Olivier ZINDY

Welcome to my homepage ! I am an Associate Professor (Maitre de Conférences HDR in France) at Sorbonne Université.
I am a member of the Laboratoire de Probabilités, Statistique et Modélisation (LPSM, UMR-8001), in the team ''Analyse Stochastique''.
Address: LPSM, Sorbonne Université
Case courrier 188 - 4 Place Jussieu
75252 Paris Cedex 05 - FRANCE
E-mail: olivier "dot" zindy ''at'' gmail "dot" com
Office: bar 16-26, 2nd floor, office 16
How to come to the laboratory, comment se rendre au laboratoire

RESEARCH INTEREST
  • Probability theory, stochastic processes
  • Random media, random walks in random environment
  • Fluctuations theory for random walks, renewal theory
  • Branching processes, branching random walks
  • Log-correlated Gaussian fields and statistical physics
  • Driven-dissipative stochastic systems, Activated random walks

  • PAPERS AND PREPRINTS
  • Branching Brownian motion versus Random Energy Model in the supercritical phase: overlap distribution and temperature susceptibility (2024+, joint work with B. Bonnefont and M. Pain), to appear in Journal of Statistical Physics, 55 pages.

  • Two-temperatures overlap distribution for the 2D discrete Gaussian free field (joint work with M. Pain). Annales de l'Institut Henri Poincaré - Probabilités et Statistiques , 2021, vol. 57, 685-699.

  • Universality and sharpness in absorbing-state phase transitions (joint work with L. T. Rolla and V. Sidoravicius). Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics, 2019, Vol. 20, 1823-1835.

  • Poisson-Dirichlet statistics for the extremes of the two-dimensional discrete Gaussian free field (joint work with L.-P. Arguin). Electronic Journal of Probability, 2015, Vol. 20, no. 59, 1-19.

  • Poisson-Dirichlet statistics for the extremes of a log-correlated Gaussian field (joint work with L.-P. Arguin). Annals of Applied Probability, 2014, Vol. 24, 1446-1481.

  • The precise tail behavior of the total progeny of a killed branching random walk (joint work with E. Aïdékon and Y. Hu). Annals of Probability, 2013, Vol. 41, 3786-3878.

  • Quenched limits for the fluctuations of transient random walks in random environment on Z (joint work with N. Enriquez, C. Sabot and L. Tournier). Annals of Applied Probability, 2013, Vol. 23, 1148-1187.

  • Stable fluctuations for ballistic random walks in random environment on Z (2010, joint work with N. Enriquez, C. Sabot and L. Tournier). Preprint. Note: this paper is a preliminary version to Quenched limits for the fluctuations of transient random walks in random environment on Z but contains annealed results and proofs which do not appear in the published version.

  • Scaling limit and aging for directed trap models Markov Processes and Related Fields, 2009, Vol. 15, 31-50.

  • Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime (joint work with N. Enriquez and C. Sabot) Bulletin de la Société Mathématique de France, 2009, Vol. 137, 423-452.

  • Limit laws for transient random walks in random environment on Z (joint work with N. Enriquez and C. Sabot) Annales de l'Institut Fourier, 2009, Vol. 59, 2469-2508.

  • A probabilistic representation of constants in Kesten's renewal theorem (joint work with N. Enriquez and C. Sabot) Probability Theory and Related Fields, 2009, Vol. 144, 581-613.

  • Upper limits of Sinai's walk in random scenery Stochastic Processes and their Applications, 2008, Vol. 118, 981-1003.

  • A weakness in strong localization for Sinai's walk (joint work with Z. Shi) Annals of Probability, 2007, Vol. 35, 1118-1140.

  • COLLABORATORS
  • Elie Aïdékon
  • Louis-Pierre Arguin
  • Benjamin Bonnefont
  • Nathanaël Enriquez
  • Yueyun Hu
  • Michel Pain
  • Leonardo T. Rolla
  • Christophe Sabot
  • Zhan Shi
  • Vladas Sidoravicius
  • Laurent Tournier

  • PHD STUDENT
  • Benjamin Bonnefont (Oct. 2020 - Dec. 2023) - Now Post-Doc at Université de Genève with V. Vargas.
  • Works from his PhD:
    The overlap distribution at two temperatures for the branching Brownian motion Electronic Journal of Probability, 2022, Vol. 27, no. 116, 1-21.
    The left tail of the subcritical derivative martingale in a branching random walk (2023+, joint work with V. Vargas).
    Branching Brownian motion versus Random Energy Model in the supercritical phase: overlap distribution and temperature susceptibility (2024+, joint work with M. Pain and myself), to appear in Journal of Statistical Physics, 55 pages.

    HDR
  • Mémoire d'habilitation à diriger des recherches (2019, in french)

  • ENSEIGNEMENT 2024 - 2025
  • L3-MA263 - Théorie de la mesure et probabilités (CM, TD et enseignement à distance)
  • L3-MAOI1 - Orientation et insertion professionnelle (OIP)
  • M2 - Préparation à l'Agrégation - option A (responsable de l'option A, CM, TD, textes, oraux blancs)

  • LINKS
  • Mathematics ArXiv probability page and MathSciNet
  • LPSM, modal'X, WIAS
  • Séminaire de Probabilités, Les Probas du vendredi
  • One World Probability Seminar (help reduce our impact on climate change!)