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bstract

Proteomics relies on the separation of complex protein mixtures using bidimensional electrophoresis. This approach is largely used to detect
he expression variations of proteins prepared from two or more samples. Recently, attention was drawn on the reliability of the results published
n literature. Among the critical points identified were experimental design, differential analysis and the problem of missing data, all problems
here statistics can be of help. Using examples and terms understandable by biologists, we describe how a collaboration between biologists and
tatisticians can improve reliability of results and confidence in conclusions.
2006 Elsevier B.V. All rights reserved.
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. Introduction

The term “proteomics” appeared in 1995 [1,2]. The primary
oal of this new discipline was to study the protein complement
f a genome but it rapidly appeared that this task was far from
each even if some ambitious and international initiatives, like
uman Proteome Organisation (HUPO) founded in 2001 [3],
ere undertaken.
Proteomics relies mainly on the separation of a complex mix-

ure of proteins by bidimensional electrophoresis (2-DE), mass
easurement of peptides generated after spot proteolysis by
ass spectrometry and search in databases.
Constant technical improvements were performed over the

ears, in particular accuracy and easiness of use of mass

pectrometers and database enrichment. However, numerous
ublications are now considered of questionable quality. To
mprove overall quality and results reliability, four weak points

� This paper is part of a special volume entitled “Analytical Tools for Pro-
eomics”, guest edited by Erich Heftmann.
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o consider were identified recently [4]. These points con-
ern experimental design, analysis of protein abundance data,
onfidence in protein identification by mass spectrometry and
nalytical incompleteness. The third point has been already dis-
ussed [5,6] and we will turn toward the three other points.

The role and importance of experimental design were
escribed for transcriptomics but less frequently for proteomics.
hile proteomics cannot usually handle as much data as tran-

criptomics, the importance of experimental design should be
mphasized. We show here how statistics can help to define
uitable experimental designs, using classical knowledge on
his subject [7,8] and knowledge issued from transcriptomics
9–11]. We show that establishing an experimental design in
dynamic collaboration between biologists and statisticians is
seful to forecast sampling or experimental biases. In particular,
xperimental design allows to limit systematic errors, to improve
recision of subsequent statistical tests and contributes thus to
educe the number of false positives.
Differential analysis of spot volume is generally handled
y using commercial software packages that propose statistical
ools to help to conclude on the significance of variation. Prob-
bly most biologists consider that these packages are sufficient

mailto:chich@jouy.inra.fr
dx.doi.org/10.1016/j.jchromb.2006.09.033
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or their purpose. We show here that statisticians propose pow-
rful tools that can be used for improving data analysis. These
ools can help to rationalize the decisions on significance and can
raw attention on the imperfections of gels, spot mismatches and
ther artifacts of 2-DE gels.

Moreover, analytical incompleteness is encountered in pro-
eomics, especially in spots missing (missing data) on one or

ore gels coming from the same series. The particular and dif-
cult problem of these missing data on 2-DE gels is generally
ue to experimental problems and must be taken into account in
he statistical analysis. However, the questions raised by these
roblems are not trivial and are discussed.

Lastly, we emphasize the interest of collaborations between
iologists and statisticians at different levels of proteomics
xperiments, in order to draw the most robust conclusions from
xperimental results.

. Experimental designs

.1. A practical example: cell line proteomics

In this part, an example corresponding to a question of
roteomics applied to cell biology is described. The situation
resented here can be easily applied to other situations. Cell
ines are largely used as biological tools to study effects of an
nfection, the effect(s) of a drug and so on. These immortalized
ells are easy to grow and are a useful source of large amounts
f proteins needed for proteomic studies.

However, proteomics on these cells is subject to variabili-
ies that must be taken into account when possible. The first
ariability is clonal drift due to the number of passages of
ells (a technique for diluting cells that enables them to be
ept alive and growing under cultured conditions for extended
eriods of time), acquired chronic contaminations or metabolic
odifications due to culture media. Unfortunately, this vari-

bility cannot be easily considered since cell lines are het-
rogeneous (see for example, in the prion field [12,13]) from
assage to passage. Thus, cloning artifacts can induce false
onclusions.

Another source of variability can be due to small biological
ariations (cell growth variability, etc.). If a researcher wants to
tudy the effect of a drug on a cell line, he adds the drug in a
eries of flasks and a placebo in another. However, differences
bserved between flasks for the same treatment account for a
ariability that can be taken into account by experimental design
nd statistical method(s).

The second variability is a technical one. It involves the
reparation of cells and the protein solubilization prior to the
eparation by 2-DE: for example, if cells are washed using a
old ice buffer, it is likely that they will express chaperones
hat might interfere with the studied phenomenon. A variability
an be due also to the apparatus used for cell culture (variable
eat or humidity of an incubator) or used for protein separation.

ne aim of statistical methods presented in this article is to take

ccount of these sources of variation.
A study using cell lines, was undertook by two of us [14]

nd it is used as a basis to present ideas underlying experimental

c
b
d
e
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esign. Two cell lines were used to study prion infection. The
rst one is GT1–7, a subclone of GT1, a highly differentiated
ypothalamic cell line displaying a number of neuron functions
15]. The second line results from infection of GT1–7 clone
ith the Chandler strain of prion (ScGT1–7: Sc for scrapie,

he prion disease of sheep) [16]. Though GT1 and ScGT1 were
escribed to be in a steady state after, respectively, 12 passages
15] and 55 passages post-infection [16], clonal drift could occur
n cell populations grown in so different laboratories for years
nd generate variability. In order to study how prion infection
ffects cellular metabolism, a proteomic approach was made on
oth cell lines.

