Gaussian
distributed with the same variance.

e Using a Bonferroni procedure that controls the
FWER at 5%, five spots were detected as vari-
ant. Precisely, the hypothesis H; was rejected if
the p-value was lower than 0.0001.

e Using the procedure controlling the FDR at 5%,
we found 39 variant spots. In that case, the
hypothesis H; was rejected if the p-value was
lower than 0.0039.

Let us consider spots for which the means dif-
ference 812 = |Yj1. — Yj».| equals log(2). According
to our experience when analyzing 2-DE data, the
estimated standard-error of these 8, may vary
between 0.05 and 1. The table below gives the
p-values corresponding to §;5 = log(2) for several
values of their estimated standard-errors, denoted
S.E. (8;2) and several values of the number of
replications. It is assumed that the number of
replications is the same under each condition:
nﬂ =l’lj2 =nj/2.

SE. (612) nj=4 nj=06 nj=38 nj=10 n;=12
0.05 0.0052 < 0.0001 < 0.0001 < 0.0001 < 0.0001
0.1 0.020 0.00011 < 0.0001 < 0.0001 < 0.0001
0.2 0.074 0.013 0.0027 0.00059  0.00013
0.5 0.30 0.16 0.097 0.059 0.037

1 0.55 0.44 0.36 0.30 0.26

This table highlights that the decision rule is
strongly dependent on the variability of the data
and the number of replications.

we could simulate data wherever they are missing. The risk is
then to bias the differential analysis by introducing additional
information possibly erroneous.

What is a good strategy for missing data in 2-DE analysis is
an open question that needs further work.

3.5. Discussion

Whatever the approach chosen, spot by spot or global
approach, it is always advantageous to carry out preliminary
analyses as described in Section 3.3. The differential analysis
of 2-DE gels is an iterative process. The statistical analysis will
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provide a list of differentially expressed spots in terms of protein
abundance, based on a decision rule strongly dependent on the
data variability and on the number of replications (see Box 4).
This list will be confirmed or rejected by the researcher. If sev-
eral spots are rejected, it may be worthwhile to suppress these
spots from the data and go back to the beginning of the analysis.

One customary practice is to retain among spots detected
as variants those that are biologically significant (see [39]). For
example, the two-fold change rule is applied: it consists of keep-
ing spots whose volume ratio is greater than 2. Another practice
is to do the differential analysis only with spots whose volume
ratio is greater than 2. Let us clarify that from a statistical point of
view, those rules have no meaning. In practice, spots whose vol-
ume ratio is smaller than 2 may be observed with great precision
and with a large number of replications, and thus may be detected
as variant. Suppression of those spots before the differential anal-
ysis may lead to eliminate variant spots. Statistics cannot decide
what is biologically pertinent or not, but can propose objective
methods based on the data, to suggest both what could be inter-
esting, and what should be moved aside or corrected.

Let us now discuss the choice between the spot by spot and
the global approaches.

e The spot by spot analysis does not need sophisticated soft-
ware, and is proposed by the software packages used for
image analysis. It is thus very attractive. Nevertheless, as
each test uses information coming from only one spot, a large
number of replications is necessary (see Box 4). In Section
3.1 we assumed that the variance of the observations for one
spot was identical under both conditions. This assumption
could be relaxed and the test statistic adapted to the case
where the variance is dependent on the condition. There-
fore, the number of replications by condition should be large
enough to estimate properly the variance of the test statistic
(see Box 3).

The Mann—Whitney test is attractive because it does not
assume Gaussian distribution but it is based on the ranks of the
observations rather than on the observations. It lacks power
when the number of observations is small [29]: a minimum of
seven replications by condition is needed according to [39].

Whatever the test statistic, it is assumed that for each con-
dition, and spot, the observations are replications. Therefore,
the data normalization, as suppressing the gel effect, and more
generally the block effects, must be done before the test-
ing procedure. However, it should be noticed that including
additional effects reduces degrees of freedom in the Student
statistic.

® The global analysis uses information from all the data for test-
ing each hypothesis H;. The gel effects on the mean response,
denoted (G)g in Section 3.1, are estimated together with the
spot x condition effects, denoted (SpC) .. The variance has
been assumed the same for all spots, but this assumption may
be weakened by taking into account information on the vari-
ance structure. For example, the variance may depend on the
condition, or on the spot localization on the image, or on the
spot. Because of missing data, a statistical software, such as
R (cran.r-project.org) or SAS (www.sas.com) is needed.

Let us finally underline that detecting significant differ-
ences in protein abundance relies on a statistical procedure that
compares the differences of observed spot volumes to their vari-
ability. Therefore, the experimental design must guarantee the
possibility to estimate properly this variability. Variability in
the data may come from the biological and technical phases.
Replications in the biological phase may be difficult to obtain in
some situations, as for example when sample are taken on people
or animals. In the technical phase, three or four replications in
most proteomics studies should be possible. The statistician has
to take into account these situations, to propose suitable statisti-
cal methods, as for example methods based on global ANOVA
models, and to precise the limits in which the results can be
handled.

4. Conclusion

Accurate differential analysis of proteomic data outcomes of
rigorously designed experiments and produces reliable results.
This dynamic interaction requires a close interdisciplinary col-
laboration at every step of the project and is beneficial for
both biologists and statisticians. Further investigations using
the results issued from such a collaboration can be considered
with increased confidence. Statistical tools such as discriminate
analysis, regression methods or supervised classification [50-
55] can be further applied to accurately discriminate the status
of unknown samples, normal or pathologic for instance. The
interaction schema between statisticians and biologists is par-
ticularly important for the detection of differentially expressed
proteins involved in pathologies since it can lead to the discovery
of biomarker candidates. Another field of collaboration between
both disciplines is the search for functional molecular (proteins
only or proteins and mRNAs, etc.) networks. The aim of this
approach is to establish the relationships existing between the
different cellular actors in order to (re)-construct a causality net-
work. Statistical methods in this field are under development and
numerous fundamental mathematical researches are actively in
progress [56-59]. It should be emphasized that the interactions
between mathematicians, statisticians and biologists are not lim-
ited for providing increased confidence in biological results; they
allow the delineation of new areas where collaborative research
is needed.
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