Papers
See also my Google scholar page.
My research lies in machine learning with focus on…
Hawkes processes
Nonparametric estimation of Hawkes processes with RKHSs (2024),
A. Bonnet, M. Sangnier.
Spectral analysis for noisy Hawkes processes inference (2024),
A. Bonnet, F. Cheysson, M. Martinez Herrera, M. Sangnier.
GitHub
Inference of multivariate exponential Hawkes processes with inhibition and application to neuronal activity (2023),
A. Bonnet, M. Martinez Herrera, M. Sangnier.
Statistics and Computing.
Maximum Likelihood Estimation for Hawkes Processes with self-excitation or inhibition (2021),
A. Bonnet, M. Martinez Herrera, M. Sangnier.
Statistics and Probability Letters.
GitHub.
Generative adversarial networks
Approximating Lipschitz continuous functions with GroupSort neural networks (2021),
G. Biau, M. Sangnier, U. Tanielian.
International Conference on Artificial Intelligence and Statistics (AISTATS).
Some theoretical insights into Wasserstein GANs (2021),
G. Biau, M. Sangnier, U. Tanielian.
Journal of Machine Learning Research.
Some Theoretical Properties of GANs (2020),
G. Biau, B. Cadre, M. Sangnier, U. Tanielian.
The Annals of Statistics.
Supervised learning
Fluid flows
Signal recognition
Polarimetric images
|