.2. Two-phase experiment

Our two-phase experiment was performed as schematized in
ig. 1A. The first phase consists of the cell cultures. GT1–7 and
cGT1–7 cells were grown separately for several passages in
rder to obtain an amount of proteins compatible with a pro-
eomic analysis. The second phase consists of protein extraction
rom these cells and to separate them by 2-DE.

The objective of this two-phase experiment was to compare
rotein abundance according to two conditions. These condi-
ions are defined as healthy (H), for GT1–7, and infected (Sc)
or ScGT1–7. In the first phase, cell cultures, sample preparation
nd/or pooling represent the biological phase. Separation of pro-
eins by 2-DE, organization of gel runs and staining represent the
echnical phase. Technical variability due to the electrophoresis
pparatus was considered to be non-significant because running
onditions (current, buffer and temperature . . . ) were controlled;
hus six 2-DE (IEF then SDS-PAGE) were run for H (represented
y “batch 1 ”), followed by six 2-DE for Sc (“batch 2”).

After silver staining, gels were scanned and classically ana-
yzed using the software ImageMaster 4.01 (GE-Healthcare
ioscience). After spot volume measurements and match-

ng, differential analysis (Section 3) was performed and
pots showing significant abundancy variations (genome.
ouy.inra.fr/gt1) between H and Sc were identified by mass spec-
rometry. The expression of the proteins corresponding to these
pots can be considered to be specifically affected by prion
hronic infection. They can be potential markers of prion disease
r targets for drug therapy.

Thus, variability arises generally from both phases, call-
ng for rational implementation of work plans [17,18]. It
hould be emphasized that establishing an experimental design
llows bias reduction and increased confidence in experimental
esults.

.3. Constructing experimental blocks or blocking

If the researcher suspects variability during gel runs, for
xample, he can account for this variability by constructing
locks. A block is a set of experimental materials considered as

onsistent. The objective of blocking is to make the comparison
etween observed conditions, with little as possible depen-
ent on artefacts or heterogeneities (differences between gels,
tc.) and as much as possible dependent on the differences the

http://genome.jouy.inra.fr/gt1
http://genome.jouy.inra.fr/gt1
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Fig. 1. Examples of experimental designs. Squares correspond to flasks in the biological phase and to gels in the technical phase. H denotes healthy GT1–7 cells
and Sc denotes ScGT1–7 (chronically infected GT1–7 cells). (A) Unrandomized design for experiment on cell lines. Healthy cell (H) and infected cell (Sc) were
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ultured in several flasks. Samples were pooled and 2-DE were performed. (B)
hase can be taken into account in differential analysis. (C) Example of a rand
H or Sc) were cultured in different flasks. Heterogeneities are suspected in bio
ffect of suspected potential biases is eliminated.

esearcher needs to characterize (effect of infection in the exam-
le). Thus, blocking takes into account heterogeneities known
r suspected from the beginning of the experiment and improves
he precision of the following statistical analysis. When block-
ng is used, both the blocks and the allocation of conditions to
locks have to be chosen (see [7,8] for more information on
locking).

An example of blocking is shown in Fig. 1B. Cultures are per-
ormed as described in the previous schema. Variabilities being
uspected between “batch 1” and “batch 2”, the researcher con-
tructs one block that will run in “batch 1” and a second block

hat will run in “batch 2”. Each block is composed of three gels
isoelectric focusing followed by sodium dodecyl sulfate poly-
crylamide gel electrophoresis) with proteins from H (sample 1)
nd three gels with proteins from Sc (sample 2). If there is a het-

p
t
(
b

ndomized design with “blocks”, the heterogeneities suspected in the technical
ed design without blocking. Numbers denote sample landmarks. GT1–7 cells
l and technical phases and a randomization is performed for both phases. The

rogeneity due to the electrophoresis apparatus, the researcher
ill be able to identify it by comparing gels loaded with sample 1

rom both batches and gels loaded with sample 2 also from both
atches. Moreover, the researcher will be able both to quantify
his effect and to improve precision in differential analysis. The
emaining variabilities are due to differences between H and Sc
hat the researcher wants to characterize.

The technique of blocking for the technical phase was
escribed for transcriptomics, to take into account the hetero-
eneities linked to arrays and dyes in microarrays experiments
nd complicated designs were proposed [9–11,19]. Pairing is a

articular blocking with blocks of size 2 that was described for
ranscriptomics but also for 2D difference gel electrophoresis
2D-DIGE) experiments [20]. Blocking can also be used in the
iological phase [21].



2 matog

2

v
i
f
i
d

b
n
f
i
g
p
“
e
f
b
a
o
r
a
s
a
t
[

c
r

2

e
n
I
w
i
t
3
m
H
t
i
e
r

t
o

F
p
r

64 J.-F. Chich et al. / J. Chro

.4. Randomization

Because it is difficult for a researcher to identify all sources of
ariation using his judgement or experience, the use of random-
zation is a common practice. Randomization was recommended
or microarray experiments [9,10]. To our knowledge, random-
zation for proteomics was described only for experimental
esign in mass spectrometry [6].

We will consider again the previously described experiment
ut with unknown heterogeneities both in biological and in tech-
ical phases. This experiment thus calls for a randomization
or both phases [18]. The schema of the experimental design
s shown in Fig. 1C. The incubator is supposed to be hetero-
eneous (heat, CO2 distribution, etc.) and a randomization is
erformed before placing the culture flasks with landmarks (six
H” and six “Sc”) inside. Cells are cultured and proteins are
xtracted individually from each flask. To avoid biases due to,
or example, preferential current run, differences in strip or gel
atches, buffer composition, randomization can be performed
t the different levels of the technical phase: (a) allocation
f proteic samples to strips, (b) strip placement in IEF appa-
atus, (c) strip deposit at the top of second dimension gels,
fter IEF, (d) gel placement in migration tank. Subsequent gel

taining, image analysis and statistical treatment are performed
s usual. The example presented here is a simple randomiza-
ion. However, designs with blocks can also be randomized
7,8].

a
i
t
t

ig. 2. Example of experimental designs using replication. Replication should take in
hase without replication and technical phase with six replications for each sampl
eplications for each sample. (C) Biological phase with six replications and technical
r. B 849 (2007) 261–272

In brief, randomization reduces systematic errors when
omparing the conditions and estimating the precision of the
esults.

.5. Replication

Although randomization and/or blocking allow control of
xtraneous variables, the result of a single 2-DE experiment is
ot satisfactory due to the intrinsic variability of the method.
n proteomics, variability can be found in biological phase as
ell as in technical phase. Variability was estimated to be high

n 2-DE [22] and it can lie in the number of spots detected, on
he variance of the spot volume measured (discussed in Section
) by software analysis. The authors showed also that a fully
anual analysis is more reliable than a fully automated one.
owever, replication in both phases can be problematic due to

he low amount of initial sample or due to low protein content
n a sample (biopsy for example). Some tools are available to
stimate the experiment precision a priori on the basis of the
esearcher objectives (www.emphron.com/) .

In order to illustrate the concept of replication, we present
hree examples, shown in Fig. 2. The first design (Fig. 2A) has
ne biological replication (one flask for H, one flask for Sc)

nd six technical replications (six 2-DE per flask). Its drawback
s that biological variance cannot be estimated. The differen-
ial analysis will be based on the technical variance only and
he precision of analysis will be over-estimated. This situation

to account technical limits and the fiability of expected results. (A) Biological
e. (B) Biological phase with three replications and technical phase with two
phase without replication.

http://www.emphron.com/
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an increase the number of false positives. Similarly, if protein
xtracts from several flasks are pooled into a single sample for
ach condition (as in Fig. 1A), the differential analysis will also
e based on technical variance only and the number of false posi-
ives may increase. The use of several pools per condition avoids
his problem (see [9,10] for a discussion on pooling). The second
esign (Fig. 2B) shows three biological replications (three flasks
or H and three for Sc) and two technical replications (two 2-DE
er flask). The third design has six biological replications and
nly one technical replication. For both designs, six 2-DE were
ade for each H and Sc. Both designs have thus the same ability

o account for the technical variance. However, the third design
Fig. 2C) has more biological replications and the subsequent
nalysis will be more accurate.

Cell lines do not give the opportunity to perform true bio-
ogical independent replications because all cells derive from a
nique cell. However, several factors (clonal drift, culture media
odifications, de novo latent infections, etc.) can induce, at least

heoretically, variations that can be assessed by replication of
ask cultures without pooling. True biological replications can
e envisaged using primary culture cells [23] because these cul-
ures can be designed to be as independent as possible from each
ther.

Replications are necessary to assess and increase the preci-
ion of the subsequent analysis results. From a statistical point
f view, biological replications are more efficient than techni-
al replications. In practice, biologists use technical replications
ue to the well known variability of the 2-DE technique. Litera-
ure studying the experimental design of microarray experiments
mphasizes using replications to assess and control experimental
ariability [9–11]. However, these recommendations are dis-
ussed since a system of unreplicated experiments was described
11]. For proteomics, discussions on the number of observations
re available in [20,24].

.6. Discussion

In summary, experimental design is an important part of bio-
ogical experiments, especially in proteomics where technical

ethods are long, difficult with intrinsic technical variability.
he situation of two-phase experiment is often encountered

n proteomics [21] and transcriptomics [10] and experimental
esign offers several tools that can be useful to minimize the
ffect of variabilities on the results. The choice of a suitable
xperimental design can improve the reliability of true positives
etection and reduces the number of false positives in the sub-
equent differential analysis.

While general guidelines can be drawn from the examples
hown here, it should be kept in mind that establishing an
xperimental design is a compromise between the availability
f biological material, the technical difficulties of the approach
nd the reliability of the expected results.
. Differential analysis

The aim of the differential analysis is to detect the proteins
hose abundance differs according to the condition. In statis-

c
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t
t
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ical terms, this comes to test simultaneously a large number of
ypotheses: for each spot j, we have to test the hypothesis Hj

hat the spot volume does not differ according to the condition,
r in other words that the corresponding protein is not variant
n abundance. This problem has been extensively studied for
he determination of the differentially expressed genes in

icroarray experiments [25–30]. Nevertheless, the adaptation
f these works to data coming from 2-DE is not direct for the
ollowing reasons:

The data present a great variability due to the complexity of
the image analysis [31–35].
The number of missing data is large, up to 50–60% [36].
Generally the replication number is small, between 3 and 6.
Some observations are irrelevant. This is the case when the
image analysis process detects spots in trails or overlapping
spots.

The statistical analysis provides a list of variant spots, using
procedure that is based on a statistical model and on the data.
he parameters controlling the procedure, for example, the prob-
bility of deciding wrongly that a spot is variant, are estimated.
n reality, because some observations are irrelevant, this list is
nly a list of potentially interesting spots and must be carefully
xamined before validation.

Detection of pertinent spots is thus an iterative procedure
etween the researcher and the results of the statistical analysis.
evertheless, providing methodological tools for detecting irrel-

vant observations and variant spots, may help to best analyze
he data.

The testing procedure consists of choosing a test statistic
nd deciding if the hypothesis Hj is rejected or not. These
roblems are treated in Section 3.1. The next question to con-
ider is what does the procedure control? This is the object of
ection 3.2.

In practice, preliminary analysis is necessary in order to verify
hat the statistical model is consistent with the data. Another
mportant question is which strategy for missing data? All this
ill be discussed in Section 3.3.

.1. Statistical models and testing methods

Statistical problems involved in gel analysis have been dis-
ussed [34,36–39]. In this paper we consider two approaches,
he spot by spot approach (or univariate analysis) where the
est statistic for testing the hypothesis Hj is based on the
ata observed for the spot j only, and the global approach
or multivariate analysis) where the test of Hj is based on
he results of an analysis of variance considering all the
bservations together. The methods taking into account the
xperimental design, for example blocking, are mentioned in
ection 3.1.3.

Let us denote by Yjcg the response for spot j, under condition

, on gel g. The response is the percentage of volume on gel g or
suitable transformation of spot volume, that is a transforma-

ion for which the statistical assumptions needed for applying
he methods described below will be reasonably satisfied. The
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Box 2. Global ANOVA approach: test of Hj.

Assume that we compare two conditions. The
test statistic Sj, is based on the least squares
estimators of the differences (SpC)j1 − (SpC)j2’s
divided by their estimated standard errors. The
Sj’s are distributed as |Zn−GC−(J−1)(C−1)|, where
n = ∑J

j=1 nj is the total number of observations,
J the number of spots, G is the number of gels for
66 J.-F. Chich et al. / J. Chro

roblem of choosing a transformation is discussed in Section
.3.3.

.1.1. Spot by spot analysis
In the spot by spot analysis, we assume that the Yjcg’s are

istributed as Gaussian independent variables with mean mjc

nd variance σ2
j . Testing Hj comes to test that the mjc’s are

ll equal using the classical Fisher or Student statistics test (see
ox 1). Several variants of Student statistics have been pro-
osed [40]. Non-parametric tests can also be applied such as the

ann–Whitney (or Kolmogorov) test. If we denote by Fc the dis-

ribution function of the observations of spot j under condition c,
he Mann–Whitney test consists in testing that the distributions
c are identical. It does not need to assume Gaussian distribution.

Box 1. Spot by spot analysis: test of Hj.
(A) Comparison of two conditions
Let us denote Yjc. as the empirical mean of the
Yjcg, njc the number of observations of spot j under
condition c, and SCRjc as the residual sum of
squares defined as follows:

CRjc =
njc∑
g=1

(Yjcg − Yjc.)
2.

If nj1 + nj2 ≥ 3, the test statistic for testing Hj:
“mj1 = mj2” against “mj1 �= mj2” is defined as fol-
lows:

j = |Yj1.−Yj2.|√
(SCRj1 + SCRj2)/(nj1 + nj2−2)((1/nj1) + (1/nj2))

.

Let us denote by Zd a Student variable with
d degrees of freedom. If Hj is true, then Sj is
distributed as |Znj1+nj2−2| and the p-value pj is
defined as

j = pr(|Znj1+nj2−2| > Sj).

(B) Comparison of C conditions, C ≥ 3. If nj,
the total number of observations for spot j, is
greater than C + 1, the test statistic for testing
Hj: “mj1 = · · · = mjC” against the alternative that
there exist two conditions c, c′ such that “mjc �=
mjc′” is defined as follows:

j = nj − C

C − 1

∑C
c=1 njc(Yjc. − Yj..)2∑C

c=1 SCRjc

where Yjc., njc and SCRjc are defined as above, and
Yj.. is the mean of the responses for spot j.
Let us denote by Fd1,d2 a Fisher variable with d1
and d2 degrees of freedom. If Hj is true, then Sj

is distributed as FC−1,nj−C and the p-value pj is
defined as

j = pr(FC−1,nj−C > Sj).

3
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each condition.
The p-values pj are defined as in Box 1.

.1.2. Global analysis
In the global analysis, we start with an analysis of variance

ANOVA) model, where the response Yjcg is modeled as follows:

jcg = (G)g + (SpC)jc + Ejcg

here (G)g is the effect of gel g (the part of variability due to gel
in the response Y), and (SpC)jc is the spot × condition effect

efined as the effect of spot j under condition c on the response
. The random errors Ejcg are distributed as centered Gaussian

ndependent variables with the same variance σ2. Testing Hj

omes to test that the differences between the spot × condition
ffects (SpC)jc are zero using the Student or Fisher statistic (see
ox 2).

.1.3. Analyses with block effects
The block effects in the experimental design have to be taken

nto account in the modeling [10,17–19,21]. Let us consider the
xample given by Design 2 of Fig. 1B. Let Yjcag be the response
f spot j under condition c measured on gel g in experimental
pparatus a. In the spot by spot approach, for each spot j, we
onsider the following ANOVA model,

jcag = (A)a + (C)c + (AC)ac + Ejcag

here (A)a is the mean effect of apparatus a, (C)c the mean
ffect of condition c, and (AC)ac is an apparatus × condition
ffect. The last effect is called an interaction effect meaning that
he condition effect may differ according to the apparatus. For
ach spot j the model parameters are estimated, and testing Hj

omes to test that the (C)c’s are all equal. In the global approach
odel, the response Yjcag is modeled as follows:

jcag = (G)g + (SpA)ja + (SpC)jc + (SpAC)jac + Ejcag

here (G)g is the gel effect, (SpA)ja the effect of spot j
bserved in apparatus a, (SpAC)jac an apparatus × condition ×
pot effect, and (SpC)jc is the effect of spot j under condition c.
s before, testing Hj comes to test that the differences between

he spot × condition effects are zero.

.1.4. Decision rules

The decision rule for rejecting Hj is the following: for each

pot j, we calculate the p-value pj , defined as the probability
or rejecting Hj when Hj is true. The hypothesis Hj is rejected
hen pj is small. Therefore the set of variant spots corresponds
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o the smallest p-values. For example, we can choose to reject
j when pj is smaller than 5%.

.2. Controlling the testing procedure

The question that arises is how many errors are we doing
hen testing J hypotheses? We commit an error in two situations:

. When we decide that a spot is a variant when it is not. Such
an error leads to a false positive. The number of such errors
is denoted FPos.

. When we decide that a spot is not a variant when it is. Such
an error leads to a false negative.

he control and elimination of false positives is impor-
ant in order to avoid drawing false conclusions, particularly
hen the conclusions are the starting point of a new costly

xperiment.
If we run the testing procedure with α = 0.05, then we expect

p to 5% of the total number of spots to be variants by chance
lone. In other words, if the differential analysis is performed
ith J = 1000, then we expect up to 50 spots to be wrongly
etected as variants. Such a control is not acceptable. Two meth-
ds described below overcome this problem.

.2.1. The family-wise error rate or FWER
The FWER is defined as the probability of having at least

ne false positive. It can be shown that if each hypothesis Hj is
ejected whenpj ≤ α, then FWER ≤ αJ . Choosingα = 0.05/J
eads to FWER ≤ 0.05. This choice of α is known as the Bon-
erroni correction. This procedure allows very few occurrences
f false positives, but makes the decision rule that a spot is dif-
erentially expressed very strict.

a
f
s
g

ig. 3. Decision rules. Once the p-values pj are calculated, it remains to define a th
he threshold. Let us formulate the problem in another way by considering the set of
hresholds that may depend on j denoted τj . The number of rejected hypotheses Hj , R
f all the p(j)’s satisfy p(j) > τj , then R = 0: none of the hypotheses Hj is rejected.

If τj is constant and equal to α, then R is simply the number of p-values that are s
α = 0.05/J .
The method proposed by Benjamini and Hochberg takes τj = 0.05j/J . Then Hj

follows: FDR ≤ 0.05T/J where T is the number of spots that are not differentially
hese methods are illustrated by the graphics of p-values p(j) in ascending order as
hese data are coming from a simulated example with J = 500. The number of reject
ochberg’s method is used with τj = 0.05j/J .
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.2.2. The false discovery rate or FDR
If R denotes the number of rejected hypotheses, the FDR is

efined as the expected value of the ratio FPos/R when R is
ositive. Controlling the FDR at level 0.05 means that up to 5%
f spots among the spots detected as variants, are identified by
hance. This procedure proposed by Benjamini and Hochberg
41] is detailed in Fig. 3. Several variants and improvements of
his procedure have been proposed [40,30,42].

.2.3. Which one to choose?
The choice between FDR or FWER procedure should be

ade on the basis of the aim of the research. If the differential
nalysis is a work whose objective is to list potential proteins
nvolved in a physiological process, FDR method provides

reliable tool. If the objective is to determine if a protein is
potential biomarker, according to [4], false positives must

e totally eliminated and FWER method should be preferred.
owever, in this case, further investigation is needed after this

tep to validate the biomarker.

.3. Preliminary analyses

.3.1. Removing irrelevant data
Testing simultaneously a large number of hypotheses has a

ost: the larger the J, the more the procedure is strict. Therefore
etaining in the differential analysis spots for which the observa-
ions are not relevant may compromise the differential analysis
or the other spots. The amount of protein quantified in each
pot can be computed when the spots are correctly detected by
he image analysis software, but 2-DE images present smears

nd trails corresponding to migration artifacts. Those spots are
requently located near the left or right side of the image, corre-
ponding to zones of accumulation of protein not within the pH
radient used, and around overabundant proteins, such as actin

reshold, such that the hypothesis Hj is rejected as soon as pj is smaller than
ordered p-values into ascending order, p(1) < p(2) < · · · < p(J), and a set of

, is defined as the largest j such that p(j) ≤ τj . Finally, we reject Hj if pj ≤ τR.

maller than α. We can take α = 0.05, or apply the Bonferroni correction with

is rejected if pj ≤ 0.05R/J . They have shown that the FDR is controlled as
expressed.
function of j, for j = 1, . . . , 125 on the left and j = 1, . . . , 42 on the right.

ed Hj equals 100 if τj = 0.05, 5 if τj = 0.05/500 and 39 if the Benjamini and
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ig. 4. Removing irrelevant spots. Spots near the left and right sides of the gel
nd near the top are deleted as well as spots located near actin and tubulin that
re overabundant.

r tubulin for example. To improve the analysis, those spots are
eleted (see Fig. 4).

.3.2. Checking gel replications within conditions
The experiment can be used for differential analysis if within

ach condition, the gels can be viewed as replications of the same
bservation. However, the classification of gels into conditions
ay be uncertain because of biological or technical variability

n the experiment.
Data-mining methods are suitable for checking this assump-

ion, considering the gels as the experimental units (the cases)
nd the spots as the variables. Unsupervised methods such as
rincipal component analysis (PCA) or hierarchical clustering,
gnores the condition under which the gels were observed. Their
im is to discover structures from the evidence of the data matrix
lone. If the structure proposed by the analysis consists of split-
ing the gels into conditions, then we are allowed to use the data
et for differential analysis. If not, such an analysis may give
nformation on what is going wrong in the data set.

Some of these methods such as PCA, cannot be used when
any spots are missing, particularly in the context of 2-DE gels,

ecause they are not missing at random. It is then possible to
un the method only on spots observed on all the gels. Another
ossibility is to attribute values to missing data. This point will
e discussed in Section 3.4.

.3.3. Choice of a suitable transformation of the observed
olumes
The testing procedures presented in Section 3.1 rely on sta-
istical assumptions that should be checked.

The global approach assumes that there exists a suitable trans-
ormation of the observed volumes such that an ANOVA model

w
[
e
n

r. B 849 (2007) 261–272

s appropriate for modeling the data. The spot by spot approach
ssumes that there exists a transformation such that the gels
ithin a condition are replications of the same observation, and

he variance of the resulting response does not depend on the
ondition c. If these assumptions are not satisfied, then the test-
ng procedures are false, that is, the calculation of the p-values
s no longer valid. Usually the gel effect is eliminated by calcu-
ating for each spot the percentage of volume on the gel. Then
he Student test or the Mann–Whitney test is used for testing Hj

or each spot j. However, it has been observed that the larger the
pot, the larger the variance [43,38]. It is therefore worthwhile to
ook for a transformation in order to stabilize the variance. This
eterogeneity in the data variability is mainly due to a scale phe-
omenon, well-known when the observation (the spot volume)
s a count (number of pixel × intensity).

In practice the problem is to find a transformation T of the vol-
mes Vjcg or the percentage of volumes on each gel %Vjcg, such
hat the transformed data Yjcg = T (Vjcg) or T (%Vjcg) satisfy
he assumptions of Section 3.1. In some cases the logarithmic
ransformation is applied with success. In other cases, other
ransformations are more appropriate. The Box–Cox method
llows to estimate an optimal transformation from the data
38,44]. Other normalization methods based on the data have
een proposed [39,45]. In any case, graphics and statistical anal-
ses are useful for detecting the presence of structures in the
ariance of the data [38,46]. Precisely let us denote by Rjcg the
esiduals defined as Rjcg = Yjcg − Ŷjcg , where Ŷjcg is the pre-
icted value for spot j on gel g under condition c: in the spot
y spot approach, Ŷjcg is simply equal to Yjc·; in the global
pproach, Ŷjcg = (̂G)g +̂(SpC)jc, where (̂G)g and̂(SpC)jc are,
espectively, the estimated gel and spot × condition effects. The
esiduals are estimating the random errors Ejcg. If the chosen
odel is correct, then their distribution is nearly the same than

he errors distribution. Therefore, structures in the variance of the
bservations may be detected for example by examining graph-
cs of residuals versus the predicted values, or the position on
he gel. If such structures exist, they can be taken into account in
he global ANOVA model. Moreover, looking carefully at spots
whose absolute residuals |Rjcg| or empirical variances are very
igh, may reveal problems during the image analysis process,
s mismatching for example. It gives the opportunity to correct
he data if necessary.

A residual analysis for studying the variability of data coming
rom example of Section 2 is shown in Fig. 5. The graphic of
esiduals versus the predicted values shows that the residuals are
ncreasing with the spot volume. The optimal transformation for
tabilizing the variance is estimated by the Box–Cox method: we
ound T (%V ) = (%V )1/3. For that example, we did not find that
he data variability was depending on the spots position on the
el.

Other sources of heterogeneity may exist in the data, and
he distribution of residuals may be much more spread out
han the Gaussian distribution though no particular structure

as detected in the variance of the observations. Some authors

47,27] proposed in the context of differential analysis of gene
xpression, to use bootstrap methods to address the problem of
on-Gaussian distribution of the test statistic. Nevertheless it
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Fig. 5. Graphics for studying the data variability. The two first graphics represent the absolute values of the residuals Rjcg = Yjcg − Ŷjcg vs. the predicted values
Ŷjcg for the data coming from example of Section 2. Only spots whose volume ratio was greater than 2 were considered in the differential analysis. On the left,
the Yjcg are the percentage of volumes on each gel: Yjcg = %Vjcg. The lines are smoothed fits of the data, one for each condition. They clearly show that the
residuals are increasing with the mean. The logarithmic transformation Yjcg = log(%Vjcg), see the graphic on the middle, inverts the tendency: the smoothed fits
of the residuals are decreasing functions of the predicted values. On the right, Yjcg = (%Vjcg)1/3. This power transformation allows to stabilize the variance of the
observations, the smoothed fits being nearly horizontal. The last graphic represents the distribution of the standardized residuals after the power transformation. The
s with m
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tandardized residuals should be distributed as independent Gaussian variables
ondition. They do not show any particular difference between the conditions.
istribution of n simulated Gaussian (0,1) variates, where n is the total number o

jcg = (%Vjcg)1/3 are not Gaussian distributed with the same variance.

hould be noted that bootstrap method is not well adapted to the
pot by spot approach because of the small number of replica-
ions. Moreover applying bootstrap methods for the differential
nalysis of 2-DE in a global ANOVA model, leads to heavy
omputation. Indeed, because of missing data, the algorithm for
stimating the parameters is time consuming.
.4. Strategy for missing data

Missing data cannot be ignored in differential analysis of 2-
E, because they affect a large number of spots, and because

m
s

s

ean 0 and variance 1. The two first boxplots consider the residuals under each
ird boxplot represents the distribution of all the residuals, and the last one the
uals. Looking at these graphics, there is no reason to suspect that the responses

he lack of observation may be due to proteins variant in
bundance.

Several reasons lead to missing observations, for example
he actual absence of a given protein, or a mismatching. In some
ases, it is possible to guess the reason. For example, when
he spot is not observed on any gels within a condition, the
rotein may be absent. But generally it is hazardous to interpret

issing data without a tedious inspection of the data, spot by

pot.
The usual testing procedures used for the differential analy-

is does not need a complete data set, but they need a minimum
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Box 3. Effect of the sample size on the estimated
variance variability.
Let X1, . . . , Xn be n independent Gaussian obser-
vations with mean m and variance σ2. The empir-
ical variance s2 defined as follows

s2 = 1

n − 1

n∑
i=1

(Xi − X.)2, where X. = 1

n

n∑
i=1

Xi,

is an unbiased estimator of the variance σ2. Its
coefficient of variation is equal to

CV(s2) = 100
standard-error(s2)

mean(s2)
= 100

√
2

n − 1
.

It follows immediately that if n = 3, CV(s2) = 100%,
if n = 9, CV(s2) = 50%.
Let us now apply these results to the Student
test used for testing Hj in the spot by spot
approach. For the sake of simplicity, assume that
nj1 = nj2 = nj/2. The denominator of Sj is the
square-root of the estimated variance of the dif-
ference Yj1. − Yj2.. More precisely, the variance of
Yj1. − Yj2. is estimated by S2

j = 4s2
j/nj where s2

j is
the empirical variance. Using the results given
above, we get that the coefficient of variation of S2

j

equals 100
√

2/(nj − 2). For example, nj = 6 leads
to CV(4s2

j/nj) = 71%, nj = 12 leads to 45%. These

n
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Box 4. Spot by spot approach and Student statis-
tic: variations of the p-values as function of the
estimated standard-error and the number of repli-
cations.
Let us consider a differential analysis of 2-DE com-
paring two conditions, based on a spot by spot
approach, where the number of spots J is equal
to 500. Suppose that

• After the logarithmic transformation of the vol-
ume percentages, the responses are Gaussian
distributed with the same variance.

• Using a Bonferroni procedure that controls the
FWER at 5%, five spots were detected as vari-
ant. Precisely, the hypothesis Hj was rejected if
the p-value was lower than 0.0001.

• Using the procedure controlling the FDR at 5%,
we found 39 variant spots. In that case, the
hypothesis Hj was rejected if the p-value was
lower than 0.0039.

Let us consider spots for which the means dif-
ference δ12 = |Yj1. − Yj2.| equals log(2). According
to our experience when analyzing 2-DE data, the
estimated standard-error of these δ12 may vary
between 0.05 and 1. The table below gives the
p-values corresponding to δ12 = log(2) for several
values of their estimated standard-errors, denoted
S.E. (δ12) and several values of the number of
replications. It is assumed that the number of
replications is the same under each condition:
nj1 = nj2 = nj/2.

S.E. (δ12) nj = 4 nj = 6 nj = 8 nj = 10 nj = 12

0.05 0.0052 < 0.0001 < 0.0001 < 0.0001 < 0.0001
0.1 0.020 0.00011 < 0.0001 < 0.0001 < 0.0001
0.2 0.074 0.013 0.0027 0.00059 0.00013
0.5 0.30 0.16 0.097 0.059 0.037
1 0.55 0.44 0.36 0.30 0.26

This table highlights that the decision rule is

w
t
i

a

3

simple calculations show the importance of the
number of replications in the differential analysis.

umber of observations for each spot, at least one observation
or each spot under each condition. If we use the spot by spot
pproach, at least three observations for each spot for the com-
arison of two conditions ( see Box 1A) are needed. But, as it is
hown in Boxes 3 and 4, one should prefer to have at least five
r six observations for each spot.

Some authors proposed to set the missing data to the value
, or to the lowest observed value in the data set [46]. Such
procedure assumes that all missing data are due to lack of

rotein. Others proposed to replace the missing data for one
pot on one gel by the mean of the observations for this spot.

ore sophisticated methods have been proposed as the k-nearest
eighbour method [48,49]. Nevertheless they are not adapted to
he case where values are missing on all the gels corresponding
o one condition.

Another solution is to replace missing data by some simu-
ated values, for example by drawing Gaussian variables with

ean m and variance s2. The values of m and s2 may be cho-
en with the help of the data. For example, m is the smallest
r one of the smallest observed values as the 0.025 quantile of
he data, and s2 is the median of the empirical variances calcu-

ated for each spot. The question is now how many missing data
ust be replaced by simulation? One possibility is to simulate
issing data in order to get the minimum number of observa-

ions required for the statistical analysis. At the opposite end

a
a
o

strongly dependent on the variability of the data
and the number of replications.

e could simulate data wherever they are missing. The risk is
hen to bias the differential analysis by introducing additional
nformation possibly erroneous.

What is a good strategy for missing data in 2-DE analysis is
n open question that needs further work.

.5. Discussion
Whatever the approach chosen, spot by spot or global
pproach, it is always advantageous to carry out preliminary
nalyses as described in Section 3.3. The differential analysis
f 2-DE gels is an iterative process. The statistical analysis will
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rovide a list of differentially expressed spots in terms of protein
bundance, based on a decision rule strongly dependent on the
ata variability and on the number of replications (see Box 4).
his list will be confirmed or rejected by the researcher. If sev-
ral spots are rejected, it may be worthwhile to suppress these
pots from the data and go back to the beginning of the analysis.

One customary practice is to retain among spots detected
s variants those that are biologically significant (see [39]). For
xample, the two-fold change rule is applied: it consists of keep-
ng spots whose volume ratio is greater than 2. Another practice
s to do the differential analysis only with spots whose volume
atio is greater than 2. Let us clarify that from a statistical point of
iew, those rules have no meaning. In practice, spots whose vol-
me ratio is smaller than 2 may be observed with great precision
nd with a large number of replications, and thus may be detected
s variant. Suppression of those spots before the differential anal-
sis may lead to eliminate variant spots. Statistics cannot decide
hat is biologically pertinent or not, but can propose objective
ethods based on the data, to suggest both what could be inter-

sting, and what should be moved aside or corrected.
Let us now discuss the choice between the spot by spot and

he global approaches.

The spot by spot analysis does not need sophisticated soft-
ware, and is proposed by the software packages used for
image analysis. It is thus very attractive. Nevertheless, as
each test uses information coming from only one spot, a large
number of replications is necessary (see Box 4). In Section
3.1 we assumed that the variance of the observations for one
spot was identical under both conditions. This assumption
could be relaxed and the test statistic adapted to the case
where the variance is dependent on the condition. There-
fore, the number of replications by condition should be large
enough to estimate properly the variance of the test statistic
(see Box 3).

The Mann–Whitney test is attractive because it does not
assume Gaussian distribution but it is based on the ranks of the
observations rather than on the observations. It lacks power
when the number of observations is small [29]: a minimum of
seven replications by condition is needed according to [39].

Whatever the test statistic, it is assumed that for each con-
dition, and spot, the observations are replications. Therefore,
the data normalization, as suppressing the gel effect, and more
generally the block effects, must be done before the test-
ing procedure. However, it should be noticed that including
additional effects reduces degrees of freedom in the Student
statistic.
The global analysis uses information from all the data for test-
ing each hypothesis Hj . The gel effects on the mean response,
denoted (G)g in Section 3.1, are estimated together with the
spot × condition effects, denoted (SpC)jc. The variance has
been assumed the same for all spots, but this assumption may
be weakened by taking into account information on the vari-

ance structure. For example, the variance may depend on the
condition, or on the spot localization on the image, or on the
spot. Because of missing data, a statistical software, such as
R (cran.r-project.org) or SAS (www.sas.com) is needed.
r. B 849 (2007) 261–272 271

Let us finally underline that detecting significant differ-
nces in protein abundance relies on a statistical procedure that
ompares the differences of observed spot volumes to their vari-
bility. Therefore, the experimental design must guarantee the
ossibility to estimate properly this variability. Variability in
he data may come from the biological and technical phases.
eplications in the biological phase may be difficult to obtain in

ome situations, as for example when sample are taken on people
r animals. In the technical phase, three or four replications in
ost proteomics studies should be possible. The statistician has

o take into account these situations, to propose suitable statisti-
al methods, as for example methods based on global ANOVA
odels, and to precise the limits in which the results can be

andled.

. Conclusion

Accurate differential analysis of proteomic data outcomes of
igorously designed experiments and produces reliable results.
his dynamic interaction requires a close interdisciplinary col-

aboration at every step of the project and is beneficial for
oth biologists and statisticians. Further investigations using
he results issued from such a collaboration can be considered
ith increased confidence. Statistical tools such as discriminate

nalysis, regression methods or supervised classification [50–
5] can be further applied to accurately discriminate the status
f unknown samples, normal or pathologic for instance. The
nteraction schema between statisticians and biologists is par-
icularly important for the detection of differentially expressed
roteins involved in pathologies since it can lead to the discovery
f biomarker candidates. Another field of collaboration between
oth disciplines is the search for functional molecular (proteins
nly or proteins and mRNAs, etc.) networks. The aim of this
pproach is to establish the relationships existing between the
ifferent cellular actors in order to (re)-construct a causality net-
ork. Statistical methods in this field are under development and
umerous fundamental mathematical researches are actively in
rogress [56–59]. It should be emphasized that the interactions
etween mathematicians, statisticians and biologists are not lim-
ted for providing increased confidence in biological results; they
llow the delineation of new areas where collaborative research
s needed.
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